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Abstract

This master’s thesis focuses on the pricing of counterparty credit risky claims. The subject has
grown increasingly popular in recent years due to the global recognition that participants in the
over-the-counter market indeed may default.

We argue that the price of any risky claim can be linearly decomposed into the price of a risk free
claim minus a certain risk premium called the Credit Value Adjustment. We choose to take a
closer look at interest rate swaps, and show that under the assumption of independence between
counterparty default risk and interest rates, the risky swap price is given as an infinite sum of
swaption prices multiplied by marginal default probabilities. So, while traditional pricing of a
counterparty risk free swap requires nothing more than a zero coupon term structure, we argue
that the pricing of a risky swap requires a lot more.

We choose to explore the swaption pricing model proposed in Pelsser and Schrager (2006). By
using Fourier inversion techniques, we show that the model is able to generate prices possibly
stipulating the dynamics of any affine interest rate model. In terms of modelling the default
risk, we choose to examine the intensity model proposed in Lando (1998). Since the driver of the
intensity model, the Cox-process, can also be assumed affine, we choose to use affine models for
both purposes. This has the benefits of providing semi-analytical solutions to zero coupon rates,
default probabilities, and especially the characteristic function which is the focal point in terms
of the Fourier inversion which ultimately provides the swaption price.

In our applicational part, we choose to specify both of the affine models in compliance with
the one-factor CIR model (Cox et al., 1985) to set a basic example. However, we emphasize
that extending the framework to a higher number of risk factors is fairly straightforward due
to the flexibility of both models. We use different estimation methods and study the interplay
between the two models in different economical data that showcases tendencies pre- and post
crisis, respectively. This investigation is conducted for two different counterparties; the global
bank HSBC and the automobile manufacturer Fiat.
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Chapter 1

Introduction

Financial interaction takes place in different market places. While many standardized products
are traded through an exchange which helps create a liquid, transparent and almost credit risk
free market, the need for tailored contracts has given rise to another market; the over-the-counter
(OTC) market. In this market, derivatives are traded bilaterally between counterparties. Ac-
cording to the Bank of International Settlements, the notional amount outstanding in the global
OTC market reached USD 601, 048 billion at the end of 2010. Even though the OTC market
decreased a bit during the recent financial crisis, the market was still bigger than ever at the end
of 2010.

The crisis, however, shed new light on one of the possible downsides of trading in the OTC
market; the counter party credit risk. While pre-crisis market practice typically was to believe
that major counterparties would not (be allowed to) default, the default of corporations such as
Lehman Brothers in 2008 ruptured this illusion. Participants in the OTC market now have to take
counterparty credit risk more seriously in their risk management as well as in their assessment of
market prices. Furthermore, market regulators have increasingly required OTC participants to
keep reserves in the case of defaults of clients.

The most traded contract in the OTC market is the plain vanilla fixed-for-floating interest rate
swap. Notionals of USD 364, 378 billion, or more than 60% of the entire OTC market, were placed
in the market of interest rate swaps (henceforth simply swaps) in late 2010. Unlike many other
derivatives, e.g. options, a swap has the feature of causing counterparty credit risk to both sides of
the contract since neither counterparty knows if the swap will become an asset or a liability. This
great uncertainty of the future value distinguishes the swap market from e.g. the bond market,
and generally causes the associated credit risk in the swap market to be lower compared to the
bond market since only assets can carry default risk. Even though notional outstanding amounts
provide a measure of market size and not of the market value of the contracts, the numbers
clearly indicate that just a small risk premium in the market could provide significant changes
in the pricing of interest rate swaps since these have traditionally been priced in a way that has
been neglecting counterparty credit risk. Considering the financial turmoil of the last couple of
years, along with the tremendous market size, the quantification of counterparty risk is of greater
importance than ever.
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1.1. Formulation of the Problem Introduction

1.1 Formulation of the Problem
In this exposition we seek to quantify asset pricing. We wish to give a thorough introduction to
risk-neutral pricing and pricing involving other measures than the risk-neutral one. In particu-
lar, we wish to show how change of numeraire techniques allow shifting between different price
measures since pricing under the swap measure becomes necessary in order to apply the swaption
model proposed in Pelsser and Schrager (2006). By carefully laying down the very general asset
pricing framework, we can extrapolate to the field of counterparty risk since the pricing of risky
swaps is our ultimate goal.

While traditional swap pricing simply requires a zero coupon bond term structure, it becomes
evident that a credit risky swap requires a lot more. Following Brigo and Masetti (2005), we
show that the price of a generic credit risky claim can be linearly decomposed into the risk-free
price minus a Credit Value Adjustment (henceforth simply a CVA). Turning to the task of swap
pricing, we subsequently show that by assuming independence between interest rates and default
probability, the generic case reduces to the task of pricing a risk-free swap minus the sum of
an infinite amount of swaption prices, each multiplied with the probability of default during the
lifetime of the swaption. By using standard approximation techniques, our definitive task thus
becomes twofold; we need to both develop the toolbox necessary in order to price swaptions effi-
ciently as well as derive default probabilities on a given counterparty. With this goal in mind the
challenge (beauty) of this master’s thesis therefore becomes to explore the interplay of two very
different subjects in the financial literature.

The question is now which models to use. In our pursuit of maintaining generality, we choose to
explore the larger class of affine models. This model family has several advantages. First and
foremost, it is applicable both in the swaption pricing framework and in the default framework.
Secondly, by making the relevant assumptions it provides (semi-) analytical solutions to i) zero
coupon bond prices, ii) default probabilities and iii) the characteristic function of the probability
distribution in question. The latter being an essential focal point in our specific choice of swaption
pricing model which is the one proposed in Pelsser and Schrager (2006). The model indeed uses
an affine assumption of the unobservable short-rate to derive the dynamics of the swap rate. By
using change of numeraire techniques along with low variance martingale (LVM) approximations,
it is possible to derive the affine dynamics under the so-called swap measure. Finally, by apply-
ing an option pricing method using a Fourier inversion involving the characteristic function, as
suggested in Carr and Madan (1998), we are able to establish a swaption pricing formula. We
emphasize that by using this approach, many classical interest rate models may be used to specify
the affine model, e.g. the models by Merton, Vasicek and Cox, Ingersroll and Ross are all directly
applicable.

Turning to the task of deriving default probabilities, we choose to examine the class of inten-
sity models as suggested in Lando (1998) and Lando (2004). Since the underlying driver of the
intensity models, the Cox process, represents a greater class of processes than the affine ones, it
allows for an affine specification of the intensity process. Recalling that our goal for the model
is to obtain default probabilities, we show how it can be applied to the pricing of Credit Default
Swaps (CDS) taking a zero coupon term structure and a default term structure as input. More
importantly, we show how the model allows for an inversion so that a default term structure may
be produced given a CDS term structure. We underline that by explicitly specifying the intensity
process, one may extrapolate out of the timespan of the observed CDS term structure in terms
of deriving default probabilities.

2



1.2. Delimitation Introduction

When the theoretical setting for the two models is established, we will show how the models
may be used to quantify a CVA for two given counterparties, HSBC and Fiat, in different eco-
nomic scenarios. For both models, we choose to rely on the one-factor CIR model as proposed
in Cox et al. (1985). We rely on a maximum likelihood method in order to estimate the central
interest rate model as proposed by Kladivko (2004). Following Mortensen (2006), we use a more
classical RMSE minimization routine in order to estimate our default model.

1.2 Delimitation
We have chosen to focus on a rather theoretical approach to the pricing of CVA’s to attach
emphasis to the interplay between the two models. As a consequence, less weight will be given
to the empirical investigation of the CVA’s on swaps and more weight will be given to model
frameworks and the implementation of the models. Our master’s thesis should be regarded as a
display of how one might do in practice. With this in mind, we will in the following section walk
through some of the major decisions and consequently their attached delimitations.

We choose to rely on the independence assumption between the interest rates and default prob-
abilities so that two independent models may be established. By incorporating interdependence,
one would have to apply one joined model which would obviously require a more complex setup.
We will, however, discuss the incorporation of interdependence in the final part of the exposition
where concepts such as wrong-way and right-way risks are central.

We undertake the approach of looking at a single swap contract. This might seem counterin-
tuitive in relation to the fact that portfolios of swaps may mitigate some of the counterparty
credit risk due to netting effects. Our argument is, however, that by computing the CVA on
every single swap in the portfolio, one may easily take into account the possible netting effects by
offsetting different exposures since the CVA is additive1. Incorporating one big model to single-
handedly quantifying the CVA of a portfolio of swaps, as seen in e.g. Brigo and Masetti (2005),
would of course complicate matters significantly since one would have to address correlations, etc.

Our choice of counterparty risk assumptions will be confined to the unilateral case, i.e. only
a single counterparty would be assumed to have a positive probability of default. While every
entity is indeed subject to the risk of default, we undertake this assumption as a result of several
reasons. As argued in Chapter 2, bilateral default risk may be difficult for the counterparties
to agree upon since the larger counterparty may see a possibility of calling the shots and since
information asymmetry may play a role. Furthermore, expanding to a bilateral model should
essentially only require an assessment of the remaining counterparty’s default risk, which for our
case would be a repetitive use of the intensity model.

We have chosen the one-factor CIR interest rate model. Since the setup adapted from Pelsser
and Schrager (2006) allows direct usage of any affine model, we could easily have applied a more
complex model with more risk factors. This would, however, complicate the estimation and the
interpretation of the model and focus would probably have been shifted away from counterparty
risk and be pushed more towards which interest rate model to use. As an example, we choose
to apply the CIR model which has been popular due to a sound degree of interpretation and
various other key properties which will be discussed in Chapter 6. Using the CIR model, we put

1See e.g. Gregory (2010).
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1.3. Structure Introduction

an effort in testing the LVM approximation. Furthermore, we use Monte Carlo methods to verify
the analytical characteristic function.

Finally, we find it appropriate to state that our approach to interest rate model estimation
might differ from the typical routines used in practice. This applies particularly in conjunction
with our swaption pricing model for which market practice probably would be to fit the model
to observed swaption prices2. However, since both the swaption- and the default model rely on
the modelled interest rates we choose to estimate according to observed interest rates and not to
observed swaption prices.

1.3 Structure
Our exposition is structured in three different parts. The first part, The Financial Background,
has the purpose of describing key concepts and central contracts. The second part, Quantita-
tive Methods, turn to a general pricing framework focussing on swaption pricing and intensity
modelling. Finally, the third part, Applications, displays implementations of the frameworks sub-
stantiated in the second part.

Each part is divided into several chapters. Part I consists of two chapters. Chapter 2 intro-
duces counterparty credit risk and Chapter 3 presents an overview of key interest rates, bonds,
and derivatives.

Moving on to Part II, the reader will find six chapters. In Chapter 4 we introduce the gen-
eral framework for valuating contingent claims and in Chapter 5 we turn to more complex pricing
methods using Fourier inversion involving the characteristic function. Chapter 6 concentrates on
the class of affine models and Chapter 7 addresses the quantitative aspects of pricing counter-
party credit risk. In Chapter 8 we focus on the swaption pricing framework and in Chapter 9 we
elaborate on intensity models and the theoretical derivation of default probabilities.

Part III consists of the final seven chapters. Chapter 10 briefly introduces our plans for the
third part. Chapter 11 and Chapter 12 concern the estimation of the interest rate and the default
model, respectively. Chapter 13 deals with implementation and verification of the swaption pric-
ing model and Chapter 14 assesses the actual CVA prices. In Chapter 15 we will discuss possible
intuitive extensions of the framework and finally Chapter 16 concludes upon the master’s thesis
as a whole.

2Instead of fitting to actual prices, one would typically fit to the implied Black volatilities, which carry the same
information as market prices.
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Chapter 2

Introducing Counterparty Risk

Taking a glance at Part I, we will begin by discussing aspects of counterparty credit risk. Our first
objective is to give a concise feed to the subject of counterparty risk. The subject is thoroughly
described in the recent book by Gregory (2010). The book is a milestone since counterparty risk
is generally very sparsely described in the literature due to the world’s very late acknowledgment
of the importance of the field. Other more concise introductory sources do however exist to some
extent, see e.g. Pykhtin and Zhu (2007), Canabarro and Duffie (2003), Boettcher (2010) Shahram
et al. (2010) and Stein and Lee (2010).

After the imposition in counterparty risk is completed, we will present ways to control and
mitigate counterparty risk. Subsequently, we will turn to our main focal point in counterparty
risk; the Credit Value Adjustment. Finally, we will outline the counterparty risk aspects that
apply to interest rate swaps.

2.1 Defining Counterparty Credit Risk
Credit risk is defined as the risk of a counterparty not meeting all of his obligations. Credit risk is
key in, for instance, the lending markets where the lending period and the credit quality of a debt
issuer typically determine the price of the loan, i.e. the interest rate demanded by the investor to
compensate for the credit risk. The longer the lending period and the worse the credit quality of
the issuer, the higher the required interest rate. By shifting point of view to the issuers side, we
emphasize that the credit quality of the investor does not affect the interest rate. This is due to
the fact that the bond issuer has no credit exposure in the agreement, i.e. the bond issuer is not af-
fected by a default by the investor since the investor will never possess any debt to the bond issuer.

Counterparty risk is according to Gregory (2010) defined as the overall risk generated by two
parties trading with each other. So while credit risk in the lending market context of the above
example is solely possessed by the investor who bears the risk of not receiving his claims, the
counterparty risk consists of all risk sources of a trade and affects both parties. Gregory (2010)
argues, however, that the main component of counterparty risk indeed is the credit risk. Hence,
the expressions counterparty risk and counterparty credit risk will be used interchangeably.

While in a two-party contract as in e.g. the loan market, there is no doubt where the credit
risk lies, things get more complicated when considering contracts involving three or more parties.
For a derivative, e.g. a call option, the credit risk is said to lie in the risk of a default by the
entity which the call option is written on. The counterparty credit risk, however, lies in the risk
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of the counterparty not being able to deliver the underlying asset when the option is exercised.
Counterparty credit risk thus always lies between the two trading parties, regardless of what sort
of contract they agree upon.

Continuing the example regarding the call option, one may argue that the size of the coun-
terparty risk depends on which market the option is traded on. If the option is traded through
a central counterparty, e.g. an exchange, one will typically regard the counterparty risk as being
non-existing since the only cause of concern is the solvency of the exchange itself. However, if
the option is traded OTC, the significance of counterparty risk is of a much larger magnitude.
According to Pykhtin and Zhu (2007), the following classes of financial products are the primary
subject to real counterparty risk:

• OTC derivatives: forwards, swaps, options, credit derivatives, etc;

• Securities financing transactions: repos, reverse repos, securities borrowing and lending.

Comparing the two classes, the former category is perhaps the more significant one due to market
size and product diversity. However, incorporating counterparty risk in the derivatives market
has only grown increasingly popular in recent years after default-free counterparty illusion was
shattered.

There are two major reasons why counterparty credit risk on derivatives distinguishes itself from
the credit risk on bonds:

• The exposure is unknown.

• The risk is often bilateral.

Commenting on the first point, it is important to state that the exposure also is not exactly
known in a bond trade because of possible changes in the interest term structure. It is however
known to some extent since the principal (and sometimes also the coupon) is fixed. In derivatives,
however, the exposure can often be limitless and–as the second point states–with unknown sign.
Considering some examples, a call option has unknown (and limitless) exposure, but the credit
risk is (typically) only carried by the option investor. A forward or a swap will however both be
subject to unknown exposure and unknown sign of the credit risk since the future value might be
either positive or negative. It is albeit important to realize, that while the exposure in derivatives
might be both unknown and without limit, the counterparty risk in each contract is still often of
a smaller magnitude compared to the bond market. This stems from the fact that the whole prin-
cipal is at risk in a loan which is contrary to, say, a swap in which the principal is never exchanged.

2.2 Asset or Liability?
In the context of counterparty risk on derivatives, the paramount attribute of a derivative is
whether it is an asset or a liability since only an asset can carry counterparty risk. To obtain
more insight into the loss arising from a default, we position ourselves in a derivative contract
between a bank and a counterparty and assume that the counterparty has just defaulted. After
the default event, the bank must immediately close its positions with the defaulting counterparty.
We assume that the bank enters a similar contract with another counterparty in order to maintain
its market position, i.e. the market position of the bank is unchanged. We then ask ourselves if
the contract, from the banks point of view, is an asset or a liability, i.e. if the contract value is
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negative or positive.

i) If the contract has a negative value, the bank
• closes out the position by paying the defaulting counterparty the market value of the con-
tract;

• enters into a similar contract with another counterparty and receives the market value of
the contract since buying a contract with negative value makes one receive a cashflow;

• has a net loss of zero.

ii) If the contract has a positive value, the bank
• closes out the position but receives nothing from the defaulting counterparty (by assuming
zero recovery);

• enters into a similar contract with another counterparty and pays the market value of the
contract;

• has a net loss equal to the market value of the contract.

In summary, the credit exposure of a bank having a single derivative contract with a counterparty
is the maximum of the contract value and zero. By denoting the time t value of a contract as
π(t), the contract level exposure is then given by

Ex(t) = max
(
π(t), 0

)
. (2.1)

Since π(t) evolves with uncertainty over time, only the current exposure is known with certainty
as stated previously. Given this uncertainty, (2.1) shows that the exposure of a contract exhibits
an option-like expression. This expression is pivotal in quantifying counterparty risk and will be
investigated further in Chapter 7.

2.3 Mitigating Counterparty Risk
There are many ways to mitigate or limit counterparty risk. As mentioned in Gregory (2010),
the most common method historically has been to trade only with the most financially sound
banks. The method is unfortunately dangerous if one thereby assumes that some counterparties
cannot (or will not be allowed to) default. Other forms of risk mitigation focus on reducing and
controlling the exposure. The most important tools are:
• Diversification. Spreading exposure across different counterparties to lower the risk of many

defaults.

• Netting/set-off. Offsetting positive and negative contract values with the same counterparty
in case of a default. Netting requires that a legally binding netting agreement1 has been
made and that the derivative can have both positive and negative values. Netting is es-
sentially ”free” but it gives preferential benefit to derivatives counterparties at the expense
of other creditors, e.g. bond- and shareholders. Contrary to the diversification philosophy,
netting effects are actually an argument supporting that one should trade more with a given
counterparty in order to obtain a greater mirroring effect.

1A netting agreement is an optional part of the ISDA master agreement discussed further in Chapter 3.
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• Collateralization/Margining. Holding cash or securities against an exposure. Essentially, the
counterparties sign an agreement which states that collateral must be posted when exposure
is different from zero2. To keep operational costs under control, posting of collateral will
occur at a time frequency specified in the agreement. While collateralization (in principle)
can completely neutralize an exposure. It is important to note that the method typically
incepts new risk sources in form of liquidity risk3 and legal risk4. Furthermore, aspects
such as rehypothecation5 may complicate matters, which it did in e.g. the bankruptcy of
Lehman Brothers in 2008. It is however not uncommon that many counterparties choose
not to trade on an uncollateralized basis6. Collateral is also key in the increasingly popular
credit support annex (CSA) contracts in which the difference between the market value of
the contracts and a mandatory margin account continuously determines if more collateral
must be posted to neutralize the difference. The CSA agreement is examined in detail in
Shahram et al. (2010).

• Hedging. Trading credit derivatives, typically credit default swaps, to reduce exposure. This
option is a very direct way of trying to eliminate counterparty risk, essentially allowing an
exposure to reach zero. The method comes with a direct cost (the premium in the credit
derivatives) and requires that a credit derivative written on the counterparty in question
exists. While the credit derivative might neutralise a given exposure, the instrument itself
is also vitiated with the default risk of the third party (the credit derivative seller).

• Close-outs. Letting settlements occur at their mark-to-market value more frequently than
they normally would. A classic example of a built-in close-out feature is in the futures market
where settlement occurs daily. By using a close-out agreement, the exposure is limited to
overnight effects. The downside is an increase in transactions and thereby presumably an
increase in transaction costs.

• Credit triggers. Agreeing with the counterparty to set a pre-specified credit-trigger rating
below the current rating of the counterparty. If the counterparty’s rating deteriorates to
the trigger level (or below) before default or maturity, the investor has the right to settle
the deal with the counterparty at mark-to-market. Credit triggers can be set to both sides
of the investor and the counterparty and are studied in detail in Yi (2010).

As argued in Gregory (2010), one should be careful to not blindly commend any mitigation of
default risk. Reason being, that risk mitigation may cause the market to develop too fast and
thereby reaching a dangerous size. By using the above mentioned methods, the risk may be
mitigated and thus neutralized. The risk sources, however, are not neutralized. Furthermore,
many of the stated techniques can be applied without even assessing the size of the counterparty
credit risk of the company7, and methods such as diversification may be used to obtain other
goals than mitigating counterparty risk.

2Strictly speaking, this is only the case in a two-way agreement. In a one-way agreement, only one of the
parties is required to post collateral when the exposure (driven by the market value) changes in favor of the other
counterparty.

3Liquidity risk is the risk that a given security or asset cannot be traded quickly enough in the market.
4Legal risk is the risk that a counterparty is not legally able to enter into a contract.
5Rehypothecation occurs when banks re-use the collateral posted by clients to back the bank’s own trades and

borrowings.
6By the end of 2010 the total amount of collateral used in all OTC derivatives transactions was reported to be

$3.5 trillion, see ISDA’s margin survey, ISDA (2010).
7Collateralization and hedging may work best when counterparty risk is properly monitored
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2.4 The Credit Value Adjustment
While the previously mentioned methods of mitigating counterparty risk indeed dim the coun-
terparty risk, they are all based upon a binary decision making process and they all have their
flaws. By pricing counterparty risk, one can move beyond a decision making process and instead
concentrate on whether a derivative transaction is profitable once the counterparty risk has been
priced in. As we will show in Chapter 7, the price of a counterparty risky derivative can be
linearly decomposed into the (counterparty) risk free price minus a credit value adjustment; the
CVA. The downside of this approach is clearly (as we will also see in Chapter 7) that the pricing
of the CVA might be complicated to assess and/or model dependent. Furthermore, a precise
CVA pricing should account for all aspects affecting the counterparty risk, including (but not
necessarily limited to)

• the default probability of the counterparty;

• the transaction in question;

• netting of other transactions with the same counterparty;

• collateralization and hedging aspects;

• recovery;

• the default probability of the bank itself.

The last bullet may appear conspicuous. The reason for its importance stems from the bilateral
nature of counterparty risk; it is natural to assume that both counterparties will/should assess
the credit quality of the parties. This may give birth to a credit game in which the two coun-
terparties try to come to an agreeable assessment of each other’s credit quality which (if agreed)
allows a transaction to take place. This puzzle can be difficult to solve since there might be
information asymmetry. Hence, it might be the case that the first counterparty will propose one
CVA but that the second counterparty will propose a different one. This could ultimately result
in a negation of a trade. Note that the CVA can presume both positive and negative values in
the bilateral case which can indeed cause a risky derivative to be more expensive than a risk free
one! In reality, a critique of the bilateral setup has furthermore been linked to the fact that the
price of a derivative should be associated with a hedge. But there is (in June 2011) no realistic
hedge an investor can establish for his own default risk. As mentioned in Stein and Lee (2010),
accounting boards have been lobbied to reject bilateral CVA as an acceptable approach since the
hedging issues argue against the bilateral CVA as a reasonable market price. The bilateral setup
is examined in detail in e.g. Brigo and Capponi (2009), Brigo et al. (2010), Haase et al. (2010),
and specifically in a rating-based setup in Huge and Lando (1999).

By assuming that the bank is regarded as being risk free by the counterparty, the approach
is reduced to the unilateral case, which will constitute our choice of approach. A reason for this
approach could be justified by either a significant difference in the parties’ credit quality which
"negates" the bank’s credit quality or simply by excluding the bilateral approach due to the dis-
cussed reasons above. We will generally assume that a given position is uncovered, i.e. established
without use of collateral.
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2.5 Counterparty Risk in Interest Rate Swaps
The literature on the default risk in swaps is again scarce. The sources that we have used are all
written before 2007, but most findings are actually just more underlined in the economy of 2011,
i.e. the default risk in a typical swap is probably assumed greater now than it was in the time
span prior to the crisis, say 1990-2007. The imperative articles are (to our knowledge) Sorensen
and Bollier (1994), Cooper and Mello (1991), Duffie and Huang (1996), and Mozumdar (1999).

Turning to the risk attributes of a swap, a contract that is described in detail in Chapter 3,
we can characterize the contract using the characteristics mentioned in the previous section.
First, since a swap participant is simultaneously long (short) the receiving leg and short (long)
the paying leg, the swap can be both an asset or a liability. Second, a swap has unknown ex-
posure, i.e. if the swap becomes an asset we do not know how much profit it will provide since
the profit moves with future interest rates. Third, the risk is bilateral, i.e. both parties in the
swap are vulnerable to the other party’s default upon inception since the swap has the potential
of being an asset. As time passes, the counterparty risk will still be bilateral since both parties
have a chance of receiving a net payment at the next settlement day. Fourth, as noted in Cooper
and Mello (1991), the recovery in swaps (as defined in the ISDA Master agreement) differs from
recovery in the bond market since swap recovery is paid on the whole market value, whereas
recovery on a defaulted bond is paid only on the principle (future coupon payments are lost).

To control counterparty risk in swap agreements, the earlier mentioned tools can all be applied.
Especially the netting agreements are obvious due to the bilateral nature of swaps.

Moving on to the CVA of a swap, we can either characterize it as an upfront payment or a
fixed-rate adjustment that compensates the swap parties for default risk. The major consider-
ations for pricing the default risk should include a combination of the credit conditions of the
parties, the actual level of interest rates in order to find the present value of a future exposure,
and their existing swap portfolios with each other in case of a netting agreement being reached.
However, as noted in Sorensen and Bollier (1994), swap exposure is also highly dependent on the
shape and the volatility of the swap rate–a size that we derive in Chapter 3. The influence of
the volatility can be verified simply by considering the option-like expression given by (2.1) on
page 8; if the floating rate volatility is high, the future swap value also has high volatility and the
probability of a high exposure rises. On the contrary, if the volatility of the floating rate is low,
then the probability of a high exposure also becomes low. Pricing of a swap CVA should thus
jointly model the probability of the counterparty defaulting and the cost of the default to the
solvent party. However, assuming independence between exposure and default probability allows
for a separation into two autonomous models. As mentioned, we will investigate the mathematics
of risky swap pricing in Chapter 7.
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Chapter 3

Interest Rates and Derivatives

In this chapter we will construct the necessary toolbox in order to precisely define and understand
counterparty risk free interest rate swaps. The toolbox consists of basic financial assets and terms
such as zero coupon rates, zero coupon bonds, forward rates, and xIBOR rates. After completion
of the toolbox, we will turn to swaps which constitute the foundation of our exposition. This
is the reason why the concept of such products will be described in detail. We will expand this
chapter so that it elaborates on swaptions as well since swaption pricing is necessary in order
to price a credit risky swap. Furthermore, Credit Default Swaps will be covered since they are
fundamental in deriving default probabilities which again are required to price a credit risky swap.

3.1 Interest Rate Basics

3.1.1 Discount Factors and Zero Coupon Rates

A (credit) risk free zero coupon bond (ZCB) is defined as a contract that, with certainty, pays a
single amount in a given currency at maturity. Unless stated otherwise, we will assume that the
face value of a ZCB is equal to 1. Formally, we denote the price at time t for an observed ZCB
maturing at time T by D(t, T ). Because of the absence of credit risk, we have that D(T, T ) = 1.
If we further assume that money at this point of time is worth more than money tomorrow, it
must hold that D(t, T ) ≤ 1 ∀ t ≤ T . Since we assume that the ZCB is risk free, the price is a
pure measure of the value of a future unit payment that can be scaled to fit any future cash flow.
Hence, the price of a ZCB is often referred to as a discount factor. Fixing time t and varying
maturity T thus give us all the discount factors at time t making it possible to value all future
cash flows.

A simple non-arbitrage argument can show that

D(t, T ) = D(0, T )
D(0, t) . (3.1)

Hence, the forward price D(t, T ) for t > 0 can still be calculated at time 0, assuming that we can
observe D(0, T ) for different values of T in the market. Given the risk free interest rate r(t, T )
between time t and T , we have the following price of a ZCB:

D(t, T ) = exp
(
− r(t, T )(T − t)

)
(3.2)
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Here, we have assumed that interest rates are continuously compounded1. Since D(t, T ) is mono-
tonically diminishing in r(t, T ), there is a unique one-to-one relationship between ZCBs and zero
coupon interest rates–also known as spot rates. If we (again) fix t and vary T , we can now
look at different interest rates that correspond to the equivalent discount factors. This mapping
T → r(t, T ) is called a zero coupon yield curve or a zero coupon term structure. Note, that the
functions T → D(t, T ) and T → r(t, T ) carry exactly the same information.

3.1.2 Forward Rates

While a ZCB reflects the price on a loan between today and a given future date, a forward rate
reflects the price on a loan between two future dates. Zero coupon rates can be thought of as the
average rate of return over some time period. Decomposing such a period return thus leaves us
with a collection of marginal returns. These returns are known as the forward rates since they
measure the incremental interest over some future period.

To define a forward rate mathematically, we will fix three time values t, T and S, so that
t ≤ T ≤ S. Looking at a ZCB maturing at time S, discounted in two steps, we must have
the following relationship:

D(t, S) = D(t, T )D(T, S) (3.3)
= D(t, T ) exp(−f(t;T, S)(S − T )) (3.4)

From this expression it is clear that f(t;T, S) is a forward interest rate observed at time t and
applied between time T and S. Isolating f(t;T, S) in equation (3.4) we get the relationship
between forward rates and ZCBs which can be altered to the relationship between forward rates
and spot rates:

f(t;T, S) = − log(D(t, S))− log(D(t, T ))
S − T

(3.5)

= r(t, S)(S − t)− r(t, T )(S − T )
S − T

(3.6)

By letting S → T in equation (3.5), we get (by definition) the minus of the logarithm of the
derivative of D(t, T ):

f(t, T, T ) = −∂ log(D(t, T ))
∂T

(3.7)

This limit expression is called the instantaneous forward rate seen from time t maturing at time
T since it measures the interest rate that applies in an infinitesimal future time span.

Considering equation (3.5) it can be observed that forward rates carry the same information
as the ZCB prices since the knowledge of ZCB prices implies the forward rates and vice versa.
Hence, the information given in a term structure is equivalent to the information given in the
corresponding ZCB prices which again equals the information given by the corresponding forward
curve.

1We will always assume that interest rates and returns are continuously compounded unless stated otherwise.
In forthcoming chapters we will often further assume that the interest rate is stochastic.
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3.1.3 xIBOR Rates and Coverages

Most interest rate derivatives are written on a set of official floating interest rates called xIBOR
rates. xIBOR is an abbreviation for the x Interbank Offered Rate, which is a reference rate at
which banks offer to lend unsecured funds to other banks. The xIBOR rate is a filtered average
of interbank deposit rates. The x is usually2 linked to the capital of the country where the entity
that fixes the rate resides. Typical examples are LIBOR, EURIBOR, and CIBOR that are interest
rates fixed respectively by the British Bankers Association, The European Central Bank and the
Danish Central Bank. Hence, the letter L is short for London and C is short of Copenhagen. The
fixing methodology can differ from bank to bank, but all xIBOR rates are used in the same way as
underlying in interest rate derivatives. Thus, we will (in order to follow standard practice in the
financial literature) use the term xIBOR and LIBOR interchangeably. A LIBOR rate often has a
code written after it, e.g. LIBOR6M. This number is a description of the maturity of the interest
rate in question. The maturity of a LIBOR rate can range from a single business day to 12 months.

A LIBOR rate is reported using the Money Market convention3, which means that the inter-
est rate being paid at time T on some notional N simply is ∆NL, where L is the LIBOR rate.
Here, ∆ denotes the coverage which is sometimes simply called the year fraction. It is defined
according to the given day count convention. We could calculate the coverage according to e.g.
the Act/360 convention so that ∆ = T−t

360 for a time span of actual size T − t, where T and t are
measured in days. Coverage may differ from country to country and from product to product.
We will discuss coverage further in Section 3.2 regarding swaps.

Formally, a LIBOR rate can be defined as either a spot or a forward interest rate. Given the
existence of a family of zero coupon bond prices for all relevant maturities, a simple non arbitrage
argument can show that the spot LIBOR rate L(0, T ) between reset date t = 0 and settlement
date T is

L(0, T ) = 1
∆

( 1
D(0, T ) − 1

)
. (3.8)

By letting L(t;T, T + ∆) denote the forward LIBOR rate at time t between T and T + ∆, a
similar non-arbitrage argument can show that the so called ∆-tenor forward rate can be stated
as follows:

L(t;T, T + ∆) = 1
∆

(
D(t, T )

D(t, T + ∆) − 1
)

(3.9)

Note, that the spot LIBOR rate is a special case of the forward LIBOR rate–just as we saw
regarding zero coupon interest rates.

3.2 Interest Rate Swaps

3.2.1 Definition and Risk Free Pricing

Since swaps are traded OTC, they can be specified in a huge number of varieties to meet the
specific needs of the counterparties. We will however confine ourselves to look at plain vanilla
fixed for floating rate swaps that are defined in the following.

2The Norwegian interbank rate NIBOR is a counterexample.
3This is also sometimes called simple interest.
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A swap is an agreement between two parties to exchange a stream of fixed payments for a stream
of floating payments of interest rates on a prespecified notional between two dates at some pre-
specified frequency. The two payment streams are usually referred to as the fixed- and floating
leg, respectively. The floating leg is typically, but not necessarily, linked to some LIBOR rate.
For each counterparty, the position in the swap is denoted relatively to the fixed leg, e.g. a party
that pays the floating rate, receives the fixed rate and has thus entered a receiver swap. In a swap
agreement, the floating rate is set before each forthcoming period, i.e. the floating rate is fixed
in advance. These dates are called the reset dates. Dates where there is an actual exchange of
cash flows are called settlement days and settlements occur in arrears. We will assume that time
intervals between payments are equally spaced. Another important remark on the swap jargon is
the price which is defined as the swap rate since swaps are priced so that the initial value of each
leg is zero. Figure 3.1 sums up the structure of a swap.

0

Today

Ta

Start date and reset

Ta+1

Settlement and reset

Ta+2

Settlement and reset

Tb−1

Settlement and reset

Tb

Maturity and settlement

Figure 3.1: Structure of an Interest Rate Swap.

Formally, a payer swap with notional N , fixed interest rate κ, length n, start date Ta, maturity
date Tb, reset dates Ti , i = a, . . . , b− 1, settlement days Ti , i = a + 1, . . . , b written on the
floating rate L(t, Ti) leads to receiving the following series of cash flows:

XTi = N∆
(
L(Ti−1, Ti)− κ

)
for i = a+ 1, . . . , b. (3.10)

While most swaps are traded with spot start (a=0), the above equation applies to forward start-
ing swaps as well.

Note that the cash flows of a payer swap resemble the cash flows of a portfolio consisting of
a long position in a floating rate bond indexed on a ∆-tenor LIBOR rate and a short position in
a non-callable fixed (annuity/bullet) bond with coupon rate κ (the converse holds for a receiver
swap). This implies that we can replicate the portfolio by pricing a fixed and a floating rate
bond. We remind ourselves4 that the price πfix(t) of a fixed rate bond with constant coupon κ
and payments at time a+ 1, . . . , b is

πfix(t) = N

D(t, Tn) + κ∆
b∑

i=a+1
D(t, Ti)

 , (3.11)

and that the price πfloat(t) of a floating rate bond written on the LIBOR rate L(Ti−1, Ti) is simply

πfloat(t) = D(t, Ta). (3.12)

By fixing the notional to some value, say N = 1, we denote the price of the payer swap with some

4See Björk (2009) page 358-359.
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fixed rate κ, running between time Ta and Tb by

πpaya,b (t; ∆, κ).

