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Executive Summary

This report describes a practical application approach to the Black-Litterman model,
which is developed on the basis of CAPM and modern portfolio-theory. The model
allows investors to implement subjective socalled “views” or opinions on one or several
assets/asset classes. Hence, the model is an asset-allocation model, developed in order to
get closer to an optimal mathematical allocation-model, that supports investors to better
manage investment portfolios. Of particular financial interest is model uncertainties
and the influence of central variables on the final results. All figures or tables without
external references are the author’s own. This report is additionally filed as concluding
15 ECTS point project (thesis) for the Graduate Diploma in Business Administration in
Finance at CBS.

Forord

Denne rapport beskriver en praktisk anvendelses tilgang til Black-Litterman mod-
ellen, som en videre-udvikling til CAPM og moderne portefølje-teori. Modellen tillader
investorer at implementere subjektive såkaldte “views” eller meninger om et eller flere
aktiver/aktivklasser. Modellen er således en aktiv-allokeringsmodel, udviklet for at
komme tættere på en optimal matematisk allokerings-model, der kan støtte investorer til
bedre at forvalte investerings-porteføljer. Af særlig finansiel interesse er model usikker-
heder og betydningen af centrale variabler på de færdige resultater. Alle figurer eller
tabeller uden eksterne henvisninger er forfatterens egne. Nærværende rapport er heru-
dover indleveret som afsluttende 15 ECTS point projekt (afhandling) for HD studiet i
finansiering på CBS.
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The Black-Litterman method

1 Introduction

The mathematical foundation of modern portfolio theory (Modern Portfolio Theory
(MPT)) was developed in the 1950s through the early 1970s. Two pioneers of the
theory behind MPT are Harry Markowitz and William Sharpe, Nobel Prizes (see e.g.
Bodie et al. (2014)). The ideas are based on risk/return trade-off such that high risk
assets should be priced higher than low-risk assets. The theory of efficient and free mar-
kets (“efficient market hypothesis”) will lead to an equilibrium such that if the price of
high-risk assets or securities is considered to be too high, then the price of these assets
or securities will begin to fall causing the expected return to increase until buyers and
sellers agree on a given price (market forces). The expected returns E(r) is defined as
(Bodie et al., 2014, p.128):

E(r) = ∑
s

p(s)r(s) (1)

where s is an asset or securities, p(s) is the weight or probability of something to
happen and r(s) is holding-period return calculated as (Bodie et al., 2014, p.128):

r(s) =
Ending price of share - Beginning price + Cash dividend

Beginning price
(2)

For a time-series, a sequence of numbers of stock returns can be calculated using E(r) =
1
n ∑n

s=1 r(s) where n is the number of observations and r(s) is a discrete (sampled) rate
of return values, e.g. daily, weekly or montly. In such cases each “sample” has equal
weight and therefore, that is only a minor modification of (1).

MPT also provides methods for calculating the effect of diversifaction of a port-
folio consisting of a number of securities, using statistical and mathematical methods
(mean-variance methods). Investors, investment managers or funds use different strate-
gies and methods for trying to beat the market and earn the highest returns. However
“the market” is very complicated to define as it ideally should include all kinds of as-
sets, including something like investments in real estate portfolios. Such figures are not
always easy to obtain or define as each investment by definition is very different. It
is common to define a benchmark to use as index for investment portfolios instead of
comparing returns to an existing index. Investment strategies can be split into either
passive or active management strategies:

• Passive management is generally the cheapest as the strategy is to hold a highly
diversified portfolio without monitoring it. The idea is that if one believes in the
efficient market hypothesis, then it is virtually impossible to beat the market (the
prices are already correct) so diversification is very important.
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• Active management is more expensive as portfolio managers continously monitor
the development of each security and actively tries to be over- or under-weighted
in certain securities. Active management requires investors to use resources for
analyzing accounts, read market news, watch the performance and to re-balance
investment portfolios.

The passive strategy is easy to implement. Instead of hand-picking individual stocks
one can choose to invest in one of the major already existing indices, e.g. Dow Jones,
Nasdaq, VIX/Volatility S&P 500, S&P 500 (all US), Shanghai Composite/Nikkei (both
Asia), OMXC20 (Denmark), OMXS30 (Sweden), FTSE (UK) or DAX (Germany) –
and many more. The passive strategy is not as interesting to investigate as it is limited
in how many ways we can act, if the idea is just to follow a benchmark (or construct a
very diversified portfolio which is then mostly left untouched).

1.1 Portfolio selection and historical overview

Assets are typically said to be stocks, bonds and cash (money market securities). Each
asset class can be divided into e.g. large-cap, mid-cap and small-cap stocks. Bench-
marks exist for many asset classes, e.g. for emerging markets, national or international
securities. Treasury bills (T-bills) have different maturities so an “optimal investment
model” is probably difficult to define, there are many (numerous, countless) combi-
nations and strategies. Investors must make their own decision about what they think
provide the maximum return, while minimizing risk.

Conservative portfolio strategies have low risk and low returns. They typically con-
sist of many bonds or fixed income securities and few stocks/equities. Aggressive port-
folio strategies consist of many stocks/equities and few bonds or fixed income securities.
Re-balancing the portfolio involves selling those portions of the portfolio that have in-
creased significantly and to buy cheaper assets or assets, where the price has decreased
sufficently until the expected returns again increase to acceptable levels.

Finally, the theoretical concept of the risk free interest rate and risk premiums should
be introduced. The risk free rate is defined as the rate of return that can be earned, by
investing in risk-free assets such as T-bills, money market funds or leaving the money
in the bank (Bodie et al., 2014, p.129). For a given investment horizon (e.g. 1 year), the
maturity of the risk-free interest rate should match. Currently the interest rates are very
low. If we assume an expected index fund return of 8% and a risk-free interest rate of 1%
to be used as proxy for the market returns, we define the risk premium as the difference,
i.e E(RM) = E(rM)−r f = (8%−1%) = 7%. The 7% is the price compensation we then
require for taking this investment risk. Because there are no guarantees, investing in this
fund does not necessarily lead to a profit of 7% in addition to r f which is risk-free. It
could lead to a profit of 4%, 7%, 10% or we could lose maybe 5-25%.
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Risk is traditionally calculated using the variance or standard deviation, assuming
sample data follows a normal distribution. Some investors are more than willing to put
on additional risks while others try to avoid risk. The behaviour of investors are tradi-
tionally quantified by using a risk aversion coeffecient. The higher risk aversion, the
higher risk premium is required and vice-versa. Expected returns can be calculated with
(1) and risk or standard deviation can also easily be calculated, once time-series have
been downloaded and imported. Portfolio selection on risky assets can be performed us-
ing the famous framework described in Markowitz (1952). Markowitz wrote the process
can be divided in two stages:

1. Observation and experience, which ends with beliefs about future performances.

2. Beliefs about future performances end with the choice of portfolio.

Later, James Tobin (1958) added risk-free assets to the analysis and framework of
Markowitz. This allowed leveraged or deleveraged portfolios and became the basis of
a super-efficient portfolio and the capital market line. The articles by Sharpe (1964)
and Lintner (1965) introduced the Capital Asset Pricing Model (CAPM). This is an
important theory that explains the expected returns as a function of the systematic risk.
Sharpe showed the market portfolio on the efficient frontier is the same super-efficient
portfolio Tobin introduced. CAPM has later turned out to be very important and widely
used. Investors should hold the market portfolio, either leveraged or de-leveraged with
the risk-free asset. Later more advanced models such as Intertemporal Capital Asset
Pricing Model (ICAPM) and Arbitrage Pricing Theory (APT) was introduced in the
70’s by Merton and Ross. Together with Sharpe (1964) and Lintner (1965), Mossin
(1966) is also recognized for observing that ideally investors should choose portfolios
as a linear combination of the risk-free asset and the market portfolio.

The Black-Litterman model came many years later (see e.g. Black and Litterman
(1992)). The model allows investors to implement their own beliefs, in order to help de-
cide which weights for each asset class or security, should be used for optimal portfolio
construction. Managers opinions are implemented through “views”. The model is the
main topic for this report, both from a theoretical and a practical point of view. Figure
1 illustrates the structure of the report.

1.2 Research questions

The Black-Litterman model introduces more complexity than known from traditional
MPT. The objective is to integrate quantitative methods with qualitative or subjective
estimates, however there are many uncertainties to consider. The following main re-
search question have been asked:

3



The Black-Litterman method

Introduction
Research
questions Methodology Delimination

Investigation

Theorical Empirical

Summary

Future
Perspectives

Conclusions

Figure 1: Graphical depiction of project structure and report chapters. The empirical
part of the project should also be understood as the practical part, i.e. it is the basis for
the investigation of the research questions.

How to use and construct portfolios (how to mix assets) with traditional
portfolio optimization theory and also by using the Black-Litterman model?
What is the impact or effect from individual components of the Black-Litterman
equation?

The following additional questions have been formulated, in order to help answering
the main research questions:

• How to calculate historical covariance matrices and perform reverse optimization
on the assets using MPT, for generation of a mean-variance portfolio?

• Which elements or components do the Black-Litterman model consist of?

• What happens when the views are changed and everything else is kept constant?

• What is the meaning of uncertainty on the view portfolios and how to deal with
the unknown variables?

• What is the difference between views made with large or small confidence? How
to implement such a method in the Black-Litterman model framework?

A systematic approach will be tried out, where only a single (or a few parame-
ters) will be changed at the same time. The effect on the output will be studied and
illustrations and figures will be used to draw conclusions on or to verify or reject any
hypotheses.
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1.3 Delimination

Everywhere normal distributions are used and everywhere it is assumed that the variance
is constant. The alternative is to think of variances as e.g. time-dependent and estimating
such an effect from ordinary least squares (that is definately outside the scope of this
work).

It is assumed that the reader knows the most important basics of financial theory,
possibly also some basic statistics/mathematics which is also outside the scope of this
report.

5
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2 Introduction to portfolio theory

The foundation of MPT is the Markowitch mean-variance portfolio optimization theory.
That is also the foundation for the more advanced Black-Litterman model.

E(r)

σ

r f
Efficient Frontier

CAL(P)

P

σP

E(rP)

Indifference
curve

Figure 2: Illustration of the CAL, .

Figure 2 illustrates the Capital Allocation Line (CAL) from r f to a place on the
efficient frontier. The indifference curve can be moved. The green CAL-line is used
to decide how much of the risk-free assets, the individual investor should buy, together
with the risky portfolio. The risky portfolio here is illustrated by the point P. The CAL
could be drawn as a straight line from r f to anywhere on the efficient frontier and then
the indifference curve should be moved to touch the CAL. The higher slope of the CAL,
the higher risk/reward-ratio and the higher potential outcome of the investment.

If the Markowitz optimization process is used by all investors to hold securities, the
CAL is replaced by a Capital Market Line (CML) as shown in Figure 3. The market
portfolio is not easy to determine so for real applications we use a proxy, a benchmark
or fund index. The market portfolio should contain an aggregation of all possible risky
portfolios, made of up all assets in the investable universe. This leads to a discussion
of the CAPM line. The relationship between the risk and return of a portfolio can be
described using the Capital Asset Pricing Model (CAPM), again based on Markowitz
Portfolio Theory:

Ri = r f +β(rm − r f ) (3)
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E(r)

σ

r f
Efficient Frontier

CML

M

σM

E(rM)

Figure 3: Illustration of the CML, .

where

ri = Rate of return for stock i. (4)
rm = Rate of market return. (5)
r f = Risk-free interest rate. (6)

β =
cov(Ri,Rm)

var(Rm)
(7)

(8)

Richard Roll introduced what later became known as Roll’s critique which was de-
scribed in Roll (1977). One key conclusion is that the market portfolio is unobservable.
We cannot include all assets in our model such as e.g. investments in real estate, pre-
cious metals, jewelry and many other things. For this reason, it’s impossible to test the
CAPM. In spite of this, it’s a popular model.

Assuming that r is a vector of asset returns (typically excess returns) and CAPM
is valid, the n × 1 equilibrium excess returns vector is Π = β(µm − r f ) where µm is
the return on the global market and β is an n× 1 vector of asset betas (Satchell and
Scowcroft, 2000, p.139):

β =
Cov

�
r, rTw

�

σ2
m

(9)
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2.1 Markowitz mean-variance model

Figure 4 illustrates that for a portfolio of many risky assets, ideally we want to invest in
portfolios on the efficient frontier. These portfolios maximize the expected return E(r)
while at the same time, they have minimum risk (standard deviation σ). Returns can
be calculated at time t using either discrete returns, i.e. (ri,t − ri,t−1)/ri,t−1, continously
compounded returns (ln(xi,t /xi,t−1) or with dividends: ln(xi,t +Di,t)/xi,t−1. The risk-free
interest rate is illustrated with r f , which is relevant for the understanding CAPM.

E(r)

σ

Efficient Frontier

Minimum
Variance
Portfolio
(MVP)

Individual
Assets

or
Portfolios

r f

Minimum
Variance
Frontier

Not efficient

Figure 4: Illustration of the concept for the minimum-variance frontier for risky assets.
The blue curve shows possible envelope portfolios (above MVP are efficient envelope
portfolios, but those below are not efficient).

