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Abstract 
This study aims at determining the external factors that influence the saturation level of 

diffusion of 3G telephony. The Gompertz model was selected as the best- fitting model for the 

diffusion of 3G telephony in Europe from 2003 to 2012. This model was also applied to estimate 

the diffusion of 3G telephony in each European country, and the coefficients of saturation level 

were used as input for further analysis. The saturation levels of 3G telephony in Europeans were 

modeled with various explanatory variables. Regression result of the model showed that the 

overall income and education level, the intensity of competition and the appropriate regulations in 

radio spectrum resources and licenses positively influence the saturation level of diffusion of 3G 

telephony in Europe. Some practical comments were made to the results. 
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1 Introduction 

It is widely accepted that mobile telecommunication is playing an indispensible role in 

modern economic and social life. Mobile telecommunication is one of the major “enablers” of 

the global market. Mobile technologies eliminate the time and space limitations of business 

communication, and therefore greatly increase the transaction velocity of money and make 

remote transactions more convenient and reliable. Studies show that mobile 

telecommunication has a positive and significant impact on economic growth (Waverman, 

Meschi, & Fuss, 2005; Sridhar & Sridhar, 2007). Meanwhile, mobile telecommunication has 

changed people’s life style all around the world. Nowadays, mobile telecommunication means 

more than phone calls and text messages. It is convenient to obtain various types of 

information at very low cost using a mobile phone. What is more, more people are sharing 

their personal information and carrying out social activities via mobile technologies. Mobile 

devices have not only become an important way by which people interact with each other, but 

also a way how people show their taste and preference of consumption.  

Various demands for mobile telecommunication contribute to rapid technological 

evolutions. The first generation of mobile technology (1G) was introduced to public in the late 

1970s and prevailed in the most developed countries in the 1980s. The second generation of 

mobile technology (2G) was first deployed in the early 1990s. The core feature of 2G systems 

was the digitalization of voice signal. As a result, the call quality was improved, mobile 

devices became more portable and the cost of mobile communication reduced significantly as 

the 2G technology developed. The third generation of mobile technology (3G) was first 

deployed in Japan in 2001 and then widely deployed in many other developed countries. 3G 

technology allows high data transmission rate up to 21.6 MB/s, which brings about mobile 

broadband and enables massive mobile applications. 

Each time when mobile technologies evolve, the latest generation of a technology coexists 

with the previous generation for several years, due to the heavy cost of network upgrades. But 

once the new technology is deployed, the substitution of the new technology for the older one 
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is irresistible, because the new technology is superior to the old one not only in network 

capacities but also in call costs. Therefore, both mobile network operators and governments 

must figure out when the market of the new mobile technology starts and predict how the 

market develops. For mobile network operators, it is necessary to estimate both the revenues 

contributed by the new technology and the costs of deployment in order to ensure profitability. 

For governments, it is necessary to release adequate spectrum resources at proper time in 

order to ensure that new mobile telecommunication technology is available to most citizens at 

fair prices.  

There are massive studies in the development of mobile telecommunication. Most of these 

studies shared a common view that the diffusion theory applies in the development of mobile 

telecommunication (Chu, Wu, Kao, & Yen, 2009; Gupta & Jain, 2012; Michalakelis, Varoutas, 

& Sphicopoulos, 2008). For most of these studies, the premise of analyzing mobile 

telecommunication diffusion is to select an appropriate model that best fits the actual 

diffusion. The Logistic, Gompertz and Bass model are the most frequently used model for this 

purpose (Meade & Islam, 1998). But to date, there has not been any strong argument or 

criteria of choosing the most suitable model (Wu & Chu, 2010). Therefore, it is necessary to 

choose a model that serves the study purpose and best fits the actual case in each specific 

study.  

Numerous studies investigated the external factors that influence the diffusion patterns of 

mobile telecommunication. Most studies concluded that the intensity of competition, the 

government intervention and the substitution effect of previous generation of a technology 

influenced the speed of diffusion of mobile telephony (Gruber & Verboven, The Diffusion of 

Mobile Telecommunications Services in the European Union, 2001; Jang, Dai, & Sung, 2005; 

Rouvinen, 2006). On the other hand, few studies were devoted to investigate the external 

factors that influence the saturation level of diffusions. In this study, the determinants of the 

saturation level of diffusion of 3G telephony in Europe are detected and analyzed, which is 

the major innovation of this study. 

Three major topics are elaborated in this study. First, determine the best fitting model for 
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the 3G telephony diffusion in Europe. Second, estimate the diffusion pattern of 3G telephony 

in each European country. And last, study the external factors that influence the saturation 

level of diffusion of 3G telephony in European countries. Based on the results of the research 

topics above, several practical comments will be made to telecommunication regulations and 

marketing strategies of both network operators and handset manufacturers.  

The rest of this study is organized as follows: Section 2 reviews previous literature on the 

diffusion of mobile telephony. Section 3 discusses the diffusion theories in details. Section 4 

briefly describes the characteristics of 3G technologies and current market status of 3G 

telephony in Europe. Section 5 aims at determining the best- fitting model for diffusion of 3G 

telephony in Europe. Section 6 applies the selected model to estimate diffusion coefficients of 

each European country. Section 7 discusses possible determinants of the saturation level of 

diffusion of 3G telephony in European countries and estimates the influences of each 

determinant. Some policy implications of the results are discussed. Section 8 concludes the 

major finding of the study and brings about some suggestions for further study.  
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2 Literature Review 

In the past century, a vast amount of literature has emphasized on the study of diffusion of 

innovations, either theoretically or empirically. The dominant literature of theories of 

diffusion of innovations was contributed by Everett Rogers (1962). Rogers summarized 

previous studies of diffusion of innovations in various fields, and described the characteristics 

of innovations, the decision process of adoption and the general pattern of diffusion 

systematically. Afterwards, numerous models have been developed and applied to study the 

diffusion of innovations empirically. Mead and Islam (2006) reviewed a large number of 

empirical studies from 1970 to 2005. They found that at least eight different basic models had 

been developed to estimate and forecast the diffusion of innovations. Studies in the period 

1970 onwards emphasized on modifying the existing models to describe diffusions in more 

complicated context or to enhance the accuracy of estimation and forecasting. The authors 

further classified the modifications in three categories, namely the introduction of marketing 

variables in the parameterization of the models; generalizing the models to consider 

innovations at different stages of diffusions in different countries; and generalizing the models 

to consider the diffusion of successive generations of technology.  

The studies in diffusions of mobile telecommunication services started in the 1990s. Since 

the history of mobile telecommunication is much shorter compared with the history of overall 

diffusion studies, the studies in this field did not appear to be very innovative. Most studies of 

diffusion of mobile telecommunication services concentrated in two areas, namely to select a 

best-fitting model to describe and forecast diffusion of mobile telephony in a certain 

geographical scope; and to detect possible determinants of diffusions. The two topics are 

discussed in Chapter 2.1 and 2.2 respectively. 

2.1 Model Selection 

Mead and Islam (2006) listed eight frequently used S-shaped diffusion models for 
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cumulative adoption, and briefly described these models. The listed models included the Bass 

model, cumulative lognormal model, cumulative normal model, the Gompertz model, log 

reciprocal model, modified exponential model, the Weibull model and a group of Logistic 

models. Listed variations of the Logistic model include log- logistic variation, 

Flexible-Logistic (FLOG), Inverse Power Transform (IPT), Exponential (ELOG), the 

Box-Cox, non-symmetric responding logistic and local logistic. In most diffusion studies of 

mobile telephony, one or more of these models are selected to fit the actual diffusion process. In 

some studies, the authors estimated several models with the same samples and selected the one 

with the best fitting ability.  

Michalakelis, Varoutas and Sphicopoulos (2008) evaluated eight aggregate technology 

diffusion models with company- level data of mobile subscriptions in Greece. The best-fitting 

model varied in each stage of diffusion. The Logistic family, including linear logistic, 

Box-Cox, FLOG and TONIC, showed best fitting ability in the whole sample period, as 

measured with mean absolute percentage error (MAPE). The Gompertz model did not fit the 

diffusion in the early stage, but it showed the best fitting ability in the take-off stage.  

Chu et al. (2009) found that the Logistic model is the best- fitting model for mobile 

subscription in Taiwan from 1989 to 2007. In another study, Wu and Chu (2010) found that the 

model selection was stage-dependent. They found out that the Gompertz model outperformed 

the other models before diffusion take-off, and the Logistic model was superior after 

inflection and the over the aggregate range of the diffusion. 