By replicating the payer swap, the value becomes

πpaya,b (t; ∆, κ) = D(t, Ta)︸ ︷︷ ︸
price of a floating rate bond

− D(t, Tb)− κ∆
b∑

i=a+1
D(t, Ti)︸ ︷︷ ︸

price of a fixed rate bond

, t ≤ Ta. (3.13)

We can now derive the forward par swap rate (henceforth simply the swap rate), which by defini-
tion is the rate κ that renders the value of the payer swap zero upon inception and simultaneously
cause the initial value of the corresponding receiver swap to be zero. The derivation is done by
isolating κ in the above equation. We hereby obtain the classic result

κ = D(t, Ta)−D(t, Tb)
∆
∑b
a+1D(t, Ti)

≡ D(t, Ta)−D(t, Tb)
Pa+1,b(t)

≡ ya,b(t). (3.14)

It is thus stated that the swap rate, which is a function of t, Ta and Tb, is ya,b(t). The denominator
in the above equation, Pa+1,b(t), is called the annuity factor of the swap. This stems from the
fact that the value of the denominator equals the value of an annuity with face value of one.

As will be a central point in this paper, we note that although future cash flows in the floating
leg are uncertain, traditional risk free swap pricing only requires a zero coupon term structure
which essentially is observable and thus provides model independent swap pricing.

3.2.2 Market Practice and Conventions

In practice, handling interest rate swaps is not quite as easy as the subsection above might sug-
gest. This mainly stems from the fact that settlements cannot occur each and every day, and
that different countries might have different conventions regarding the use of dates.

First and foremost, swap payments can only take place on business days. The definition of a
business day is a non-weekend non-holiday, where the latter might differ from country to country.
Furthermore, inception of the interest accrual is not always set as the trading date (time t), but
is typically offset a couple of business days according to the convention in question, so that the
accrual starts at the so called spot date.

The frequency of payments may also differ, not only from country to country, but often also
between the fixed and floating leg. E.g. the payments from the fixed leg may be annual, whereas
the payments from the floating leg are paid semi-annually. Equivalently, day-count conventions
may also differ between countries and payment legs.

In the event of a settlement hitting a non-business day, we have to make use of some rule in
order to adjust the non-business day to a business day. For that purpose a rolling convention is
applied. The most used convention is the so-called Modified Following (MF) that rolls the holiday
forward to the next business day, unless if this falls in the forthcoming month. In that case, the
date is rolled back to the latest business day.

In summary, handling swaps (and most other financial contracts) requires a carefully planned

16



3.3. Swaptions Interest Rates and Derivatives

schedule and an insight into the relevant conventions. In order to maintain a smooth working
market, the ISDA5 organization was founded in 1985. The organization determines, among other
activities, the legal and policy rules of the OTC market. When two counterparties want to make
a deal, they fill in an ISDA Master Agreement that, combined with a schedule, sets out the basic
trading terms between the parties. Each subsequent trade is then recorded in a confirmation that
references the Master Agreement and the schedule. One of the advantages of the Master Agree-
ment is that once it is fulfilled, no further standard agreements have to be made when additional
trades are made–the Master agreement automatically applies. Furthermore, the agreement makes
sure that legal risk is kept at a minimum.

Letting "B" denote business days, "Q" denote quarterly, "S" denote semi-annually and "A" denote
annually, the standard market conventions according to ISDA can be seen in Table 3.1. It is ob-
served that GBP is in fact the only (major) currency in which fixed and floating leg conventions
are the same. Furthermore, GBP is the only (major) currency for which spot start equals the
actual trading day.

Floating Leg Fixed Leg
Currency Index Name Spot Start Roll Frequency Daycount Frequency Daycount
EUR EURIBOR 2B MF S Act/360 A 30/360
USD USD LIBOR 2B MF Q Act/360 S 30/360
GBP GBP LIBOR 0B MF S Act/365 S Act/365
JPY JPY LIBOR 2B MF S Act/360 S Act/365
SEK STIBOR 2B MF Q Act/360 A 30/360
NOK NIBOR 2B MF S Act/360 A 30/360
DKK CIBOR 2B MF S Act/360 A 30/360

Table 3.1: Interest rate swap conventions according to ISDA.

For more on dates, schedules and conventions, see Dalskov (2007).

3.3 Swaptions

3.3.1 Definition, notation and payoffs

The OTC contract known as a swap option or simply a swaption is an option on an interest rate
swap, i.e. the swaption gives the owner the right, but not the obligation, to enter into a swap
agreement with a predetermined fixed rate. Depending on whether the swaption gives the investor
the right to pay fixed or floating in the underlying swap agreement, the swaption is referred to
as being either a payer or receiver swaption. As with all options, the contract specifies when
the swaption is exercisable. This could e.g. be only at maturity (a European swaption) or at
multiple times (a Bermudan swaption). European swaptions are market standard, but Bermudan
swaptions are also traded–especially in relation to the mortgage bond market. For our purpose,
we will confine ourselves to only looking at European swaptions, and thus a swaption will refer
to a European one. Upon inception, the swaption investor can choose between physical or cash
settlement. If the settlement is physical, there is a true initiation of a swap if the swaption is
exercised. If the settlement is cash, only a cash replication of the swap value will be exchanged
upon swaption exercition. Swaptions are most often traded at-the-money forward (ATMF), which

5The International Swaps and Derivatives Association
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means that the strike equals the forward swap rate. The concentration of trading around ATMF
swaptions makes the instrument one of the most liquid derivatives traded in the financial markets.
Furthermore, it is interesting that payer and receiver swaptions must have the same price when
traded ATMF6.

Formally, we will look at an option maturing at time Tn to enter into a swap maturing at time
TN . Such an instrument is called a ”Tn in (TN − Tn)” swaption, so that the two pronounced
numbers indicate the time span of each of the two swaption elements; the option and the swap.
Note how the option maturity equals the swap initiation time, so that the final time span of the
contract is Tn + TN . Fixing the payment days of the underlying swap as Ti , i = n + 1, . . . , N7,
we can derive the time Tn value of a swaption, using the swap value given by equation (3.13) on
page 16 and the swap rate given by (3.14):

[
πpayn,N (Tn; ∆,K)

]+
=

D(Tn, Tn)−D(Tn, TN )−K∆
N∑

i=n+1
D(tn, Ti)

+

=
[
yn,N (Tn)Pn+1,N (Tn)−KPn+1,N (Tn)

]+

= Pn+1,N (Tn)
[
yn,N (Tn)−K

]+

(3.15)

So, while the expression resembles a swap value at time Tn, it becomes pivotal in quantifying
swaptions when placing ourselves somewhere before time Tn. One can say that we have set
K = κ since the swap rate is the strike on the swaption. Equation (3.15) shows that payoffs
from a payer swaption can be seen as proportional to those from a call option on the swap rate.
Equivalently it can be shown that the payoffs from a receiver swaption is proportional to a put
option on the swap rate.

3.4 Credit Derivatives
The afore mentioned derivatives have payoffs that are directly linked to some interest rate. The
value of credit derivatives is however not derived directly from an interest rate but instead from
the risk of a credit event of an entity or asset. The definition of a credit event may vary between
contracts but a default, i.e. a failure to meet a debt obligation, will always trigger a credit event.
Other types of credit events may be restructuring of debt (the financial liabilities of the borrow-
ing entity are changed) or acts from the government that somehow changes the timing of debt.
By the 2003 ISDA Credit Derivatives Definitions, a restructuring credit event occurs if there is:
(i) a reduction in the interest rate or in the amount of principal, (ii) a postponement or other
deferral of dates for the payment of interest, principal, or premium, (iii) a change in the ranking

6This can be seen from the so-called Swaption-Swap Parity which basically states that

πpayer − πreceiver = πswap

where the swaptions (left side) and the swap (right side) have exactly the same properties in terms of underlying
interest rate, time to maturity, settlement days etc.

7This notation of swap payments is not the same as stated earlier. The notation is different to indicate that
we are in a swaption setting.
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in priority of payment of any obligation that causes subordination of it to other obligations or
(iv) any change in the currency or composition of any payment of interest or principal.

While there is no doubt about ISDAs definition of a restructuring event, an actual contract
may still be more or less independent of the restructuring legislation. Essentially, in specifying a
certain contract one must declare which relationship to restructuring the contract should have.
There are four possibilities:

1. No Restructuring: A restructuring is not regarded as a default.

2. Full Restructuring: In case of a restructuring, bonds of any maturity may be delivered.

3. Modified Restructuring: Bonds of a maturity up to 30 months after the restructuring event
may be delivered.

4. Modified Modified Restructuring: This is a softer version of Modified Restructuring in the
sense that bonds of a maturity up to 60 months after the restructuring event may be
delivered. This option is often simply called mod-mod.

To the authors’ knowledge, the Modified Modified Restructuring option is the most popular choice
in Credit Default Swaps. This means that for these products restructuring will most often be
regarded as a default. Furthermore, the credit products that we are using in our empirical inves-
tigations will be using the mod-mod option. For more details on restructuring see e.g. Whetten
(2004).

The largest players in the credit markets are commercial banks. Traditionally, the business
of a bank has involved credit risk as it originates loans to corporations. The credit market offers
banks a way to transfer risk without removing assets from its balance sheet and without involving
borrowers. Furthermore, a bank may use credit products to diversify its portfolio, which is often
concentrated in certain industries or geographic areas. Surveys indicate (see e.g. Fitch, 2003)
that banks are the net buyers of credit derivatives8.

3.4.1 Credit Defaults Swaps

A single name Credit Default Swap (henceforth simply CDS) is the most fundamental credit
derivative. It is agreed between two parties and provides insurance against a credit event of a
third entity or reference bond on a prespecified face value. The two counterparties in a CDS
are called the protection buyer (PB) and the protection seller (PS), respectively. The PS is thus
required to compensate the PB in the case of a credit event by the given entity. On the other
hand, the PB has to pay a (typically quarterly) running premium until a default happens, or the
contract reaches maturity. The premium will often be called the CDS price or the CDS quote
which indeed characterizes the value of the CDS since it (as other swaps) is priced so that the
value upon initiation is zero. The compensation that the PB is given by the PS in case of a default
can be specified as either a physical or a cash settlement. With a physical delivery, the PB is
paid the face value of the reference asset and the PB must simultaneously deliver the defaulted
asset. If a CDS is specified with a cash settlement, the PS must pay the difference between the
face value and the market value right after the credit event. In case of both methods, one can say
that the PS (in a credit event) buys the underlying bond for par rate. The two methods appear

8In 2003, global banks held gross bought positions of $1,553 billion in credit derivatives, with gross sold positions
of $1,324 billion.
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equally fair but the latter grew increasingly popular during the credit crisis since there can be
more notional outstanding in CDS contracts than in the reference asset when CDS’s are used for
speculative purposes. Summing up, CDS’s are differentiated with respect to maturity, type of
settlement and the definition of a credit event.

Our use of CDS’s will be limited to the goal of inferring default probabilities. In that con-
text, it is important to keep in mind that a credit event is not solely linked to the probability
of default. Debt restructuring will typically also trigger a credit event, even though the debt
restructuring is not affecting the bond holders. In fact Berndt et al. (2006) find that the average
premium for restructuring risk represents 6% to 8% of the CDS rate without restructuring. One
argument supporting that CDS quotes are higher than what pure default risk can explain is as
follows. When a restructuring happens, the bond rate can either be below par rate or not. If the
bond rate is not below par rate, the PS buys the bond at its current market value and neither
PS nor PB gains anything. However, if the bond trades below par rate the PS must still buy the
bond at par rate. Consequently, the PB has a positive option-like relationship to a restructuring
and the PS requires a higher premium.

A second argument that also supports larger CDS quotes than inferred by pure credit risk stems
from the impact of counterparty credit risk in the CDS itself. The PS’s future premiums will be
lost if the PB defaults, but if PS defaults, the PB can just enter a new CDS with a maturity that
equals the remaining maturity of the defaulted CDS. A simultaneous default of the PS and the
reference entity could of course be disastrous for the PB, but that risk should be extremely low.
In the CDS market, a running use of collateral is often required in order to compensate for the
changing market value of the CDS so that losses for the PS are minimized.
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Chapter 4

The Theory of Derivatives Pricing

4.1 The Basic Framework and Important Definitions

4.1.1 The Framework

We consider an economy with continuous trading, taking place inside a finite horizon [0, T̃ ] where
T̃ is greater than any date of interest. No restrictions are made on short selling and we assume
that there are no transaction costs associated with trading i.e. the market is frictionless. Uncer-
tainty and information arrival are modelled by a filtered probability space (Ω,F ,F(t),P) where
Ω is the sample space, F is the σ-algebra on Ω and P denotes the probability measure on (Ω,F).
Information is developed over time according to the filtration {F(t), t ∈ [0, T ]} which represents
a family of sub-σ-algebras of F satisfying F(s) ⊆ F(t) for every s ≤ t. So F(t) can be inter-
preted as the information available at time t. The economy consists of d non-dividend-paying
assets with the price vector process S(t) = (S1(t), . . . , Sd(t))ᵀ and we assume that process S(t) is
adapted to F(t), so that S(t) is observable at time t. We also require that the filtration satisfies
the usual conditions.1 In our setup the information is generated by a d-dimensional Standard
Brownian motion W P(t) = (W P

1 (t), . . . ,W P
d (t))ᵀ under P and the filtration we consider will be

the one generated by W P, F(t) = σ{W P(u), 0 ≤ u ≤ t}.

We assume that the asset price dynamics follow certain stochastic processes known as Itô pro-
cesses2 under the probability measure P. Hence, the asset process Si(t) is the solution to the
following stochastic differential equation (SDE)

dSi(t) = µi(S(t), t)dt+ σi(S(t), t)ᵀdW P(t), (4.1)

which is just a short version of the following integral equation

Si(t) = Si(0) +
∫ t

0
µi(S(u), u)du+

∫ t

0
σi(S(u), u)ᵀdW P(u), (4.2)

where µi : R × R → R and σi : R × R → Rd for all i. Hence, µi is a scalar process and σi is
a Rd-valued process. The measure P is called the objective (or real-world) probability measure,
since it is intended to describe the real-world probabilities. This implies that the SDE’s in
(4.1) describe the empirical dynamics of asset prices. Furthermore, we denote the instantaneous

1F(t) is right-continuous for all t and F(0) is the completion of the trivial σ-algebra, {∅,Ω}.
2For a full definition of a Itô process, see Shreve (2004).
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covarians between assets as

Σij(S(t), t) = σi(S(t), t)ᵀσj(S(t), t), i, j = 1, . . . , d (4.3)

We assume that µ and σ are adapted to F(t) and that the following regularity conditions hold
for all t ∈ [0, T ], ∫ t

0
|µ(S(u), u)|du <∞, (4.4)∫ t

0
|σ(S(u), u)|2du <∞, (4.5)

a.s.3 From (4.2) we see that the sample paths of S are continuous with probability one, so we
assume that there are no jumps in asset prices.

4.1.2 Results Related to the Framework

An important concept closely connected to the theory of stochastic processes and one that has
laid the foundation of modern financial theory is the concept of martingales:4

Definition 4.1. (DEFINITION OF MARTINGALES)
Let (Ω,F ,F(t),P) be a filtered probability space and let S(t) be a continuous (or discrete)
time stochastic process adapted to the filtration F(t) with EP

[
|S(t)|

]
< ∞. Then S(t) is a

martingale under the measure P if for every u and t with 0 ≤ u ≤ t it holds that,

S(u) = EP [S(t)|F(u)] , a.s.

Technical comments. In this thesis paper we will sometimes use the notation EP
t [·] = EP [·|F(t)]

depending on the specific situation.

If a stochastic process, according to the definition, satisfies the martingale property then, at
all points in time, the expected change in the value of the process over any given future period
is equal to zero. Hence, the expected future value of the process is equal to the current value of
the process. Also notice that the concept of a martingale is connected to a specific probability
measure.

Returning to the integral equation in (4.2), we see that the uncertainty in the price process
Si(t) is driven by an integral w.r.t. a d-dimensional Brownian motion. This specific integral
is called a stochastic integral or an Itô integral5. Stochastic integrals can be defined for very
general processes. However, in this thesis paper we will only consider stochastic integrals where
the integrator is a Brownian motion. Now, for given s < t the stochastic integral is a random
variable with the property that

E
[∫ t

s
g(S(u), u)ᵀdW P(u)

∣∣∣∣ F(s)
]

= 0 (4.6)

3In (4.5) we have defined |σ(S(t), t)|2 = tr (σ(S(t), t)σ(S(t), t)ᵀ).
4See Björk (2009), page 504.
5See Shreve (2004), chapter 4 for a complete discussion on Itô integrals.
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for some integrand g satisfying the condition stated in (4.5). From this property, one can show
that any stochastic process on the form dS(t) = g(S(t), t)ᵀdW P(t) where g(S(t), t) satisfies the
condition in (4.5) is a martingale. Hence, the process is a martingale if it has no drift-term.

More generally, let us place ourselves in the setup described above with a d-dimensional Brownian
motion adapted to the filtered probability space and fix a vector process h(t) = (h1(t), . . . , hd(t))ᵀ
where h(t) satisfies the condition in (4.5). If we then define a process M(t) by

M(t) = M(0) +
∫ t

0
h(s)ᵀdW P(s), for t ∈ [0, T ] , (4.7)

we know that M(t) is a martingale. So, given certain integrability conditions, every stochastic
integral w.r.t. a Brownian motion is a F(t)-martingale. It turns out that the converse holds,
i.e that every F(t)-martingale M(t) can be written on the form (4.7). This fact is given by the
following theorem:6

Theorem 4.1. (THE MARTINGALE REPRESENTATION THEOREM)
Let W P(t) = (W P

1 (t), . . . ,W P
d (t))ᵀ be a d-dimensional Brownian motion and assume that the

filtration {F(t), t ∈ [0, T ]} is defined as

F(t) = FW (t), t ∈ [0, T ].

Let M be any F(t)-adapted martingale. Then there exists a uniquely determined F(t)-adapted
process h(t) = (h1(t), . . . , hd(t))ᵀ such that M has the representation

M(t) = M(0) +
∫ t

0
h(u)ᵀdW P(u), t ∈ [0, T ].

We say that M(t) has a stochastic integral representation w.r.t. the Brownian motion. So, from
Theorem 4.1 we can conclude that in a framework where uncertainty is driven by Brownian mo-
tions, every martingale can be written as a stochastic integral w.r.t. the underlying Brownian
motions.

When pricing derivatives we often have to work with functions of Itô processes and knowing
the differential of these functions is therefore of critical importance. The differential of such func-
tions is determined by the famous Itô formula which, loosely speaking, is the stochastic calculus
counterpart of the chain rule in ordinary calculus. Since we will use this formula extensively we
will now state the multidimensional version7:

6See Björk (2009), page 161.
7See Björk (2009), page 58.
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Theorem 4.2. (ITÔ’S FORMULA)
Let S(t) = (S1(t), . . . , Sd(t))ᵀ where Si(t) is of the form (4.1). Define the process Z(t) =
f(t, S(t)) where f : R+ × Rd → R is a C1,2 mapping. Then the stochastic differential df is
given by

df(S(t), t) = ∂f(S(t), t)
∂t

dt+
d∑
i=1

∂f(S(t), t)
∂Si

dSi(t) + 1
2

d∑
i,j=1

∂2f(S(t), t)
∂Si∂Sj

dSi(t)dSj(t)

where

(dt)2 = 0
dt · dW P(t) = 0
(dW P

i (t))2 = dt, i = 1, . . . , d
dW P

i (t) · dW P
j (t) = 0, i 6= j.

Technical comments. In this Theorem, we have assumed that W P
1 (t), . . . ,W P

d (t) are independent
Brownian motions, hence the condition dW P

i (t) · dW P
j (t) = 0, for i 6= j.

4.1.3 Self-Financing Trading Strategies and Arbitrage

We will now introduce the concept of a self-financing trading strategy and arbitrage, both funda-
mental concepts in the theory of derivatives. We place ourselves in the continuous time economy
discussed in Subsection 4.1.1 and therefore assume that the asset dynamics evolve according to
(4.1) along with the regularity conditions. This presentation follows the ideas in Glasserman
(2003).

We define a portfolio as a vector θ ∈ Rd where each θi represents the number of units held
of the ith asset. From this definition, the value of the portfolio at time t is

θ1S1(t) + · · ·+ θdSd(t) = θᵀS(t). (4.8)

We specify a trading strategy by a stochastic process θ(t) = (θ1(t), . . . , θd(t)) where θi(t) is the
number of units of asset i held just before time t trading. Any decision regarding rebalancing the
portfolio at time t must be based on the information available up until time t, which is why we
require that θ(t) is measurable with respect to F(t). This requirement leaves out the possibility
of using future information as it would impose arbitrage possibilities.

The capital gain of a trading strategy is the change in the portfolio value when trading in the
underlying assets. We want to describe the capital gain for a general class of trading strategies
and we do this using a stochastic integral, so that the gain from trading over [0, t] is∫ t

0
θᵀ(u)dS(u). (4.9)

This allows trading of any size, both positive or negative, in the underlying assets. Notice that
this is obviously not consistent with real world trading, but nevertheless necessary in order to
price a large class of derivatives.
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In the economy considered, we will only allow so called self-financing trading strategies where no
exogenous infusion or withdrawal of money is permitted other than the initial amount at time
zero. In other words, the purchase of a new portfolio must be financed solely by selling assets
already in the portfolio. This is also in line with our initial assumption about a frictionless market
where there are no transactions costs when rebalancing a portfolio. The concept of a self-financing
trading strategy is so important that we will state the definition8:

Definition 4.2. (SELF-FINANCING TRADING STRATEGY)
Let the d-dimensional price process {S(t), t ≥ 0} be given. A self-financing trading strategy θ
is a stochastic process θ(t) = (θ1(t), . . . , θd(t)) such that:

1. θ is F(t)-measurable.

2. θ has the self-financing property

θ(t)ᵀS(t) = θ(0)ᵀS(0) +
∫ t

0
θ(u)ᵀdS(u).

So with an initial investment of V (0) = θ(0)ᵀS(0) we can obtain a portfolio value of V (t) =
θ(t)ᵀS(t) by following the trading strategy θ over [0, t].

Naturally, there should be limitations to the profits that self-financed trading strategies can
make. One reasonable limitation is that it should be impossible to create something out of noth-
ing. This idea leads us to the main assumptions; that the market is free of arbitrage possibilities.
We will now state this very important concept in terms of self-financed trading strategies:9:

Definition 4.3. (DEFINITION OF ARBITRAGE)
An arbitrage possibility on a financial market is a self-financed portfolio V (t) = θ(t)ᵀS(t) such
that

1. V (0) = 0,

2. P (V (T ) ≥ 0) = 1,

3. P (V (T ) ≥ 0) > 0.

We define the market as arbitrage free if there are no arbitrage possibilities.

So, an arbitrage possibility is the possibility of making a positive amount of money out of nothing
without taking risk, and such strategies cannot exist in economic equilibrium. Therefore, pre-
cluding arbitrage is a fundamental consistency requirement on the asset processes.

8See Hunt and Kennedy (2000), page 145.
9See Björk (2009), page 96.
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4.2 Martingale Pricing
The goal of this section is to present the martingale approach to pricing derivatives. To this day,
this method is the most general approach for arbitrage pricing and is a cornerstone of modern
financial mathematics. As the name partly indicates, the method is based on the concepts of
martingales and equivalent measures and leads to pricing formulas in the form of expectations.
These expectations can be solved using numerical methods such as Monte Carlo simulation and is
therefore extremely efficient from a computational point of view. The main problem that concerns
us is to find out under which conditions the market is free of arbitrage. As we shall see, these
conditions are stated in the First Fundamental Theorem of Asset Pricing. In order to be able to
understand the main results in the martingale approach, we first need to introduce the concept
of equivalent measures. Our presentation follows the ideas in Björk (2009) and Andersen and
Piterbarg (2007).

4.2.1 Equivalent Measures

We wish to specify under which conditions the market is free of arbitrage. A way to do this
involves the concept of equivalent martingale measures. In order to be able to understand this
concept we first need to specify what an equivalent measure is. Let us assume that we have two
probability measures P and P̃ defined on the same measurable space (Ω,F). Then P and P̃ are
said to be equivalent if P(A) = 0 ⇔ P̃(A) = 0, ∀A ∈ F . So equivalent measures agree on which
sets are impossible (and therefore also which are possible), but they do not necessarily agree on
how probable the events are.

A very important result in measure theory and a result used extensively in the theory of deriva-
tives pricing is the Radon-Nikodym Theorem. This theorem states that equivalent measures are
uniquely connected through an almost surely positive random variable known as the the Radon-
Nikodym derivative10. According to the theorem, the only way to construct a probability measure
P̃ equivalent to P is through the Radon-Nikodym derivative.

Now, consider a filtered probability space (Ω,F ,F(t),P) on the interval [0, T ] where L(T ) is
some non-negative random variable in F(T ). We define a new measure P̃ on F(T ) by setting

dP̃ = L(T )dP, on F(T ). (4.10)

If EP [L(T )] = 1, then the new measure will also be a probability measure where L(T ) will be the
Radon-Nikodym derivative of P̃ w.r.t. P on F(T ), so that P̃ and P are equivalent. Thus we will
also have that P̃ and P are equivalent on F(t) for all t ≤ T , so by The Radon-Nikodym Theorem,
there will exist a random process {L(t), 0 ≤ t ≤ T} defined by

L(t) = dP̃
dP
, on F(t). (4.11)

The process L is known as the Likelihood process with the property that the process is a P-
martingale on {F(t), t > 0}. By applying a result known as Bayes Abtract rule11 on any F(T )-

10A precise statement of the theorem and a sketch of the proof can be found in Björk (2009).
11See Björk (2009), page 501.
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measurable random variable S(T ), we get the following relation between to equivalent measures

EP̃ [S(T )|F(t)] = EP [S(T )L(T )|F(t)]
EP [L(T )|F(t)] (4.12)

= 1
L(t)E

P [S(T )L(T )|F(t)] (4.13)

= EP
[
S(T )L(T )

L(t)

∣∣∣∣ F(t)
]
. (4.14)

This relation will especially be useful when we introduce the concept of changing numeraires.

Now, the relation described in equations (4.12) to (4.14) explains the connection between equiv-
alent measures and how the transformation from one probability measure to another is linked to
the likelihood process. However, it does not explain the effect it has on the underlying process
S(t) when changing measures. This effect is described by the Girsanov theorem, which also plays
a significant role in derivatives pricing. Because of its important role and since we shall use the
result numerous times throughout this thesis paper, we will state the theorem according to Björk
(2009)12:

Theorem 4.3. (THE GIRSANOV THEOREM)
Let W P(t) = (W P

1 (t), . . . ,W P
k (t))ᵀ be a d-dimensional Brownian motion on (Ω,F ,F(t),P).

Let ϕ(t) = (ϕ1(t), . . . , ϕk(t))ᵀ be any d-dimensional adapted process. Choose a fixed T and
define the process L on [0, T ] by

L(t) = exp
(
−
∫ t

0
ϕ(u)ᵀdW P(u)− 1

2

∫ t

0
‖ϕ(u)‖2du

)
,

L(0) = 1,

where ‖ϕ(u)‖ denotes the Euclidean norm ‖ϕ(u)‖ =
(∑d

i=1 ϕ
2
i (u)

) 1
2 . Assume that

EP[L(T )] = 1,

and define the new probability measure P̃ on F(T ) by

L(T ) = dP̃
dP

, on F(T ).

Then
dW P̃(t) = dW P(t) + ϕ(t)dt,

where W P̃ is a d-dimensional Brownian motion.

Technical comments. The process ϕ is often referred to as the Girsanov kernel of the measure
transformation. Note that the theorem differs slightly when compared with the version in Björk
(2009), where the form of the likelihood process is different, and as a consequence the Girsanov

12See Björk (2009), page 164-165.
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theorem states that

dW P(t) = dW P̃(t) + ϕ(t)dt.

For a proof of the Girsanov Theorem, the reader is referred to Björk (2009), Chapter 11.

So, the Girsanov Theorem explains the connection between Brownian motion under two equiv-
alent measures. We see that the theorem has the attractive consequence that the effects on a
stochastic process of changing between measures are captured by a simple adjustment to the drift.
To see this, let us consider the simple case where we have a one-dimensional Itô process under
the measure P

dS(t) = µ(S(t), t)dt+ σ(S(t), t)dW P(t).

Now, assume the existence of an equivalent measure P̃ with the associated kernel ϕ. Then by the
Girsanov theorem we have that

dS(t) = µ(S(t), t)dt+ σ(S(t), t)(dW P̃(t)− ϕ(t)dt)

= (µ(S(t), t)− ϕ(t)σ(S(t), t))dt+ σ(S(t), t)dW P̃(t).

Thus, µ(S(t), t)−ϕ(t)σ(S(t), t) is the new drift under P̃. However, it is important to notice that
the volatility remains unchanged during the measure transformation.

4.2.2 Equivalent Martingale Measures and No-Arbitrage

We now introduce the concept of a deflator, a strictly positive Itô process used to normalize asset
prices. When an asset is chosen as a deflator we call it a numeraire. We now expand our market
model with one extra asset, a strictly positive Itô process S0 which leaves us with d+ 1 assets in
total. So, instead of looking at the price vector process S(t) = (S0(t), . . . , Sd(t))ᵀ, we will look at
the relative price vector process S(t)

S0(t) , where S0(t) acts as the numeraire. We define the concept
of a normalized economy where the price vector process Z defines the normalized asset prices
processes by

Z(t) = (Z0(t), . . . , Zd(t))ᵀ =
(

1, S1(t)
S0(t) , . . . ,

Sd(t)
S0(t)

)ᵀ

. (4.15)

Notice that in the normalised economy we have a risk free asset Z0 = 1, with zero rate of return.
We call a measure Q0 an equivalent martingale measure induced by S0 if Z(t) is a martingale w.r.t
Q0.13

Let us consider a portfolio based on a self-financing trading strategy θ, i.e. dV S(S(t), t) =
θ(t)ᵀdS(t). We call this portfolio S-self-financing. Then by using Itô’s product rule14 we can

13The choice of Q (in our case Q0) as notation for an equivalent martingale measure is standard practice in most
text books on mathematical finance.

14Let X(t) and Y (t) be Itô processes. Then

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).
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derive the dynamics of a portfolio V Z = V S

S0
as

dV Z(S(t), t) = θ(t)ᵀS(t)d
( 1
S0(t)

)
+ 1
S0(t)θ(t)

ᵀdS(t) + θ(t)ᵀdS(t)d
( 1
S0(t)

)
(4.16)

= θᵀ
(
S(t)d

( 1
S0(t)

)
+ 1
S0(t)dS(t) + dS(t)d

( 1
S0(t)

))
(4.17)

= θᵀd

(
S(t)
S0(t)

)
= θᵀdZ(t) (4.18)

and by integration
V Z(S(t), t) = V Z(S(0), 0) +

∫ t

0
θ(u)ᵀdZ(u). (4.19)

This implies that if a portfolio based on a trading strategy θ is S-self-financing, then the portfolio
based on θ is also Z-self-financing. The logic behind this result is that a portfolio based on a
self-financing trading strategy should not depend on a specific choice of numeraire. This result
is formulated more precisely in the Invariance Lemma15. If we assume that Q0 is an equivalent
martingale measure, then V Z is a Q0-martingale if the gain process∫ t

0
θ(u)ᵀdZ(u), for all t ∈ [0, T ] (4.20)

is a Q0-martingale.

Assume that there exists an equivalent martingale measure Q0 (equivalent to P) where the nor-
malised asset price process Z(t) are Q0-martingales. We also assume that the gain process (4.20)
is a Q0-martingale. Given these assumptions, we want to show that no arbitrage possibilities
exist. We assume that θ is bounded, which makes integration over θ possible. Since we do not
wish to get too technical we will not discuss the case when θ is possibly unbounded.

We consider a self-financing trading strategy θ with the corresponding portfolio value V Z(S(t), t) =
θᵀZ(t) and assume that the portfolio satisfies the relations

P(V Z(S(t), t) ≥ 0) = 1, (4.21)
P(V Z(S(t), t) > 0) > 0. (4.22)

Hence, θ constitutes a possible arbitrage strategy according to Definition 4.3 on page 26 and we
therefore have to show that V Z(S(0), 0) > 0 in order to rule out arbitrage.
Since P and Q0 are equivalent, we must have that

Q0(V Z(S(t), t) ≥ 0) = 1, (4.23)
Q0(V Z(S(t), t) > 0) > 0, (4.24)

and since θ is self-financing and (4.20) is a Q0-martingale, we know that V Z(S(t), t) is a Q0-
martingale (since we assume that θ is bounded). In particular we have that

V Z(S(0), 0) = EQ0 [
V Z(S(T ), T )

]
. (4.25)

15See Björk (2009), page 147-148.
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However, (4.23)-(4.24) imply that EQ0
[
V Z(S(T ), T )

]
> 0, which means that V Z(S(0), 0) > 0.

And since P and Q0 are equivalent we have shown that (4.21)-(4.22) imply V Z(S(0), 0) > 0 and
therefore that the arbitrage trading strategy cannot exist.

There exists a general result known as The First Fundamental Theorem of Asset Pricing and
as the name indicates, it is of huge importance for asset pricing theory. Essentially, the theorem
can be divided into two parts. The first part states that if an equivalent measure exists where
the normalized asset prices w.r.t a numeraire are martingales, then the prices are arbitrage free.
The second part explains the conditions under which such a measure exists. The proof of the
theorem is very technical and especially the proof of the second part requires very demanding
mathematics. This is indeed outside the scope of this thesis paper, and therefore we conclude
from the discussion that the absence of arbitrage is equivalent to the existence of a martingale
measure. For further discussion, see Björk (2009), chapter 10.

4.2.3 The General Pricing Formula

We define a derivative, or a contingent claim, with maturity at time T as any F(T )-measurable
random variable. We let X denote the contract function of the derivative.16 Our goal is to es-
tablish a general pricing formula for the ”fair” price of a derivative, denoted πX(t), based on the
no-arbitrage framework described above, where πX(T ) = X.
Again, we consider a market consisting of d+1 assets with price vector process S(t) = (S0(t), . . . , Sd(t))
and assume that the market is free of arbitrage. We fix a derivative with maturity at time T
and contract function X. The price of the derivative should be consistent with the prices of the
underlying assets, and we therefore demand that the market consisting of πX(t) and S(t) should
be free of arbitrage.

Now, by the First Fundamental Theorem of Asset Pricing, we know that the existence of an
equivalent martingale measure ensures that the market admits no arbitrage. So, by choosing S0
as the numeraire, we demand that there exists an equivalent martingale measure induced by S0
for the market consisting of πX(t) and S(t). Denoting this measures Q0 and using the fact that
πX(t)
S0(t) is a Q0-martingale, we can establish the following general pricing formula

πX(t)
S0(t) = EQ0

[
πX(T )
S0(T )

∣∣∣∣ F(t)
]

= EQ0
[

X

S0(T )

∣∣∣∣ F(t)
]
⇔

πX(t) = S0(t)EQ0
[

X

S0(T )

∣∣∣∣ F(t)
]
. (4.26)

Now, let us assume that the derivative can be replicated by a self-financing trading strategy θ
with the portfolio value dynamics dV (S(t), t) = θ(t)ᵀdS(t) and that the terminal value of the
portfolio equals the payoff of the derivative i.e.

V (S(T ), T ) = πX(T ). (4.27)

16In the case of a standard European call option written on an underlying asset S(t) with strike K, the contract
function is given by

X =
(
S(T )−K

)+
.
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In this case, we call the derivative attainable with θ. Furthermore, if we assume the existence
of an equivalent martingale measure Q0 where the gain process for V Z(S(t), t) = V (S(t),t)

S0(t) is a
Q0-martingale, we know from Subsection 4.2.2 that V Z(S(t), t) is a Q0-martingale. From (4.27)
this implies that πX(t)

S0(t) is also a Q0-martingale and we can again establish the general pricing
formula where we, for an attainable derivative, have that

V (S(t), t) = S0(t)EQ0
[

X

S0(T )

∣∣∣∣ F(t)
]
, (4.28)

which holds for any replicating self-financing trading strategy under any martingale measure.