The optimal portfolio that can be constructed with the highest expected returns E(r)
given the risk σ, is the same portfolio that has the highest Sharpe ratio or the steepest
slope from the origin, to the portfolio on the Markowitz efficient frontier (Bodie et al.,
2014, p.134 and p.216):

Sharpe ratio =
Risk premium

σ(excess return)
=

E(rp)− r f

σp
(10)

By solving a set of equations with the constraint that the Sharpe ratio should be
maximized one arrives at the solution, which is a vector w. This vector contains the
optimal weights of each of the i individual securities, such that the sum of all weights
equal 100%. Depending on risk aversion, fund managers or investors might want to
combine the risky investment by also investing in risk-free assets with interest rate r f
(σ = 0 as illustrated). Investors could also borrow money and leverage their investments
(make use of financial gearing). It is an important concept, that the optimal (efficient)

8
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portfolio can have less risk when adding more and more assets, due to the effect of
diversification. The expected return of a portfolio of i securities is found to be exactly
as in (1) with variance as in (Bodie et al., 2014, p.222):

E(rp) =
n

∑
i=1

xiE(ri) (11)

σ2
p =

n

∑
i=1

n

∑
i=1

xix jCov(ri,r j) (12)

where for each security or asset i, xi is the weight, E(ri) is the expected return and
Cov(ri,r j) is the covariance of securities i and j. The covariance matrix of expeced
returns for securities (ri and r j) can be calculated using different methods, one of them
is by using the sample covariance method:

Cov(ri,r j) = σi, j =
∑n

k=1(rik − r̄i)(r jk − r̄ j)

n−1
(13)

where n is the number of data values, r̄i = E(ri) and r̄ j = E(r j) is the average (ex-
pected value) of the vector of return values (this makes the vector centered or we could
also call the terms, excess returns terms). If the excess returns matrix has been calcu-
lated, the covariance matrix is one vector multiplied with the other vector transposed
and then divided by number of observations, n minus 1. Division can also be made with
n instead of n−1, but in that case it should be assumed that all the discrete data avail-
able is from the whole population of data and that normally does not apply for stock
or security data. However the difference is negligible for large number of data sets. To
illustrate this (Benninga et al., 2008, p.292):

A = Matrix of excess returns =




r11 − r̄1 . . . rN1 − r̄N
r12 − r̄1 . . . rN2 − r̄N

...
...

r1M − r̄1 . . . rNM − r̄N


 (14)

The covariance matrix for n periods is

ΣΣΣ = σi, j =
AT A
n−1

(15)

A problem with estimation of covariances based on historical data, is that historical
data usually is a bad predictor for future covariances. Therefore, using a mechanical
method as traditional MPT suggests doing, is a bad idea. The method can produce un-
realistic results and unrealistic weights. Sometimes, however, it might help a little to
add a constraint that prevents short-sales. A socalled single-index model for construct-
ing the covariance matrix could also be considered. So-called “shrinkage” methods

9
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that may produce more reliable covariances also exists, however those methods are not
considered to be of particular importance here. Throught this report, when referring
to variance, standard deviation or mean returns, that is given in the context of a nor-
mal distribution. The normal distribution probability1 around the mean µ with standard
deviation σ is written ∼ N (µ,σ2) and given by

f (x|µ,σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , −∞ < x < ∞ (16)

where σ2 is the variance or squared standard deviation.

2.2 Optimal (efficient) portfolio weights using Black’s method

As described in (Benninga et al., 2008, Ch.8.5, p.250), the efficient portfolio is one that
solves:

min∑
i

∑
j

xix jσi j = Var(rp) (17)

Subject to

∑
i

xiri = µ = E(rp) (18)

∑
i

xi = 1 (19)

As shown in Black (1972) we can find the whole efficient frontier by choosing any
two efficient portfolios, x and y consisting of N risky assets. If a is a constant, the
portfolio Z is also efficient:

z = ax+(1−a)y =





ax1 +(1−a)y1
ax2 +(1−a)y2

...
axN +(1−a)yN





(20)

If the expected returns for security i is E(ri) such that E(r)= {E(r1),E(r2) . . . ,E(rN)}T ,
it follows from (Benninga et al., 2008, Ch.9.2, p.262), that we can define a constant c
and setup the equations E(r)− c = σi jz where z is unknown and must be solved for:

z = σσσ−1
i j {E(r)− c} (21)

x = {x1,x2 . . . ,xN}T (22)

1https://en.wikipedia.org/wiki/Normal_distribution
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where
xi =

zi

∑N
j=1 z j

(23)

It also follows from (Benninga et al., 2008, Ch.9.2, p.265) that if y is the first en-
velope portfolio and x is any other portfolio (not necessarily an envelope portfolio), we
have the relationship:

E(rx) = c+βx[E(ry)− c] (24)

where

βx =
Cov(x,y)

σ2
y

(25)

which is also known as Black’s zero-beta CAPM, from the paper Black (1972).
This was a very quick summary of something that is not a main topic for the report. The
methods described above will shortly be used from page 25.

2.3 Introduction to the Black-Litterman model

The Black-Litterman approach was published and refined in the early 1990’s by Fisher
Black and Robert Litterman from Goldman-Sachs, see Black and Litterman (1992).
Mechanical optimization based on historical returns is normally not a good estimate for
future returns. Traditional portfolio theory can lead to e.g. large short positions and his-
torical data is not always a good indication for future returns. Optimization constraints
can limit unrealistic large short or long positions but there are other alternatives. Tra-
ditionally MPT is known to produce unrealistic results. The Black-Litterman method
tries to solve some of the problems. In 1998 a paper by Goldman-Sachs in greater detail
discussed how to implement the method (see e.g. Bevan and Winkelmann (1998)):

Investors should take risk where they have views, and correspondingly, they
should take the most risk where they have the strongest views.

As described in Benninga et al. (2008), the idea is that in the absence of other infor-
mation, the benchmark cannot be outperformed. Instead of having an optimal portfolio
as output from input data, it is assumed that a given portfolio is already optimal. The
result of the BL approach is the expected returns of each of the components of the
benchmark. If an investor disagrees with the expected returns of one of more compo-
nents of an portfolio, he can incorporate his views. Otherwise that person should just
buy the portfolio (or benchmark) and there is no need for using the model.

According to Walters et al. (2014) it is an essential assumption of both mean-variance
optimization as well as for the Black-Litterman model, that asset returns are normally

11
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Risk aversion
coefficient Covariance

matrix (Σ)

Market
capitalization

weights
(wmkt)

Views (Q)
Uncertainty
of views (Ω)

λ =
E(r)−r f

σ2

Implied Equilibrium Return Vector
Π = λΣwmkt

Prior Equilibrium Distribution

View Distribution

N ∼ (Π, τΣ)
N ∼ (Q, Ω)

New combined Return Distribution

N ∼ (E(r), [(τΣ)−1 +(PT Ω−1P)]−1)

Distribution of
Actual Mean

about
Estimated

Mean

Estimated
Mean

Mean asset return

Frequency

Figure 5: Basics of the model as illustrated in the book (Satchell, 2011, Fig.2.1) with
minor additions. According to same book, the variance of the new combined return
distribution is derived in Satchell and Scowcroft (2000).

distributed. Because the input data are assumed to follow normal distributions, the out-
put (posterior) will also follow a normal distribution. Another key assumption is that
“unknown mean and known variance” is used and for that reason we talk about “the
variance of the unknown mean about the actual mean”. Figure 5 illustrates the concepts

12
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of the model. Given that the following is known:

1. λ (sometimes also written as δ): The risk aversion coefficient of the market port-
folio (scalar). It is either specified or computed using (Satchell and Scowcroft,
2000, p.139)

λ =
µm − r f

σ2
m

(26)

2. τ: A number that specifies the uncertainty of the prior estimate of the mean returns
(this parameter will be discussed in greater detail in section 2.5 from page 16).

3. Information about views: If m is the number of views and n the number assets, the
model views are specified using the P-matrix (if more than 1 view) and Q-vector:

• P: is a m×n-matrix that identifies which assets are involved in either abso-
lute or relative views (the Q-vector).

• Q: is the “views”, a vector of n×1 elements.

4. Σ: The size n×n variance-covariance matrix of excess returns (in the following,
it is designated as the covariance matrix but the diagonal contains the variances
for each asset).

5. weq: Equilibrium market capitalization weights (a vector of n × 1 weight fac-
tors for all assets that totals to 100 %). It can be calculated with an unconstrained
mean-variance reverse optimization process as described in (Idzorek, 2005, Eq.2):
max wT µ−λwT Σw/2, using the definition of the implied excess equilibrium re-
turn vector Π (n×1-vector), the risk aversion coefficient λ and Σ2:

Π = λΣweq (27)

where the n×1 vector of implied excess equilibrium returns (prior returns) is Π.
Substituting Π in (27) with any other vector of excess returns µ yields

weq = (λΣ)−1µ (28)

The risk-aversion coefficient λ can be considered a scaling factor for the reverse
optimization estimate of excess return and is also a measure of the expected risk-
return tradeoff.

The posterior estimate of returns can be calculated using:

2Other authors, e.g. Walters et al. (2013) use δ = λ so the equation becomes: Π = δΣweq

13
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1. The standard BL-equation (often called the “master formula”):

E(r) =
�
(τΣ)−1 +PT Ω−1P

�−1 �
(τΣ)−1Π+PT Ω−1Q

�
(29)

The first factor (inverted, the “denominator”) can be considered as a normalization
factor (though it is a matrix) and the second factor (the “numerator”) is a vector
composed of something involving equilibrium returns Π and estimates Q. In the
second factor, it can be seen that the first term has τΣ)−1 is a weighting factor and
PT Ω−1 acts as a weighting factor for the second term. It is also seen that if there
are no views:

E(r) =
�
(τΣ)−1�−1 �

(τΣ)−1Π
�
= Π (equil. returns) (30)

If there is no estimation error, Σ−1 → ∞, hence

E(r)≈
�
PT Ω−1P

�−1 �
PT Ω−1Q

�
= P−1Q (view returns) (31)

2. Another not so common version of the BL-equation is shown in Walters et al.
(2014):

E(r) = Π+ τΣPT (PτΣPT +Ω)−1(Q−P Π) (32)

with covariance matrix of returns M:

M =
�
(τΣ)−1 +PT Ω−1P

�−1
(33)

and posterior covariance (most authors do not compute this):

Σp = Σ+M = Σ+
�
(τΣ)−1 +PT Ω−1P

�−1
(34)

For each of the m expressed views, Ω is an m×m diagonal covariance matrix of the
error that represents the uncertainty in each view. As described in e.g. Idzorek (2005)
(and many other places):

Ω =




ω1 0 0
0 ω2 0
0 0 ω3


=




τ(p1ΣpT
1 ) 0 0

0 τ(p2ΣpT
2 ) 0

0 0 τ(p3ΣpT
3 )


 (35)

ωi are the variances of the views scaled by the factor τ (the variance on the error terms
of the views). The inverse of the variances are also known as the precision, hence
the inverted covariance-matrix is a precision-matrix. Because there is uncertainty in the
views, error terms ε are added where ε∼N (0,Ω).The sum can be expressed by a vector
of unknown mean returns:
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P ·E(r) = Q+ ε =




Q1
...

Qm


+




ε1
...

εm


 (36)

where E(r) is a vector of expected returns of all assets and Q is a vector of estimated
returns to each of the combined views, i.e. the product Pµ.According to e.g. Idzorek
(2005), if an investor is 100% confident in the expressed view, the i’th error term ωi = 0
and otherwise it is not 0. Satchell and Scowcroft (2000) describes that larger ωi repre-
sents a larger degree of disbelief represented by γi where γ = PE(r). Therefore Ω rep-
resents the uncertainty of the views and larger ωi values represents greater uncertainty.
Methods for determining the error terms is considered to be one of the most complicated
aspects of the model and it will therefore be discussed later, in greater detail from page
16.

2.4 Implementation of investor views

The following is a short example about expressing the views using the P-matrix and the
Q-vector. Consider an example of the 6 assets: USA, Germany, Hong Kong, France,
UK, China with 3 views, involving assets as shown below:

P =




1 0 0 0 0 0
1 −1 0,3 0 0 −0,3

0,8 −0,2 0 −0,2 −0,2 −0,2


 (37)

The Q-vector could be e.g.

Q =




5%
2,5%
7,5%


 (38)

This example has been taken to involve all assets (no zero-columns). The first row in
the P-matrix tells how assets are involved for the first view and so on for the following
rows. Therefore there exists m rows in the P-matrix and the number of n columns must
be equal to the number of assets. An explanation to each of the views follows:

View 1 : This view only involves the first asset (USA), with the factor 1. If the row
summates to 0, it is a relative view. For this reason, the view is an absolute
view. As the first entry in the Q-vector is 5% this view tells, that our investor
believes that USA will have an excess return of 5%.

View 2 : The sum of factors in row 2 is 0, hence it is a relative view. If a factor
is positive, the asset outperforms other (negative factor) assets (assuming that
the scalar entry in the Q-vector is also positive, which it normally is). Entry
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number 2 in the Q-vector is 2,5%, i.e. USA outperforms Germany with a
factor 2,5% and Hong Kong outperforms China as the the last asset which
underperforms equally much by 0,75% (30% of 2,5%).

View 3 : View 3 is again relative and similar to view 2 except only USA outperforms
4 of the other assets. As the last element of the Q-vector is 7,5%, this view
tells that our investor believes that USA outperforms 4 other assets by 6%
(80% of 7,5%), while each of the 4 other assets (Germany, France, UK, China)
underperforms by 1,5%.

The next section addresses the level of confidence of investor views.

2.5 Dealing with uncertainties in investor views

The matrix Ω as calculated by (35) is the covariance matrix of the error term and a
measure of the uncertainty of the views. According to He and Litterman (2002) each
diagonal element of Ω is a function of τ, i.e. ωi = τ(piΣpT

i ). This implies that the factor
τ is directly connected to uncertainty of the views and therefore also the uncertainty
in investors prior estimate of the returns. However, different authors construct the Ω-
matrix differently, as an example:

• In He and Litterman (2002), τ = 0.05 because this number:

... corresponds to the confidence level of the CAPM prior mean if it
was estimated using 20 years of data.

• In Satchell and Scowcroft (2000) they write:

[A2]... and τ is a (known) scaling factor often set to 1.

• Another approach without the use of τ in Ω is described in Meucci (2010) where
Ω ≡ 1

c PΣPT , where c is a positive scalar that represents an overall confidence
level in the views. In Meucci (2005) this version is given for the “uncertainty
matrix”:

Ω ≡
�

1
c
−1

�
PΣPT (39)

If c → ∞ the view distribution will be infinitely disperse so the views will have no im-
pact. If c → 1 the distribution will be infinitely peaked implying that the investor is
trusted completely. If c = 1/2 the investor and market model is trusted equally. There-
fore it is said that the Black-Litterman model smoothly blends the the market model and
the investors opinion.

A key difference between using high and low confidence in the views is illustrated
in Figure 6. A few conclusions, illustrated by the figure:
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market x market x

high confidence low confidence

view
V = v

before view
after view

Figure 6: Illustration as in Meucci (2005) of daily returns for market X , which is also
normally distributed s.t. X ∼ N (µ,σ2). The view V is a conditional distribution (V |x)
and reflects the confidence in the view.

• If an investor is very insecure about the views (low confidence), the views (the
conditional distribution) will have a large standard deviation σ and vice-versa.

• If the confidence is low, the figure shows a very scattered cloud of returns and
vice-versa.

• Views with low confidence doesn’t significally change the mean returns µ but with
high confidence the market distribution will be affected.

There are several methods to calculate or asses the variance or uncertainty in the
estimate of the mean. According to Walters et al. (2014) Ω can be calculated as:

1. Make it proportional to the variance of the prior estimate

2. Use a confidence interval

3. Use the variance of residuals in a factor model

4. Use Idzorek’s method

2.5.1 Proportional to the variance of the prior estimate

These methods weights the investors views and the market equilibrium weights. The
method in He and Litterman (2002) and other authors employs τ as a proportionality
factor and the method is the same as shown in (35):
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Ω = diag(P(τΣ)PT ) (40)

This method is the most common method used in the litterature. Most authors agree
that τ is between 0 and 1. From the article Black and Litterman (1992):

... Because the uncertainty in the mean is much smaller than the uncertainty
in the return itself, τ will be close to zero.