Gupta and Jain (2012) concentrated on three most widely used diffusion models, namely 

the Logistic model, the Gompertz model and the Bass model. The fitting ability of each model 

was measured with the estimated root mean square error (RMSE). The Gompertz model 

showed the best- fitting with observed penetration data in India from 1998 to 2008. However, 

the estimated saturation level of mobile telephony was 333% with the Gompertz model, 

which the author believed was unrealistic in India. When the saturation level was controlled at 

constant 120%, the Gompertz model still resulted in the lowest RMSE, which again showed 

that the Gompertz model was the best-fitting model for mobile telephony diffusion in India.  
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The inconsistency of the above evidence indicates that no strong arguments or principles 

have yet been developed for selecting diffusion models. Meanwhile, none of the models 

mentioned in this chapter, except the Bass model, were originally developed for the purpose of 

diffusion study. Therefore, it is hard to select the most appropriate model with explicit theories. 

In practice, it is necessary to select the best-fitting model with observed diffusion patterns 

before proceeding for further research.   

2.2 Determinants of Diffusion 

Another major research topic of telecommunication diffusion is to detect the determinants 

of diffusion patterns and to evaluate their influences. Possible determinants are usually 

modeled in linear forms to explain a specific coefficient of diffusion.  

Some researchers tried to find out determinants of diffusion within one country by time 

series analysis. For example, Gupta and Jain (2012) developed a cause-effect loop with STEP 

– social, technological, economic and political – factors in India. However, the influences of 

the STEP factors were not tested empirically. The authors developed a model with three 

explanatory variables to determine their impact on the diffusion speed, namely a dummy for 

the Call Party Pays (CPP) system, the tariff and the number of fixed line subscribers. 

Although CPP could be treated as a proxy for government intervention, the rest two variables 

represented industrial- level factors instead of the STEP factors.  

What is worse, Gupta and Jain’s research is doubtful. In their study, the speed of diffusion 

was obtained by estimating the Gompertz model. One of the major characteristics of the 

Gompertz model is that the diffusion speed is a function of the intrinsic growth rate and the 

number of cumulative adopters at a specific time point (The Gompertz model is discussed in 

details in Section 5). Therefore, it is unreasonable to link the diffusion speed with external 

factors. The statistical significance of the linear regression may be a result of spurious 

regression. 

Some other studies evaluated influence of external factors with cross-sectional data. 
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Studies by Gruber and Verboven (2001a; 2001b), Rouvinen (2006), and Jang, Dai and Sung 

(2005) are widely cited.   

Gruber and Verboven studied the diffusion of mobile telecommunication services in 15 

countries of European Union (2001a). The authors found that the transition from the analogue 

to the digital technology, the increase in spectrum capacity, the timing of the awarding of 

licenses, and the level of competition had a significant effect on diffusion. In a parallel global 

study of 205 countries by Gruber and Verboven, the authors further determined that the 

uniform and standardized regulations had an important impact on the diffusion of 

telecommunication (2001b).  

Rouvinen’s study aimed at finding out whether factors determining the diffusion of digital 

mobile telephony are different across developed and developing countries (2006). Rouvinen 

modeled the speed of diffusion with 17 explanatory variables based on the Gompertz model. 

These variables were selected as proxies of the potential user base, the overall wealth, the 

social development, the availability of finance, the openness, the technology development, 

and the development of telecommunication in a country. Model estimation result showed that 

the variables for total population, political openness, technology development and the joint 

variables of telecommunication development influenced the speed of digital mobile diffusion, 

especially in a developing country context. These factors had stronger influences on 

developing countries than on developed countries, which led to convergence between 

countries. Meanwhile, the speed of diffusion per se was found not significantly different 

between the two groups of countries, after controlling for other factors. 

Jang, Dai and Sung found that the diffusion patterns of all OECD countries and Taiwan 

exhibited an S-shaped curve from 1980 to 2001. However, the diffusion patterns of each 

group of countries were discernibly different. The S-curves for Northern Europe, the US, 

Canada and Japan were relatively flat, while contrasting sharper S-shaped curves were found 

in Western Europe, Southern Europe and Taiwan. The differences in the diffusion coefficients 

of each group of countries were explained with the differences of a series of external factors, 

including the evolution of mobile technology, the level of market competition, the emerging 
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of Calling Party Pays (CPP) system and the substitution effect of the fixed line telephony.  

After determining the factors that influence the diffusion of mobile telephony, relevant 

policy implications are usually discussed. For example, Jang, Dai and Sung (2005) suggested 

that a telecommunication company should continually invest in advanced technologies, seek 

and seize the opportunities created by economies of scale and select an appropriate payment 

plan, in order to succeed in the market. Gruber and Verboven (2001a, 2001b), on the other 

hand, suggested that governments should actively release spectrum resources, encourage 

competition and standardize regulations in order to promote diffusion of mobile 

telecommunication services.  

It is noteworthy that almost all of existing literature emphasized on the determinants of the 

speed of diffusion, and as far as the author perceives, yet no studies were devoted to find out 

possible determinants of the saturation level of diffusions. However, the saturation level of 

diffusion of mobile telephony is of the same importance as the speed of diffusion for mobile 

network operators, governments and mobile subscribers. In this study, the saturation level of 

diffusion of 3G mobile telephony of each European country is estimated with a selected 

model, and the determinants of the saturation level are detected for further discussion.   
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3 Technology Diffusion 

Researches of diffusion can be traced back to the beginning of the 20th century. Gabriel Tarde, 

a French sociologist and social psychologist, was one of the first researchers who observed the 

diffusion of innovations. Tarde identified the adoption or rejection of innovations as a crucial 

research question in his influential book “The Laws of Imitation” (Rogers, 1983, pp. 40-42), 

most of which are widely accepted by today’s researchers of diffusion.  

After Tarde, a group of early anthropologists started to use diffusionism viewpoint to explain 

changes in a given society. Most of these anthropologists claimed that all social changes could 

be explained by diffusion of innovations spread from another society. However, there are few 

subsequent studies of these claims, because the influences of invention are neglected to 

different extends.  

Early studies of diffusion focused on specific fields. Everett M. Rogers (1983, pp. 42-79) 

summarized nine research traditions of diffusion, including anthropology, early sociology, rural 

sociology, education, public health and medical sociology, communication, marketing, 

geography and general sociology. What is more, Rogers synthesized the previous studies of 

diffusion and produced a generalized theory for the adoption of innovations among individuals 

and organizations. In his distinguished book “Diffusion of Innovations”, Rogers systematically 

reviewed the history of diffusion researches, outlined the characteristics of innovations, defined 

the process of diffusion and categorized the adopters of innovation. Rogers’ theory has 

nowadays become the foundation of most subsequent studies of diffusion, and its validation has 

been well proved with empirical evidence. 

According to Rogers, diffusion is the process during which an innovation is communicated 

through certain channels over time among members of a social system (1983, p. 5). For a 

single member of the social system, his/her individual decision of adoption follows a 5-step 

process, including:  

1. Knowledge: A person becomes aware of an innovation and gains some understanding 

of how it functions. 
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2. Persuasion: A person forms a favorable or unfavorable attitude toward the innovation. 

3. Decision: A person engages in activities that lead to a choice to adopt or reject the 

innovation. 

4. Implementation: A person puts an innovation into use. 

5. Confirmation: A person evaluates the results of an innovation-decision already made. 

It is clear that “knowledge” and “persuasion” are premises of any activity of adoption. The 

information one perceives in these two steps determines whether he/she adopts or rejects the 

innovation, and how he/she spreads his/her attitude to the innovation. In other words, an 

individual’s decision of adoption is heavily influenced by innovation decisions of other 

members of the system.  

Not all members in a social system adopt an innovation at the same time. The early 

adopters of an innovation require a shorter adoption process than the late adopters. According 

to Rogers, the time an individual requires to adopt an innovation is determined by three 

factors: personalities, communication behaviors and socioeconomic characteristics. 

Personalities determine an individual’s inherent attitude to changes. Communication 

behaviors determine to what extend an individual can gain information about an innovation. 

Socioeconomic characteristics determine how an individual evaluate the costs and benefits of 

an innovation. For example, adoption process is much shorter for those who have a more 

favorable attitude toward change, higher exposure to mass media and a higher social status. 

Rogers classified all adopters of an innovation into 5 categories: innovators, early adopters, 

early majority, later majority and laggards. The classification is based on the time length of an 

individual’s adoption process. Based on the classification, the attributes of adopters in each 

category can be standardized and empirically determined.  

If the cumulative number of adopters is plotted against time variable, the result is usually 

an S-shaped curve. The S-shaped diffusion curve rises slowly in the early stage when there are 

only innovators and early adopters. When early majority join the diffusion process, the rate of 

adoption accelerates until half of potential adopters are involved. The number of adopters then 

increases with a gradually slower rate until all remaining individuals adopt. Rogers further 
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defined the first 2.5% of adopters as innovators, the next 13.5% of adopters as early adopters, 

the next 34% of adopter as early majority. After the peak growth rate, the next 34% of 

adopters are defined as late majority, and the final 16% are called laggards. According to 

Rogers, the frequency curve of diffusion is a bell-shaped curve which is symmetrically 

distributed around the time spot when the highest diffusion rate is reached. Figure 3-1 shows 

the S-shaped curve described by Rogers. The S-shaped curve has been applied in a vast 

amount of literature. Most studies prove that the adoption of new technologies over time 

follows an S-shaped curve. 

