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Executive  Summary 
 

The present study examines how downside risk measures perform in an investment 

management context compared to variance or standard deviation. To our knowledge, this 

paper is the first to include several acknowledged downside risk measures in a thorough 

analysis where their different properties are compared with those of variance 

 

Risk is an essential factor to consider when investing in the capital markets. The question of 

how one should define and manage risk is one that has gained a lot of attention and remains a 

popular topic in both the academic and professional world. This study considers six different 

downside risk measures and tests their relationship with the cross-section of returns as well as 

their performance in portfolio optimization compared to variance.  

 

The first part of the analysis suggests that the conditional drawdown-at-risk explains the 

cross-section of returns the best across methodologies and data frequency. Conditional value-

at-risk explains the daily returns the best but the worst in monthly returns. Variance, together 

with semivariance, perform average in both data frequencies. 

 

The second part of the analysis concludes that conditional value-at-risk and conditional 

drawdown-at-risk are the two superior risk measures whereas semivariance is the worst 

performing risk measure – mainly caused by the poor performance during bull markets. 

Again, variance performs average compared to the downside risk measures in most aspects of 

this analysis. 

 

Overall, this thesis shows that the choice of risk measure has a significant effect on the 

portfolio optimization process. The analysis suggests that some downside risk measures 

outperform variance while others fail to do so. This suggest that downside risk can be a better 

tool in investment management than variance. 

  



Portfolio Optimization in a Downside Risk Framework 2010 
 

 1 

Table of Contents 

 

1 CHAPTER I: INTRODUCTION ....................................................................................................................................... 3 

1.1 PROBLEM STATEMENT ................................................................................................................................................................... 4 
1.2 DELIMITATIONS .............................................................................................................................................................................. 5 

1.2.1 Theoretical Delimitations............................................................................................................................................ 5 
1.2.2 Empirical Delimitations ............................................................................................................................................... 5 

1.3 METHODOLOGY ............................................................................................................................................................................. 6 
1.4 THESIS STRUCTURE......................................................................................................................................................................... 7 

2 CHAPTER II: THEORY ................................................................................................................................................. 11 

2.1 PREFERENCE THEORY ................................................................................................................................................................... 11 
2.1.1 Expected Utility Theory ............................................................................................................................................. 11 

2.1.1.1 Risk Aversion ........................................................................................................................................................................... 12 
2.1.1.2 Axioms of Expected Utility Theory .................................................................................................................................. 15 
2.1.1.3 Violations of the Axioms of Expected Utility Theory ............................................................................................... 16 

2.1.2 The Value Function of Prospect Theory .............................................................................................................. 20 
2.1.3 Summary ....................................................................................................................................................................... 22 

2.2 RISK THEORY ................................................................................................................................................................................ 24 
2.2.1 The Mean-Variance Framework And Modern Portfolio Theory ................................................................. 24 

2.2.1.1 Risk and Return for Single Stocks .................................................................................................................................... 25 
2.2.1.2 Risk and Return for a Portfolio ......................................................................................................................................... 26 
2.2.1.3 Correlations and Diversification ....................................................................................................................................... 27 
2.2.1.4 The Minimum Variance Portfolio .................................................................................................................................... 29 
2.2.1.5 The Efficient Frontier ............................................................................................................................................................ 29 
2.2.1.6 The Capital Market Line (CML) ......................................................................................................................................... 31 
2.2.1.7 Systematic Risk: Beta ........................................................................................................................................................... 33 

2.2.1.7.1 Estimating Beta ................................................................................................................................................................ 34 
2.2.1.8 The Security Market Line (SML) ....................................................................................................................................... 35 
2.2.1.9 Criticism of the Mean-Variance Framework ............................................................................................................... 36 

2.2.2 The Mean-Lower Partial Moment Framework ................................................................................................. 37 
2.2.2.1 The Investor’s Portfolio Choice Problem ...................................................................................................................... 37 
2.2.2.2 Capital Market Equilibrium ................................................................................................................................................ 40 
2.2.2.3 Special Cases of the Generalized MLPM Framework .............................................................................................. 43 
2.2.2.4 The Mean-Semivariance Framework ............................................................................................................................. 44 

2.2.2.4.1 The Endogeneity of the Semicovariance Matrix ................................................................................................. 44 
2.2.2.5 A Heuristic Approach ............................................................................................................................................................ 47 

2.2.3 The Mean-Gain-Loss Spread Framework ........................................................................................................... 48 
2.2.4 The Mean-Conditional Value-at-Risk Framework ........................................................................................... 50 

2.2.4.1 The Investor’s Portfolio Choice Problem ...................................................................................................................... 52 
2.2.4.1.1 The Loss Function ............................................................................................................................................................ 52 
2.2.4.1.2 Analytical Representation ............................................................................................................................................ 53 
2.2.4.1.3 Minimizing CVaR with LP .............................................................................................................................................. 54 

2.2.5 The Mean-Drawdown Framework ....................................................................................................................... 55 
2.2.5.1 Definition of Drawdown Measures ................................................................................................................................. 56 
2.2.5.2 The Investor’s Portfolio Choice Problem ...................................................................................................................... 57 

2.2.6 Summary ....................................................................................................................................................................... 58 

3 CHAPTER III: DATA .................................................................................................................................................... 60 

3.1 PRESENTATION OF DATA .............................................................................................................................................................. 60 
3.1.1 Return Frequency and Period ................................................................................................................................. 61 
3.1.2 Outliers ........................................................................................................................................................................... 61 
3.1.3 Return Calculation ...................................................................................................................................................... 62 

3.2 NORMALITY ISSUE ........................................................................................................................................................................ 62 
3.2.1 Stability of Deviation “Persistency” ...................................................................................................................... 65 

3.3 DESCRIPTIVE STATISTICS .............................................................................................................................................................. 67 
3.3.1 Performance ................................................................................................................................................................. 70 



Portfolio Optimization in a Downside Risk Framework 2010 
 

 2 

4 CHAPTER IV: ANALYSIS PART I ................................................................................................................................ 73 

4.1 CORRELATIONS ............................................................................................................................................................................. 73 
4.2 STATISTICAL SIGNIFICANCE: THE FULL SAMPLE .......................................................................................................................... 75 
4.3 STATISTICAL SIGNIFICANCE: BEAR VS. BULL MARKETS .............................................................................................................. 80 
4.4 ECONOMIC SIGNIFICANCE: RETURN SPREADS ............................................................................................................................ 82 
4.5 SUMMARY .................................................................................................................................................................................... 83 

5 CHAPTER V: ANALYSIS PART II ................................................................................................................................ 86 

5.1 EFFICIENT FRONTIERS AND MINIMUM RISK PORTFOLIOS .......................................................................................................... 86 
5.1.1 The Mean-Variance Framework ............................................................................................................................ 86 
5.1.2 The Mean-Semivariance Framework ................................................................................................................... 89 
5.1.3 The Mean-GLS Framework ...................................................................................................................................... 91 
5.1.4 The Mean-CVaR Framework ................................................................................................................................... 92 
5.1.5 The Mean-Drawdown Framework ....................................................................................................................... 94 

5.2 REBALANCING PORTFOLIOS ......................................................................................................................................................... 97 
5.3 REBALANCING PORTFOLIOS WITHOUT BONDS ........................................................................................................................ 103 
5.4 SENSITIVITY ANALYSIS ............................................................................................................................................................... 107 

5.4.1 A Resampling Approach ........................................................................................................................................ 108 
5.4.2 Analysis of Sample Sensitivity ............................................................................................................................. 111 

5.4.2.1 Sample Sensitivity – Variance ........................................................................................................................................ 112 
5.4.3 Comparing Sample Sensitivity ............................................................................................................................. 113 

5.5 SUMMARY ................................................................................................................................................................................. 116 

6 CHAPTER VI: CONCLUSION ................................................................................................................................... 118 

7 BIBLIOGRAPHY........................................................................................................................................................ 121 

8 APPENDICES ............................................................................................................................................................ 124 

8.1 APPENDIX A ............................................................................................................................................................................... 124 
8.2 APPENDIX B ............................................................................................................................................................................... 126 

  



Portfolio Optimization in a Downside Risk Framework 2010 
 

 3 

1 Chapter I: Introduction 
One of the greatest contributions to the financial theory of today is the establishment of a 

formal risk/return framework by Nobel laureate, Harry Markowitz, which laid the foundations 

of what we know as Modern Portfolio Theory (MPT). Markowitz (1952) pioneered the issue 

of portfolio optimization with a seminal article, which was later expanded into a seminal book 

(Markowitz, 1959). By quantifying investment risk in the form of the variance or standard 

deviation of returns, Markowitz gave investors a mathematical approach to asset selection and 

portfolio management. Markowitz used mean returns, variances and covariances to derive an 

efficient frontier where every portfolio maximizes the expected return for a given variance (or 

minimizes variance for a given expected return). This is popularly called the mean-variance 

(MV) criterion. While MPT a la Markowitz has revolutionized the investment world, it has 

also received substantial criticism. This criticism is usually centered on two main assumptions 

of the MV framework: 1) investors’ attitude towards risk can be explained by a quadratic 

utility function, or 2) asset returns can be adequately represented by the normal distribution. 

Quadratic utility is very unlikely because it implies increasing absolute risk aversion. 

Furthermore, asset returns often exhibit skewness and/or excess kurtosis, which violates the 

second assumption of normality and makes the mean-variance approach limited in many 

cases. In fact, investment returns have unlimited upside potential and can only yield limited 

losses, making the asymmetrical behavior rather logical. 

It should be noted that Markowitz and William Sharpe, the other originator of MPT, from the 

very beginning acknowledged these limitations and favored another measure of risk that 

focused on the downside. 

 

“Under certain conditions, the mean-variance approach can be shown to lead to 

unsatisfactory predictions of behavior. Markowitz suggests that a model based on the semi-

variance would be preferable; in light of the formidable computational problems, however, he 

bases his analysis on the variance and standard deviation.” – Sharpe, W. F. (1964) 

 

In other words, MPT is limited by measures of risk that do not always represent the realities 

of the investment markets, and perhaps a downside risk measure such as semivariance is 

preferable. Fortunately, advances in portfolio and financial theory, coupled with increased 

computer power, have overcome these limitations. It is then curious that both practitioners 

and academics have been optimizing portfolios for more than 50 years using variance (or 

standard deviation) as a measure of risk.  
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With substantial evidence that returns are asymmetric and that investors do not exhibit 

quadratic utility, downside risk has been gaining increasing attention, and numerous 

magnitudes that capture downside risk are now well known and widely used. Results from 

previous studies in this field are quite disparate and the question remains whether downside 

risk measures lead to more efficient allocation than variance.  

 

1.1 Problem Statement 
This paper focuses on the differences and similarities between variance and several downside 

risk measures in a global asset allocation context. We address this issue from both a 

theoretical and an empirical point of view. The overall aim of this paper is to determine 

whether or not investors should view and manage risk as a domain of bad outcomes (i.e. 

downside) in order to efficiently invest in the global capital markets. In order to answer this 

question, we analyze several properties of a set of risk measures in an attempt to clarify the 

advantages and drawbacks of each. The questions we seek to answer are summarized below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Previous work on this subject has mostly consisted of comparing variance with a single 

downside risk measure such as semivariance or value-at-risk (VaR). To our knowledge, this 

paper is the first to include several of the most acknowledged downside risk measures in a 

thorough analysis where their different properties are compared with those of variance. 

Additionally, some of the frameworks and methodologies applied in this paper are our own 

design, inspired by similar existing theories and heuristics. 

 

How do downside risk measures perform in an investment management context 

compared to variance? 

 How do investors view risk? 

 How do the different risk measures explain the cross-section of equity returns? 

o How is this affected by the frequency of returns? 

o How is this affected by market conditions? 

 Which effect has the choice of risk measure on portfolio allocation? 

o How do the different risk measures perform over time? 

o How sample-specific are our results? 
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1.2 Delimitations 
The purpose of this section is to outline some areas that will not be touched upon throughout 

this paper. We will divide these areas into two parts, namely theoretical delimitations and 

empirical delimitations. Since the scope of this paper is fairly broad, it is important to keep in 

mind that the following will not be addressed.  

 

1.2.1 Theoretical Delimitations 

The theory employed in this paper is generally based on modern portfolio theory. It is 

important to remember that, even though we focus mainly on the risk aspect, this is not a 

study of risk management. Naturally, some elements of risk management will be included 

since we are dealing with downside risk, but the reader should not expect this to be a key part. 

Thus, portfolio theory is at the heart of this thesis. In our research and assessment of different 

downside risk measures, we have selected those we found most intuitive and interesting. 

Obviously, one could have included additional risk variables but due to limited time and 

space, we have chosen an amount that fits the scope of our research.  

In addition, some introductory utility and prospect theory will be presented. The purpose is to 

give the reader a basic, yet nuanced, understanding of how investors view risk. Thus, the 

section addressing investor preferences aims to provide a background for why downside risk 

can be an important element for an investment manager, and we will not go any deeper into 

utility theory or prospect theory. That is, the empirical analysis will not deal with investor 

preferences at all.  

Finally, we will not present any econometric theory since all our regressions are ordinary least 

squares (OLS) and we expect the reader to be familiar with the underlying assumptions. 

Instead, we will address any problems or violations of these assumptions we may encounter in 

the empirical analysis. 

 

1.2.2 Empirical Delimitations 

The empirical analysis consists of two parts. In the first part, we consider the relationship 

between the individual risk measures and the cross-section of returns. We will not look into 

the relationship with a time series of returns because we wish to establish a ranking of the 

explanatory power of the risk variables in general, i.e. across all our securities. The data used 

is rather extensive and we do not see any reason to include additional securities, which would 
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only make the analysis intractable. The securities included are stocks, equity indices and 

government bonds. Thus, we will not deal with options, futures or other derivatives. Likewise, 

we do not include corporate bonds because we would then have to account for credit risk, 

which falls outside the scope of the thesis.  

Moreover, we have data spanning 30 years back, which is the longest available in Thomson 

Datastream. We want to get all the data from the same source (Datastream) in order to make it 

more comparable. Since we want to deal with a globally diversified European investor, all of 

the data is in Euros. Consequently, exchange rate risk will not be addressed.  

In the second part of the analysis, we focus on minimum risk portfolios in order to compare 

the performance of the different risk measures. This part is not supposed to suggest an optimal 

portfolio for an investor but rather to analyze the dynamics of using different measures of risk 

when compared to variance. Furthermore, the paper does not address the financing of the 

investments, i.e. we do not consider how the capital to be invested has been raised. This is 

because we want to preserve a focus on how the different risk measures affect the 

performance of optimized portfolios. Finally, we do not consider taxes and transaction costs, 

as these are unrelated to market risk.  

 

1.3 Methodology 
According to Andersen (2005), the methodology may be viewed as the procedure of theory 

and data gathering, application, analyses, etc. used in order to generate new knowledge. There 

exist numerous methodic approaches depending on the knowledge needed, and the choice 

hereof should always be made so that it fits the subject being assessed in a logical way. 

Hence, the purpose of this section is to clarify how the subject of the paper has been 

researched and handled.  

 

The main elements of the thesis are the theory and the empiricism, and the interaction 

between the two conforms the core in the production of new knowledge, which is an iterative 

process. That is, first, the theory is gathered and assessed and then it is applied in an empirical 

analysis, which leads us back to assessing the theory and even gathering new theories that 

better fit the subject at hand. This way, the knowledge generation becomes an iterative and 

rather dynamic process.  
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In order to attain a comprehensive theoretical basis for the empirical analysis, we review and 

apply a broad range of economic and financial literature. Primarily, we use the original 

articles of many different academics
1
, which presents the challenge of connecting the dots 

while preserving focus on the overall objective. For example, one author may introduce a risk 

measure that succeeds in explaining the cross-section of stock returns while another author 

may present a risk measure that works well with other tasks. This means that we must assess 

the relevance of the given risk measure (or theory) in the context of our thesis subject and, 

where possible, extend the existing theory to incorporate relevant and useful properties. The 

manifold sources, however, ensure a thorough and unbiased starting point for the empirical 

analysis and assessment of results.  

In addition to articles from academic journals, we have drawn on several textbooks
2
. These 

are convenient because they cover topics thoroughly (drawing on the work of many different 

academics) and are usually unbiased. The theories in the paper include both qualitative and 

quantitative elements that lay the foundation for the empirical analysis. 

 

For the empiricism, we gather and apply data from Thomson Datastream exclusively, which 

contains historical time series of more than two million securities. We believe that the data 

from Datastream possess the high quality we need to draw valid inferences from the empirical 

analysis. All the calculations are made in SAS, Excel (and VBA) and R.  

 

1.4 Thesis Structure 
This section aims to describe the structure of the thesis. Overall, the thesis consists of six 

chapters, which are subdivided into a number of sections. We will illustrate the logic behind 

the structure of the thesis and briefly explain what the reader will find in each chapter.  

 

                                                 
1
 Including Markowitz (1952), Bawa et al (1977), Estrada (2005) 

2
 Including Elton et al (2007) 
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Chapter 1: Introduction 

Chapter 1 aims to give the reader an introduction to the thesis topic and the problem 

addressed throughout the analysis. Furthermore, the methodology applied throughout the 

process is presented. 

 

Chapter 2: Theory 

The purpose of chapter 2 is twofold. First, investor preferences are reviewed. The purpose is 

to introduce expected utility and prospect theory and clarify how investors view risk in 

Figur 1-1: Thesis structure 
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practice. After reading this section, the reader should have a basic understanding of how 

utility/value can be quantified and how risk should (and should not) be measured. 

The second part of the chapter presents the frameworks and risk measures that will be used in 

the analysis. It starts out by reviewing the classical mean-variance framework of modern 

portfolio theory to give the reader a basic understanding of its assumptions, applications, and 

definitions of risk. Subsequently, alternative frameworks and risk measures are reviewed. 

These risk measures include lower partial moments and semivariance, the conditional value-

at-risk, three measures of drawdowns, and an ad hoc risk measure called the gain-loss spread. 

The purpose is to give the reader an understanding of what the different risk variables 

measure, and how we can apply the frameworks in practice.  

 

Chapter 3: Data 

This chapter introduces the data used throughout our analysis. The reader is presented to the 

asset universe, time horizon, return definitions etc. In addition, the asset returns are tested for 

normality using Jarque-Bera tests and persistency checks. Finally, some descriptive statistics 

are shown, which should give the reader a general idea of the different characteristics of the 

securities.  

 

Chapter 4: Analysis part 1 

The purpose of chapter 4 is to determine the relationship between risk and the cross-section of 

returns. The analysis involves an evaluation of correlations, regression analysis, and economic 

significance. We analyze the differences when using daily versus monthly returns as well as 

during bear and bull markets. The intention of this chapter is to determine whether downside 

risk explains returns to a higher degree and therefore could form the basis of a profitable 

investment strategy.  

 

Chapter 5: Analysis part 2 

In this chapter, we assume a highly risk-averse investor and calculate the optimal portfolios 

by minimizing the different measures of risk. Initially, we show how these portfolios and 

other efficient portfolios can be derived in order to illustrate the efficient frontiers in the 

respective mean-risk frameworks. In order to compare the performance of the different 

portfolios, we do a yearly rebalancing of each assuming an initial investment of €100. This is 

also helpful when analyzing the dynamics between portfolio performance and market 

fluctuations, which is not captured when using the whole period. Finally, we consider the 
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impact of sample sensitivity on the optimal weights and thus performance of the constructed 

portfolios.  

 

Chapter 6: Conclusion 

Chapter 6 presents the overall conclusions of the empirical analyses and aims to answer the 

questions in the problem statement of the thesis.  
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2 Chapter II: Theory 

2.1 Preference Theory 

2.1.1 Expected Utility Theory 

Today, stock market participants have ample opportunities to construct portfolios 

corresponding to their individual needs and preferences. Von Neumann & Morgenstern 

(1944) laid the foundation for the utility theory used to this day, which is based on the key 

assumption that investors do not choose the alternative that yields the highest expected return 

but rather choose the alternative that yields the highest expected utility. However, in most 

situations, such a selection is not possible since complete information about an individual’s 

preference set and hence their utility function is not available. Thus, with imperfect 

information we want to determine a certain restricted class of utility functions that our 

individual’s utility belongs to. The more restrictive the class of utility functions, the smaller 

will be the admissible set and thus the more useful will it be in practice. However, more 

restrictions imply that the admissible set is relevant for a smaller group of individuals and 

may then lead to a loss in generality. Therefore, we want to determine the admissible set of 

alternatives for the most restrictive class of utility functions that is consistent with observed 

economic phenomena. 

Arrow (1971) and Pratt (1964) point out that the observations of certain economic phenomena 

indicate that individual utility functions exhibit decreasing absolute risk aversion (DARA) and 

to a lesser extent increasing relative risk aversion (IRRA). has raised doubts that IRRA is a 

plausible assumption, thus it appears that the DARA family is the most restrictive class of 

utility functions acceptable to most economists. Furthermore, empirical studies by Blume & 

Friend (1975) and Cohn et al (1975) reveal constant relative risk aversion and decreasing 

relative risk aversion respectively.  

Traditional portfolio theory a la Markowitz (1952) assumes that stock returns can be 

described by a special case of the location-scale distributions, namely the normal distribution. 

With the assumption of normality, an investor must only relate to the first two moments of the 

distribution, that is the mean and variance. Thus, the efficient set of portfolios is obtained by 

discarding those with a lower mean and a higher variance. Even though this approach has 

been highly recognized as a valid framework for investment decisions, it has also been known 

for many years that it is of limited generality since it assumes a quadratic utility function or 

normality in the return distributions. Arrow (1971) and Hicks (1962) have pointed out that the 

assumption of quadratic utility is highly implausible because it implies increasing absolute 
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risk aversion (IARA). Also, the assumption that returns on risky investments are normally 

distributed is unrealistic as it rules out asymmetry or skewness. In fact, several studies 

including Cootner (1964) and Lintner (1972) show that risky portfolio returns are very 

unlikely to be normally distributed. Furthermore, there is substantial empirical evidence of the 

presence of skewness in stock return distributions.  

 

2.1.1.1 Risk Aversion 
We can define the risk premium and risk aversion with the help of the derivatives of the utility 

functions. Markowitz (1959) defines the risk premium as being the maximum amount that an 

individual is ready to give up to avoid uncertainty. The basis for an investor’s decision 

making is calculated as the difference between the utility of the expected wealth and the 

expected utility of the wealth. 



U E W   E U W   

 

We can illustrate this with a simple example where it is assumed that an investor has a square 

root utility function of wealth: 



U w  w  w0,5



U ' w  0.5w0.5  0

U ' ' w  0.25w1.5  0

 

We assume that the investor’s current wealth is $5 and that the investment available is a ―fair 

game‖, i.e. it is equivalent to a coin toss where she can either win $4 or lose $4. Thus, the 

expected return of this investment is 0%. We assume that our investor only has two choices: 

she can either refuse to invest, keeping her initial $5 corresponding to a utility of 



5  2.24 , 

or she can invest, which yields an expected utility of 



0.5  1 0.5  9  2. Because our 

investor is maximizing her utility, and because 2.24 > 2, she will not invest. Figure 2-1 below 

illustrates our investor’s current wealth and utility, the wealth and utility of the two possible 

outcomes, and the expected outcome and utility of the outcome of the investment.  
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    Figure 2-1: Example of a fair game. Source: Norstad (1999) 

 

 

The investor in our example is risk-averse since 



U E W   E U W  , which makes the 

utility function concave. This means, in general, that she will always refuse to invest where 

the expected return is 0%. If the expected return had been greater than 0%, the investor may 

or may not have chosen to invest, depending on the functional form of her utility function. 

For example, if the probability of the good outcome in this example were 75% instead of 

50%, we would have an expected outcome of $7, corresponding to an expected gain of $2 and 

an expected return of 40%. This would yield an expected utility of 



0.25  1 0.75  9  2.5  2.24 and our investor would be willing to invest. The expected 

return of 40% is a risk premium, which compensates her for undertaking the risk involved 

with the investment. In our example, the investor attaches greater weight to losses than she 

does to gains of equal magnitude. The loss of $4 means a decrease in utility of 1.24, while the 

gain of $4 means an increase in utility of only 0.76. 