From Lee (2000), tau should be between 1% and 5%. Idzorek (2005) wrote

Lee, who has considerable experience working with a variant of the Black-
Litterman model, typically sets the value of the scalar (τ) between 0.01 and
0.05, and then calibrates the model based on a target level of tracking error.

In the footnote after that sentence is written: “This information was provided by Dr.
Wai Lee in an e-mail.” In Blamont and Firoozy (2003) τ = 1/N because the authors
interpret τΣ as the standard error of the implied equilibrium return vector Π, i.e. the
factor depends on the number of N observations. Another method is the one already
described by (39), which do not care about diagonalization.

2.5.2 Confidence interval

If an investor believes that an asset has a 3% mean return and expects that 68% of returns
will likely be in the interval 2% - 4%, then µ = 3% and 68% of a normal distribution is
close to 1 standard deviation. The variance in this case becomes (1%)2 and this value
will be used in Ω.

2.5.3 Variance of residuals in a factor model

The return of an asset r using a factor model is described as:

r =
n

∑
i=1

βi fi + ε (41)

where βi is the factor loading, fi is the return from the factor and ε is a normally
distributed residual value. Then the variance of ε can be computed as part of a regression
as the squared standard error. According to Walters et al. (2014) the mixing will be more
robust, if only diagonal elements will be used. In Beach and Orlov (2007) GARCH3

style factor models are used to generate views.

3Generalized ARCH, see e.g.: https://en.wikipedia.org/wiki/Autoregressive_
conditional_heteroskedasticity
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2.5.4 Idzorek’s method

As described in Litterman et al. (2003), there is no “universal answer” on how to specify
the diagonal elements of Ω, representing the uncertainty of the views. Remember (35)
that specified:

Ω =




ω1 0 0
0 ω2 0
0 0 ω3


 (42)

Idzorek (2005) provides a method where the confidence is a weight factor or level of
confidence from 0% to 100%. This is more intuitive in relationship with the variance of
the view number k (pkΣpT

k ). If all diagonal elements of Ω are zero, that is equivaluent
to specifying 100% confidence in all views. Idzorek uses the BL-equation from (32)
which is repeated below and modified slightly

E100%(r) = Π+ τΣPT (PτΣPT +��✒
0

Ω )−1(Q−P Π) (43)
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Figure 7: Illustration of the weights weq, w and w100% using Idzorek’s method. The
figure is a reproduction of (Idzorek, 2005, Fig.2.2) which uses wmkt as notation for weq.
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where the subscript 100% is added to the new combined return vector E(r) and Ω is
cancelled out, because there is no uncertainty in the views. The weight vector based on
100% confidence is denoted w100%. As the whole optimization problem starts out with a
vector of market capitalization weights weq, Idzorek introduces the “implied confidence
level” as the fraction

I =
w−weq

w100% −weq
(44)

where the denominator expresses the maximum possible weight difference. Figure
7 illustrates the 3 different weights weq, w and w100% and it can be seen that even though
there are only k views, it is possible to calculate an implied confidence level for each
asset (confidence level in asset space). As there can be many views but only 1 asset, I is
the “aggregate confidence level”. Equation (44) must only be used for those assets that
are involved in any of the views. In the example shown by Idzorek (2005), there are no
views involved for the last asset. Therefore there is no implied confidence for the last
asset. Suppose the confidence level is specified to be C = 65% for ωk. The diagonal
element of Ω is then

ωk = αPΣPT , where α =
1−C

C
(45)

This has the effect that if confidence is 100% then α= 0%. If confidence on the other
hand is 0% then α → ∞ like ωk. Idzorek proposes a more intuitive non-mathematical
method for specifying the diagonal elements of Ω. He introduces the user-specified
confidence level C from 0-100% such that for view number k of n views:

Tiltk ≈ (w100% −weq) ·Ck (46)

where Tiltk ≈ (wk,% −weq) is also the difference between the target weight vector
wk,% and the equilibrium weights. It is the tilt caused by view number k. The procedure
is to calculate E(rk,100%), wk,100% and the difference from market equilibrium Dk,100% =
(wk,100%−weq). The tilt becomes the user-specified confidence Ck multiplied by Dk,100%
and the target weight vector is wk,% = (weq +Tiltk). The diagonal elements ωk of Ω is
the solution to the minimum least-square problem:

min∑(wk,% −wk)
2 (47)

subject to wk > 0 where

wk = (λΣ)−1
�
(τΣ)−1 + pT

k ω−1
k pk

�−1 �
(τΣ)−1Π+ pT

k ω−1
k Qk

�
(48)

One should repeat the steps for all n views and finally E(r) for all views can be
calculated. Idzorek points out that despite the complexities in each step, the key advan-
tage is to be able to specify the confidence using a more intuitive scale ranging from
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0-100%. Alternative methods are more abstract for specifying the diagonal elements of
Ω. Idzorek finishes by concluding that his new method should increase the intuitiveness
and usability by helping users realize the benefits of the Black-Litterman model.

2.6 Derivation of the risk aversion and prior returns equations

Equations (26) for the risk aversion coefficient and Equation (27) for prior returns or
implied excess equilibrium returns are simple and easy to derive by introducing the
quadratic utility-function U as in e.g. Walters et al. (2014):

U = wT Π−
�

λ
2

�
wT Σw (49)

where the objective for the “reverse” optimization is to maximize the convex utility
function U . With no constraints, there will be a closed form solution meaning that the
expression can be solved for analytically using a finite number of elementary functions.
By differentiating (49) and setting it to 0:

dU
dw

= Π−λΣw = 0 ⇒ Π = λΣweq (50)

which is exactly the solution vector of excess returns shown in (27). Multiplication of
both sides of this equation by wT yields

wT Π = wT λΣw (51)

where wT Π = rm − r f where rm is the total market return. Because the variance of the
market portfolio is σ2

m = wT Σw, the equation can be rewritten to

rm − r f = λσ2
m ⇒ λ =

rm − r f

σ2
m

=
Sharpe ratio

σm
(52)

where the Sharpe ratio from (10) has been employed. This is exactly the same as shown
in (26) because rm is also µm (any vector of excess returns).

2.7 Bayes theorem in the context for portfolio construction

The Black-Litterman model is based on a socalled Bayesian methodology as described
in Satchell and Scowcroft (2000). In 1761 the english clergyman and statistician Thomas
Bayes4 died 59 years old. Two years later his friend Richard Price send his essay (it was
written in the late 1740’s but never published): “An Essay towards solving a Problem in
the Doctrine of Chances” together with many amendments and additions, to John Can-
ton of the Royal Society of London, for publication. The phrase "doctrine of chances"

4https://en.wikipedia.org/wiki/Thomas_Bayes
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means “the theory of probability”5. It took many years to recognize the work as impor-
tant for inverse probability and in the past century the work of Thomas Bayes became
recognized and is considered a cornerstone.

To begin with, we define all possible outcomes of an experiment as a sample space
S. As an example, the sample space for rolling a die would be {1, 2, 3, 4, 5, 6} and for
tossing a coin it would be {heads, tails} or {0, 1}. Any subset of a sample space is called
an event, e.g. tossing a coin causes the event 0 or 1. Typically events can be expressed
in terms of other events, e.g. A and B or C and D which are all sets of the sample space
S. Then unions, intersections and complements are formed in the following way (see
e.g. Johnson (2000)):

1. (A∪B) is the subset of S that contains all elements either in A, in B or in both.
Therefore this is the notation for their union.

2. (A∩ B) is the subset of S that contains all elements that are in both A and B.
Therefore this is the notation for their intersection.

3. A is the complement of A, i.e. it is all elements of S that are not in A.

A conditional probability is the probability for something to happen, given that an-
other event happens at the same time. Bayes theorem is used to calculate conditional
probabilities and it is therefore closely related to statistics and probability theory. Bayes
theorem states that (also in a version applied to portfolio theory):

P(A|B) = P(B|A)P(A)
P(B)

⇒ P(E(r)|Π) =
P(Π|E(r))P(E(r))

P(Π)
(53)

where P(A) and P(B) are the mutually exclusive observed probabilities that events
A and B happens (without regard to each other, hence they’re unconditional probabil-
ities). P(A|B) is the (joint) probability that event A happens given that even B is true
(conditional probability) and vice-versa for P(B|A). An explanation for the validity of
the rule is (using “set theory”6) that the probability for A to intersect B is

P(A∩B) =
P(B) ·P(A|B)
P(A) ·P(B|A) (54)

In order words, the probability that both events A and B happens is the probability for
B to happen multiplied by the probability of A given B (or vice versa, it’s the same and
therefore two expressions are shown on the right-hand-side, typically abbreviated RHS).

5https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_
Doctrine_of_Chances

6https://en.wikipedia.org/wiki/Set_theory
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Setting the two expressions on the RHS in (54) to be the same and dividing by P(B) to
isolate for P(A∩B), it follows that the resulting equation is the same as (53).

When applied to portfolio theory, the lefthand side P(A|B) is considered the pos-
terior distribution. On the righthand side, P(B|A) is formally known as the sampling
distribution or the conditional distribution, P(A) is the prior distribution and P(B) is a
normalizing constant:

1. P(E(r) is a representation of the PDF (Probability Density Function) that ex-
presses the prior views of the investor or fund manager.

2. P(Π) is a representation of the PDF of equilibrium returns.

3. P(E(r)|Π) is the result of Bayes theorem and it should be seen as a posterior
forecast or mathematically, as a conditional PDF of equilibrium returns, given the
prior views.

Consider the following simple example:

• P(rain) = 10%.

• P(cloud) = 25% (at a certain moment in the morning, there is 25% probability of
having clouds).

• P(cloud|rain) = 75% (given that at a certain time there is rain, there is a 75%
chance that there has been clouds in the morning).

Given that there is clouds, P(rain|cloud)=30% is the probability of getting rain:

P(rain|cloud) =
P(cloud|rain)P(rain)

P(cloud)
= 75% · 10%

25%
= 30% (55)

This is an alternative explanation of Figure 5, but the Black Litterman model com-
bines a prior equilibrium PDF for asset class returns with a the probability function
for the views. Given that the views are correct, the model results in new combined
returns, hence it mixes quantitative and subjective input data. The quantitative input
data is based on historical data and therefore beliefs (=views) of the model should be
considered as “adjustment factors”. Bayesian spam filtering can be used as a learning
algorithm to detect spam emails based on something historically (anterior data) and “ad-
justment factors” (some words like “viagra” and “buy” clearly increase the probability
of detecting messages as spam, i.e. the probability P(spam|buy Viagra)), just to name
another example.
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2.8 Partial conclusion on the theoretical background to portfolio opti-
mization

This previous sections and pages introduces the Black-Litterman model and the whole
framework, including important historical events from the litterature. Many of the equa-
tions provided are basic and elementary, but they have been introduced to ensure that
the reader understands e.g. important differences between traditional modern portfolio
optimization as we shall soon go into details about the Black-Litterman model.

No important results have been presented yet. This partial conclusion only summa-
rizes all the necessary background information that is required to understand, for getting
the best outcome from the following pages.
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3 Example of data-analysis using traditional portfolio theory

Following is an illustration of the concepts of the classical Markowitz portfolio opti-
mization method. A Python-script that downloads quotes from Yahoo Finance has been
made, using Yahoo.com (2016) as data source. Figure 8 illustrates the downloaded data
that is used to make up a portfolio. Selected data range is from Februar 1st 2012 to
Februar 26th 2016 (one/some of the symbols didn’t have data earlier than around 2012
and therefore this was chosen to be the start date). The data has been exported and later
imported into Excel (daily “adj. close” has been used).
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Figure 8: Representation of “raw” downloaded Yahoo Finance quotes.

EUSA iShares MSCI USA Equal Weighted
EWU iShares MSCI United Kingdom
EWG iShares MSCI Germany
EWQ iShares MSCI France
EWH iShares MSCI Hong Kong
MCHI iShares MSCI China
URTH iShares MSCI World

Table 1: iShares tickers from Yahoo Finance (inkluder reference). MSCI World is in-
cluded as a proxy for a diversified “global” benchmark portfolio.

Table 1 shows Yahoo Finance ticker symbols, used to create a new very simple
“market” portfolio which is the sum of each asset class (one for each geographic region
but excluding MSCI World because this will be used for “visual comparison”). The
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expected returns from the new market portfolio were calculated in Excel using (1) with
equal probability or weight factor p(s) = 1. One could argue it is a mistake to construct
the market portfolio that simple, with equal weights. For that reason, it makes sense to
compare the market portfolio with MSCI World which is generally accepted as a good
proxy for a developed market (DM) portfolio because it7

... captures large and mid cap representation across 23 Developed Markets
(DM) countries*. With 1,649 constituents, the index covers approximately
85% of the free float-adjusted market capitalization in each country... DM
countries include: Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Hong Kong, Ireland, Israel, Italy, Japan, Netherlands,
New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland,
the UK and the US...

MSCI World is not a perfect proxy for a global market portfolio, because the perfect
proxy doesn’t exist. Maybe it would be better to find a proxy that includes emerging
markets (could be “MSCI Emerging Markets Index”), also because e.g. China and
Brazil are normally considered large important markets – or more advanced methods
could be used. However, it was decided to make this example, as simple as possible.

Figure 9 shows a comparison of the market proxy and market portfolio. For illustra-
tive purposes the new market portfolio has been multiplied by 50% (only in this graph)
and in this simple comparison, the objective is to compare iShares MSCI World with the
new simple market portfolio. MSCI World then acts as a global stock benchmark, but
is this a reasonable justifiable assumption? Figure 9 shows general tendencies in both
MSCI World and in the new market portfolio that are quite similar. If the two curves are
seen as two “mountains”, many important peaks and troughs appear close to each other.
A comparison of these two curves could maybe be considered to be a kind of “vali-
dation” of the new, simple market portfolio. The newly constructed market portfolio is
highly influenced by China - maybe or probably too much. The reason is that the quoted
chart values for MSCI China are higher than it is for the other securities. A discussion of
correlation of developed and emerging markets (China/Asia) and how they influence on
each other, including on the theoretical “global market portfolio” could perhaps come
into play here. But in order to keep this relatively simply, a further discussion of this
is out of the scope as it is not deemed very interesting in relation to an introduction to
Markowitz portfolio theory.

7https://www.msci.com/resources/factsheets/index_fact_sheet/msci-world-index.
pdf

26



The Black-Litterman method

Figure 9: Construction of a very simple market portfolio, based on asset classes for
geographic regions. Visually it seems like the benchmark or market proxy MSCI World
is highly correlating with the new market portfolio, which is simply the sum of the other
securities.