 

Figure 3-1 The Bell-shaped frequency curve and the S-shaped cumulative curve for and 

adopter distribution. Adopted from Diffusion of Innovation (p. 243) by Everett M. 

Rogers, 1983, New York. Copyright 1983 by The Free Press.  

Although there is a large amount of literature studying the diffusion of innovations and the 

adoption decisions, few studies emphasized on the saturation level of diffusion. The theories 

of diffusion emphasize on the demands for an innovation, while the market potential of an 

innovation is determined by both demands and supplies. Although the supply of innovations 

has rarely been discussed in previous researches, there are some hints in existing diffusion 
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theories. Rogers defined five intrinsic characteristics of innovations influencing an 

individual’s decision of adoption. These characteristics include: relative advantage over the 

previous generation, the compatibility how an innovation can be assimilated into an 

individual’s life, the simplicity of adoption, the trialability which enables an individual to 

experiment an innovation, and the observability of an innovation. These characteristics of 

innovation are determined by the suppliers of an innovation to a large extend. For example, in 

order to make an innovation more advantageous to the previous generation, the developer 

may have to invest more in research and development of the innovation. Similarly, in order to 

enhance the observability of an innovation, the suppliers to the innovation may have to deply 

more resources in marketing campaigns.   

Previous researchers have developed numerous models to describe the S-shaped curves. 

Generally speaking, these models can be classified into two types. The first type is epidemic 

models. These models are built on the premise that the speed of usage is affected by the lack 

of information available about the new technology and its usage and function (Geroski, 2000). 

In other words, the epidemic models assume that the diffusion process is purely a result of 

spread of information. Personality and socioeconomic characteristics of potential adopters are 

not measured in these models. The most frequently used models, namely the Logistic model, 

the Gompertz model and the Bass model are all epidemic models. The second type of models 

is the probit model. The probit model is used to analyze individual adoption decisions, and 

follows the premise that different individuals are likely to adopt a new technology at different 

time, based on their individual needs and abilities. More specifically, the probit model 

emphasizes on individual characteristics that affect the probability of adopting a new 

technology. To sum it up, the epidemic model is more applicable in the study of diffusion of 

innovations in a social system, while the probit model is more suitable in the study of 

individual decisions of adoption. 

Clearly, neither the epidemic model nor the probit model emphasizes on the saturation 

level of a diffusion process. The saturation level of diffusion is usually set as a constant 

variable in existing epidemic models, and in most empirical studies the constant is simply 
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estimated without further analysis. The saturation level of diffusion is not involved in the 

probit model. Although market potential of an innovation can be obtained by cumulating 

probability of adoption of all members in a social system at expected time of equilibrium, 

such results highly rely on accurate judgment to the distribution of each determinant factors of 

adoption and accurate estimation of how an individual reacts on these determinants.  

The goal of this study is to analyze the 3G telephony diffusion in Europe as a whole and 

each European country, and to determine factors that influence the saturation level of 3G 

market. For this purpose, the epidemic model is selected in this study.   
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4 Overview of 3G Telephony in Europe 

4.1 Overview of Mobile Technologies 

Ever since the first radiotelephone service was introduced in the US at the end of the 1940s, 

the world has witnessed rapid development of mobile telecommunication. The first generation 

(1G) and the second generation (2G) were introduced to public in the 1970s and 1980s 

respectively. As new technologies were deployed, mobile communication service providers 

were able to provide better call quality and higher capacity with lower cost to consumers.  

However, neither 1G nor 2G mobile telecommunication has changed the world as much as 

3G mobile telecommunication does. The third generation (3G) refers to a set of standards of 

mobile telecommunication that comply with the International Mobile 

Telecommunications-2000 (IMT-2000) specifications by the International Telecommunication 

Union (ITU). According to the IMT-2000 standards, a 3G network is required to provide a 

peak rate of at least 200 KB/s. In reality, most network operators provide much higher peak 

rates than the minimum requirements. The latest released 3G technology standard can provide 

peak rates up to 56 MB/s in downlink. The data rates provided by 3G technologies are highly 

advantageous compared with 2G technologies, which only provide speed ranging from 2.8 

KB/s to 28.8 KB/s (ITU, 2012). The high data rate provided by 3G technologies enables 

various functions of mobile applications, including multimedia entertainment, mobile surfing 

and location based services. As a result, the 3G technology rapidly substituted the previous 

generation since it was first deployed.  

At least four standards meet the requirements of IMT-2000 and therefore are branded as 

3G. These standards include CDMA2000, W-CDMA, TD-SCDMA and WiMax. In most 

European countries, only W-CDMA standard was deployed and commercialized. For the rest 

countries, both W-CDMA standard and CDMA2000 standard are deployed. CDMA2000 

standard is not compatible with GSM, the dominant 2G standard. As a result, the diffusion of 

3G with CDMA2000 standard may be hindered by the switching cost from 2G to 3G.  
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4.2 Overview of 3G Diffusion in Europe  

The first commercial 3G network in Europe was launched by a Romanian operator 

Cosmote in December 2001, based on CDMA2000 1x technology. (CDG, 2012). The last 

country that launched 3G network in Europe is Albania, where the 3G network was not 

available until the first quarter of 2011.  

Table 4-1 shows how the aggregate penetration rate of 3G telephony increases with time in 

Europe. By the end of the 1st quarter in 2012, the average 3G penetration rate in Europe is 

44.22%. Among all the European countries, the 3G technology is most accepted in Austria, 

where the penetration rate reaches 114.79%. Meanwhile, the 3G penetration rate in Bosnia 

and Herzegovina is merely 4.46%.  

 
Figure 4-1 Penetration rate of 3G telephony in Europe 

The start time and the current penetration rate of 3G telephony in each European country 

are summarized in Table A1-1 in the Appendix. It is apparent in Table A1-1 that the 3G 

diffusion status in each European country highly varies. Even for these countries where 3G 

started at the same time, the difference in growth rate leads to difference in current penetration 

rate. In the next sections, a best- fitting model for diffusion of 3G telephony is selected and 

applied in the study of 3G diffusion in European countries.   
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5 Best-Fitting Model 

As discussed above, the most frequently used epidemic models in diffusion studies are the 

Logistic model, the Gompertz model and the Bass model. Various authors may choose one or 

more of these models. In some cases such selection is based on the theoretical meanings of 

the models, and in some other cases, the authors compare the fitting capability of the three 

models and choose the one that fit the data sample the best.  

The reason why these models are frequently discussed together is that these models share 

some features. These three models describe the cumulative market potential and the diffusion 

rate of an innovation with three coefficients. These models fit the S-shaped diffusion process. 

Wu and Chu (2010) made comparisons among the Logistic model, the Gompertz model and 

the Bass model and summarized the similarity of these models. These models are expressed as 

following: 

 1dN NrN
dt K

 = − 
 

          (the Logistic model) 

 lndN KrN
dt N

=            (the Gompertz model) 

 ( )dN Np q K N
dt K

 = + − 
 

      (the Bass model) 

In Wu and Chu’s study, the coefficient N denotes the number of adopters at specific time t, 

r is the intrinsic growth rate, and K is the maximum or equilibrium number of adopters. For 

the Bass model, p is the innovation coefficient and q is the imitation coefficient. Clearly, for 

these three models, the saturation level of the diffusion of a new technology is fixed during 

the entire diffusion process, while the growth rate of the number of adopters is described with 

a function of the cumulative number of adopters at the observed time and the intrinsic growth 

rate. Therefore, the core issue of diffusion studies is to determine the maximum market 

potential and the intrinsic growth rate of a new technology.  

The rationale and features of the three diffusion models are discussed in more details 
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respectively in the following chapters.  

5.1 Logistic Model 

A frequently used form of the logistic model is called the Fisher-Pry model. It is a variant 

of the logistic model which is first developed by Fisher and Pry to measure and forecast the 

substitution of technologies (Fisher & Pry, 1971).  

The Fisher-Pry model is based on the following assumptions. First of all, technological 

evolution can be considered as a process of substitutions of one method of satisfying a need 

for another. The rationale of the substitution is that the new technology brings more benefits 

to its users than the older one does, either with lower cost or with higher utility. Therefore, 

once a substitution process starts, it will proceed to completion. Another major assumption of 

the Fish-Pry model is that the fractional rate of fractional substitution of new for old is 

proportional to the remaining amount of the old left to be substituted. That is, the Fisher-Pry 

model applies where a technological change is not radical but continuous, and is driven by a 

technology that is superior to the former generation.  

The first assumption of Fisher-Pry model fits the diffusion of 3G mobile telephony well. 

3G technology brings about not only higher call quality than 2G does for phone callers, but 

also better experience for mobile internet surfers. Meanwhile, the price of 3G telephony 

gradually becomes advantageous as the initial network deployment costs are spread among 

more and more 3G subscribers, while the price of 2G telephony changes in the opposite way. 