If all derivatives are attainable, then the market is complete and (4.26) and (4.28) coincide.
So, in a complete market the price of any derivative is uniquely determined by the demand of
absence of arbitrage. The uniqueness stems from the fact that the derivative could just as well
be replaced by any replicating trading strategy. Whether a market is complete or not depends
on the number of risky traded assets compared to the number of random sources in the model,
where completeness is achieved if there are at least as many risky traded assets as there are
random sources. In our case, the market is complete if there are at least as many risky assets,
Si(t), as there are Brownian motions. For more on complete markets see Björk (2009), Chapter 8.

If the market is not complete we call it incomplete. In an incomplete market the demand for
absence of arbitrage is not enough to determine unique prices for derivatives. In this case, there
exist many equivalent martingale measures under which no-arbitrage prices for derivatives can be
established according to (4.26). So, in order to use (4.26), one has to choose a specific equivalent
martingale measure. This measure should be the one chosen by the market, which can be achieved
by calibrating to market prices. For more on incomplete markets see Björk (2009), Chapter 15.

The surprisingly simple formula in (4.26) is at the heart of asset pricing theory and makes pricing
derivatives very flexible. In particular, it establishes a foundation for pricing derivatives using
simulation schemes such as Monte Carlo Methods. In the next section, we will turn our focus
towards a specific measure that has certain nice properties. This measure is known as the Risk
Neutral measure and will be used extensively throughout this thesis paper.

4.3 Risk Neutral Pricing
Let us assume that there exists one risk free asset M(t) in the sense that it evolves according to
an Itô process with σi(S(t), t) = 0 and µi = r(t). Here r(t) is a one-dimensional F(t)-adapted
stochastic process describing the evolution of the instantaneous, continuously compounded short
rate of interest. The short rate may be interpreted as a risk free interest rate and we can think
of M as a money market account with dynamics

dM(t) = r(t)M(t)dt⇔M(t) = M(0) exp
(∫ t

0
r(u)du

)
(4.29)
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whereM(0) = 1. Now sinceM(t) is a stricty positive (Itô) process, it can be used as a numeraire.
So by letting S0(t) = M(t) in (4.26) we arrive at the well-known risk neutral pricing formula

πX(t) = M(t)EQ
[

X

M(T )

∣∣∣∣ F(t)
]
⇔ (4.30)

πX(t) = EQ
[
exp

(
−
∫ T

t
r(u)du

)
X

∣∣∣∣ F(t)
]

(4.31)

where Q is called the risk neutral martingale measure with the money market account as nu-
meraire. Hence, the time t price of a derivative under Q can be computed as an expected
discounted value. The measure Q is referred to as the risk-neutral measure since discounting is
done by using the risk free interest rate among other things.

Next, we want to define the asset dynamics under the Q-measure. For this purpose, let us
assume that the economy is described by a system of strictly positive price processes

dSi(t) = Si(t)
(
µi(S(t), t)dt+ σi(S(t), t)ᵀdW P(t)

)
, for i = 1, . . . , d (4.32)

where W P is a d-dimensional Brownian motion under the objective measure P, µi is a one-
dimensional F(t)-adapted process and σi is an F(t)-adapted process taking values in Rd. The
Girsanov Theorem stated in Subsection 4.2.1 will be essential in order to describe the connection
between P and Q.

Now, we say that a probability measure Q is risk neutral if

1. P and Q are equivalent, and

2. under Q, the discounted asset prices Si(t)
M(t) are martingales.

Let us begin by finding the dynamics of discounted asset prices Si(t)
M(t) . From Itô’s formula, one

can show that d 1
M(t) = −r(t) 1

M(t)dt
17. Then, by combining this result with Itô’s product rule, we

have that

d

(
Si(t)
M(t)

)
= Si(t)

(
−r(t) 1

M(t)dt
)

+ 1
M(t)Si(t)

(
µi(S(t), t)dt+ σi(S(t), t)ᵀdW P(t)

)
− r(t) 1

M(t)dt
(
Si(t)

(
µi(S(t), t)dt+ σi(S(t), t)ᵀdW P(t)

))
= Si(t)
M(t)

(
(µi(S(t), t)− r(t))dt+ σi(S(t), t)ᵀdW P(t)

)
(4.33)

In order to convert the discounted asset prices into martingales we would like to rewrite (4.33)
and then use the Girsanov Theorem so that

d

(
Si(t)
M(t)

)
= Si(t)
M(t)σi(S(t), t)ᵀ(ϕ(t)dt+ dW P(t)) (4.34)

= Si(t)
M(t)σi(S(t), t)ᵀdWQ(t) (4.35)

If we can specify the process ϕ(t) that makes (4.34) hold, we can then use the Girsanov theorem
to construct an equivalent measure Q under which WQ is a d-dimensional Brownian motion to

17For a derivation, see Appendix A.
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obtain (4.35). Thus, making Si(t)
M(t) a martingale under Q. This means that finding a risk neutral

measure comes down to specifying the process ϕ that makes (4.33) and (4.34) agree. Simple
manipulations show that they agree if and only if

µi(S(t), t) = r(t) + σi(S(t), t)ᵀϕ(t). (4.36)

From this relation, we can see that ϕ characterizes a scaled risk premium in the sense that it
determines the amount by which the drift rate exceeds the risk free rate. If we consider the scalar
case and rearrange (4.36) to ϕ(t) = µi(S(t),t)−r(t)

σi(S(t),t) we can interpret ϕ as the market price of risk,
which measures the excess return demanded by investors per unit of risk. In the multidimensional
setup, each component of ϕi may also be interpreted as the the market price of risk associated
with the ith risk factor.

So, how are the undiscounted dynamics of assets affected under the risk neutral measure? It
turns out that Si(t) has a mean rate of return (drift) equal to the risk free rate under Q. This
can be verified by making the replacement dW P = −ϕ(t)dt + dWQ in (4.32) along with (4.36).
With these substitutions, the dynamics of Si(t) under Q becomes

dSi(t) = Si(t)
(
(r(t) + σi(S(t), t)ᵀϕ(t))dt+ σi(S(t), t)ᵀ(−ϕ(t)dt+ dWQ)

)
= Si(t)

(
r(t)dt+ σi(S(t), t)ᵀdWQ

)
. (4.37)

Consequently, when we change measures from P to Q the drift in the dynamics is shifted with
the risk premium. This makes sense, since in a risk neutral world all assets will command a rate
of return equal to the risk free interest rate and therefore have a risk premium of 0. Also, the
present value of any future stochastic payment would be equal to the expected value of the net
payments discounted using the risk free interest rate. Since the money market account is not
considered a risky asset, we have equally many risky assets and brownian motions which make
the market complete. Hence, all risk associated with derivatives can be perfectly replicated and
we can disregard risk premiums when pricing, since all assets evolve according to the risk free
interest rate. The reason why the risk-neutral pricing formula does not depend on knowing the
mean rate of return of the underlying assets is because this information is already included in the
asset prices and the derivative is priced according to these prices. However, it is important to
emphasise that just because we are pricing derivatives under the risk-neutral measure it does not
mean that we assume that investors are risk-neutral. The formula only states that derivatives
can be priced as if investors were risk-neutral. In fact (4.30) is preference free in the sense that
the formula holds regardless of the investors individual preferences.

It turns out that in certain situations, due to modeling considerations, it is convenient to change
the benchmark asset to which other assets are measured. For instance, if one chooses to model
the short rate as a stochastic process, the money market account becomes stochastic. Conse-
quently, calculating (4.30) gets complicated since it would require taking the expectation of the
joint distribution (computing a double integral) of M(T ) and X under the Q measure. In this
case and in many other cases, it is possible to reduce the computational complexities in models
by changing the numeraire. So, computing prices within a specific model can be complicated or
simple depending on the choice of the numeraire in the model. This interesting fact, which was
formally described by Geman, Karoui and Rochet (1995), leads us to the next important topic
in derivatives pricing.
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4.4 Change of Numeraire
As we have already mentioned, a deflator is a strictly positive Itô process that acts as a standard
by which other asset values are measured. If the deflator is chosen from one of the assets, we
call the deflator a numeraire. In the risk-neutral setup the money market account acted as the
numeraire. By choosing the money market account as a numeraire we defined the risk-neutral
probability measure Q. The idea of changing numeraire is thus to measure the value of derivatives
and assets relative to a different asset than the one first chosen. Our goal is therefore to show
how changing numeraire affects pricing formulas and the underlying dynamics. In this section,
we follow the ideas in Poulsen (1999) and Björk (2009).

We begin by placing ourselves in the risk-neutral setup where asset dynamics are specified under
the Q-measure by

dSi(t) = Si(t)
(
r(t)dt+ σi(S(t), t)ᵀdWQ(t)

)
, for i = 1, . . . , d (4.38)

along with the dynamics of the money market account described in (4.29). We remind ourselves
that WQ is a d-dimensional Brownian motion, r(t) is a one-dimensional F(t)-adapted process
and σi is an F(t)-adapted process taking values in Rd. We want to use the risky asset Sd as
numeraire which means that we will define a new probability measure Qd.

First, let us consider the following process

L(T ) = Sd(T )M(0)
Sd(0)M(T ) = Sd(T )

Sd(0)M(T ) (4.39)

As a consequence, we have that
L(T ) > 0 and L(0) = 1. (4.40)

Furthermore, notice that under the Q-measure, L(T ) is a martingale, i.e.

EQ
[

Sd(T )
Sd(0)M(T )

∣∣∣∣ F(t)
]

= 1
Sd(0)E

Q
[
Sd(T )
M(T )

∣∣∣∣ F(t)
]

= Sd(t)
Sd(0)M(t) (4.41)

where we use that fact that Sd
M is a Q-martingale. Therefore, from Subsection 4.2.1, we know

that we can define a new equivalent probability measure Qd by the likelihood process

L(t) = dQd

dQ
on F(t). (4.42)

We wish to establish a link between a general pricing formula using the risky asset Sd as numeraire
and the risk neutral formula in (4.30) and thereby show how one can change numeraire from M
to Sd. Following the relation between equivalent measures we derived in (4.12)-(4.14) on page 28
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we have that

Sd(t)EQd
[
πX(T )
Sd(T )

∣∣∣∣ F(t)
]

= Sd(t)
EQ

[
πX(T )
Sd(T ) L(T )

∣∣∣ F(t)
]

EQ
[
L(T )

∣∣∣ F(t)
] (4.43)

= Sd(t)
1

L(t)E
Q
[
πX(T )
Sd(T ) L(T )

∣∣∣∣ F(t)
]

(4.44)

= Sd(t)EQ
[
πX(T )
Sd(T )

Sd(T )
Sd(0)M(T )

Sd(0)M(t)
Sd(t)

∣∣∣∣ F(t)
]

(4.45)

= M(t)EQ
[
πX(T )
M(T )

∣∣∣∣ F(t)
]

(4.46)

= πX(t). (4.47)

This means that πX(t)
Sd(t) is a Qd-martingale and the following relation holds

πX(t) = Sd(t)EQd
[
πX(T )
Sd(T )

∣∣∣∣ F(t)
]
. (4.48)

Notice that if we had begun the construction from the Q-measure, we could have achieved the
same result by defining the inverse likelihood process L−1(T ) = Sd(0)M(T )

Sd(T ) and then used that
L−1(t) is a Qd-martingale.

So, when using Sd as numeraire, we see from (4.48) that all derivatives and assets are mar-
tingales under the Qd-measure. In order to derive (4.48) we had to begin the construction from
a martingale measure, in this case the Q-measure. This confirms that we can change between
martingale measures.

The relation (4.48) does not provide any information about the asset dynamics under the Qd-
measure, and this information is necessary in order to use (4.48). We know from the Girsanov
Theorem that in order to change between equivalent measures, we need to find the connection be-
tween the Brownian motions under the two measures. We also know that M(t)

Sd(t) is a Qd-martingale.
With this in mind, we will now try to derive the Qd-dynamics.

First, we begin with 1
Sd(t) and by Itô’s formula we have that

d

( 1
Sd(t)

)
= − 1

S2
d(t)

dSd(t) + 1
S3
d(t)

(dSd(t))2 (4.49)

= − 1
Sd(t)

(
r(t)dt+ σd(S(t), t)ᵀdWQ(t)

)
+ 1
Sd(t)

(
σd(S(t), t)ᵀσd(S(t), t)dt

)
(4.50)

= 1
Sd(t)

(
− r(t) + σd(S(t), t)ᵀσd(S(t), t)

)
dt− 1

Sd(t)
σd(S(t), t)ᵀdWQ(t). (4.51)
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Then by Itô’s product rule we have that

d

(
M(t)
Sd(t)

)
= M(t)
Sd(t)

((
− r(t) + σd(S(t), t)ᵀσd(S(t), t)

)
dt− σd(S(t), t)ᵀdWQ(t)

)
(4.52)

+ r(t)M(t)
Sd(t)

dt (4.53)

= M(t)σd(S(t), t)ᵀ

Sd(t)
(
σd(S(t), t)dt− dWQ(t)

)
. (4.54)

Since we know that M(t)
Sd(t) is a Qd-martingale, we must have that the process σd(S(t), t)dt−dWQ(t)

is also a Qd-martingale. Then from Girsanov it follows that dWQd = dWQ − σd(S(t), t)dt is a
standard Brownian motion under Qd and the dynamics of Si under Qd is defined as

dSi(t) = Si(t)
(
r(t)dt+ σi(S(t), t)ᵀ

(
dWQd + σd(S(t), t)dt

) )
(4.55)

= Si(t)
((
r(t) + σi(S(t), t)ᵀσd(S(t), t)

)
dt+ σi(S(t), t)ᵀdWQd

)
(4.56)

where the dynamics of M(t) is unchanged since it does not contain a Wiener term. This implies
that when we change measure from Q to Qd we have to correct the drift of the underlying assets
by adding the instantaneous covarians between asset i and the numeraire.

In order to completely describe the impact of changing measures, we will now derive the dy-
namics of the normalized price process, Zi(t) = Si(t)

Sd(t) . We know that Zi(t) is a martingale under
Qd and since Si(t) is on proportional form, we have that (here we just write σi in order to ease
notation)

Si(t)
Sd(t)

= Si(0)
Sd(0) exp

((
r(t)− r(t)− 1

2‖σi‖
2 + 1

2‖σd‖
2
)
T + (σi − σd)ᵀWQ(T )

)
(4.57)

= Si(0)
Sd(0) exp

((1
2‖σd‖

2 − 1
2‖σi‖

2
)
T + (σi − σd)ᵀWQ(T )

)
(4.58)

= Si(0)
Sd(0) exp

((
−1

2‖σd‖
2 − 1

2‖σi‖
2 + σᵀi σd

)
T + (σi − σd)ᵀ(WQ(T )− σdT )

)
(4.59)

= Si(0)
Sd(0) exp

(
−1

2‖σi − σd‖
2T + (σi − σd)ᵀ(WQ(T )− σdT )

)
. (4.60)

Now, if we let Si(t)
Sd(t) = exp(h) where h = ln

(
Si(t)
Sd(t)

)
, we can use Itô’s formula to derive the dynamics

as
d

(
Si(t)
Sd(t)

)
= Si(t)
Sd(t)

(σi − σd)ᵀ(dWQ(t)− σddt). (4.61)

Thus, by Girsanov, we can show that Zi(t) = Si(t)
Sd(t) is a Qd-martingale with the dynamics (rein-

troducing proper notation)

dZi(t) = Zi(t)
(
σi(S(t), t)− σd(S(t), t)

)ᵀ
dWQd(t). (4.62)

The above results show the consequences of changing measures from the risk-neutral martingale
measure to a new measure induced by the numeraire Sd. It is important to stress that one does
not need to initiate the construction from the risk-neutral measure. We could just as easily
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have initiated the construction from any martingale measure using the same procedure described
above. The consequences of changing from the risk-neutral measure is that the dynamics of the
money market account does not change, since it is a risk free investment and does not contain
a Wiener driven term. This would not have been the case if we had changed from a martingale
measure induced by a risky numeraire.

The results above can be compressed into the following important theorem.

Theorem 4.4. (CHANGE OF MEASURE)
Consider a market model with asset dynamics given by (4.38) and a money market account
given by (4.29) under the risk-neutral martingale measure Q. For any fixed numeraire process
Sd(t) there exists an equivalent martingale measure Qd such that

M(t)EQ
[
πX(T )
M(T )

∣∣∣∣ F(t)
]

= Sd(t)EQd
[
πX(T )
Sd(T )

∣∣∣∣ F(t)
]
.

In particular, we have that the price of any traded asset is found as

πX(t) = Sd(t)EQd
[
πX(T )
Sd(T )

∣∣∣∣ F(t)
]
,

with the dynamics under Qd given by

dM(t) = r(t)M(t)dt,

dSi(t) = Si(t)
((
r(t) + σi(S(t), t)ᵀσd(S(t), t)

)
dt+ σi(S(t), t)ᵀdWQd

)
for all i,

where WQd(t) = WQ(t)− σd(S(t), t) is a Qd-Brownian motion. If we define

Zi(t) = Si(t)
Sd(t)

for all i,

we have that
dZi(t) = Zi(t)

(
σi(S(t), t)− σd(S(t), t)

)ᵀ
dWQd(t) for all i.

It is not immediately obvious how a change of measure can simplify the valuation of a given
derivative. All we have shown are the implications on pricing formulas and underlying dynamics
when a new measure is introduced. So in order to show that the change of a numeraire can
be a useful tool to reduce the computational time, we now proceed with an example concerning
swaptions. Since swaption pricing plays a key role in the valuation of a credit risky swap, we will,
in this example, show how changing numeraire can reduce the complexity of the pricing formula
significantly. The end results will be applied later on in the thesis paper. We choose to focus
solely on the swaption pricing formula and not the underlying dynamics since this will be covered
later on.

4.4.1 Pricing Swaptions under the Swap Measure

We assume that a frictionless market exists for ZCBs for every maturity T ≤ T̃ . As in Section
3.1.1, we denote the time t price of a ZCB with maturity at T as D(t, T ) where D(T, T ) = 1. We
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place ourselves under the risk-neutral measure and assume that the interest rate evolves according
to some unspecified stochastic process. According to Subsection 4.3, we can then express the time
t price of a ZCB as

D(t, T ) = EQ
[
exp

(
−
∫ T

t
r(u)du

) ∣∣∣∣ F(t)
]
. (4.63)

From Subsection 3.3.1 we know that the arbitrage free forward swaprate at time t for a swap
contract starting at time Tn lasting until TN , with the first payment at time Tn+1, is given by

yn,N (t) = D(t, Tn)−D(t, TN )∑N
i=n+1 ∆D(t, Ti)

= D(t, Tn)−D(t, TN )
Pn+1,N (t) (4.64)

where ∆ is the daycount fraction (here assumed constant) and Pn+1,N (t) is the so-called annuity
factor. Now, according to (3.15) on page 18, the payoff of a payer swaption can be seen as
proportional to that from a call option on the swaprate. Hence, under the risk-neutral measure
the price of a payer swaption at time t with strike K, denoted πPS(t), is obtained as

πPS(t) = M(t)EQ
[
Pn+1,N (Tn)
M(Tn) (yn,N (Tn)−K)+

∣∣∣∣ F(t)
]

(4.65)

Since we assume a stochastic interest rate, both the money market account and the annuity
factor are random variables at time Tn. Therefore, computing (4.65) is not a simple task, since
it involves computing the expectation of the joint distribution of three random variables which
implies computing a triple integral. We will now show how changing the numeraire from the
money account to the annuity factor can simplify the computation greatly.

The idea is to use Pn+1,N (t) as numeraire, and we therefore consider the following likelihood
process

L(Tn) = Pn+1,N (Tn)M(t)
Pn+1,N (t)M(Tn) (4.66)

where L(t) = 1 and L(Tn) > 0. Since L(Tn) is a Q-martingale, we can define an equivalent
measure Qn+1,N to Q by its Radon-Nikodym derivative L(t). We will call this measure the Swap
measure. When applying Pn+1,N as numeraire, we know that M(TN )

Pn+1,N (TN ) is Qn+1,N -martingale,
since18

EQn+1,N
[

M(Tn)
Pn+1,N (Tn)

∣∣∣∣ F(t)
]

= EQ
[
L(Tn)
L(t)

M(Tn)
Pn+1,N (Tn)

∣∣∣∣ F(t)
]
, (4.67)

= EQ
[
Pn+1,N (Tn)M(t)
Pn+1,N (t)M(Tn)

M(Tn)
Pn+1,N (Tn)

∣∣∣∣ F(t)
]
, (4.68)

= EQ
[

M(t)
Pn+1,N (t)

∣∣∣∣ F(t)
]

(4.69)

= M(t)
Pn+1,N (t) . (4.70)

18Here we use Bayes Abtract Theorem.
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We now introduce the inverse likelihood process

L−1(Tn) = Pn+1,N (t)M(Tn)
Pn+1,N (Tn)M(t) . (4.71)

From (4.67)-(4.70), one can show that L−1(Tn) is a Qn+1,N -martingale. Therefore we have that

πPS(t) = M(t)EQ
[
Pn+1,N (Tn)
M(Tn) (yn,N (Tn)−K)+

∣∣∣∣ F(t)
]

(4.72)

= M(t)EQn+1,N
[
L−1(Tn)
L−1(t)

Pn+1,N (Tn)
M(Tn) (yn,N (Tn)−K)+

∣∣∣∣ F(t)
]

(4.73)

= M(t)EQn+1,N
[
Pn+1,N (t)M(Tn)
Pn+1,N (Tn)M(t)

Pn+1,N (Tn)
M(Tn) (yn,N (Tn)−K)+

∣∣∣∣ F(t)
]

(4.74)

= Pn+1,N (t)EQn+1,N
[
(yn,N (Tn)−K)+

∣∣∣∣ F(t)
]
. (4.75)

Since the payoff of a receiver swaption can be seen as proportional to that from a put option, the
time t price of the receiver swaption under the swap measure, denoted πRS(t), can be derived in
exactly the same manner as the payer swaption. This gives us the following two swaption pricing
formulas as seen from time 0,

πPS(0) = Pn+1,N (0)EQn+1,N [(yn,N (Tn)−K)+
]
, (4.76)

πRS(0) = Pn+1,N (0)EQn+1,N [(K − yn,N (Tn))+
]
. (4.77)

These pricing formulas will play an instrumental part when we turn to the pricing of credit risky
swaps.

From (4.76) and (4.77) we see that the valuation formulas for swaptions have been greatly sim-
plified. At time zero, the annuity factor is known since the sum of ZCBs can be extracted from
market data. Consequently, we only have to compute the expectation of one random variable,
the swap rate. Also notice that under the swap measure the swap rate is a martingale. This
is realized by looking at the definition of the swap rate and remembering that ZCBs relative to
the annuity factor are martingales under the swap measure. The change of numeraire also shows
explicitly why swaptions can be viewed as options on swap rates.
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Chapter 5

Pricing Using Fourier Inversion

5.1 Introduction
When pricing options as expectations, knowledge about the distribution of the underlying asset
is essential. In certain cases where the terminal distribution is known, closed form expressions
for European option prices can be derived. A famous example is the Black-Scholes formula for a
call option written on a stock. In the Black-Scholes model, the stock evolves according to a geo-
metric Brownian motion and thereby has a lognormal distribution. However, in some cases when
the underlying stochastic process is very complex, determining the distribution of the underlying
asset is difficult and in special cases requires significant computational power. It turns out that
there is an alternative approach to modeling the option payoff directly by a stochastic process.
The idea of this alternative approach is to exploit a link between the Characteristic function of
the underlying asset’s density function and the option payoff. This approach enables a derivation
of the option price by an inverse Fourier transform. In this way, option prices can usually be
computed much more easily for complex processes.

There is an increasing interest in applying methods using characteristic functions and Fourier
transforms since modern pricing models are often constructed using complex non-Gaussian pro-
cesses that are more easily characterized through a characteristic function rather than a proba-
bility distribution. This is because the characteristic function completely defines the probability
distribution. Therefore, we wish to present a method of pricing European call and put options
using Fourier inversion. We end the chapter by deriving pricing formulas for swaptions according
to the formulas stated in Pelsser and Schrager (2006). These formulas will be applied when we
turn to computing prices for credit risky swaps.

5.2 The Characteristic Function
We begin with an introduction to characteristic functions. Our introduction is inspired by the
ideas in Grimmett and Stirzaker (2001) and Schmelzle (2010).

5.2.1 Definition and Basic Properties

The Characteristic function (CF) plays a very important role in probability theory since it com-
pletely defines the probability distribution of any random variable. Even if the density of a
random variable does not have an analytical expression, the CF always exists. Thus, every ran-
dom variable possesses a unique CF. An interesting fact is that there is a one to one relationship
between the CF and the probability density function and hence to the distribution function. This
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implies that any knowledge about the CF also gives information about the distribution.

In order to give a precise definition of the CF, one must use the operator known as the Fourier
transform (FT). There are many ways to define the FT, so instead of stating many different
versions we have chosen a definition that makes the connection to CFs very clear. We define the
FT of a function f : R→ R satisfying conditions specified below, as

f̂(u) ≡
∫ ∞
−∞

exp(iux)f(x)dx, for u ∈ R, (5.1)

where i =
√
−1 is the imaginary unit. From this definition we can see that the FT describes a

transformation of a real valued function f from R into the complex space C. Given the FT of f,
the function f can be recovered by Fourier Inversion (FI), so that

f(x) = 1
2π

∫ ∞
−∞

exp(−iux)f̂(u)du, for u ∈ R. (5.2)

The FT method is a widely used and well understood mathematical tool used extensively in
physics and engineering disciplines as for example a method for solving partial differential equa-
tions. In finance, the FT method has become a very important tool. It was first applied in the
early 90s in Heston (1993) to obtain an analytical pricing formula for European call options with
stochastic volatility of the underlying asset.

When applying the theory of FTs, one must be familiar with the notion of absolute integrability.
A function is absolutely integrable if the integral of its absolute value in R is finite,∫ ∞

−∞
|f(x)|dx <∞. (5.3)

The reason as to why this notion is so important is that in order for the FT and its inverse to
exist, the function f must be absolutely integrable and (5.3) must therefore hold. FTs can also
be extended to square integrable functions which satisfy∫ ∞

−∞
|f(x)|2dx <∞. (5.4)

These conditions must always be kept in mind when using the operator.

With the definition and properties of the FT in mind we will now state the definition of the
CF:

Definition 5.1. (THE CHARACTERISTIC FUNCTION)
The characteristic function of a random variable X with density fX is the function
φX : R→ C defined by

φX(u) =
∫
R

exp(iux)fX(x)dx

= E
[

exp(iuX)
]

where i =
√
−1 is the imaginary unit.
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Comments. We can see from the definition that the CF of a random variable X is defined as the
FT of the density of X.

Certain obvious observations can be made from the definition stated above; for instance, it is
clear that φX(0) = 1. Also, the CF of a deterministic variable is given as φX(u) = exp(iux) for
P(X = x) = 1. The geometric interpretation of the CF is closely connected to the unit circle
in the complex plane which implies that there exists an upper bound of |φX(u)| ≤ 1, i.e. the
norm of the CF is never bigger than one. If the CF is absolutely integrable and therefore satisfies
condition (5.3), then X has a continuous probability distribution. Also, the fact that | exp(iuX)|
is a continuous and bounded function for all finite real u and x ensures that φX(u) always exists.

Since the trigonometric functions cosine and sine are even and odd respectively, we can, by
applying Eulers formula1 to Definition 5.1, show that

φX(−u) = E
[

cos(−uX) + i sin(−uX)
]

= E
[

cos(uX)− i sin(uX)
]

= E
[
exp(iuX)

]
= φX(u). (5.5)

Hence, φX(−u) is the complex conjugate of φX(u)2. This symmetry around u = 0 suggests that
we only need to consider the characteristic function for u > 0 in order to describe the distribution.
Finally, if X and Y are two independent random variables, then for Z = X + Y it holds that

φZ(u) = E
[

exp(iu(X + Y ))
]

= E
[

exp(iuX)
]
E
[

exp(iuY )
]

= φX(u)φY (u),

and for a, b ∈ R such that Y = a+ bX we have that

φY (u) = E
[

exp(iu(a+ bX))
]

= exp(iua)E
[

exp(iubX)
]

= exp(iua)φX(ub).

5.2.2 The Inversion Theorem

As mentioned, there is a one-to-one relationship between the CF and the distribution of a random
variable. This means that we can evaluate the density function and thereby also the distribution
function at any point by knowing the CF. This is done via the inverse FT stated in the following
theorem:

1exp(iuX) = cos(uX) + i sin(uX)
2The complex conjugate of a complex variable z = x+ iy is defined as

z = x− iy.
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Theorem 5.1. If X is a continuous random variable with the CF

φX(u) = E
[

exp(iuX)
]

then the density function of X, denoted by fX(x), is given by the inverse FT such that

fX(x) = 1
2π

∫
R

exp(−iux)φX(u)du. (5.6)

Then, denoting the distribution function for X by FX(x), we have that

FX(x) = P(X ≤ x) = 1
2 −

1
2π

∫
R

exp(−iux)φX(u)
iu

du. (5.7)

So, in order to calculate the distribution and density function of a random variable, one has to
evaluate complex integrals. However, it turns out that (5.6) and (5.7) can be simplified due to
the properties of the CF. This can be realized by observing that the FT of a real-valued function
is a transformation from R to C. Hence, it can be written in its complex form where if z ∈ C we
have z = a + ib for a, b ∈ R. Here <[z] = a is the real part and =[z] = b is the imaginary part
and we have that

<[z] = z + z

2 and =[z] = z − z
2i (5.8)

If we consider the CF, which we defined as the FT of a real valued density function, we can use
the result in (5.5) to show that

<[φX(u)] = φX(u) + φX(−u)
2 and =[z] = φX(u)− φX(−u)

2i . (5.9)

Combining the above result with the fact that the complex function f(uX) = exp(iuX) also
satisfies f(uX) = f(−uX)3 and that the product of two complex conjugated numbers equals the

3This can also be realised by applying (5.5) on a degenerate distribution.
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conjugate of the product4, we can simplify the integration in (5.6) to∫ ∞
−∞

exp(−iux)φX(u)du =
∫ 0

−∞
exp(−iux)φX(u)du+

∫ ∞
0

exp(−iux)φX(u)du (5.10)

=
∫ ∞

0
exp(iux)φX(−u)du+

∫ ∞
0

exp(−iux)φX(u)du (5.11)

=
∫ ∞

0
exp(−iux)φX(u)du+

∫ ∞
0

exp(−iux)φX(u)du (5.12)

=
∫ ∞

0

(
exp(−iux)φX(u) + exp(−iux)φX(u)

)
du (5.13)

= 2
∫ ∞

0
<
[

exp(−iux)φX(u)
]
du (5.14)

where in (5.13)-(5.14) we have used the results in (5.9). Thus, the density in (5.6) is reduced to

fX(x) = 1
π

∫ ∞
0
<
[

exp(−iux)φX(u)
]
du. (5.15)

Similar calulations for the cumulative distribution function in (5.7) yield

FX(x) = 1
2 −

1
π

∫ ∞
0
<
[exp(−iux)φX(u)

iu

]
du. (5.16)

Thus, calculating the distribution and density function by FI only requires evaluation of real
integrals, which are easier to handle numerically.

Often in financial models the underlying asset evolves according to some stochastic process that
implies a time-dependent price process expressed by conditional expectations. So, in order to
apply the CF in these models we must make the CF time dependent. Thus, for t < T we define
the Conditional Characteristic Function (CCF) of a stochastic process

(
X(t)

)
t≥0 as

φX(u, t, T ) = Et
[

exp (iuX(T ))
]
, (5.17)

making the CCF a time dependent version of the CF.

5.3 Pricing European Options
The goal of this section is to derive a semi-analytical price of an European option using Fourier
inversion techniques. To do this, we follow the approach of Carr and Madan (1998) and Lee
(2004) where the idea is to calculate the FT of a modified call option price w.r.t. the logarithmic
strike price. A semi-analytical formula for the option price can then be obtained by inverting
the FT of the modified call option price. By taking this approach, an efficient algorithm named
Fast Fourier Transform (FFT) can be applied in order to numerically evaluate the integral in
the formula. With this specification and the FFT routine, a wide range of option prices can be
obtained. Although we are not interested in using the FFT routine, we wish to use the same
approach in order to establish the semi-analytical formula for the option price.

4If u,w ∈ C, then for z = uw we have that

z = uw.
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Now, if we let X(t) denote the price of the underlying process and K denote the strike price,
we define

x(t) = logX(t), (5.18)
k = logK. (5.19)

Let πC(t, k) denote the time t value of a call option with strike exp(k) maturing at time T. Now,
if we define qt,T (x) as the (conditional) risk neutral density of x(T ) at time t, we know that the
CCF of qt,T (x) is given by

φx(u, t, T ) =
∫ ∞
−∞

exp(iux)qt,T (x)dx. (5.20)

For the sake of simplicity, let us assume that the short rate is constant so that the money market
account M(t) = exp(rt) evolves deterministically. Then from Section 4.3 we know that value of
the call option at time zero, πC(0, k), can be obtained under the risk-neutral measure as

πC(0, k) = EQ
0

[
exp(−rT )πC(T, k)

]
(5.21)

=
∫ ∞
−∞

exp(−rT )
(

exp(x)− exp(k)
)+
q0,T (x)dx (5.22)

=
∫ ∞
k

exp(−rT )(exp(x)− exp(k))q0,T (x)dx (5.23)

Notice that when we express the call option in terms of the logarithm of the strike, we have that

lim
k→−∞

πC(0, k) =
∫ ∞
−∞

exp(−rT ) exp(x)q0,T (x)dx (5.24)

= EQ0
[

exp(−rT ) exp(x(T ))
]

(5.25)

= X(0) (5.26)

since exp(−rT )X(T ) is a martingale under the Q-measure. So πC(0, k) tends to X(0) as k goes to
−∞ and therefore the limit of πC(0, k) does not converge to zero. Hence, πC(0, k) does not satisfy
condition (5.3) on page 42 and is therefore not absolutely integrable. This means that an FT of
πC(0, k) does not exist and a FT of the call option price is therefore not possible. However, if we
introduce an exponential damping factor exp(αk) where α > 0, we can make πC(0, k) integrable
by considering the modified call price π̃C(0, k) defined by

π̃C(0, k) = exp(αk)πC(0, k). (5.27)

Since exp(αk)→ 0 for k → −∞, we force the modified call price to converge to zero in the limit.
Consequently, ∫ ∞

−∞
| exp(αk)πC(0, k)|dk <∞, (5.28)

for some suitable choice of α, making the modified call option price absolutely integrable.
The FT of π̃C(0, k) is then given by

ψC(u) =
∫ ∞
−∞

exp(iuk)π̃C(0, k)dk. (5.29)
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Next step is to develop an analytical expression for ψC(u) in terms of the CF in (5.29). The
calculations can be found in Carr and Madan (1998) and we will therefore just state the result
here:

ψC(u) = exp(−rT )φx(u− (α+ 1)i, 0, T )
α2 + α− u2 + i(2α+ 1)u , (5.30)

where φx(u− (α+ 1)i, t, T ) denotes the CCF of the underlying price process (x(t))t≥0 measured
in u− (α+ 1)i. Now, by Fourier inversion the undampened call option price can be obtained as

π̃C(0, k) = 1
2π

∫ ∞
−∞

exp(−iuk)ψC(u)du (5.31)

⇔ πC(0, k) = exp(−αk)
2π

∫ ∞
−∞

exp(−iuk)ψC(u)du (5.32)

= exp(−αk)
π

∫ ∞
0
<
[

exp(−iuk)ψC(u)
]
du. (5.33)

That (5.33) holds can be realised using the same line of reasoning as in (5.10)-(5.14) on page 45,
since ψC(u) consists of a FT of a real-valued function and therefore has the property

ψC(−u) = exp(−rT )φx(−u− (α+ 1)i, 0, T )
α2 + α− u2 − i(2α+ 1)u = ψC(u). (5.34)

The call price formula in (5.33) is semi-analytical, so in order to apply the formula one has to
compute the real integral numerically. Also, one has to know either the FT of the modified call
price or the CCF for the terminal distribution of the logarithm of the asset process. However,
knowledge about the terminal distribution of the underlying asset is not necessary.