 

In the example above, we dealt with a risk averse investor because the utility of her expected 

wealth was greater than the expected utility of wealth. The sign of this difference allows us to 

determine the individual’s attitude towards risk in the following way: 



Portfolio Optimization in a Downside Risk Framework 2010 
 

 14 

 

 If 



U E W   E U W  , then the utility function is concave and the investor is risk 

averse; 

 If 



U E W   E U W  , then the utility function is linear and the investor is risk neutral; 

 If 



U E W   E U W  , then the utility function is convex and the investor is risk 

seeking. 

 

In Markowitz’ modern portfolio theory, investors are assumed to be risk averse. Absolute risk 

aversion (ARA) measures the risk aversion for a given level of wealth, and it is computed as 



ARA  
U' ' W 
U' W 

 

while relative risk aversion (RRA) is given by 



RRA  W
U ' ' W 
U ' W 

 

Constant relative risk aversion (CRRA) means that the loss amount tolerated by an investor 

increases proportionally to the increase in the investor’s wealth. 

 

Example 1: quadratic utility function 

Consider a quadratic utility function: 



U W  aW bW 2  

Taking its first two derivatives yields: 



U' W  a2bW and U' ' W 2b 

We can now deduce the ARA and RRA: 



ARA 
2b

a2bW
and RRA 

2bW

a2bW


2b

a

W
2b

 

Taking the first derivative of ARA wrt. wealth, W, yields 



ARA

W


4b2

a2bW 
2
 0 

Absolute risk aversion is therefore an increasing function of W. In the same way, relative risk 

aversion is also an increasing function of W.  
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

RRA

W


a

W 2
2b

a

W
 2b











2
 0 

These results suggest that an investor becomes more risk averse as her wealth increases, 

which is counterintuitive. This is exactly one of the disadvantages of the quadratic utility 

function assumed by Markowitz and applied in the mean-variance framework of modern 

portfolio theory. As noted in the previous section, we would wish to have a utility function 

that exhibits a decreasing absolute risk aversion (DARA). 

 

Example 2: logarithmic utility function 



U W  ln W  

We take its first two derivatives and deduce the ARA and RRA: 



U' W 
1

W
and U ' ' W  

1

W 2


ARA 
1

W
and RRA 1

 

The ARA function is then a decreasing function of wealth and the RRA function is constant. 

The logarithmic utility function is therefore consistent with the behavior of a risk averse 

investor. 

Table 2-2 summarizes the ARA and RRA of three well known functional forms of utility. 

 

              

            Table 2-1: Utility Functional Forms and Risk Aversion 

Utility / Risk Aversion Absolute Risk Aversion Relative Risk Aversion 

Quadratic Increasing Increasing 

Exponential Constant Increasing 

Logarithmic Decreasing Constant 

 

2.1.1.2 Axioms of Expected Utility Theory 
Expected utility theory incorporates the following normative descriptions of preferences or 

axioms.  

 Risk aversion: Individuals are risk averse, i.e. they will always prefer a riskless 

investment to any risky investment yielding the same expected return. This is 

illustrated in a traditional utility function, which has the characteristic concave shape. 
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 Transitivity: If A is preferred to B, which in turn is preferred to C, then transitivity 

governs that A will be preferred to C.  

 Substitution: If A is preferred to B, then an even chance to receive A or C is 

preferred to an even chance to receive B or C. 

 Dominance: If A yields outcomes at least as high as B in all states, and higher in at 

least one state, then A dominates B and is preferred.  

 Invariance: The preference order of a series of prospects is invariant of the manner in 

which the prospects are presented – or framed, which is the term used by Kahneman 

& Tversky (1984). As a consequence, two versions of a choice problem that are 

recognized to be equivalent when shown together should elicit the same preference 

even when shown separately (see below). 

 

2.1.1.3 Violations of the Axioms of Expected Utility Theory 
Decision making under risk can be viewed as a choice between prospects or gambles. 

Following Kahneman & Tversky (1979), we let a prospect 



x1,p1;...;xn,pn  be a contract that 

yields outcome xi with probability pi, where 



p1  p2  ... pn 1. For simplicity, we omit all 

null outcomes (where either xi or pi is zero) and use 



x, p  to denote the prospect 



x,p;0,1 p  

that yields x with probability p and 0 with probability 1 – p.  

The application of expected utility theory to choices between prospects is based on the 

following three tenets. 

 

(i) Expectation: 



U x1,p1;...;xn,pn  p1u x1  ... pnu xn . That is, the overall utility of 

a prospect equals the expected utility of its outcomes. 

(ii) Asset Integration: 



x1,p1;...;xn,pn  is acceptable at asset position w only if 



U w x1,p1;...;w xn,pn  u w . That is, a prospect is acceptable if the utility 

resulting from integrating it with one’s current assets exceeds the utility of those 

assets alone. 

(iii) Risk Aversion: u is concave 



u' ' 0  as explained in the previous section. 

 

 

In expected utility theory, the utilities of outcomes are weighed by their probabilities. 

Kahneman & Tversky (1979) illustrate how people’s preferences systematically violate this 
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principle because they overweigh outcomes that are considered certain, relative to outcomes 

that are merely probable – a phenomenon that they label the certainty effect. This effect can 

be illustrated by the example below, which is  

a pair of choice problems where N denotes the number of respondents who answered  

each problem, and the percentage that chooses each option is given in brackets. 

 

 

Table 2-2: Pair of Choice Problems (asterisks denote significance at 0.01 level). Source: Kahneman & Tversky (1979) 

 

 

In Problem 1, the expected payoff of prospect A is 2,409 and thus higher than that of prospect 

B, which is 2,400. In Problem 2, prospect C has an expected payoff of 825 while prospect D 

has an expected payoff of only 816. The respondents showed a significant preference for 

prospect B and prospect C in Problem 1 and Problem 2 respectively (in fact, 61% of the 

respondents chose the a combination of prospects B and C). This pattern of preferences 

violates expected utility theory, which in Problem 1 would have revealed the following 

preference order (setting u(0) = 0): 

 



u 2,400  0.33u 2,500  0.66u 2,400   0.34u 2,400  0.33u 2,500 , 

 

which conflicts with the results from Problem 2, which show a clear preference for prospect C 

rather than prospect D. It is clear from this example that people overweigh certain outcomes 

relative to probable outcomes, i.e. the certainty effect obtains. This clearly conflicts with the 

notion of weighing by absolute probabilities as suggested by expected utility theory.   

The substitution axiom in expected utility theory suggests that if one prospect is preferred to 

another, then any probability combination of the former must be preferred to the combination 

of the latter. This is does not hold as the certainty effect obtains; apparently, reducing the 

probability of a certain gain has greater effect than reducing the probability of an uncertain 

gain.  

Prospect Outcome Probability Prospect Outcome Probability

A 2500 0.33 C 2500 0.33

2400 0.66 (18) 0 0.67  (83)*

0 0.01

B 3000 1.00 D 2400 0.34

0 0.00  (82)* 0 0.66 (17)

N=72 N=72

Problem 1 Problem 2
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The certainty effect is not the only type of violation of the substitution axiom as is shown in 

the problems below. 

 

Table 2-3: Pair of Choice Problems (asterisks denote significance at 0.01 level). Source: Kahneman & Tversky (1979) 

 

 

In Problem 3, the probabilities of winning are substantial (45% and 90%), and a significant 

majority chooses the prospect with the highest probability. In Problem 4, there is a possibility 

of winning but the probabilities are very low. In this situation, most of the respondents choose 

the prospect that offers the larger gain regardless of its lower probability. Note that the 

probabilities of winning in both B and D are twice the probabilities of winning in A and C 

respectively. However there is a clear inconsistency in the decision making, which according 

to expected utility, should not occur. In summary, the majority of respondents seem to 

subjectively overestimate low probabilities. 

 

The following set of problems illustrates how the expected utility theory assumptions of 

dominance, invariance and emphasis on final states are violated
3
. 

  

                                                 
3
 Kahneman & Tversky (1984), pp. 5 

Prospect Outcome Probability Prospect Outcome Probability

A 6000 0.45 C 6000 0.001

0 0.55 (14) 0 0.999  (73)*

B 3000 0.90 D 3000 0.002

0 0.10  (86)* 0 0.998 (27)

N=66 N=66

Problem 4Problem 3
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Table 2-4: Choice Problems (asterisks denote significance at 0.01 level). Source: Kahneman & Tversky (1984) 

 

 

It is clear from Problem 5 that prospect B dominates prospect A so that 100% of the 

respondents made a rational decision. In Problem 6, the majority of respondents (73%) 

preferred the combination C and F. However, this combination yields the exact same outcome 

as prospect A in Problem 5
4
, which was unambiguously rejected. In fact, the combination B 

and E is equivalent to the dominant prospect B in Problem 5. This is a violation of several of 

the axioms in expected utility theory. 

(i) The invariance axiom fails dramatically as the Problem 5 and Problem 6 are in fact 

identical and should therefore elicit the same preferences. 

(ii) The dominance axiom is clearly violated as the chosen combination of C and F is 

dominated by the alternative combination of D and E. 

(iii) The axiom that investor cares about final states rather than changes is violated as well 

because the respondents do not aggregate the outcomes of Problem 6 and thereby reveal 

the equivalence with Problem 5. 

(iv) The axiom of risk aversion does not hold in prospects with negative outcomes. In fact, 

respondents chose the certain gain in the first decision of Problem 6, which indicates 

risk aversion. However, the respondents chose the probable loss over the certain loss in 

the second decision of Problem 6, which indicates a risk seeking behavior. 

 

                                                 
4
 C+F yields a certain 240 plus a 75% chance of losing 1,000 and a 25% chance of a zero outcome, which is 

equivalent to a 75% chance of losing 760 and a 25% chance of gaining 240. 

Prospect Outcome Probability

A 240 0.25

-760 0.75 (0)

B 250 0.25

-750 0.75 (100)

N=86

Prospect Outcome Probability Prospect Outcome Probability

C 240 1.00 E -750 1.00

0 0.00 (84) 0 0.00 (13)

D 1000 0.25 F -1000 0.75

0 0.75 (16) 0 0.25 (87)

N=150 N=150

Problem 6

Problem 5
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Kahneman & Tversky’s experiments revealed the failure of expected utility theory as a 

normative theory due to the many violations of its core axioms. In the next section, we will 

present the value function of their prospect theory as an alternative to expected utility theory.  

 

2.1.2 The Value Function of Prospect Theory  

Kahneman & Tversky (1979) present an alternative to expected utility theory that is not as 

restricted in its assumptions. In this section, we refrain from looking at their prospect theory 

in its entirety and focus only on the value function, which is the centerpiece in prospect 

theory, and is represented by 



V x,p;y,q  p v x  q v y           (1) 

 

The experimental analyses reviewed in the previous section lead Kahneman & Tversky 

(1979) to suggest three important characteristics of decision makers that have implications for 

the shape of the value function. These are addressed in the following. 

 

Reference dependence 

An essential feature of prospect theory is that the carriers of value are changes in wealth 

rather than final states. This should not be taken to imply that the value of a particular change 

is independent of the initial position. Value should be treated as a function of the asset 

position that serves as a reference point, and the magnitude of the change (positive or 

negative) from that reference point.  

 

Diminishing sensitivity 

As we saw in section 2.1.1.3, investors (or more generally, decision makers) are found to be 

risk averse in the domain of gains and risk seeking in the domain of losses. Diminishing 

sensitivity explains how the psychological response is a concave function of changes, that is 

the difference in value between a gain (loss) of 100 and a gain (loss) of 200 appears to be 

greater than the difference between a gain (loss) of 1,100 and a gain (loss) of 1,200. Thus, the 

value function for changes of wealth is normally concave above the reference point 



v' ' x  0, for x  0  and often convex below it 



v' ' x  0, for x  0 . In other words, the 

marginal value of both gains and losses generally decreases with their magnitude.  
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Kahneman & Tversky (1979) present the following problem results to underpin the shape of 

the value function. 

 

Table 2-1: Pair of Choice Problems (asterisks denote significance at 0.01 level). Source: Kahneman & Tversky (1979) 

 

 

 

Applying equation (1) to these problems, we get 

 

 and 

 

 

hence 



v 4,000  v 2,000  v 6,000   implying concavity in the domain of gains. 



v 4,000  v 2,000  v 6,000   implying convexity in the domain of losses. 

 

Loss aversion 

A salient characteristic of attitudes to changes in wealth is that losses loom larger than gains, 

i.e. the aggravation experienced in losing a sum of money appears to be greater than the 

pleasure associated with gaining the same amount. Loss aversion implies that the value 

function is steeper in the domain of losses than in that of gains. Kahneman & Tversky (1979) 

find that most people find symmetric bets of the form 



x,0.50;x,0.50  unattractive
5
. 

Moreover, the aversion of this prospect generally increases with the size of the stake. That is, 

if 



x  y  0, then 



y,0.50;y,0.50  is preferred to 



x,0.50;x,0.50 .  

Applying equation (1) once again, we get 



v y  v y  v x  v x   v y v x  v x v y  

                                                 
5
 Kahneman & Tversky (1979), pp. 279 

Prospect Outcome Probability Prospect Outcome Probability

A 4000 0.25 A -4000 0.25

2000 0.25 (82)* -2000 0.25 (30)

0 0.50 0 0.50

B 6000 0.25 B -6000 0.25

0 0.75 (18) 0 0.75  (70)*

N=66 N=72

Problem 8Problem 7



V 4,000,0.25;2,000,0.25 V 6,000,0.25    0.25  v 4,000  v 2,000   0.25 v 6,000 



V 4,000,0.25;2,000,0.25 V 6,000,0.25    0.25  v 4,000  v 2,000   0.25 v 6,000 



V 4,000,0.25;2,000,0.25 V 6,000,0.25    0.25  v 4,000  v 2,000   0.25 v 6,000 
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Setting y = 0 yields 



v x  v x , which shows that the value function is steeper in the 

domain of losses than in the domain of gains. This can be seen explicitly by letting y approach 

x to get the relationship between the slopes: 



v' x  v' x . 

 

To summarize, the value function is (i) defined on deviations from the reference point; (ii) 

generally concave for gains and commonly convex for losses; (iii) steeper for losses than for 

gains. Figure 2-2 depicts Kahneman and Tversky’s hypothetical value function. 

 

 

           Figure 2-2: Kahneman and Tversky’s hypothetical value function 

 

 

 

It can be seen that the value function takes on an asymmetric S-shape, which implies that the 

steepest point on the curve is at the reference point. Thus, the reference point is where the 

investor or decision maker is most sensitive to changes in relative outcomes. This contrasts 

with the utility function postulated by Markowitz (1959), which is relatively shallow in that 

region.  

 

2.1.3 Summary 

We have seen that the traditional assumption of quadratic utility applied in modern portfolio 

theory is inconsistent with the preferences individuals actually exhibit. Not only is it 

counterintuitive to exhibit increasing absolute risk aversion as suggested by quadratic utility, 



Portfolio Optimization in a Downside Risk Framework 2010 
 

 23 

but experimental analyses have been undertaken to prove violations of several vital axioms in 

expected utility theory as well. These axioms include the central tenet that the utilities of 

outcomes are weighed by their absolute probabilities, which is violated by the certainty effect; 

the substitution axiom, which is violated by the overweighing of low probabilities; the 

invariance and dominance axioms, which are violated by how individuals respond to framing; 

and the axiom that individuals care about final states rather than changes, which is violated 

again by the framing of prospects. Another drawback of the quadratic utility function is that 

there is evidence that the preferences of individuals cannot be characterized by one global 

degree of risk aversion. In fact, we saw that individuals exhibit risk aversion in the domain of 

gains and risk seeking behavior in the domain of losses.  

We saw that individuals are more sensitive to losses than to gains, which means that a 

symmetric measure such as variance does not capture the risk as it is perceived by investors. 

Finally, the assumption that returns on risky investments are normally distributed is 

unrealistic as it rules out asymmetry or skewness. Therefore, it is unsound to assume that 

investors only relate to the first two moments of the return distribution. In fact, the DARA 

class of utility functions is valid for all risk averse investors exhibiting skewness preference 

(u’ > 0, u’’ < 0 and u’’’ > 0). This means that a feasible functional form of utility would be 

logarithmic utility rather than quadratic utility, and that one should focus on the lower partial 

moments rather than entire distributions where normality is assumed. 
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2.2 Risk Theory 
For decades, there have been several definitions of risk and discussions about how risk should 

be measured. In the following we will try to define risk according to Frank H. Knight (1921) 

and Douglas W. Hubbard (2007) and relate it to the purpose of this thesis. 

In 1921, Frank H. Knight argued that there is a difference between uncertainty and risk. 

According to Knight, risk is a combination of the likelihood (probability) of an occurrence of 

a hazardous event, meaning an event that could cause harm in terms of losses or undesirable 

outcome, and its magnitude. He also believes that it is possible to calculate the probability of 

the risk, which makes risk measurable. Uncertainty is characterized as the existence of more 

than one possibility in the future, but unlike risk, uncertainty is not measureable (also known 

as Knightian Uncertainty). Hubbard offers a very clear definition of these two: 

 

“Uncertainty: The lack of complete certainty, that is, the existence of more than one 

possibility. The “true” outcome/state/result/value is not know. 

(…) Risk: A state of uncertainty where some of the possibilities involve loss, 

catastrophe or other undesirable outcome.” -  Douglas W Hubbard.  

 

In this thesis we are only going to focus on risk and not uncertainty. There has been different 

suggestions on how to calculate risk, e.g. by the variance, introduced by Markowitz in the 

Modern Portfolio Theory. However, variance is often heavily criticized as a risk measure 

since it considers gains as much as losses and as shown in the definition above, the emphasis 

in risk lies in losses (negative outcomes). Risk variables that incorporate this by measuring 

below a certain point are commonly referred to as downside risk measures.  

In the next section, we will review the mean variance theory and introduce alternative risk 

measures that consider downside risk in different ways.   

2.2.1 The Mean-Variance Framework And Modern Portfolio Theory 

The most applied and recognized investment theory is the Modern Portfolio Theory (MPT) 

introduced by Harry Markowitz in 1952. The essentials of the theory are not very complicated 

and easy to apply, which is one of the reasons for its success. The introduction of this theory 

has been very important for the understanding of the relationship between risk and return as 

well as purpose of diversifying portfolios. It is often misinterpreted that people did not 

diversify before 1952, which is not entirely true. What was lacking before 1952 was a formal 

framework covering the effect of diversification when risks are correlated and the risk/return 
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tradeoff on the portfolio as a whole (H. M. Markowitz 1959). In the following we will review 

the main ideas of this framework
6
. 

2.2.1.1 Risk and Return for Single Stocks 
One of the most liquid assets are equities. Therefore, there is often focus on stocks in 

investment theory. When an investor composes an optimal portfolio of stocks, it is necessary 

to have a measure for each stock’s expected return and risk. The future returns are not known 

with certainty, and therefore an investor considers expected returns, as described below. 

 

and the corresponding variance: 

,  : return of incident i 

: the probability of obtaining   

 i: number of possible incidents 

 

The standard deviation, which is defined as risk in this framework is then expressed as 

following: 

 

 

When constructing a portfolio it is not enough to simply look at the risk and return of the 

individual stocks. We also need to include variables that represent the effect among the 

stocks. This information can be obtained by calculating the covariance between the stocks. 

The covariance between two stocks is defined as following: 

 

where,  and  are the return possibilities for stock 1 and 2 respectively. It can be 

interpreted from the covariance equation that the covariance between stock 1 and 2 must be 

the same as the covariance between stock 2 and 1: 

 

Another relation between two securities is the correlation, which is expressed as the 

covariance divided by the product of the standard deviation of the two stocks. 

           (2) 

                                                 
6
 Elton, et al. (2007) 



E(r)  risi
i1

I





 2  (ri  E(r))
2si

i1

I





ri



si



ri



  2  (ri  E(r))
2si

i1

I





12  (r1i  E(r1i))(r2i  E(r2i))si
i1

I





r1i



r2i



12 21



12 
12
1 2
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The correlation will always be between one and minus one. A correlation of one means that 

the two stocks are perfectly positively correlated while a correlation of minus one means that 

they are perfectly negative correlated. A correlation of zero on the other hand, means that the 

stocks are completely uncorrelated and thereby completely independent in their movement 

relative to each other. 

These are the basic definitions and notations needed to understand the mean-variance 

framework. However, it is important to note that thus far the return and standard deviation are 

calculated using future returns and the probability for these returns to occur, which can be 

very hard to estimate. This is an issue we will process later in this section. 

 

2.2.1.2 Risk and Return for a Portfolio 
The portfolio return and total risk is calculated slightly different since we need to consider the 

effect of the correlations between the stocks. The total portfolio return is calculated by simply 

taking the weighted average of all stock returns included in the portfolio. However, the same 

method cannot be applied when calculating the total portfolio risk, since the covariance 

among the stocks has a significant influence on the total risk.  

The total expected portfolio return is calculated as following: 

 

 

The sum of all stock weights needs to be equal to the total portfolio (and thereby one). We 

could also include another constraint restricting the investor from short selling by requiring 

positive weight values. However, we choose to allow short selling in order to make this thesis 

more realistic. 

 

The total risk for the portfolio can be written in the simplest form by the following equation: 

 

 

If we continue to assume two stocks in our portfolio (stock 1 and stock 2), we can substitute 

the portfolio return with the weighted sum of the two stock returns: 

 



E(rp )  E(ri)wi
i1

N



wi 1



 p

2  (ri  E(ri))
2

i1

J


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we are able to rewrite the above equation to: 

  
      

            
    

            
                               

 

Looking at the above equation, it is clear that the standard deviation for the two stocks is 

expressed by returns. We can therefore simplify the equation by substituting  

with the variance of stock j. The expression                        is also known as the 

covariance between the two stocks and is denoted as . 

  
    

   
    

   
                  (3) 

 

Equation (3) can be generalized to include an arbitrary number of securities: 

  
     

   
            

 
   

 
   

 
          (4) 

 

2.2.1.3 Correlations and Diversification 
As equation (2) suggests, the correlation between two stocks is partly explained by the 

covariance. It is therefore possible to express the variance of a portfolio by substituting the 

covariance with  in equation (3).  

  
    

   
    

   
               

 

It is interesting to include the correlation in the calculation of portfolio variance in order to 

see the correlation effect on total risk. 

In the extreme case that the correlation between stock 1 and 2 is zero, the total variance of the 

portfolio will simply be the weighted sum of the variances. 

  
    

   
    

   
               

   
    

   
  

 

Since the standard deviation is the square root of the variance, the total standard deviation of 

the portfolio will be: 

 

 



(rij  E(rj ))
2



 ij



1212



 p  w1
21

2  w2
22

2
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If we examine the second extreme case, where the two securities are perfectly positively 

correlated, meaning , we are able to rewrite the portfolio variance as following: 

  
    

   
    

   
            

 

It is now notable that the equation is in the form of  and can therefore be 

reduced to: 

  
             

  

 

And the standard deviation of the portfolio will then simply be the weighted sum of the two 

stocks: 

                           

 

Thus, when the two stocks are perfectly positively correlated, we do not reduce the standard 

deviation (risk) by diversifying the portfolio into two stocks. In this case the effect of 

diversifying is zero.  

 

On the other hand, if we consider the other extreme case where the stocks are perfectly 

negatively correlated, the equation for the portfolio standard deviation would be reduced to: 

             or            

 

The standard deviation of the portfolio is always smaller when the correlation is negative 

compared to a positive correlation. In theory, if we could find two securities that are perfectly 

negatively correlated, it should always be possible to find a combination that would have zero 

in standard deviation (risk). This is exactly the purpose of diversification. 

 

The purpose of this section is to emphasize that the correlation between two stocks can have a 

big impact on the standard deviation of the portfolio. It is not possible to reduce risk if the 

securities are perfectly positively correlated, since this would simply generate the weighted 

sum of the individual securities standard deviation. However, we are able to reduce the 

standard deviation if the correlation is below 1. In other words, diversifying the portfolio 

would reduce the total risk. 