The second assumption is also consistent with the 3G diffusion case. When 3G technology is 

first introduced, its advantages are gradually perceived by the public. Therefore the rate of 

substitution grows exponentially in the beginning. During this process, the remaining users of 

2G network may be more conservative and less likely to adopt the new technology. As a result,  

the rate of substitution may decline exponentially in the later stage of the substitution. Since 

the fractional substitution also tends to proceed exponentially, it is likely that the fractional 

rate of fractional substitution is linear correlated with the amount of remaining 2G users who 
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will switch to 3G in the future.  

Fish and Pry composed the following model: 

 f(t) =
1
2
�1 + tanh

1
2
𝑟(𝑡 −𝑚)� =

1
1 + 𝑒−𝑟(𝑡−𝑚)  (5.1) 

where f(t) is the fraction of the market substituted by the new technology at time t, r is the 

coefficient of growth rate, and m is the time at which f=1/2, or the “infection point”. 

Clearly the Fisher-Pry model is symmetric around the point where t=m, or the “infection 

point”. It is yet to be determined if this feature fits the actual diffusion pattern of 3G 

telephony. 

Assume that all of the 2G subscribers are potential 3G users, the cumulative amount of 3G 

subscribers at time t is denoted as:  

 N(𝑡) = 𝐾𝐾(𝑡) =
𝐾

1 + 𝑒−𝑟(𝑡−𝑚)  (5.2) 

where K is the aggregate market potential of 3G technology, measured by the amount of 

subscribers.  

However, the assumption for equation (5.2) may not stand in reality. The 2G technology is 

not likely to be completely substituted by 3G technology. In fact, the 2G technology always 

coexists with 3G from the start year of 3G till now. And so far, no European network operator 

has announced 2G shutting down plans 1. What is more, the 4G technology has been deployed 

in many European countries. It means that part of the remaining 2G subscribers may switch 

from 2G to 4G, skipping the 3G phase. Therefore, the coefficient S in equation (5.2) actually 

denotes the sum of the aggregate market potential of 3G technology and the remaining 

amount of 2G subscribers when 3G telephony market reaches saturation. The estimated result 

of S may be much higher than the actually “ceiling” of 3G market. 

Another concern of the Fisher-Pry model is specific in this study. After the best fit model is 

determined in this section, the model will be applied to each European country in the next 

section of this study. The data used in this study is collected from 47 European countries. Due 

                                                 
1 Korean network operator KT has started to switch off its 2G network from January 3rd, 2012. American network operator 

AT&T has announced its plan to decommission its GSM voice and EDGE data networks by January 1st, 2017.  
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to the fact that both the population size and the number of 3G users vary among European 

countries, the estimation result, especially the maximum number of 3G adopters K, is not 

comparable among countries. Therefore, it is necessary to convert model into the following: 

 n(𝑡) =
𝑘

1 + 𝑒−𝑟(𝑡−𝑚) (5.3) 

where n(t) is the penetration rate of 3G at time t, and k is the penetration rate of 3G at its 

saturation level. The penetration rate is defined as the percentage of 3G subscribers of a 

certain country out of its total population size at specific time t. 

Clearly, equation (5.3) is an approximation of equation (5.2). The penetration rate at time t 

is calculated with the population size at time t, while the maximum penetration rate is 

calculated with the population size at the time when 3G market reaches saturation. This 

approximation stands based on the following reasons. Firstly, for most European countries, 

the population size changed at such low rates during the sample period that the influence of 

the approximation is negligible. Secondly, although the coefficient k is likely to be slightly 

overestimated because of the approximation, it is still more comparable among European 

countries than the absolute term. The same approximation also applies in the Gompertz model 

and the Bass model, which will be discussed in the rest of the study. 

5.2 Gompertz Model 

The Gompertz model was first developed by British mathematician Benjamin Gompertz to 

describe his law of human mortality (Gompertz, 1825). The initial form of the Gompertz 

model is 𝐿𝑥 = 𝑘𝑔𝑞
𝑥
. It indicates that the number of persons living at the age x is a function 

of x, based the assumption that a human’s power to avoid death decreases as his or her age 

increases.  

Since the beginning of the 20th century, the Gompertz model has been used as a growth 

curve for biological and economic phenomena (Winsor, 1932). For these purposes, the model 

is also written as: 
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 N(𝑡) = 𝐾𝑒−𝑒
−𝑟(𝑡−𝑚)

 (5.4) 

where N(𝑡) represents the cumulative number of individuals at time t, K is the saturation 

level of the diffusion, and r and m are positive constants (Winsor, 1932). Therefore, for any 

non-negative value of t, N(𝑡) is always positive. 

The first order differential form of equation (5.4) is: 

 
𝑑𝑑(𝑡)
𝑑𝑡

= 𝐾𝑟𝑒−𝑟(𝑡−𝑚)𝑒−𝑒
−𝑟(𝑡−𝑚)

= 𝑟𝑑(𝑡)𝑒−𝑟(𝑡−𝑚)  (5.5) 

It is apparent that the slope of the Gompertz model is always positive for any t>0, and it 

approaches zero when the value of t grows to infinity.  

The second order differential form of equation (5.4) is: 

 𝑑2𝑑(𝑡)
𝑑2𝑡

= 𝑟2𝑑2(𝑡)𝑒−𝑟(𝑡−𝑚)�𝑒−𝑟(𝑡−𝑚) − 1� (5.6) 

Equation (5.6) shows that when t = m, the second order differential equation of the 

Gompertz model 𝑑
2𝑁(𝑡)
𝑑2𝑡

= 0; when t ∈ [o,m), 𝑑
2𝑁(𝑡)
𝑑2𝑡

> 0; when t ∈ (m, +∞), 𝑑
2𝑁(𝑡)
𝑑2𝑡

< 0. 

That is, t = m is the point of inflection of the function of the Gompertz model. And when 

t = m, N(𝑡) = 𝐾
𝑒
≈ 0.3679𝑆. It indicates that the maximum growth rate is met when the 

cumulative number of adopters of the innovation reaches about 37% of the market potential. 

This feature of the Gompertz model makes it more suitable for estimating a growth cycle of 

which the inflection point appears in its early stage.  

For the purpose of comparing diffusion patterns among European countries, an 

approximate form of Gompertz model is derived with the same rationale as that of the 

Logistic model. The approximation of the Gompertz model is written as: 

 ( ) ( )r t men t ke
− −−=   (5.7) 

where n(t) is the penetration rate of 3G at time t, and k is the penetration rate of 3G at its 

saturation level. Again, coefficient k is likely to be slightly overestimated. But it is tolerable 

for the purpose of comparing 3G diffusion patterns of various European countries. 
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5.3 Bass Model 

The Bass model was developed by Frank M. Bass in his study of the timing of initial 

purchase of consumer durables (Bass, A New Product Growth for Model Consumer Durables, 

1969). The Bass model has been proved applicable to not only the growth of initial purchases 

consumer durables, but also to that of “a broad range of distinctive ‘new’ generic classes of 

products”, including the diffusion of mobile telephony (Bass, A New Product Growth for 

Model Consumer Durables, 1969; Michalakelis, Varoutas, & Sphicopoulos, 2008; Gupta & 

Jain, 2012).  

The Bass model is based on a series of assumptions of the distinctive behavioral pattern of 

the “innovators” and the “imitators”. According to Bass, “innovators” are those who decide to 

adopt an innovation independently of decisions of other individuals in a social system, 

whereas “imitators” are influenced in the timing of adoption by the pressure of previous 

adopters the social system. More specifically, the pressure increases for later adopters as the 

number of previous adopters increases. (Bass, 1969). The above assumptions fit the case of 

mobile telecommunication evolution. The initial subscribers of 3G networks did not make 

their purchase decision under the pressure of the social system, because the 3G technology is 

downward compatible to the 2G technology. It is more likely that the initial subscribers of 3G 

technology are attracted by the advanced technology itself, instead of by their social 

connections. In fact, the innovators may even be hindered by the social system because the 

penetration of the new technology is so limited that its “ecosystem” is far from maturity. The 

“imitators”, however, are highly influenced by the social system. As the number of 3G 

subscriptions increases, the advantages of 3G technologies are spread via word-of-mouth, 

which attracts new subscribers. Meanwhile, the 3G “ecosystem” gradually substitutes for the 

2G “ecosystem”, that is, the price of 3G telephony decreases to the level of 2G telephony or 

even lower, the majority of newly shipped mobile handsets are designed for 3G networks, and 

plentiful of 3G value-add services and applications are available in the market. Based on the 

discussion above, the Bass model is well qualified to be one alternative model in this study. 
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The Bass model is formulated as following: 

 S(𝑡) = 𝐾
(𝑝+ 𝑞)2

𝑝
𝑒−(𝑝+𝑞 )𝑡

�1 + 𝑞
𝑝 𝑒

−(𝑝+𝑞 )𝑡�
2 (5.8) 

where S(t) is the sales at time t, K is the ultimate market potential, p is the coefficient of 

innovation and p is the coefficient of imitation. 