Note that the method only makes sense when α is chosen so that the modified call price is
well behaved. For positive values of α, using exp(αk) to modify the call price makes it integrable
along the negative log strike axis, but worsens the integrability condition along the positive axis.
A sufficient condition required for the modified call price to be integrable along the negative and
positive axis, and hence squared integrable, is given by ψC(u) = 0 being finite5. For u = 0 we
have that

ψC(0) = exp(−rT )φx(−(α+ 1)i, 0, T )
α2 + α

, (5.35)

and in order for (5.35) to be finite we must have that φx(−(α+1)i, 0, T ) <∞. Using the definition
of the CCF this is equivalent to

φx(−(α+ 1)i, 0, T ) = E0
[

exp
(
i(−(α+ 1)i)x(T )

)]
= E0

[
exp

(
(α+ 1)x(T )

)]
(5.36)

= E0
[
X(T )α+1

]
<∞. (5.37)

Hence, the modified call price π̃C(0, k) is squared integrable when the conditional moments of
order 1 + α of X(T ) exist and are finite.

If we consider the corresponding put option, i.e an option with payoff
(

exp(k) − exp(x(T ))
)+

,

5See Carr and Madan (1998) page 64 for further details.
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and denote the value at time zero as πP (0, k), we have

πP (0, k) =
∫ ∞
−∞

exp(−rT )
(

exp(k)− exp(x)
)+
q0,T (x)dx. (5.38)

Now, if we define the modified put price as

π̃P (0, k) = exp(−αk)πP (0, k), (5.39)

one can show that the FT of the modified put price is given by

ψP (u) = exp(−rT )φx(u− (−α+ 1)i, 0, T )
α2 − α− u2 + i(−2α+ 1)u) . (5.40)

Then by Fourier inversion, the put price can be found as

πP (0, k) = exp(αk)
π

∫ ∞
0
<
[

exp(−iuk)ψP (u)
]
du. (5.41)

5.3.1 Pricing Swaptions Using Fourier Inversion

We now turn to the task of deriving the pricing formulas for swaptions stated in Pelsser and
Schrager (2006) using the framework described above6. If we let yn,N (t) denote the forward
starting par swap rate of a swap contract starting at time Tn, paying out for the first time at
time Tn+1 and lasting until time TN , we have already shown that the time t price of a payer and
a receiver swaption with strike K can be expressed according to (4.76) and (4.77) on page 40.
Introducing a slightly different notation, we restate the pricing formulas as

πPS(t,K) = Pn+1,N (t)EQn+1,N
[(
yn,N (Tn)−K

)+ ∣∣∣∣ F(t)
]

(5.42)

= Pn+1,N (t)
∫ ∞
−∞

(
y −K

)+
qt,Tn(y)dy, (5.43)

πRS(t,K) = Pn+1,N (t)EQn+1,N
[(
K − yn,N (Tn)

)+ ∣∣∣∣ F(t)
]

(5.44)

= Pn+1,N (t)
∫ ∞
−∞

(
K − y

)+
qt,Tn(y)dy, (5.45)

where Qn+1,N denotes the swap measure and qt,Tn(y) denotes the (conditional) density of yn,N (Tn)
under the swap measure at time t. Now, the CCF of the swap rate is defined as

φy(u, t, Tn) = EQn+1,N

t

[
exp(iuyn,N (Tn))

]
=
∫ ∞
−∞

exp(iuy)qt,Tn(y)dy. (5.46)

Following the same approach as in the previous section, we define the modified payer and receiver
swaption price as

π̃PS(t,K) = exp(αK)πPS(t,K), (5.47)
π̃RS(t,K) = exp(−αK)πRS(t,K), (5.48)

6Pelsser and Schrager (2006) only states the payer swaption price whereas we will state both the payer and the
receiver swaption price.
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for some α ∈ R+. This means that we can establish the FT of the modified swaption prices as

ψP (u, t, Tn) =
∫ ∞
−∞

exp(iuK)π̃PS(t,K)dK, (5.49)

ψR(u, t, Tn) =
∫ ∞
−∞

exp(iuK)π̃RS(t,K)dK. (5.50)

Now, the price of a payer and a receiver swaption can be stated in the following proposition:

Proposition 5.1. Let yn,N (t) denote the forward par swap rate under the swap measure
Qn+1,N for a swap contract starting at time Tn, paying out for the first time at time Tn+1
and lasting until time TN . Assume that an α ∈ R+ exists such that (5.47) and (5.48) are
absolutely integrable.
The time t value of a payer swaption then equals

πPS(t,K) = exp(−αK)
π

∫ ∞
0
<
[

exp(−iuK)ψP (u, t, Tn)
]
du, (5.51)

ψP (u, t, Tn) = Pn+1,N (t)φy(u− iα, t, Tn)
(iu+ α)2 (5.52)

and the corresponding receiver swaption

πRS(t,K) = exp(αK)
π

∫ ∞
0
<
[

exp(−iuK)ψR(u, t, Tn)
]
du, (5.53)

ψR(u, t, Tn) = Pn+1,N (t)φy(u+ iα, t, Tn)
(iu− α)2 (5.54)

where φy denotes the CCF of yn,N (Tn) defined in (5.46).

Proof. We will only state the proof for the payer swaption, since the approach in the proof for
the receiver swaption is exactly the same. We begin the proof by deriving (5.52):

ψ(u, t, Tn) =
∫ ∞
−∞

exp(iuK)π̃PS(t,K)dK (5.55)

=
∫ ∞
−∞

exp(iuK) exp(αK)πPS(t,K)dK (5.56)

=
∫ ∞
−∞

exp(iuK) exp(αK)Pn+1,N (t)
∫ ∞
−∞

(y −K)+qt,Tn(y)dydK (5.57)

=
∫ ∞
−∞

Pn+1,N (t)
∫ ∞
−∞

exp(K(iu+ α))(y −K)+qt,Tn(y)dydK (5.58)

=
∫ ∞
−∞

Pn+1,N (t)qt,Tn(y)
∫ ∞
−∞

exp(K(iu+ α))(y −K)+dKdy (5.59)

=
∫ ∞
−∞

Pn+1,N (t)qt,Tn(y)
∫ y

−∞
exp(K(iu+ α))(y −K)dKdy (5.60)

In (5.58)-(5.59) we have used Fubini’s rule7 to interchange the integration order, which is justified
7Consider a function f : X × Y → R and assume that f is integrable over X × Y . Then∫

X

∫
Y

f(x, y)dydx =
∫
Y

∫
X

f(x, y)dxdy.
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since the modified payer swaption is absolutely integrable. In (5.60) we have changed the upper
bound of the inner integral to y, since any strike larger than the swap rate would provide a payoff
of zero. Now, for the inner integral in (5.60), we have that∫ y

−∞
exp(K(iu+ α))(y −K)dK (5.61)

= y

∫ y

−∞
exp(K(iu+ α))dK −

∫ y

−∞
exp(K(iu+ α))KdK (5.62)

= y

iu+ α

[
exp(K(iu+ α))

]y
−∞

(5.63)

−

 1
iu+ α

[
exp(K(iu+ α))K

]y
−∞

−
∫ y

−∞

1
(iu+ α) exp(K(iu+ α))dK

 (5.64)

where we, in the last equality, have used integration by parts. Since α > 0, we have that
limK→−∞ exp(K(iu+ α)) = 0 and limK→−∞K exp(K(iu+ α)) = 0. Therefore (5.64) reduces to

1
(iu+ α)2 exp(y(iu+ α)). (5.65)

Hence,

ψ(u, t, Tn) =
∫ ∞
−∞

Pn+1,N (t)qt,Tn(y) 1
(iu+ α)2 exp(y(iu+ α))dy (5.66)

= Pn+1,N (t)
(iu+ α)2

∫ ∞
−∞

exp(y(iu+ α))qt,Tn(y)dy (5.67)

= Pn+1,N (t)
(iu+ α)2

∫ ∞
−∞

exp(i(u− iα)y)qt,Tn(y)dy (5.68)

= Pn+1,N (t)φy(u− iα, t, Tn)
(iu+ α)2 , (5.69)

which proves (5.52). Now, by Fourier inversion we get

πPS(t,K) = exp(−αK)
2π

∫ ∞
−∞

exp(−iuK)ψ(u, t, Tn)du (5.70)

= exp(−αK)
π

∫ ∞
0
<
[

exp(−iuK)ψ(u, t, Tn)
]
du. (5.71)

So, in order to price swaptions using FI as in Proposition 5.1, one needs to stipulate the CCF of
the swap rate. This in turn depends on the specific dynamics chosen for the swap rate. Once the
CCF is derived based on the dynamics, a proper value of the parameter α needs to be determined
in order to ensure integrability. In Lee (2004) general formulas combined with upper and lower
bounds are derived for α depending on the specific option payoff. One can also use other well
known models in order to choose α, for example the Black-Scholes model. Since the Black-Scholes
model has an analytical solution, we know that the numerical implementation must converge to
the same theoretical price for a standard call or put option. Hence, a suitable choice of α can be
provided by comparing the two prices.
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Chapter 6

Affine Models

In order to price swaptions we will need to specify an interest rate model that enables both pricing
of ZCBs as well as a specification of the characteristic function in order to apply Proposition 5.1
on page 49. It turns out that a certain tractable subclass of models, namely the affine models,
manages to satisfy both criteria in a very convenient and explicit way. The subclass also allows
for a wide variety of classic models to choose among, e.g. the Vasicek model (Vasicek, 1977) or
CIR model (Cox et al., 1985).

In order to derive default probabilities, the affine models will also be key. They will enable
the derivation of a complete set of default probabilities from CDS quotes without just interpo-
lating between the bootstrapped default probabilities.

The chapter is inspired by Duffie and Kan (1996), Munk (2005), Dai and Singleton (2000),
Singleton and Umantsev (2002a), Duffee (1998), Duffie et al. (2000) and Pelsser and Schrager
(2006).

6.1 Construction
Consider a vector of N state variables X(t) where each state variable is called a factor. X(t) is
assumed to be representative of the state of the economy. The dynamics, i.e. the instantaneous
increments, are then described by an N-factor diffusion model

dX(t) = Ψ (Θ−X(t)) dt+ Σ
√
V (t)dWQ(t) (6.1)

where Ψ and Σ are N ×N matrices and where Θ is an N -dimensional vector. V (t) is a diagonal
matrix and WQ(t) is an N -dimensional independent standard Brownian motion under the risk
neutral measure Q. The specification could albeit in principle be under some other probability
measure. In the most general setting, the matrices are allowed to be time varying1. To ensure
existence of the process X(t), equation (6.1) must have a unique solution that requires Ψ,ΨΘ
and Σ to satisfy certain regulatory conditions2. Restrictions on V (t) are also necessary since the
square root computation3 might have multiple solutions if V (t) is not positive definite. However,
if V (t) is positive definite, a unique solution is guaranteed.

1By following Pelsser and Schrager (2006) in using an affine framework to price swaptions, we actually have to
specify dynamics under a certain measure so that Ψ, Θ and Σ are time varying.

2See Øksendal (1998).
3The square root of a square matrix S is a square matrix R so that RR = S.
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Definition 6.1. A stochastic process r(t) is driven by an affine model if (and only if) the
following two relationships hold

r(t) = ω0 + ωᵀ
XX(t)

V (t)ii = αi + βᵀiX(t) ≥ 0

where

• X(t) is specified according to equation (6.1)

• ω0 and αi are scalars

• ωX and βi is N -dimensional vectors.

Note how both the relationship between r(t) and the state vectorX(t) and the relationship between
the variances V (t)ii and X(t) are affine. The latter relationship is particularly interesting since
it allows for square root specification of the volatility term that is used in e.g. the CIR model.
The definition implies that V (t) by matrix notation is given as

V (t) = diag(α+ βX(t)) (6.2)

where the matrix β is defined as [β1 · · ·βN ]ᵀ and the vector α is defined as [α1 · · ·αN ]ᵀ.

The stochastic process r(t) could typically model the short interest rate (which it mainly will
for our purpose), but it could also model some other variable e.g. a default intensity (see Chapter
9).

6.2 Implications

6.2.1 Transitioning into the P-measure

In the construction of the affine setup, we have deliberately defined the underlying processes
under the risk neutral measure Q. It is however possible to backtrack to the real world measure
P by assuming that the market prices of risk, Λ(t), are given by

Λ(t) =
√
V (t)λ (6.3)

where λ is an N -dimensional vector of constants. Straightforward calculations can then show4

that the dynamics for X(t) under P are given by an affine form

dX(t) = ΨP (ΘP −X(t)) dt+ Σ
√
V (t)dW P(t) (6.4)

where ΨP = Ψ−ΣΦ and ΘP = Ψ−1
P (ΨΘ + Σψ), given that the ith row of Φ is given by λiβᵀi and

ψ is an N -dimensional vector whose ith element is given by λiαi.

4See Duffee (1998)
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The important statement is that under both measures (P and Q) the affine form of the diffu-
sion process given by equation (6.1) is maintained, and only the drift is truly changed. This fact
stems from the Girsanov Theorem, see equation (4.15) on page 28.

6.2.2 The Price of a Zero Coupon Bond

The affine framework has a very explicit way of characterizing the cardinal expression

D(t, T ) = EQ
[
exp

(
−
∫ T

t
r(s)ds

) ∣∣∣∣ F(t)
]

(6.5)

where r(t) denotes a short rate process5:

Proposition 6.1. Assume a short rate process r(t) so that Definition 6.1 is fulfilled and
the ZCB price is given as the expectation in equation (6.5). Then the following closed-form
ZCB price, which is completely determined by the specification of the risk-neutral short rate
dynamics given by relationship (6.1) and Definition 6.1, exists:

D(t, T ) = exp
(
A(t, T )−B(t, T )ᵀX(t)

)
where the one-dimensional function A(t, T ) and the N -dimensional function B(t, T ) satisfy
the ordinary differential equations (ODEs)

dA(t, T )
dt

= −ΘᵀΨᵀB(t, T ) + 1
2

N∑
i=1

[ΣᵀB(t, T )]2i αi − ω0, (6.6)

dB(t, T )
dt

= −ΨᵀB(t, T ) − 1
2

N∑
i=1

[ΣᵀB(t, T )]2i βi + ωX , (6.7)

with the boundary conditions A(T, T ) = 0 and Bi(T, T ) = 0 ∀ i.

Proof. See Duffie and Kan (1996). The idea is to show that

D(t, T ) = exp
(
A(t, T )−B(t, T )ᵀX(t)

)
(6.8)

is a solution to the fundamental PDE6. By inserting the derivatives of (6.8) in the PDE, one can
show that the PDE only holds if the exact ODEs given by (6.6) and (6.7) hold.

The Proposition states that the ZCB price is given on semi-analytical exponential affine form.
The second ODE is of the Ricatti type, which means that it is quadratic in the unknown function7.

5Later we will see that the expression given by (6.5) is also central in chapter 9: Intensity Modelling, where
r(s) will be substituted by a default intensity λ(s).

6See e.g. Björk (2009) Chapter 13.
7Technically speaking a Ricatti equation is an ODE on the form

dy(x)
dx

= q0(x) + q1(x)y(x) + q2(x)y(x)2
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The ODEs will typically be solved using numerical integration. However, for the one-dimensional
cases considered by Vasicek (1977) and Cox et al. (1985) there are explicit solutions for (A,B).

6.2.3 The Zero Coupon Bond Price Process

In order to price swaptions, we have to know the dynamics of the ZCB price. It turns out that
this process is (also) remarkably simple in an affine setup.

From Proposition 6.1 we have that the ZCB price is given on exponential affine form. Ap-
plying Itô’s Formula on this expression and using the dynamics of X(t), given by equation (6.1),
yield

dD(t, T ) =
(
∂A

∂t
(t, T )− ∂Bᵀ

∂t
(t, T )X(t)

)
dt−B(t, T )ᵀD(t, T )dX(t)

+ 1
2B(t, T )B(t, T )ᵀD(t, T )(dX(t))2 (6.9)

=
(
∂A

∂t
(t, T )− ∂Bᵀ

∂t
(t, T )X(t)

)
dt

−B(t, T )ᵀD(t, T )
(

(Ψ(Θ−X(t)))dt+ Σ
√
V (t)dWQ(t)

)
+ 1

2B(t, T )B(t, T )ᵀD(t, T )ΣV (t)Σᵀdt (6.10)

=
((

∂A

∂t
(t, T )− ∂Bᵀ

∂t
(t, T )X(t)

)

−B(t, T )ᵀ (Ψ(Θ−X(t))) + 1
2ΣV (t)Σᵀ

)
D(t, T )dt

−B(t, T )ᵀD(t, T )Σ
√
V (t)dWQ(t). (6.11)

Assuming no arbitrage, we know the drift from Section 4.3 (especially equation (4.37) on page
34) and can thus obtain the simple dynamics:

dD(t, T ) = r(t)D(t, T )dt−B(t, T )ᵀD(t, T )Σ
√
V (t)dWQ(t) (6.12)

We can observe that the volatility term is negative so that the dynamics are consistent with the
fact that ZCB prices should diminish when interest rates rise.

6.2.4 The Characteristic Function

We remind ourselves that the (conditional) characteristic function given by equation (5.17) on
page 45 in terms of X(T ) can by stated as

φX(v, t, T ) = E
[
exp (ivX(T ))

∣∣∣∣ F(t)
]
. (6.13)

Duffie et al. (2000) then show that when assuming an affine framework as described in the above
section, the characteristic function is also given on exponential affine form where the terms in
the affine exponent are given as the solution to a set of complex ODEs. This result is of utmost

where q0(x) 6= 0 and q2(x) 6= 0.
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importance since it is a cornerstone in the swaption pricing framework given in Pelsser and
Schrager (2006).

Proposition 6.2. Assume an affine framework described according to Definition 6.1.
The characteristic function of the random variable X is then given as

φX(v, t, T ) = exp
(
γ(t) + δ(t) ·X(t)

)
where δ(t) and γ(t) are given as the solution to the following set of complex ODEs

dδ(t)
dt

= Ψᵀδ(t)− 1
2

N∑
i=1

[Σᵀδ(t)]2i βi,

dγ(t)
dt

= −ΘᵀΨδ(t)− 1
2

N∑
i=1

[Σᵀδ(t)]2i αi,

with the terminal conditions

δ(T ) = iv,
γ(T ) = 0.

Proof. We will only provide a brief sketch of the proof–see Duffie et al. (2000) for a rigorous
version. The idea is to assume that the solution is correct and then show that this is the case
when the two ODEs are fulfilled.

The characteristic function is by equation (6.13) given as

φX(v, t, T ) = E
[
exp (ivX(T ))

∣∣∣∣ F(t)
]

so that

φX(v, T, T ) = exp (ivX(T ))

since φ is adapted to F(t). By assuming that

φX(v, t, T ) = exp
(
γ(t) + δ(t) ·X(t)

)
we can derive the dynamics for φX(u, t, T ) by Itô’s Formula. By translating the dynamics into
the corresponding integral equation and evaluating at time T , we then have two expressions for
φX(u, T, T ) that must be equal. It is easily seen that at time T , γ must be zero and δ must be
iu in order to equal the time T value of equation (6.13) and equation (6.14). By using these
terminal conditions, the ODEs can be established.
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Technical comments. First of all, we would like to emphasise that in their original paper Duffie
et al. (2000) include jumps in their specification of X(t) which gives each of the ODEs an extra
term. Secondly, they use a discounted characteristic function which again results in each of their
ODEs having an extra term. Thirdly, Duffie et al. (2000) have not specified a covariance matrix
Σ and are using a matrix notation that gives their ODEs a slightly different look. Finally, the
result stated in Pelsser and Schrager (2006) accidently lacks some signs8 which (along with our
other arguments) might confuse a reader trying to compare the different settings.

6.2.5 The One-Factor CIR model

One of the most popular affine one-factor models is the CIR model named after Cox et al. (1985).
In the original paper, Cox, Ingersroll, and Ross assume that the short rate follows a square root
process so that

dr(t) = ψ(θ − r(t))dt+ σ
√
r(t)dWQ(t). (6.14)

Thus, compared with the generic affine framework we have the two simple relationships

X(t) = r(t) = V (t), (6.15)

which implies that ω0 = 0, ωX = 1, α1 = 0 and β1 = 1. The CIR model for the short rate exhibits
means reversion around a long term level θ–just as the classic model by Vasicek (1977)9.

One of the obvious benefits of the CIR-model is that the square root factor
√
r(t) guarantees

that the short rate stays non-negative which is contrary to the Vasicek model. It can be shown
that if 2θ ≥ σ2, the positive drift at low values of the process is so big in relation to the volatility
that the process cannot reach zero and thus stays strictly positive. Another implication of the
CIR model concerns the future distribution of interest rates. Given the interest rate at time t,
the future value of the interest rate is non-central χ2-distributed10. This makes the distribution
more complex than in the Vasicek case where the corresponding distribution simply is Gaussian.
One could say that the non-negative interest rates in the CIR model come at a cost of simplicity
in the interest rate distribution.

As mentioned in the previous subsection, the CIR (and Vasicek) model implies that the ODEs
8Pelsser and Schrager (2006) have stated a minus too much in their first terminal condition regarding δ(T ).

Furthermore, their second ODE regarding γ(t) lacks a minus in the very beginning.
9In the one-factor Vasicek model the short rate is assumed following an Ornstein-Uhlenbeck process:

dr(t) = ψ(θ − r(t))dt+ σdWQ(t)

10The χ2-distribution with a degrees of freedom and non-centrality parameter b has the density

fχ2(a,b) =
∞∑
i=0

exp
(
−b
2

)
b
2
i ( 1

2

)i+ a
2

i!Γ
(
i+ a

2

) yi−1+ a
2 exp

(
−y2

)
where Γ denotes the so-called Gamma-function defined as

Γ(m) =
∫ ∞

0
xm−1 exp(−x)dx.
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given by (6.6) and (6.7), with the afore mentioned conditions, have explicit solutions. For a
one-factor CIR model the solutions are

A(t, T ) = 2ψθ
σ2

(
log(2ξ) + 1

2(ψ + ξ)(T − t)− log((ξ + ψ)(exp(ξ(T − t))− 1) + 2ξ)
)

(6.16)

B(t, T ) = 2(exp(ξ(T − t))− 1)
(ξ + ψ)(exp(ξ(T − t))− 1) + 2ξ (6.17)

where ξ =
√
ψ2 + 2σ2.

The solutions might look complex, but they are actually very easy to implement since the spec-
ification parameters under the Q-measure can by plugged directly into the solution. The CIR
model will constitute our model foundation in our empirical investigations.
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Chapter 7

Pricing Counterparty Credit Risk

In the previous chapters of Part II we have neglected the fact that a given counterparty might
default and thus fail to pay his obligations. This risk will now be incorporated in our framework.
As we argued in the beginning of this thesis paper, counterparty credit risk has become increas-
ingly important in recent years and should thus be taken into account. In this chapter we will
examine our choice of handling counterparty credit risk; to price it!

We place ourselves in the position of an assumed default-free counterparty, entering some fi-
nancial contract with another counterparty who has some positive probability of default before
the contract reaches maturity. Thus, we neglect our own default risk, because if we default then
we are out of the game anyway. This sort of setup is referred to as the unilateral case since only
one of the two counterparties is assumed defaultable1. We assume absence of any form of collat-
eral. If the contract implies a positive probability of an event in which the second counterparty
must deliver some positive cash flow to the first counterparty, then it makes sense that the value
of being at the first counterparty’s side of the contract should be smaller than the value of being
in a similar contract with a default-free counterparty.

We have two objectives. The first one is to derive a generic formula which states the price of
any contract which is subject to counterparty credit risk. As we will see, the value of the risky
contract is the difference between the value of the risk-free contract and some component. Since
this component is indeed the difference between the risk-free and the risky contract, it is intuitive
to think of this component as a measure of counterparty credit risk. Hence, the component has
been given the name CVA–the Credit Value Adjustment.

The second objective is to use the generic formula on our choice of contract which is an in-
terest rate swap. Using the properties of such a contract enables us to reform the pricing formula
to a more tangible version. As we will see, the CVA of a swap equals a sum of swaption prices,
each multiplied by the probability of a default in the time span of the swaption in question.

7.1 Pricing of a Credit Risky Contract in the General Case
Let us turn to the general pricing expression. Our derivation and presentation of the formula
falls somewhere between Gregory (2010) and Brigo and Masetti (2005). The latter were the first
to give a rigorous proof for the generic unilateral pricing formula.

1As mentioned in Chapter 1, a more complex setup would be the bilateral one.
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7.1. Pricing of a Credit Risky Contract in the General Case Pricing Counterparty Credit Risk

Let us begin by denoting the price of a ZCB initiated at time t with maturity at time T by D(t, T )
as usual. We will denote the time of maturity of the contract by T and the default-time of the (sec-
ondary) counterparty by τ . At time t we will denote the value of the risk-free claim by π(t, T ) and
the value of the corresponding risky claim by π̃(t, T ). Note that π and π̃ are values, which means
that they consist of a sum of cashflows and discountings, e.g. π(t, T ) =

∑
i∈[t;T ]D(t, i)CF (i),

where CF (i) denotes the cashflow at time i which can be either positive or negative. One could
say that π(t, T ) is the Net Present Value (NPV) of future cashflows. The recovery size, which is
defined as the (assumed constant) fraction of the risk-free contract value which is payed in case
of default, is denoted R. We let π(t, T )+ = max

(
π(t, T ), 0

)
and π(t, T )− = min

(
π(t, T ), 0

)
.

Now, if τ > T there is no default in the time span of the contract and the second part of
the contract will meet its obligations. On the other hand, if τ < T , the second counterparty will
not meet (all of) its obligations and a default occurs. With this in mind, the following proposition
should make sense.

Proposition 7.1. At valuation time t, and provided that the counterparty has not defaulted
before time t, the price of a contract under counterparty credit risk is

π̃(t, T ) = π(t, T )− (1−R)EQ
[
1{t<τ≤T}D(t, τ)π(τ, T )+

∣∣∣∣ F(t)
]

where π(τ, T )+ denotes the value of the at time τ remaining positive cashflows.

Proof. Since the no-arbitrage price of a contract can be written as the expectation (under the
risk-neutral measure) of the discounted future cashflows, the price can be written as the following:

π̃(t, T ) = EQ
[
1{τ>T}π(t, T )+1{τ≤T}π(t, τ)+1{τ≤T}D(t, τ)

(
Rπ(τ, T )+ + π(τ, T )−

) ∣∣∣∣ F(t)
]

(7.1)

The first term is trivial since the value is π(t, T ) when there is no default before maturity. The
second part is equal to the cashflows paid up to the default time. The third part catches the
fact that at time τ we receive only a fraction R of our expected positive cashflows, but that
we still have to pay the full amount of our expected negative cashflows. Using the fact that
π(·)− = π(·)− π(·)+, and rearranging the parts, we obtain:

π̃(t, T ) = EQ
[
1{τ>T}π(t, T ) + 1{τ≤T}π(t, τ) + 1{τ≤T}D(t, τ)

(
(R− 1)π(τ, T )+ + π(τ, T )

) ∣∣∣∣ F(t)
]

= EQ
[
1{τ>T}π(t, T ) + 1{τ≤T}

(
π(t, τ) +D(t, τ)π(τ, T )

)
+ 1{τ≤T}D(t, τ)(R− 1)π(τ, T )+

∣∣∣∣ F(t)
]

(7.2)

Since

EQ
[
1{τ≤T}π(t, τ) + 1{τ≤T}D(t, τ)π(τ, T )

∣∣∣∣ F(t)
]

= EQ
[
1{τ≤T}π(t, T )

∣∣∣∣ F(t)
]

(7.3)
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we can again rearrange so that we get:

π̃(t, T ) = EQ
[
1{τ>T}π(t, T ) + 1{τ≤T}π(t, T ) + 1{τ≤T}D(t, τ)

(
(R− 1)π(τ, T )+

) ∣∣∣∣ F(t)
]

(7.4)

Finally, using that 1{τ>T}π(t, T )+1{τ≤T}π(t, T ) = π(t, T ), that π(t, T ) is F(t)-measureable, that
R is assumed constant and changing sign inside and outside the third term, we obtain the result:

π̃(t, T ) = π(t, T )− (1−R)EQ
[
1{t<τ≤T}D(t, τ)π(τ, T )+

∣∣∣∣ F(t)
]

(7.5)

The proposition shows the relationship between the risky and risk-free contract price which is
indeed the CVA. This CVA is also called the Expected Loss (EL) since it measures the expected
loss taking the probability of default into account. Considering the formula, the risky and risk-free
prices are equal in case of zero chance of default before maturity which seems natural. Note that
under the assumption of independence between default probability and interest rates we obtain

π̃(t, T ) = π(t, T )− (1−R)Q(t < τ ≤ T )EQ
[
D(t, τ)π(τ, T )+

∣∣∣∣ F(t)
]
, (7.6)

since the expectation to an indicator is the probability of the event associated with the indicator.

The character of the CVA is interesting since it has an option-like expression. Because of the
factor

(
π(τ, T )

)+
, the CVA can be seen as a European call option with zero strike written on the

residual NPV of future cashflows. Counterparty risk thus adds an optionality level to the original
payoff, which can complicate the pricing significantly since we now have to price an option on the
future cashflows. Option pricing usually requires a model which might be in contrast to the tra-
ditional pricing of the contract in question. This is the case for e.g. interest rate swaps, forwards,
futures and possibly CDSs2 since the risk-free pricing of such contracts usually do not require
a model. But as we have now shown, the risky price does always require a model. In theory,
the pricing of a risk free swap is model-independent, when assuming that the present forward
rates are the true future interest rates, but interest rate option pricing is not model-independent.
Specifically, one has to specify the interest rate dynamics in order to either simulate or achieve
some sort of (maybe semi-) analytical solution to the expectation.

Finally, we must note that while we have argued that the CVA mathematically is equal to the
price of an option, the similarity only holds in quantitative terms. Reason being, that a true call
option is an instrument in which the owner has the right, but not an obligation, to buy a certain
asset. This is, of course, in contrast to the CVA which does not resemble a right in any way.
Hence, the CVA is not an option, but the pricing is.

7.2 Pricing a credit risky interest rate swap
We will now derive and describe the price of a risky swap. Our inspiration is mainly Brigo and
Masetti (2005). Consider a contract where we enter a payer (receiver) swap with a risky counter-
party. This means that at times Ta+1, . . . , Tb we pay (receive) a fixed rate K and receive (pay)

2As we will see later on, the price of a CDS can be obtained without specifying a model for the default
probabilities. This will however infer some assumptions regarding observed CDS quotes.
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the floating rate L, which would typically be some xIBOR rate. We take a unit notional on the
swap and denote the year-fraction between time Ti−1 and Ti by ∆i.

According to Proposition 7.1 we can write the value of a risky swap as

π̃(t;Ta, Tb) = π(t;Ta, Tb)− CVA(t). (7.7)

We can then show that the following proposition holds.

Proposition 7.2. At valuation time t, provided that the counterparty has not defaulted
before time t and assuming independence between τ and interest rates, the value of the CVA
for an interest rate swap is

CVA(t) = (1−R)
∫ Tb

Ta
πswaption

(
t; s, Tb,K, ys,b(t)

)
qt(s)ds

where πswaption
(
t; s, Tb,K, ys,b(t)

)
is the price at time t of a swaption with maturity s, under-

lying forward swap rate ys,b(t) which is defined from equation (3.14) on page 16, final maturity
of the underlying swap Tb and a strike K = ya,b(t) so that the strike corresponds to the fixed
rate that renders the swap value zero. qt(s) denotes the time t density of τ and the swaption
type (payer/receiver) corresponds to the swap in question.

Comments. Note immediately, that the integral varies by s over the time span of the swap [Ta;Tb].
This means that there is an infinite number of swaptions to be calculated–one for each swaption
maturity s.

Proof. Given that we are considering a swap with the above specifications, we use Proposition
7.1 to argue as follows.

CVA(t) = (1−R)EQ
[
1{τ≤Tb}D(t, τ)π(τ, Tb)+

∣∣∣∣ F(t)
]

(7.8)

= (1−R)EQ
[∫ Tb

Ta
qt(s)D(t, s)π(s, Tb)+ds

∣∣∣∣ F(t)
]

(7.9)

= (1−R)
∫ Tb

Ta
EQ

[
qt(s)D(t, s)π(s, Tb)+

∣∣∣∣ F(t)
]
ds (7.10)

= (1−R)
∫ Tb

Ta
qt(s)EQ

[
D(t, s)π(s, Tb)+

∣∣∣∣ F(t)
]
ds (7.11)

= (1−R)
∫ Tb

Ta
πswaption

(
t; s, Tb,K, ys,b(t)

)
qt(s)ds (7.12)

In equation (7.10) we have used Fubini’s rule to change the integration order, and in equation
(7.11) we have used the assumed independence between τ and interest rates. To obtain equation
(7.12), we have used that π(s, Tb) can be characterized as the discounted cashflows in a forward
starting swap, starting at time s with maturity Tb, where the fixed rate is fixed at time t. Hence,
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the time t risk-neutral expectation of the time t discounted value of π(s, Tb)+ can be regarded as
a swaption with maturity s and a strike which equals the forward swap rate ya,b(t).

To use the proposition in its current form is, of course, very difficult without making an approx-
imation so that only a finite number of swaption prices has to be calculated. In the following we
will derive an expression which alters the integral into a sum, given some basic assumptions.

Assume that default can only occur at the same time as swap payments, i.e. at time Ta+1, . . . , Tb.
We then choose3 to postpone the time default, so that τ is re-defined as

τ ≡ inf{Ti : Ti ≥ τ, i ∈ Z}. (7.13)

The proposition can then be approximated as

CVA(t) = (1−R)
b−1∑
i=a+1

πswaption
(
t;Ti, Tb,K, yi,b(t)

)
Q
(
τ ∈]Ti−1, Ti]

)
(7.14)

= (1−R)
b−1∑
i=a+1

πswaption
(
t;Ti, Tb,K, yi,b(t)

)(
Q
(
τ > Ti−1|F(t)

)
−Q

(
τ > Ti|F(t)

))
.

(7.15)

This is the CVA formula which we will use in order to price risky swaps. Basically it requires us
to do two things:

1. Calculate b− a− 1 swaption prices with the relevant maturities and relevant swap rates.

2. Calculate the survival probabilities Q
(
τ > Ti|F(t)

)
for i = a+ 1, . . . , b.

It is clear from these statements that the process of determining the "true" (risky) swap price
is rather complicated compared to calculating the risk free price. Not only do we have to do
a significantly larger amount of calculations, but we also have to specify at least one model;
the model for swaption pricing. However, in many cases one would also choose to specify a
default model since not doing so restricts availability (and probably also the quality) of default
probabilities. As we will argue in Chapter 9, the model-independent framework only allows for
an inversion of a generic CDS pricing formula, so that each observed CDS quote can be inverted
into a corresponding default probability. Assessing default probabilities in between maturities of
observed CDS premia would then require some sort of interpolation scheme.