3.1 Risk premiums and risk-free interest rate, r f

For estimation of the risk premiums, the risk-free interest rate is required. Initially risk-
free interest rates were downloaded as “1-Year Treasury Constant Maturity Rate”8 and
adjusted such that invalid values became replaced by the average of the two adjacent
values. However it was found that in addition to the fact that it is difficult to find good
risk-free interest rate estimates:

• The 1-Year daily data didn’t look correct (subjective), as in the end of 2015 and
2016 the rates increased very much.

• The overall interest levels seemed too high.

• It was deemed better to use either “3-month treasury bill”- or “effective federal
funds rate” as input data for the risk-free interest rates (both curves are visually
very similar) and calculate pro anno rates from these.

In the past few years we’ve seen clear effects on the financial crisis starting in end of
year 2008 and therefore we know r f is historically low. It has been decided to use “3-

8https://research.stlouisfed.org/fred2/series/DGS1#
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month treasury bill” interest rates9 as a qualified attempt to quantify values that should
be used for estimation of the risk premiums. It is out of the scope of this report to use
more advanced approaches, for obtaining the r f -curve.

Figure 10: Representation of downloaded and adjusted into daily risk free interest rates.
The increase in r f around year 2016, towards the end seems too high. That was however
neglected because it seems difficult to find good sources for risk free interest rates.

Figure 10 shows the resulting risk free-curve. It is assumed that the risk premiums
on most securities should be around 5-15% p.a. but the downloaded 3-month treasury
bill-rates gave negative risk premiums on securities when directly subtracted from the
calculated returns. Hence the downloaded rates was divided by the number of days per
3 months (assuming 245 trading days or interest rate days per year divided by 4 corre-
sponds to 61,25 days per 3 months). The result is that the 3-month interst rate converted
to a “daily interest rate” in average is very close to 0% which is seen on the figure.
This corresponds to the fact that very often these days we hear about governments or
central banks launching new stimulus packages, in order to boost the economies in their
regions and in order to try to prevent recession and other side-effects of the financial
crisis. The idea with stimulus packages is based on the ideas of the british economist
John Maynard Keynes who studied the effects of the great depression10 in the 1930’s.
With low interest rates, central banks launched several quantitative easing packages11,
because they want to encourage people to invest more money in the economy.

9https://research.stlouisfed.org/fred2/graph/?id=DTB3,
10https://en.wikipedia.org/wiki/Great_Depression
11https://en.wikipedia.org/wiki/Quantitative_easing
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The calculated risk premiums converted to pro anno, using this method where daily
returns has been subtracted by daily risk premiums, multiplied by 245 trading days per
year is in the interval between 0,97% (MCHI) and 10,62% (EUSA). The latter outper-
forms both the benchmark index (URTH with risk premium of 8,1%) and the new simple
market portfolio (risk premium of 4,66%). These levels seem to be inside an acceptable
range and also something inside this interval is expected for this period.

The pro anno (p.a.) expected returns or risk premiums are calculated as the daily
average times the number of trading days per year:

E(r)year = E(r)day ·245 (56)

The pro anno (p.a.) standard deviations of risk premiums are calculated as the daily
standard deviation times the number of trading days per year:

σyear = σday
√

245 (57)

E(r) (% daily) E(r) (% p.a.) σ (% daily) σ (% p.a.)
EUSA 0,04 10,81 0,82 12,87
EWG 0,02 5,75 1,23 19,25
EWH 0,02 5,89 1,10 17,26
EWQ 0,03 6,28 1,26 19,72
EWU 0,01 2,27 1,02 16,02
MCHI 0,00 1,16 1,45 22,66
Market 0,02 4,85 1,00 15,59
URTH 0,03 8,30 1,04 16,28

Table 2: Average (E(r)) and standard deviation (σ) of daily returns (including converted
values to p.a.). Simple market portfolio and URTH (MSCI World) are more diversified.

Tables 2 and 3 summarize simple statistical results from Excel. From Table 2 it can
be seen that if we want to construct a portfolio with higher returns, maybe we need to be
over-weighted in EUSA as the expected returns are almost 11% p.a. (assuming future
expectations are made on the basis of historic data, which is normally a bad but simple
assumption). At the same time, by coincidence EUSA almost has the lowest historic
risk (it is also a too simple assumption, to use standard deviation on historic data as a
measure of future risk – but it is simple).

High expected returns and low risk contribute positively to increased Sharpe ratio,
(10) of the portfolio. The pro anno standard deviations are in the interval between 12%
and 23% which is deemed acceptable or realistic. There is not much difference between
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E(r) (% daily) E(r) (% p.a.) σ (% daily) σ (% p.a.)
EUSA 0,04 10,62 0,82 12,89
EWG 0,02 5,56 1,23 19,27
EWH 0,02 5,70 1,10 17,27
EWQ 0,02 6,09 1,26 19,73
EWU 0,01 2,07 1,02 16,03
MCHI 0,00 0,97 1,45 22,69
Market 0,02 4,66 1,00 15,61
URTH 0,03 8,10 1,04 16,29

Table 3: Average (E(r)) and standard deviation (σ) of daily risk premiums (including
converted values to p.a.). Simple market portfolio and URTH (MSCI World) are more
diversified.

returns and risk premiums. The reason is that a 3-month interest rate has been converted
to a pro anno interest rate, which is used a basis for a risk-free interest rate with 245
trading days per year. If the result should be different, the risk-free interest rate should
be changed. With the risk premiums, regression has been made and the covariance
matrix was calculated.

3.2 Markowitz portfolio optimization in practice

It would be a problem to using the normal distribution assumption, if the variance is e.g.
small in the beginning and huge in the end. Figure 11 indicates that the time-dependency
or variation of daily risk premiums is relatively constant. In other words, the variance
is acceptable over the time-period, because it is relatively uniform over the considered
time-frame from 2012 - 2016.

Figure 12 shows an example of regression analysis on the daily risk premiums for the
price data. A linear regression is of the form y = αx+β where α and β are coefficients
from the regression analysis. The α-values are close to 0 (they’re insignificant) thus the
expected returns heavily depend on the risk or volatility of securities in a given portfolio.

Table 3 gave the market premium risk of E(RM) =4,66% and from linear regres-
sion analysis, the volatility or contribution from β-values can be used to calculate new
expected returns. The new expected returns consists of a constant contribution from α
and a volatility or risk-depending contribution that linearly grows with increased risk-
taking. Table 4 summarizes the contribution from α and β times the historic standard
deviation, which follows the notion of the CAPM.
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(a) USA Equal Weighted. (b) United Kingdom.

(c) Germany. (d) France.

(e) Hong Kong. (f) China.

Figure 11: Daily risk premiums over the time period. The variance should not depend
much on the time-period if the standard normal distribution assumption is used.

EUSA EWG EWH EWQ EWU MCHI Market
α 0.031% 0.003% 0.006% 0.004% -0.009% -0.021% 0%

β ·E(RM) 2.968% 4.937% 4.274% 5.071% 4.162% 6.028% 4.656%
∑ 2.999% 4.940% 4.280% 5.075% 4.153% 6.007% 4.656%

Table 4: Regression analysis on risk premiums for estimation of expected returns.

3.2.1 Calculation of optimal asset allocation weights

Black’s method was described from page 10. Of great importance is the construction
of the covariance matrix. Two methods have been used for calculating the covariance
matrix:
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(a) USA Equal Weighted. (b) United Kingdom.

(c) Germany. (d) France.

(e) Hong Kong. (f) China.

Figure 12: Regression analysis on risk premiums using downloaded Yahoo Finance data
(the x-axis shows risk premiums of the simple market portfolio).

• A general mathematical way (unbiased estimator) that assumes data is normally
distributed:

Qn =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T , (58)

where n is the number of elements in the random vector x and x̄ is the average.
This assumes the whole population was or is known. If that does not hold true,
instead the sample covariance matrix can be calculated by dividing by n− 1 in-
stead of n. By experimentation it was found that the Excel “Analysis Toolpack”
function for constructing a covariance matrix, assumes that the whole population
is known. For large vectors or sample sizes, it does not matter.

• A single-index model which assumes that the stock returns i are ri =αi+βirm+εi
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(a) “Standard” or normal covariance matrix, for normal distributed data.

(b) Covariance matrix constructed using the “index model”.

(c) Corresponding correlation matrix for method (a).

Figure 13: Two methods for creating the covariance matrix of centered risk premiums,
together with the correlation matrix that corresponds to the first covariance matrix.

where αi are the returns that exceeds the risk-free rate, βirm is a product that ex-
presses the systematic movement with the market and ε is firm-specific unsystem-
atic risk. The procedure is to follow the steps:

1. The variance of the market m is simply taken as the squared standard devia-
tion from Excel (σ2

m).

2. The variance of security or firm i is β2σ2
m + ε2 where ε is “standard error”

from regression analysis in Excel (standard deviation of the residuals). In
other words, this is the sum of a systematic and firm-specific component.

3. The covariance of market and security i is βiσ2
m.
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(a) Efficient frontier calculated using the normal standard covariance matrix.

(b) Efficient frontier calculated using the index model covariance matrix.

Figure 14: Comparison of efficient frontier calculated using both covariance matrices.

4. Other covariances of security i and j is βiβ jσ2
m.

These methods produce the covariance matrices shown in Figure 13. Figure 13a
and 13b are important for everything else and sometimes known as variance-covariance
matrices (because the variance is in the diagonal). However, the covariances are not
always intuitive to understand and for that reason people tend to prefer the normalized
versions of these matrices such that correlation coefficients are in the interval [−1 ≤
ρ ≤ 1]. An example of that is made by constructing a diagonal matrix whose elements
are the square root of the covariance matrix. This matrix is inverted and pre-multiplied
by the matrix product of the covariance matrix and the matrix itself. It should be the
same as dividing each element of the covariance matrix by (σiσ j). Figure 13c shows the
result of converting the first covariance matrix into a correlation matrix. It can be seen
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that there are no negative correlation coefficients. This means that all regional markets
to a certain degree are positively correlated.

A correlation coefficient of 0 means there is no linear dependence on two assets or
securities while a negative correlation coefficient means there is a negative dependence.
In other words if e.g. investors see a bull market in Germany (EWG) but a bear mar-
ket in e.g. asian or Hong Kong (EWH), the correlation would be negative. Negative
correlation coefficients are fine for reducing the risk by diversification of the portfolio.

Next step is to construct two portfolios with two different constants and the first
constant was chosen to be c1 = 0,50% while the second constant was chosen to be
c2 = 1,00%. By applying (22) and normalizing asset weights (should sum to 100%), two
normalized sets of optimal portfolios are found (one for each covariance matrix). Short-
selling is allowed, thus negative weights can appear in the solution to the unconstrained
optimization problem. The specific results and weights are not shown here but Figure 14
shows the straight portfolio lines that make up a tangent point on the resulting efficient
frontier.

3.2.2 Moving away from traditional mean-variance analysis

It is generally accepted in the litterature, that the traditional mean-variance analysis has
some weaknesses that portfolio managers should address. The most common weakness
is that it produces extreme portfolio weights of both long and short positions. The
problem can be reduced by including constraints on the optimization problem.

Another problem is that the solution in terms of weights is very sensitive to estima-
tion errors in return vector and covariance matrices. This can be examined by slightly
changing the vector of expected returns as investigated in Best and Grauer (1991). The
authors showed that the sensitivity of the portfolio weights to mean return vector errors
grows, as the ratio of the largest to the smallest eigenvalue of the covariance matrix
grows. This is unfortunate as the ratio of largest to smallest eigenvalue typically grows
when the number of assets increase, when the number of sample observations is kept
the same. In other words, large errors are expected for large portfolios with few obser-
vations. The above analysis was performed on daily data, so the number of observations
or samples for the covariance matrix was relatively high. If the only available data set
was weekly or monthly end-of-day quotes, we should expect a high sensitivity of the
covariance matrix and hence unrealistic portfolio weights.

There is also a discussion about, if we can assume data to follow a normal distribu-
tion which is a necessary assumption to consider. Empirical evidence has later led many
people away from this assumption towards heavy-tailed distributions, see e.g. Rachev
(2003).
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Finally, investors typically might want to include subjective views into the equa-
tions which is difficult or impossible to do, without mixing objective market data with
other subjective information. This was a conclusion in the article [Black and Litterman
(1992):

... our approach allows us to generate optimal portfolios that start at a set
of neutral weights and then tilt in the direction of the investor’s views.

3.3 Partial conclusion on the use of traditional portfolio theory

The previous paragraphs describes a method where real input data from a Python pro-
gram is used to illustrate the solution to an unconstrained optimization problem. A
few tickers have been selected, based on different geographic regions and a very simple
market portfolio was constructed.

Issues concerning the risk free interest rate and premiums are discussed. Data have
been post-processed in Excel and simple statistical information is used and presented.
Demonstrations of regression analysis have been performed and two covariance matri-
ces have been made. Finally, the efficient frontier using both covariance matrices have
been graphically illustrated using background information from the previous section.
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4 Practical use and validation of the Black-Litterman model

The following pages describe how the BL portfolio optimization model has been vali-
dated and there are examples and comments on the results.

4.1 Validation of the model in He and Litterman (2002)

Before using the model with our own data set(s) we need to verify or validate the model.
The following input data with 2 views:

P =

�
0 0 −0.295 1 0 −0.705 0
0 1 0 0 0 0 −1

�
(59)

Q =

�
5%
3%

�
(60)

have been used to recreate the results in (He and Litterman, 2002, Table 5) as shown
in Table 5. The first two columns show the countries and thereby the meaning of the
P-vector. The following column µ is the posterior estimate of the means as calculated
by either (29) or (32).

Country P1 (%) P2 (%) µ (%) w∗ (%) weq (%) w∗−weq
1+τ (%)

Australia 0 0 4.422 1.524 1.6 0
Canada 0 100 8.73 41.86 2.2 39.77
France -29.5 0 9.48 -3.409 5.2 -8.362

Germany 100 0 11.21 33.58 5.5 28.34
Japan 0 0 4.616 11.05 11.6 0
UK -70.5 0 6.972 -8.174 12.4 -19.98

USA 0 -100 7.482 18.8 61.5 -39.77

Table 5: Results with 2 views that matches (He and Litterman, 2002, Table 5).