In order to keep consistent with the Logistic model and the Gompertz model, the 

cumulative distribution function of the Bass model is: 

 N(𝑡) = 𝐾
1− 𝑒−(𝑝+𝑞 )𝑡

1 + 𝑞
𝑝 𝑒

−(𝑝+𝑞 )𝑡
 (5.9) 

where N(t) is the total number purchasing in the (0,t) interval (Bass, Krishnan, & Jain, 1994). 

The Bass model can also describe the growth pattern of 3G penetration rate, as discussed 

above. Equation (5.9) is then written as: 

 n(𝑡) = 𝑘
1− 𝑒−(𝑝+𝑞 )𝑡

1 + 𝑞
𝑝 𝑒

−(𝑝+𝑞 )𝑡
 (5.10) 

where n(t) is the penetration rate of 3G at time t, and k is the penetration rate of 3G at its 

saturation level. 

The growth rate of the number of new technology adopters can be derived from equation 

(5.10): 

 ( ) ( )

( )

2

2
( )

1

p q t

p q t

m p qdn t e
dt p q e

p

− +

− +

+
=

 
+ 

 

  (5.11) 

The infection point of a diffusion process is defined as the point when the growth rate of 

the number of new adopters reaches maximum level. Take the second order differential of 

equation (5.11), we get:  

  ( )
( ) ( )

( )

32

32

1
( )

1

p q t p q t

p q t

qe e
m p q pd n t

dt p q e
p

− + − +

− +

 
− +  =

 
+ 

 

  (5.12) 
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Clearly, when 
ln p

q
t

p q

 
 
 = −
+

, the second order differential of the Bass model equals to zero, 

which means the growth rate is highest at this time spot. Therefore, the infection point of the 

Bass model is defined as: 

  

 
ln p

q
m

p q

 
 
 = −
+

  (5.13) 

Equation (5.3), (5.7) and (5.10) will be used for estimation to determine the model with the 

best fit performance. 

5.4 Model Estimation Methods 

The first issue of this study is to examine the fitting performance of each diffusion model 

and to determine the one with the best fitting capability for further study. For this purpose, the 

Logistic model, the Gompertz model and the Bass model are estimated respectively with 

seasonal European 3G subscription statistics. The data are collected from Worldwide 

Cumulative Subscription database tracked by World Cellar Information Service (WCIS), a 

leading mobile telecommunication benchmarking program. The sample period lasts from the 

first quarter in 2003 to the first quarter in 2012 and includes 37 samples.  

It is apparent that all of the three diffusion models are non-linear models. Therefore, the 

estimation technique requires attention. There are numerous studies dedicated to determine 

the most superior estimation technique of diffusion models. Take the Bass model for example, 

when Frank M. Bass first proposed the Bass diffusion model, he developed a discrete 

analogue of the non-linear model and used ordinary least square (OLS) method to estimate the 

coefficients of diffusion with the linear analogue as an approximation (Bass, 1969). After that, 

a maximum likelihood (MLE) approach was used to estimate the Bass model, and this method 

is reported to be superior to the OLS method, in terms of both goodness of fit measures and 



24 
 

one-step ahead forecasts (Schmittlein & Mahajan, 1982). Later on, further improvement in the 

estimation of the Bass model was made using the nonlinear least square (NLS) approach. The 

fit and the predictive validity are both enhanced with the NLS method (Srinivasan & Mason, 

1986). In Srinivasan and Mason’s study, they argue that the NLS approach is also applicable 

to other diffusion models for which cumulative adoption can be expressed as an explicit 

function of time. Based on previous researches, the NLS approach is used in this study. 

The NLS approach requires initial values of coefficients for the iteration process. In 

practice, the corresponding OLS estimates are usually set as the initial values of NLS 

estimation (Gupta & Jain, 2012). The linear approximation of each diffusion model is 

discussed below. 

The linear form of the Logistic model is derived by rearranging equation (5.3): 

 ( )
( )

1 ( )
1

r
rn t ee n t

n t k
−

= +
−

  (5.14) 

Let ( ) ( ) ( 1)n t n t n t∆ = − − , reα = , 1 re
k

β −
= , and add error term to equation (5.14), the 

model becomes the following: 

 ( ) ( )1 tn t n tα β ε∆ = + − +   (5.15) 

It is apparent that equation (5.15) is a linear regression model and it can be estimated with 

ordinary least square (OLS) method. Equation (5.15) also applies in the panel data estimation 

of all European countries.  

The estimated results of the original coefficients of the Logistic model can be obtained 

with the following formula: 

 lnr α=   (5.16) 

 





1k α
β
−

=   (5.17) 

It is noteworthy that the coefficient of the infection point of the original Logistic model 

cannot be estimated with equation (5.15). It partially explains why the OLS method is not 
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suitable for estimating the Logistic model.  

Similarly, the linear form of the Gompertz model is derived by rewriting equation (5.7) as: 

 ( ) ( )1 1ln 1 ln ln 1r rn t k n t
e e

 = − + − 
 

  (5.18) 

Let 11 lnr k
e

α  = − 
 

, 1
re

β =  and add error term ε to equation (5.18), the model is then 

written as: 

 ( ) ( )ln ln 1 tn t n tα β ε= + − +   (5.19) 

The estimated results of the original coefficients of the Gompertz model can be calculated 

with the following formula: 

 



1k e
α
β−=   (5.20) 

 


1lnr
β

 
=  

 
   (5.21) 

Again, the coefficient of the infection point of the original Gompertz model cannot be 

obtained with equation (5.19). 

The discrete analogue of the Bass model is the most frequently used linear form of the 

Bass model. The discrete Bass model writes as: 

 ( ) ( ) ( ) ( )2qs t pk q p n t N t
k

= + − −   (5.22) 

In order to keep consistent with the Logistic model and the Gompertz model in this study, 

the discrete Bass model is rewritten as: 

 ( ) ( ) ( )2
1 2n t n t n tα β β ε∆ = + + +   (5.23) 

Equation (5.23) is identical to equation (5.22) where ( ) ( ) ( )1n t n t n t∆ = − − , pkα = , 

1 q pβ = − , 2
q
k

β = −  and ε is the error term. 

The estimated results of the original coefficients are identified with the following 

equations: 
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4
2

k
β β αβ

β

− ± −
=   (5.24) 

 

  



1 1 2
1

4
2

p
β β αβ

β
−

= −


  (5.25) 

 

  

1 1 24
2

q
β β αβ−

=


  (5.26) 

The coefficient of the infection point of the Bass model is then calculated as:  

 





 

ln p
q

m
p q

 
  
 = −
+

  (5.27) 

5.5 NLS Regression Results 

The regression results of the linear form of the Logistic model are listed in Table 5-1. Both 

the estimated α and β are statistically significant. The estimated values of α and β are used to 

calculate the original Logistic coefficients with equation (5.16) and (5.17). Therefore the OLS 

estimated 0.3904r =  and  34.9549k = . These values are set as initial values in the NLS 

regression of the Logistic model.  

In order to keep consistency, all NLS regressions processed in this study are based on 

Gauss-Newton method. The convergence criteria are set as 1.0E-0.5, and the singularity 

criteria are set as 1.0E-0.8. Since the OLS estimation results are used as initial values of NLS 

estimation, it is assumed that number of iterations executed in each NLS regression process is 

relative low. The maximum number of iterations is therefore set as 500. If the estimates fail to 

meet the convergence criteria after 500 iterations, it is likely that the target diffusion process 

is not in accordance with the selected model.  
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Table 5-1 Regression result for linear form of the Logistic model 

Coefficient Estimated value Standard error 

α 1.4775** 0.0708 

β -0.0137** 0.0034 

R-squared 0.3158  

RSS 2.8785  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

 

The NLS regression results of the Logistic model are listed in Table 5-2. 

Table 5-2 NLS Regression Results of the Logistic Model 

Coefficient Estimated value Standard error 

k 55.5039** 1.7734 

r 0.1596** 0.0048 

m 29.0501** 0.4732 

R-squared 0.9977  

RSS 16.6210  

RMSE 0.6702  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

 

The regression results of the linear form of the Gompertz model are listed in Table 5-3. 

Both the estimated α and β are statistically significant. The estimated values of α and β are 

used to calculate the original Gompertz coefficients with equation (5.20) and (5.21). The OLS 

estimated coefficient 0.0924r =  and  51.5907k = . These values are set as initial values in 

the NLS regression of the Gompertz model.  
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Table 5-3 Regression result for linear form of the Gompertz model 

Coefficient Estimated value Standard error 

α 0.3481** 0.0225 

β 0.9117** 0.0087 

R-squared 0.9969  

RSS 0.4076  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

The NLS regression results of the Gompertz model are listed in Table 5-4. 