3This is a choice since we could just as well push τ in the opposite direction, i.e. we could anticipate τ . According
to Brigo and Masetti (2005), there is no notable difference between the use of postponement or anticipation.
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Chapter 8

Pricing Swaptions in an Affine
Framework

8.1 Introduction
The pricing of swaptions depends on the modeling of the term structure of interest rates, since
swaptions are options on swaps where the underlying swap rate is interest rate dependent. So
far we have established swaption pricing formulas where the price of a swaption was expressed
in terms of the swap rate under the associated swap measure. This was shown in Subsection
4.4.1. Based on this discovery, we were able to derive a semi-analytical pricing formula using
Fourier inversion techniques in Subsection 5.3.1 where the price of swaptions were tied to the
CCF of the swap rate dynamics. Now, in order to apply the semi-analytical pricing formula to
price swaptions, we have to specify the term structure of interest rates. A well known and often
used method of pricing swaptions is in the affine term structure framework, which we already
covered in Chapter 6. Papers by Pelsser and Schrager (2006), Munk (1999), Dufresne and Gold-
stein (2002), and Singleton and Umantsev (2002b) all propose swaption pricing in Affine Term
Structure Models (ATSM).

Singleton and Umantsev (2002b) propose a method in which they approximate the optimal ex-
ercise boundary for coupon-bearing securities with straight line segments that closely match the
part of the boundary where the density of the affine state process in concentrated. By this ap-
proximation, the exercise probability of the swaption is reduced, and the exercise probabilities
needed for computing the swaption price can then be calculated using Fourier inversion methods.

Dufresne and Goldstein (2002) use the fact that a swaption can be viewed as an option on a
coupon bond. This is done since the moments of the coupon bond can be calculated through the
joint moments of the individual ZCBs, which are now in closed form. The probability distribution
of the future coupon bond prices is then estimated using a technique called Edgeworth expansion,
which in turn provides an estimation of the swaption price.

Munk (1999) first generalizes the concept of stochastic duration to multi-factor diffusion models
by defining the stochastic duration of a coupon bond as the time to maturity of the zero-coupon
bond having the same relative volatility as the coupon bond. He then shows that the price of a
European option on a coupon bond, which is equal to a swaption, is approximately proportional
to the price of an option on a ZCB with maturity equal to the stochastic duration of the coupon
bond.
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In this thesis paper we have chosen to follow the approach proposed in Pelsser and Schrager
(2006) where an approximate swaption price is also derived based on ATSM. The idea is to derive
the dynamics of the swap rate and the underlying factors determining the short rate directly
under the swap measure for a general ATSM. Under the swap measure the dynamics of the fac-
tors will have a stochastic drift term and the dynamics of the swap rate will have a stochastic
volatility term. In order to remain in the affine setup, a approximate dynamics is proposed where
the stochastic elements in the drift and volatility term are replaced by their time zero value.
This approximation is justified by assuming that the stochastic elements are low-variance mar-
tingales (LVM) and therefore well approximated by their time zero values. This leaves us with a
time-dependent drift for the factors and a time-dependent volatility for the swap rate, and we can
again represent the dynamics in the affine framework. Now using known results from ATSM, we
can derive a CCF from the approximate swap rate dynamics under the swap measure and then
use Fourier inversion techniques to price swaptions according to the semi-analytical formulas in
Proposition 5.1 on page 49. So, the cardinal idea is that the approximation allows us to write the
swap rate dynamics under the swap measure in affine form, which implies that the CCF of the
swap rate is known in close form. This means that the main task is to derive the dynamics and
then show that the dynamics can in fact be in affine form. According to Pelsser and Schrager
(2006), their method is comparable with the other three papers in terms of computational time
and superior in accuracy compared to Munk (1999).

8.2 Dynamics under the Swap Measure

8.2.1 Deriving the Factor Dynamics

We begin by deriving the dynamics of the underlying factors under the swap measure. As men-
tioned, we do this in a general ATSM setup. We place ourselves under the risk neutral measure
and consider an N factor ATSM where the instantaneous short rate r(t) is modeled as an affine
function of N unobservable factors X(t) = (X1(t), . . . , XN (t)). According to Section 6.1, this
implies that the short rate follows the diffusion process

r(t) = ω0 +
N∑
i=1

ωiXi(t) = ω0 + ωᵀ
XX(t), (8.1)

where ω0 is scalar, ωX is an N -dimensional vector, and the N -dimensional vector of factors evolves
according to the diffusion

dX(t) = Ψ(Θ−X(t))dt+ Σ
√
V (t)dWQ(t). (8.2)

Here WQ(t) is an N -dimensional Brownian motion, Ψ and Σ are N × N matrices, Θ is an N -
dimensional vector, and the matrix V (t) is defined as

V (t) = diag(α+ βX(t)) =


α1 + βᵀ1X(t) 0 . . . 0

0 α2 + βᵀ2X(t) . . . 0
... 0 . . . 0
0 0 . . . αN + βᵀNX(t)

 (8.3)

where β is an N ×N matrix and α is an N -dimensional vector. Again, we assume that M(t) =
exp(

∫ t
0 r(s)ds) denotes the money market account and D(t, T ) denotes the the time t value of
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a ZCB maturing at time T. Hence, the price of a ZCB is given by D(t, T ) = exp(A(t, T ) −
B(t, T )ᵀX(t)) where A and B are the solutions to two ordinary differential equations. Then,
according to Subsection 6.2.3, the dynamics of the ZCB under the risk-neutral measure is given
by

dD(t, T ) = r(t)D(t, T )dt−B(t, T )ᵀD(t, T )Σ
√
V (t)dWQ(t). (8.4)

The goal is to derive the dynamics under the swap measure Qn+1,N . Therefore we need to derive
the Girsanov Kernel ϕ for the transition from Q to Qn+1,N . In Subsection 4.4.1 we showed
that the money market account relative to the annutity factor is a Qn+1,N -martingale and that in
general all asset price processes relative to the annuity factor are Qn+1,N -martingales. This means
that if we can derive the dynamics of M(t)

Pn+1,N (t) under the Q-measure, we can use the Girsanov
Theorem along with the fact that M(t)

Pn+1,N (t) is a Qn+1,N -martingale, to determine the Girsanov
Kernel. Since

M(t)
Pn+1,N (t) = 1

Pn+1,N (t)
M(t)

, (8.5)

by Ito’s formula we have that

d

(
M(t)

Pn+1,N (t)

)
= − 1(

Pn+1,N (t)
M(t)

)2d

(
Pn+1,N (t)
M(t)

)
+ 1(

Pn+1,N (t)
M(t)

)3

(
d

(
Pn+1,N (t)
M(t)

))2
. (8.6)

In order to calculate (8.6), we begin by deriving the dynamics of Pn+1,N (t)
M(t) . Since dPn+1,N (t) =∑N

i=n+1 ∆dD(t, Ti) and d
(

1
M(t)

)
= −r(t) 1

M(t)dt and by an application of Ito’s product rule we
can show that1

d

(
Pn+1,N (t)
M(t)

)
= −

N∑
i=n+1

(
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t)

)
Pn+1,N (t)
M(t) dWQ(t), (8.7)

1Derivation can be found in Appendix B.
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which also proves the already known fact that Pn+1,N (t)
M(t) is a Q-martingale. Now, plugging (8.7)

into (8.6) yields2

d

(
M(t)

Pn+1,N (t)

)
= 1(

Pn+1,N (t)
M(t)

)2

N∑
i=n+1

(
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t)

)
Pn+1,N (t)
M(t) dWQ(t)

+ 1(
Pn+1,N (t)
M(t)

)3

 N∑
i=n+1

∆B(t, Ti)ᵀ
D(t, Ti)
Pn+1,N (t)Σ

√
V (t)

2 (
Pn+1,N (t)
M(t)

)2
dt (8.8)

= M(t)
Pn+1,N (t)

(
N∑

i=n+1
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t)dWQ(t)

+

 N∑
i=n+1

∆B(t, Ti)ᵀ
D(t, Ti)
Pn+1,N (t)Σ

√
V (t)

2

dt

)
(8.9)

= M(t)
Pn+1,N (t)

N∑
i=n+1

∆B(t, Ti)ᵀ
D(t, Ti)
Pn+1,N (t)Σ

√
V (t)

(
dWQ(t)

+
N∑

i=n+1
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t)dt

)
(8.10)

=
N∑

i=n+1

(
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t)

)
M(t)

Pn+1,N (t)dW
Qn+1,N (t), (8.11)

where we in the last equality have used the Girsanov Theorem such that

dWQn+1,N (t) = dWQ(t) +
N∑

i=n+1
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t)dt. (8.12)

Hence, the Girsanov Kernel ϕ for the transition from Q to Qn+1,N is given by

ϕ(t) =
N∑

i=n+1
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t). (8.13)

This implies that the dynamics for the N unobservable factors under the Qn+1,N -measure are
given by

dX(t) = Ψ(Θ−X(t))dt+ Σ
√
V (t)

dWQn+1,N (t)−
N∑

i=n+1
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t)dt


(8.14)

=

Ψ(Θ−X(t))− ΣV (t)Σᵀ

 N∑
i=n+1

∆B(t, Ti)
D(t, Ti)
Pn+1,N (t)

 dt+ Σ
√
V (t)dWQn+1,N (t)

(8.15)

2The result of our derivation differs slightly compared to that in Pelsser and Schrager (2006), where they end
up with a negative volatility term in (8.11).
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Note that the presence of D(t,Ti)
Pn+1,N (t) for i = n + 1, . . . , N in (8.13) makes the Girsanov Kernel

stochastic, since ZCBs prices in this setup are stochastic processes. This in turn makes the drift
term in the factor dynamics stochastic. Hence, changing measures from Q to Qn+1,N implies a
stochastic drift term for the factors due to the randomness in the Girsanov Kernel.

8.2.2 Deriving the Swap Dynamics

We now turn to the task of deriving the swap rate dynamics under the swap measure. Given the
affine specification of the short rate dynamics, the swap rate can be expressed as

yn,N (t) = D(t, Tn)−D(t, TN )
Pn+1,N (t) (8.16)

= exp(A(t, Tn)−B(t, Tn)ᵀX(t))− exp(A(t, TN )−B(t, TN )ᵀX(t))∑N
i=n+1 ∆ exp(A(t, Ti)−B(t, Ti)ᵀX(t))

(8.17)

≡ f(X(t), t) (8.18)

Since the swap rate is a Qn+1,N -martingale, its Qn+1,N -dynamics must be ”drift-less” and contain
no dt-terms. Thus, by Itô’s formula

dyn,N (t) = ∂f(X(t), t)
∂X(t) X(t) (8.19)

=
(

(−B(t, Tn)ᵀD(t, Tn) +B(t, TN )ᵀD(t, TN ))Pn+1,N (t)
P 2
n+1,N (t)

−
(D(t, Tn)−D(t, TN ))

(
−
∑N
i=n+1 ∆B(t, Ti)ᵀD(t, Ti)

)
P 2
n+1,N (t)

)
X(t) (8.20)

=
(
−B(t, Tn)ᵀ D(t, Tn)

Pn+1,N (t) +B(t, TN )ᵀ D(t, TN )
Pn+1,N (t)

+ yn,N (t)
N∑

i=n+1
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)

)
Σ
√
V (t)dWQn+1,N (t). (8.21)

If we define qyn(t) = − D(t,Tn)
Pn+1,N (t) , q

y
N (t) = (1 + ∆yn,N (t)) D(t,TN )

Pn+1,N (t) and qyi (t) = ∆yn,N (t) D(t,Ti)
Pn+1,N (t)

for i = n+ 1, . . . , N − 1, we can reduce (8.21) to

dyn,N (t) =
(

N∑
i=n

qyi (t)B(t, Ti)ᵀ
)

Σ
√
V (t)dWQn+1,N (t) (8.22)

which confirms that the swap rate is a Qn+1,N -martingale, since it only consists of a volatility
term. As with the factor dynamics, we see that the volatility in (8.22) also contains the stochastic
term D(t,Ti)

Pn+1,N (t) .

8.2.3 Approximation of Dynamics

Next step is to approximate the dynamics in (8.15) and (8.22) in order to express the dynam-
ics on affine form under the swap-measure. In Pelsser and Schrager (2006) an approximation is
proposed where the term D(t,Ti)

Pn+1,N (t) is replaced by its time zero value D(0,Ti)
Pn+1,N (0) . This substitution

makes the Girsanov Kernel deterministic and implies an affine time dependent drift term for the
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approximate factor dynamics and an affine time dependent volatility term for the approximate
swap rate dynamics. According to Pelsser and Schrager (2006) this approximation is justified
since the term D(t,Ti)

Pn+1,N (t) for i = n+ 1, . . . , N is considered to be a LVM. First, since asset prices
normalised by the annuity factor are martingales under the swap measure, we know that D(t,Ti)

Pn+1,N (t)

is a Qn+1,N -martingale. Second, Pelsser and Schrager (2006) claim that D(t,Ti)
Pn+1,N (t) has low vari-

ance. This means that the probability of D(t,Ti)
Pn+1,N (t) deviating from its mean value is ”small”.

Given this low variance assumption, these martingales can be approximated by their expectation,
specifically their time zero values. This approximation is the key element in the model proposed
in Pelsser and Schrager (2006) and is inspired by the method in Brace et al. (2001). In the latter
article it is shown that in the log-normal version of The Libor Market Model the swap rate can
be approximated by log-normal martingales by substituting terms similar to D(t,Ti)

Pn+1,N (t) with their
time zero values.

So, we will approximate the random term D(t,Ti)
Pn+1,N (t) by its conditional expected value under the

swap measure, D(0,Ti)
Pn+1,N (0) . Hence, by substituting D(0,Ti)

Pn+1,N (0) for D(t,Ti)
Pn+1,N (t) in (8.15) and qi(0) for qi(t)

in (8.22) we obtain the following approximate Qn+1,N -dynamics,

dyn,N (t) =
(

N∑
i=n

qyi (0)B(t, Ti)ᵀ
)

Σ
√
V (t)dWQn+1,N (t), (8.23)

dX(t) =

Ψ(Θ−X(t))− ΣV (t)Σᵀ

 N∑
i=n+1

∆B(t, Ti)
D(0, Ti)
Pn+1,N (0)

 dt+ Σ
√
V (t)dWQn+1,N (t).

(8.24)

Thus, given the LVM assumption, the approximations under the swap measure result in an affine
model with time-dependent coefficients for the factor dynamics and the swap rate dynamics.

If we consider the swap rate as a pseudo factor along with the other N unobservable factors,
we can express the swaption prices in (4.76) and (4.77) on page 40 as a linear combination of
the factors minus the strike. Letting X̃(t) denote the N + 1-dimensional vector of factors, i.e.
X̃(t) = (yn,N (t) Xᵀ(t))ᵀ, and e1, the first N + 1-dimensional basis vector, i.e. e1 = (1 0 . . . 0)ᵀ,
we can express the swaption prices as

πPS(0) = Pn+1,N (0)EQn+1,N [(eᵀ1X̃(t)−K)+
]

= Pn+1,N (0)EQn+1,N [(yn,N (t)−K)+
]
, (8.25)

πRS(0) = Pn+1,N (0)EQn+1,N [(K − eᵀ1X̃(t))+
]

= Pn+1,N (0)EQn+1,N [(K − yn,N (t))+
]
. (8.26)

Hence, a swaption can be viewed as an option on the first factor of the affine model specified
by (8.23) and (8.24) and we can therefore use results related to ATSM when pricing swaptions.
Specifically, the result concerning a closed form solution for the CCF in an affine setup can now
be applied. However, first we need to state the joint dynamics of (8.23) and (8.24), X̃(t), on
affine form.
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8.3 The Approximative Dynamics on Affine Form
The goal is to write the dynamics of X̃(t) on affine form. To do this, we define the following two
N -dimensional vectors,

w(t) =

 N∑
i=n+1

∆B(t, Ti)
D(0, Ti)
Pn+1,N (0)

 , (8.27)

k(t) =
(

N∑
i=n

qyi (0)B(t, Ti)
)
. (8.28)

We denote the N -dimensional identity matrix IN 3. Now, following Pelsser and Schrager (2006),
the dynamics of X̃(t) can be written on affine form as

dX̃(t) =
([

0
ΨΘ− Σdiag(α)Σᵀw(t)

]
+
[

0
−ΨX(t)− Σdiag(βX(t))Σᵀw(t)

])
dt

+
[
k(t)ᵀ
IN

]
Σ
√
V (t)dWQn+1,N (t) (8.29)

= Ψ̃(t)(Θ̃(t)− X̃(t))dt+ Σ̃(t)
√
Ṽ (t)dWQn+1,N (t), (8.30)

where
[
k(t)ᵀ
IN

]
is (N + 1 × N)-matrix, and Σdiag(α)Σᵀw(t) and Σdiag(βX(t))Σᵀw(t) are N -

dimensional vectors.

Besides, from the fact that the dimensions of the parameters increase to N + 1, it is not quite
evident how Ψ̃, Θ̃, Σ̃ and Ṽ are defined when we go from (8.29) to (8.30)4. So before we can
continue to develop the swaption pricing setup, we must first specify each new time-dependent
parameter in (8.30). First, we start by determining the drift term in (8.29). From (8.29) and
(8.30) we can conclude that

Ψ̃(t)Θ̃(t) =
[

0
ΨΘ− Σdiag(α)Σᵀw(t)

]
(8.31)

and

Ψ̃(t)X̃(t) =
[

0
ΨX(t) + Σdiag(βX(t))Σᵀw(t)

]
. (8.32)

3The Identity matrix is defined as

IN =

 eᵀ1
...
eᵀN

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

4This is not even specified in Pelsser and Schrager (2006).
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We focus on (8.32) and specify a single entry in the Σdiag(βX(t))Σᵀw(t) vector in order to isolate
X(t) from the expression:

(
Σdiag(βX(t))Σᵀw(t)

)
i

=
N∑
j=1

N∑
k=1

Σik

N∑
l=1

diag(βX(t))klΣᵀ
ljw(t)j (8.33)

=
N∑
j=1

N∑
k=1

Σikdiag(βX(t))kkΣᵀ
kjw(t)j (8.34)

=
N∑
j=1

N∑
k=1

Σikβ
ᵀ
kX(t)Σjkw(t)j (8.35)

=

 N∑
j=1

N∑
k=1

ΣikΣjkw(t)jβᵀk

X(t) (8.36)

≡ Γᵀ
i (t)X(t) (8.37)

where Γi is an N -dimensional vector. Hence, we define the matrix

Γ(t) =

 Γᵀ
1(t)
...

Γᵀ
N (t)

 =


∑N
j=1

∑N
k=1 Σ1kΣjkw(t)jβᵀk

...∑N
j=1

∑N
k=1 ΣNkΣjkw(t)jβᵀk

 . (8.38)

Now, defining the entries in Ψ as Ψ = (Ψ1 . . .ΨN )ᵀ where Ψᵀ
i = (Ψi1 . . .ΨiN ), we can conclude

that in order for (8.32) to hold, we must have that

Ψ̃(t) =
(

0 0
0 Γ(t) + Ψ

)
, (8.39)

where Ψ̃(t) is an (N + 1×N + 1) matrix.

Turning to (8.31), we take the same approach and begin by specifying a single entry in the
Σdiag(α)Σᵀw(t) vector:

(Σdiag(α)Σᵀw(t))i =
N∑
j=1

N∑
k=1

Σik

N∑
l=1

diag(α)klΣᵀ
ljw(t)j (8.40)

=
N∑
j=1

N∑
k=1

Σikdiag(α)kkΣᵀ
kjw(t)j (8.41)

=
N∑
j=1

N∑
k=1

ΣikΣjkw(t)jαk (8.42)

≡ Ωi(t). (8.43)

By letting Ωi(t) denote the ith entry in the N -dimensional vector, such that

Ω(t) =

 Ω1(t)
...

ΩN (t)

 =


∑N
j=1

∑N
k=1 Σ1kΣjkw(t)jαk

...∑N
j=1

∑N
k=1 ΣNkΣjkw(t)jαk

 , (8.44)
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we can establish (8.31) as a system of N + 1 equations with Θ̃(t) as the unknown vector,

Ψ̃(t)Θ̃(t) =
(

0
ΨΘ− Ω(t)

)
⇔
(

0 0
0 Γ(t) + Ψ

)
Θ̃1(t)

...
Θ̃N+1(t)

 =
(

0
ΨΘ− Ω(t)

)
. (8.45)

From (8.45) it is obvious that Θ̃1(t) becomes zero and therefore finding Θ̃2(t) . . . Θ̃N+1(t) is
reduced to solving N equations in the system Γᵀ

1(t) + Ψᵀ
1

...
Γᵀ
N (t) + Ψᵀ

N




Θ̃2(t)
...

Θ̃N+1(t)

 =

 Ψᵀ
1
...

Ψᵀ
N


 Θ1

...
ΘN

−
 Ω1(t)

...
ΩN (t)

 , (8.46)

which can be solved for Θ̃2(t) . . . Θ̃N+1(t) by inverting the matrix Γ(t) + Ψ, given that Γ(t) + Ψ
is nonsingular.

We now turn to specifying the volatility term in (8.30). Note that since the Brownian mo-
tion in (8.30) is (N + 1)-dimensional, the matrixproduct Σ̃(t)Ṽ (t) must be a matrix with (N + 1)
columns. First, let us focus on the covariance matrix. From (8.29) we see that

(
k(t)ᵀ
IN

)
Σ =


k(t)ᵀ
eᵀ1
...
eᵀN

 (σ1 . . . σN ) =


k(t)ᵀσ1 k(t)ᵀσ2 . . . k(t)ᵀσN
eᵀ1σ1 eᵀ1σ2 . . . eᵀ1σN
...

... . . . ...
eᵀNσ1 eᵀNσ2 . . . eᵀNσN

 (8.47)

leaving us with an (N + 1 ×N) matrix. We expand the matrix in (8.47) by a column of zeroes
and define the (N + 1×N + 1) covariance matrix in (8.30) as

Σ̃(t) =


0 k(t)ᵀσ1 k(t)ᵀσ2 . . . k(t)ᵀσN
0 eᵀ1σ1 eᵀ1σ2 . . . eᵀ1σN
...

...
... . . . ...

0 eᵀNσ1 eᵀNσ2 . . . eᵀNσN

 (8.48)

Since the square root operator is defined for squared matrices only, we define Ṽ (t) as

Ṽ (t) = diag(α̃+ β̃X̃(t)) (8.49)

where

β̃ =


β̃ᵀ1
...

β̃ᵀN+1

 and α̃ =

 α̃1
...

α̃N+1

 (8.50)
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so that β̃ᵀi =
(
0 β(i−1)1 . . . β(i−1)N

)
and α̃i = αi−1 for i = 2, . . . , N + 1. Hence, the volatility term

in (8.30) arises from straightforward calculations

Σ̃(t)
√
Ṽ (t) =


0 k(t)ᵀσ1 k(t)ᵀσ2 . . . k(t)ᵀσN
0 eᵀ1σ1 eᵀ1σ2 . . . eᵀ1σN
...

...
... . . . ...

0 eᵀNσ1 eᵀNσ2 . . . eᵀNσN



√
α̃1 + β̃ᵀ1X̃(t) . . . 0

... . . . ...
0 . . .

√
α̃N+1 + β̃ᵀN+1X̃(t)



=


0 k(t)ᵀσ1

√
α̃2 + β̃ᵀ2X̃(t) . . . k(t)ᵀσN

√
α̃N+1 + β̃ᵀN+1X̃(t)

0 eᵀ1σ1

√
α̃2 + β̃ᵀ2X̃(t) . . . eᵀ1σN

√
α̃N+1 + β̃ᵀN+1X̃(t)

...
... . . . ...

0 eᵀNσ1

√
α̃2 + β̃ᵀ2X̃(t) . . . eᵀNσN

√
α̃N+1 + β̃ᵀN+1X̃(t)

 . (8.51)

So, through tedious and rather technical calculations we have specified the parameters in (8.30)
and therefore justified that the joint approximative dynamics of the swap rate and the factors
under the swap measure can be stated in affine form. We can now continue developing the
swaption pricing setup.

8.4 The Swaption Pricing Formula
We have now specified how the approximate factor and swap rate dynamics can be expressed
on affine form under the swap measure. We have also shown that given this affine specification,
we can now express swaptions as options on the first factor of the affine model, in this case the
swap rate, which is implied by the the pricing formulas in (8.25) and (8.26). However, it is not
immediately obvious how the approximate dynamics of the swap rate is distributed and therefore
using (8.25) and (8.26) to derive an analytical formula can turn out to be very complicated, even
impossible.

The goal is therefore to derive a semi-analytical formula, as proposed in Pelsser and Schrager
(2006), using the Fourier inversion setup we presented in Subsection 5.3.1. This implies that we
need to express an CCF for the approximate swap rate. This is where the affine specification
becomes especially useful, since it allows us to use the results for CCFs stated in Proposition 6.2
on page 55. Here we saw that in ATSM the CCF is given on exponential affine form. Thus, we
can express the CCF for the affine dynamics of X̃ as

φX̃(v, t, Tn) = exp(γ(t) + δ(t) · X̃(t)) (8.52)

where γ(t) and δ(t) are solutions to the following set of complex ODEs

dδ(t)
dt

= Ψ̃ᵀ(t)δ(t)− 1
2

N+1∑
i=1

[
Σ̃ᵀ(t)δ(t)

]2
i
β̃i (8.53)

dγ(t)
dt

= −Θ̃ᵀ(t)Ψ̃(t)δ(t)− 1
2

N+1∑
i=1

[
Σ̃ᵀ(t)δ(t)

]2
i
α̃i (8.54)
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with the terminal conditions

δ(Tn) = ive1 (8.55)
γ(Tn) = 0. (8.56)

The presence of the first basis vector e1 ensures that at time Tn we end up with the CCF for just
the swap rate. Notice that δ and γ are of dimensions N +1 and scalar, respectively. The complex
ODEs in (8.53) and (8.54), along with the terminal conditions (8.55) and (8.56), will have to be
solved numerically in most cases. This also applies for the one-factor CIR model which will be
our focal point in our application of the model.

Now given the CCF in (8.52), we have everything needed in order to price both payer and
receiver swaptions according to Proposition 5.1 on page 49. Hence, the time t value of a payer
swaption is given as

πPS(t,K) = exp(−αK)
π

∫ ∞
0
<
[

exp(−iuK)ψP (u, t, Tn)
]
du, (8.57)

ψP (u, t, Tn) = Pn+1,N (t)φX̃(u− iα, t, Tn)
(iu+ α)2 , (8.58)

along with the corresponding receiver swaption

πRS(t,K) = exp(αK)
π

∫ ∞
0
<
[

exp(−iuK)ψR(u, t, Tn)
]
du, (8.59)

ψR(u, t, Tn) = Pn+1,N (t)φX̃(u+ iα, t, Tn)
(iu− α)2 (8.60)

where φX̃ is given by (8.52). These formulas will constitute the foundation in our application of
the swaption pricing model.
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Chapter 9

Deriving Default Probabilities:
Intensity Models

9.1 Concepts of Deriving Default Probabilities
We have already seen that we need the default probabilities for a given firm in order to price a
risky swap with the firm in question as counterparty. Our goal in this chapter is to answer the
following question: ”What is the probability of default for company x in a given time frame?”.
A qualified answer to this question will typically stem from a framework that uses one of the
following approaches/models:

• A so-called structural model that views debt, equity and/or other claims issued by a firm
as contingent claims on the firm’s asset value. The perhaps most popular structural model
is Merton’s (1974), which basically (in analogy to the classic Black-Scholes model) models
the asset value of the firm as a geometric Brownian Motion. Default is then defined as the
first time the process hits zero.

• Historical default frequencies obtained by rating agencies, e.g. Moody’s (2008). Moody’s
frequently publish default probabilities for different entities and time horizons.

• Bootstrapping from observable market data, typically Credit Default Swaps (CDS’s), to
obtain implied default probabilities.

• An intensity model which models the probability of default through some intensity process
(much more on this approach below).

The last two approaches can sometimes be merged in the sense that intensity models can be cal-
ibrated using e.g. CDS data. Both approaches rely on the assumption that default probabilities
are known by the market. That is to say that default probabilities are reflected in the market
price of firm related traded assets. Since e.g. a corporate bond is cheaper than a government
bond, it makes sense that such an asset contains a default component. In fact Longstaff et al.
(2004) show that the spread between such two bonds primarily consists of credit risk1. While we
will derive building blocks for the third and fourth mentioned approach, we will only implement
the last one–the intensity modeling. The reason for this is that while bootstrapping default prob-
abilities is straightforward, the method is restricted to stipulate default probabilities in the time
frame of the given data. Furthermore, in order to justify the results of the implied approach, the
construction of intensity based models is required.

1They also show that the second largest component consists of liquidity risk.
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9.2 The Intensity Models
Our presentation and derivation of intensity models follow Lando (1998) and Lando (2004). We
will begin by defining some basic probabilistic terms and functions, and then focus on the basic
driver of the intensity models; the Cox process. Strictly speaking, intensity models are a frame-
work which, in the most general setting, is not necessarily tied to Cox processes. The loss of
generality is however very small, since Cox processes–as we shall see–describe a broader class of
processes. After the introduction to the framework, we will present some central results that will
afterwards be used to price a risky ZCB and a Credit Default Swap (CDS). The pricing of the
latter is particularly important, since it allows for an inversion of the CDS pricing formula so
that default probabilities may be found implicitly. The chapter will be completed by describing
how an intensity setup works under affine assumptions. Developing the framework further, we
will describe how a one factor CIR model can be used as an intensity driver.

According to our definition of an intensity model, default is defined as the first jump of some
stochastic jump process2. So when in the following section we describe the probability of the
process being zero, it is equivalent to the survival of the firm. Likewise, the probability of the
process being greater than zero is linked to the event of a default.

9.2.1 Survival Functions and Hazard Rates

Let us define time of default as a positive continuous random variable τ . The properties of the
variable are given by the distribution function F and the density function f under the measure
Q. The survival function S is thus given by

S(t) = Q(τ > t) = 1− F (t) = 1−
∫ t

0
f(s)ds.

The hazard rate can then be defined as

h(t) = f(t)
1− F (t) = f(t)

S(t) = −d logS(t)
dt

. (9.1)

Using the first and last part of this expression, the survival function can be derived in terms of
the hazard rate:

h(t) = −d logS(t)
dt

⇔ −h(t)dt = d logS(t)

⇔ logS(t)− logS(0) = −
∫ t

0
h(t)dt

⇔ S(t) = exp
(
−
∫ t

0
h(t)dt

)
(9.2)

Expressions (9.1) and (9.2) do not provide much insight into the interpretation of the hazard rate.
However, using the definition given by equation (9.1) we can show how the hazard rate is linked

2An intensity model could also be used so that a jump defines a shift in rating class. We will however not
incorporate ratings in this thesis paper.
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to conditional probabilities:

P (τ ≤ t+ ∆t|τ > t) = P (τ ≤ t+ ∆t, τ > t)
P (τ > t)

= P (τ ≤ t+ ∆t)− P (τ < t)
P (τ > t)

= 1− P (τ > t+ ∆t)
P (τ > t)

= 1−
exp

(
−
∫ t+∆t

0 h(s)ds
)

exp
(
−
∫ t

0 h(s)ds
)

= 1− exp
(
−
∫ t+∆t

0
h(s)ds+

∫ t

0
h(s)ds

)

= 1− exp
(
−
∫ t+∆t

t
h(s)ds

)
(9.3)

Furthermore, it can be shown that

h(t) = lim
∆t→0

1
∆tP (τ ≤ t+ ∆t|τ > t) (9.4)

which tells us that h(t)∆t is approximately the conditional probability of a default in a small
interval after t, given survival up to (and including) time t. It is thus stated that the hazard rate
is a deterministic function that only depends on the passing of time.

9.2.2 Inhomogeneous Poisson Processes and Cox-Processes

An inhomogeneous Poisson process N is a Poisson process with a deterministic intensity function
l(u), so that the increments are described as

P (N(t)−N(s) = k) =

(∫ t
s l(u)du

)k
k! , k = 0, 1, . . . . (9.5)

Letting the process start in N0 = 0, the probability of no arrivals (equivalent to a survival function
in the given framework) is

P (N(t) = 0) = exp
(
−
∫ t

0
l(u)du

)
. (9.6)

Note the strong and vital comparison to equation (9.2): in the current framework the determin-
istic intensity l(u) is the hazard rate.

A Cox process is a generalization of the inhomogeneous Poisson process where the intensity is a
stochastic process itself. It is important to realize that if we condition on a particular realization
l(·, ω), the Cox process becomes an inhomogeneous Poisson process so that l(·, ω) is the effective
hazard rate. Thus, by letting λ

(
X(s)

)
denote the stochastic intensity at time s, we have that

l(s, ω) = λ
(
X(s)

)
(9.7)
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where X is an Rd-valued stochastic process and λ : Rd → [0,∞[ is a non-negative right-continuous
function. If additionally we assume that λ is integrable, i.e.

Λ(t) ≡
∫ t

0
λ(s)ds <∞ for t ∈ [0,T] (9.8)

then we can formally define a Cox Process as

Ñ(t) ≡ N
(
Λ(t)

)
. (9.9)

The intuition of the state-variable X is that it contains all information regarding the riskiness
of the firm and thus the firm’s probability of default. This could e.g. be credit ratings, market
value, stock prices, interest rates, etc.

We now introduce a unit exponential random variable E1 independent of X. The time of default
can then be defined as

τ = inf
{
t :
∫ t

0
λ
(
X(s)

)
ds ≥ E1

}
. (9.10)

To be precise about X and E1, and to be precise in the remainder of this section, we will fix a
probability space {Ω,F ,P} that supports E1 and X = {X(t) : 0 ≤ t ≤ T} so that X is right-
continuous with left limits. The variable F(t) containing all the information can then be divided
into two sub σ-algebras; G(t) containing information about X, and H(t) containing information
regarding the occurrence of default. Mathematically speaking, the informational setup may be
stated as follows:

G(t) = σ{X(s) : 0 ≤ s ≤ t}
H(t) = σ{1{τ≤s} : 0 ≤ s ≤ t}
F(t) = G(t) ∨H(t) (9.11)

Since the intensity is a function of X, and G(t) stores all the information regarding X, we can
say that the hazard rate is adapted to G(t). If we further assume a risk free spot rate process
r(t), with a corresponding money market account

M(t) = exp
(∫ t

0
r(s)ds

)
, (9.12)

then the price of a risk free ZCB can be expressed as

D(t, T ) = EQ
[
M(t)
M(T )

∣∣∣∣ F(t)
]

= EQ
[
M(t)
M(T )

∣∣∣∣ G(t)
]
. (9.13)

The last equation in the above follows the fact that all market variables (and in particular the
risk free spot rate) are stored in X.

77



9.2. The Intensity Models Deriving Default Probabilities: Intensity Models

9.2.3 Three Pivotal Results

Before we turn our attention to the price implications of choosing an intensity setup, we will
derive three technical results that are central in order to accomplish any true pricing formulas.
The two first Lemmas are of general importance whereas the third is used solely as a building
block in CDS pricing. Note that in the original paper by Lando (1998) a couple of other building
blocks are proposed. In our case however, these are negligible since they are used to price other
types of claims than risky ZCBs and CDS’s3.

The following results all assume a probability space and a Cox process consistent with the above
framework.

Lemma 9.1.

EQ
[
1{τ>T}|G(T )

]
= exp

(
−
∫ T

0
λ
(
X(s)

)
ds

)

Proof.

EQ
[
1{τ>T}|G(T )

]
= Q

(
τ > T |G(T )

)
= Q

(∫ T

0
λ
(
X(s)

)
ds < E1

∣∣∣∣ G(T )
)

(9.14)

= 1−Q
(∫ T

0
λ
(
X(s)

)
ds ≥ E1

∣∣∣∣ G(T )
)

= 1−
(

1− exp
(
−
∫ T

0
λ
(
X(s)

)
ds

))
(9.15)

= exp
(
−
∫ T

0
λ
(
X(s)

)
ds

)

In equation (9.14) we have used equation (9.10) to realise that survival is the probability of λ not
reaching E1. In equation (9.15) we have used that

∫ T
0 λ

(
X(s)

)
ds is known, given G(T ), so that

the probability equals a simple distribution function of E1 in the point
∫ T

0 λ
(
X(s)

)
ds.