The w∗-column is the optimal portfolio or unconstrained mean variance weights as
found using (28) but using the posterior covariance matrix as calculated by (34), i.e.
weq = (λΣp)

−1µ. It is obvious that for the new returns, one cannot use the original
covariance matrix for this calculation. There is a longer explanation for the reason for
why the sum of w∗ is not 100% in He and Litterman (2002). It can be derived that 1+τ
is a scaling factor which is seen from:

w∗ =
1

1+ τ
�
weq +PT ×Λ

�
(61)
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where Λ is a weight vector that is not shown here, because it does not bring that much
new relevant information in here. The sum of w∗ = 0,95238 is exactly equal to 1/(1+
τ), hence the calculation is correct.

The final column shows the change between w∗ and the equilibriumn weights weq.
The latter was initially defined and has been inserted as the second-last column, in order
to easier interpret the results. It can be seen that the column has been scaled by (1+ τ)
and the sum is 0. Where weq sums to 1 it is maybe a little counter-intuitive that w∗ only
summates to around 95%. However it is very easy to see the influence of view 2 with a
change of around +40% in favor of Canadian securities at the expense of around -40%
US securities. Even though the second view only deals with an expected excess return
of 3% the variance is lower for the second view (ω1 = 0,001065 and ω2 = 0,000852),
hence the precision is larger and the view has a greater impact. From the first view, we
see that the weights for Germany is now around 28% higher than when comparing to
the market equilibrium situation.
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Figure 15: Bar plot of equilibrium and posterior returns. The numbers on the top denote
the difference between posterior and equilibrium returns.

Likewise Figure 15 again shows the influence of the views Q and how it affects
the assets through the P-vector. It is clear that view 1 has a strong positive impact on
Germany which has returns that increases the most (from 9,03% to 11,21%). Also just
by looking at the P-vector it is clear that Canadian securities should outperform Amer-
ican, hence bullish view on Canada and the returns for Canada increases from 6,92%
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to 8,73%, which is second-best in class. The investor view on American securities is
affected by a view factor -100% with Q2 = 3% and the returns decrease from 7.56%
to 7.48%. There are no negative returns. But the negative weights on France and UK
should be understood as taking small short-sales positions. This figure does not tell
anything about the risk taken. Again, the optimal portfolio is one that maximizes the
utility function (49) with two opposite terms: A positive term consisting of wT Π which
is the weighed returns subtracted from something that is proportional to the variance as
wT Σw = σ2

m. For this reason it is not straightforward only to look at the equilibrium and
views and imagine what the posterior returns will be.

4.1.1 Reproduction of results of the open-source Akutan finance project

In Walters (2008) there is a reference to a open source finance project called Akutan,
hosted at sourceforge.net12. It is a project written in Java by Jay Walters who con-
tributed significantly by creating the http://blacklitterman.org/-website and also
by publishing several freely available in-depth publications about quantitative finance
algorithms. Last update was in April 2013 and it took some days to make it run on a re-
cent, newer system. Some papers e.g. (Walters et al., 2014, p.27) illustrate the Bayesian
methodology by 3 normal (probability) distributions with specified mean and variance
(in the following the author will refer to “distribution/distributions” instead of maybe the
more academic correct and longer “probability density function” or PDF). The reason
for spending time doing implementing this, was that maybe it would be more intuitive
or easy to interpret results, with a visual approach. It would in any case add an extra
perspective to the “blending” of quantitative data and views.

µ (%) σ
Country Prior Cond. Post. Prior Cond. Post.
Australia 3.938 3.938 4.422 0.036 0.146 0.164
Canada 6.915 6.915 8.730 0.045 0.146 0.207
France 8.358 6.883 9.480 0.055 0.146 0.254

Germany 9.027 14.03 11.21 0.061 0.146 0.276
Japan 4.303 4.303 4.616 0.047 0.146 0.215
UK 6.768 3.243 6.972 0.045 0.146 0.205

USA 7.560 7.560 7.482 0.042 0.146 0.191

Table 6: Results of the Akutan program (using only view number 1, because more
than one dimension is more difficult to visualize). Yellow indicates where the mean
distribution differs from the prior.

Table 6 shows the results of the program using 1 dimension, i.e. only the first view.
12Available May 2nd 2016 at: https://sourceforge.net/projects/akutan/
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The prior and posterior mean values are also graphically shown in Figure 15. The
mean value of the conditional distribution is the prior distribution added together with
a correctional term which is a function of P and Q, hence the views. This makes sense,
as if an investor or portfolio manager e.g. has a bullish view on US securities, that
should definately affect the conditional mean value in upward direction. Likewise with
a bearish view, then the mean value of the conditional distribution should decrease to
below that of the prior distribution.

Equation (60) gives the view-vector Q and the P-vector from (59) couples individual
assets to the views. The figure only visualizes the effect of first view, hence Q1 = 5%
and in the P-vector there’s a factor (+)1 for Germany. The middle yellow cell in Table
6 exactly tells that the difference from 14,03% to 9,027% is 5% if we neglect that the
table has been made using only 4 significant digits. Hence the correctional term is +5%
for the conditional distribution for Germany. The P-vector additionally explains that
the correctional term for France and UK is negative. Using the same methodology, the
correctional term for France is -29,5%·5% = −1,475% and for UK it is even worser:
-70,5%·5% = 3,525%. These numbers are exactly the differences between the mean of
the prior and conditional distributions in Table 6.
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Figure 16: Influence of view 1, on the prior, conditional and posterior PDF for Australia
as made in the Akutan project. The other 6 asset classes are shown in Figure 17.

Attention should also be on the variance or standard deviation of each of the distri-
butions. With model input as in He and Litterman (2002), the standard deviation has
been calculated as:
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Prior PDF:

σi =
�

τ diag(Σi) , where Σ is the original covariance matrix.
(62)

Conditional PDF:

σi =

�
ωi

τ
, where ωi is diag(Ω) as seen in (35). (63)

Posterior PDF:

σi =
�

diag(Σp,i), where Σp is the posterior covariance matrix..
(64)

The posterior covariance matrix was given by (34).

Therefore in Table 6 the prior values for σ is merely a function of the diagonal in
the original covariance matrix. Because ω1 ≈ 1,07 · 10−3 and because τ = 5% is a
constant, the conditional standard deviation is 0,146 and the same for all assets. Finally,
the posterior values for σ is the square root of the posterior covariance matrix Σp.

While it is clear that if views (the conditional PDF) are positive on certain assets
or assets classes, one might expect that the posterior mean is always higher. Figures 16
and 17 however visually illustrate that this is not always the case. One should remember
that the views are only a part of the equation system to be solved. If we remember the
“master formula” given as (29) and reproduced below:

E(r) =


(τΣ)−1 + PT Ω−1P� �� �

view-dependent



−1
(τΣ)−1Π+ PT Ω−1Q� �� �

view-dependent


 (65)

It is clear to see that Ω only partly affects the posterior results E(r). And therefore
the figures are not so easy to interpret, especially not in multiple dimension asset-space.
Another topic that makes things a little hard to figure out is the effect of correlation
on assets. If e.g. asset number 3 and number 4 are strongly correlated and there is
a bullish view only on asset number 3. What will happen to the expected, posterior
returns for asset number 4? While it is clear that the expected returns on asset number 3
increase, dependending on the covariance matrix it is assumed that asset number 4 will
also have increased returns. What if there is strong correlation between asset number
3 and number 4 but the view on asset 3 is bearish and on asset 4 it is bullish. Maybe
the effects of the views will then cancel each other out, even for high confidence in the
views?
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(a) Canada
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(b) France
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(c) Germany
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(d) Japan
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(e) UK
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(f) USA

Figure 17: View 1 influence on assets (input data from He and Litterman (2002)).
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4.2 Validation of the model in Idzorek (2005)

The theory of the method in Idzorek (2005) was described from page 2.5.4. Idzorek
uses a risk-aversion coefficient (λ) of approximately 3.07 and uses an example with 8
assets. The implied equilibrium return vector is:

Π = {0.08% 0.67% 6.41% 4.08% 7.43% 3.70% 4.80% 6.60%}T (66)

There are 3 views and the Q-vector is:

Q =




5,25%
0,25%

2%


 (67)

The corresponding P-vector is shown as the first 3 columns in Table 7. The following
column E(r) is the new combined return vector while w∗ is the vector of new weights.
Equation (32) was used to calculate E(r) and the posterior weights w are calculated
using (28) where µ = E(r). The other weights weq and w100% are plotted together and
shown in Figure 7 on page 19. The results match (Idzorek, 2005, Table 2.6). The last
column is the vector of aggregate or implied confidence level. It is connected to the
diagonal of Ω because it expresses the confidence level. It has been calculated using
(44) and results matches (Idzorek, 2005, Table 2.8) fully, when taken into account that
the P-matrix does not have any links to the last asset class (int’l emerg. equity). While
the last column expresses the implied confidence level in asset space (as a vector of size
n), it is also possible to calculate the implied confidence level in view space (as a vector
of size n).

Asset class P1 (%) P2 (%) P3 (%) E(r) (%) w∗ (%) A.C. (%)
US Bonds 0 -100 0 0.067 29.89 43.1
Intl Bonds 0 100 0 0.499 15.58 43.1

US Lg Grth 0 0 90 6.505 9.37 33.1
US Lg Value 0 0 -90 4.326 14.81 33.1
US Sm Grth 0 0 10 7.551 1.04 33.1
US Sm Value 0 0 -10 3.942 1.64 33.1
Intl Dev Eq 100 0 0 4.937 27.78 32.9
Intl Emg Eq 0 0 0 6.845 3.49 -

Table 7: Default (50%) confidence specified. Last column is the aggregate (implied)
confidence level as calculated by (44). The results exactly match (Idzorek, 2005, Table
2.8).

The implied confidence level in view space is shown in Table 8 together with the
diagonal elements ω/τ which is also the (unscaled) variance of the view (PΣPT ). The
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View 1 View 2 View 3
Implied confidence 0.50 0.50 0.50

ω/τ (%) 2.84 0.56 3.46

Table 8: 50% confidence specified. The variances for the views are the same as shown
in (Idzorek, 2005, Table 2.4).

implied confidence in view space is 50% for each view, which can be calculated using
a modified version of (45):

C =
1

1+α
where α = diag

�
Ω

PΣPT

�
(68)

Next, we want to change Ω to reflect that the user-specified confidence level has
been used. We choose to have 25% confidence in view 1, 50% confidence in view 2 and
65% confidence in view 3. The results will now change from those shown in Table 7 to
those shown in Table 9.

Asset class P1 (%) P2 (%) P3 (%) E(r) (%) w∗ (%) A.C. (%)
US Bonds 0 -100 0 0.069 29.63 42.1
Intl Bonds 0 100 0 0.497 15.84 42.1

US Lg Grth 0 0 90 6.279 8.94 38.3
US Lg Value 0 0 -90 4.217 15.24 38.3
US Sm Grth 0 0 10 7.280 0.99 38.3
US Sm Value 0 0 -10 3.830 1.69 38.3
Intl Dev Eq 100 0 0 4.767 26.03 16.9
Intl Emg Eq 0 0 0 6.627 3.49 -

Table 9: User-specified confidence levels are now specified to each view.

There is least confidence in view 1 and most confidence in view 3. The implied
confidence level decreased slightly for the first two assets (from 43,1% to 42,1%). For
all assets connected to view 3, the implied (aggregate) confidence level increased from
33,1% to 38,3%. Also for the first view, the implied confidence decreased from 32,9%
to 16,9% (for Intl. Dev. Eq). This makes perfect sense, as now view 3 is the most
confident and view 1 is the least confident. The new E(r) and weights are included for
reference but the most interesting is what happens to the aggregate implied confidence
level when the confidence for each of the views is modified.

By comparing Table 8 and 10 it is easy to see the change in implied confidence for
each view, also changed the diagonal of Ω. As the diagonal is the variance of the view,
this increased for view 1 and decreased for view 3. It is the same for view 2, as the
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View 1 View 2 View 3
Implied confidence 0.25 0.50 0.65

ω/τ (%) 8.51 0.56 1.86

Table 10: User-specified confidence levels specified for each view.

implied confidence is still 50%. In other words, view 1 is more uncertain now and view
3 is more accurate. By playing with these numbers, it is possible to fine-tune the results
in a more intuitive way and also to tune each view individually. This is deemed more
intuitive and better, than by changing the uncertainty parameter τ which also affects
all diagonal elements with the same factor at the same time, as described in He and
Litterman (2002). We can also take the analysis a bit deeper, by investigating what
happens for each view.

4.2.1 View details for confidence level 25%, 50% and 65%

Table 11 summarizes the effect on the posterior returns, based on each individual view.
The table can be constructed by using a program where only a single view is passed
into the Black Litterman model, at a time. This means that Ω is not a matrix anymore
because with a single view, it becomes a scalar. The parameters that change is P, Q and
Ω. The constant parameters are the risk-aversion coefficient (λ), equilibrium weights
weq and the variance-covariance matrix.

Asset class P1 E(r)1 AC1 P2 E(r)2 AC2 P3 E(r)3 AC3
US Bonds 0 0.08 0 -100 0.07 50 0 0.08 0
Intl Bonds 0 0.67 0 100 0.49 50 0 0.68 0

US Lg Grth 0 6.55 0 0 6.45 0 90 6.13 65
US Lg Value 0 4.17 0 0 4.09 0 -90 4.10 65
US Sm Grth 0 7.56 0 0 7.47 0 10 7.06 65
US Sm Value 0 3.79 0 0 3.74 0 -10 3.69 65
Intl Dev Eq 100 4.92 25 0 4.75 0 0 4.69 0
Intl Emg Eq 0 6.74 0 0 6.64 0 0 6.43 0

Table 11: Confidence levels specified. The P, E(r) and AC-vector elements are in
percent.

The P-vector from Table 11 is given and the aggregate confidence level from (68) is
distributed to those assets involved in the view. The resulting posterior returns are also
shown, however in this case it makes more sense to illustrate the influence of each view
graphically, as shown in Figure 18. The figure contains both an illustration of E(r) and
the weights for all and each of the 3 views. The following can be seen from Figure 18a:
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Figure 18: The influence of all and each of the 3 views, using Idzorek (2005).
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1. View 1 with confidence 25% is bullish on “Intl Dev Eq” and it is an absolute
view, unlike the two other views. Q1 = 5,25% which is the highest of the 3
views. The equilibrium returns for this asset is only 4,8% but with this positiv
view it increases to 4,92%. This is higher than with the other views including the
total combined expected return for all views. It is expected that with the highest
value of Q we should see an effect and we also do.

2. View 2 is relative with Q2 = 0,25% which is the lowest of all. It indicates the view
is insignificant in comparison with view 1. It is bearish on “US Bonds” and bullish
on “Intl Bonds” with 50% confidence. If we look at Figure 18a it is difficult to
not use Table 11 instead for the first asset, because the scale is very small. The
equilibrium returns are 0,08% and 0,67% respectively. For view two, we see E(r)
decreases to 0,07% and 0,49% respectively. The expected returns for both assets
decrease. The second value of Q is 0,25% so it is below the equilibrium return
values. This likely explains the observed decrease.