 

Table 5-4 NLS Regression Results of the Gompertz Model 

Coefficient Estimated value Standard error 

k 97.3173** 2.62246685 

r 0.0595** 0.00113814 

m 33.0229** 0.45431798 

R-squared 0.99977395  

RSS 1.65840829  

RMSE 0.21171170  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

 

The regression results of the discrete analogue of the Bass model are listed in Table 5-5. 

The estimated coefficients α, 1β  and 2β  are all statistically significant. The estimated 

values of α, 1β  and 2β are used to calculate the original Bass coefficients with equation 

(5.24), (5.25) and (5.26). According to equation (5.24), the estimated value of k equals to 

-1.6348 when the plus sign is used, or 68.8124 when the minus sign is used. Since the 

coefficient k denotes the maximum penetration rate of 3G in Europe, it is more reasonable to 
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use the minus sign and  68.8124k = . Then we get the OLS estimated  0.0029p =  and 

 0.1214q = . These values are set as initial values in the NLS regression of the Bass model. 

 
Table 5-5 Regression result for linear form of the Bass model 

Coefficient Estimated value Standard error 

α 0.1985** 0.0514 

1β   0.1186** 0.0073 

2β   -0.0018** 0.0002 

R-squared 0.9536  

RSS 1.0004  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

 

The NLS regression results of the Bass model are listed in Table 5-6. 
 Table 5-6 NLS Regression Results of the Bass Model 

Coefficient Estimated value Standard error 

k 59.6487** 1.870 

p 0.0019** 8.0478e-05 

q 0.1448** 0.0041 

R-squared 0.9988  

RSS 8.6193  

RMSE 0.4827  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 
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5.6 Residual Tests 

In the last chapter, the Logistic model, the Gompertz model and the Bass model are 

estimated with NLS method respectively. Although the estimated coefficients of all three 

models are statistically significant, it is necessary to test several principal assumptions of 

residuals in order to ensure the estimators are best and unbiased.  

The residuals of regressions of the above mentioned diffusion models are plotted against 

predicted values and independent values respectively in Figure 5-1, 5-2 and 5-3. 

 
    (a)                   (b)                   (c) 

Figure 5-1 Regression Residuals of the Logistic Model 

 
  (a)                   (b)                   (c) 

Figure 5-2 Regression Residuals of the Gompertz Model 

 
  (a)                   (b)                   (c) 

Figure 5-3 Regression Residuals of the Bass Model 
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5.6.1 Heteroscedasticity 

In Figure 5-1(c), 5-2(c) and 5-3(c), the squared residuals generated from regressions of the 

Logistic model, the Gompertz model and the Bass model are plotted against time variable 

respectively. Judging from the graphs, there is no systematical pattern between the 

independent variable and the squared residuals for all the three regression results. It indicates 

that none these models suffers from heteroscedasticity problem. The White test is applied to 

the three models and the results are listed in Table 5-7. 
Table 5-7 White Test Results 

 Logistic Model Gompertz Model Bass Model 

n*R-squared 15.34095449 3.33079242 4.16416223 

Prob. 0.01776433 0.64913078 0.65447169 

2
0.05 (6)χ =12.59516  

As shown in Table 5-7, the chi-squared values obtained from the Gompertz model and the 

Bass model does not exceed the critical chi-squared value at 5% level of significance, which 

indicates that there is no heteroscedasticity in the regression of the Gompertz model and the 

Bass model. However, the chi-squared value obtained from the White test of the Logistic 

model shows that there is heteroscedasticity in the regression of the Logistic model.  

Since the data used in the three regressions are identical, it is likely that the 

heteroscedasticity of the Logistic model is resulted from specification error, or more 

specifically, the Logistic model may not properly describe the 3G diffusion pattern in Europe. 

As a result, the standard errors of the coefficient estimates are biased, and therefore the t-test 

results are suspected.    

5.6.2 Autocorrelation 

It is clear from Figure 5-1(a)(b), Figure 5-2(a)(b) and Figure 5-3(a)(b) that the regression 

residuals of the Logistic model, the Gompertz model and the Bass model all show apparent 
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cyclical pattern. Durbin-Watson d test and Breusch-Godfrey test from the NLS regressions 

also show strong evidence of first-order autocorrelation in the three models, as summarized in 

Table 5-8 and Table 5-9. 

Table 5-8 Results of Durbin-Watson d Test 

 Logistic Model Gompertz Model Bass Model 

Durbin-Watson 

stat 
0.11003375 0.48217671 0.14921566 

For 37 observations, 1.419Ld =  at 0.05 level of significance 

Table 5-9 Results of Breusch-Godfrey Test with AR(6) 

 Logistic Model Gompertz Model Bass Model 

n*R-squared 34.52332578 23.08728631 33.72107825 

Prob. 5.32974013e-06 0.00076776 7.61516518e-06 

lag 1 residual 0.95396516** 

(0.18701094) 

0.73460210** 

(0.19294507) 

0.93142945** 

(0.18780120) 

lag 2 residual 0.03785360 

(0.26063850) 

-0.03971800 

(0.23739453) 

0.01404679 

(0.25736258) 

lag 3 residual 0.28802354 

(0.26540838) 

0.32384413 

(0.24546658) 

0.35552824 

(0.26292625) 

lag 4 residual -0.17886555 

(0.26651888) 

-0.23319606 

(0.24907198) 

-0.25240116 

(0.26503938) 

lag 5 residual -0.10226641 

(0.26912732) 

-0.09064655 

(0.25544352) 

-0.08093467 

(0.27017132) 

lag 6 residual -0.33133352 

(0.22949303) 

-0.37002117 

(0.25298652) 

-0.39329493 

(0.24230867) 

2
0.05 (6)χ =12.59516  

**Indicates the coefficient is significant at 99% confidence level. 

Standard errors are presented in parentheses. 



33 
 

The Durbin-Watson test and the Breusch-Godfrey test of the three models suggest that 

there is significant first-order autocorrelation in these models. Therefore, it is necessary to 

transform the dependent and independent variables accordingly to solve the problem. 

The coefficients of first-order autocorrelation of the three models are estimated with 

regressions of residuals on the lagged value of residuals. The results are summarized in Table 

5-10.  
Table 5-10 Estimation of Coefficients of Autocorrelation 

 Logistic Model Gompertz Model Bass Model 

Coefficient of 

autocorrelation 

0.9561** 

(0.0570) 

0.7561** 

(0.1099) 

0.9386** 

(0.0655) 

**Indicates the coefficient is significant at 99% confidence level. 

Standard errors are presented in parentheses. 

Coefficients of first-order autocorrelation of the three models are all statistically significant. 

The three models are estimated again after transformation using corresponding coefficient of 

autocorrelation.  

The regression result of the Logistic model after transformation is listed in Table 5-11. 
Table 5-11 Regression Results of the Logistic Model after Transformation 

Coefficient Estimated value Standard error 

k 65.2873** 3.0214 

r 0.1338** 0.0067 

m 31.2923** 0.7347 

R-squared 0.9829  

RSS 1.1348  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

The regression result of the Gompertz model after transformation is listed in Table 5-12. 
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Table 5-12 Regression Results of the Gompertz Model after Transformation 

Coefficient Estimated value Standard error 

k 98.3808** 4.7885 

r 0.0590** 0.0022 

m 33.2089** 0.8467 

R-squared 0.9988  

RSS 0.7019  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

The regression result of the Bass model after transformation is listed in Table 5-13. 

Table 5-13 Regression Results of the Bass Model after Transformation 

Coefficient Estimated value Standard error 

k 66.0840** 3.1127 

p 0.0022** 0.0002 

q 0.1304** 0.0067 

R-squared 0.9883  

RSS 1.0606  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

5.7 Model Comparison 

The S-shaped diffusion curves over the sample period generated by the Logistic model, the 

Gompertz model and the Bass model are presented in Figure 5-4, and the actual annual 

growth in the penetration rate together with that estimated by the three models are presented 

in Figure 5-5. The corresponding estimation results of each model are listed in Table 5-14. 

Two intuitive findings can be drawn from the Figure 5-4 and Figure 5-5. Firstly, it is 

visible that the Gompertz model fits the 3G diffusion in Europe the best, especially in the 
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early stage of diffusion. Secondly, the infection point of the Logistic model and the Bass 

model appears in the 3rd quarter and the 4th quarter in 2010 respectively, while the infection 

point of the Gompertz model appears later, around the 2nd quarter in 2011. The two 

preliminary findings are discussed respectively to determine the best- fitting model of 

European 3G diffusion. 

 
Figure 5-4 Diffusion curves of 3G telephony 

 

 
Figure 5-5 Growth rate of 3G telephony 
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As shown in Table 5-14, the estimated coefficients of all the three diffusion models are 

statistically significant (p<0.01).  

The R-squared is a statistic that measures the goodness of fit of a model. The R-squared 

values for all the three diffusion models are very close to 1. Among them, the R-squared value 

yielded by the Gompertz model is the highest ( 2 0.99980401R = ), which indicates that about 

99.98% of the 3G diffusion pattern is explained by the Gompertz diffusion models.  