Lemma 9.2.

Q(τ > T ) = EQ
[
exp

(
−
∫ T

0
λ
(
X(s)

)
ds

)]

3In particular, Lando also provides results that enable pricing of a continuous stream of payments until default.
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Proof.

Q(τ > T ) = EQ
[
1{τ>T}

]
= EQ

[
EQ

[
1{τ>T}|G(T )

] ]
(9.16)

= EQ
[
exp

(
−
∫ T

0
λ
(
X(s)

)
ds

)]
(9.17)

Getting to equation (9.16), we have used the so called law of iterative expectations4, which states
that if t < t

′ ≤ T , it holds that

E [X(T )|F(t)] = E
[
E
[
X(T )|F(t′)

]
|F(t)

]
, (9.18)

given that X is a F(t)-measurable integrable random variable. The proof is fairly straightforward
and will not be included in this thesis paper. Finally, equation (9.17) holds by using Lemma
9.1.

Note how the two above Lemmas both state the survival probability. The difference simply is that
Lemma 9.1 conditions the probability of the information at time T regarding X, while Lemma
9.2 is purely unconditional.

The next result is different since it is more directly linked to pricing methods. The idea is
to price a cash flow Z(τ) which is payed only at default time, given that default happens before
some final maturity T . The link to CDS pricing should then be obvious since a CDS exactly
pays the investor some amount in case of a (relevant) default before maturity. Z is generally a
stochastic process adapted to X, but for the CDS pricing Z will simply be constant.

Lemma 9.3.

EQ
[
exp

(
−
∫ τ

t
r(s)ds

)
Z(τ)

∣∣∣∣ F(t)
]

= 1{τ>t}EQ
[∫ T

t
Z(s)λ(s) exp

(
−
∫ s

t

(
r(u) + λ(u)

)
du

)
ds

∣∣∣∣ G(t)
]

Proof. From Lemma 9.1 we know that the conditional distribution function for τ is given as

Q
(
τ ≤ s|τ > t,G(t)

)
= 1− exp

(
−
∫ s

t
λ(u)du

)
for s > t. Differentiating, one obtains the conditional density function:

∂

∂s
Q
(
τ ≤ s|τ > t,G(t)

)
= − ∂

∂s
exp

(
−
∫ s

t
λ(u)du

)
= λ(s) exp

(
−
∫ s

t
λ(u)du

)
(9.19)

4The law is also known as the tower rule, the law of total expectation, or the smoothing theorem.
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With the density given by expression (9.19) in mind, we can prove the result:

EQ
[
exp

(
−
∫ τ

t
r(s)ds

)
Z(τ)

∣∣∣∣ F(t)
]

= EQ
[
EQ

[
exp

(
−
∫ τ

t
r(s)ds

)
Z(τ)

∣∣∣∣ G(T ) ∨H(t)
] ∣∣∣∣ F(t)

]
(9.20)

= 1{τ>t}EQ


∫ T

t
exp

(
−
∫ s

t
r(u)du

)
Z(s)︸ ︷︷ ︸

transformation of τ

λ(s) exp
(
−
∫ s

t
λ(u)du

)
ds︸ ︷︷ ︸

density of τ

∣∣∣∣ F(t)

 (9.21)

= 1{τ>t}EQ
[∫ T

t
Z(s)λ(s) exp

(
−
∫ s

t

(
r(u) + λ(u)

)
du

)
ds

∣∣∣∣ F(t)
]

= 1{τ>t}EQ
[∫ T

t
Z(s)λ(s) exp

(
−
∫ s

t

(
r(u) + λ(u)

)
du

)
ds

∣∣∣∣ G(t)
]

(9.22)

In equation (9.20) the law of iterative expectations is used. The inner expectation in equation
(9.20) is conditional by G(T ) which results in r(s), Z(τ) and the density being known. Equation
(9.21) then arises by calculating the inner expectation as a simple transformation of τ and by
”pulling” H(t) out of the expectation as an indicator5. The calculation of the expectation is (as
usual) done by integrating over the product of the transformation and the density function. The
last equation (9.22) holds because everything inside the expectation is driven solely by the state
variable X and is thus independent of H(t).

Note how Lemma 9.3 eliminates the stochastic time of default τ so that the limits in the integral
become deterministic. Note also how the expectation can be interpreted as the risk weighted
expected cash flow discounted by a risk adjusted interest rate, since the risk source (intensity) λ
is used both in and out of the discounting factor.

9.3 Pricing
We will now show how the technical results can be used to obtain true pricing formulas for ZCBs
and CDS’s. Note how the relationship between λ and X deliberately has not been specified
explicitly. This will also be the case in this section, which improves the strength of the pricing
formulas.

9.3.1 Pricing of Zero Coupon Bonds

A good example of pricing in the intensity framework can be shown by pricing a ZCB since this is
the simplest contract possible. We can thus turn our attention to the implications of the chosen
framework.

5See Lando (2004) p. 114-115.
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Proposition 9.1. Assume that no default has occurred before time t and a short rate process
r
(
X(t)

)
such that the price of a ZCB is prescribed as

D(t, T ) = EQ
[
exp

(
−
∫ T

t
r
(
X(s)

)
ds

) ∣∣∣∣ G(t)
]
.

A ZCB with maturity T , zero recovery, promised payment of one, issued by a credit risky firm
which under the Q-measure has an intensity λ

(
X(s)

)
according to the framework described

in Subsection 9.2.2 then has the time t price

D̃(t, T ) = EQ
[
exp

(
−
∫ T

t

(
r
(
X(s)

)
+ λ

(
X(s)

))
ds

) ∣∣∣∣ F(t)
]
.

Proof.

D̃(t, T ) = EQ
[
exp

(
−
∫ T

t
r
(
X(s)

)
ds

)
1{τ>T}

∣∣∣∣ F(t)
]

= EQ
[
EQ

[
exp

(
−
∫ T

t
r
(
X(s)

)
ds

)
1{τ>T}

∣∣∣∣ G(T )
] ∣∣∣∣ F(t)

]

= EQ
[
exp

(
−
∫ T

t
r
(
X(s)

)
ds

)
EQ

[
1{τ>T}

∣∣∣∣ G(T )
] ∣∣∣∣ F(t)

]
(9.23)

= EQ
[
exp

(
−
∫ T

t
r
(
X(s)

)
ds

)
exp

(
−
∫ T

t
λ
(
X(s)

)
ds

) ∣∣∣∣ F(t)
]

(9.24)

= EQ
[
exp

(
−
∫ T

t

(
r
(
X(s)

)
+ λ

(
X(s)

))
ds

) ∣∣∣∣ F(t)
]

Equation (9.23) is valid since r(X(t)) is adapted to the filtration G(T ) and thus deterministic. In
equation (9.24) Lemma 9.1 has been used directly.

The proposition tells us that the price of a risky ZCB can be calculated simply by changing the
discounting rate r

(
X(s)

)
to the intensity adjusted discounting rate r

(
X(s)

)
+λ
(
X(s)

)
. By doing

this we get rid of the indicator function which makes the calculation much easier.

The result can be modified to fit the pricing of a generic claim, which has some promised payment
f(X(T )) at maturity and an actual payment f(X(T ))1{τ>T}. To prove this, the same calculation
steps can be used starting with

EQ
[
exp

(
−
∫ T

t
r
(
X(s)

)
ds

)
f
(
X(T )

)
1{τ>T}

∣∣∣∣ F(t)
]
, (9.25)
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and ending up with

EQ
[
exp

(
−
∫ T

t

(
r
(
X(s)

)
+ λ

(
X(s)

))
ds

)
f(X(T )

∣∣∣∣ F(t)
]
. (9.26)

9.3.2 Pricing of a Credit Default Swap

In order to price a CDS we follow an approach that lies somewhere between Mortensen (2006),
Lando (2004), and Felthütter (2008). As mentioned in subsection 3.4.1 on page 19, the standard
market practice in the CDS market (and in other swap markets) is to find the premium that
gives the swap zero value upon inception. The premium is computed using information on the
default intensity (assuming an underlying Cox process), the recovery in default, as well as some
assumptions in order to achieve more tangible results.

As usual, we will set the notional amount of the CDS to one so that the results may be scaled
as required. We will price at time 0 to simplify things. Let us denote the value of the premium
leg payed by the protection buyer by πprem and the value of the protection leg paid (in case of
default) by the protection seller by πprot. The premium payments cds(T ) are paid in arrears at a
frequency f until maturity T or default τ , whichever comes first. The frequency f is defined so
that there are cds(T )/f payments each year. If a default happens, an accrual premium payment
is made. This size is naturally calculated using the timespan between the last premium payment
date and the time of default. Since we price at time 0, the value of the premium leg is given by

πprem = EQ

 Tf∑
j=1

exp
(
−
∫ tj

0
r(s)ds

)
1{τ>tj}

cds(T )
f

+ exp
(
−
∫ τ

0
r(s)ds

)
1{tj−1<τ≤tj}c

ds(T )(τ − tj−1)


where tj = j/f for j = 1, . . . , fT .

Likewise, the value of the protection leg is

πprot = EQ
[
exp

(
−
∫ τ

0
r(s)ds

)
1{τ≤T}(1−R)

]
(9.27)

where R as usual denotes the recovery fraction.

The two expressions above are the most general cases where no assumptions are made. Deriving
the fair premium from these equations will however give results that are not directly computa-
tional. We thus proceed by making our first assumption, that premium payments are calculated
without accrual. Using Proposition 9.1 we can then price the premium leg as a sum of risky
ZCBs:

πprem = EQ

 Tf∑
j=1

exp
(
−
∫ tj

0
r(s)ds

)
1{τ>tj}

cds(T )
f

 (9.28)

= cds(T )
f

EQ

 Tf∑
j=1

exp
(
−
∫ tj

0
r(s)ds

)
1{τ>tj}

 (9.29)

= cds(T )
f

Tf∑
j=1

D̃(0, tj) (9.30)
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Assuming that a Cox process is driving the default probability, the value of the protection leg
given by equation (9.27) can be developed further using Lemma 9.3:

πprot = (1−R)EQ
[
exp

(
−
∫ τ

0
r(s)ds

)
1{τ≤T}

]
= (1−R)EQ

[∫ T

0
λ(t) exp

(
−
∫ t

0

(
r(s) + λ(s)

)
ds

)
dt

]

= (1−R)
∫ T

0
EQ

[
λ(t) exp

(
−
∫ t

0

(
r(s) + λ(s)

)
ds

)]
dt (9.31)

In equation (9.31) we have used Fubini’s theorem to change the integral order.

To achieve further simplification we make our second fundamental assumption, that there is inde-
pendence between the default intensity and the short rate process under the martingale measure
Q. The value of the protection leg then becomes

πprot = (1−R)
∫ T

0
EQ

[
exp

(
−
∫ t

0
r(s)ds

)
λ(t) exp

(
−
∫ t

0
λ(s)ds

)]
dt

= (1−R)
∫ T

0
EQ

[
exp

(
−
∫ t

0
r(s)ds

)]
EQ

[
λ(t) exp

(
−
∫ t

0
λ(s)ds

)]
dt

= (1−R)
∫ T

0
EQ

[
exp

(
−
∫ t

0
r(s)ds

)]
EQ

[
− ∂

∂t
exp

(
−
∫ t

0
λ(s)ds

)]
dt (9.32)

= (1−R)
∫ T

0
D(0, t)

(
− ∂

∂t
S(t)

)
dt (9.33)

= (1−R)
∫ T

0
D(0, t)h(t)S(t)dt (9.34)

where h(t) as usual denotes the expectation to the stochastic intensity, i.e. the hazard rate. In
equation (9.32) we have used equation (9.19), and in equation (9.33) we have used Lemma 9.2.
In the last equation (9.34) we have used the representation of the survival probability given by
equation (9.2) on page 75.

We can now equate the values πprem and πprot in order to obtain the fair premium,

cds(T ) = f
(1−R)

∫ T
0 D(0, t)h(t)S(t)dt∑Tf
j=1 D̃(0, tj)

= f
(1−R)

∫ T
0 D(0, t)h(t)S(t)dt∑Tf

j=1D(0, tj)S(tj)
(9.35)

= f
(1−R)

∫ T
0 D(0, t)f(t)dt∑Tf

j=1D(0, tj)S(tj)
(9.36)

where the denominator in equation (9.35) stems from applying independence to the price of a
risky ZCB given by Proposition 9.1. The density f(t) in equation (9.36) stems from the basic
definition of the hazard rate given by equation (9.1) on page 75. In order to provide the most
tangible result possible, the third and final assumption can be made; we calculate as if settlements
only take place simultaneously as premium payments. A default taking place between time tj−1
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and tj will then be ”pushed” forward to time tj , i.e.

Q̂(τ = tj) ≡ Q
(
τ ∈ (tj−1, tj ]

)
= S(tj−1)− S(tj). (9.37)

Note that this assumption includes the first assumption regarding zero premium accrual. We can
then discretized equation (9.36):

cds(T ) = f
(1−R)

∑Tf
j=1D(0, tj)Q̂(τ = Tj)∑Tf

j=1D(0, tj)S(tj)
(9.38)

= f
(1−R)

∑Tf
j=1D(0, tj)(S(tj−1)− S(tj))∑Tf
j=1D(0, tj)S(tj)

(9.39)

Finally, let us summarize the above assumptions in the following result for the pricing of a CDS.

Proposition 9.2. Assume that the default probability of an entity is given by a Cox Process
so that the survival probability is given by Lemma 9.2. Further assume that i) the recovery
fraction R is a constant, ii) default is calculated as if it occurred simultaneously with the
forthcoming premium payment, iii) there is independence between the default intensity
and the short rate process and iv) the premium payments are payed with a frequency/year
denominator f .

The fair constant premium cds(T ) on a CDS written on this entity with maturity T is
then given by

cds(T ) = f
(1−R)

∑Tf
j=1D(0, tj)

(
S(tj−1)− S(tj)

)
∑Tf
j=1D(0, tj)S(tj)

.

The fair premium under the mentioned assumptions basically requires two types of inputs: sur-
vival probabilities and ZCB prices. Equivalently, we can find the survival probabilities (and thus
the default probabilities) by using CDS premiums as input along with ZCB prices. E.g. with
yearly premium payments and setting T = 1 we get

cds(1) = (1−R)Q̂(τ = 1)
1− Q̂(τ = 1)

(9.40)

which can be explicitly solved to find Q̂(τ = 1). We can then set T = 2 and solve

cds(2) = (1−R)(D(0, 1)Q̂(τ = 1) +D(0, 2)Q̂(τ = 2))
D(0, 1)(1− Q̂(τ = 1)) +D(0, 2)(1− Q̂(τ = 1)− Q̂(τ = 2))

(9.41)

for Q̂(T = 2) and so on.

By inferring the different default probabilities one is deriving the so called default term structure.
Note how this is done by assuming that a credit event is equivalent to a default event, which typi-
cally is not true (see Section 3.4 on page 18). Note also how this can be done without specifying a
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model. In our upcoming empirical investigations we will nevertheless explicitly establish a model
in order to obtain default probabilities in any point of time independently of data availability.

9.4 Affine Modeling
In order to truly apply the intensity framework, one has to specify an intensity process. By choos-
ing the process consistent with the affine framework described in Chapter 6, some key properties
become easier to obtain.

Proposition 6.1 on page 53 showed how affine assumptions made it possible to compute semi-
analytical solutions to the cardinal expression

D(0, T ) = EQ
[
exp

(
−
∫ T

0
r(s)ds

)]
.

Now, considering an intensity setup where from Lemma 9.2 we have the following relationship

Q(τ > T ) = EQ
[
exp

(
−
∫ T

0
λ
(
X(s)

)
ds

)]

we see that the interest rate has been swapped for the intensity. It is thus clear that we can find
the risk neutral survival probabilities in closed form as given by Proposition 6.1:

Q(τ > T ) = exp
(
A(0, T )−B(0, T )ᵀλ0

)
(9.42)

where λ0 is a vector.

9.4.1 The One-Factor CIR Intensity Model

Since the CIR model will also be our model foundation in modeling actual default probabilities,
we will end this chapter by a short comment on that assumption.

By assuming that the intensity process is of the one-factor CIR type, it becomes apparent that
the above mentioned ODE solutions are given in closed form. The solutions are then given by
equation (6.16) and (6.17) on page 57. So by choosing a CIR intensity model, analytical solutions
to the survival probabilities exist. The model implied default term structure is thus very easy to
compute, given a full CIR parameter set, including the latent variable λ0.
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Chapter 10

Empirical Remarks

We now turn to the question of how one could estimate the parameters in our two models; the
swaption pricing model and the default model. The CIR model will constitute the foundation in
both, but the estimation procedures will differ. The difference is pronounced due to one major
reason: while a true risk free asset might not exist, a proxy for the asset does, and the interest
rate is as such an observable size. Consequently, interest rate time series exist and fitting to these
is deemed possible. This is done by using the maximum likelihood method described in Kladivko
(2004) and Brigo et al. (2007). Interest rate parameters are thus fitted to interest data rather
than swaption prices since we are looking for global estimates which are applicable in our default
model as well.

Contrary to the interest rate case, a default intensity time series does not exist and another
source of market data must be incorporated. Given the estimated interest rate parameters, we
choose to fit the intensity model to observed CDS quotes. As discussed previously, this has the
disadvantage of assuming that a credit event is the very same as a default event, which is not
necessarily true. Nevertheless, the approach will display a different (more classical) estimation
routine which is close to what is proposed in Mortensen (2006).

Apart from the two estimation procedures a thorough examination of the swaption pricing pro-
cedure will be conducted. The authors have chosen to assign a decent amount of weight here due
to the complexity of the model and the many possible sources of (approximation) errors.

The part will be completed by a presentation and a discussion of the final results, the CVA
prices. All our investigations are done assuming two different counterparties; the bank HSBC
and the automobile manufacturer Fiat. For each counterparty we place ourselves at two different
points in time; 1 September 2008 and the 1 June 2011. Naturally, we will only use historical
observations to estimate our models. This applies to both dates. The amount of historical data
used in each estimation routine might differ according to data availability.
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Chapter 11

Interest Rate Estimation

The goal of this chapter is to find a proxy for the risk free interest rate and then estimate the pa-
rameters for our one-factor CIR short rate model based on a time series of this proxy. The choice
of a proxy for the risk free interest rate is essential for this thesis paper, since both our swaption
pricing model as well as the default probability estimation rely on the short rate parameters.

We begin by introducing the estimation strategy for the one-factor CIR model. Here we will
choose a maximum likelihood estimation scheme, which works especially well for our specific
short rate model. Then we will move on to briefly discuss the implementation of the estimation
scheme, which will be carried out in Matlab1. The estimation technique and the implementation
in Matlab along with Matlab code will follow Brigo et al. (2007) and Kladivko (2004). After-
wards, we will discuss various proxies for a risk free interest rate and then try to justify our
specific choice. We end this chapter by presenting the estimates and comment on the results.

11.1 Estimation Strategy
The idea is to find estimates for the parameter vector $ = (ψ, θ, σ) using maximum likelihood.
Therefore, we first need to define the transition densities for the CIR process. It turns out that
for the CIR process, the transition densities are known in closed form. Now, in order to estimate
the parameters we use a discretized version of the CIR process, such that

r(t+ ∆t) = r(t) + ψ(θ − r(t))∆t+ σ
√
r(t)
√

∆tε(t), (11.1)

where ε(t) is standard normally distributed. Then, given r(t) at time t the conditional density of
r(t+ ∆t) at time t+ ∆t is given by

fCIR(r(t+ ∆t)|r(t);$,∆t) = c exp(−u− v)
(
v

u

) q
2
Iq(2
√
uv) (11.2)

1See http://www.mathworks.com/products/matlab/
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where

c = 2ψ
σ(1− exp(−ψ∆t)) ,

u = cr(t) exp(−ψ∆t),
v = cr(t+ ∆t),

q = 2ψθ
σ2 − 1.

Here Iq denotes the modified Bessel function of the first kind of order q.2 As mentioned in section
6.2.5, the one-factor CIR process follows a non-central chi-squared distribution with 2q+2 degrees
of freedom and non-centrality parameter 2u, i.e.

r(t+ ∆t)|r(t) ∼ χ2(2cr(t), 2q + 2, 2u).

We base our parameter estimation on a time series consisting of N observations, which are equally
spaced with time step ∆t. Hence, we can establish the log-likelihood function as

ln(L($)) =
N−1∏
i=1

ln (fCIR(r(t+ ∆t)|r(t);$,∆t)). (11.3)

This means that we can find the maximum likelihood parameters by maximizing the log-likelihood
function, such that

$̂ = (ψ̂, θ̂, σ̂) = arg max
$

ln(L($)), (11.4)

where $ = (ψ, θ, σ) ∈ R+.

We choose the initial estimates by using the Ordinary Least Squares method (OLS) on (11.1).
Hence, by dividing (11.1) by

√
r(t), we find the initial estimates for ψ and θ by minimizing the

following OLS objective function

(ψ̂, θ̂) = arg min
ψ,θ

N−1∑
i=1

(
r(ti+1)− r(ti)√

r(ti)
− ψθ∆t√

r(ti)
+ ψ

√
r(ti)∆t

)2

. (11.5)

Then, σ̂ is found as the standard deviation of the residuals from (ψ̂, θ̂). The solutions for (11.5)
can be found in Appendix C.

11.1.1 Implementation

As mentioned in the introduction to this chapter, we will use Matlab to implement the estima-
tion procedure. Matlab is a well known and often used programming language in the financial
industry. It contains a lot of built-in mathematical functions and algorithms, which makes it
extremely useful and easy to use.

2For any real number q, the modified Bessel function of the first kind can be expressed as

Iq(z) =
(1

2z
)q ∞∑

k=0

(
1
4z

2)k
k!Γ(q + k + 1) ,

where Γ(z) is the gamma function.
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When calculating the transition densities, we have to use the modified Bessel function of the
first kind. Luckily, Matlab contains this function in the command besseli. In order to maximize
the log-likelihood and thereby solve the optimization problem in (11.4), we will use the Matlab
function fminsearch. This Matlab function finds the minimum of a scalar function of several vari-
ables given initial estimates using a simplex search method known as the Nelder-Mead Simplex
Method.3 Selected Matlab code can be found in Appendix F.

11.2 Choice of Risk Free Rate
We now turn to the task of deciding which interest rate we will use as a proxy for the risk free
rate. First, a risk free interest rate is a term which is purely theoretical and does not exist in real
life. Nevertheless, the role of a risk free rate plays a fundamental role in financial theory, and
therefore we need to find a reasonable proxy in order to estimate the short rate parameters.
Standard market practice is to use one of the following two instruments

1. Swap rates.

2. Government issued bonds.

Since this thesis paper concerns the pricing of credit risky swaps and since (by definition) the
swap rate is the rate that renders the value of the swap contract zero upon inception, it seems
somewhat counterintuitive to use swap rates as proxies for the risk free interest rate. Instead, we
will use the yields on government bonds as a proxy. The reason for choosing government issued
bonds is that the credit risk associated with these bonds is usually close to zero. Although this
is not always the case for certain sovereign countries issuing government bonds, the chances of
historically stable western countries defaulting on their obligations have usually been considered
insignificant. In turn, this has resulted in a very liquid market where strong demand has driven
prices up and yields down. However, there are other effects than credit risk that determine the
level of the yields. We will now try to name some of these effects:

• Investors usually prefer bonds with high liquidity, which applies for certain government
bonds. Especially during financial crises such as the one we experienced in 2008, where
markets are in distress and bond liquidity in general is scarce, investors usually place their
money in government bonds as a sort of safe haven.

• Because of regulatory requirements, financial institutions hold a certain amount of govern-
ment bonds.

• The capital requirements that financial institutions face when investing in bonds are usually
lower for government bonds compared to other bonds.

• Some Central Banks invest in their own government bonds in order to stimulate the economy
in times of economic downturn. The latest example of this is in the United States where
the Federal Reserve since late 2008 has been actively buying both long and short term US
government bonds.

3For more information on the Matlab function fminsearch go to http://www.mathworks.com/help/techdoc/
ref/fminsearch.html.
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All these effects increase the demand for government bonds, which in turn drive yields down.
Therefore, one could argue that the yield on these bonds is artificially low and not just a conse-
quence of low credit risk. Hence, a risk free interest rate should probably be higher. However, we
still believe the yield of government bonds is the best proxy for a risk free interest rate and we
will therefore choose a specific government bond time series in order to estimate our parameters
for the short rate.

11.3 Data Description
Having decided on which type of instruments to use as our risk free rate, we now need to decide
exactly which government bonds to use and with what maturity. Here we follow Nowman (1997)
and choose U.S. Treasury bills. More precisely, we choose three-month benchmark bond yield
data.4 The term benchmark bond implies the latest issue of the U.S. Treasury bills with a
maturity of three months. The time series consists of daily yield data from 11 November 2005
to 1 June 2011 for each business day. The time series is shown in Figure 11.1. The data are
retrieved from Nordea Analytics.5

Figure 11.1: Time series of three-month US Treasury Benchmark Bonds yield data from 21-11-2005 to
01-06-2011.

Looking at Figure 11.1, we can conclude that during the last 5 years yields on three-months U.S.
Treasury bill have been very volatile. The time series can roughly be divided into three periods.
The first period is before the financial crisis where yields where relatively high and stable. The
second period began in 2007 where the financial markets started experiencing the first signs of
distress and ended in late 2008 where the financial crisis peaked. In this period yields where very
volatile and generally downward sloping. The third period is where we are now, where yields are
stable at an historically low level.

As already mentioned, it is quite evident from Figure 11.1 that the arrival of the financial crisis
in 2007-2008 drove the yield down towards zero. This was probably a consequence of the general
opinion that the United States government would not default on their debt. Hence, investors
started buying US Treasury bills because of their high liquidity and low credit risk. Two very
attractive attributes in a distressed market. Also, around that time the Federal Reserve began

4Nowman (1997) uses the U.S. Treasury bill one-month yield data.
5See http://nordea.eu/Vores+serviceydelser/Internationale+produkter+og+serviceydelser/Markets/

Nordea+Analytics/906592.html.

91



11.4. Results Interest Rate Estimation

buying short term government bonds in order to drive yields down and thereby increase access to
cheap credit. These two factors are probably the main reasons for the very steep decline in the
yield. The extraordinarily strong demand for treasuries even meant that the yield became nega-
tive a couple of times during December 2008! Since negative yields are not consistent with our
one-factor CIR process, we choose to change those observations to 0.00001 in order to estimate
the parameters. Given the two dates specified in Chapter 10, we divide the time series into two
overlapping periods:

• First period covers the yield from 21-11-2005 to 02-09-2008, which is a total of 1106 obser-
vations.

• Second period covers the yield from 21-11-2005 to 01-06-2011, which is a total of 1414
observations.

Our goal is to estimate two sets of parameters, one set for each period.

11.4 Results
The maximum likelihood estimates are shown in Table 11.1.

Estimation period ψ θ σ

21-11-2005 – 02-09-2008 0.2592 0.0063 0.0840
21-11-2005 – 01-06-2011 0.6957 0.0097 0.1448

Table 11.1: The maximum likelihood estimates for the short rate parameters for each period.

If we compare the results in Table 11.1 with the time series in Figure 11.1, we can conclude that
the maximum likelihood estimates seem very dependent on the amount of observations that the
estimation is based on. This is especially evident for the σ estimates, which are significantly
different for the two periods. However, it seems reasonable that σ is higher for the longest period,
since it captures all three periods described in the previous section. The θ estimates also seem
to make sense at their low levels, since they express the mean-reversion level for the short rate.
The fact that ψ is higher for the longest period is justified by the fact that the yield experiences
a longer interval around its mean reversion level.

In Figure 11.2 we have shown simulated paths for both sets of parameters initiated at r(0) =
0.0389, which was the yield observed on the 21th of November 2005. The simulation is performed
using an Euler approximation. Normally, the square root operator in the volatility term ensures
that the short rate cannot become negative. However, since we have to approximate the process
in order to simulate it, the short rate can go below zero and thereby stop the simulation. This is
likely to happen since the mean-reversion parameter for both processes is close to zero. Therefore,
we use the following modified Euler approximation:

r(ti+1) = r(ti) + ψ(θ −max(r(ti), 0))(ti+1 − ti) + σ
√

max(r(ti), 0)
√
ti+1 − tiε(ti). (11.6)

The max operator in (11.6) will not necessarily ensure positive short rates, it will, however, ensure
that the simulation works even if the short rate drops below zero.
As we can see in Figure 11.2, both short rates tend towards zero which is in line with the low
mean-reversion parameters and the observed time series in Figure 11.1. The simulation based on
the parameters estimated for the longest period experiences higher volatility, which corresponds
well with the higher level of σ.
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Figure 11.2: Simulations of the short rate for the two sets of parameters. The panel to the left is for the
period 21-11-2005 to 02-09-2008 with 1106 time steps. The panel on the right is for the period 21-11-2005
to 01-06-2011 with 1414 time steps. Both simulations are initiated at r(0) = 0.0389.
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Chapter 12

Default Estimation

This chapter concerns our implementation of the intensity framework as described in Chapter
9. After the strategy is introduced we will turn to a brief description of the companies that
constitute our fictional swap counterparties, and subsequently their CDS data will be presented.
Afterwards, we will comment on our programming routine in R1 and the results will be displayed
in terms of goodness of fit and the model entailed default term structure. The latter is obviously
the main product of this chapter.

12.1 Estimation Strategy
Our goal of the estimation process is to use a decent amount of market information under the
precondition that the routine is intuitive and that the interpretation of the results is somewhat
straightforward.

Slightly inspired by Mortensen (2006), we use a rather simple and intuitive routine which goes as
follows.

For a given entity,

• Select a historical time period consisting of N days and collect CDS premia for n different
maturities for each day. Consequently, the CDS term structure is used for each day.

• Choose an initial guess of the parameter vector ϕ = (κ, θ, σ, λ0).

• Compute the vector of CDS premiums cdsfit, as described in Chapter 9, making use of the
fact that the survival probabilities are given in closed form.

• Obtain the optimal parameter vector ϕi for day i by minimizing the Root Mean Squared
Error (RMSE) between the observed CDS quotes cdsobs and fitted CDS quotes cdsfit:

ϕi = arg minRMSEi (12.1)

RMSEi =

√√√√ 1
n

n∑
k=1

cdsobs − cdsfit (12.2)

• Compute the final parameter vector ϕ = 1
N

∑N
i=1 ϕi.

1See http://www.r-project.org/.
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Comments. First, note that contrary to our interest rate estimation, we choose to estimate
all four parameters including the unobservable parameter λ0. An initial guess of λ0 is still
necessary, while it will often be rather arbitrary since it is unobservable (unlike an initial interest
rate), but choosing it positive and close to zero should generally provide a smooth minimization
process. Second, note that the final parameter vector is a simple average of each day’s estimated
parameters. The reasonableness of this approach is, of course, most sensible when the variation
of the different parameter vectors is fairly small.

12.2 Implementation
Implementing the above process in R involves minimizing an object function (the RMSE) which
is done using the built-in function nlminb. In doing this, we choose to invoke some parameter
restrictions. For our purpose we choose to restrict each parameter to the range [0, 1], which
ensures that one extreme estimation does not affect the average too much. The code for this
exercise can be found in Appendix E.

12.3 Data Description
Since the CVA is greatly dependent on the default probabilities, we choose to use premia from
CDS’ written on entities with CDS premia that differ greatly. As mentioned, our choice falls on
the two large international companies HSBC and Fiat.

On June 2, 2011, HSBC was the world’s second largest bank according to Forbes2 with around
0.3m employees and a market value of USD 186.5b. With such strong key figures it is not sur-
prising that the CDS premia on HSBC are usually rather low. However, during late 2007 HSBC’s
CDS premia rose significantly, which becomes evident by considering Figure 12.1.

Figure 12.1: HSBC CDS Spreads for three different maturities with the mod-mod convention in use.

It is also notable how most of the time premia seem to be higher for longer maturities. This
is however not always the case as exhibited in the HSBC data in the beginning of 2009. Rea-
son probably being that the market was unsure of how HSBC would handle the crisis now that
Lehman Brothers had defaulted3. But if HSBC would indeed survive the crisis, then they would

2See http://www.forbes.com/companies/hsbc-holdings/
3The default happened September 15, 2008.
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probably survive for a longer period, i.e. the conditional probability of a future default, given
survival of the crisis was probably small. Consequently, spreads for longer maturities went down
and spreads for shorter maturities went up.

Figure 12.2: Fiat CDS Spreads for three different maturities with the mod-mod convention in use.

Turning to our other firm of interest, Fiat, we keep in mind that the car industry was very exposed
during the crisis. On 2 June, the company had approximately 0.14m employees and a market
value of USD 73.4 billion. Considering Figure 12.2, we observe a much higher overall level of
CDS premia. The premia rose to nearly 3,000 bps for the one year maturity in January 2009,
which corresponds to a premium of 30% of the notional on the CDS. Again, we see how shorter
maturities might demand a higher spread than longer maturities. It is interesting that HSBC
quotes reacted earlier than Fiat to the generic financial instabilities. It is a small piece of evidence
showing how initially the crisis only concerned banks, but later became a trans-industrial and
global event.

12.4 Results
We have chosen to monitor CDS quotes at the first business day of each month for a total of 12
months. This is done for each of our two firms in each of the two periods of interest. Hence, for
each company we estimate using 12 CDS term structures, each consisting of the maturities 1Y,
2Y, 3Y, 4Y, 5Y, 7Y and 10Y. We will always assume a constant recovery rate R of 40%.

12.4.1 CIR Estimates

Our estimated parameters for HSBC are shown in Table 12.1.

Estimation period Estimate/Standard dev. κ θ σ λ(0)
01-10-2007 – 02-09-2008 Estimate 0.287764 0.042305 0.478656 0.002425

Standard deviation 0.315353 0.028069 0.306680 0.002952
01-07-2010 – 01-06-2011 Estimate 0.067957 0.093736 0.359710 0.004633

Standard deviation 0.014547 0.015525 0.065581 0.002236

Table 12.1: Estimated CIR intensity parameters for HSBC over two disjoint time periods.
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It is not surprising that we estimate a higher σ and get higher parameter standard deviations in
the first period. Consequently, parameters in the first period are less statistically significant4 for
HSBC.

Estimation period Estimate/Standard dev. κ θ σ λ(0)
01-10-2007 – 02-09-2008 Estimate 0.120936 0.128589 0.431823 0.005630

Standard deviation 0.066518 0.048137 0.281103 0.002729
01-07-2010 – 01-06-2011 Estimate 0.305948 0.497977 0.767089 0.004233

Standard deviation 0.419834 0.296556 0.181186 0.009897

Table 12.2: Estimated CIR intensity parameters for Fiat over two disjoint time periods.

Considering Table 12.2 we observe that, in comparison with HSBC, the significance of parameters
varies more. In general we also estimate higher mean reversion levels θ in the Fiat dataset which
corresponds to the higher overall level of CDS premia. The θ in the second period seems extremely
high, however. Estimates generally increase going from the first period to the second one.

12.4.2 Goodness of Fit

Table 12.3 shows how well the model fits to each month in average.

Estimation period HSBC Fiat
01-10-2007 – 02-09-2008 0.000157 0.000295

(0.000084) (0.000126)
01-07-2010 – 01-06-2011 0.000261 0.000625

(0.000107) (0.000124)

Table 12.3: The average of the twelve RMSE values in each period. Numbers in parentheses indicate the
respective estimated standard deviations of mean RMSEs.

Clearly, parameters in the HSBC dataset are estimated better. We generally obtain the lowest
RMSE values in our earliest period, which might come as a surprise. It is albeit important to
remember that the first part of the former period was relatively steady for Fiat and thus easier
to estimate upon.