 



12 1



a2  b2  2ab
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2.2.1.4 The Minimum Variance Portfolio 
For simplicity, we continue our two stock example in the following. The portfolio can be 

constructed in several different ways by adjusting the weights in the two different securities. 

The investor is interested in a portfolio that generates the highest return given a certain 

standard deviation (or the lowest standard deviation given a certain return). These portfolios 

are referred to as efficient. The efficient portfolio that exhibits the lowest risk is called the 

minimum variance portfolio.  

 

We can derive the minimum variance portfolio by differentiating the portfolios’ standard 

deviation with respect to one of the weights for the security (the other weight being  w2 = 1 – 

w1).  

 

 

Setting this equal to zero and solving for w1 yields the following: 

 

 

The above equation generates the weight in one of the two securities (the other weight being  

w2 = 1 – w1) that will conduct the minimum variance portfolio.  

 

The equation becomes somewhat more complicated if we include more than two securities, 

which makes it difficult to calculate without a computer. Nonetheless, the intuition and idea 

remains the same. 

 

2.2.1.5 The Efficient Frontier 
As mentioned before, there are many different ways to construct a portfolio by changing the 

weights in the securities. The universe of efficient portfolios is called the efficient frontier. 

We can calculate this frontier by solving a maximization (minimization) problem with linear 

constraints. Markowitz discovered that only the portfolios above the minimum variance 

portfolio were efficient. The investor is able to gain the highest return for a given standard 

deviation when selecting a portfolio from the efficient frontier. We can easily derive the 

efficient frontier by maximizing the return for all levels of standard deviation: 



 p

w1

1

2









2w11

2 2 2
2  2w1 2

2  21 212  4w11 212 
w1
21

2  (1w1)
2 2

2  2w1(1w1)1 212 
1/ 2



w1 
 2
2 1 212

1
2  2

2 21 212
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On the other hand, minimizing risk for all levels of returns can derive the efficient frontier as 

well: 

 

                       

 

   
 

   

 

   
   

 

The resulting frontier of portfolios is depicted in figure 2-3 below. Note that the efficient 

frontier does not include the portfolios below the minimum variance portfolio. 

 

 

Figure 2-3: Frontier & Minimum Variance Portfolio 

 

 

The red dot indicates the minimum variance portfolio and the blue line above indicates the 

most optimal portfolios that an investor can obtain by combining the two stocks. All the 

portfolios on the efficient frontier fulfil the mean-variance criterion above.   



max E(rp )  E(rp )wi
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

min  p  wi
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2.2.1.6 The Capital Market Line (CML) 
So far, we have only considered portfolios that entirely consist of risky assets. When a risk 

free asset is included in the portfolio, the shape of the different options for the investors looks 

somewhat simpler. This efficient frontier is called the Capital Market Line (CML).  

 

The risk free asset is an asset with unlimited possibilities for lending and borrowing at a risk 

free rate, with the expected return of . Since the return is risk free, the following 

conditions must hold: 

 

 

where    represents the standard deviation of the risk free returns and     is the covariance 

between the risk free asset and a risky security, i. 

 

Let  denote the stake in portfolio a, then  will be the portion invested in the risk free 

asset. The total expected return is then: 

 

 

It is clear from the equation above that if  is equal zero, then the investor only holds the 

risk free asset. If  on the other hand is between zero and one, the investor will hold a 

combination of the risk free asset and the risky portfolio, a. However, if  is greater than 

one, the investor would be selling the risk free asset (borrowing) in order to invest more in 

portfolio a.  

 

In order to calculate the standard deviation of the portfolio, we use equation (4): 



 p  wi
2 i

2

i1

N

  2 wiw j ij
j1

N


i1

N

  

 

 

and since the standard deviation of the risk free asset as well as the correlation between the 

risk free asset and the portfolio a is equal zero, we can reduce the above equation to the 

following: 

 

 



E(rf )  rf



 f  0,  if  0



wa



1wa



E(rp)  (1wa)rf  waE(ra)



wa



wa



wa



 p  (1wa )
2 f

2  wa
2a

2  2(1wa )waaf



 p  wa
2a

2  waa



Portfolio Optimization in a Downside Risk Framework 2010 
 

 32 

In order to see the relation between risk and return in this scenario, we can rearrange the 

equation above and substitute it in the total portfolio return: 



wa  p a  

 

The total portfolio return is: 



E(rp)  (1wa)rf  waE(ra)         (5)
 

 

By substituting 



wa  in equation (5), we get: 



E(rp )  (1 p 
a
)rf  ( p 

a
)E(ra )

E(rp )  rf  ( p 
a
)r  ( p 

a
)E(ra )

E(rp )  rf  (E(ra ) rf )( p 
a
)

E(rp )  rf 
E(ra ) rf

 a









 p

       (6) 

 

Looking at the graphical relation between risk and return, it can be seen that all combinations 

of the risk free and the risky assets lie on a straight line with the slope being 



E(ra ) rf

 a
 and 

the intercept,



rf .  

We know that the investor tries to maximize the return relative to risk, which means that she 

will try to maximize the slope of the above mentioned equation. The maximum slope is 

obtained at the tangency point between the straight line from equation (6) and the efficient 

frontier. This tangency point is called the market portfolio, and all investors in equilibrium 

hold a combination of this portfolio and the risk-free asset in order to achieve the most 

efficient combination of expected risk and return. This phenomenon is called two-fund 

separation. The market portfolio has an expected return of 



E(rm) and a standard deviation of 



m . We can therefore express the tangency line as following: 



E(rp )  rf 
E(rm ) rf

m









 p  

 

The above equation is also known as the Capital Market Line (CML), since it provides all the 

efficient allocations across the capital market.  

Note, that CML only describes the risk and return of portfolios rather than individual stocks. 

In the following, we will review a relationship that does so. 
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2.2.1.7 Systematic Risk: Beta 
Random observations of the stock market reveals that the movements in stock prices are often 

related to the movement in the market in general. If the market goes down, it is very likely 

that stocks also decline in prices and vice versa. This indicates that some of the correlation 

among securities is caused by the mutual response to the market and it is therefore worth 

investigating the relation between individual security returns and market returns. This 

relationship can be expressed by the following equation: 



ri  ai irm            (7) 

 

where, 



ai  is the part of security i return that is independent of the market 



rm  is the return on the market index 



 i  is a constant that measures the effect on 



ri given a change in the return of the market 

index. 

 



 i  in the equation above measures how sensitive the security is towards market movements. 

E.g. if 



 i  = 3 it means that if the market increases by 1%, the security will increase by 3%. If 



 i  is below 1, it means that the security is not very sensitive to market movement. 

 



ai  represents the security return that is independent from market movements. There is some 

uncertainty to this element and it can therefore be written as: 



ai i  ei 

where ei represents a stochastic error. 

 

Substituting 



ai  with 



 i  ei  in equation (7), we get: 



ri i irm  ei          (8) 

 

We are interested in the expected return, which can be written as following: 



E(ri)  E(i irm  ei)  

 

Since 



 i and 



 i  are constants and the expected value of 



ei  = 0, we have that: 



E(ri) i iE(rm)          (9) 
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We can also express the variance of a portfolio by using its beta. Recall that the variance for 

any security is expressed as following: 



 i
2  (ri  E(ri))

2  

 

Inserting equation (8) and (9) in the above, we get: 

  
                                

  

 

and simplifying, we get that the portfolio variance can be expressed as
7
: 



 i
2  i

2m
2 ei

2  

 

We can also express the covariance between two securities with beta by inserting equation (8) 

and (9) in the covariance equation shown before. 

The covariance between two securities can thus be written as: 



 ij  i jm
2

           (10)
 

 

2.2.1.7.1 Estimating Beta 
In previous section we saw that beta can explain the expected return of a given security and it 

is therefore relevant to look at how to estimate beta. It has been shown that the historical beta 

provides significant information about future beta values. Many analysts start with estimating 

the historical beta and then correct it from future influences that could be expected to change 

beta. 

 

We can derive a simple equation to calculate beta by using the covariance equation (10). 

Instead of looking at covariance between two securities, we look at the covariance between 

the market index and security i. Since the beta for the market is equal 1, we are able to reduce 

the equation to the following: 



 im  im
2  

 

We can now rewrite the equation to express beta: 



i 
 im
m
2

 

                                                 
7
 Assuming that                 

 



Portfolio Optimization in a Downside Risk Framework 2010 
 

 35 

Now, it is possible to estimate the beta of a stock via regression analysis of historical return 

data: 

 

          (11) 

 

 

2.2.1.8 The Security Market Line (SML) 
Now that we have defined beta, it is interesting to see the relationship between beta and 

expected return in the return-beta space. 

The relationship between expected return and beta is linear and can thus be depicted as a 

straight line. Any security placed above or below this line would create arbitrage possibilities, 

which would over time push the security back towards the straight line. Since the relationship 

is linear, we can write the following equation: 



E(ri)  a bi 

 

In order to estimate the slope and intercept of a straight line, we need two points on the line. 

The first point being the risk free asset, which is entirely independent of market movements 

and therefore has a beta of zero. We can therefore estimate the intercept as: 



rf  a b  0

rf  a
 

 

The second point on the line being the market portfolio with a beta of 1 and an expected 

return of 



E(rm). With this second point we can estimate the slope as following: 



E(rm )  a b 1

E(rm )  rf  b 1

b  E(rm ) rf 

 

 

Combining the two points yields the following relationship between stock returns and beta: 



E(ri)  rf  i E(rm) rf          (12)
 

 

This is commonly known as the Security Market Line (SML). We see that the intercept is 

equal to the risk free rate and the slope is the difference between expected market return and 

the risk free rate (i.e. the market premium).  
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This is the most simple way derive SML. The interested reader is referred to Elton et al 

(2007) for a more rigorous analysis. 

2.2.1.9 Criticism of the Mean-Variance Framework 
The mean-variance framework makes many assumptions about investors and capital markets 

that are not very realistic. In this section, we summarize the shortcomings of the widely used 

framework and explain why other frameworks might make more investment sense than the 

mean-variance. 

 

1. Normality 

One of the central assumptions in the mean-variance framework is that asset returns are 

(jointly) normally distributed. In reality, it is frequently observed that returns in equity as well 

as other markets are not normally distributed, but rather they exhibit skewness and excess 

kurtosis. This conflicts with the notion that a symmetrical risk measure such as variance 

captures the entire distribution of returns.  

 

2. Quadratic Utility 

When returns are not normally distributed, another way to justify the mean-variance criterion 

is by assuming a quadratic utility function. As we noted earlier, quadratic utility implies that 

investors care about mean and variance only, even when returns exhibit asymmetry or fat 

tails. There are several limitations to this assumption. First, a quadratic utility implies that 

investors exhibit increasing absolute risk aversion, which is not very reasonable. Second, a 

quadratic function will ultimately become negative over some return interval, which means 

that the nonsatiation
8
 condition is violated. Finally, this form of utility fails to capture loss 

aversion, i.e. investors care more about losses than gains.  

 

3. Variance as a risk measure 

The two assumptions above justify the use of variance as a valid risk measure. Violations of 

these assumptions then raise the question of the soundness of using variance to define risk. 

Variance is a symmetric measure suggesting that abnormally high returns are just as risky 

(and unwanted) as abnormally low returns. In reality, investors are more concerned about 

losses than the dispersion or tightness of high (e.g. above-average) returns. A more sensible 

                                                 
8
 More wealth is preferred to less wealth, i.e.         
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way to describe variance is that it measures uncertainty rather than risk whereas asymmetric 

risk measures are intuitively a better approximation of investment risk.  

 

2.2.2 The Mean-Lower Partial Moment Framework 

Bawa (1975) presented a formal analysis of downside risk measures for various utility 

functions in terms of the lower partial moment (LPM) of return distributions. The appeal of 

these risk measures partly stems from their consistency with the way individuals actually 

perceive risk. The LPM measure liberates the investor from a constraint of having only one 

utility function, which is fine if investor utility is best represented by a quadratic function. 

LPM represents a significant number of Von Neumann-Morgenstern utility functions and thus 

the whole gamut of human behavior from risk seeking to risk neutral to risk averse.  

In addition, the MLPM approach to portfolio selection accommodates the asymmetric nature 

of risk attitude found in the behavioral finance literature, i.e. that investors weigh losses more 

heavily than gains. Thus, the MLPM approach is more general than the mean-variance 

approach both in terms of the assumptions imposed on the investor’s utility function and/or on 

the probability distributions of security returns. Another interesting implication of the MLPM-

framework is that it provides a theoretical basis for various classes of risk measures used in 

the financial economics literature.  

 

In this section, we analyze the investor’s portfolio selection problem and the capital market 

equilibrium in an MLPM framework where it is clear that the two-fund separation property 

holds for investors’ optimal portfolio choices and that a linear risk-return relationship exists. 

We then briefly discuss the special cases of this framework where we show that the new 

Capital Asset Pricing Model (CAPM) contains the traditional CAPM’s as special cases under 

the usual distributional assumptions. Finally, we elaborate on the special case of MLPM2 or 

mean-semivariance framework, which is the one we will use throughout our analyses. 

 

2.2.2.1 The Investor’s Portfolio Choice Problem 
We consider a downside risk averse investor with portfolio allocation X across k assets with 



X ' X1,...,Xk , and let 



FX  denote the probability distribution of returns on the portfolio. The 

set of feasible portfolios is 
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

C 
X X i

i
 1, X i  0 without short sales, or

X X i
i

 1 with short sales

















 

 

An investor will choose a portfolio among this set, which maximizes the expected risk 

adjusted return of her portfolio. We let R represent the vector of returns with 



R' R1,...,Rk , 

and let F denote their joint distribution. We can now define the nth order lower partial 

moment of the distribution of returns under allocation X, computed at point 



  (target rate), 



LPMn ;X , where 



RX  is the return on the portfolio, as 



LPMn ;X   RX 
n





 dFX RX    X 'R 
n





 dF R 
     

(13) 

 

Bawa and Lindenberg (1977) use the risk free rate as target rate in the optimization problem, 

and the investor’s optimization problem becomes to minimize 



LPMn rF ;X  subject to 



X iE Ri 
i

    and 



X  C .  

We follow Harlow and Rao (1989)’s generalization of the MLPM and include any possible 

target rate in order to account for different investor preferences. We introduce the risk free 

asset with return 



RF  in a proportion 



X0, and redefine portfolio X to include both risky and 

risk free assets. The investor’s optimization problem becomes 



min
X
LPMn ;X    X 'R 

n





 dF R        (14) 

subject to 



X0RF  X iE Ri 
i0

    and 



X0  X i
i0

  C   

 

Equation (14) shows that the downside risk averse investor selects the optimal portfolio 

weights such that the relevant risk measure 



LPMn  is minimized for a specific value of the 

expected return 



  on the portfolio. In the special case of Bawa and Lindenberg (1977), 

linear combinations of a portfolio X of risky assets and the risk free asset lie along a straight 

line in the mean-



LPMn

1 n  space. Because of the convexity of the 



LPMn   function, this 

implies that the risky portfolio, which in combination with the riskless asset yields the 

minimum LPM for all mean returns, is found by drawing a tangent from 



RF  to the 



LPMn   

function (see figure 2-3). Thus, the two-fund separation of traditional portfolio theory still 
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obtains and M, the tangency point in figure 2-3, can be referred to as the market portfolio of 

risky assets. Harlow and Rao (1989) obtain a similar result for arbitrary target returns. 

To recap, the two-fund separation suggests the following. In an economy in which investors 

view risk as below-target deviations, the optimal portfolio choice in a 



MLPMn  framework for 

n = 1 and 2 involves the allocation of investor wealth between the riskless asset and the 

―market‖ portfolio of risky assets. 

 

Bawa and Lindenberg (1977) clearly illustrate this by plotting the MLPM efficient frontier 

and the Capital Market Line (CML) in mean-



LPMn

1 n  space as in figure 2-3 below. The reason 

they use 



LPMn

1 n  rather than 



LPMn  is to depict the CML as a straight line tangent to the 

efficient frontier with the risk free rate as its intercept. This makes the two-fund separation 

more obvious than it is in mean-



LPMn  space and we draw a direct parallel to the mean-

variance framework. 

 

 

                             Figure 2-4: Two-Fund Separation. Source: Bawa & Lindenberg (1977) 

 

 

Figure 2-4 clearly shows that two-fund separation obtains in the MLPM framework. 

However, it may be more intuitive to show the market equilibrium in mean-



LPMn  space, as 



LPMn  is our relevant risk measure. Harlow and Rao (1989) show that the CML is not 

necessarily a straight line in mean-



LPMn  space. In fact, convex combinations of a portfolio of 
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risky assets and the riskless asset are convex in mean-



LPMn  space, i.e. we get a convex 

Capital Market Line.
9
 

 

Figure 2-5: The Mean-LPM Framework. Source: Harlow & Rao (1989) 

 

 

Figure 2-5 shows the convex relationship from combining the risk free asset with any risky 

portfolio in mean-



LPMn  space. The point of tangency (M) of the convex CML (from Rf 

through M to C) and the efficient frontier (



LPMn   function) corresponds to the market 

portfolio in mean-



LPMn  space. 

 

2.2.2.2 Capital Market Equilibrium 
In this section we use the MLPMn framework to develop a capital asset pricing model 

(CAPM) with no restrictions on the distributional form. Under the standard assumptions 

employed in the Sharpe (1964), Lintner (1965), Mossin (1966) CAPM model, the above 

findings indicate that we can apply the analytical methodology used in Sharpe (1964) to 

derive the market equilibrium pricing relationship. 

 

In figure 2-4, any portfolios consisting of a fraction Xj in security j (point J) and (1 - Xj) in the 

market portfolio lie along the curve JMD, which is continuous and is, in equilibrium, tangent 

to the efficient frontier at point M and thus in turn is tangent to the CML. 

 

                                                 
9
 For proof see Harlow and Rao (1989)  
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The slope of the curve JMD at M is 



LPMn ;Rp 
E Rp 














M



n   Rm 
n1
Rm  R j dF R j ,Rm 












E R j  E Rm 
     

 

where E(Rm), E(Rj) and E(Rp) are the expected returns on the market portfolio, security j and 

our combined portfolio respectively. 

 

Similarly, the slope of the curve RfMC, i.e. the capital market line, at M is given by 



LPMn ;X 
E Rp 














M



n   Rm 
n1
Rm  R j dF R j ,Rm 







R f  E Rm 
     

 

Since the two equations above denote the slopes of the JMD frontier and the capital market 

line at M, these naturally should be equal such that 



SlopeJMD  SlopeR fMC , which yields the 

security market line (SML) in the mean-lower partial moment framework for arbitrary 
10

. 



n   Rm 
n1
Rm  R j dF R j ,Rm 












E R j  E Rm 


n   Rm 
n1
Rm  R j dF R j,Rm 







R f  E Rm 
 

 



 E R j  Rf   j
mlpmn   E Rm Rf        (15)

       

 

where  



 j

mlpmn   

  Rm 
n1
R f  R j dF R j ,Rm 












  Rm 
n1
R f  Rm dF Rm 






      (16) 

  

Following Harlow and Rao (1989), we define the nth order-generalized co-lower partial 

moment between two assets X and Y about  and Rf, 



GCLPMn ,R f ;X,Y  as 

                                                 
10

 For detailed proof see Harlow & Rao (1989) 
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

GCLPMn ,R f ;X,Y   RX 
n1
R f RY dF RX ,RY 










 ,    

and a nth order-generalized lower partial moment for asset X about  and Rf, 



GLPMn ,R f ;X  

as 



GLPMn ,R f ;X   RX 
n1
R f RX dF RX 





 ,      (17)

   

which means that we can represent 



 j
mlpmn   in (16) as 



 j

mlpmn   
GCLPMn ,R f ;M, j 
GLPMn ,R f ;M 

        (18)

     

As can be seen, equation (18) is very similar to equation (11) in the mean-variance 

framework. In both cases, the beta is defined as the co-variance/LPM between a security and 

the market portfolio divided by the variance/LPM of the market portfolio. As equation (18) 

suggests, the market has risk when 



GLPMn ,R f ;M  is positive, which is only the case if the 

return on the market has a positive probability of falling below the target rate . The definition 

of 



 j
mlpmn   in equation (16) states that a security j contributes to the market’s risk when its 

return, as well as the market’s return, are below . When the return of security j exceeds  

while the return on the market is below , security j reduces the risk of M. Thus, the premium 

paid for risk is positive whenever 



 j
mlpmn   is larger than zero, and negative whenever it is 

smaller than zero. Finally, if the return on the market exceeds , it is not risky by definition, 

and individual security returns contribute nothing to it regardless of whether these are below 

or above . 

 

As can be seen, equation (15) is very similar to the traditional mean-variance CAPM defined 

by equation (12). The difference in this framework lies in the measure of systematic risk, 



 j
mlpmn  . We want to stress again that the SML employed in this section is valid for a very 

general class of utility functions that displays the standard properties of rational economic 

behavior, including nonsatiation (u’ > 0), risk aversion (u’’ < 0), and skewness preference 

(u’’’ > 0). In addition, it allows for any pre-specified target rate of return . 
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2.2.2.3 Special Cases of the Generalized MLPM Framework 
The type of ―moment‖, n, specified in equation (17) captures the investor’s preferences by 

determining the type of utility function consistent with that risk measure. Thus, by setting n 

equal to 0, 1 or 2, and by imposing restrictions on the target rate or the distribution of returns, 

we can derive many popular notations of risk. 

 

For n = 0, the risk measure becomes a 0
th

-order LPM (denoted LPM0), which is an expression 

of the probability of falling below the target rate. This is equivalent to the shortfall probability 

given by Roy’s Safety First criterion with a disaster level of 
11

. In this case, the probability of 

loss ( = 0) and probability of ruin ( = critical value) framework results
12

. LPM0 is consistent 

with all utility functions that prefer more to less wealth, i.e. satisfying the assumption of 

nonsatiation (u’ > 0). However, note that the LPM0 efficient set is not convex, and can 

therefore not be used to derive equilibrium models. 

 

For n = 1, LPM1 becomes the expected deviation of returns below the target, or the target 

shortfall. This measure captures the severity of not achieving the target return, i.e. the mean of 

the deviations from . LPM1 is consistent with all risk averse utility functions (u’ > 0 and u’’ 

< 0). 

 

For n = 2, LPM2 becomes what is popularly referred to as the target semivariance, which 

measures the dispersion of returns below the target rate. This measure is valid for all risk 

averse functions displaying skewness preference, i.e. the DARA class of utility functions (u’ 

> 0, u’’ < 0 and u’’’ > 0). If we impose the restriction that  = Rf, we directly obtain the Bawa-

Lindenberg model, and with  = E(R), the more traditional definition of semivariance results 

where risk is measured as worse than expected rates of return. Finally, if we set  = Rf in the 

LPM2 and we further assume normal (or symmetric) distributions, the LPM2 measure 

becomes proportional to variance, and would result in the same ranking of risky assets as in 

the mean-variance framework. 

 

The MLPMn framework clearly represents a wide range of asset pricing models depending on 

the assumptions about n, the target rate , and the distribution of returns. In our analysis, we 

                                                 
11

 Roy, A. (1952)  
12

 The probability of loss has been studied by Kataoka (1963), Hanssman (1968), Peterson and Laughhunn (1971), and 

Laughhunn and Sprecher (1977). 
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confine ourselves to second-order lower partial moments (LPM2) for empirical testing since 

these are most consistent with statistical methodologies.  

 

2.2.2.4 The Mean-Semivariance Framework 
In the following, we will review the special case of the LPM that is mostly applied as a tool 

for investment decision making. Throughout this section, we follow Estrada (2004, 2007, 

2008) in presenting the mean-LPM2 framework. Setting the restriction n = 2 on our model 

above, we get what is popularly known as the target semivariance. For application purposes, 

we compute the semivariance of an empirical discrete distribution of portfolio returns as 

shown below. 



i
2  E min Ri ,0 

2

 
1

T
min Rit ,0 

2

i1

T

       (19) 

 

The semideviation is then 



i  i
2 

1

T
min Rit ,0 

2

i1

T

        

 

which measures the volatility below the target rate of return, .  