3. View 3 with Q3 = 2% is also relative. Strongly positive on “US Lg Grth” and
strongly negative on “US Lg Value” which have equilibrium returns of 6,41%
and 4,08% respectively. The view is lower than both equilibrium values. For the
first asset, the expected returns decrease to 6,13% but for the second asset the ex-
pected returns increase to 4,10% (an increase, when comparing to the equilibrium
returns). It is a maybe not always easy to make a conclusion on the optimiza-
tion results, probably due to correlation between assets which is an effect of the
covariance matrix. That the view is also weakly positive on “US Sm Grth” and
weakly negative on “US Sm Value” is deemed not important because only 10% of
the view is on these two assets and 10% of Q3 = 2% is 0,2%. That is insignificant.

The following can be seen from Figure 18b which shows the final weights, after
applying the BL-model:

1. The first view is absolute an should have an effect on “Intl Dev Eq”. Of all views
it can be seen that view 1 has the highest weight (light-blue color under “Intl Dev
Eq”). It turns out that the total weight is even higher than the effect of view 1
alone. This could indicate that there is a correlation effect between assets in the
other views but it could also merely be a result of the optimization proces.

2. The second view should affect the first two assets relatively. The first asset view is
negative with a P-factor of -1 and the second asset view is positive with a P-factor
of +1. The figure shows that W1 is significantly lower than W2. The weight W2 is
also close to the sum of all views illustrated by Wall .
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3. +90% of the P-factor in the third view deals with “US Lg Grth” and -90% deals
with “US Lg Value”. Both weights seem to be lower than Wall but the difference
is not big.

Generally it seems that it is not easy to always directly see which impact a view has
on the results in terms of e.g. expected returns and weights.

4.3 Partial conclusion on the use of the Black-Litterman model

The previous pages describes how the BL model has been implemented using:

• The model from He and Litterman (2002).

• The model from Idzorek (2005).

All results shown indicates that the programs work correct. Furthermore, time has
been invested into trying to understand the connection between the views and the results
(i.e. mostly the posterior returns E(r) and the new weights, however implied confidence
has also been investigated relatively detailed).

The mean and variances of the prior, conditional and posterior distributions has been
plotted and shown because the results have been compared with the Akutan project in
which we trust. It can be concluded that it is not always easy to predict the outcome
in terms of E(r) and the new weights, based only on the views. For this reason it has
been decided to break up the model in even smaller pieces and to investigate very small
parameter changes, when all (or most other) parameters are kept constant.
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5 Investigation of the Black-Litterman model

In the following, the example data beginning from page 25 will be used together with
parameter variation on P, Q, τ and ωi.

5.1 A simple and very idealized BL model

The previously described output data was not always perfectly easy to interpret. For
this reason a very simplified BL model has been made. There will be only 3 assets and
the standard deviation of excess returns is σ = 15%. Mean returns for the 3 assets are
µ = {−5%; 0%; 5%}T p.a. respectively. First, 5000 years of fictive data was been
generated in Excel using the command =MEAN + NORMSINV(RAND())*STDDEV where
µ and σ was inserted. Then the 3× 3 covariance matrix was studied. It is clear that
all elements in the diagonal of the covariance matrix is the same, i.e. it is the variance
σ2 = 0.152. With 5000 years of artificial data, the offdiagonal elements are typically
in the interval ±[1;5] ·10−4 (σ2 = 0.0225). We should remember that the covariance is
(using N in the denominator for the whole population or N −1 for a sample):

cov(X ,Y ) =
N

∑
i=1

(xi − x̄)(yi − ȳ)
N

(69)

From here it is clear that if there is no consistent development or change in variance,
it is expected that the offdiagonal (co)-variance is 0. In other words, as there is no linear
relationship between any of the assets the offdiagonal elements in the covariance matrix
should not be in the order of 10−4, it should approach 0 as N → ∞. It is the same as
saying that all assets move independently of each other which is exactly what we want
to investigate, because the hypothesis is that this covariance matrix makes it much easier
to interpret what happens in the BL model. Hence, we use a covariance matrix with 0
everywhere and σ2 = 0.0225 in the diagonal. This also shows that now the BL-model
cannot see this matrix started from excess returns with means -5%, 0% and +5% for
assets 1-3, respectively.

We consider a market portfolio where weq = {1/3; 1/3; 1/3} and the risk aversion
coefficient δ = 3. Using the variance wT

eqΣweq the pro anno standard deviation of the
market has been calculated to ≈ 2,9% which is lower than compared with the standard
deviation of each asset which was much more volatile (σ = 15% for each asset). The
expected pro anno market returns is δσ2

mkt = 0,25% and the prior returns are calculated
as Π = δΣweq = 0,25% for each of the 3 assets. This corresponds with the theory of
the CAPM, i.e. more volatility and higher risk should be rewarded. There is no α or
β information left in the model13, from the original problem where µ ranged from -5%

13From regression: Ri −R f = αi + βi(RM −R f )+ εi, see also Table 4 on page 31 or https://en.
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to +5%. This means, if the CAPM does not provide meaningful results, the BL-model
probably will also not provide realistic results. Investors or fund managers should be
aware of this.

5.1.1 Investigating variations on P and Q

To begin τ = 1% implying that the uncertainty in the variance of the view (or views) are
constant, i.e. ω = 2,5 ·10−5. The problem can also be illustrated by the equation:

E(r) =

�
(τΣ)−1 + P����

**

T Ω−1 P����
**

�−1

(τΣ)−1Π+ P����

**

T Ω−1 Q����
*


 (70)

What happens when Q (*) is changed when using different P-vectors and when
everything else is constant and the covariance matrix is only a diagonal matrix (so there
is no cross-correlation between assets)? Figure 19 tries to explain this.

Figure 19a shows that while assets unaffected by the P-vector (asset number 2 and
3) does not change from equilibrium returns of 0,25%, the expected returns for asset
number 1 changes linearly together with the view which is determined by the Q-scalar.
Figure 19b is a relative view. When Q = 0,01% all assets have expected returns close
to 0,25% (but not precisely). When Q = 0,5% E(r) for asset number two decreased
to only 0,125%. It makes sense because the view is negative on asset number 2, but
positive on asset 1.

Figure 19c and 19d looks similar to the two previously described figures, however
they are not the same. They show the weights calculated as w = λΣ−1

p E(r). Had
they been calculated as w = λΣ−1

p Π, the weight for each asset would not change as
Q changes. At the same time, the weights would not change and continue to be ap-
proximately the same as when compared to the equilibrium situation where the market
consisted of 1/3 of each asset.

One can almost guess what happens if an extra absolute view is added. An extra
Q-value (the same value for both views) has been added with the following P-matrix:

P =

�
1 0 0
0 −1 0

�
(71)

As seen in Figure 20, the only difference is whether the slope is positive or negative.
The effect of -1 in view number 2 is the same as multiplying Q in view 2 by -1. The
linear dependency is very clear. It means if Q becomes twice as big we also expect

wikipedia.org/wiki/Alpha_(finance)
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(b) E(r): Relative view: P = {1; −1; 0}T .

0.1

0.3

0.5

1 2 3

0

20

40

Asset

Q (%)

W
gt

(%
)

(c) Wgt: Absolute view: P = {1; 0; 0}T .
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(d) Wgt: Relative view: P = {1; −1; 0}T .

Figure 19: Difference between absolute and relative view in terms of E(r) and weights
calculated as w = λΣ−1

p E(r). Minimum and maximum values of E(r) are [0,125;
0,375]% while equilibrium is 0,25% as seen for asset 3. Weights are merely scaled
where Π corresponds to 100% but when E(r) changes, the sum can drastically differ
from 100%.

the slope to become the double. This can directly be confirmed from (36) which for
convenience is repeated below:

P ·E(r) = Q+ ε =




Q1
...

Qm


+




ε1
...

εm


 (72)

Additional effects of some P-matrices are shown in Figures 21 and 22 without the
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Figure 20: Two absolute views, with the same Q-values. The P-matrix is (71).

weights.

P =

�
1 0 0
0 1 −1

�
(73)
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Figure 21: One absolute and one relative view, with the same Q-values.
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P =

�
1 0 0
1 0 −1

�
(74)
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P =
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�
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Figure 22: One absolute and one relative view, with the same Q-values.
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5.1.2 About variance on the views, using He and Litterman (2002)

The parameter τ has an influence on the variance of the view described by Ω. The effect
comes through the diagonal elements given by (35) from page (14). However that is not
the only place it appears (*):

E(r) =

�
( τ����

∗
Σ)−1 +PT Ω����

∗

−1P

�−1�
( τ����

∗
Σ)−1Π+PT Ω����

∗

−1Q

�
(76)
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Figure 23: Influence of τ on E(r) and weights, when P = {1; −1; 0}T and Q = 0,20%.

The parameter τ is included in all 4 terms, in the calculation for the posterior returns.
In Figure 23 we consider the result of P = {1; −1; 0}T and Q = 0,20%. In other
words, E(r) for asset 1 is 1/5 higher (0,25 · 1,2 = 0,3) and E(r) for asset 2 is 20%
lower (0,25 · 0,8 = 0,2). It can be seen that E(r) is stable and apparently independent
of τ. However, as the weights are w = λΣ−1

p E(r) and since λ is a constant, Σp as given
by 34 must increase, when τ → ∞:

Σp = Σ+M = Σ+




✟✟✟✟✯0
(τΣ)−1 +PT ✟✟✟✯

0
Ω−1
� �� �

Ω=diag(P(τΣ)PT )

P




−1

(77)

The last paranthesis should be inverted so the value of the last term becomes larger,
when what is inside is small. The diagonal element of Ω is linearly proportional to τ.
The posterior covariance matrix is always larger than the historical covariance matrix.
An interpretation could sound: A larger covariance matrix means the variances and
covariances are larger so the uncertainty did increase as τ increased. Larger values of
τ increases the variance of the views and later, the posterior covariance matrix. Higher
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variance and covariance is the same as higher risk or volatility which again provides
higher returns according to the CAPM relationship where higher risk provides higher
returns. The view Q is fixed and we already calculated E(r) for all 3 assets. When
returns are fixed, the weights of risky assets in the portfolio must decrease, otherwise
E(r) will increase which they did not according to Figure 23a. Investors can buy the
risk-free asset at a given rate r f , while the uncertainty in the views determined by τ
increases. That is an interpretation for why the weights are decreasing and why E(r) is
constant (it is bound by the view).

Figure 24 is a surface plot showing some of the same mechanisms as in the previous
figures. The difference is that now τ and Q is changed at the same time. The weights are
however not shown. The tendency as in the previous plots is the same, i.e. as τ increase,
the weights decrease.
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(a) E(r) for asset 1.

(b) E(r) for asset 2 (opposite direction).

Figure 24: Influence of τ and Q on E(r) for asset 1 and asset 2, when P = {1; −1; 0}T .
The figure for asset 3 is not shown. If it was shown, it would be completely green
because E(r) = 0,25% and it is independent of τ and Q with this P-vector.
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5.1.3 About variance on the views, using Idzorek (2005)

Instead of modifying Ω by τ, an alternative method has been described from page 19.
The confidence is between 0% and 100%. We will consider a single view where Q =
0,5% and P = {1; −1; 0}T to check if everything behaves as expected. The results in
terms of E(r) and weights are shown in Figure 25.

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Confidence level (%)

E
(r

)(
%

) Asset 1

Asset 2

Asset 3

(a) Posterior returns.

0 20 40 60 80 100
−10

0
10
20
30
40
50
60
70

Confidence level (%)

W
gt

(%
)

Asset 1

Asset 2

Asset 3

(b) Weights.

Figure 25: Influence of user-specified confidence levels as suggested by Idzorek (2005)
on E(r) and weights, when P = {1; −1; 0}T and Q = 0,5%.

Figure 25 show that there is absolutely nothing surprising in the results. However
it is interesting to see that 0% confidence levels does not change neither the expected
returns, nor the weights from the equilibrium position. At the same time it is interesting
to visually see, that 100% confidence raises E(r) +0,5% for asset 1 and it decreases
E(r) 0,5% for asset 2. Everything in between 0 and 100% confidence is just a linear
interpolation and the principle of superposition14 is therefore expected to be in effect
(there are no non-linear effects to be seen in any of the equations or results).

If we instead investigated the absolute view given by P = {1; 0; 0}T , the linear
relationship in terms of E(r) for asset 1 would be unchanged, when compared to Figure
25a. But asset 2 and asset 3 would be unaffected by the change in confidence level, as
the view does not involve does assets. The exact same holds also for Figure 25b.

5.2 Superposition effects from off-diagonal covariance matrix elements

The following requires an introduction to the theory of covariance matrices, before an
example with offdiagonal covariance matrix elements will be given and the effect (or

14https://en.wikipedia.org/wiki/Superposition_principle
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importance) will be illustrated.

5.2.1 Introduction

The problems shown on the previous pages are simple, because there are no off-diagonal
elements in the variance-covariance matrix Σ. That will change now but first some
background information about covariance matrices will be given. Figure 26 shows a
2×2 covariance matrix, because it is easier to illustrate key concepts in 2, rather than in
3 dimensions. Unlike from the situation described on the previous pages, the covariance
matrix is not longer a diagonal matrix. 1000 random points, closely around the mean
µ = (0,0) makes up a cloud of artificial returns. The figure can be interpreted as e.g. the
annual returns for stock y given the annual returns of stock x. For the shown matrix Σ it
can be seen that it is not easy or even not possible to construct a good fit for a regression
line, that describes the variance in either x, y or the cross- (=co)-variance x,y for the
artificial cloud (“of annual returns” or something else).

Σ =

�
1 0
0 1

�
≈
�

0.9759 0.0089
0.0089 1.0704

�
(78)

V1 =

�
−0.9956
0.0933

�
, V2 =

�
0.0933
0.9956

�
(79)

λ =

�
0.9751
1.0713

�
(80)
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Figure 26: Cloud of e.g. annual returns variables (or assets) x and y, when the covari-
ance matrix Σ is almost an identity matrix. The red lines illustrate the direction of the
eigenvalues of the estimated covariance matrix.