We remind ourselves that the reported RMSE-values are only relevant when considering pa-
rameters before the average is computed. After the average is calculated, it would not make sense
to evaluate the goodness of fit in each month, since we would be prone to use future information,
e.g. an RMSE at month 3 would be using information from month 12.

4By assuming that each estimate is normally distributed with a mean that equals the estimate and a standard
deviation as reported, we have that with 95 % probability the estimate lies in the interval

estimate± 1.96× std. dev.

so that estimate
std. dev. < 1.96 means that the estimate may be zero according to the normal distribution assumption, i.e.

it can be regarded insignificant.
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12.4.3 Default Estimates

Given the above parameters we can obtain the default term structures as shown in Figure 12.3.

Figure 12.3: Accumulated default probabilities according to four estimated CIR models. Each point on a
graph is thus the estimated probability of a default event in less than x years for the company in question
standing at the latest point of time in the estimation period.

The first thing one might notice is the high probability of Fiat defaulting if we position ourselves
in June 2011. These probabilities might not seem reasonable when using one’s intuition but they
are nevertheless a product of the high estimates of the volatility σ and the mean reversion level θ.
Another important comment is that our estimation routine is very sensitive to each observation
since we estimate over a relatively small time series. As with all historical estimations, there is
no right or wrong length of time period to use. It all depends on how much emphasis one wants
to put on the past. There are tons of ways to calibrate or estimate models. Our above example is
solely a demonstration of how one might estimate intensity parameters in a one-factor CIR model
using market data in an intuitive manner without consuming to much CPU time.

As reported in Table 12.4, we will finalize this chapter by displaying the one-year model im-
plied default probabilities that are to be used in the CVA pricing.

Year Fiat 2007-2008 HSBC 2007-2008 Fiat 2010-2011 HSBC 2010-2011
1 0.012439 0.007464 0.067222 0.007442
2 0.023212 0.014792 0.134977 0.012111
3 0.029742 0.018710 0.140018 0.015318
4 0.032984 0.020477 0.122510 0.017288
5 0.034125 0.021082 0.101603 0.018364
6 0.034069 0.021107 0.082822 0.018852
7 0.033381 0.020857 0.067138 0.018976
8 0.032383 0.020483 0.054325 0.018880
9 0.031247 0.020056 0.043932 0.018658
10 0.030066 0.019610 0.035521 0.018363

Table 12.4: Estimated probabilities of a default in the year in question. The table is essentially based on
the same information as Figure 12.3.
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Chapter 13

Swaption Model Implementation

We now turn to the implementation of the swaption pricing setup described in Chapter 8 based
on a one-factor CIR short rate model using the parameters estimated in Chapter 11.

We begin by briefly describing the consequences for the affine swaption setup when the un-
derlying short rate follows a one-factor CIR process. Then we will discuss the implementation
of the model and touch upon certain computational aspects. The implementation is done in R.
Next, we will focus on testing key parts of our implementation and the LVM assumption, which
is the foundation behind the model. The tests will be based on Monte Carlo simulations. We
end this chapter by presenting swaption prices for swaptions with specific expiries and underlying
tenors based on the two parameter sets found in Chapter 11. Selected R code can be found in
Appendix E.

13.1 Model Setup
In Chapter 8 we presented the affine swaption setup for an N -factor short rate model. Based on
these results, we can derive the one-factor setup rather straightforwardly.

We begin by specifying the short rate and the swap rate dynamics. From Section 8.3, we have
that in a one-factor setup, the dynamics of dX̃(t) = (yn,N (t) X(t))ᵀ is given by

dX̃(t) = Ψ̃(t)(Θ̃(t)− X̃(t))dt+ Σ̃(t)
√
Ṽ (t)dWQn+1,N (t)

=
(

0 0
0 Ψ + Σ2w(t)

)((
0

ΨΘ
Ψ+Σ2w(t)

)
− X̃(t)

)
dt+

(
0 k(t)Σ
0 Σ

)(
0 0
0
√
X̃(t)

)
dWQn+1,N (t).

(13.1)

Letting r(t) = X(t), and using the notation from Chapter 11 we get

dr(t) =
(
ψθ − (ψ + σ2w(t))r(t)

)
dt+ σ

√
r(t)dWQn+1,N (t), (13.2)

dyn,N (t) = k(t)σ
√
r(t)dWQn+1,N (t) (13.3)

where, as usual, w(t) =
∑N
i=n+1 ∆B(t, Ti) D(0,Ti)

Pn+1,N (0) and k(t) =
∑N
i=n q

y
i (0)B(t, Ti). From the

dynamics in (13.1), we can derive the following two complex ODEs which need to be solved in
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order to obtain the CCF:

dδ(t)
dt

=
(

0 0
0 Ψ + Σ2w(t)

)
δ(t)− 1

2

 0(
k(t)Σδ1(t) + Σδ2(t)

)2

 (13.4)

dγ(t)
dt

= −ΦΘδ2(t) (13.5)

along with the boundary conditions

δ(Tn) =
(
iv
0

)
(13.6)

γ(Tn) = 0. (13.7)

Hence, applying the notation from (13.2)-(13.3), (13.4)-(13.5) translates into

dδ1(t)
dt

= iv (13.8)

dδ2(t)
dt

=
(
ψ + σ2w(t)

)
δ2(t)− 1

2
(
k(t)σδ1 + σδ2(t)

)2
(13.9)

dγ(t)
dt

= −ψθδ2(t). (13.10)

Solving these equations gives us the CCF for the swap rate. Prices can then be obtained using
(8.57) along with (8.58) on page 73 for payer swaptions and (8.59) along with (8.60) on page 73
for receiver swaptions.

13.2 Implementation and Computational Aspects
There are two main computational aspects we need to address when implementing the swaption
model:

1. Solving a system of complex ODEs given known boundary conditions.

2. Numerically evaluate the integral required for the computation of swaption prices.

Both issues can be solved using functions in R.

In order to obtain the CCF for the swap rate we have to solve the two complex ODEs in (13.4)
and (13.5) given their boundary conditions. To do this, we choose the fourth-order Runge-Kutta
method, which is an iterative method for approximating solutions of ODEs. This method is
known to be a very stable and accurate approximation method used extensively in financial lit-
erature. In R, the fourth-order Runge-Kutta method is contained in the function bvptwp. Now
given boundary conditions, we work backwards from time Tn in order to approximate the function
values at time zero. Time steps in between time zero and Tn are set to 0.5. To ensure correct
implementation, we will compare values of the CCF obtained from solving the ODE equations
with CCF values obtained from Monte Carlo simulation. We will return to this comparison in
the next section.

When numerically evaluating the integrals required to price swaptions in (8.57) and (8.59) on page
73 and 73, we use the R-function integrate. This function uses an algorithm called an adaptive
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quadrature to approximate the integral. Generally, a quadrature rule is of the following form
n∑
i=0

wif(xi) ≈
∫ b

a
f(x)dx

where the nodes xi and the weights wi are pre-computed. So, for an adaptive quadrature the
integral is approximated using a quadrature rule on adaptively refined subintervals of the integral
domain. There are many different types of quadrature rules, and the function integrate chooses
the optimal quadrature rule depending on the shape of the integrand. When using the function,
we have to specify the lower and the upper integration limit along with the number of subdi-
visions. The lower integration limit will always be set to zero according to 73 and 73, whereas
the upper limit will depend on the speed of convergence to zero for the specific integrands. The
number of subdivisions expresses a dynamic quantity that, given a certain error bound, deter-
mines the amount of subintervals included in the given quadrature rule. The maximum number
of subdivisions will be set to 1000.

Evaluating the integrand requires that we solve the ODEs for each u we integrate over, which
is costly in computational time when the integral domain is large. Therefore, in order to reduce
the computational time, we will use a spline interpolation scheme for the solutions to the ODEs.
A spline interpolation uses a sufficiently smooth piecewise-polynomial function called a spline to
interpolate between given points. In R we can use the function spline to perform the interpolation.
This function uses a cubic spline where the polynomial function is of order three. So, we solve the
ODEs for a given (large) number of integers and then create a function based on an interpolation
between the solutions. This makes the numerical integration significantly faster and means that
we only have to solve the ODEs once for a given number of integers and swaption structure.
The interpolation scheme works especially well in our case since the integrands are continuous
functions. This should be evident later on when we test the spline interpolation by comparing it
with analytical CCF values.

13.3 Model Verification
We now turn to the task of verifying the different methods discussed above thereby ensuring that
each step in our implementation is performed correctly. We also want to investigate the LVM
assumption, since the exactness of this assumption is essential in order for any practical use of
the model to be justified.

All investigations will be carried out by comparing CCFs. Most of the verification procedures
will consist of comparing the method implied CCF to a simulated CCF based on swap rate values
achieved from simulating the Qn+1,N -dynamics of the short rate and swap rate using the Euler
scheme. The simulation scheme is as follows

r(ti+1) = r(ti) +
(
ψθ − (ψ + σ2w(ti))r(ti)

)
(ti+1 − ti)

+ σ
√
r(ti)

√
ti+1 − tiε(ti), (13.11)

yn,N (ti+1) = yn,N (ti) + k(ti)σ
√
r(ti)

√
ti+1 − tiε(ti), (13.12)

for ti ∈ [0, Tn]. We simulate 1000 paths for both dynamics where each path is divided into

101



13.3. Model Verification Swaption Model Implementation

50 time steps. The CCF is then obtained as the mean value of exp (ivyn,N (Tn)) where yn,N
denotes a vector of 1000 simulated swap rate values at time Tn. We base the verification of the
implementation methods and LVM assumption on a specific swaption structure and specific short
rate parameters. We choose a 5-year swaption on a 10-year swap, so that Tn = 5 and TN = 15.
The short rate parameters are ψ = 0.69, θ = 0.08 and σ = 0.03 along with an initial short rate
r(0) = 0.08.
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Figure 13.1: Swap rate values at time Tn based on 1000 simulations where ψ = 0.69, θ = 0.08, σ = 0.03
and r(0) = 0.08. The blue line indicates the value of the forward swap rate at time zero.

In Figure 13.1 we have depicted 1000 simulated values of the swap rate at time Tn along with the
forward swap rate at time zero. As the figure confirms, the swap rate is a Qn+1,N -martingale, so
on average the swap rates at time Tn will equal the initial forward swap rate.

13.3.1 The Low Variance Martingale Assumption

Since the LVM assumption is the foundation for the entire swaption model setup, verifying that it
actually holds, is obviously very important. As explained in Subsection 8.2.3, the LVM assumption
implies that the terms D(t,Ti)

Pn+1,N (t) in k(t) and w(t) can be replaced by their time zero values D(0,Ti)
Pn+1,N (0) .

So in order to verify the assumption, we simulate (13.11) and (13.12) twice. First, we simulate
where k(t) and w(t) include the time zero values. Second, we simulate where they do not. The
verification procedure is performed by comparing CFF values based on both simulations.
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Figure 13.2: CCF values with and without the LVM assumption based on 1000 simulations. The panel
to the left illustrates the real part. The panel to the right illustrates the imaginary part. With LVM: the
black line. Without LVM: the red points.

The simulations indicate that the LVM assumption works extremely well. This is made evident
in Figure 13.2, where we have depicted the real and imaginary parts of both simulated CCFs. As
can be seen in the figure, the two CCFs are almost identical. The approximation errors depicted
in Figure 13.3 are clearly very small, and therefore insignificant for all practical purposes. Hence,
accepting the assumption seems reasonable and the implications for the rest of the model can
therefore be justified.
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Figure 13.3: Approximation errors of the CCF with and without the LVM assumption based on 1000
simulations. The panel to the left illustrates approximation errors for the real part. The panel to the right
illustrates approximation errors for the imaginary part.
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13.3.2 The ODE Solutions

The next step is to verify the implementation of the two complex ODEs and make sure that the
solutions are correct. Since the short rate and the swap rate are on affine form, we know that the
CCF for the swap rate is found as

φ(v, t, Tn) = exp
(
γ(t) + δ(t)X̃(t)

)
(13.13)

where X̃(t) = (yn,N (t) r(t)). Again, we verify the ODE solutions by simulating (13.11) and
(13.12) to obtain a CCF and then compare the results with the analytical CCF from (13.13).
The analytical and simulated CCFs are shown in Figure 13.4 divided into real and imaginary
parts. The results clearly verify the solutions to the ODEs and show that (13.13) in fact does
generate the CCF. This is also evident from the approximation errors depicted in Figure 13.5.
Even though these errors are small, they are still noticeable. This could probably be improved by
simulating a large number of paths for the short rate and swap rate. Overall, the results indicate
that our implementation works and that the solutions generated by the fourth-order Runge-Kutta
method can be applied.
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Figure 13.4: Analytical and simulated CCF based on 1000 simulations. The panel to the left illustrates
the real parts of both the analytical and simulated CCF. The panel to the right illustrates the imaginary
parts. Analytical CCF: the blue points. Simulated CCF: the black line.
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Figure 13.5: Approximation errors for the analytical and simulated CCF based on 1000 simulations.
The panel to the left illustrates approximation errors for the real part. The panel to the right illustrates
approximation errors for the imaginary part.

13.3.3 Spline Interpolation

When evaluating the integral in order to generate swaption prices, solving the complex ODEs
for each u in the integrals domain is necessary. This can take considerable computational time,
since the domain of the integral is usually chosen according to the shape and convergence of
the integrand and can therefore potentially require a large domain. Thus, we will, as mentioned,
incorporate a cubic spline interpolation scheme for the solutions to the ODEs, and thereby reduce
the computational time greatly. In order to verify the accuracy of spline interpolation we will
compare analytical CCF values with CCF values calculated from spline interpolating the ODE
solutions. The results are depicted in Figure 13.6 along with the approximation errors in Figure
13.7. As the results indicate, the spline interpolation is very accurate and applying the interpo-
lation scheme therefore seems like an obvious choice. The accuracy of the spline interpolation is
due to the CCF being a continuous function.
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Figure 13.6: Analytical and spline interpolated CCF. The panel to the left illustrates the real parts of both
the analytical and interpolated CCF. The panel to the right illustrates the imaginary parts. Spline CCF:
the blue points. Analytical CCF: the black line.
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Figure 13.7: Approximation errors for the analytical and spline interpolated CCF. The panel to the left
illustrates approximation errors for the real part. The panel to the right illustrates approximation errors
for the imaginary part.

13.3.4 Choice of Alpha

Pricing using Fourier inversion implies choosing an α in order to ensure integrability when estab-
lishing the Fourier transform of the swaption price. In addition to a strictly positive restriction
on α, it is not immediately obvious which α to choose. Lee (2004) proposes a theoretical ap-
proach in order to decide which α to apply when pricing options in general. We choose a different
approach based on comparing prices in our setup with prices based on Monte Carlo simulation.
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More precisely, we simulate 10,000 paths for (13.11) and (13.12) and then obtain prices for payer
and receiver swaptions by calculating (8.25) and (8.26) on page 68 based on 10,000 swap rate
values at time Tn. These prices will be independent of α and can therefore be used as a bench-
mark for the semi-analytical prices obtained from Fourier inversion. The semi-analytical prices
are computed for levels of α ranging from 0.1 to 100. The optimal choice of α is the level that
produces the smallest price difference. The approximation errors are depicted in Figure 13.8 for
payer swaptions and in Figure 13.9 for receiver swaptions.

Generally, the approximation errors are small which confirms that our pricing setup works. How-
ever, choosing one optimal level for α across different strikes for both payers and receivers seems
almost impossible based on the results. The approximation errors for payer and receiver swaptions
seem to show the same pattern. For ITM swaptions, two choices for α generate an approximation
error of zero (this is not the case for ITM receiver swaption in panel (d) in Figure 13.9). For OTM
and ATM only one α gives a perfect fit. So, we can conclude that although the price differences
are small the swaption prices achieved from Fourier inversion for this specific swaption structure
seem very dependent on the level of α. This can be considered a model weakness, since α would
have to be adjusted to strike level in order to maximize precision. All in all, the optimal choice
of α would demand a more thorough investigation involving the relevant swaption structures and
levels of moneyness. Nevertheless, for our purpose, we will only choose one alpha to price both
payer and receiver swaptions regardless of strike level. This level will be set at α = 1.
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Figure 13.8: Approximation errors for payer swaption prices obtained from a Monte Carlo simulation
and Fourier inversion. Monte Carlo prices are based on 10,000 simulations. α runs from 0.1 to 100.
ATMF level at K = 0.0832.
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Figure 13.9: Approximation errors for receiver swaption prices obtained from a Monte Carlo simulation
and Fourier inversion. Monte Carlo prices are based on 10,000 simulations. α runs from 0.1 to 100.
ATMF level at K = 0.0832.

13.4 Results
We now move on to present the swaption prices which, together with the default probabilities
found in Chapter 12, will lay the foundation for CVA pricing.

The idea is to price swaptions using the two sets of short rate parameters estimated in Chapter
11 on various swaption structures with different strikes. The initial short rate level will be the
observed three-month US Treasury Benchmark Bonds yield on the last day in each estimation
period for the two sets of parameters. Dates, parameters and initial short rates are found in Table
13.1.
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Date for t = 0 ψ θ σ r(0)
02-09-2008 0.2592 0.0063 0.0840 0.0165
01-06-2011 0.6957 0.0097 0.1448 0.00048

Table 13.1: Date of pricing along with the corresponding short rate parameters and initial short rate.

The swaption structures and prices presented in Table 13.2 and 13.3 will be the ones used to
price the CVA on a 5-year credit risky swap in the next chapter. Hence, according to Proposition
7.2 on page 61, the swaption prices are based on the appropriate forward swap rate and a strike
corresponding to the fixed rate that renders a 5-year swap value zero at the time of pricing.
Tables 13.2 and 13.3 contain prices evaluated using parameters and initial short rate according to
02-09-2008 and 01-06-2011 in Table 13.1, respectively. Notional is set to 1 in both tables. Prices
for the same structures but with different strikes can be found in Appendix D.

Type Expiry Tenor Forward swap rate Strike Price
Payer 1 4 0.01108391 0.01196713 0.00599427
Payer 2 3 0.01034756 0.01196713 0.00508406
Payer 3 2 0.00973504 0.01196713 0.00277271
Payer 4 1 0.00922584 0.01196713 0.00196096

Receiver 1 4 0.01108391 0.01196713 0.00936047
Receiver 2 3 0.01034756 0.01196713 0.00968399
Receiver 3 2 0.00973504 0.01196713 0.00697943
Receiver 4 1 0.00922584 0.01196713 0.00452829

Table 13.2: Swaption prices for different expiries and tenors using a strike corresponding to the fixed rate
that renders a 5-year swap value zero at the time of pricing. Parameters and initial short rate according
to 02-09-2008.
Parameters: ψ = 0.2592, θ = 0.0063, σ = 0.0840 and r(0) = 0.0165.

Type Expiry Tenor Forward swap rate Strike Price
Payer 1 4 0.00807759 0.00705745 0.01145685
Payer 2 3 0.00865566 0.00705745 0.00774370
Payer 3 2 0.00898723 0.00705745 0.00565201
Payer 4 1 0.00918096 0.00705745 0.00356429

Receiver 1 4 0.00807759 0.00705745 0.00748159
Receiver 2 3 0.00865566 0.00705745 0.00308635
Receiver 3 2 0.00898723 0.00705745 0.00192073
Receiver 4 1 0.00918096 0.00705745 0.00152306

Table 13.3: Swaption prices for different expiries and tenors using a strike corresponding to the fixed rate
that renders a 5-year swap value zero at the time of pricing. Parameters and initial short rate according
to 01-06-2011.
Parameters: ψ = 0.6957, θ = 0.0097, σ = 0.1448 and r(0) = 0.00048.

In Table 13.2 we see that, given the short rate parameters, the specific structures imply that
the forward swap rate is decreasing in increasing expiries and decreasing tenors. Consequently,
payer swaptions are OTM and receiver swaptions are ITM and receiver prices are higher than the
corresponding payer prices. In Table 13.3, the almost exact opposite tendency is observed. Here
the forward swap rate is increasing in increasing expiries and decreasing tenors making payer
swaptions ITM and receiver swaptions OTM. This results in higher payer prices compared to
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the corresponding receiver prices. Overall, it seems that both payer and receiver swaption prices
decline when expiry increases and tenor decreases regardless of moneyness.

In Table 13.4 and 13.5 we have listed the swaption structures along with the prices that we will
use to price the CVA on a 10-year credit risky swap. Again, notional is set to 1 and the strike
level corresponds to the fixed rate that renders a 10-year swap value zero at the time of pricing.
Prices in Table 13.4 and 13.5 are evaluated using parameters and initial short rate according to
02-09-2008 and 01-06-2011 in Table 13.1, respectively. Prices for the same structures but with
different strikes can be found in Appendix D.

Not surprisingly, each set of parameters implies the same forward rate structure for increas-
ing expiries and decreasing tenors as in Table 13.2 and 13.3. Also, the same moneyness applies
to payer and receiver swaptions given short rate parameters and strike. Thus, receiver prices
are higher than the corresponding payer prices in Table 13.4 and lower in Table 13.5. However,
prices seem a bit less predictable when comparing different swaption structures, especially when
it comes to receiver swaptions. In Table 13.5 receiver swaption prices initially decline for increas-
ing swaption maturities and decreasing swap maturities. However, this tendency is reversed as
the structures have longer expiry than tenor. This ultimately means that a 1-year swaption on
a 9-year swap has almost the same value as a 9-year swaption on a 1-year swap, even though
both swaptions have different levels of moneyness. It is difficult to pinpoint exactly what causes
this specific price pattern, since many different factors such as expiry, tenor, moneyness and the
underlying parameters are in play. For payer swaptions we see the same pattern as in Table 13.2
and 13.3, where prices decline with increasing expiries and decreasing tenors.

Type Expiry Tenor Forward swap rate Strike Price
Payer 1 9 0.00913943 0.00979415 0.02317616
Payer 2 8 0.00860422 0.00979415 0.00644471
Payer 3 7 0.00816791 0.00979415 0.00423117
Payer 4 6 0.00781265 0.00979415 0.00578964
Payer 5 5 0.00752337 0.00979415 0.00669477
Payer 6 4 0.00728757 0.00979415 0.00424049
Payer 7 3 0.00709502 0.00979415 0.00343792
Payer 8 2 0.00693740 0.00979415 0.00237650
Payer 9 1 0.00680797 0.00979415 0.00132579

Receiver 1 9 0.00913943 0.00979415 0.02865414
Receiver 2 8 0.00860422 0.00979415 0.01529766
Receiver 3 7 0.00816791 0.00979415 0.01477525
Receiver 4 6 0.00781265 0.00979415 0.01674595
Receiver 5 5 0.00752337 0.00979415 0.01710038
Receiver 6 4 0.00728757 0.00979415 0.01340605
Receiver 7 3 0.00709502 0.00979415 0.01081317
Receiver 8 2 0.00693740 0.00979415 0.00755866
Receiver 9 1 0.00680797 0.00979415 0.00402387

Table 13.4: Swaption prices for different expiries and tenors using a strike corresponding to the fixed rate
that renders a 10-year swap value zero at the time of pricing. Parameters and initial short rate according
to 02-09-2008.
Parameters: ψ = 0.2592, θ = 0.0063, σ = 0.0840 and r(0) = 0.0165.
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Type Expiry Tenor Forward swap rate Strike Price
Payer 1 9 0.00884053 0.00823972 0.02959479
Payer 2 8 0.00916161 0.00823972 0.02324693
Payer 3 7 0.00933355 0.00823972 0.02133001
Payer 4 6 0.00942623 0.00823972 0.01465500
Payer 5 5 0.00947668 0.00823972 0.01285245
Payer 6 4 0.00950449 0.00823972 0.01089490
Payer 7 3 0.00952007 0.00823972 0.00881937
Payer 8 2 0.00952895 0.00823972 0.00650328
Payer 9 1 0.00953412 0.00823972 0.00374704

Receiver 1 9 0.00884053 0.00823972 0.01431507
Receiver 2 8 0.00916161 0.00823972 0.00727240
Receiver 3 7 0.00933355 0.00823972 0.00627567
Receiver 4 6 0.00942623 0.00823972 0.00126930
Receiver 5 5 0.00947668 0.00823972 0.00151801
Receiver 6 4 0.00950449 0.00823972 0.00177036
Receiver 7 3 0.00952007 0.00823972 0.00196877
Receiver 8 2 0.00952895 0.00823972 0.00194512
Receiver 9 1 0.00953412 0.00823972 0.00147652

Table 13.5: Swaption prices for different expiries and tenors using a strike corresponding to the fixed rate
that renders a 10-year swap value zero at the time of pricing. Parameters and initial short rate according
to 01-06-2011.
Parameters: ψ = 0.6957, θ = 0.0097, σ = 0.1448 and r(0) = 0.00048.

In Figure 13.10, we have depicted two integrands for different swaption structures based on
the two sets of parameters. As the figure indicates, both integrands are similar in shape and
are asymptotically converging to zero around some value of u in the interval 40-50. Similar
convergence levels arise for the other swaption structures presented in the four tables above.
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Figure 13.10: Integrands for different ATM swaption structures.
The left panel: ψ = 0.2592, θ = 0.0063, σ = 0.0840 and r(0) = 0.0165.
The right panel: ψ = 0.6957, θ = 0.0097, σ = 0.1448 and r(0) = 0.00048.
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Chapter 14

CVA Results

Having derived implied default probabilities for our two fictional counterparties HSBC and Fiat
and obtained swaption prices for various swaption structures, we are now ready to calculate
CVAs on two credit risky swaps with maturity of five and ten years. The CVA calculations will
be performed using the approximation of the analytical CVA formula stated in (7.15) on page 62
using the estimated 1-year implied modeled default probabilities presented in Table 12.4 on page
98 and the swaption prices in Table 13.2, 13.3, 13.4 and 13.5 on pages 110, 110, 111 and 112,
respectively. Recovery is assumed constant and set to 40%. Both payer and receiver swaps will
be considered.

Consequently, we place ourselves on the two different dates; the 2 September 2008 and 1 June
2011. The CVAs calculated on 2 September 2008 will be performed using 1-year implied default
probabilities estimated in the period between 2007 and 2008 along with swaption prices based on
the short rate parameters presented in Table 13.1 on page 110. Similarly, the CVAs calculated on
1 June 2011 will be performed using 1-year implied default probabilities estimated in the period
between 2010 and 2011 along with swaption prices derived from the short rate parameters also
presented in Table 13.1.

We consider a fictional scenario where a default free entity engages in swap contracts with the
two defaultable counterparties HSBC and Fiat. These swap contracts will have maturities of five
and ten years and we will consider the case where the default free entity takes both the payer
and receiver side of the swap contracts. The goal is therefore to calculate the CVA that both
counterparties will have to pay in order to compensate the default free entity for bearing all the
default risk. The CVA can be represented as an upfront payment or be incorporated in the swap
rate.

14.1 Preliminary Thoughts
Before presenting the results of our CVA calculations, some thoughts on what affects the size of the
CVA might be insightful. As discussed in Section 7.2 and as (7.15) indicates, the CVA on swaps
depends on the default term structure of the counterparty and the price of the swaptions that
quantifies the exposure within the swap contract. Therefore, understanding the effect of these two
components is essential in order to compare CVAs for different counterparties and swap contracts.

One seemingly straightforward consequence is that a higher probability of default must imply
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a higher CVA. This seems very intuitive and can also be confirmed quite easily by studying the
approximative formula in (7.15). However as the formula indicates, this depends on the shape
of the default term structure and the swap maturity. If a counterparty is considered risky in
the sense that the probability of defaulting within, for instance, the next 20 years is large but
small within the next five years, the CVA on a swap contract with a short maturity might be
surprisingly small all else equal. Hence, the shape of the default term structure must be carefully
examined in connection with the swap maturity when interpreting CVA charges.

The effect of swaption prices on CVA charges is less obvious. Of course, higher swaption prices
imply higher CVAs and vice versa, but it is the term structure of the forward swap rates that
determines the impact of the swaptions, since it determines if the swap is a liability or an asset.
However, the effect of increasing expiries and decreasing tenors for the swaptions might reduce
the impact they have.

14.2 Results
We are now ready to present the CVA calculations based on the setup described in the introduction
to this chapter. The results are given in Table 14.1. The results for each counterparty are divided
into date of pricing, maturity of the swap contract, and position in the swap.

Counterparty Date Swap Maturity Swap Type CVA
HSBC 02-09-2008 5Y Payer 0.00012718
HSBC 02-09-2008 5Y Receiver 0.00026186
HSBC 02-09-2008 10Y Payer 0.00050620
HSBC 02-09-2008 10Y Receiver 0.00129843
FIAT 02-09-2008 5Y Payer 0.00020383
FIAT 02-09-2008 5Y Receiver 0.00041890
FIAT 02-09-2008 10Y Payer 0.00081646
FIAT 02-09-2008 10Y Receiver 0.00208504
HSBC 01-06-2011 5Y Payer 0.00019634
HSBC 01-06-2011 5Y Receiver 0.00008928
HSBC 01-06-2011 10Y Payer 0.00112999
HSBC 01-06-2011 10Y Receiver 0.00028534
FIAT 01-06-2011 5Y Payer 0.00182605
FIAT 01-06-2011 5Y Receiver 0.00082502
FIAT 01-06-2011 10Y Payer 0.00793644
FIAT 01-06-2011 10Y Receiver 0.00214900

Table 14.1: CVAs on 5-year and 10-year payer and receiver swaps with HSBC and Fiat as counterparties
computed on 2 September 2008 and 1 June 2011.

Considering the results in Table 14.1, we can make the following observations

• The CVA for Fiat is higher than for HSBC when comparing swaps with equal maturity
computed on the same date. This makes perfect sense since the 1-year implied default
probabilities in Table 12.4 on page 98 are higher for Fiat than for HSBC in both periods,
whereas the swaption prices used are the same for both CVAs.

• 10-year swaps imply a higher CVA than the corresponding CVA on a 5-year swap for both
HSBC and for Fiat. Again, this seems like a reasonable consequence since the CVA on
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a 10-year swap contains the same first five 1-year implied default probabilities as the 5-
year swap plus additional implied default probabilities associated with the longer maturity.
Furthermore, the longer maturity implies more swaption prices.

• CVAs on receiver swaps are higher than CVAs on payer swaps when priced on 2 September
2008. Since payer and receiver swaps are priced using the same default probabilities, the
difference in the size of CVAs lies in the swaption prices. By looking at Table 13.2 on page
110 and Table 13.4 on page 111 we see that prices for receivers are higher than for payers
for given structures. Hence, for a given swap maturity we observe a higher CVA for receiver
swaps.
The exact opposite situation applies to CVA prices on 1 June 2011. Here CVAs on payer
swaps are higher than on receiver swaps. Again, the reason for this consistent difference
can be found by observing that prices for payers are higher than for receivers in Table 13.3
on page 110 and Table 13.5 on page 112.

• For Fiat, the CVAs computed on 1 June 2011 are higher compared to the CVAs computed
on 2 September 2008. This is mainly due to the higher implied default probabilities derived
from the CDS term structure observed between 2010-2011.

These observations are made simply by comparing the CVAs in Table 14.1. Fortunately, the
CVAs seem to make sense in that they can be accounted for in terms of default probabilities and
swaption prices.

Instead of considering the CVA as an upfront payment, we will now try to incorporate it in
the swap rate in order to get a better sense of what the CVA actually entails for a risky swap.
To do this, we can use the formula in Proposition 7.1 on page 59, which states the connection
between the price of a risky swap and a risk free swap through the CVA. Thus, applying the
formula in Proposition 7.1 combined with the price of a risk free payer swap derived in (3.13) on
page 16, we can express the price of a risky payer swap denoted π̃pay(t, T ) at time t as

π̃pay(t, T ) = D(t, Tn)−D(t, TN )− κPn+1,N (t)− CVA(t). (14.1)

Assuming that the forward swap rate for a risky payer swap, κ̃pay, is chosen so the value of the
risky payer swap has value zero at the time of inception, we can obtain the forward swap rate by
rearranging (14.1) such that

κ̃pay = D(0, Tn)−D(0, TN )− CVA(0)
Pn+1,N (0) = yn,N (t)− CVA(0)

Pn+1,N (0) . (14.2)

By performing a similar derivation for the equivalent receiver swap we end up with the following
expression for the forward swap rate

κ̃rec = D(0, Tn)−D(0, TN ) + CVA(0)
Pn+1,N (0) = yn,N (t) + CVA(0)

Pn+1,N (0) . (14.3)

Consequently, the forward swap rate derived at inception differs for risky payer and receiver swaps
unlike in the default free case. Compared to the default free case, we now recover a forward swap
rate which is lower for payer swaps and higher for receiver swaps. This seems reasonable seeing
that the default free entity will require a higher (lower) fixed rate as a premium (discount) to
bear the default risk when engaging in a receiver (payer) swap with a defaultable counterparty.

As an example, let us consider the 10-year receiver swap with Fiat as counterparty using the
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CVA computed on 1 June 2011. The risk free swap rate was found to be 0.00823972, which
means that

κ̃rec = 0.00823972 + 0.00214900
P1,10(0) = 0.008463506. (14.4)

Hence, we can confirm an increase in the swap rate for the risky receiver swap. Including the
CVA in the swap rate appears to be a more intuitive way to illustrate the effect of counterparty
credit risk in swap valuation, since it preserves the original swap characteristics such as zero value
at inception.
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Chapter 15

Discussion

The CVA prices presented in the last chapter were derived from a swaption model framework and
an intensity framework. Both models were combined in one single formula that quantified the
counterparty risk on a swap contract in terms of the CVA. In order to recover the CVA, we had to
assume that the short rate and the intensity were independent. The assumption of independence
is one of the topics we wish to discuss in this chapter.

In our implementation of the swaption and intensity model we employed two different estima-
tion procedures. The parameters for the underlying short rate in the swaption framework were
found using maximum likelihood whereas the parameters for the intensity model were found by
minimizing the RMSE. Both estimation procedures were justified, yet still subject to estimation
errors and have therefore room for improvement. Hence, alternative estimation schemes will also
be a topic of this chapter.

15.1 Independence and Wrong-way Risk
The key step in the derivation of the CVA formula for swaps was to assume independence be-
tween default probabilities, interest rates and the recovery rate, which we assumed constant. This
assumption meant that we could compute CVAs for swaps as a sum of independent terms, where
each term consisted of a swaption price multiplied by a default probability. The recovery rate
could then be multiplied as a factor to the sum. Allowing this simplification implied that we
could focus on pricing swaptions and deriving default probabilities separately while not having to
worry about the interaction between the two, thus reducing the complexity of the computation
greatly.

The interpretation of independence between interest rates and default probabilities basically
means that the level of interest rates has no effect on the credit quality of the counterparty.
Whether this is actually a realistic assumption obviously depends on the counterparty in ques-
tion. But one could argue that the financial health of firms usually relies on interest rates, since
they determine the price of borrowing money, which all institutions depend on. For instance, the
credit quality of highly leveraged institutions may deteriorate dramatically when interest rates
rise making loans more expensive. This could translate into a higher probability of default. Also,
declining interest rate levels usually imply a downturn in the economy, which could lead to a large
number of corporate defaults.

This discussion leads us to the concept of Wrong-way risk. Wrong-way risk is a term used

117



15.1. Independence and Wrong-way Risk Discussion

to describe an unfavourable dependence between exposure and the credit quality of the counter-
party. Unfavorable meaning that there is a positive relationship between exposure and the default
probability of the counterparty. The presence of wrong-way risk in derivatives can potentially
increase the counterparty credit risk substantially even though the dependence seems negligible.
Connected to the concept of wrong-way risk is the concept of right-way risk. Right-way risk is
the opposite of wrong-way risk in that it indicates a beneficial relationship between exposure and
default probability, which leads to a lower counterparty risk. So, whereas wrong-way risk is best
avoided when dealing with derivatives, right-way risk is a positive feature.