 

We define the investor’s problem as below: 



min x1 ,x2 ,...,xn p
2 

1

T
min Rpt  ,0 

2

i1

T



s.t.

x iE i
i1

n

  ET , and x i
i1

n

 1

    

 

where Rpt denotes the returns of the portfolio and 



p
2  the portfolio semivariance. The major 

obstacle to the solution of this problem is that the semicovariance matrix is endogenous; that 

is, a change in weights affects the periods in which the portfolio underperforms the target rate 

of return, which in turn affects the elements of the semicovariance matrix.  

 

2.2.2.4.1 The Endogeneity of the Semicovariance Matrix 
In order to clearly illustrate the problem of an endogenous semicovariance matrix, we have 

summarized return data from two hypothetical stocks in table 2-5 below. 
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Table 2-5: Endogenous Semicovariance Matrix from Two Hypothetical Stocks 

 

 

Table 2-5 displays the annual returns of two hypothetical stocks, Stock A and Stock B, as well 

as the annual return of two portfolios: one invested 80% in Stock A and 20% in Stock B, and 

the other invested 10% in Stock A and 90% in Stock B. We first consider the 80-20 portfolio 

and assume a target rate of return of 0%. We calculate the semivariance of the portfolio 

returns using equation (19). That obtains a portfolio semivariance with respect to 0% equal to 

0.0078, corresponding to a portfolio semideviation of 8.81%.  

Accordingly, for any given portfolio, the semivariance/-deviation can always be correctly 

calculated as above. The problem arises when, instead of the semivariance of one portfolio, 

we want to find the portfolio with the lowest semivariance from a set of many feasible 

portfolios. The approach above would be inadequate since we would have to calculate the 

returns and semivariance from each portfolio, and then select the portfolio with the lowest 

semivariance. Clearly, as the number of securities available increases, and the number of 

feasible portfolios increases even more, determining the optimal portfolio with this procedure 

becomes troublesome. If the elements of the semicovariance matrix were exogenous, then we 

could formally solve the given optimization problem and obtain a closed-form solution. We 

could then obtain the weights that minimize the portfolio semivariance in the same manner as 

we saw in the mean-variance framework in section 2.2.1. Unfortunately, this is not the case. 

Markowitz (1959) suggests estimating the portfolio semivariance as below: 



p
2  xix jij

j1

n


i1

n

          (20) 

where 



ij 
1

T
Rit   R jt  

t1

K

          (21) 

where periods 1 through K are periods in which the portfolio underperforms the target return, 

. This definition has one advantage and one drawback. The advantage is that it provides an 

exact estimation of the portfolio semivariance, and the drawback is that the semicovariance 

matrix is endogenous. We first look into the advantage of using this definition by considering 
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again the 80-20 portfolio from table 2-5 with a target rate of return equal to 0%. The sixth and 

seventh columns display the conditional returns of Stock A and B respectively; that is, 

applying equation (21) we get 0% when the return of the 80-20 portfolio is positive 

(outperforming the target return), and the return of the given stock when the return of the 80-

20 portfolio is negative (underperforming the target). To illustrate, the conditional return of 

Stock A in year 4 is -11% because the 80-20 portfolio delivered a negative return, and 0% in 

year 1 because the 80-20 portfolio delivered a positive return.  

We can now calculate the four terms of the semicovariance matrix by applying equation (21). 

We square the conditional returns in the sixth column and take their average, thus obtaining 



A,A,0  0,0077; we do the same with the conditional returns in the seventh column and obtain 



B,B,0  0,0099; we then take the average of the product in the eighth column and get 



A,B,0  0,0076. Finally, we follow equation (20) in order to get the semivariance of the 80-20 

portfolio: 



p,0
2  0,82 0,0077 0,22 0,0099 2 0,8 0,2 0,0076  0,0078 

corresponding to a portfolio semideviation of 8,8%, which is exactly the same number 

obtained before. Therefore, the expression suggested by Markowitz (1959) does indeed 

provide an exact estimation of the portfolio semivariance. The problem is that, in order to 

estimate this variable, we need to know whether the portfolio itself yields returns higher or 

lower than our target rate of return. We then run into the problem mentioned earlier: a change 

in weights affects when the portfolio underperforms, which in turn affects the elements in the 

semicovariance matrix; i.e. the semicovariance matrix is endogenous. 

This can be illustrated by considering the 10-90 portfolio in table 2-5 where 10% is invested 

in Stock A and 90% in Stock B, and again assuming a target return of 0%. The returns of this 

portfolio are shown in the fifth column, the conditional returns of the two stocks are shown in 

the ninth and tenth columns, and the product of the conditional returns in the eleventh column. 

The first thing to note is that, while the conditional returns are calculated by using equation 

(21) as before, they differ from those of the 80-20 portfolio. We calculate the four elements of 

the semicovariance matrix exactly as before and get:  



A,A,0  0,0054 , B,B,0  0,0020 , and A,B,0 0,0030 

 

Note that all these numbers are different from those calculated for the 80-20 portfolio, which 

clearly shows that the semicovariance matrix is endogenous because its elements depend on 
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the asset weights. For the sake of completeness, we calculate the semivariance of the 10-90 

portfolio using equation (20): 



p,0
2  0,12 0,0054  0,92 0,0020 2 0,10,9  0,0030  0,0012 

 

implying a semideviation of 3,39%. 

 

2.2.2.5 A Heuristic Approach 
Many authors have proposed solutions to the problem of the endogenous semicovariance 

matrix in solving the investor’s portfolio selection problem
13

. In order to overcome this 

problem, we follow a heuristic proposed by Estrada (2008). We define the semicovariance 

between assets i and j with respect to a target return, , as 



ij  E min Ri ,0 min R j ,0  
1

T
min Rit ,0 min R jt ,0  

i1

T

   (22) 

 

This definition can be tailored with any desired  and generates a symmetric 



ij   ji  as 

well as an exogenous semicovariance matrix. Recall that with equation (21), knowledge of 

whether the portfolio underperforms the target is needed. With equation (22), however, 

knowledge of whether the asset underperforms the target is needed, which means that the 

elements in the semicovariance matrix are invariant to the weights of the portfolio considered 

and are, therefore, exogenous.  

 

If we divide equation (22) by the product of asset i and asset j’s semideviation of returns, we 

obtain their downside correlation 



ij , which is given by  



ij 
ij

i   j


E min Ri ,0 min R j ,0  

E min Ri ,0 
2

  E min R j ,0 
2

 
      

 

Additionally, the semicovariance between an asset i and the market portfolio can be divided 

by the market’s semivariance of returns, thus obtaining asset i’s downside beta 



i
D , which is 

given by 

                                                 
13

 See Hogan and Warren (1972), Ang (1975), Nawrocki (1983), Harlow (1991), Grootveld and Hallerbach 

(1999), among others. 
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

i
D 

im

m
2


E min Ri ,0 min Rm ,0  

E min Rm ,0 
2

 
       

 

and which can also be expressed as 



i
D  i m m. The corresponding SML is then 

defined by: 



E Ri  Rf  i
D E Rm Rf         (23) 

 

As can be seen by a straightforward comparison of (11) and (23), this model replaces the beta 

of the CAPM by the downside beta, which is the appropriate measure of systematic risk in a 

downside risk framework. 

 

2.2.3 The Mean-Gain-Loss Spread Framework 

Estrada (2009) presented an alternative ad hoc risk measure called the gain-loss spread (GLS) 

in an effort to explain the cross-section of stock returns. The GLS takes into account the 

probability of a loss, the average loss and the average gain – information that investors 

consider relevant when assessing investments. Investors are typically concerned about the 

probability of suffering a loss, a percentage that can be estimated as the proportion of periods 

in which an asset generated negative returns. In addition, investors care about the size of these 

losses, a quantity that can be estimated with the mean return over the periods in which the 

asset generated negative returns. These two downside variables lead to the expected loss. In 

the same manner, one can calculate the expected gain. The GLS is then calculated as the 

difference between the expected gain and the expected loss of the asset, reflecting the spread 

between the upside and the downside, thus providing an insightful metric for investors.  

 

The GLS is very simple to calculate, as is shown in the following analytical framework. We 

consider an asset with returns Rt, where t indexes time. Assume that out of the T periods for 

which we have return data, the asset delivers a loss Lt = Rt < 0 in N periods and a gain Gt = Rt 

< 0 in M periods. Then we have that N + M = T. The probability of a loss (pL) and the 

probability of a gain (pG) is then defined as: 

 



pL 
N

T
, pG 

M

T
1 pL
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We implicitly assume that the asset delivers either positive or negative returns; hence there 

are no periods in which the returns are zero. It is, however, simple to accommodate the model 

to include such returns.  

 

The average loss (AL) and average gain (AG) are defined as the mean return over the N and M 

periods in which the asset generated a loss/gain: 

 

 

The expected loss and the expected gain are then defined as: 

 

 

Finally, we can calculate the GLS as the spread between the expected gain and the expected 

loss: 

 

 

As the above expression shows, it is very straightforward to calculate the GLS. It is notable 

that even though EG – EL yields the GLS, EG + EL yields the arithmetic mean return.  

 

The portfolio selection problem can be set up as a linear programming problem like before. 

min  

                       

 

   
 

   

 

   
   

 

One could argue that the GLS is not a downside risk measure per se since it includes the 

expected gains as well. However, it has the advantage that it does not depend on any 

distributional assumptions and provides more information than e.g. the standard deviation. 

Henceforward, we will refer to the GLS as a downside risk measure. 



AL 
1

N
Lt

t1

N

 , AG 
1

M
Gt

t1

M





EL  pL  AL 
1

T
Lt

t1

N

 , EG  pG  AG 
1

T
Gt

t1

M





GLS  EG  EL 
1

T
Gt

t1

M

  Lt
t1

N





GLS  EG  EL 
1

T
Gt

t1

M

  Lt
t1

N


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2.2.4 The Mean-Conditional Value-at-Risk Framework 

In this section, we examine the conditional value-at-risk as a risk measure in portfolio 

optimization. There has been a need for new risk measures, alternative to the traditional 

measures such as standard deviation, by regulation of financial institutions and risk 

management. One of the first attempts at alternative risk measures has been Value-at-risk, 

which has gained wide application in many areas of the financial analysis. Throughout this 

section, we mainly follow Uryasev (2000) supplemented by Rockafellar & Uryasev (2000) 

and Krokhmal et al (2002). 

  

If we assume a normal distribution, the traditional value-at-risk can be calculated as 

following:  

 

 

where µ and   denote the mean and standard deviation of the loss distribution, given a 

student t distribution with v degrees of freedom.  

 

      Figure 2-6: An Example of the Loss Distribution and VaR 

14
 

 

As shown in the figure above, the value-at-risk (VaR) calculates the maximum loss at a 

specific confidence interval . If a portfolio has a one-month 5% VaR of $2 million, there is a 

5% probability that the portfolio will fall in value by more than $2 million over a one months 
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period, assuming markets are normal. We could also look at it as a loss of $2 million or more 

on a portfolio is expected in one month out of 20 (100/5) months. 

Although, VaR is a commonly used risk measure by banks and other financial institutes, it has 

received a great amount of criticism from academics, stating its many shortcomings
15

: 

1. An investor who subscribes to VaR is implicitly stating that she is indifferent between 

very small losses exceeding VaR and very high losses. This is an assumption that is 

far from reality. 

2. VaR is not sub-additive. That means that the VaR of a portfolio with two instruments 

can be larger than the sum of VaR of these two instruments. Thus, VaR could indicate 

that concentrated portfolios where less risky than diversified portfolios. 

3. VaR also has some mathematical drawbacks. It is a non-smooth, non-convex and 

multi-extremum (many local minima) function that makes it difficult to use in 

portfolio optimization.  

4. VaR further relies on a linear approximation of risk and assumes a normal 

distribution (or t-distribution) of the underlying market data.  

Due to the above-mentioned issues, the conditional value-at-risk (CVaR)
16

 was created as an 

extension to VaR. It provides information that can be considered complementary to that given 

by VaR, as it measures the expected excess loss above the VaR, if a loss larger that VaR 

actually occurs. In order words, it calculates the average of the worst (1-) losses.  

CVaR is more sensitive to the shape of the loss distribution in the tail of the distribution 

whereas VaR only considers a t-distribution. If the underlying loss-distribution is normal, 

then both risk measures will provide the same optimal portfolio. CVaR is still a relatively new 

risk measure and is therefore not as widely used in the financial industry as VaR. However, 

due to enhanced computer power as well as its superiority in terms of relaxed assumptions 

and better information, it is gaining more attention and application.  

 

The relationship between VaR and CVaR can be explained as following
17

: 

The formal definition of VaR is an -percentile of loss distribution such that the probability 

that losses exceed or equal this value is greater or equal to . When looking at CVaR, we can 

look at the ―upper‖ and ―lower‖ CVaR. The ―upper‖ CVaR determines the expected losses 

                                                 
15

 Scherer (2007) 
16

 Also called Mean Excess Return, Mean Shortfall, Expected Shortfall or Tail VaR 
17

 Uryasev presentation 
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strictly exceeding VaR and the ―lower‖ CVaR are the expected losses that are equal to or 

exceed VaR. CVaR is then a weighted average of VaR and the ―upper‖ CVaR: 



CVaR  VaR  (1) CVaR  

 

This way CVaR will always be larger than VaR – its magnitude depending on the distribution 

of the underlying data.  

 

                                           Figure 2-7: VaR and CVaR. Source: Uryasev (2000) 

 

2.2.4.1 The Investor’s Portfolio Choice Problem 
CVaR is a very different risk measure from variance or semivariance. It is therefore not 

possible to use the basic ideas of the mean-variance framework to find the optimal portfolio 

using CVaR. We need to find the optimal portfolio using a slightly different approach. The 

basic idea of this approach is to construct a loss function that is then used to define CVaR. 

The actual optimization problem can be solved using linear programming as shown by 

Uryasev (2000).  

 

2.2.4.1.1 The Loss Function 
We define a loss function depending on a decision vector x (where x belongs to a feasible set 

of portfolios, X) and a random vector y: 

,  

 

Consider a portfolio consisting of two instruments. We then have a vector , which 

is the position in the two instruments, their corresponding initial prices  and 

 a vector of uncertain prices in the next period. The loss function is then the 



f (x,y j )



x  X



x  (x1,x2)



m  (m1,m2)



y  (y1,y2)
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difference between the current value of the portfolio and the uncertain value of the portfolio 

in the next period: 

 

 

The same method is applied if the portfolio consists of more than just two instruments. In 

order to keep this approach convenient, we assume vector y has a probability density function 

p(y). This assumption is not critical for the considered approach since we can easily relax the 

assumption by looking at the uncertain value as demonstrated above.   

 

2.2.4.1.2 Analytical Representation 
The VaR function is denoted as , which is the percentile of the loss distribution with 

confidence level . CVaR is denoted as  and indicates the conditional expected loss 

and is defined by: 

       (24) 

 

Equation (24) above is not exactly intuitive, which makes it hard to apply in the portfolio 

selection problem. Therefore, it is necessary to have an analytical representation of VaR. 

Uryasev (2000) uses the following approach to define a more simple function that can be used 

instead of equation (24): 

                                                (25) 

 

The use of equation (25) rather than (24) can be justified as follows: 

1. The function is convex with respect to w.r.t.  

2. VaR is a minimum point of the function w.r.t.  

3. , i.e. minimizing  w.r.t.  yields CVaR.  

In other words, we are able to minimize CVaR by minimizing  with respect to . 

 

 

Minimizing equation (25) yields the optimal CVaR with vector x* and the corresponding 

VaR.  



f (x,y)  (x1m1  x2m2) (x1y1  x2y2)

f (x,y)  x1(m1  y1) x2(m2  y2)



(x,)



 (x)



 (x)  (1)
1 f (x,y)p(y)dy

f (x,y )(x, )




F (x,)











 (x)  F (x,(x,)) min

F (x,)



F (x,)







F (x,)







min
xX

 (x)  min
xX ,

F (x,)



F (x,)   (1)1 ( f (x,y))p(y)dy
f (x,y)

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2.2.4.1.3 Minimizing CVaR with LP 
It is often the case that the density function  is not available or is very hard to construct 

for a given instrument, but it is very easy to find historical data for the instruments of the 

portfolio. We can use these historical prices instead of the density function,     . In this case 

the  distribution will be discrete rather than continuous. 

         (26) 

 

In order to simplify equation (26), we use the auxiliary variable, v, which is equal to 

. If the loss function is linear with respect to x, we are able to solve this 

optimization problem by using linear programming (LP).  

In order to set the LP problem, we need another auxiliary variable that helps define the 

constraints. 

 ,   

 

The above constraints are equivalent to the function:  

This lead to the following LP optimization problem: 

min 



  v z j
j1

J

  

S.t. 

, ,   

 

Other constraints can be added if e.g. the investor desires no short sales,  or she does 

not accept returns below 8%. These constraints can easily be added to the general linear 

programming optimization problem.  

If the returns are normally distributed and the same return constraints are active, we get the 

same solution for the optimal portfolio when minimizing variance, semivariance, VaR or 

CVaR. 

 

In this section, we introduced the conditional value-at-risk as a new risk measure due to the 

shortcomings of VaR. The conditional value-at-risk calculates the average of the highest (1-

) losses whereas VaR only focuses on the maximum loss at a specific confidence interval (1-

). We are able to efficiently minimize CVaR using linear programming in order to find the 



p(y)



F (x,)



F

~

(x,)   v ( f (x,y j ) a)
j1

J






v  ((1)J)1



z j  f (x,y j )



z j  0



max(0, f (x,y j ) a)



z j  f (x,y j )



z j  0



j 1,...,J



x j  0
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optimal portfolio and at the same time calculate VaR for that portfolio. The method applied to 

find the optimal portfolio is efficient and can easily handle a large amount of data. 

  

2.2.5 The Mean-Drawdown Framework 

From a fund manager’s point of view, someone who manages capital on behalf of clients or 

banks and whose only source of income takes the form of management fees or incentive 

remuneration, losing this capital can have very serious repercussions for her business. It is 

therefore very important for the manager to consider the maximum consecutive loss she can 

tolerate. A particular client or bank will choose their fund manager by reviewing their 

previous historical track record and often decide based on their accounts’ maximum 

drawdowns and the duration of these drawdowns. Most clients also give their fund managers 

a warning drawdown level, at which he is able to work within (e.g. 15%). These issues make 

it very important for the fund manager to consider the worst drawdowns as well as the 

duration of these.  

 

In the following, we will review how an investor can use the worst drawdown measure to 

select the optimal portfolio allocation. The theory is based on Cheklov et al (2003) who 

introduced a one-parameter family of risk functions called drawdowns. 

The definition of drawdown according to Cheklov et al (2003) is as follows: 

 

“The drop in the portfolio value compared to the maximum achieved in the past.” 

 

Drawdowns can be defined in absolute and relative terms, e.g. if the current value of a 

portfolio is €19m and the maximum value of the portfolio within the relevant time frame was 

€20m, the absolute drawdown would be €1m and the relative drawdown would be 5%. The 

different drawdown measures can be generalized in one variable called the conditional 

drawdown-at-risk (CDaR). The CDaR is based on a confidence parameter , where the -

CDaR is defined as the average of the 1- worst drawdowns experienced over a certain period 

of time. If  is set to be equal to zero, we would be looking at 100% of the drawdowns over 

the period of time and thereby calculate the average drawdown. On the other hand, as  

moves towards one, the CDaR move towards the maximum drawdown. The CDaR risk 

function therefore has the average drawdown and maximum drawdown as its upper and lower 

limits. 
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The CDaR optimization model is based on a similar concept as the CVaR. We can view 

CDaR as a modification of CVaR, where the loss function is replaced by a drawdown 

function. We can use the same approach as with the remaining risk measures and reduce the 

optimization problem to a linear programming problem.  

2.2.5.1 Definition of Drawdown Measures 
We are going to consider three drawdown measures: 

1. Maximum drawdown 

2. Average drawdown 

3. Conditional drawdown-at-risk 

We denote a function  to be the uncompounded portfolio return at time t with a vector 

 representing the portfolio weights of m instruments. The drawdown function 

is defined as the difference between the maximum return in period  and the return at 

time t: 

        (27)

   

      Figure 2-8: Drawdown Function 

 

Figure 2-8 depicts the density of the drawdown function as defined by equation (27) as well 

as the three drawdown measures, which will be described in the following. CDaR is a family 

of risk functions that depend on the value of , where the maximum drawdown and average 

drawdown can be considered special cases of CDaR. The maximum drawdown in the period 

can be calculated by maximizing equation (27): 

 



w(x,t)



x  (x1,x2,...,xm)



  0,T 



D(x,t) max
0t

w(x, w(x,t)



M(x) max
0t

D(x,t) 
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The average drawdown is then the entire area below the drawdown function, i.e. the sum of 

all drawdowns over the period , divided with the length of the period T: 

  

 

If we define N as the number of sub-periods in the time interval  and  as an 

integer number (i.e. we are able to count the number of drawdowns) then the CDaR is 

calculated as the average drawdown over        sub-periods:  

 

 

Let  denote a threshold where all        of the drawdowns exceed this threshold, 

and define  as . However, if  is not an integer 

number, then CDaR is expressed as a linear combination of the threshold and the drawdowns 

strictly exceeding this threshold, similar as it was done for CVaR: 

 

 

where               . 

 

We have now defined the three drawdown measures and can continue to the optimization 

problem. As mentioned before, we are interested in simplifying this optimization problem to a 

linear programming problem. 

 

2.2.5.2 The Investor’s Portfolio Choice Problem 
In the same manner as previously, we can solve the portfolio selection problem by 

minimizing the drawdown measures for different levels of return. The formal setup includes 

minimizing the following expressions subject to the same linear constraints: 

 

 

(28) 



A(x) 
1

T
D(x,t) dt



0,T 



(1)N



CDaR(x) 
1

(1)T
D(x,t)dt







 (x)







 t  0,T :D(x,t)  (x) 



(1)N



CDaR(x) min


 
1

(1)T
D(x,t) 


dt

0

T












CDaR(x) min


 
1

(1)T
D(x,t) 


dt

0

T









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When considering the average drawdown,    , which means that equation (28) is reduced 

to the following problem: 

         
 

 
             

 

 

  

                       

 

   
 

   

 

   
   

 

Furthermore, the maximum drawdown implies that     and the threshold takes on the 

highest value of the drawdown function, which means that there are no drawdowns exceeding 

this threshold  
 

      
             
 

 
   . Equation (28) is therefore reduced to: 

             

                       

 

   
 

   

 

   
   

 

The three drawdown measures are fairly new magnitudes that define risk in a different way. 

Some people may argue that the maximum drawdown is not a complete risk measure since it 

is only based on two observations whereas the CDaR allows the risk manager to focus on the 

worst (1-)*100% drawdowns and is by definition more flexible. 

 

2.2.6 Summary 

We have now introduced the theory behind the following seven risk measures: 

 Variance 

 Semivariance 

 Gain-Loss Spread 

 Conditional Value-at-Risk 
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 Conditional Drawdown-at-Risk 

 Maximum Drawdown 

 Average Drawdown 

The variance was introduced in modern portfolio theory and is the most applied risk measure 

among practitioners today. The semivariance has a somewhat similar underlying theory with 

the main exception that it concentrates on the lower partial moment of the return distributions. 

The LPM and semivariance have received a lot of attention since Markowitz introduced his 

modern portfolio theory. Even then, Markowitz recognized that semivariance is a more 

adequate risk measure than variance but chose not to use it due to the limited computer power 

that made it hard to calculate at the time.  

 

The third risk measure reviewed in this chapter is the conditional value-at-risk, which has its 

roots from the popular risk variable, value-at-risk. Even though value-at-risk is widely used 

within investment management, it has received substantial criticism for neglecting the 

importance of fat tails. We have chosen to take this criticism into consideration and instead 

present the conditional value-at-risk, which takes the losses exceeding value-at-risk into 

account.  

 

The next three risk measures introduced by Uryasev et al (2000) are based on a drawdown 

function, which takes extreme values of return distributions into account. The theory behind 

the conditional drawdown-at-risk is fairly similar to the idea behind the conditional value-at-

risk. Conditional drawdown-at-risk also requires a predefined quantile (the most common 

being 0.9, 0.95 or 0.99), where the average and maximum drawdowns are the two special 

cases of the conditional drawdown-at-risk (the quantile being 0 or 1 respectively).  