Without going too much into details, mathematically it is possible to calculate the
eigenvectors and eigenvalues15 of the estimated covariance matrix Σ from (78). The
result is shown in (79) and (80) respectively. Eigenvectors v and eigenvalues ˘ gives the
solution to an eigenvalue problem of the form:

15https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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Av = λλλv (81)

where A is a real square matrix. The matrix A can also be seen as a linear trans-
formation matrix (also called a linear mapping) between vector spaces, like Σ can be
considered a linear transformation when multiplied by a vector. Equation (81) tells that
the numbers or eigenvalues λ can be multiplied with a vector v and this gives the exact
same result as when the transformation matrix A is multiplied by v. In other words,
what we have shown is that:

ΣΣΣv = λλλv (82)

One might now ask the question “and so what?”. At a first glance one might think
that Figure 26 do not add any relevant new information and the talk about eigenvectors
and eigenvalues is too complex. The red perpendicular lines in Figure 26 illustrate
the directions of the eigenvectors of the covariance matrix while λ is a scaling factor
that tells us which of the eigenvectors describes the most important direction of “cloud
variance”. It is easier to illustrate the effect of different covariances, when constructing
a different cloud, such as e.g. the cloud shown in Figure 27.

Σ =

�
1 0
0 0.1

�
≈
�

1.0683 0.0194
0.0194 0.0967

�
(83)

V1 =

�
0.0200
−0.9998

�
, V2 =

�
−0.9998
−0.0200

�

(84)

λ =

�
0.0963
1.0687

�
(85)
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Figure 27: Another cloud of e.g. annual returns variables (or assets), but this time the
variance in the y-direction is approximately 10 times smaller than the variance in the
x-direction. This can be seen directly from the covariance matrix.

Figure 27 shows a new cloud, based on a new covariance matrix where σxx ≈ 1 and
σyy ≈ 0,1. If someone asked us to make a linear regression line through the cloud, it
would be much easier and the linear regression fit would be much better than it would
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for the cloud in Figure 26. The eigenvalues λ1 ≈ 0,1 and λ2 ≈ 1 tells that the direction
which best describes the variance in the cloud data, is given by the maximum eigenvalue
and its corresponding eigenvector v2. The eigenvector v2 is the red line which is almost
horizontal and v1 is by definition orthogonal to v2. In Appendix B a few extra clouds
based on new and different covariance matrices, are shown.

Not all matrices have the property that the eigenvalue problem (81) can be solved
and also, sometimes the eigenvalues are complex. For practical purposes, we are only
interested in real eigenvalues. The amount of litterature on linear algebra and the solu-
tion to these problems is huge. There are many rules which will not be described here.
One of the rules is that if the matrix A is hermitian, i.e. in a way “symmetrical” then
entries should be equal to their own conjugate transpose on the other side of the diago-
nal. The diagonal elements must be real so the following is an example of a hermitian
matrix:




2 2+i 4
2−i 3 i

4 -i 1


 (86)

where element (i, j) is equal to the complex conjugate of element ( j, i). Covariance
matrices are always not only hermetian and symmetric, but also positive semi-definite
meaning that every eigenvalue is non-negative. The following is a summary of some
general properties of covariance matrices, which can be found many places:

ΣΣΣx = E{(x− x̄)(x− x̄)T} (87)

where x is a random vector of real numbers with dimension or length n (which is
written X ∈ Rn) and x̄ is a mean vector. Alternatively, the elements σi, j which is the
(co)-variance between asset i and j, can be calculated using (13) or we could write

σi, j = E{(xi − x̄i)(xj − x̄ j)
T} (88)

In case of diagonal entries, the variance of xi is:

σi,i = E{(xi − x̄i)
2}= σ2

i (89)

As we only work with real numbers, the diagonal elements must always be positive.
Also, the covariance matrix is symmetric, i.e. Σ = ΣT because σi, j = σ j, i. Furthermore,
the covariance matrix is positive semi-definite which can be seen by the following op-
erations using the vector u ∈ Rn:
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E{[(x− x̄)T u]2}= E{[(x− x̄)T u]T [(x− x̄)T u]}≥ 0

E[uT (x− x̄)(x− x̄)T u]≥ 0

uT ΣΣΣxu ≥ 0 (90)

A lot of mathematical litterature can be found on these topics. The intention was
only to provide a quick overview and understanding, before changing the covariance
matrix to something slightly more advanced than previously used, which only caused
simple linear effects.

5.2.2 Tiny modification of the covariance matrix

With off-diagonal elements in the covariance matrix, the results from one view affecting
one asset should affect other assets because a correlation effect or cross-variance effect
will happen. To investigate this effect, the covariance matrix will be changed such that
the covariance between assets 1 and 2 will be 50% of each of the variances:

Σ = 10−3 ·




2.5 0 0
0 2.5 0
0 0 2.5




� �� �
Experiment A

→ 10−3 ·




2.5 1.25 0
1.25 2.5 0

0 0 2.5




� �� �
Experiment B

(91)

Corresponding correlation matrices can be calculated from:

Cor(x,y) =
Cov(x,y)

σxσy
⇒ (92)

Σ =




1 0 0
0 1 0
0 0 1




� �� �
Experiment A

→




1 0.5 0
0.5 1 0
0 0 1




� �� �
Experiment B

(93)

To begin, there will be 2 “experiments”, i.e. experiment A and experiment B which
has the covariance matrices shown above. The first covariance matrix (A) is the one
used in the examples starting from page 49 and it has been used until now. The new
covariance matrix (B) is slightly modified. The modification has the effect, that there
will be a relationship between assets 1 and 2 and we want to see this effect demonstrated,
when everything else is kept constant in the BL-framework.

Figure 28 shows the results. Figure 28a and 28b did not change from earlier. Figures
28c and 28d are new. Even though there is no view on asset 2, now the posterior returns
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(a) E(r): Experiment A (as Figure 19a).
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(b) Wgt: Experiment A (as Figure 19c).
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(c) E(r): Experiment B.
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(d) Wgt: Experiment B.

Figure 28: The effect of adding a covariance element outside the diagonal of Σ, which is
50% of the variance for the other assets as illustrated by (91). The same absolute view
as previously have been used, i.e. P = {1; 0; 0}T (and τ = 1% as earlier).

increase even though the view itself only affects view 1 and it was an absolute view.
The explanation must be that now asset 1 and asset 2 are correlated positively. While
the slope for asset 1 and 2 is not the same asset 3 is still completely unaffected. Asset
1 has the strongest dependency on the view Q. The slope for asset 1 in Figure 28c is 5
%/% while for asset 2 it is 2,5 %/%, hence not only is the relationship with E(r) linear,
the posterior returns seem to scale with the coefficients in Σ which also makes sense for
linear problems. Also, the effect of superposition seems to be in place, because the with
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the unmodified covariance matrix, for asset 1 E(r) = 0,375 % but this number increases
to E(r) = 0,4375 for the experiment B with modified covariance matrix.

At first, Figures 28b and 28d look similar. A closer look however reveals that the
weights have changed. The un-modified covariance matrix ends up with 50% weight
for asset 1. This is lower in experiment B, only around 41,5%. As the weights are
calculated as w = λΣ−1

p E(r) it makes sense that the weights should change but at the
moment it does not seem easy to come up with an intuitive explanation for what we see.
But we can see that the effect of increased returns from asset 2 (compared to asset 3)
and the inverted covariance matrix seems to cancel each other out as asset 2 and asset 3
is independent of the view Q.

(a) 3D plot of cloud using new Σ.
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(b) 2D plot of the same cloud.

Figure 29: New cloud including directions of eigenvectors in both 2 and 3 dimensions.
The cloud and covariance parameters are shown in Equations (94)- (96). The red trans-
parent surface illustrates the xy-plane at z = 0. The direction of the eigenvectors is now
indicated by red, green and blue lines respectively.

If we use the same methodology used previously to try to understand the new co-
variance matrix given by (91) we can again take the new covariance matrix and create
a cloud with 1000 points. This is shown in Figure 29 and the cloud has the following
parameters (now in 3 dimensions):
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Σ =




0.0025 0.0013 0
0.0013 0.0025 0

0 0 0.0025


≈




0.0026 0.0012 −0.0001
0.0012 0.0023 −0.0001
−0.0001 −0.0001 0.0024


 (94)

V1 =




0.6583
−0.7516
−0.0411


 , V2 =



−0.0898
−0.0242
−0.9957


 , V3 =




0.7474
0.6592
−0.0834


 (95)

λ =




0.0013
0.0024
0.0037


 (96)

The direction with the highest risk is determined by the third eigenvector, which has
been given a blue color. While that is difficult to see on Figure 29a it is much easier to
verify and see in Figure 29b which is the same, but shown from the top. The second
eigenvector is the second-most important director (green) while the first eigenvector
(red) is the least important. In case of dimensionality reduction, we would throw away
the direction the variance given by the red direction because it is the direction with the
least variance.

It is reasonable to believe that if it was not σ1,2 but instead σ1,3 that was not zero
anymore, then everything would be similar to here except that then we should just swap
the y and z-directions of everything in all the results. If we substituted σ1,2 by the same
multiplied by minus 1, we get experiment C:

Σ = 10−3 ·




2.5 −1.25 0
−1.25 2.5 0

0 0 2.5




� �� �
Experiment C

or: Cor =




1 −0.5 0
−0.5 1 0

0 0 1




� �� �
Experiment C

(97)

The results for experiment C is shown in Figure 30. By comparing Figure 30b and
29b we notice that direction of the most important eigenvector changed from around
45◦ to around -45◦. Again the last eigenvalue (the blue eigenvector) is the largest. If we
made a regression line between asset x and y we would also say the slope is now around
-45◦ which is in contrast to experiment B.

Comparing Figure 30c with Figure 28c reveals that asset 3 is once again completely
unaffected the the view. The slope of asset 1 is again +5 %/% while it is -2,5 %/% for
asset 2. Again we see that the solution to the problem is simple, because it is linear.
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(a) Cloud using slightly changed Σ.
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(b) 2D view of the cloud (seen from above).
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(c) E(r): Experiment C.

0 0.01 0.02 0.03 0.04 0.05
25

30

35

40

45

50

55

60

Q (%)

W
gt

(%
)

Asset 1

Asset 2

Asset 3

(d) Wgt: Experiment C.

Figure 30: Covariance matrix given by (97), with negative correlation between assets 1
and 2. It is clear that E(r) moves in opposite direction with increasing Q.

There are many ways to continue to make changes to the covariance matrix and ex-
plore the effects, after having processed the input data with the Black-Litterman model.
However as everything is linear and the superposition principle applies, it is deemed to
be more interesting to take a real example, using real input data instead of artificial input
data.
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5.3 Using real input data on more complex covariance matrices

We start with the covariance matrix from Markowitz portfolio optimization, i.e. see
Figure 13a on page 33. There are several ways to find the market weights but in the end
they have been chosen to be as in Table 12:

EUSA EWG EWH EWQ EWU MCHI
weq -6.90 35.6 10.2 33.4 13.1 14.7
Π 4.56 9.90 6.74 10.2 7.65 9.39

Table 12: Market weights and prior or equilibrium returns (everything in percent).

The risk-aversion coefficient was chosen to be δ = 3, but the data processed was
based on daily returns and therefore the covariance matrix is also only based on daily
returns. Using the variance wT

eqΣweq the daily standard deviation of the market has been
calculated to 11,5·10−3. Multiplying this with the square root of 245 which was used as
the number of trading days per year yields 17,95% which is also the pro anno standard
deviation of the market. For calculating the prior returns, Π = δΣweq and using the rest
of the BL model framework, either the covariance matrix had be modified from daily to
yearly variances and covariances. Or something else had to be done. An easy way to
make everything work out correctly, was to scale the risk-aversion coefficient δ by 245
times. The prior returns can now be calculated and are also shown in Table 12.

Having validated and done many experiments in the spirit of the BL framework
now, we want to investigate something we believe is interesting to look at at something
that we have not seen earlier. Before setting up our views, we’ve learned that it is not
completely irrelevant how the covariance matrix looks or how the correlation between
each individual assets are. Therefore, this is our starting point (we could also set up
some arbitrary views, make up some strange-looking P-vector or P-matrix and setup
some views in the Q-vector and plot the results but so what?). The covariance (the same
as in Figure 13a) matrix for our “real input data”-based problem is:

Σ = 10−3 ·




0.0677 0.0635 0.0488 0.0646 0.0587 0.0674
0.0635 0.1514 0.0764 0.1445 0.1032 0.1068
0.0488 0.0764 0.1217 0.0782 0.0707 0.1368
0.0646 0.1445 0.0782 0.1587 0.1082 0.1103
0.0587 0.1032 0.0707 0.1082 0.1047 0.0976
0.0674 0.1068 0.1368 0.1103 0.0976 0.2098




(98)

where all (co)-variances above 0,15·10−3 are red, everything above 0,13·10−3 is
yellow and the numbers above 0,11·10−3 are green. The corresponding correlation
matrix is
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Cor =




1.0000 0.6272 0.5378 0.6231 0.6971 0.5656
0.6272 1.0000 0.5632 0.9325 0.8199 0.5992
0.5378 0.5632 1.0000 0.5631 0.6265 0.8560
0.6231 0.9325 0.5631 1.0000 0.8392 0.6042
0.6971 0.8199 0.6265 0.8392 1.0000 0.6583
0.5656 0.5992 0.8560 0.6042 0.6583 1.0000




(99)

where the diagonal has been made red, correlation coefficients above 0,9 are yellow and
correlation coefficients above 0,8 are green. The colors indicates which assets correlates
the most with each other. As an example, asset 2 (EWG) correlates a lot with asset 4
(EWQ) and slightly lesser with asset 5 (EWU). Asset 1 seems to be the most defensive
of all assets. There are no negative correlation coefficients, which is bad seen from a
diversification point of view. In other words, when the market rises everything rises and
vice versa.

As we can not make 6-dimensional figures in this report, we have to think of the
6-asset space as something that is similar to that shown in 2 and 3 d dimensions. The
eigenvectors are:

V1 =




−0.0666
0.6688
−0.0355
−0.7241
0.1501
0.0156



, V2 =




0.3930
0.3290
0.1291
0.0857
−0.8439
−0.0335



, V3 =




0.0768
0.0014
−0.7949
0.0239
−0.1063
0.5919




(100)

V4 =




−0.8782
0.2511
0.0612
0.2543
−0.2813
0.1347



, V5 =




−0.0616
−0.4275
0.4600
−0.4387
−0.1937
0.6098



, V6 =




0.2452
0.4458
0.3672
0.4590
0.3706
0.5082




(101)

The way eigenvectors and eigenvalues are presented depends normally on code im-
plementation. In this case it seems like they’re always sorted from the least significant
to the most significant eigenvalue:

λ = 10−3 ·




0.0102
0.0192
0.0221
0.0359
0.1210
0.6056




→




1.25%
2.36%
2.71%
4.41%

14.87%
74.40%




(102)

67



The Black-Litterman method

Eigenvector number 6 seems to very important as it is the largest. By taking the
sum of all eigenvalues, we see that λ6 accounts for 74,4% of the magnification from the
linear transformation given by Σ. The fifth and sixth eigenvector spans almost 90% of
the total variance.