Both wrong-way and right-way risks can be present in swap contracts. Consider the scenario
where the default free entity engages in a receiver swap contract with a defaultable counterparty.
The economy goes into a recession which leads to lower interest rates and a higher level of cor-
porate defaults due to falling profits from lower consumption. In this scenario, the exposure in
the receiver swap contract rises due to the falling interest rates. However, the higher number
of defaults due to the recession increases the default risk of the counterparty. This suggests the
presence of wrong-way risk in the receiver swap. On the other hand, a payer swap would, in
the same scenario, be exposed to right-way risk, since the swap exposure declines along with the
falling interest rates.

The fact that swaps could be exposed to wrong-way and right-way risk underlines the fact that
CVAs on swaps should take this into account in order to accurately price the counterparty risk.
Wrong-way risk will increase the CVA, while right-way risk will decrease the CVA. The most
important of these two risk concepts seem to be wrong-way risk due to the negative consequences
associated with this kind of risk. Generally, there are two ways of incorporating wrong-way risk
into the computation of CVAs on swaps:

• Quantify the economic relationship between interest rates and the default of the counter-
party. This may, however, be very difficult and might also increase the complexity of the
CVA computation significantly.

• Take a simple and more ad hoc approach, where one for example adjusts the default prob-
abilities upwards in order to account for the wrong-way risk.

Both methods could be applied in the CVA formula for swaps we derived in Section 7.2, however,
the first approach would require some additional mathematical modeling. In the next section we
will make a suggestion as to how this can be done.

15.1.1 Modelling Wrong-way Risk by Correlation

One way we could model wrong-way risk would be to abandon the independence assumption
in the CVA formula in Proposition 7.2 on page 61. Instead, we could compute the CVA using
the expectation in Proposition 7.1 on page 59. As a consequence, we would have to model the
correlation between the short rate and the default intensity. In Brigo et al. (2010) the short rate
and the intensity processes are correlated since they assume that the driving Brownian motions in
both process are instantaneously correlated. In our case, this would apply for the two one-factor
CIR processes. This would introduce a correlation parameter in the estimation process resulting
in a more complex estimation. Pricing the CVA would then have to be performed using numerical
techniques such as Monte Carlo simulation.

Using correlation as a measurement for wrong-way risk can turn out to be dangerous since cor-
relation only measures the linear relationship between the short rate and the intensity. Consider
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the case where a small movement in interest rates has no real affect on the credit quality of the
counterparty, but where a large movement has a drastic affect. This relationship would not be
captured by the correlation. Hence, correlation is not necessarily the best proxy for wrong-way
risk. However, it would probably result in a more realistic CVA size but at the same time also
make the computational aspects more complex and thus more time consuming.

15.2 Intensity Estimation
Generally, choosing a one-factor CIR model for the intensity to stipulate the default dynamics
seems to work well when minimizing the RMSE between the observed CDS quotes and fitted
CDS quotes. This can be confirmed by looking at Table 12.3 on page 97. This suggests that
expanding the intensity dynamics to a multi factor setup is unnecessary. The implied default
term structure derived from taking the mean of the parameter estimates also generally seems to
correspond well to the observed CDS quotes. However, in the case of Fiat the implied default
term structure, given the mean of the parameter estimates, turned out to be less convincing. In
Figure 12.3 on page 98 we saw that when positioning ourselves in June 2011 the accumulated
default probabilities for Fiat were extremely high, predicting a probability of default of up to
80% within the next nine years and a probability of almost 100% within the next 20 years. This
seems rather unrealistic when comparing the default probabilities with the observed CDS quotes
in that period. However, the shape of the term structure was a consequence of the high estimates
for the volatility and mean reversion parameter. Thus, one could argue that a better estimation
procedure might result in parameter estimates that allow for an implied default term structure
more in line with the observed CDS quotes.

One way of obtaining a more realistic default term structure could be to base the estimation on
a larger set of historically observed CDS term structures. However, expanding the set of obser-
vations could affect the parameter estimates negatively, since averaging over a large set of data
might increase the standard deviation, thereby making the parameters less statistically signifi-
cant. This would probably be the case for HSBC since the volatility on its CDS term structures
during the last four years has been relatively high cf. Figure 12.1 on page 95. A natural extension
to an estimation procedure based on a large set of CDS term structures would be to place greater
emphasis on observations that are considered more important for the estimation. For instance,
placing greater emphasis on recent observations and less on observations in the past. This could
be achieved by applying an Exponential Weighted Moving Average approach where the weighting
decreases exponentially, so that for each older observation the weight decreases exponentially
never reaching zero. This would be a more intuitive way to handle a large set of data.

Another approach could be to fix one global set of parameters to fit all the observed term struc-
tures instead of fitting a set of parameters for each observed term structure. Thus leaving the
initial intensity λ(0) to act as the latent variable to be fitted for each observed term structure. In
this way, we could avoid the possibility of averaging over a set of parameters with high variance.
This estimation procedure would in principle result in a perfect fit for the term structures, since
λ(0) would always equal the residual. The variation in the λs would then give an indication of
the performance of the fit given the set of parameters. It is difficult to say whether this would
result in a more realistic implied default structure.
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15.3. Swaption Estimation Discussion

Instead of deriving default probabilities using an intensity framework, we could have chosen
a more straightforward approach where implied default probabilities are derived directly from
observed CDS quotes by a simple bootstrapping procedure. Since this method does not require
any model specification, one could argue that these probabilities come closer to the ”true” default
probabilities. This method does, however, have certain limitations. The most important of these
being that the method, unlike the intensity approach, lacks the ability to predict future default
probabilities beyond the longest CDS maturity observed in the market. Another limitation is
that one has to incorporate an interpolation scheme in order to obtain default probabilities in
between yearly observations. However, a bootstrapping procedure would probably have resulted
in a more realistic 10-year implied default term structure for Fiat.

15.3 Swaption Estimation
The estimation procedure we used for the swaption model framework was to fit parameters for
the one-factor CIR short rate model based on the observed yield of the three-month US Treasury
Benchmark Bond using maximum likelihood. This procedure turned out to be very stable and
gave parameter estimates that seemed reasonable. A more natural approach would have been to
estimate the parameters by minimizing the RMSE between model prices and observed swaption
prices obtained from the market. This would ensure that the model prices are consistent with
the market. In this way, the short rate parameters would be estimated implicitly in the model,
thereby avoiding the decision of choosing a relevant risk free interest rate proxy.

One problem with this procedure could turn out to be our choice of short rate model. As we
argued in the beginning of this thesis paper, the choice of modeling the short rate according to a
simple one-factor CIR model was decided upon to illustrate how pricing swaptions based on affine
models could be done. On the other hand, we also showed that the setup was flexible and could
easily be expanded allowing for a more complicated short rate model with several factors. One
could imagine that the one-factor CIR model would lack the flexibility needed to fit swaption
prices due to the relatively small amount of parameters. Therefore, a multi-factor short rate
model might be more appropriate even though this would result in a more comprehensive and
complicated estimation process. An argument against this estimation procedure is that we would
obtain parameters fitted specifically to the swaption market. Hence, using the same parameters
for deriving implied default probabilities from the CDS market might not be appropriate, since
the parameters would have a bias towards the swaption market.

Another approach, more in line with the one we chose, would be to extract ZCB prices from
the market to create a sort of empirical ZCB term structure. We could then choose the short rate
parameters so that the theoretical ZCB term structure fits the empirical term structure. In this
case, we would still need to specify a risk free term structure. There is, however, no reason why
this method should result in more realistic swaption prices.
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Chapter 16

Conclusions

In this master’s thesis we have treated the subject of how to price counterparty credit risk in
interest rate swaps. For a generic risky claim, we proved that it could be divided into a risk
free price minus a CVA. Furthermore, we proved that the price of a credit risky swap, under
independence assumptions, equaled an infinite sum of swaption prices multiplied by marginal
default probabilities. Our goal then became to price swaptions and derive default probabilities.
In doing so, we established a general asset pricing framework and showed how to expand it to
include Fourier inversion techniques so that the swaption pricing model of Pelsser and Schrager
(2006) could be applied. Furthermore, it was necessary to investigate the class of affine term
structure models that the swaption pricing model was built within. The swaption model had its
immediate advantages of stipulating the dynamics of possibly any affine term structure model.
Moreover, the affine framework ensured semi-analytical solutions to zero coupon bonds and the
characteristic function of the future interest rate distribution.

In the pursuit of default probabilities, we examined the intensity models proposed in Lando
(1998). By adopting comparable affine assumptions in terms of the intensity process, we were
able to reuse the tractable properties of the affine class so that closed form solutions were obtain-
able to the survival and default probabilities.

By specifying a one-factor CIR model for both the short interest rate and the default inten-
sity, we were able to explore the models in detail. For the swaption pricing model, we had to
solve a set of complex differential equations in order to obtain the mentioned characteristic func-
tion. In order to conduct this operation, we found it necessary to solve only for integer values of
the characteristic function and then incorporate a cubic spline. By using Monte Carlo methods,
we were able to show that this approach had practically no effect on the characteristic function.
Concerning the LVM approximation of the swap rate dynamics under the swap measure, we tested
against the non-approximated dynamics by using Monte Carlo methods and found that the LVM
assumption worked out very satisfyingly. In terms of actual swaption prices, we found that they
were somewhat dependent on the dampening-factor α, and which α to choose seemed ambiguous
when comparing to the equivalent Monte Carlo prices, which of course is also subject to estima-
tion errors. Lastly, for the swaption model we computed both payer and receiver swaption prices
for different swaption structures.

Considering the implementation of the intensity model, the affine assumptions made usage more
straightforward compared to the swaption pricing model. Estimations naturally seemed better
given less fluctuation in observed CDS spreads. Standard deviations of estimates clearly became
undesirably high in certain periods of time. In particular, default estimates of Fiat using 2010-
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Conclusions

2011 data seemed overestimated. Perhaps a different estimation routine or a more complex model
would be able to achieve a more realistic forecast.

Studying the interplay between the two models, we presented CVA prices for different swap
specifics using models estimated over different time periods for two different companies acting
as counterparties in a swap contract. In spite of the mentioned drawbacks, the interplay of our
proposed models still exhibited CVA prices that seemed reasonable in terms of size, given that the
overall default risk level has increased since 1994. Furthermore, the CVAs exhibited a reasonable
quantitative relationship between each other. As expected, we were prone to find CVAs that were
characterized by a small risk premium that became significant due to the typically large size of
swap notional in a trade and due to the immense size of the swap market in general. Ultimately,
we showed explicitly how the CVA could be directly incorporated in the swap rate, allowing the
swap value to remain zero upon inception so that an upfront payment could be avoided.
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Appendix A

Dynamics of 1
M(t)

The dynamics of the money market account is given by

dM(t) = r(t)M(t)dt.

By an application of Itô’s formula, the dynamics of 1
M(t) is found as

d

( 1
M(t)

)
= − 1

M(t)2dM(t) + 1
M(t)3 (dM(t))2

= − 1
M(t)2 r(t)M(t)dt+ 1

M(t)3 r(t)
2M(t)2(dt)2

= −r(t) 1
M(t)dt.
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Appendix B

Derivation of Equation (8.7) on page
65

Since dPn+1,N (t) =
∑N
i=n+1 ∆dD(t, Ti) and d

(
1

M(t)

)
= −r(t) 1

M(t)dt
1, an application of Itô’s

product rule yields

d

(
Pn+1,N (t)
M(t)

)
= −

N∑
i=n+1

∆D(t, Ti)r(t)
1

M(t)dt+ 1
M(t)

N∑
i=n+1

∆dD(t, Ti)

− r(t) 1
M(t)dt

N∑
i=n+1

∆dD(t, Ti)

= 1
M(t)

(
−

N∑
i=n+1

∆D(t, Ti)r(t)dt

+
N∑

i=n+1
∆
(
r(t)D(t, Ti)dt−B(t, Ti)ᵀD(t, Ti)Σ

√
V (t)dWQ(t)

)

− r(t)dt
N∑

i=n+1
∆
(
r(t)D(t, Ti)dt−B(t, Ti)ᵀD(t, Ti)Σ

√
V (t)dWQ(t)

))

= 1
M(t)

(
−

N∑
i=n+1

∆D(t, Ti)r(t)dt+
N∑

i=n+1
∆r(t)D(t, Ti)dt

−
N∑

i=n+1
∆B(t, Ti)ᵀD(t, Ti)Σ

√
V (t)dWQ(t)

)

= −
N∑

i=n+1
∆B(t, Ti)ᵀ

D(t, Ti)
M(t) Σ

√
V (t)dWQ(t)

= −
N∑

i=n+1

(
∆B(t, Ti)ᵀ

D(t, Ti)
Pn+1,N (t)Σ

√
V (t)

)
Pn+1,N (t)
M(t) dWQ.

1See Appendix A for a derivation.
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Appendix C

Initial OLS Estimates for ψ and θ

The initial OLS estimates achieved by solving (11.5) on page 89 are given as

ψ̂ =
N2 − 2N + 1 +

∑N−1
i=1 r(ti+1)

∑N−1
i=1

1
r(ti) −

∑N−1
i=1 r(ti)

∑N−1
i=1

1
r(ti) − (N − 1)

∑N−1
i=1

r(ti+1)
r(ti)(

N2 − 2N + 1−
∑N−1
i=1 r(ti)

∑N−1
i=1

1
r(ti)

)
∆t

,

θ̂ =
(N − 1)

∑N−1
i=1 r(ti+1)−

∑N−1
i=1

r(ti+1)
r(ti)

∑N−1
i=1 r(ti)

N2 − 2N + 1 +
∑N−1
i=1 r(ti+1)

∑N−1
i=1

1
r(ti) −

∑N−1
i=1 r(ti)

∑N−1
i=1

1
r(ti) − (N − 1)

∑N−1
i=1

r(ti+1)
r(ti)

.
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Swaption Prices

Appendix D

Swaption Prices

Type Expiry Tenor Forward swap rate Strike Price
Payer 1 4 0.01108391 0.008 0.01572655
Payer 1 4 0.01108391 0.010 0.00986714
Payer 1 4 0.01108391 0.012 0.00595074
Payer 1 4 0.01108391 0.014 0.00408964
Payer 2 3 0.01034756 0.008 0.01115864
Payer 2 3 0.01034756 0.010 0.00746831
Payer 2 3 0.01034756 0.012 0.00505427
Payer 2 3 0.01034756 0.014 0.00369796
Payer 3 2 0.00973504 0.008 0.00631092
Payer 3 2 0.00973504 0.010 0.00410456
Payer 3 2 0.00973504 0.012 0.00275635
Payer 3 2 0.00973504 0.014 0.00198192
Payer 4 1 0.00922584 0.008 0.00353003
Payer 4 1 0.00922584 0.010 0.00254452
Payer 4 1 0.00922584 0.012 0.00195343
Payer 4 1 0.00922584 0.014 0.00155515

Receiver 1 4 0.01108391 0.008 0.00396856
Receiver 1 4 0.01108391 0.010 0.00573530
Receiver 1 4 0.01108391 0.012 0.00944223
Receiver 1 4 0.01108391 0.014 0.01520836
Receiver 2 3 0.01034756 0.008 0.00448857
Receiver 2 3 0.01034756 0.010 0.00648033
Receiver 2 3 0.01034756 0.012 0.00974760
Receiver 2 3 0.01034756 0.014 0.01407580
Receiver 3 2 0.00973504 0.008 0.00303934
Receiver 3 2 0.00973504 0.010 0.00460292
Receiver 3 2 0.00973504 0.012 0.00702505
Receiver 3 2 0.00973504 0.014 0.01002328
Receiver 4 1 0.00922584 0.008 0.00238093
Receiver 4 1 0.00922584 0.010 0.00326877
Receiver 4 1 0.00922584 0.012 0.00455157
Receiver 4 1 0.00922584 0.014 0.00602809

Table D.1: Swaption prices for different expiries, tenors and strikes. Parameters and initial short rate
according to 02-09-2008.
Parameters: ψ = 0.2592, θ = 0.0063, σ = 0.0840 and r(0) = 0.0165.
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Swaption Prices

Type Expiry Tenor Forward swap rate Strike Price
Payer 1 4 0.00807759 0.006 0.01428714
Payer 1 4 0.00807759 0.008 0.00936138
Payer 1 4 0.00807759 0.010 0.00635672
Payer 1 4 0.00807759 0.012 0.00474148
Payer 2 3 0.00865566 0.006 0.01040495
Payer 2 3 0.00865566 0.008 0.00580401
Payer 2 3 0.00865566 0.010 0.00326116
Payer 2 3 0.00865566 0.012 0.00260198
Payer 3 2 0.00898723 0.006 0.00731194
Payer 3 2 0.00898723 0.008 0.00436170
Payer 3 2 0.00898723 0.010 0.00243594
Payer 3 2 0.00898723 0.012 0.00152823
Payer 4 1 0.00918096 0.006 0.00436950
Payer 4 1 0.00918096 0.008 0.00291530
Payer 4 1 0.00918096 0.010 0.00190495
Payer 4 1 0.00918096 0.012 0.00137854

Receiver 1 4 0.00807759 0.006 0.00619253
Receiver 1 4 0.00807759 0.008 0.00905704
Receiver 1 4 0.00807759 0.010 0.01384238
Receiver 1 4 0.00807759 0.012 0.02002184
Receiver 2 3 0.00865566 0.006 0.00266517
Receiver 2 3 0.00865566 0.008 0.00389281
Receiver 2 3 0.00865566 0.010 0.00717607
Receiver 2 3 0.00865566 0.012 0.01234763
Receiver 3 2 0.00898723 0.006 0.00153519
Receiver 3 2 0.00898723 0.008 0.00245292
Receiver 3 2 0.00898723 0.010 0.00439336
Receiver 3 2 0.00898723 0.012 0.00735366
Receiver 4 1 0.00918096 0.006 0.00131160
Receiver 4 1 0.00918096 0.008 0.00178000
Receiver 4 1 0.00918096 0.010 0.00269139
Receiver 4 1 0.00918096 0.012 0.00408738

Table D.2: Swaption prices for different expiries, tenors and strikes. Parameters and initial short rate
according to 01-06-2011.
Parameters: ψ = 0.6957, θ = 0.0097, σ = 0.1448 and r(0) = 0.00048.
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Swaption Prices

Type Expiry Tenor Forward swap rate Strike Price
Payer 1 9 0,00913943 0.007 0.03679131
Payer 1 9 0,00913943 0.009 0.02629927
Payer 1 9 0,00913943 0.011 0.01954531
Payer 1 9 0,00913943 0.013 0.01544135
Payer 2 8 0.00860422 0.007 0.01789134
Payer 2 8 0.00860422 0.009 0.00816675
Payer 2 8 0.00860422 0.011 0.00554047
Payer 2 8 0.00860422 0.013 0.00486095
Payer 3 7 0.00816791 0.007 0.01227909
Payer 3 7 0.00816791 0.009 0.00523414
Payer 3 7 0.00816791 0.011 0.00382243
Payer 3 7 0.00816791 0.013 0.00324209
Payer 4 6 0.00781265 0.007 0.01165067
Payer 4 6 0.00781265 0.009 0.00658539
Payer 4 6 0.00781265 0.011 0.00511319
Payer 4 6 0.00781265 0.013 0.00351797
Payer 5 5 0.00752337 0.007 0.01184249
Payer 5 5 0.00752337 0.009 0.00777077
Payer 5 5 0.00752337 0.011 0.00545813
Payer 5 5 0.00752337 0.013 0.00400300
Payer 6 4 0.00728757 0.007 0.00729544
Payer 6 4 0.00728757 0.009 0.00468087
Payer 6 4 0.00728757 0.011 0.00369795
Payer 6 4 0.00728757 0.013 0.00247859
Payer 7 3 0.00709502 0.007 0.00529525
Payer 7 3 0.00709502 0.009 0.00364793
Payer 7 3 0.00709502 0.011 0.00312946
Payer 7 3 0.00709502 0.013 0.00216330
Payer 8 2 0.00693740 0.007 0.00390761
Payer 8 2 0.00693740 0.009 0.00265519
Payer 8 2 0.00693740 0.011 0.00205220
Payer 8 2 0.00693740 0.013 0.00157291
Payer 9 1 0.00680797 0.007 0.00206548
Payer 9 1 0.00680797 0.009 0.00146415
Payer 9 1 0.00680797 0.011 0.00115831
Payer 9 1 0.00680797 0.013 0.00090618

Table D.3: Payer swaption prices for different expiries, tenors and strikes. Parameters and initial short
rate according to 02-09-2008.
Parameters: ψ = 0.2592, θ = 0.0063, σ = 0.0840 and r(0) = 0.0165.
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Type Expiry Tenor Forward swap rate Strike Price
Receiver 1 9 0,00913943 0.007 0.01885548
Receiver 1 9 0,00913943 0.009 0.02512333
Receiver 1 9 0,00913943 0.011 0.03512834
Receiver 1 9 0,00913943 0.013 0.04779187
Receiver 2 8 0.00860422 0.007 0.00595418
Receiver 2 8 0.00860422 0.009 0.01111071
Receiver 2 8 0.00860422 0.011 0.02336973
Receiver 2 8 0.00860422 0.013 0.03758080
Receiver 3 7 0.00816791 0.007 0.00470627
Receiver 3 7 0.00816791 0.009 0.01062803
Receiver 3 7 0.00816791 0.011 0.02219064
Receiver 3 7 0.00816791 0.013 0.03458510
Receiver 4 6 0.00781265 0.007 0.00715696
Receiver 4 6 0.00781265 0.009 0.01314926
Receiver 4 6 0.00781265 0.011 0.02274086
Receiver 4 6 0.00781265 0.013 0.03220683
Receiver 5 5 0.00752337 0.007 0.00944155
Receiver 5 5 0.00752337 0.009 0.01453571
Receiver 5 5 0.00752337 0.011 0.02139360
Receiver 5 5 0.00752337 0.013 0.02911447
Receiver 6 4 0.00728757 0.007 0.00624297
Receiver 6 4 0.00728757 0.009 0.01094130
Receiver 6 4 0.00728757 0.011 0.01727522
Receiver 6 4 0.00728757 0.013 0.02337046
Receiver 7 3 0.00709502 0.007 0.00503452
Receiver 7 3 0.00709502 0.009 0.00885208
Receiver 7 3 0.00709502 0.011 0.01380121
Receiver 7 3 0.00709502 0.013 0.01829888
Receiver 8 2 0.00693740 0.007 0.00402013
Receiver 8 2 0.00693740 0.009 0.00639598
Receiver 8 2 0.00693740 0.011 0.00942350
Receiver 8 2 0.00693740 0.013 0.01257555
Receiver 9 1 0.00680797 0.007 0.00223825
Receiver 9 1 0.00680797 0.009 0.00344425
Receiver 9 1 0.00680797 0.011 0.00494683
Receiver 9 1 0.00680797 0.013 0.00650348

Table D.4: Receiver swaption prices for different expiries, tenors and strikes. Parameters and initial
short rate according to 02-09-2008.
Parameters: ψ = 0.2592, θ = 0.0063, σ = 0.0840 and r(0) = 0.0165.
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Type Expiry Tenor Forward swap rate Strike Price
Payer 1 9 0.00884053 0.007 0.02995469
Payer 1 9 0.00884053 0.009 0.01942417
Payer 1 9 0.00884053 0.011 0.01349789
Payer 1 9 0.00884053 0.013 0.01022182
Payer 2 8 0.00916161 0.007 0.02359293
Payer 2 8 0.00916161 0.009 0.01337047
Payer 2 8 0.00916161 0.011 0.00772328
Payer 2 8 0.00916161 0.013 0.00526652
Payer 3 7 0.00933355 0.007 0.02166806
Payer 3 7 0.00933355 0.009 0.01190996
Payer 3 7 0.00933355 0.011 0.00691360
Payer 3 7 0.00933355 0.013 0.00592841
Payer 4 6 0.00942623 0.007 0.01495732
Payer 4 6 0.00942623 0.009 0.00597763
Payer 4 6 0.00942623 0.011 0.00178326
Payer 4 6 0.00942623 0.013 0.00099775
Payer 5 5 0.00947668 0.007 0.01309419
Payer 5 5 0.00947668 0.009 0.00587023
Payer 5 5 0.00947668 0.011 0.00215999
Payer 5 5 0.00947668 0.013 0.00115113
Payer 6 4 0.00950449 0.007 0.01108152
Payer 6 4 0.00950449 0.009 0.00547159
Payer 6 4 0.00950449 0.011 0.00241275
Payer 6 4 0.00950449 0.013 0.00138460
Payer 7 3 0.00952007 0.007 0.00895462
Payer 7 3 0.00952007 0.009 0.00484914
Payer 7 3 0.00952007 0.011 0.00252230
Payer 7 3 0.00952007 0.013 0.00160543
Payer 8 2 0.00952895 0.007 0.00658903
Payer 8 2 0.00952895 0.009 0.00397084
Payer 8 2 0.00952895 0.011 0.00238389
Payer 8 2 0.00952895 0.013 0.00164340
Payer 9 1 0.00953412 0.007 0.00378775
Payer 9 1 0.00953412 0.009 0.00253223
Payer 9 1 0.00953412 0.011 0.00172653
Payer 9 1 0.00953412 0.013 0.00129346

Table D.5: Payer swaption prices for different expiries, tenors and strikes. Parameters and initial short
rate according to 01-06-2011.
Parameters: ψ = 0.6957, θ = 0.0097, σ = 0.1448 and r(0) = 0.00048.
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Swaption Prices

Type Expiry Tenor Forward swap rate Strike Price
Receiver 1 9 0.00884053 0.007 0.01418273
Receiver 1 9 0.00884053 0.009 0.02078534
Receiver 1 9 0.00884053 0.011 0.03199341
Receiver 1 9 0.00884053 0.013 0.04586124
Receiver 2 8 0.00916161 0.007 0.00718216
Receiver 2 8 0.00916161 0.009 0.01214245
Receiver 2 8 0.00916161 0.011 0.02167675
Receiver 2 8 0.00916161 0.013 0.03441145
Receiver 3 7 0.00933355 0.007 0.00623364
Receiver 3 7 0.00933355 0.009 0.00970188
Receiver 3 7 0.00933355 0.011 0.01792896
Receiver 3 7 0.00933355 0.013 0.03017940
Receiver 4 6 0.00942623 0.007 0.00124684
Receiver 4 6 0.00942623 0.009 0.00356980
Receiver 4 6 0.00942623 0.011 0.01067480
Receiver 4 6 0.00942623 0.013 0.02119713
Receiver 5 5 0.00947668 0.007 0.00149048
Receiver 5 5 0.00947668 0.009 0.00363749
Receiver 5 5 0.00947668 0.011 0.00929545
Receiver 5 5 0.00947668 0.013 0.01766155
Receiver 6 4 0.00950449 0.007 0.00174268
Receiver 6 4 0.00950449 0.009 0.00359079
Receiver 6 4 0.00950449 0.011 0.00798783
Receiver 6 4 0.00950449 0.013 0.01442065
Receiver 7 3 0.00952007 0.007 0.00194415
Receiver 7 3 0.00952007 0.009 0.00340252
Receiver 7 3 0.00952007 0.011 0.00663799
Receiver 7 3 0.00952007 0.013 0.01128689
Receiver 8 2 0.00952895 0.007 0.00192490
Receiver 8 2 0.00952895 0.009 0.00299516
Receiver 8 2 0.00952895 0.011 0.00509573
Receiver 8 2 0.00952895 0.013 0.00804488
Receiver 9 1 0.00953412 0.007 0.00146457
Receiver 9 1 0.00953412 0.009 0.00204221
Receiver 9 1 0.00953412 0.011 0.00306925
Receiver 9 1 0.00953412 0.013 0.00446986

Table D.6: Receiver swaption prices for different expiries, tenors and strikes. Parameters and initial
short rate according to 01-06-2011.
Parameters: ψ = 0.6957, θ = 0.0097, σ = 0.1448 and r(0) = 0.00048.
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Appendix E

Selected R code

E.1 RMSE Estimation for CDS prices
NumMinCDS <- function(Obs, X){ # ’X’ og ’Obs’ vectors

# Define object function:
obj <- function(parms, Obs, X)

{
par1 <- parms[1]

par2 <- parms[2]
par3 <- parms[3]
par4 <- parms[4]

Est<-rep(0,length(X))
for(Count in 1:length(X))

{

Est[Count]<- Cds(t,X[1,Count],Kappa_Cox=par1,
Sigma_Cox=par2,Theta_Cox=par3,Lambda0=par4,Freq)
}

# Calculates RMSE and returns:
obj <- sqrt((1/length(X))*sum((Est - Obs)^2))

}

# Minimizing the objectfunction using ’nlminb()’-functionen in R
opt <- nlminb(start=c(Kappa_Cox,Sigma_Cox,Theta_Cox,Lambda0), # Initial guess

objective=obj, # Object function
Obs=Obs, # Extra input to object function
X=X, # Extra input to object function

lower=c(0.0001,0.0001,0.00001,0.00001),
upper=c(1,1,1,1))

# Results are in ’opt’. Info in str(opt)
# Select info:

parms <- opt$par
names(parms) <- c("Kappa","Sigma","Theta","Lambda0") # Parameters
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obj <- opt$objective # Final value of object function

estimates<-rep(0,length(X))
for(Count in 1:length(X))
{

estimates[Count]<- Cds(t,X[1,Count],Kappa_Cox=parms[1],Sigma_Cox=parms[2],
Theta_Cox=parms[3],Lambda0=parms[4],Freq)

}
# Returns in a list:
return(c(parms=parms, est=estimates, obs=Obs, obj=obj))

}

E.2 Swaption Pricing
library(deSolve)
library(bvpSolve)

for(i in 1:NoSolutions)
{

Delta1<-complex(real=0,imaginary=i-1) # Delta1

#Complex differential equation dy/dt
Diff <- function(t, b, h, pars)
{
b <- complex(real=b[1],imaginary=b[2]) # Delta2
db <- (Sigma^2*Wt(t)+a)*b-(1/2)*(Delta1*Kt(t)*Sigma+b*Sigma)^2
h <-complex(real=h[1],imaginary=h[2]) # Gamma
dh <- -a * Theta * b
list(c(re=Re(db),im=Im(db),re2=Re(dh),im2=Im(dh)))
}
#Unknown initial condition
init <- c(re=NA,im=NA,re2=NA,im2=NA)

#Known terminal condition
end <- c(re=0,im=0,re2=0,im2=0)
sol <- bvptwp(yini = init, yend = end, x = seq(t, Tn, by = 0.5), func = Diff)

delta2_Re[i]<-sol[1,2]
delta2_Im[i]<-sol[1,3]
gamma_Re[i]<-sol[1,4]
gamma_Im[i]<-sol[1,5]
}

#Spline Interpolation of ODE solutions
DeltaReSpline<-splinefun(x=seq(1,NoSolutions,by=1), y = delta2_Re[1:NoSolutions],
method = c("fmm", "periodic", "natural", "monoH.FC"),ties = mean)
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DeltaImSpline<-splinefun(x=seq(1,NoSolutions,by=1), y = delta2_Im[1:NoSolutions],
method = c("fmm", "periodic", "natural", "monoH.FC"),ties = mean)
GammaReSpline<-splinefun(x=seq(1,NoSolutions,by=1), y = gamma_Re[1:NoSolutions],
method = c("fmm", "periodic", "natural", "monoH.FC"),ties = mean)
GammaImSpline<-splinefun(x=seq(1,NoSolutions,by=1), y = gamma_Im[1:NoSolutions],
method = c("fmm", "periodic", "natural", "monoH.FC"),ties = mean)

#Spline Delta2 function
DeltaSpline<-function(u)
{
if(SwaptionType==1) #Payer
{
return(complex(real=DeltaReSpline(u),imaginary=DeltaImSpline(-Alpha)))
}
else if(SwaptionType==0) #Receiver
{
return(complex(real=DeltaReSpline(u),imaginary=DeltaImSpline(Alpha)))
}
}

#Spline Gamma function
GammaSpline<-function(u)
{
if(SwaptionType==1) #Payer
{
return(complex(real=GammaReSpline(u),imaginary=GammaImSpline(-Alpha)))
}
else if(SwaptionType==0) #Receiver
{
return(complex(real=GammaReSpline(u),imaginary=GammaImSpline(Alpha)))
}
}

#Spline CCF
CCFSpline<-function(u)
{
if(SwaptionType==1) #Payer
{
return(exp(GammaSpline(u+1)+complex(real=Alpha,imaginary=u)*y(t)+DeltaSpline(u+1)*r0))
}
else if(SwaptionType==0) #Receiver
{
return(exp(GammaSpline(u+1)+complex(real=-Alpha,imaginary=u)*y(t)+DeltaSpline(u+1)*r0))
}
}

IntegrandSpline<-function(u)
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{
if(SwaptionType==1) #Payer
{
PhiSP<-PVBP(t)*(CCFSpline(u)/(complex(real=Alpha,imaginary=u))^2)
return((exp(-Alpha*K)/pi)*Re(exp(-complex(real=0,imaginary=u)*K)*PhiSP))
}
else if(SwaptionType==0) #Receiver
{

PhiSP<-PVBP(t)*(CCFSpline(u)/(complex(real=-Alpha,imaginary=u))^2)
return((exp(Alpha*K)/pi)*Re(exp(-complex(real=0,imaginary=u)*K)*PhiSP))
}
}

#Swaption Price using Spline CCF
integrate(IntegrandSpline,lower=0,upper=1000, subdivisions=1000)

E.3 Monto Carlo Simulation of Interest Rates and Intensities

time<-seq(from=t,to=Tn,length=n)

for(j in 1:(j-1))
{
r<-rep(0,n)
swap<-rep(0,n)
lambda<-rep(0,n)
r[1]<-r0
swap[1]<-y(t)
lambda[1]<-Lambda0
norm<-rnorm(n+1,0,1)
for(i in 1:(n-1))

{
lambda[i+1]<-lambda[i]+Kappa_Cox*(Theta_Cox-max(lambda[i],0))*(time[i+1]-time[i])
+Sigma_Cox*sqrt(max(lambda[i],0))*sqrt(time[i+1]-time[i])*norm[i+1]
r[i+1]<-r[i]+(a*Theta-(Sigma^2*Wt(time[i])+a)*max(r[i],0))*(time[i+1]-time[i])
+Sigma*sqrt(max(r[i],0))*sqrt(time[i+1]-time[i])*norm[i+1]
swap[i+1]<-swap[i]+Kt(time[i])*Sigma*sqrt(r[i])*sqrt(time[i+1]-time[i])*norm[i+1]
}
R_T[j]<-r[n-1]
Swap_T[j]<-swap[n-1]
Lambda_T[j]<-lambda[n-1]
}
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Appendix F

Selected Matlab Code

F.1 Maximum Likelihood Estimation for One-Factor CIR pro-
cess

function ML_CIRparams = CIR_calibration(V_data,dt,params)
% ML_CIRparams = [ alpha theta sigma ]
N= length(V_data);
if nargin <3
x = [ ones(N-1 ,1) V_data (1:N -1)];
ols = (x’*x )^( -1)*(x’* V_data (2:N ));
m=mean ( V_data ); v= var( V_data );
params = [- log( ols (2))/ dt ,m, sqrt (2* ols (2)* v/m)];
end
options = optimset (’MaxFunEvals’, 200000 , ’MaxIter’, 200000);
ML_CIRparams = fminsearch( @FT_CIR_LL_ExactFull , params , options );
function mll = FT_CIR_LL_ExactFull( params )
alpha = params (1); teta = params (2); sigma = params (3);
c = (2* alpha )/(( sigma ^2)*(1 - exp(- alpha *dt )));
q = ((2* alpha * teta )/( sigma ^2)) -1;
u = c* exp(- alpha *dt )* V_data (1:N -1);
v = c* V_data (2:N);
mll = -(N -1)* log(c)+ sum(u+v- log(v./u)*q /2 -...
log( besseli (q ,2* sqrt (u.*v) ,1)) - abs( real (2* sqrt(u.*v ))));
end
end
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