 

The last risk measure reviewed is the gain-loss spread, which is a new risk measure 

introduced by Estrada (2009). The GLS is the only other risk measure (variance being the 

first) that considers both downside as well as upside potential.  The GLS calculates the spread 

between the expected gain and the expected loss of a portfolio, reflecting the spread between 

the upside and the downside, thus providing an insightful metric for investors.  
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3 Chapter III: Data 

3.1 Presentation of data 
All the data used in the analysis is extracted from Thomson Datastream, which is the largest 

financial database available. We believe that it is an advantage that all the data comes from 

the same source and that it increases the strength of comparability of each time series. 

Our data consist of eight stock indices, 29 stocks that have been randomly selected from the 

stock indices, and the MSCI global government bonds index. In Chapter 4, we will only use 

the stock indices and stocks whereas the bonds will be used in Chapter 5. The selected data is 

summarized in table 3-1.  

 

      Table 3-1: Securities  

 

 

All equity data is reported as total return indices. This way, we will capture the total equity 

fluctuations where dividends are included. With price indices, a potential dividend payment 

will reduce the market price of a stock by an amount equivalent to that dividend. This is 

misleading because such price reduction is not due to real market fluctuations, and the stock 

might as well be perfectly stable. E.g. imagine that a stock price is €100 on the day before a 

dividend payment of €7. The price will then be €93 the day after the dividend payment, which 

merely represents the reallocation of capital. 

  

We have chosen to express all the return data in Euros rather than in local currencies because 

we wish to conduct the analysis from a European investor’s point of view. This choice will 

have some implications during the first part of the analysis because fluctuations in equity 
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prices caused by exchange rate risk will be incorporated in the total return index. We believe, 

however, that the noise from exchange rate risk is negligible in relation to our analysis.  

 

3.1.1 Return Frequency and Period 

The collected data spans over a 30-year period; from May 21, 1980 to May 21, 2010. We 

have chosen this period because we want to include the recent developments and at the same 

time analyze over a longer period.  

 

We include two different return frequencies within the selected 30-year period when 

examining the relation between risk and return. These frequencies are daily and monthly 

returns and the respective number of observations in the 30-year period can be found in table 

3-2. 

 

   Table 3-2: Number of Observations 

 

 

We could also have included quarterly and yearly returns, but this would have resulted in 

fewer observations that would be critically low for some of the statistical tests used 

throughout our analysis. Furthermore, using quarterly or yearly returns would also contain 

less information since stock prices may exhibit high fluctuations within short time intervals, 

which would then not be captured.  

3.1.2 Outliers 

There has been considerable debate in the empirical finance literature on how to address 

"outliers" in an empirical study. The big downturns in October 1987 or in the fall 2008 have 

been particularly interesting. Some believe that all outliers could be included as long as the 

analysis is done correctly. Others believe that it is important to eliminate the largest outliers 

from the analysis because they do not fit into the general framework. In the present study, we 

have decided to not reject any abnormal returns since we wish to include all fluctuations. This 

is mainly because we are analyzing the downside risk of returns where extreme values may 

account for an important part.  

Daily Monthly

Number of obs. 7827 360
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3.1.3 Return Calculation 

The total return indices are based on daily (or monthly) closing prices obtained from 

Thomson Datastream. It is worth noting that there are two ways to calculate returns from 

these indices. Equity returns can be calculated as arithmetic returns and logarithmic returns.  

An advantage of the logarithmic returns is that the log normal distribution of returns has 

infinite upside potential while losses cannot exceed 100%. 

The arithmetic returns are particularly useful when mutual funds and other financial players 

must determine the performance of their investments. The reason why the percentage rates are 

used in this context is that the percentage return corresponds naturally with the market prices 

and since we are analyzing the relation between risk and return and the performance of the 

different risk measures, we use the percentage returns. 

3.2 Normality Issue 
In this section, we will examine whether the returns are normally distributed by applying 

different statistical techniques. Many financial models rely heavily on the normality 

assumption, including the mean-variance criterion. It is an important assumption, since the 

assumption makes calculations involving risk more straightforward than they are with non-

normal distributions. The normality assumption in asset returns has been tested many times, 

reaching the same conclusion that the historical returns are usually not normally distributed. 

In order to make our analysis complete, we test the normality assumption with our specific 

data for later reference. 

One of the most commonly used methods to test for normality is to look at the density 

function of the returns.  

 

                                         Figure 3-1: Normal Distribution 
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Figure 3-1 depicts a normal distribution, which has the characteristic bell shape and is 

symmetrical around the mean. If the return distribution differs much from the bell shaped 

distribution, one can question the normality assumption. We can therefore look at the 

distribution of the different securities in order to determine any potential deviation from 

normality. 

 

     Figure 3-2: Histogram of DAX 30 Returns 

 

 

Figure 3-2 shows the histogram of historical returns of the German DAX 30 index. The 

distribution seems somewhat bell shaped but is not completely symmetric around the mean. 

We see that there are some values in the left tail of the distribution that cause the histogram to 

―lean‖ and is known as a negatively skewed distribution or a left tailed distribution.  

When using empirical data samples like returns time series, we would not expect the data to 

exhibit a form of a perfectly normal distribution. However, we need a different way to 

determine whether the distribution is significantly different from the normal distribution.  

This can be tested numerically by calculating the third and fourth moments of the empirical 

distribution. The third and fourth moments take specific values in a normal distribution and 

therefore, it is possible to identify and calculate the deviation from these values
18

. 

 

                                                 
18
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The third moment in normality represents the skewness (asymmetry) of a density function 

around the mean. A skewness value different from zero suggests that there is a deviation from 

normality in the return series. The skewness is defined as: 

 

 

where T is the number of observations, ri is the return in period i,  is the mean return,  is the 

standard deviation and N represents the normal distribution. Negative skewness implies that 

the distribution is left tailed and the mass of the distribution is concentrated on the right.  On 

the other hand, positive skewness means that the distribution is right tailed and the mass of 

the distribution is concentrated on the left. 

 

The fourth moment of a distribution is the kurtosis, which describes the ―peakedness‖ of the 

distribution. Thus, the kurtosis is an expression of the degree to which stock returns are 

concentrated around the mean. In statistical terminology, it is most common to talk about the 

"excess kurtosis", which is simply defined as kurtosis minus three and can be expressed as 

following: 

 

 

There are several statistical tests that are deemed as suitable to perform normality tests. The 

most widely used is the Jarque-Bera test, which uses the third and fourth moments of the 

empirical distribution to test for normality. In order for a distribution to be perfectly normally 

distributed, the series needs a skewness of zero and a kurtosis of three. This test determines 

whether the distribution exhibits significant skewness and kurtosis significantly different from 

three. The Jarque-Bera test is an asymptotic test in which the reliability of test results 

increases with number of observations. The Jarque-Bera test is defined as follows: 

 

which follows a chi-square distribution with two degrees of freedom. 

 

Appendix I lists the results of this test for the different stocks and indices at both monthly and 

daily return frequencies. For the daily returns, it is clear that all stocks and indices show a 
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statistically significant deviation from normality at the 1% level, indicated by a p-value below 

0.01. Normality is also rejected for all monthly returns except Sanofi (FR), Chevron (US) and 

OMXC20 (DK). OMXC20 is the index with the fewest observations, which could question 

the reliability of the test result as the test is sensitive to the number of observations.  

3.2.1 Stability of Deviation “Persistency” 

In order to justify the effort to model non-normality, we need to be sure that the statistically 

significant non-normality is persistent over time. There are several ways to check the 

persistency but not all academics agree about the reliability of the different tests. Taking this 

uncertainty into account, we use a test for persistency of skewness presented by Kahn and 

Stefek (1996). This test can be easily applied to determine whether the non-normality of 

returns is persistent over time. The test is conducted as follows: 

1. Split the data set into two non-overlapping time periods of equal length 

2. Calculate skewness, kurtosis or excess semivariance for each time period 

3. Run a regression of the form: 

 

 

The persistency is then indicated by a significant  and a high R
2
. 

 

We have decided to use excess semivariance as our skew-measure, which can be calculated 

as
19

: 

 

 

We have only included the stocks and indices that indicated non-normality using the JB-test. 

However, our first attempt showed no overall persistency in non-normality since both  was 

insignificant and R
2
 was low. This indicates that there are some stocks in our analysis that are 

not persistent in their distribution over time. In order to identify the non-persistence stocks, 

we look at the scatter plot from our regression and see which stocks perform as outliers.  

                                                 
19

 Scherer (2002) 
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     Figure 3-3: Persistency Plot 

 

 

As can be seen in figure 3-3, there are three stocks that could be performing as outliers and 

thereby do not have a persistent distribution over time. When running the regression again 

after excluding these outliers, we find that (0.0014) is significant and R
2
 is high (0.3092), 

meaning that the remaining stocks are persistent over time. Although we are not able to 

conclude persistency for all stocks, it is safe to say that the vast majority of our securities are 

persistent in their distributions and we can assume non-normality. For SAS output, see 

Appendix CD 1.1.  

 

We have shown that returns are not normally distributed in both daily and monthly data with 

the exception of a few stocks on monthly data. The conclusion on non-normality has also 

proven to be more statistically significant on daily data than on monthly data. With the results 

from this section, it is clear that almost all stocks and indices are not normally distributed and 

that this also holds over time.  
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3.3 Descriptive Statistics 
This section introduces the different risk measures that have been calculated for the each 

security. We will clarify some of the assumptions that have been made in order to calculate 

the risk measures. The purpose of this section is also to give the reader a better understanding 

and feeling of the magnitude of the different risk measures used in the analysis.  

The theoretical background for the risk measures has been reviewed in Chapter 2 where we 

clarified how they are calculated using historical returns. We present the following nine risk 

measures: 

 Standard Deviation 

 Semideviation 

 Beta 

 Downside Beta 

 Gain-loss spread (GLS) 

 Maximum Drawdown (MaxDD) 

 Average Drawdown (AvgDD) 

 Conditional Drawdown (CDaR) 

 Conditional Value of Risk (CVaR) 

Some of these risk measures include variables that can be set and adjusted according to 

preferences or strategies (e.g. quantiles, target rates of return etc). In the following, we will 

present our choice of variables included in the risk measures. 

 

The semivariance is a special case of the lower partial moment. The LPM allows one to 

specify a target rate of return, which distinguishes (downside) risk from upside potential. The 

most commonly used target rates are zero, the risk free rate and the mean return, but 

essentially any other return value could be used. Harlow and Rao (1989) investigate the 

implications of the choice of target rate in the mean-LPM framework using regression 

analysis and find that the optimal target rate is the mean return. Based on their research paper, 

we choose to use the mean of the individual securities as our target rate of return. 

Consequently, this not only affects the semivariance but also the downside beta. 

 

The Gain-loss spread uses a target rate of zero by design, but could also be customized to use 

any other rate of return. We choose zero as our target in order to separate actual gains from 
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actual losses. In addition, the GLS is a fairly new risk measure and has therefore not seen 

much application on empirical data. Hence, we choose to follow Estrada’s own definition and 

set the target rate to zero. 

  

The conditional drawdown-at-risk and conditional value-at-risk both require a pre-specified 

quantile, which is usually set at 0.99, 0.95 or 0.9. The choice of quantile depends on the 

desired level of confidence as well as the size of the underlying data sample. We have chosen 

a quantile of 0.95 because we believe that we have the necessary amount of observations in 

both daily and monthly frequencies. One could argue that a different quantile should be used 

for monthly data due to the fewer observations. However, we want to use the same quantile in 

order to keep the results comparable across return frequencies. 

 

Tables 3-3 and 3-4 below summarize the mean returns and risk of the different securities 

included in the analysis. 
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Table 3-3: Key Ratios, Monthly (for calculations, see appendix CD 1.2) 

 

MR    
D GLS AvgDD MaxDD CDaR CVaR

A P Møller Mærsk B 1.70% 9.47% 6.33% 0.56 0.91 7.03% 34.13% 69.09% 56.16% 17.99%

Allianz 1.20% 9.59% 6.78% 0.69 1.09 7.04% 26.58% 66.74% 56.60% 21.35%

AT&T 1.05% 7.31% 5.25% 0.49 0.70 5.69% 20.96% 53.29% 40.16% 15.14%

Aviva 1.20% 9.73% 6.91% 0.75 1.09 7.31% 29.62% 86.90% 58.47% 21.30%

AXA 1.57% 11.53% 8.13% 0.91 1.30 8.21% 40.33% 93.70% 71.40% 26.47%

Bank of America 1.68% 11.39% 7.94% 0.89 1.14 7.89% 36.27% 89.07% 65.07% 24.74%

Barclays 1.68% 11.41% 7.74% 0.87 1.13 7.41% 25.50% 119.11% 89.45% 23.97%

BASF 1.26% 6.90% 5.09% 0.50 0.79 5.21% 15.47% 48.58% 34.52% 16.06%

BP 1.30% 7.67% 5.42% 0.59 0.79 5.80% 30.55% 53.07% 48.06% 16.04%

Canon 1.58% 9.43% 6.47% 0.77 0.96 7.28% 45.96% 78.54% 66.95% 18.45%

Carrefour 1.39% 7.16% 5.23% 0.35 0.66 5.68% 17.95% 44.46% 36.38% 15.49%

Chevron 1.29% 7.16% 4.98% 0.57 0.75 5.65% 23.99% 44.19% 39.22% 13.85%

Citi Group 1.35% 13.11% 9.23% 1.28 1.59 8.69% 28.22% 112.82% 85.75% 30.16%

Danske Bank 1.64% 8.64% 5.90% 0.50 0.79 6.03% 22.16% 77.97% 57.46% 17.63%

DAX 30 0.88% 6.06% 4.68% 0.58 0.82 4.62% 14.84% 44.02% 32.82% 15.13%

Deutshe Bank 1.06% 9.46% 6.71% 0.68 1.06 6.47% 21.11% 75.05% 56.23% 21.88%

Dow Jones 0.84% 6.06% 4.24% 0.81 0.90 4.43% 13.48% 35.80% 29.80% 13.59%

CAC 40 0.92% 5.54% 4.57% 0.65 0.87 4.46% 17.23% 42.60% 33.52% 15.37%

FTSE 100 0.83% 7.81% 4.23% 0.65 0.84 4.27% 13.23% 33.52% 27.50% 13.40%

General Electric 1.45% 8.18% 5.83% 0.82 0.98 6.40% 20.54% 53.32% 40.70% 16.84%

Honda Motors 1.55% 9.65% 6.12% 0.75 0.90 7.36% 46.35% 72.89% 64.97% 16.19%

Jyske Bank 1.51% 7.86% 5.65% 0.39 0.64 5.66% 24.90% 75.60% 44.58% 17.01%

Mitsubishi 1.23% 9.67% 6.79% 0.67 0.99 7.70% 32.84% 75.16% 57.81% 19.35%

MSCI EM 1.36% 5.75% 5.90% 1.08 1.25 6.16% 24.27% 60.00% 43.89% 17.49%

MSCI Worls 1.03% 5.52% 4.14% 1.00 1.00 4.30% 16.76% 38.96% 32.08% 12.75%

NIKKEI 225 0.64% 5.97% 4.58% 0.54 0.70 5.10% 18.87% 39.50% 33.47% 13.09%

Nippon 0.04% 9.02% 5.67% 0.52 0.74 7.47% 35.47% 61.11% 54.66% 16.38%

Novo Nordisk 2.11% 9.10% 5.99% 0.39 0.62 6.43% 56.03% 94.23% 75.46% 17.21%

OMXC20 0.76% 6.49% 4.52% 0.66 0.87 4.33% 11.87% 37.27% 28.63% 14.91%

RBS 1.68% 12.47% 8.88% 0.83 1.24 8.38% 45.79% 119.04% 79.45% 28.03%

Sanofi-Aventis 1.33% 7.66% 5.53% 0.40 0.62 6.13% 19.53% 42.77% 35.88% 15.19%

Siemens 1.17% 8.82% 6.44% 0.74 1.06 6.46% 21.69% 65.51% 51.94% 20.85%

Societe Generale 1.24% 10.77% 7.67% 0.93 1.40 7.72% 29.72% 77.39% 57.87% 24.68%

Tesco 1.68% 7.81% 5.43% 0.40 0.67 6.19% 31.31% 56.80% 48.65% 14.77%

Total 1.58% 7.84% 5.52% 0.39 0.63 5.99% 24.34% 55.67% 41.34% 15.45%

Toyota Motor 1.37% 8.81% 5.72% 0.65 0.83 6.68% 37.82% 65.65% 55.43% 15.43%

Volkswagen 1.27% 10.21% 7.07% 0.46 0.91 7.73% 31.46% 90.49% 63.88% 21.26%
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Table 3-4: Key Ratios, Daily (for calculations, see appendix CD 1.3) 

 

 

3.3.1 Performance  

Table 3-5 shows how the different securities are ranked according to risk adjusted return 

based on daily observations. The risk adjusted return is calculated as following: 



RAR 
Ri

RVi  

 

MR    
D GLS AvgDD MaxDD CDaR CVaR

A P Møller Mærsk B 0.08% 2.00% 1.33% 0.31 0.65 1.26% 28.25% 46.10% 32.84% 4.39%

Allianz 0.05% 2.01% 1.38% 0.52 0.86 1.36% 18.68% 35.77% 25.83% 4.64%

AT&T 0.05% 1.80% 1.26% 0.62 0.85 1.28% 19.65% 34.29% 26.02% 3.87%

Aviva 0.06% 2.25% 1.56% 0.54 0.94 1.53% 11.47% 60.24% 27.56% 5.04%

AXA 0.07% 2.36% 1.57% 0.62 0.97 1.57% 44.08% 64.18% 50.92% 5.24%

Bank of America 0.08% 2.56% 1.75% 0.85 1.19 1.58% 11.71% 59.12% 34.68% 5.57%

Barclays 0.08% 2.48% 1.64% 0.57 0.96 1.56% 13.33% 96.02% 66.94% 5.26%

BASF 0.06% 1.58% 1.11% 0.39 0.66 1.13% 8.16% 25.65% 14.75% 3.64%

BP 0.06% 1.71% 1.19% 0.40 0.70 1.25% 8.87% 21.89% 14.70% 3.73%

Canon 0.08% 2.33% 1.29% 0.28 0.73 1.72% 23.19% 41.05% 28.80% 4.90%

Carrefour 0.07% 1.78% 1.23% 0.33 0.66 1.29% 13.68% 26.76% 19.46% 4.05%

Chevron 0.06% 1.77% 1.24% 0.58 0.85 1.30% 11.09% 32.31% 20.48% 3.79%

Citi Group 0.07% 3.05% 2.07% 1.11 1.54 1.87% 22.36% 92.67% 55.93% 5.96%

Danske Bank 0.07% 1.68% 1.17% 0.29 0.60 1.10% 10.15% 27.20% 16.06% 3.88%

DAX 30 0.04% 1.35% 0.98% 0.43 0.66 0.96% 6.68% 20.24% 12.26% 3.22%

Deutshe Bank 0.05% 1.94% 1.34% 0.55 0.89 1.28% 11.02% 36.30% 25.12% 4.54%

Dow Jones 0.04% 1.32% 0.96% 0.73 0.91 0.96% 8.67% 21.97% 12.32% 3.04%

CAC 40 0.04% 1.37% 0.97% 0.55 0.77 0.99% 6.93% 18.31% 12.27% 3.16%

FTSE 100 0.04% 1.25% 0.90% 0.50 0.70 0.89% 5.50% 18.45% 11.17% 2.89%

General Electric 0.07% 1.87% 1.30% 0.69 0.98 1.32% 10.64% 26.13% 18.84% 4.16%

Honda Motors 0.08% 2.32% 1.58% 0.26 0.72 1.83% 15.46% 34.92% 20.96% 4.93%

Jyske Bank 0.07% 1.59% 1.08% 0.20 0.48 0.98% 17.89% 34.65% 22.25% 3.65%

Mitsubishi 0.06% 2.31% 1.46% 0.27 0.70 1.93% 12.74% 28.71% 19.71% 5.01%

MSCI EM 0.06% 1.51% 1.05% 0.89 1.07 0.80% 18.57% 48.63% 22.32% 3.15%

MSCI Worls 0.05% 1.12% 0.75% 1.00 1.00 0.67% 12.90% 31.04% 16.58% 2.39%

NIKKEI 225 0.03% 1.48% 1.05% 0.26 0.53 1.05% 10.71% 22.92% 16.74% 3.41%

Nippon 0.02% 2.42% 1.60% 0.24 0.66 2.77% 33.31% 46.57% -31.13% 4.55%

Novo Nordisk 0.10% 1.91% 1.34% 0.20 0.52 1.23% 19.92% 43.09% 24.33% 4.14%

OMXC20 0.03% 1.18% 0.84% 0.38 0.60 0.83% 5.14% 17.87% 10.94% 2.79%

RBS 0.08% 2.71% 1.91% 0.53 0.97 1.62% 41.03% 109.13% 47.87% 5.77%

Sanofi-Aventis 0.07% 1.91% 1.32% 0.30 0.63 1.41% 13.45% 27.73% 18.67% 4.23%

Siemens 0.05% 1.83% 1.29% 0.51 0.84 1.27% 10.48% 32.03% 21.08% 4.31%

Societe Generale 0.06% 2.28% 1.57% 0.66 1.05 1.62% 24.65% 41.01% 30.66% 4.72%

Tesco 0.08% 1.79% 1.24% 0.28 0.62 1.32% 14.54% 27.76% 19.00% 3.81%

Total 0.08% 1.88% 1.32% 0.35 0.69 1.37% 9.83% 29.48% 14.99% 4.15%

Toyota Motor 0.07% 2.05% 1.40% 0.24 0.62 1.54% 16.64% 34.13% 21.69% 4.26%

Volkswagen 0.07% 2.77% 1.57% 0.33 0.71 1.48% 16.95% 167.77% 124.57% 4.84%
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where 



Ri is the mean return and 



RVi  is the risk variable. It is clear that the ranking for 

standard deviation, semideviation and CVaR are very similar. The similarity in the ranking of 

the standard deviation and semideviation was expected due to their similar theoretical 

frameworks. CVaR is somewhat different but as the table shows still quite comparable with 

standard deviation and semi-deviation. MaxDD, AvgDD and CDaR all originate from the 

same theory of drawdown functions and are, as expected, very similar in their ranking of the 

securities. Beta and downside beta also rank the securities similarly, which is not surprising 

after seeing the same trend for standard deviation and semideviation. However, it is important 

to remember that beta and downside beta only measure the systematic risk rather than the total 

risk, which explains the differences between the standard deviation and beta as well as the 

semideviation and downside beta respectively.  
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Table 3-5: Ranking According to Risk Adjusted Return 
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4 Chapter IV: Analysis part I 
In this chapter, we wish to test the relationship between the different downside risk measures 

and the cross-section of stock returns in order to determine whether these exhibit a higher 

explanatory power than the traditional risk measures from the mean-variance framework. We 

follow the general methodology of Estrada (2007, 2009), taking into account the statistical 

and economic inadequacies of his approach. We start out by looking at the correlations 

between the different risk measures and the cross-sectional return. Hereafter, we conduct a 

more in-depth regression analysis in order to check the significance of the correlations. 

Finally, we check the robustness of our results by forming portfolios ranked by their risk and 

taking the spreads in mean returns between the riskiest and the least risky portfolio. We 

conduct the analysis of both monthly and daily returns and continuously compare these to see 

how the data frequency affects the correlations. In addition, we compare historical bull 

markets with bear markets again in both monthly and daily frequencies.  

 

4.1 Correlations 
The first step of the analysis consists of calculating the monthly and daily (arithmetic) means 

and the respective risk variables for each stock/index over the whole sample period. The nine 

risk measures considered in the analysis are summarized for all equities in tables X and Y. We 

start out by computing a correlation matrix between the ten variables (the nine risk variables 

and the mean return) in order to provide a preview of some results analyzed in more detail 

later on.  