We shall setup our views, based on the two extreme eigenvectors V1 and V6. We will
setup absolute views that resembles the portfolios expressed by V1 and V6 by scaling the
eigenvectors such that the sum of all elements is 100%, i.e.

V1,% = P1 =




−809%
8116%
−431%
−8787%
1821%
189%



, V6,% = P2 =




10.2%
18.6%
15.3%
19.2%
15.5%
21.2%




(103)

The P1 =V1,% vector seems to have some very large fluctuations, maybe caused by
machine precision errors that are magnified or maybe not. It is always easier to work
on the largest eigenvectors and eigenvalues and the relative scaling between 10% and
22% for P2 = V6,% looks much better. Equation (103) should be understood such that
if we take e.g. P2 = V6,% then our view is +10,2% on EUSA, +18,6% on EWG and so
on. In any case we clearly see that with negative views on individual assets such as with
P1 short-sales is allowed, thus we’re looking at an unconstrained optimization problem.
We know the maximum element in the vector of prior returns is 10,2% so let us define
Q = 20% with an absolute view and test both P-vectors, one by one.

5.3.1 P with the weakest amplification of the linear transformation

Table 13 confirms the hypothesis about the importance of the eigenvalues and eigenvec-
tors. Even though our view tells the BL-model that we “expect” an absolute view of
Q = 20% exactly this P-vector combination gives a change in expected returns that is
less than 1%.

5.3.2 P with the strongest amplification of the linear transformation

Table 14 confirms the hypothesis about the importance of the eigenvalues and eigen-
vectors. Even though our view told the BL-model that we “expect” an absolute view
of Q = 20% exactly this P-vector combination gives a change in expected returns that
ranges from an increase from around 60-75% above the equilibrium levels for all 6 as-
sets. Absolute posterior returns are however never 20%, they range from around 8-17%
but it is still much better than the equilibrium returns.
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EUSA EWG EWH EWQ EWU MCHI
Π (%) 4.56 9.90 6.74 10.16 7.65 9.39

E(r) (%) = 4.55 9.95 6.74 10.11 7.66 9.39
Δr =

E(r)−Π
Π (%) -0.11 0.51 -0.04 -0.54 0.15 0.01

weq (%) -6.90 35.57 10.17 33.37 13.05 14.73
Wgt (%) -7.50 41.92 9.71 25.79 14.43 14.74

Δw =
Wgt−weq

weq
(%) 8.69 17.84 -4.49 -22.72 10.53 0.07

Table 13: Test of P-vector using the vector associated with the minimum eigenvalue
of Σ. Top: Posterior returns compared to equilibrium returns. Bottom: New weights
compared to equilibrium weights.

EUSA EWG EWH EWQ EWU MCHI
Π (%) 4.56 9.90 6.74 10.16 7.65 9.39

E(r) (%) = 7.95 16.06 11.81 16.51 12.77 16.41
Δr =

E(r)−Π
Π (%) 74.34 62.25 75.31 62.44 67.01 74.85

weq (%) -6.90 35.57 10.17 33.37 13.05 14.73
Wgt (%) 0.80 49.10 21.49 47.33 24.46 30.40

Δw =
Wgt−weq

weq
(%) -111.6 38.01 111.4 41.81 87.39 106.4

Table 14: Test of P-vector using the vector associated with the maximum eigenvalue
of Σ. Top: Posterior returns compared to equilibrium returns. Bottom: New weights
compared to equilibrium weights.

5.3.3 Compression of large covariance matrices

The “real input” data in this project only consists of 6 assets. With modern CPU’s much
more data can be processed. However, the topic of decomposition into eigenvalues and
eigenvectors is so close related to the topics and techniques that have already been il-
lustrated. The same techniques can be applied to e.g. image or sound compression.
The method described here is named PCA or Principal Component Analysis but it is
also known as SVD or Singular Value Decomposition and the method has more names.
From Equation (102) we already know that what we could interpret as almost 90% of
the total variance is described by the fifth and sixth eigenvector. If we also include
the fourth eigenvector, we describe 93,68% of the total variance in the covariance ma-
trix assuming we use the corresponding eigenvectors to describe the data (which was
previously illustrated by a cloud). The singular value decomposition theorem states that

M = UΣΣΣVT (104)

we can decompose our matrix M into 3 other matrices that when multiplied to-
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gether approximates M, depending on how many eigenvectors and eigenvalue pairs
are included. Using the implementation on my system, U is the matrix containing
all eigenvectors which are described by (100) and (101) (but upside-down). It means
U = {V1, V2, V3, V4, V5, V6}. The matrix ΣΣΣ is an identity matrix whose elements
are the λ-values shown to the left in Equation (102) (again upside-down). Finally the
matrix V ≈ U down to machine precision, i.e. when subtracting the two matrices from
each other, numbers in the order of 10−15 appear.

Now, we can choose to reconstruct the covariance matrix using e.g. a 4-asset space
instead of 6 assets (but these 4 assets are not the samme as before):

Σ = 10−3 ·




1.0000 0.6352 0.5396 0.6373
0.6352 1.0000 0.5724 1.0000
0.5396 0.5724 1.0000 0.5704
0.6373 1.0000 0.5704 1.0000


 ⇒ (105)

Cor =




1.0000 0.6352 0.5396 0.6373
0.6352 1.0000 0.5724 1.0000
0.5396 0.5724 1.0000 0.5704
0.6373 1.0000 0.5704 1.0000


 (106)

which for the top 4 rows and 4 columns, have many similarities with (98) and (99).
In this case it is clear that Σ acts as a transformation matrix, because the new 4-asset
space is different from the old 6-asset space. The effect of dimension reduction can best
be understood by asking one-self, which is the best transformation to go from a higher
asset space into a lower asset space? It can best be illustrated by previous figures going
from a 3D cloud to a 2D representation of the cloud. It is completely acceptable to only
look at the 3D cloud in 2D (in the x− y-plane), when the variance in the z-direction is
low. The exact same thing happens with dimensionality reduction, when using SVD (or
PCA, it is the same). The concept will however not be illustrated in greater detail than
described here.

5.4 Partial conclusion on the use of the Black-Litterman model

The previous pages explains the most important conclusions, of the project. From the
previous partial conclusion we knew that the Black Litterman model did not always give
intuitive results when we only looked at the views Q and the corresponding P-vector (or
matrix, for more views).

While the last partial conclusion maybe in a way opened up more questions (and
problems) than it answered, by validating the BL model using the frameworks of He
and Litterman (2002) and Idzorek (2005), the new experiments sheds light on some of

70



The Black-Litterman method

the problems with e.g. correlation between assets which is not always intuitive to see
by only looking at the Q and P-vectors or matrices.

The first pages starts out with a really simple 3×3 covariance matrix and then we
investigate the questions:

1. What happens when everything is fixed and we only change the P-vector to switch
between absolute and relative views? The answer is shown in Figure 19.

2. What happens when we add an extra absolute view and keep everything else con-
stant? The answer is shown in Figure 20.

3. What happens when we keep the first absolute view, but add a relative view as
number? The answer is shown in Figure 22. What if we change the views? See
Figure 18.

4. Next, we investigate the effect of τ on both E(r) and the new weights. What
happens? See Figure 23.

5. What happens to E(r) and the weights if we modify the user-specified confidence
level as described by Idzorek (2005)? See Figure 25.

Furthermore, even for a fixed Q it does definately not matter how much “amplifica-
tion” is given by considering the covariance matrix as a linear transformation operator.
The effect of minimum and maximum eigenvalues and eigenvectors have been illus-
trated in not only 2 and 3 dimensions, but also in higher dimensions (although that has
not been graphically visualized because that is not really possible).

Generally there are many ways to make “experiments”. It is the authors belief that
the best thing is to only change a few variables while fixing all other parameters, other-
wise it is nearly impossible to try to understand what happens. Many experiments have
been made on the previos pages. Maybe many other things could have been plotted or
illustrated, but these things are the most important ideas that I found to be interesting to
study.
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6 Conclusions

The problem definition or statement described that the main research question was:

How to use and construct portfolios (how to mix assets) with traditional
portfolio optimization theory and also by using the Black-Litterman model?
What is the impact or effect from individual components of the Black-Litterman
equation?

This report describes using a step-by-step approach how to go from traditional port-
folio optimization into using the Black-Litterman model. A lot of illustrative examples
are shown, that hopefully should make this report easy to read for everyone who have
not worked with the model before. The effect or impact of many individual components
in the Black-Litterman equations have been described, studied, analyzed and many fig-
ures and illustrations have been made to visually better understand the model (partly on
purpose, because illustrations makes everything much easier to read and understand).

The report describes how to calculate historical covariance matrices using both a
traditional method and using the index-model method. Unconstrained reverse portfolio
optimization have been carried out and a lot of not only theoretical but also historical
background information has been included, where it was deemed appropriate to give
credit.

One of the interesting things to study have been the effect of changing the views us-
ing both a very artificially simple covariance matrix, a not so simple covariance matrix
and a more “normal” covariance matrix, based on real historical stock quotes. It can be
concluded that the complexity increases to higher levels, as more and more correlations
affects the views. The model uncertainty parameters have been described from a practi-

cal as well as from a theoritical point of view. Furthermore, there is a discussion about
the influence of creating views using large or small confidence. The title and topic of the
thesis “An investigation into the BL model” is maybe quite appropriate, as it seems to
take a while before getting perfectly comfortable and familiar with the framework. It is
my hope, that the report together with all the illustrations and background information
can help other people getting more familiar with the model.
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Appendices
A Extract from from the BayesianDialog.java file

Results from figures 16 and 17 starting from page 40 have been verified using the Akutan
open source finance project16. It is written in Java and compiles using e.g. ant build
(compile and build a jarfile) or ant javac (compile). It was a requirement to add the
following to the CLASSPATH environment:

• akutan/lib/colt.jar

• akutan/lib/jfreechart-1.0.5.jar

• akutan/lib/jcommon-1.0.9.jar

• akutan/lib/lpsolve55j.jar

• akutan/lib/junit-4.4.jar

Having done this, it was easy to insert print-statements as shown below.

public XYDataset createDataset() {
final int NUM_POINTS = 80;
System.out.println("createDataset, ret/sigma=");
NormalDistributionFunction2D norm = new

NormalDistributionFunction2D(0, 1);
XYSeriesCollection tColl = (XYSeriesCollection)

DatasetUtilities.sampleFunction2D(norm, -3,
+3, NUM_POINTS, "");

XYSeries tSeries = tColl.getSeries(0);
XYSeriesCollection sColl = new XYSeriesCollection();
BLView v = _views.get(0);
double ret[] = new double[3];
//System.out.println("v.getEr()=" + v.getEr() + "

v.getWeights().get(_assetId)=" + v.getWeights().get(_assetId));
ret[0] = v.getEr() * v.getWeights().get(_assetId)

+ (((!v.isAbsolute()) ? _eRet.get(_assetId) : 0));
ret[1] = _eRet.get(_assetId);
ret[2] = _pRet.get(_assetId);
double sigma[] = new double[3];
sigma[0] = Math.sqrt(v.getOmega() / _tau);

16http://www.akutan.org/
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sigma[1] = Math.sqrt(_tau * _eVar.get(_assetId, _assetId));
sigma[2] = Math.sqrt(_pVar.get(_assetId, _assetId)

- (((_adjustVar) ? _eVar.get(_assetId, _assetId) : 0)));
final String[] names = new String[] { "Views", "Equilibrium",

"Posterior" };
System.out.println(" ret[0]: " + ret[0] + " ret[1]: " + ret[1] + "

ret[2]: " + ret[2]);
System.out.println(" sigma[0]: " + sigma[0] + " sigma[1]: " + sigma[1]

+ " sigma[2]: " + sigma[2]);
System.out.println(" sigma[2]=> _pVar.get(_assetId, _assetId): " +

_pVar.get(_assetId, _assetId) + " _adjustVar: " +
_eVar.get(_assetId, _assetId) );

System.out.println("createDataset...");
// Don’t sort, allow duplicates
XYSeries[] s = new XYSeries[3];
for (int j = 0; j < NUM_POINTS; ++j) {
double x = tSeries.getX(j).doubleValue();
double y = tSeries.getY(j).doubleValue();
for (int i = 0; i < 3; ++i) {
if (s[i] == null) s[i] = new XYSeries(names[i], false, true);
double adjX = ret[i] + x * sigma[i];
s[i].add(adjX, y);

}
}
for (int i = 0; i < 3; ++i) {
sColl.addSeries(s[i]);

}
return sColl;

}

74



The Black-Litterman method

B Eigendecomposition of additional tiny 2 × 2 covariance
matrices

For illustrative purposes, in addition to Figures 26 and 27, the following clouds of arti-
ficial returns and relevant parameters from covariance matrices have been included.

Σ =

�
0.6 0.3
0.3 0.6

�
≈
�

0.6624 0.3180
0.3180 0.5866

�

(107)

V1 =

�
0.6640
−0.7478

�
, V2 =

�
−0.7478
−0.6640

�

(108)

λ =

�
0.3043
0.9447

�
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Figure 31: The slope of the most important direction is tan−1(−0,664/−0.7478)≈ 42◦.

Σ =

�
1 0.3

0.3 0.3

�
≈
�

1.0148 0.3208
0.3208 0.3067

�

(110)

V1 =

�
0.3598
−0.9330

�
, V2 =

�
−0.9330
−0.3598

�

(111)

λ =

�
0.1830
1.1385

�
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Figure 32: Here Σ corresponds to the direction: tan−1(−0,3598/− 0.9330) ≈ 21◦.
Hence the risk/volatility or variance for asset x is much greater than the risk for asset y.
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Σ =

�
0.3 0.3
0.3 1.0

�
≈
�

0.2910 0.3046
0.3046 1.0048

�

(113)

V1 =

�
−0.9383
0.3459

�
, V2 =

�
0.3459
0.9383

�

(114)

λ =

�
0.1787
1.1171
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Figure 33: Here Σ corresponds to the direction 70◦. Hence the risk/volatility or variance
for asset y is much greater than the risk for asset x. With CAPM β would be greater
for asset y than for asset x, which is the opposite result when comparing to the previous
figure.

Σ=

�
0.3 −0.2
−0.2 0.3

�
≈
�
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−0.1986 0.3077

�
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�
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Figure 34: In this case it is clear that the negative offdiagonal elements of Σ makes
assets x and y negatively correlated (angle of most important eigenvector is -45◦). Such
a covariance matrix is perfect for risk diversification of investment portfolios.
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