The residual sum of square (RSS), on the contrary, is a measure of the discrepancy 

between the data and an estimation model. A small RSS indicates that the regression model 

fits the data well. As shown in Table 5-8, the RSS value of the Gompertz model is the lowest 

among the three diffusion models, indicating that the Gompertz model fits the 3G diffusion 

process the best among the three models. This conclusion is consistent with what the 

R-squared values show.  

Besides the R-squared and RSS, the most frequently used criteria for fitting capability of 

regression models are Root Mean Square Error (RMSE) (Gupta & Jain, 2012; Chu, Wu, Kao, 

& Yen, 2009).  

RMSE measures the difference between the predicted values of a model and the actual 

observed value. The smaller RMSE is, the better the model fits the reality. In this study, the 

RMSE are used to measure how close the predicted penetration rates to the actual ones with 

37 samples. The formula of RMSE writes as the following in this study: 

 

( ) ( )
237

1( , )
37

t
n t n t

RMSE n n =
 − =

∑
  (5.28) 

As shown in Table 5-14, the RMSE value of the Gompertz model is the lowest among the 

three models, which indicates the fitness of the Gompertz model is superior to that of the 

Logistic model and the Bass model. Clearly, the RMSE value, together with the R-squared 

value and the RSS value, all support the conclusion that the Gompertz model is the best fitting 

model for 3G diffusion in Europe in this study.  
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Table 5-14 Summary of regression results 

 Logistic model Gompertz model Bass model 

Saturation level k=65.2873** 

(3.0214) 

k=98.3808** 

(4.7885) 

66.0840**  

(3.1127) 

Intrinsic growth rate r=0.1338** 

(0.0068) 

r=0.0590** 

(0.0022) 

p=0.0022** 

(0.0002) 

q=0.1304** 

(0.0067) 

Infection point m=31.2923** 

(0.7347) 

m=33.2089** 

(0.8467) 

m=30.8985 

Infection point (time) 2010Q4 2011Q2 2010Q3 

R-squared 0.9829 0.9988 0.9883 

RSS 1.1348 0.7018 1.0606 

RMSE 1.6703 0.0020 0.8081 

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

Standard errors are presented in parentheses. 

The maximum market potential of 3G telecommunication in Europe estimated with the 

Gompertz model is much larger than that estimated with the Logistic model and the Bass 

model. Saturation level of diffusion of 3G telephony is about 98.38% according to the 

regression results of the Gompertz model. The corresponding penetration rate estimated with 

the Logistic mode and the Bass model is 65.29% and 66.03% respectively. Assume that the 

4G technology had not been deployed and the 3G technology would not evolve in the future, 

the 3G diffusion will progress until a large partial of the 2G market is captured by the 3G 

technology. Given the fact that the mobile penetration rate in Europe has reached 136.26%, it 

is reasonable that saturation level of 3G telephony is close to this value, which is the case of 

the Gompertz model. Actually, by the end of the sample period, there are already 20 European 

countries where the 3G penetration rate is above 50% and 4 countries where the penetration 
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rate is above 100%. However, it is noteworthy that the penetration rate of 3G may never reach 

its equilibrium level, as the 4G technology has been deployed by many European countries 

and more countries will adopt this technology in the near future.  

Meanwhile, the infection point estimated with the Gompert model appears in the 2nd 

quarter in 2011, while the infection point estimated with both the Logistic model and the Bass 

model is in the 3rd and 4th quarter in 2010 respectively. The infection point of diffusion is of 

significant practical interest. The growth rate of 3G penetration rate, or the number of new 

subscribers, peaks at the infection point, and declines gradually afterwards. Prior to the 

infection point, a mobile operator may enjoy stable growth in revenue which is benefitted 

from the natural growth of 3G subscription. Once the infection point is reaches, the growth 

rate of new 3G subscription declines, therefore the competition for new subscribers becomes 

more intense. A mobile operator is then forced to reduce prices, expend more resources in 

customer retention programs, or invest in new technologies, namely 4G technologies. The 

observed 3G diffusion process suggests that average growth rate of 3G penetration rate is 

higher in 2011 than that in 2010 (Figure 5-5). It supports the regression results of the 

Gompertz model, which, again, proves the Gompertz model the best-fitting model for 

European 3G diffusion.  

In the rest of the study, the Gompertz model will be used to estimate the 3G diffusion 

pattern in each European country for further discussion.  
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6 3G Diffusion in European Countries 

In Section 5, the Logistic model, the Gompertz model and the Bass model are estimated 

respectively with 3G penetration rate in data in Europe. The Gompertz model is identified as 

the best-fitting model for 3G diffusion in Europe. In this section, the 3G diffusion pattern in 

each European country will be analyzed. 

6.1 Data 

“European countries” in this study refers to member states of the Council of Europe. 

However, San Mario is not included because the mobile subscription data of this country is 

missing in the database used in this study. Therefore, 3G diffusion processes of 46 countries 

are analyzed in this section. 

The actual 3G penetration rates in each country are plotted against time. The start time of 

3G telephony in each country is numbered as t=1, and the rest quarterly data samples are 

numbered as t=2, 3, 4… respectively within the sample period of each country.  

It is apparent from Figure 6-1(1)-(46) that the 3G diffusion patterns in some European 

countries cannot be explained with the diffusion theory. For example, the 3G subscription 

increased from 21,500 in the 1st quarter to 266,090 in the 2nd quarter in 2009. 3G penetration 

rate therefore increased from 1.05% to 12.95% with the growth rate of 1137.31%. Such 

growth rate is much higher than the average growth rate during the entire diffusion process 

(38.64%). This dramatic increase in 3G penetration rate was resulted by a major activity of 

the market leader, in this case T-Mobile Macedonia. T-Mobile Macedonia switched over 

240,000 of its 2G subscribers to its 3G networks as soon as it launched its 3G networks. The 

similar situation occurs in Azerbaijan. In Azerbaijan, after two major network operators in 

Azerbaijan, Azercell and Bakcell launched 3G services in the 4th quarter in 2011, the 3G 

penetration rate increased by 86.77%, in contrast with a growth rate of 14.60% in the 3rd 

quarter in 2011. Apparently, the 3G diffusion processes in Macedonia and in Azerbaijan were 
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seriously influenced by activities of market leaders. Such impact factor is not in accordance 

with the underlying theory of any diffusion model discussed above. Therefore, the data 

samples from Macedonia and Azerbaijan are excluded in the following study. 

The 3G diffusion pattern in Russia is also seriously influenced by major market players. 

The charts show that the 3G penetration rate grows very slowly in the early stage, and starts to 

grow with a much higher rate from a specific time spot. Since 3G network was first deployed 

in Russia in the 1st quarter in 2003, 3G penetration rate remained very low (less than 1%) for 

over 5 years. However, from the 2nd quarter in 2008 to the 1st quarter in 2012, the 3G 

penetration rate grew from 1.29% to 13.01%. This high-rate growth was mainly driven by the 

development of W-CDMA networks, which were rolled out in Russia in the 2nd quarter in 

2008. Prior to that, all 3G networks in Russia were based on CDMA2000 1x technology. As 

discussed in Section 4, the CDMA2000 1x is not compatible with GSM, the dominant 2G 

standard, which severely hindered its diffusion. Therefore, 3G subscriptions increased rapidly 

only after the W-CDMA networks were launched. Meanwhile, three largest network operators, 

MegaFon, MTS and VimpelCom did not join the competition of CDMA networks at all. 

These operators initiated W-CDMA networks in the 2nd quarter in 2008, a year after they were 

awarded W-CDMA licenses from the regulatory authority. The high-rate increase of 3G 

subscription was therefore driven not only by the W-CDMA technology itself, but also by the 

power of major market players. Clearly, under the circumstance of imperfect competition, the 

diffusion pattern in Russia is not in accordance with the diffusion theory. In order to make a 

more accurate estimation of the 3G diffusion curve in Russia, the samples from 2003Q1 to 

2008Q1 are not included in the following study. 

The 3G diffusion pattern in Montenegro does not follow the S-shaped diffusion model 

either. 3G penetration rate in Montenegro peaked at 25.61% in the 1st quarter in 2010, and 

then declined to 15.33% by the end of 2011. This is because a major network operator in 

Montenegro, MTEL, has started to drag its 3G subscribers back to 2G network since the 

beginning of 2010 due to high operational cost of 3G network. Therefore, Montenegro is 

excluded in the following study. 
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Another country excluded is Albania. There are merely 5 observed sample of its 3G 

diffusion in Albania, which may lead to inaccurate regression.  

Based on the discussion above, 3G diffusion patterns of 42 European countries are 

analyzed in the next part of this section.  
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Figure 6-1 Diffusion of 3G telephony in European countries 
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with OLS method, and the results are used as initial values of NLS estimation. The NLS 

regressions to 3G diffusion patterns of European countries are all based on Gausss-Newton 

method. 