 

Table 4-1: Correlation Matrix (monthly data) 20 

 

                                                 
20

 MR: mean return, : standard deviation, : semideviation, GLS: gain-loss spread, : beta (with respect to MSCI 

WRLD), 
D
: downside beta (with respect to MSCI WRLD), MaxDD: maximum drawdown, AvgDD: average drawdown, 

CDaR: conditional drawdown-at-risk, CVaR: conditional value-at-risk. 

MR   GLS   
D MaxDD AvgDD CDaR CVaR

MR 1

 0.470483 1

 0.458023 0.982401 1

GLS 0.409632 0.964922 0.928703 1

 0.005159 0.423798 0.486936 0.348015 1

 
D 0.107336 0.660818 0.737876 0.578981 0.904817 1

MaxDD 0.551072 0.929344 0.914073 0.847235 0.363333 0.575378 1

AvgDD 0.5417 0.665111 0.569601 0.717829 0.070606 0.171342 0.664114 1

CDaR 0.538431 0.932625 0.886181 0.876304 0.366802 0.547175 0.962539 0.753141 1

CVaR 0.348415 0.918516 0.968127 0.825481 0.561322 0.815954 0.865367 0.421064 0.81174 1
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Table 4-2: Correlation Matrix (daily data) 

 

 

As can be seen in table 4-1, all three drawdown functions outperform the other risk measures 

for monthly data, closely followed by the standard deviation. The CAPM beta has the lowest 

correlation with the mean return, followed by the downside beta. This is somewhat intuitive 

as they are both measures of systematic risk as opposed to the other variables, which measure 

total risk. However, it is interesting that the correlation of the CAPM beta is only about 0.005 

while that of the downside beta is about 0.11 or 22 times higher.  

It is also interesting to look at the correlations between the different risk measures. Naturally, 

the standard deviation and the semideviation are almost perfectly correlated. In addition, it 

makes sense that the GLS and the standard deviation are highly correlated as well (0.96), 

since the GLS provides basically the same information about risk. In short, the GLS provides 

a more insightful risk measure and is at the same time almost as correlated with returns as the 

standard deviation. In addition, the correlation between CVaR and the semideviation is 0.97, 

which makes sense because a larger semideviation implies larger values beneath the 5% 

quantile. Finally, it is also reasonable that the different drawdown metrics have high mutual 

correlations.  

In table 4-2, we have reported the correlations between the same ten variables based on daily 

observations. As can be seen, the dominant risk measure is now CVaR, followed by the 

standard deviation and the semideviation. The risk variable that correlates with mean return 

the least is now the downside beta with 0.05, followed by the CAPM beta, which is now 

negatively correlated with returns by -0.13. The correlations between the drawdown measures 

and the mean return have decreased from monthly to daily data. The correlation in the two 

extreme cases, MaxDD and AvgDD, is significantly reduced whereas that of CDaR has had a 

relatively smaller reduction. Additionally, the standard deviation has decreased slightly due to 

MR   GLS   
D MaxDD AvgDD CDaR CVaR

MR 1

 0.456973 1

 0.441018 0.968224 1

GLS 0.139451 0.805054 0.781899 1

 -0.13054 0.069643 0.129276 -0.16759 1

 
D 0.049626 0.441184 0.496647 0.175377 0.914097 1

MaxDD 0.315165 0.737936 0.661633 0.355249 0.180528 0.377203 1

AvgDD 0.249936 0.584518 0.576326 0.525195 0.032318 0.224805 0.461889 1

CDaR 0.427063 0.559435 0.461925 0.045823 0.175657 0.31109 0.861557 0.230849 1

CVaR 0.499596 0.96264 0.963353 0.757735 0.052676 0.433891 0.619627 0.55604 0.48645 1
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the higher divergence from normality in daily return data. Finally, it is remarkable that the 

GLS correlation has decreased dramatically from 0.41 in monthly data to 0.14 in daily data.  

 

4.2 Statistical Significance: The Full Sample 
While the above results imply how the different risk variables correlate with the mean return, 

we want to determine whether these relationships are significant or not. More detailed results 

about the relationship between risk and return across equities can be obtained from cross-

section regressions. We begin by running a simple linear regression model relating mean 

returns to each of the nine risk variables considered. More precisely: 



i 0 1RVi  ui          (29) 

 

where i and RVi represent the mean return and risk variable, respectively, 0 and 1 are 

coefficients to be estimated, ui is an error term, and i indexes equities. Subsequently, we run 

multiple regressions with the standard deviation and one of the downside risk variables in 

order to see their relative performance.  



i 0 1 i 2DRVi  ui          (30) 

 

where i is the standard deviation and DRVi is the downside risk variable. The same form of 

regressions is run where we include the CAPM beta instead of the standard deviation. Table 

4-3 presents our regression results for monthly data
21

. For SAS output, see Appendix CD 2.1.

                                                 
21

 Asterisks denote significance level: 0.05(*), 0.01(**), 0.001(***) 
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Table 4-3: Results from regression analysis on monthly data (significance based on White’s heteroskedasticity-consistent standard errors) 
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Panel A shows the results of our simple regressions from equation (29), where the coefficients 

of all the risk measures have the expected signs. Beta and downside beta are the only 

insignificant variables (with very low R
2
 values), which is in accordance with the low 

correlations we saw earlier. As can be seen, the maximum drawdown has the highest 

explanatory power with an R
2
 value of 23.73% and is significant at the 0.001 level. The CDaR 

and standard deviation are also significant at the 0.001 level. Panel B shows the regression 

results from running equation (30) with the standard deviation and a downside risk measure as 

explanatory variables. Estrada (2007, 2009) runs similar multiple regressions but does not 

take into account the presence of multicollinearity, i.e. the explanatory variables are inter-

correlated. We saw in the correlation tables above that there is a high correlation between 

several of our risk measures and the standard deviation and beta respectively. A rule of thumb 

says that severe multicollinearity obtains when the correlation between the explanatory 

variables exceeds 0.75. We can see that this is the case for some variables in both monthly 

and daily frequencies. Luckily, we can still obtain correct estimates in spite of the presence of 

multicollinearity, however the consequence is inflated standard errors, which can lead to the 

acceptance of the ―zero null hypothesis‖ (i.e. the true population coefficient is zero) due to 

wider confidence intervals
22

. In fact, Panel B shows that running the multiple regressions 

leads to insignificant coefficients in almost every case. We have computed for each multiple 

regression the variance-inflating factor (VIF), which measures the speed with which variances 

and covariances increase, as seen below: 



VIF 
1

1 ij
2 

   

 

where 



ij
2  is the coefficient of correlation between Xi and Xj. VIF shows that the variance of 

an estimator is inflated by the presence of multicollinearity. A VIF value of more than 2 

represents severe multicollinearity, and a VIF value of more than 10 represents destructive 

multicollinearity. Panel B shows that the only regression without severe multicollinearity 

includes downside beta as the second risk variable, which means that we can trust the 

significance of the coefficients. In this case only the standard deviation is significant, which 

makes this regression less interesting. The remaining regressions have either severe or 

destructive multicollinearity, which means that we cannot be sure of whether the coefficients 

(relationships) are significant or not. Panel C shows the multiple regression results where we 

                                                 
22

 Gujarati (2003) 
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include the CAPM beta together with a downside risk measure. It can be seen that in almost 

every case, the beta is insignificant while the downside risk measure is significant. As we 

noted earlier, the beta measures only the systematic risk while the other variables measure the 

total risk, which makes the beta’s contribution to the model relative to the other risk variable 

insignificant. Intuitively, there is no sign of multicollinearity in Panel C (except for when we 

use the CAPM beta with the downside beta) as opposed to Panel B. Finally, our model 

becomes overall insignificant when including beta with CDaR and CVaR respectively. 
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Table 4-4: Results from regression analysis on daily data (significance based on White’s heteroskedasticity-consistent standard errors) 
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Table 4-4 shows our regression results based on daily return data. Panel A shows that beta 

and downside beta are insignificant like before but that GLS now also becomes insignificant. 

Panel B shows more or less the same trend as with monthly data, only here the GLS is 

significant together with the standard deviation but has the wrong sign. Finally, Panel C 

shows that all the downside risk variables but the GLS are significant and have the expected 

sign. For SAS output, see Appendix CD 2.2. 

 

The reason why it is interesting to compare the results of monthly data with that of daily data 

is twofold. First, we have many more observations when using daily data. This means that we 

expect a measure such as MaxDD to have a lower explanatory power than before since it is 

based on merely two observations out of the whole sample. This also seems to be the case as 

the R
2
 value has dropped from 24% to 10% and the relationship is now less significant than 

previously. Overall, we would expect the downside risk measures in general to perform better 

than before since daily return data exhibits a greater deviation from normality than monthly 

return data. Strangely, we see the opposite tendency with more insignificant coefficients and 

generally lower R
2
 values. 

 

4.3 Statistical Significance: Bear vs. Bull Markets 
Our equity data spans 30 years back and thus includes several economic up- and downturns, 

which is reflected in the return development in figure 4-1.  

 

           Figure 4-1: Average Return Index 
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Thus, it is interesting to analyze the performance of our risk measures in up (bull) markets 

compared to down (bear) markets. In this section, we consider two subsamples of our data, 

one bull market (1996 – 2000) and one bear market (2000 – 2003), and re-assess the 

significance and explanatory power of each of our risk variables. In theory, the downside risk 

frameworks make more sense the more skewed the distributions of returns are, and it is fair to 

assume that bear/bull markets exhibit more skewness than the full sample. Therefore, we 

expect the downside risk variables to outperform in terms of explaining the fluctuations in 

equity returns.  

 

Table 4-5 summarizes those regression results from equation (29) that are significant
23

. First 

of all, note that we have reduced our sample substantially in terms of observations, which is 

why we include the coefficients that are significant at the 10% level. Again, we use both daily 

and monthly frequencies in the analysis. It is clear that, despite the majority of our regressions 

being insignificant, the downside risk variables dominate the picture. Although we are testing 

seven downside measures versus two traditional measures, it should be noted that the 

MaxDD, the AvgDD and the CDaR are very similar metrics and thus are highly inter-

correlated. Surprisingly, with daily observations the CAPM beta has a significant relationship 

with the mean return of the bear market. However, it has a negative coefficient and only 

explains about 7% of the variation in returns. The negative coefficient on beta can be 

explained by the following reasoning. We are using equity return data from a bear market, 

which implies that the market in general has declined. Since the CAPM beta measures the 

volatility associated with aggregate market returns, we must have that 



i
  RM   Ri

i
  RM   Ri

 

 

                                                 
23

 For SAS output, see Appendix CD 2.3 

Table 4-5: Results from regression analysis on monthly data (significance based on White’s heteroskedasticity-consistent 

standard errors) 
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where 



 i
 and 



 i
  denote a positive and negative CAPM beta of stock i respectively, and RM 

and Ri represent the market return and stock return respectively. Thus, a positive (negative) 

beta implies that a given stock goes up (down) when the market goes up. In order for the 

above relationship to hold, we must have a negative coefficient on beta, since we know that 

RM declines in a bear market. This means that the model 



Ri  0  1i
CAPM  ui  

 

should yield a negative value for 



1. These results should, however, be treated with caution 

since beta only reflects the systematic volatility and it is therefore curious that the coefficient 

is significant at all. 

  

Proceeding with the other variables, we see that CVaR is borderline significant at the 10% 

level with daily bull market observations. With monthly data, the bull market mean return is 

significantly correlated with the three drawdown measures, where the AvgDD has the highest 

explanatory power. Finally, it can be seen that the CVaR explains the monthly bear market 

returns the most (R
2
 = 12.34%) and is significant at the 5% level. However, we did not expect 

it to have a negative sign. 

 

4.4 Economic Significance: Return Spreads 
In order to check for the robustness of the results discussed in the previous section, we divide 

all equities into three equally weighted portfolios ranked by the different risk measures; the 

top third riskiest equities (P1) and the bottom third least risky equities (P3). This process is 

repeated for all of our risk measures. Finally, we calculate the spread in mean returns between 

P1 and P3. The results are summarized in table 4-6 below.  
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Table 4-6: Spreads in Monthly and Daily Mean Returns 

 

 

Panel A shows the spreads in mean monthly returns between the riskiest and the least risky 

portfolios. It can be seen that this spread is highest when constructing portfolios ranked by 

MaxDD (0.46%) and lowest when ranked by the downside beta. This is in accordance with 

the previous results from our regression analysis where the downside beta failed to 

significantly explain the monthly mean returns while the MaxDD was the dominant risk 

variable.  

Panel B shows the spreads in mean daily returns between the different portfolios. The results 

show that the AvgDD portfolios exhibit the highest spread in mean returns (0.02%). Again, 

this difference stems from fewer observations in monthly data together with the fact that 

MaxDD only incorporates two values while AvgDD is based on the whole sample. 

Interestingly, when ranking the portfolios by the CAPM beta, we get that the riskiest portfolio 

yields a lower return than the least risky portfolio while its risk is more than 2.5 times higher. 

This supports our hypothesis that the CAPM beta is inadequate as a tool for investment 

decisions.  

 

4.5 Summary 
In this chapter, we have attempted to clarify how the different risk measures explain the cross-

section of equity returns. As a starting point, we computed a correlation matrix for monthly 

and daily data. With monthly data, the maximum drawdown appeared to have the highest 

correlation with returns, namely 49%. With daily data, CVaR was the dominant risk measure 

with a correlation with returns of 50%.  

  GLS  
D MaxDD AvgDD CDaR CVaR

P1 0.050% 0.050% 0.053% 0.066% 0.066% 0.052% 0.047% 0.047% 0.049%

P2 0.067% 0.069% 0.065% 0.057% 0.060% 0.067% 0.065% 0.064% 0.064%

P3 0.066% 0.065% 0.066% 0.060% 0.063% 0.066% 0.072% 0.072% 0.069%

Spread 0.016% 0.015% 0.013% -0.005% -0.003% 0.014% 0.025% 0.025% 0.020%

  GLS  
D MaxDD AvgDD CDaR CVaR

P1 1.10% 1.01% 1.03% 1.35% 1.26% 1.04% 1.00% 1.08% 1.05%

P2 1.34% 1.40% 1.47% 1.14% 1.20% 1.32% 1.36% 1.29% 1.41%

P3 1.38% 1.40% 1.34% 1.43% 1.37% 1.50% 1.46% 1.50% 1.36%

Spread 0.28% 0.38% 0.31% 0.08% 0.11% 0.46% 0.46% 0.42% 0.31%

Panel B: Monthly

Panel A: Daily
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We started the analysis by regressing the individual risk variables on the cross-sectional 

returns and found that the maximum drawdown and CVaR had the highest explanatory power 

when using monthly and daily data respectively. This supported the initial observation that 

these were the most correlated with the mean return. Subsequently, we ran multiple 

regressions in order to test the significance and explanatory power of the downside risk 

measures while being regressed together with the traditional risk measures. While we did not 

get much information from regressing the CAPM beta, we found that all our downside risk 

measures were insignificant when regressed together with the standard deviation (with 

monthly data). Using daily data, we saw that our model became significant when including 

the standard deviation and GLS. This regression also yielded the highest explanatory power of 

all, namely 36%, without the presence of harmful multicollinearity. When looking at bear and 

bull markets separately, we regressed the individual risk measures independently. We found 

that some of our risk variables were insignificant in both monthly and daily data. The most 

significant variable was CVaR, which also had the highest explanatory power, though with a 

negative sign.  

 

Finally, we checked the robustness of our results by forming portfolios ranked by their risk 

and taking the spreads in mean returns between the riskiest and the least risky portfolio. With 

monthly data, we found that the maximum drawdown was dominant, which was in 

accordance with the previous results. However when using daily data, the absolute spread was 

greatest between the portfolios ranked by the average drawdown. While the AvgDD 

performed well throughout our analysis, we had expected the CVaR to outperform AvgDD.  

Overall, our results were fairly robust. Throughout the entire analysis, the MaxDD seemed to 

explain the cross-sectional returns the best when using monthly data. When we used daily 

data, the two prevailing risk measures were the CVaR and the average drawdown. In order to 

get an overview, we have ranked the different risk measures in table table 4-7. 
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Table 4-7: Ranking of Risk Measures 

 

 

As we can see, the CDaR is one of the dominant variables in explaining variations in cross-

sectional returns when looking at both monthly and daily data. MaxDD seems to explain 

monthly returns relatively well, but fails with daily returns. This could be explained by the 

fact that MaxDD only considers two observations and we have significantly more 

observations with daily data. The most dominant risk variable for daily data turned out to be 

CVaR closely followed by CDaR. However, CVaR had the worst performance for monthly 

data but since our further analysis will be based on daily returns, we expect CVaR to do fairly 

well. Variance and semivariance performed average in both daily and monthly return data 

relative to the other risk measures.   

The overall analysis suggests that downside risk measures could in fact be a relevant 

alternative to variance.  

 

Regression Analysis Return Spreads Total Regression Analysis Return Spread Total

MaxDD 1 1 2 CVaR 1 3 4

CDaR 2 3 5 CDaR 4 2 6

AvgDD 5 2 7 AvgDD 5 1 6

 4 4 8  2 4 6

 3 7 10  3 6 9

GLS 6 6 12 MaxDD 6 5 11

CVaR 7 5 12 GLS 7 7 14

Monthly Daily
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5 Chapter V: Analysis part II 
In this chapter, we will look at the portfolio optimization problem and analyze the dynamics 

between (downside) risk and performance across market conditions. Throughout the analysis 

we assume a highly risk-averse investor and therefore focus on the minimum risk portfolios, 

which are optimal for such an investor. In order to make the analysis tractable, we reduce the 

asset universe to seven securities. Since we are dealing with a European investor, we assume 

that she has knowledge about the European market and we therefore include individual 

European equities and indices for foreign markets. We begin the analysis by demonstrating 

how to derive the minimum risk portfolio for each risk measure and depict its position on the 

respective efficient frontier. Since each portfolio is constructed by minimizing different 

measures of risk, we cannot directly compare them by means of risk-adjusted returns. To 

overcome this problem, we will rebalance the minimum risk portfolios on a yearly basis and 

compare the terminal value of each portfolio after 17 years. Another useful feature about 

rebalancing is that we can better analyze the dynamics when the market goes up and when it 

goes down. Finally, we will illustrate how uncertainty in the input parameters (means and 

risk) affects the optimal weights and performance of the portfolios. This will provide a 

general idea of the sensitivity of the different optimization processes towards the input 

parameters. 

 

5.1 Efficient Frontiers and Minimum Risk Portfolios 
The purpose of this section is to illustrate how the frontiers and minimum risk portfolios from 

each theoretical framework can be derived. The method applied throughout this process is 

linear programming.  

 

5.1.1 The Mean-Variance Framework 

We follow the procedure presented in section 2.2.1 in order to find the minimum variance 

portfolio based on our seven securities. As we saw, it is possible to define the covariance 

matrix from our securities, which makes it straightforward to find this portfolio applying 

matrix calculus. Below we have presented the individual mean returns and the covariance 

matrix of our securities. 
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

 

Novo Nordisk

RBS

AXA

Deutsche Bank

Dow Jones

Nikkei225

Bonds































0,0861%

0,0604%

0,0569%

0,0433%

0,0092%

0,0384%

0,0237%





























 

 



S 

0,0312% 0,0077% 0,0095% 0,0080% 0,0016% 0,0038%  0,0001%

0,0077% 0,0929% 0,0361% 0,0325% 0,0060% 0,0118%  0,0007%

0,0095% 0,0361% 0,0629% 0,0345% 0,0066% 0,0128%  0,0012%

0,0080% 0,0325% 0,0345% 0,0514% 0,0053% 0,0135%  0,0011%

0,0016% 0,0060% 0,0066% 0,0053% 0,0260% 0,0032% 0,0015%

0,0038% 0,0118% 0,0128% 0,0135% 0,0032% 0,0181% 0,0012%

0,0001%  0,0007%  0,0012%  0,0011% 0,0015% 0,0012% 0,0014%





























 

 

We then define the portfolio variance as: 



P
2 TS            (31) 

 

where  is a vector of weights or fractions to be invested in the different securities. We find 

these weights by minimizing the portfolio variance, thus obtaining the minimum variance 

portfolio. This portfolio has the following properties: 

 

Table 5-1: Minimum Variance Resutls 

 

 

 

As can be seen, almost the entire investment should be placed in bonds (96%) in order to 

minimize the variance. This makes sense since bonds exhibit the lowest volatility (0.0014%) 

of all the securities, and we did not define any constraint on the magnitude of our portfolio 

Novo Nordisk RBS AXA Deutshe Bank Dow Jones Nikkei 225 Bonds

MR 0.086% 0.061% 0.059% 0.044% 0.009% 0.039% 0.023%

Weights 3.992% 0.468% 2.313% 3.559% -2.401% -4.300% 96.370%

MR Variance SD RAR

Min MV 0.028% 0.0012% 0.349% 7.877%
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return
24

. Furthermore, the fractions to be invested in Dow Jones and Nikkei225 are -2.40% 

and -4.30% respectively, which means that we should take a short position on these indices. 

Finally, if we want some action in our portfolio, RBS seems to be the right stock with an 

expected 3% change in value per day. However since we are minimizing the volatility, it is 

reasonable that only 0.47% should be invested in RBS.  

 

Now that we have determined the minimum variance portfolio, we can compute the efficient 

frontier in the mean-variance framework. We do this by means of linear programming where 

we solve for minimum variances given different levels of portfolio return, thus identifying 

several sets of weights that all compose efficient portfolios.  

 

         Figure 5-1: MV Frontier and Minimum Variance Portfolio 

 

 

Figure 5-1 illustrates the mean-variance frontier of investing in our seven securities. Note that 

the efficient frontier does not include the portfolios below the minimum variance portfolio, as 

these are clearly inferior. As we increase the return constraint, the weights gradually shift 

from bonds to Novo Nordisk since bonds yield the lowest return while Novo Nordisk yields 

the highest. Additionally, the two stock indices behave rather differently. While Nikkei 225 

obtains a positive weight after a certain level, the weight on Dow Jones keeps decreasing (in 

fact, the only time we would take a long position in Dow Jones is when the required return is 

less than that of the minimum variance portfolio). The weights and properties of the computed 

portfolios can be found in appendix CD 3.1.  

                                                 
24

 Note that equation (31) does not include the return vector. The portfolio variance is independent of the 

individual returns. 
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5.1.2 The Mean-Semivariance Framework 

In section 2.2.2.4 we saw that the semicovariance matrix as defined by Hogan and Warren 

(1972) suffered from endogeneity and was asymmetric, i.e. 



ij   ji . This problem was 

overcome by applying Estrada (2002, 2007)’s definition of the semicovariance, which leads to 

a symmetric, exogenous semicovariance matrix. Therefore, we can apply a heuristic approach 

to the mean-semivariance optimization problem that follows the exact same procedure we 

used in the mean-variance framework
25

. By using equation (21), we compute the 

semicovariance matrix below: 

 



 

0,0153% 0,0085% 0,0085% 0,0078% 0,0042% 0,0043% 0,0009%

0,0085% 0,0488% 0,0205% 0,0198% 0,0083% 0,0092% 0,0015%

0,0085% 0,0205% 0,0291% 0,0185% 0,0078% 0,0087% 0,0012%

0,0078% 0,0198% 0,0185% 0,0246% 0,0070% 0,0087% 0,0011%

0,0042% 0,0083% 0,0078% 0,0070% 0,0129% 0,0042% 0,0013%

0,0043% 0,0092% 0,0087% 0,0087% 0,0042% 0,0093% 0,0012%

0,0009% 0,0015% 0,0012% 0,0011% 0,0013% 0,0012% 0,0007%





























 

 

Now we can apply the equivalent to equation (31) to find the portfolio semivariance in order 

to find the weights that minimize it. 



P
2 T  

 

Thus, the result of the minimum semivariance portfolio can be seen in table 5-2: 

 

Table 5-2: Minimum Semivariance Portfolio Results 

 

 

   

As the results imply, minimizing semivariance yields a similar overall allocation as when 

minimizing variance. However, the individual weights are more emphasized than before, with 

                                                 
25

 Estrada (2008) 

Novo Nordisk RBS AXA Deutshe Bank Dow Jones Nikkei 225 Bonds

MR 0.086% 0.061% 0.059% 0.044% 0.009% 0.039% 0.023%

Weights 0.376% -1.049% 0.018% 2.058% -5.098% -6.047% 109.744%

MR ∑
2

∑ RAR

Min MSV 0.024% 0.001% 0.249% 9.531%
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a larger portion being invested in bonds while less is invested in equities. This could be an 

indication of some downside risk (perhaps in the form of skewness or fat tails) that was not 

captured in the mean-variance framework. Since we are using the respective securities’ mean 

returns as our target rates of return, it could mean that the lower partial moments of the 

equities are greater than their higher moments. We are now investing more than 100% in 

bonds, which could indicate that they are exhibiting a positive volatility. If normality 

obtained, we would have that 



2 
1

2
 2. It can be calculated that the bonds exhibit a lower 

semivariance than half their variance
26

, which means that a semivariance minimizing investor 

would in fact allocate a higher part of their investment to bonds. The weights on Novo 

Nordisk, AXA and Deutsche Bank are lower than before, and we are now taking a short 

position in RBS
27

. In addition, our short positions in the two indices are also of greater value 

than before.  

 

The next step is to compute the mean semivariance frontier. As before, we construct 

minimum semivariance portfolios for a range of pre-specified rates of return. 

 

       Figure 5-2: MSV Frontier and Minimum Semivariance Portfolio 

 

 

Figure 5-2 shows the portfolios of our seven securities that lie on the frontier (see Appendix 

CD 3.2 for details and calculations). Again, only those above the minimum semivariance 

portfolio are efficient. As we increase the return constraint, we get a similar trend in the 

                                                 
26

 



0.0014107% 2 0.0007053%  0.0006841% 
27

 RBS exhibits a higher semivariance than half its variance. 
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portfolio weights as in the mean-variance framework with the weight in bonds shifting toward 

Novo Nordisk. However, the speed in which the weights change varies a lot. In this 

framework, the weight on bonds falls at a slower rate than before while the weight on Novo 

Nordisk rises faster than before. Most remarkable is that the proportion invested in AXA 

increases more than twice as fast as before (from -0.69% to 7.73% as opposed to from 1.21% 

to 7.85% over the same range of returns). However, the overall picture suggests that the two 

frameworks are somewhat similar to each other. This was expected since the two risk 

measures are highly correlated, as we saw in chapter 4. 

 

5.1.3 The Mean-GLS Framework  

The gain-loss spread is an ad hoc risk measure that was introduced by Estrada (2009) in an 

effort to explain the cross sectional returns across equities, countries and industries. Thus, it 

has not yet been applied to portfolio optimization problems and there is no formal framework 

to date. It is not as straightforward to compute a co-GLS matrix in order to calculate the 

portfolio GLS as we saw with the mean-variance and -semivariance frameworks in the 

previous sections. Therefore, we choose to address this heuristically by applying linear 

programming tools in order to determine the minimum GLS portfolio.  

 



minGLSP 
1

M
GP ,t

t1

M

 
1

N
LP,t

t1

N



s.t.  1

 

 

where GP and LP depend on the weight vector, .  

Thus, the results of the minimum semivariance portfolio can be seen in table 5-3: 

 

Table 5-3: Minimum GLS Portfolio Results 

 

 

 

Like in the other frameworks, the minimum GLS portfolio suggests that almost the entire 

investment should be allocated to bonds. Again, it suggests going short on the two indices and 

Novo Nordisk RBS AXA Deutshe Bank Dow Jones Nikkei 225 Bonds

MR 0.086% 0.061% 0.059% 0.044% 0.009% 0.039% 0.023%

Weights 2.824% 0.308% 1.480% 3.802% -1.986% -5.242% 98.814%

MR GLS RAR

Min GLS 0.000263 0.00261 0.100705



Portfolio Optimization in a Downside Risk Framework 2010 
 

 92 

placing the lowest weight on RBS. As we saw in chapter 4, GLS is almost perfectly correlated 

with the standard deviation and therefore we expect similar results, which seems to be the 

case. This implies that the GLS can in fact be applied as a tool in asset allocation decisions. 

 

We compute the mean-GLS frontier in the exact same manner as in the previous sections. 

 

          Figure 5-3: MGLS Frontier and Minimum GLS Portfolio 

 

 

Figure 5-3 shows the mean-GLS frontier for our seven securities. As we increase the return 

constrain, the weights behave in the same manner as in the other cases. For details and 

calculations, see Appendix CD 3.3. 

 

5.1.4 The Mean-CVaR Framework 

In the following we will calculate and illustrate the minimum CVaR portfolio and efficient 

frontier. As mentioned before, we are using 4 stocks, 2 indices and one global government 

bond. Since the bond is the least risky asset, it is expected that the minimum CVaR portfolio 

will consist mostly of bonds.  

In section 2.2.3 we examined CVaR and the theory on how to calculate the minimum CVaR 

portfolio. As mentioned in the theory, the minimum CVaR portfolio can be obtained using 

linear programming: 
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Minimizing CVaR also provides us with the corresponding VaR. It should be noted that VaR 

calculated using this procedure is not the minimum VaR, though in most cases it is not far 

from it.  

 

Table 5-4: Minimum CVaR Portfolio Results 

 

 

 

The solution is given in table 5-4 where we see that the bonds again have received the highest 

weight in the minimum CVaR portfolio, namely 99.9% (see Appendix CD 3.4 for detailed 

calculations). Again, we take a short position in Dow Jones and Nikkei 225 with -2.09% and -

6.79% respectively. The minimum CVaR portfolio yields a CVaR of 0.742% and a 

corresponding VaR of 0.527%. CVaR is always larger than VaR since it also considers losses 

exceeding VaR. The gap between the two depends on how far we move into the tail of the 

distribution and since we are looking at a 95% confidence level, this gap is relatively small. 

We could also have performed this exercise with a different confidence level but since we are 

using daily observations since 1993, there is enough data to set a 95% confidence level.  

 

             Figure 5-4: MCVaR Frontier and Minimum CVaR Portfolio 

 

 

Novo Nordisk RBS AXA Deutshe Bank Dow Jones Nikkei 225 Bonds

MR 0.086% 0.061% 0.059% 0.044% 0.009% 0.039% 0.023%

Weights 2.383% 0.464% 2.556% 3.617% -2.093% -6.787% 99.861%

MR VaR CVaR RAR

Min CDaR 0.026% 0.527% 0.742% 3.527%
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Figure 5-4 illustrates the mean-CVaR frontier including the minimum CVaR portfolio. Again, 

note that only the portfolios above the minimum CVaR are the efficient portfolios.  

Again, the weights shift from bonds to stocks, as we require higher return. It is specifically 

Novo Nordisk that becomes a favorable stock, which also was the highest ranked security 

when looking at the return/CVaR ratio (see section 3.3.1).  

 

Linear programming tends to produce portfolios that are concentrated in a few holdings, 

which we also observe in our example. However, the computational ease and theoretical 

superiority of CVaR as a risk measure still makes it an interesting and important alternative to 

the traditional mean-variance approach.  

 

5.1.5 The Mean-Drawdown Framework 

In the following, we will calculate the minimum risk portfolio and efficient frontier for the 

three different drawdowns: conditional, average and maximum drawdown. Since the three 

drawdown measures stem from the same theoretical framework, the approach will be very 

similar.  

The conditional drawdown-at-risk (CDaR) is very similar to CVaR while the average and 

maximum drawdowns are special cases of CDaR.  

 

 

For CDaR we define  as a 95% confidence level like we did with CVaR. By setting  to 

zero, we get the average drawdown, and  = 1 generates the maximum drawdown. This way 

we can easily calculate the minimum risk portfolio for all three risk measures by minimizing 

the above equation for  = 0.95, 1 and 0.  can be considered as VaR for the portfolio’s 

drawdown function that will be equal to zero for the average drawdown, and equal to the 

maximum drawdown when  is set to 1. This is also in line with the previous explanation of 

the gap between VaR and CVaR ( and CDaR), which stated that the gap is smaller the more 

we move into the tail of the distribution (and the gap is zero at the end of the tail distribution).  

 

Table 5-5 show the security weights for the minimum CDaR, AvgDD and MaxDD portfolios 

respectively. For all three risk measures, we see that bonds again are the most dominating 

security in the portfolio. However, the weights in bonds are less extreme than in the other 
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frameworks, which results in a higher mean return for the minimum risk portfolio. The most 

notable difference among the three portfolios is that the maximum drawdown has a much 

higher weight in bonds than the other two. This makes sense since bonds have less extreme 

fluctuations than equities. For all drawdowns, Deutsche Bank is the dominant stock although 

it has a low ranking for all three risk measures.  

Overall, CDaR and AvgDD yield the most similar weights while MaxDD shorts additional 

securities. Even though the three risk measures are generated from the same idea and can be 

calculated from the same equation by changing , it is important to remember that they still 

represent very different risk measures.  

 

Table 5-5: Minimum Drawdown Portfolio Results 

 

  

 

The mean returns are at around the same level for CDaR and AvgDD, namely 0.028%, and 

somewhat higher for MaxDD at approximately 0.03%.  

Figure 5-5 shows the frontiers for all three risk measures (for calculations on CDaR, MaxDD 

and AvgDD, see Appendix CD 3.5, Appendix CD 3.6, and Appendix CD 3.7 respectively). 

Novo Nordisk RBS AXA Deutshe Bank Dow Jones Nikkei 225 Bonds

Mean Vector 0.086% 0.061% 0.059% 0.044% 0.009% 0.039% 0.023%

Min CDaR 7.309% 1.913% -9.067% 9.744% 5.968% 10.349% 73.783%

Min MaxDD 7.036% -0.816% -0.766% 7.985% -3.430% 2.211% 87.780%

Min AvgDD 8.278% 2.818% -10.302% 10.151% 8.478% 7.997% 72.579%

MR  CDaR RAR

Min CDaR 0.028% 2.502% 2.850% 0.993%

Min MaxDD 0.030% 3.949% 3.949% 0.753%

Min AvgDD 0.028% 0.000% 1.741% 1.618%
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Figure 5-5: Drawdown Frontiers and Minimum Drawdown Portfolios 
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5.2 Rebalancing Portfolios 
In this section, we will try to determine which of the seven risk measures performs best 

empirically. We have chosen to continue using the same securities and data as in the previous 

section in order to keep it simple for the reader.  

In order to compare the performance of the different risk measures, we cannot simply use a 

universal performance ratio as the different performance ratios are biased towards specific 

risk measures. The main challenge is that the risk variables measure risk differently, which 

makes it difficult to compare them using a single performance measure. Most performance 

measures are developed based on a specific risk measure or risk profile, which obviously 

makes the performance measures favorable to that specific risk measure. For example, the 

Sharpe ratio favors the standard deviation while the Sortino ratio favors the semideviation. 

Moreover, risk adjusted returns are not comparable in size either. An example is the 

maximum drawdown measure, which has a much greater value than, say, the standard or 

semideviation. In the preceding analysis, we had a risk adjusted return of 9.53% based on the 

minimum semivariance portfolio while the minimum MaxDD portfolio had 0.75% in risk 

adjusted return. This is due to the size of the maximum drawdown, which is not comparable 

to that of semideviation, and thus the denominator is larger in the performance measure. The 

above results imply that the minimum semivariance portfolio is substantially superior, which 

may not necessarily be the case.  

Since we have not been able to find an unbiased performance measure, we have chosen to 

investigate the empirical performance in a different way. Our idea is to look at the seven risk 

measures as different investment strategies and then use these strategies to rebalance a 

portfolio every year in the period 1993-2010. By considering seven highly risk averse 

investors (representing each risk measure) with an initial wealth of €100 each and who wish 

to minimize risk, we will be able to compare the investors’ terminal wealth and thereby 

determine the performance of the seven risk measures. We consider this method completely 

unbiased since it does not consider any specific risk behavior (other than minimizing risk, 

which is done for all seven risk measures) or other factors that could favor a specific risk 

measure.  

On the other hand, the conclusion from this method relies heavily on the underlying data. This 

means, that the result could change if we had used a different set of securities or a different 

time period, which is also an issue when testing the traditional mean-variance framework. 
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However, taking these drawbacks into account, we still believe that this is the best method to 

test and compare the performance across risk measures.  

In the previous section, we demonstrated how the minimum risk portfolio is calculated for the 

seven risk measures. We use the exact same method to find the minimum risk portfolio when 

rebalancing, but instead of using the data for the entire period, we use the daily returns to 

rebalance the portfolio on a yearly basis. Having daily returns from 1993-2010 will then result 

in 17 rebalancings for each risk measure. For detailed calculations, see Appendix CD 3.8.  

Figure 5-6 shows the average allocation over the 17 years for all seven risk measures. 

 

      Figure 5-6: Average Allocation Over the Rebalancing Period 

 

 

Since we are using the minimum risk portfolio, all risk frameworks have about 90% 

represented in bonds. However, there seems to be differences in the allocation of stocks. 

Semivariance and conditional value-at-risk are the two risk strategies that have the highest 

short positions, whereas the three drawdowns have the lowest.  

 

Table 5-6 shows the results of this exercise. The terminal value (the investors capital in 2010, 

when invested €100 in 1993), the average return and the average risk are reported. 

 

Table 5-6: Rebalancing Results 
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  GLS CVaR CDaR AvgDD MaxDD

Terminal value 258.31 232.81 251.78 281.53 292.24 271.34 276.80

Average return 0.0225% 0.0201% 0.0219% 0.0247% 0.0254% 0.0236% 0.0241%

Average risk 0.3183% 0.2391% 0.2376% 0.6021% 1.4385% 0.6772% 1.6224%

RAR 7.07% 8.43% 9.20% 4.09% 1.77% 3.49% 1.49%
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Looking at the terminal value, we end up with the following performance ranking of the 

investment strategies: 

1. Conditional Drawdown-at-risk 

2. Conditional Value-at-Risk 

3. Maximum Drawdown 

4. Average Drawdown 

5. Variance 

6. Gain-Loss-Spread 

7. Semivariance 

The biggest surprise with this ranking is semivariance, which we expected to perform better 

since it had a decent correlation and high significance with returns as demonstrated in chapter 

4. Furthermore, we expected semivariance to perform better than variance because of the non-

normality issue, which is a clear strength for semivariance and a weakness for variance. 

Conditional drawdown-at-risk came out as the strongest strategy in this exercise, which is not 

surprising since it also was the best to explain returns. The same argument goes for 

Conditional Value-at-Risk and Maximum drawdown, since they both explained cross 

sectional returns better than variance. Although CVaR and CDaR are very similar risk 

measures, they still have their differences. CDaR is a forward looking risk measure in the 

sense that drawdowns are defined as the difference between the highest return point in the 

past and the current return value. In other words, it does not consider a significant loss in the 

past unless it followed a higher return. To exemplify, consider a hypothetical security with a 

positive linear return development. In this case, there will be no drawdowns and the CDaR 

strategy would consider this security risk free. On the other hand, the CVaR strategy would 

minimize the 5% worst outcomes, thus considering the security somewhat risky despite its 

positive development. Now, consider a second hypothetical security with a similar positive 

linear development, but with higher returns. CDaR would consider both securities equally 

risky (risk free), whereas CVaR would favor the second security. This is a theoretical 

disadvantage of the drawdown measures in general. The fact that CDaR does not always 

distinguish between different types of securities could indicate that the CDaR strategy, in our 

case, is exposed to higher risk (despite minimizing CDaR) and thereby obtain a higher return 

than CVaR.  

The gain-loss-spread which calculates the difference between average gains and average 

losses, is the closest one to variance. This outcome was also expected since GLS had a very 
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high correlation with variance and performed very similar to variance in our previous 

analysis.  

 

Figure 5-7: Index Return 

 

 

Figure 5-7 shows the development in accumulated returns for the different strategies (risk 

measures). It is clear that the development for the different risk strategies is very similar and 

since the figure shows the accumulated returns we see an increase in the spread. There is a 

somewhat steady increase in returns between 1995-2001, where after the returns stagnate until 

2008 with some drops in 2003-04 and 2007-08. The returns then again increase in the last 

couple of years.  

We expected the accumulated returns to be somewhat similar among the seven risk measures, 

but since it is clear that a spread does obtain over time, it could indicate that the seven 

strategies differ across bear and bull markets or market movements in general. 
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Figure 5-8: Average Daily Return 

 

 

Figure 5-8 shows the general movement of average daily returns over the period 1993-2010 

for all stocks, indices and bonds used in the portfolio allocation, where the red curve represent 

an average of all securities.  

 

In order to investigate the effect of market movements, we look at the average daily returns 

for the six risk measures relative to variance (            ). This will also allow us to make 

a better comparison between the risk measures over time. Figure 5-9 shows the average daily 

returns for the six risk measures relative to variance (for convenience, we have divided the 

graph into two).   

As figure 5-9 shows, the three drawdown measures have similar developments throughout the 

period. CDaR seems to outperform variance throughout most of the period. Moreover, it 

performs relatively well compared to MaxDD and AvgDD in the periods where variance 

outperforms the drawdown measures (e.g. 2001). Looking at the development of AvgDD, it 

seems to be the most volatile compared to variance – especially when variance outperforms 

the drawdowns – whereas MaxDD seems to follow variance the most. In general, there does 

not seem to be any pattern in terms of the drawdowns’ performance relative to variance and 

the underlying market movements. For example, the drawdowns outperform variance in 2006 

when the market does well but also in 2008 when the market is down. It is noteworthy that 

during market downturns, the drawdown measures perform either similarly or better than 

variance (e.g. 2008). For example, the CDaR strategy never underperforms the variance 
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strategy during market downturns. This is interesting because it suggests that drawdown 

measures capture the downside movements to a greater extent than the variance, and adjust 

the optimal weights accordingly.  

 

We previously discovered that there is a high correlation between variance and GLS, which is 

why it is not surprising that GLS performs very similar to variance. However, we also 

discovered high correlation between variance and semivariance, but semivariance has a fairly 

different movement in returns. Semivariance performs significantly better when the market is 

down. Throughout our time period we have two incidents with negative average daily return, 

2002-03 and 2008-09. In both cases, semivariance manages to outperform all risk measures. 

This is line with our prior expectations that semivariance performs well during bear markets, 

since it only considers the lower partial moment of return distributions. On the other hand, 

semivariance performs very poorly when the market is up and since the general movement in 

the market between 1993-2010 has been positive, semivariance fails to outperform the other 

risk strategies. 

CVaR generally outperforms variance when the market does well and only underperforms in 

seven out of 17 years. The overall development in CVaR is somewhat similar to variance, but 

it is important to remember that CVaR in the end yields the second highest terminal value.  

 

Figure 5-9: Average Daily Return Relative To Variance (Two Figures) 
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Throughout this analysis we have found that CDaR and CVaR are the two best performing 

risk measures and, surprisingly, that semivariance is the worst. It was also clear that the 

performance of the different risk measures depends on the market movement. During bear 

markets, the downside risk measures generally outperform variance with semivariance at the 

top. In our analysis we used the time period 1993-2010, which mostly consist of bull market. 

This mean that another time period could change the ranking of the seven risk measures. 

 

5.3 Rebalancing Portfolios Without Bonds 
It is obvious that minimizing risk will result in a portfolio highly concentrated in bonds, 

regardless of risk measure. In the previous section we saw that the minimum risk portfolios 

for all risk measures were above 80% in bonds in most cases. This raises the question of 

whether the conclusion would change if we exclude bonds. In the following section we will 

look at the effect and changes of yearly rebalancing using only equities. For detailed 

calculations, see Appendix CD 3.9). 
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Figure 5-10: Allocation Without Bonds 

 

 

Figure 5-10 shows the resulting allocation across our equities. Excluding bonds results in a 

higher risk portfolio, where we in our case, see high concentration in Dow Jones, Nikkei 224 

and Novo Nordisk for all risk measures. The only two risk strategies taking short position are 

semivariance and maximum drawdown, although they are not very significant.  

 

Table 5-7: Rebalancing Results Without Bonds 

 

 

Naturally, excluding bonds will result in higher risk, return and volatility over the rebalancing 

period. Table 5-7 shows the terminal value, average return and risk. It is clear that the 

terminal value is much higher for all risk measures compared to the previous rebalancing.   

It is interesting to look at the ranking of terminal value in order to see the change in 

performance of the different risk measures when only considering equities.  

1. Conditional Value-at-Risk 

2. Gain Loss Spread 

3. Conditional Drawdown-at-Risk 

4. Variance 

5. Semivariance 
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  GLS CVaR CDaR AvgDD MaxDD

Terminal value 497.373625 488.989399 527.030129 566.852115 501.753946 423.141058 459.866243

Average return 0.045% 0.045% 0.046% 0.048% 0.046% 0.044% 0.044%

Average risk 0.916% 0.743% 0.667% 1.783% 3.947% 1.892% 4.720%

RAR 4.904% 6.036% 6.888% 2.685% 1.162% 2.312% 0.943%
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6. Maximum Drawdown 

7. Average Drawdown 

The most notable change is GLS, which is now the second best performing risk measure. 

Furthermore, the average and maximum drawdown strategies are the two worst performing, 

which is curious because of their good performance in the previous analysis. While these 

changes may seem somewhat random, we see a pattern in remaining strategies. CVaR and 

CDaR are still in the top three with CVaR being the best performing risk strategy. 

   

Since GLS is calculated as the spread between expected gains and expected losses, 

minimizing GLS could in theory mean minimizing expected gains, expected losses or both. In 

this case, the minimum GLS portfolio exhibits high return, which could indicate that the 

spread has been minimized mainly on the domain of losses. However when we included 

bonds, GLS turned out to be the second worst performing risk strategy. This makes it hard to 

determine whether GLS is minimizing expected gains, losses or both under different 

conditions.  

Figure 5-11 shows the movement in accumulated return for all risk measures. It is clear that 

the movement in return is much more volatile than with bonds. However, the overall pattern 

in the movement is the same for all risk measures, although the gap between accumulated 

return is increasing over time.  

 

Figure 5-11: Index Return Without Bonds 
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Since the movement is very similar for all seven risk measures, it is really hard to distinguish 

between the differences. In order to do so, we look at the development of the downside risk 

measures compared to variance, as we did the previous section. This relationship can be seen 

in figure 5-12 where we have split the graph into two, in order to make it clearer. Again, the 

first graph shows all three drawdown risk measures compared to variance whereas the second 

graph shows the remaining three risk measures. Most of the risk measures perform very 

similar to their performance with bonds, just with higher volatility. However, there are some 

deviations that are worth noticing. First of all, CDaR is the drawdown measure that resembles 

the development of variance the most as opposed to the previous case where it was MaxDD. 

We have seen that the average drawdown strategy is very sensitive to market movements, 

which is seen to an even greater extent when excluding bonds. During market downturns, the 

minimum AvgDD portfolio performs very poorly compared to the other risk strategies. For 

example we see that in 2001, it performs 17% worse than the minimum variance portfolio, 

which very well could be the reason for the lowest terminal value. 

CVaR seems to outperform the remaining risk strategies when the market becomes more 

volatile. Compared to variance, we see clear superiority, as its underperformance is borderline 

while its outperformance is substantial.  

The surprising development in GLS can be attributed to the higher volatility in the market. As 

opposed to before, its performance over time is significantly different from that of variance. 

This is curious because of the high correlation between GLS and standard deviation. GLS 

measures risk in more or less the same way as standard deviation, only without the 

assumption of normality. The larger difference in the allocation weights could be rooted in 

potentially higher skewness or fatter tails of the return distribution.  
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Figure 5-12: Average Return Relative To Variance, Without Bonds 
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optimizers often construct inefficient portfolios based on inadequate inputs. This uncertainty 

may result from uncharacteristically high or low recent returns of the underlying securities, 

which then results in much higher or lower allocations. Thus, small changes in the 

optimization inputs often lead to very different portfolio weights and accordingly diverging 

efficient frontiers. 

 

Michaud (1998) introduced Monte Carlo resampling and bootstrapping methods
28

 into MV 

optimization in order to reflect the uncertainty in investment information. The end result was 

generally more stable, realistic, and investment effective MV optimized portfolios.  

 

Inspired by Michaud’s resampling technique, we seek to determine the effects of this 

uncertainty in the optimizing process when using the different risk measures applied. We will 

not try to determine a more efficient allocation as the methodology proposes because the 

underlying assumptions differ from the ones we have made throughout this thesis. Rather we 

will analyze the size and effect of parameter uncertainty across our minimum risk portfolios 

in order to determine how sample specific our previous results are. That is, can we trust our 

results or do they only apply for this specific data set? 

 

In the following, we briefly review Michaud’s methodology and illustrate this sensitivity in an 

example from the MV framework. 

 

5.4.1 A Resampling Approach 

Resampled efficiency optimization, introduced by Richard Michaud and Robert Michaud, 

addresses information uncertainty in risk-return estimates. The procedure applies Monte Carlo 

simulation methods to produce multiple sets of statistically equivalent risk-return estimates 

based on the original estimates. These estimates are then used to compute multiple efficient 

frontiers that represent the many possible ways in which assets may perform relative to 

uncertainty in the inputs.  

 

The five steps below describe the procedure more methodically: 

                                                 
28

 Bootstrapping generally refers to the technique of redrawing historical observations with replacement. 

Resampling typically refers to recreating a simulation of the historical data from an assumed probability 

distribution such as multivariate normality. In practice, resampling is usually convenient since few investment 

strategies are based solely on risk-return estimates from historical return data. Thus, we will apply the 

resampling methodology in the analysis. 
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1. Estimate the covariance matrix and the mean vector of the historical returns. 

2. Estimate the mean-variance efficient frontier as we did in section 5.1.1. 

3. Now begin the Monte Carlo analysis. Assume a multivariate normal distribution with the 

mean vector, , and the covariance matrix, , estimated in step 1, and draw as many 

returns as necessary to approximate the historical return distribution. With the generated 

data sample, compute the simulated mean vector, 
*
, and covariance matrix, 

*
. 

4. Now,  and 
*
 are statistically equivalent. Using the inputs derived in step 3, compute a 

new efficient frontier. 

5. Repeat step 3 and 4 a number of times to visualize the sample sensitivity in the form of 

disperse efficient frontiers. 

 

Michaud takes it further and develops a resampled efficient frontier, which he claims 

outperforms the sample specific efficient frontier. While this part is irrelevant for our analysis, 

the interested reader is referred to Michaud, R. O. (1998) “Efficient Asset Management”. 

 

Following the five steps above, we simulate 10 statistically equivalent data sets and illustrate 

the consequence of sample specificity in the mean-variance efficient frontiers below: 

 

          Figure 5-13: Original and Simulated Frontiers 

 

 

As can be seen, there is dispersion between the simulated frontiers, which are all equally 

likely. The black dashed curve is the original frontier as of section 5.1.1 and the 10 colored 
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frontiers are based on the 10 simulations from the multivariate normal distribution. The 

difference between the frontiers illustrates the sample sensitivity of the mean-variance 

optimization. Holding the upper return limit of the frontiers constant (0.00065), we see that 

the standard deviation ranges from 0.0056 to 0.0108, equivalent to an increase of 

approximately 95%. Similarly at a standard deviation of 0.0056, it is equally likely to obtain a 

return of 0.00065 and one just below 0.0004. According to Michaud, any two portfolios 

corresponding to the same return (risk) level on the original MV efficient frontier are 

statistically equivalent. As we can see, these statistically equivalent portfolios have similar 

risk and return levels around the minimum variance portfolio, but as we venture towards 

higher returns, such similarities decrease.  

 

Since we have considered a highly risk averse investor throughout the paper, the minimum 

risk portfolio (in this example, the minimum variance portfolio) is the optimal portfolio for 

any given efficient frontier. Therefore, we are more interested in visualizing the sample 

sensitivity of the minimum risk portfolios rather than the entire efficient frontiers. 

 

           Figure 5-14: Minimum Variance Portfolio For Original and Simulated Data 
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represents the original minimum variance portfolio as of section 5.1.1 while the gray ones are 

based on the 10 simulated samples.  

The above mean-variance example illustrates the importance of sample sensitivity. Initially, 

the resampling procedure described above was aimed to minimize the impact of extreme 

historical observations by simulating statistically equivalent, though more stable (i.e. fewer 

outliers) return data in order to enhance out-of-sample performance of optimal portfolios. In 

other words, the resampled return data fluctuated less than the historical data and was simply 

based on the given mean vector and covariance matrix, i.e. there is not the same correlation 

effect that causes the uncharacteristically high or low returns.  

 

In our analysis, however, we want to preserve these extreme fluctuations in order to analyze 

the dynamics between the risk measures and illustrate the impact of their respective sensitivity 

to the underlying data. Therefore, we wish to simulate return data on a yearly basis rather than 

over the entire period as in above example. This way, the simulations will capture the 

correlation effects in the bull and bear markets respectively.  

 

5.4.2 Analysis of Sample Sensitivity 

In this section, we seek to clarify where sample sensitivity has its greatest impact. We saw in 

section 5.2 that the conditional drawdown-at-risk and conditional value-at-risk had the best 

performance when including bonds. Thus, it is interesting to see how much value these 

estimates have out of sample. While we will not test the out-of-sample performance of the 

different risk variables, we wish to illustrate where sample sensitivity has its deepest impact 

and thus which of the estimated risk variables are the most reliable for decision making. The 

analysis is based on yearly simulations following a multivariate normal distribution, i.e. 17 x 

10 simulations of daily returns
29

. Even though we have seen that the asset returns do not 

follow a normal distribution, it is a fair approximation to use the multivariate normal 

distribution because we are not using it to compare performance
30

. Besides, dividing the 

simulations into years means that we capture the extreme fluctuations that are otherwise 

disregarded when resampling over the whole period. As in section 5.2, we will rebalance the 

minimum risk portfolios on a yearly basis in order to compare their sample sensitivity.  

 

                                                 
29

 All simulations are done in the statistics program, R. See Appendix CD 3.10. 
30

 It would not make sense to compare the performance of variance with that of downside risk based on normally 

distributed data 
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As figure 5-14 shows, the simulated minimum variance portfolios diverge in terms of returns 

as well as risk. In order to compare the sample sensitivity across different risk measures, we 

use the risk-adjusted rate of return. This way we get a fair indication of how sensitive the 

different optimization techniques are to input parameters (i.e. respective risk measures), and 

we can compare the effect directly. However, the differences in risk-adjusted returns do not 

provide any information on how the results could change in the rebalancing part. In order to 

detect the effect there, we need to simply calculate the terminal value for the 10 simulations.  

 

5.4.2.1 Sample Sensitivity – Variance 
In order to visualize the sample sensitivity of the seven risk strategies, we calculate the 

minimum risk portfolio for the 10 different simulations and compare the risk adjusted returns. 

Figure 5-15 shows the risk adjusted returns of both the original and the 10 simulated variance 

strategies for the past 17 years. It is clear that the sample sensitivity is not constant over time, 

but is affected by the trend of the underlying data. The red dots represent the results from 

section 5.2 while the black dots represent the simulated results.   

 

Figure 5-15: Sample Sensitivity of The Minimum Variance Portfolios 

 

 

There seems to be a positive correlation between the size of the spread in values and the 

original values. In periods with high risk adjusted return we see an above average spread 

whereas periods with low risk adjusted return exhibit a lower spread.  

The sample sensitivity of the remaining six risk strategies can be found in Appendix B. 

-0,2

-0,1

0

0,1

0,2

0,3

0,4

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010



Portfolio Optimization in a Downside Risk Framework 2010 
 

 113 

5.4.3 Comparing Sample Sensitivity 

Appendix B shows that there is a difference in sample sensitivity depending on the risk 

measure applied. In order to make a fair comparison of this sensitivity across the risk 

strategies, we look at the difference between the percentage deviation of the maximum value 

from the original value and that of the minimum value from the original value. 

             

      
 
             

      
 

 

Figure 5-16 shows the results of these calculations where we have normalized the values so 

that the horizontal axis represents the original value and the lines above and below the 

horizontal axis represent the sample sensitivity. It is notable that the sample sensitivity leans 

towards higher risk adjusted returns for all risk strategies with the clearest tendency in CVaR. 

This suggests that CVaR might potentially achieve an even higher out-of-sample performance 

than it is the case in our analysis.  

 

     Figure 5-16: Sample Sensitivity Across Strategies 
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The second diagram in figure 5-16 illustrates the ranking of the seven risk strategies by their 

total sample sensitivity. GLS seems to be the least sample specific strategy followed by the 

standard deviation. This is not surprising since both risk measures are based on all the 

historical observations. However, we did expect the maximum drawdown to exhibit a higher 

spread since it only requires two values of the historical data. These values are the most 

extreme values (i.e. highest and subsequently lowest return), which we expected to be less 

extreme in the simulated data. Nonetheless, this effect has been somewhat mitigated by 

simulating on a yearly basis rather than over the whole period.  

 

Semivariance has the highest spread, which questions the reliability of our previous results, 

namely that it was ranked as the worst performing risk strategy in terms of terminal value. 

This is a clear disadvantage for its out-of-sample performance because the optimal weights 

are more sensitive towards the input parameters.  

 

It is important to remember that we have been looking at the risk-adjusted return, which 

means that it is not possible to compare the real effect of sample sensitivity across the 

different risk strategies. In order to do so, we calculate the terminal value of the minimum risk 

portfolios based on the 10 simulations as we did in section 5.2. The results can be seen in 

figure 5-17, where the maximum, minimum and original terminal values are illustrated. The 

results indicate that the effect of sample sensitivity across all the risk strategies is great 

enough to potentially change the rankings based on the original terminal values. Furthermore, 

most of the original values are much closer to the minimum scenario with the exception of 
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CDaR and to some extent MaxDD. Semivariance has the lowest minimum terminal value, 

which is in accordance with its low ranking in section 5.2. On the other hand, AvgDD has the 

highest maximum terminal value, which suggests that the AvgDD strategy might perform 

better out-of-sample than suggested in section 5.2. However, there is high uncertainty 

regarding AvgDD.  

We previously saw that semivariance had the highest spread in risk adjusted return closely 

followed by AvgDD. Its effect on the terminal value, on the other hand, is substantially larger 

for the minimum AvgDD portfolio than the minimum semivariance portfolio. More 

remarkable, the terminal value of the minimum CVaR portfolio seems to be rather sensitive to 

its inputs, despite the relatively lower spread in risk adjusted return. In fact, it seems to be 

more sensitive than semivariance, which had the highest spread in figure 5-16.  

Finally, the minimum CDaR portfolio seems to be the least sample sensitive as the spread of 

possible terminal values is the lowest.  

 

    Figure 5-17: Sample Sensitivity of Terminal Values 
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sensitive towards the historical data sample and thus parameter inputs. This is not to be 
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to observe a general pattern that favors risk measures as CVaR and CDaR and creates 

significant uncertainty about average drawdown.  
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5.5 Summary  
After looking at the relationship between the risk and return, we moved focus to the 

implications of using the different risk measures in portfolio allocation. 

We started out by demonstrating how to compute the efficient frontiers and calculate the 

different minimum risk portfolios. The common factor for these calculations was the use of 

linear programming, which we used to both calculate the efficient frontiers as well as the 

minimum risk portfolios. 

We were then faced with the challenge of comparing the performance of these minimum risk 

portfolios. The main challenge is that the risk variables measure risk differently, which makes 

it difficult to compare them using a single performance measure (e.g. Sharpe ratio, Sortino 

ratio, Omega etc). Most performance measures are developed based on a specific risk measure 

or risk behavior, which obviously will make the performance measures favorable to that 

specific risk measure. In order to solve this problem, we rebalance the portfolios on a yearly 

basis.  The idea behind the rebalancing is to divide the total period into shorter periods and 

then rebalance according to the minimum risk portfolios for each period. This way, we are 

able to use the terminal value (end value when investing €100) to compare the performance of 

the different risk measures. We repeated this exercise with bonds and without bonds in order 

to see the effect of excluding low risk securities. The rebalancing generated the following 

results: 

 

Figure 5-18: Terminal Values 
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that perform well with and without bonds. Average drawdown does well with bonds, but is 

the worst performing risk measure without bonds. This could be explained by its high 

sensitivity towards bear markets.  

 

After looking at the performance, we wanted to investigate how sample specific our results 

are. In order to do so, we used a method inspired by Michaud where we calculated the 

minimum risk portfolios based on 10 simulated datasets. Throughout the sensitivity analysis, 

we are able to conclude that all risk measures are somewhat sensitive towards the parameter 

inputs. The analysis also showed a certain pattern that supported our previous favoring of the 

conditional value-at-risk as well as the conditional drawdown-at-risk, and created significant 

uncertainty about the average drawdown.  

Overall, we were surprised to see the poor performance of semivariance and the degree of 

uncertainty it was associated with. Finally, variance seems to perform average compared to 

the other risk measures in most aspects of our analysis. 
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6 Chapter VI: Conclusion 
Risk is an essential factor to consider when investing in the capital markets. The question of 

how one should define and manage risk is one that has gained a lot of attention and remains a 

popular topic in both the academic and professional world. Since the dawn of modern 

portfolio theory, there has been a consensus that investors should not minimize uncertainty in 

general but rather minimize ―bad‖ uncertainty. In other words, investors should minimize 

downside risk. In order to understand the way investors think of risk, expected utility theory 

has been in the forefront for decades. However, research has proved that expected utility 

theory generally fails to capture the way investors think in reality. Quadratic utility as 

suggested by the mean-variance framework implies increasing absolute risk aversion, which 

has unrealistic behavioral implications. In addition, quadratic utility suggests that investors 

care only about the mean return and the variance of their portfolio – the latter being 

equivalent to uncertainty. Experimental research has proven that investors are more sensitive 

to losses than to gains, which suggests asymmetry in the domains of gains and losses 

respectively. Nevertheless, the mean-variance framework can still be reasonably applied if the 

asset returns follow a normal distribution. However, this assumption has also been discredited 

as it rules out skewness and excess kurtosis. The empirical evidence seems to suggest that in 

either case, the mean-variance framework is inadequate and that an asymmetric risk measure 

would better fit the way investors view risk as well as the empirical distributions of asset 

returns.  

 

In chapter 4, we analyzed the relationship between risk (in several forms) and the cross-

section of returns. The correlation tables showed that the three drawdown measures had the 

highest correlations with mean return when using monthly data. With daily data, the 

conditional value-at-risk was the most correlated, followed by the standard deviation. These 

results were confirmed by the regression analysis where all four risk measures were highly 

significant and explained between 20 and 25% of the variation in mean returns. Furthermore, 

we saw an overrepresentation of downside risk measures in the significant regressions when 

dividing the period into a bear and a bull market. This is in line with the logic that the further 

the return distribution deviates from normality, the better do downside risk measures perform. 

Here, the conditional value-at-risk was the most significant and had the greatest explanatory 

power. Our overall results were somewhat supported when we created portfolios ranked by 

risk and looked at the return spreads between the most and the least risky. With monthly data, 



Portfolio Optimization in a Downside Risk Framework 2010 
 

 119 

we can conclude that the maximum drawdown explains the cross-section of returns to the 

greatest extent. However, with daily data the average drawdown portfolios yield the highest 

spread in returns where we had expected the conditional value-at-risk to do so. Nonetheless, 

the average drawdown performed well throughout the entire analysis, as did the conditional 

drawdown-at-risk. The overall conclusion of the analysis is that the maximum drawdown 

explains the cross-section of monthly returns the best while the conditional value-at-risk 

explains the cross-section of daily returns the best. Additionally, the conditional drawdown-

at-risk performs second-best across data frequency. This suggests that downside risk measures 

can explain the cross-section of equity returns better than variance (or standard deviation).  

 

In chapter 5, we analyzed the implications of using different risk measures on the portfolio 

optimization problem. We discovered that the allocation was very different depending on the 

risk measure. In order to determine the performance of the different risk measures, we used an 

alternative approach by rebalancing the minimum risk portfolio every year for all seven risk 

measures and compared the terminal values of this exercise. The results showed that the best 

performing risk measures are the conditional value-at-risk and the conditional drawdown-at-

risk – both when we included and excluded bonds. All three drawdown measures, together 

with conditional value at risk performed well when we included bonds. However, the picture 

somewhat changed when we excluded bonds where both the maximum drawdown and the 

average drawdown became the worst performing risk measures. Average drawdown is very 

market sensitive, especially during down markets, relative to the other risk measures and since 

the market volatility increased by excluding bonds, average drawdown failed to outperform 

the other risk measures. We were surprised to see the poor performance of semivariance when 

the rebalancing included bonds. However, the performance of semivariance improved 

somewhat when bonds were excluded. In our in-depth analysis, we discovered that 

semivariance was the best performing risk measure during down markets, but failed 

significantly to outperform during bull markets (hence the overall low ranking). Finally, 

variance seems to perform average compared to the other risk measures in most aspects of our 

analysis. In order to measure the robustness of our results, we looked at how sample sensitive 

the different risk measures are. Throughout the sensitivity analysis, we were able to conclude 

that all risk measures have significant spreads in risk adjusted returns when based on 

simulated, though statistically equivalent, datasets. The analysis also showed a certain pattern 

that supported our previous favoring of the conditional value-at-risk as well as the conditional 

drawdown-at-risk, and created significant uncertainty about the average drawdown. 
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Overall, we have found that the choice of risk measure has a significant effect on portfolio 

allocation. Our analysis shows that there are some downside risk measures that outperform 

variance while others fail to do so. This suggest that downside risk can be a better tool in 

investment management than variance. 
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8 Appendices  
 

8.1 Appendix A 
 
JB-test, Monthly data: 

 
  

Name Mean Std Skewness Kurtosis JB test p-value No. Obs.

A P Møller Mærsk B 1.70% 9.47% 0.40 1.69 52.88 0.00000 360

Allianz 1.20% 9.59% 0.07 3.46 179.75 0.00000 360

AT&T 1.05% 7.31% -0.10 1.11 16.68 0.00024 318

Aviva 1.20% 9.73% -0.12 2.40 87.37 0.00000 360

AXA 1.57% 11.53% 0.04 2.90 125.90 0.00000 360

Bank of America 1.68% 11.39% 0.05 4.50 304.55 0.00000 360

Barclays 1.68% 11.41% 1.36 19.33 5717.66 0.00000 360

BASF 1.26% 6.90% -0.50 2.32 95.73 0.00000 360

BP 1.30% 7.67% 0.08 1.48 33.23 0.00000 360

Canon 1.58% 9.43% 0.33 1.98 65.07 0.00000 360

Carrefour 1.39% 7.16% -0.28 0.59 9.96 0.00688 360

Chevron 1.29% 7.16% 0.10 0.31 2.14 0.34369 360

Citi Group 1.35% 13.11% 0.18 9.02 957.43 0.00000 282

Danske Bank 1.64% 8.64% 0.61 8.61 1134.80 0.00000 360

DAX 30 0.88% 6.06% -0.94 3.00 187.08 0.00000 360

Deutshe Bank 1.06% 9.46% 0.04 6.85 704.90 0.00000 360

Dow Jones 0.84% 5.75% -0.38 1.13 21.69 0.00002 280

CAC 40 0.92% 5.97% -0.82 2.66 20.76 0.00003 268

FTSE 100 0.83% 5.54% -0.69 1.22 118.82 0.00000 292

General Electric 1.45% 8.18% -0.04 0.95 13.67 0.00107 360

Honda Motors 1.55% 9.65% 0.99 3.26 218.42 0.00000 360

Jyske Bank 1.51% 7.86% -0.45 5.05 394.30 0.00000 360

Mitsubishi 1.23% 9.67% 0.10 1.16 20.87 0.00003 360

MSCI EM 1.36% 7.81% -0.52 1.76 15.54 0.00042 268

MSCI Worls 1.03% 5.52% -0.54 1.76 63.59 0.00000 360

NIKKEI 225 0.64% 6.49% 0.04 0.51 63.59 0.00000 360

Nippon 0.04% 9.02% 0.89 2.01 83.43 0.00000 279

Novo Nordisk 2.11% 9.10% 0.91 6.77 736.87 0.00000 360

OMXC20 0.76% 5.93% -0.75 2.77 501.48 0.00000 245

RBS 1.68% 12.47% -0.35 7.26 797.97 0.00000 360

Sanofi-Aventis 1.33% 7.66% -0.14 0.14 1.54 0.46386 358

Siemens 1.17% 8.82% -0.30 2.54 101.91 0.00000 360

Societe Generale 1.24% 10.77% -0.23 2.35 65.16 0.00000 274

Tesco 1.68% 7.81% 0.20 0.94 15.51 0.00043 360

Total 1.58% 7.84% -0.13 1.84 51.57 0.00000 360

Toyota Motor 1.37% 8.81% 0.67 1.66 67.91 0.00000 360

Volkswagen 1.27% 10.21% 0.23 2.25 79.11 0.00000 360
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JB-test, Daily data 

 
  

Name Mean Std Skewness Kurtosis JB test p-value No. Obs.

A P Møller Mærsk B 0.079% 1.995% 1.2 19.4 124621.7 0.00000 7827

Allianz 0.054% 2.014% 0.6 11.8 45569.0 0.00000 7827

AT&T 0.052% 1.804% 0.1 10.5 31562.8 0.00000 6909

Aviva 0.059% 2.253% 0.0 14.4 67928.8 0.00000 7827

AXA 0.068% 2.361% 1.5 26.7 235283.5 0.00000 7827

Bank of America 0.079% 2.562% 0.8 27.8 252133.5 0.00000 7827

Barclays 0.077% 2.480% 3.3 102.5 3438339.3 0.00000 7827

BASF 0.060% 1.585% 0.1 6.3 13019.7 0.00000 7827

BP 0.061% 1.706% 0.1 3.9 5027.1 0.00000 7827

Canon 0.080% 2.327% 0.5 6.2 12867.2 0.00000 7827

Carrefour 0.068% 1.782% -0.1 6.1 12248.7 0.00000 7827

Chevron 0.064% 1.769% 0.2 7.1 16437.9 0.00000 7827

Citi Group 0.066% 3.046% 1.1 36.6 344051.3 0.00000 6142

Danske Bank 0.073% 1.676% 0.1 8.5 23794.5 0.00000 7827

DAX 30 0.041% 1.354% -0.1 7.2 23794.5 0.00000 7827

Deutshe Bank 0.046% 1.941% 0.5 14.0 64488.3 0.00000 7827

Dow Jones 0.042% 1.320% -0.5 11.0 50218.0 0.00000 6095

CAC 40 0.042% 1.367% 0.1 5.6 29595.0 0.00000 5836

FTSE 100 0.039% 1.250% -0.2 7.5 8256.8 0.00000 6358

General Electric 0.070% 1.867% 0.2 7.4 18027.9 0.00000 7827

Honda Motors 0.078% 2.319% 0.4 4.7 7390.0 0.00000 7827

Jyske Bank 0.067% 1.593% 0.5 12.7 53365.0 0.00000 7827

Mitsubishi 0.063% 2.309% 0.2 3.8 4691.1 0.00000 7827

MSCI EM 0.062% 1.506% -0.4 55.1 3497.8 0.00000 5836

MSCI Worls 0.047% 1.123% 0.7 27.7 250411.7 0.00000 7827

NIKKEI 225 0.032% 1.481% 0.1 6.1 12251.2 0.00000 7827

Nippon 0.022% 2.419% 0.9 9.0 21303.7 0.00000 6069

Novo Nordisk 0.097% 1.909% -0.3 17.9 105178.8 0.00000 7827

OMXC20 0.034% 1.175% -0.1 6.4 9191.3 0.00000 5334

RBS 0.077% 2.705% -1.2 76.7 1921824.9 0.00000 7827

Sanofi-Aventis 0.066% 1.908% 0.1 4.4 6178.7 0.00000 7779

Siemens 0.053% 1.830% 0.1 8.2 22100.8 0.00000 7827

Societe Generale 0.056% 2.283% 0.6 10.2 26419.8 0.00000 5962

Tesco 0.080% 1.791% 0.3 3.8 4888.3 0.00000 7827

Total 0.076% 1.879% -0.2 7.8 19757.1 0.00000 7827

Toyota Motor 0.067% 2.051% 0.5 6.1 12448.1 0.00000 7827

Volkswagen 0.067% 2.765% 16.0 700.2 160227393.9 0.00000 7827
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8.2 Appendix B 
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