The estimation results of 3G diffusion in 42 European countries are listed in Table 6-1. 
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Table 6-1 Regression results of diffusion of 3G telephony in European countries 

Country Obs. Saturation level Intrinsic growth rate Infection point Infection time R-squared RSS RMSE 

Andorra 17 40.9931** 

(9.051) 

0.0922** 

(0.0161) 

13.3690** 

(2.4597) 

2011Q2 0.9897 6.0158 0.5949 

Armenia 14 17.4468** 

(1.2767) 

0.2985** 

(0.0435) 

6.9386** 

(0.3467) 

2010Q2 0.9866 5.6897 0.6375 

Austria 36 355.5924** 

(15.0812) 

0.0511** 

(0.0012) 

38.2501** 

(0.7559) 

2012Q4 0.9997 11.5671 0.5668 

Bosnia Herzegovina 12 9.9125** 

(1.3180) 

0.0859** 

(0.0094) 

9.4956** 

(1.5693) 

2011Q3 0.9984 0.0192 0.0400 

Bulgaria 25 123.3129** 

(12.2962) 

0.0784** 

(0.0071) 

17.4143** 

(1.3806) 

2010Q2 0.9945 65.7005 1.6211 

Croatia 26 62.1466** 

(2.4433) 

0.1445** 

(0.0093) 

14.1363** 

(0.3551) 

2009Q2 0.9957 37.9586 1.2083 

Cyprus 30 79.8200** 

(7.8234) 

0.1007** 

(0.0070) 

27.9388** 

(0.9739) 

2011Q3 0.9982 6.6167 0.4696 
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Table 6-2 (Continued) 

Country Obs. Saturation level Intrinsic growth rate Infection point Infection time R-squared RSS RMSE 

Czech Republic 31 211.3733** 

(71.4457) 

0.0687** 

(0.0132) 

32.3736** 

(4.5178) 

2012Q3 0.9869 190.4771 2.4788 

Denmark 34 342.2992** 

(41.7806) 

0.0501** 

(0.0029) 

41.0230** 

(2.0518) 

2014Q1 0.9989 22.6234 0.8157 

Estonia 26 61.1481** 

(6.4344) 

0.0868** 

(0.0082) 

19.0883** 

(1.3196) 

2010Q3 0.9943 19.5038 0. 8661 

Finland 30 314.6938** 

(50.9617) 

0.0556** 

(0.0054) 

30.5945** 

(2.7178) 

2012Q2 0.9960 146.2347 2.2078 

France 30 118.5212** 

(14.9341) 

0.0578** 

(0.0047) 

28.3235** 

(2.1115) 

2011Q4 0.9966 22.3705 0.8635 

Georgia 23 85.6270** 

(10.6583) 

0.0789** 

(0.0078) 

18.1134** 

(1.6434) 

2011Q1 0.9950 20.5415 0.94504 

Germany 32 76.8452** 

(2.8066) 

0.0757** 

(0.0027) 

22.5674** 

(0.5362) 

2009Q4 0.9990 7.8695 0.4959 



47 
 

Table 6-3 (Continued) 

Country Obs. Saturation level Intrinsic growth rate Infection point Infection time R-squared RSS RMSE 

Greece 33 63.6463** 

(3.5022) 

0.1160** 

(0.0087) 

21.3231** 

(0.5860) 

2009Q2 0.9943 54.9384 1.2903 

Hungary 27 148.8292 

(80.4765) 

0.0398** 

(0.0076) 

45.7730** 

(9.8572) 

2016Q4 0.9937 4.9603 0.4286 

Iceland 19 120.3947** 

(13.2456) 

0.1023** 

(0.0103) 

13.2147** 

(1.1697) 

2010Q4 0.9951 42.9616 1.5037 

Ireland 30 103.1049** 

(8.9399) 

0.0671** 

(0.0052) 

21.3584** 

(1.3982) 

2010Q1 0.9953 48.1427 1.2668 

Italy 37 100.7606** 

(10.2885) 

0.0661** 

(0.0077) 

21.7464** 

(1.7999) 

2008Q2 0.9825 334.3690 3.0062 

Latvia 30 52.7455** 

(1.9467) 

0.1039** 

(0.0049) 

18.1896** 

(0.4303) 

2009Q2 0.9978 12.1930 0.6375 

Liechtenstein 21 13.8643** 

(0.5612) 

0.1542** 

(0.0116) 

8.2818** 

(0.3504) 

2009Q1 0.9927 2.2353 0.3263 



48 
 

Table 6-4 (Continued) 

Country Obs. Saturation level Intrinsic growth rate Infection point Infection time R-squared RSS RMSE 

Luxembourg 36 220.6585** 

(39.0444) 

0.0429** 

(0.0039) 

41.2797** 

(3.6209) 

2013Q3 0.9964 48.0655 1.1555 

Malta 23 56.9733** 

(3.0503) 

0.1792** 

(0.0143) 

14.5863** 

(0.3790) 

2010Q1 0.9954 27.5453 1.0944 

Moldova 34 88.2709** 

(16.9609) 

0.0282** 

(0.0021) 

56.4208** 

(5.1949) 

2017Q1 0.9986 0.7254 0.1461 

Monaco 24 67.3746** 

(4.8913) 

0.0948** 

(0.0067) 

16.3905** 

(0.8533) 

2010Q2 0.9967 14.1787 0.7686 

Netherlands 32 125.4627** 

(18.0494) 

0.0583** 

(0.0057) 

29.0229** 

(2.4371) 

2011Q3 0.9946 50.3399 1.2542 

 

Norway 30 152.9518** 

(32.1499) 

0.0619** 

(0.0101) 

24.0674** 

(3.5170) 

2010Q4 0.9828 300.4292 3.1645 

Poland 31 86.8202** 

(4.0908) 

0.1273** 

(0.0102) 

16.8497** 

(0.4891) 

2008Q3 0.9922 172.5852 2.3595 
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Table 6-5 (Continued) 

Country Obs. Saturation level Intrinsic growth rate Infection point Infection time R-squared RSS RMSE 

Portugal 32 242.8598** 

(60.9362) 

0.0620** 

(0.0116) 

27.1115** 

(4.1238) 

2011Q1 0.9782 949.0455 5.4459 

Romania 41 36.1589** 

(2.0008) 

0.0877** 

(0.0059) 

28.0418** 

(0.7531) 

2009Q1 0.9949 16.5908 0.6361 

Russia 16 19.5090** 

(0.9640) 

0.1303** 

(0.0079) 

8.0920** 

(0.4372) 

2010Q2 0.9979 0.5130 0.179059 

Serbia 22 69.6121** 

(21.8827) 

0.0727** 

(0.0159) 

19.6488** 

(4.2829) 

2011Q3 0.9816 34.5470 1.2531 

Slovak Republic 25 205.9596** 

(16.9536) 

0.0565** 

(0.0025) 

28.1205** 

(1.3050) 

2013Q1 0.9994 5.7323 0.4788 

Slovenia 34 45.7362** 

(5.5275) 

0.0711** 

(0.0080) 

24.5157** 

(1.8747) 

2009Q4 0.9892 30.2698 0.9436 

Spain 32 94.0788** 

(4.0049) 

0.1072** 

(0.0065) 

18.5306** 

(0.4967) 

2008Q4 0.9957 92.0559 1.6961 
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Table 6-6 (Continued) 

Country Obs. Saturation level Intrinsic growth rate Infection point Infection time R-squared RSS RMSE 

Sweden 36 214.0630** 

(11.1466) 

0.0642** 

(0.0026) 

30.3381** 

(0.8389) 

2011Q4 0.9989 45.9186 1.1294 

Switzerland 30 94.9472** 

(4.7721) 

0.0891** 

(0.0049) 

19.6334** 

(0.6512) 

2009Q3 0.9973 35.7682 1.0919 

Turkey 11 25.6938** 

(2.6265) 

0.1794** 

(0.0242) 

5.0306** 

(0.6491) 

2010Q4 0.9936 1.6808 0.3909 

Ukraine 21 6.6925** 

(0.4228) 

0.1205** 

(0.0082) 

13.5133** 

(0.6040) 

2010Q2 0.9971 0.1336 0.0798 

UK 37 140.8515** 

(9.7562) 

0.0564** 

(0.0029) 

31.7801** 

(1.2489) 

2010Q4 0.9982 30.4185 0.9067 

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

Standard errors are presented in parentheses. 



51 
 

Table 6-1 shows that 3G diffusion patterns of most European countries are well described with 

the Gompertz model. For most countries, the estimated coefficients are statistically significant at 

the 99% level. Meanwhile, the R-squared values of 40 countries are larger than 0.97, and for 32 

countries the R-squared value is larger than 0.99, indicating that estimated diffusion curves fit the 

observed data well. The F statistics of 40 countries are higher than corresponding critical values 

of F at 99% confidence level, which indicates that it is justified to use the Gompertz model to fit 

the 3G diffusion processes in these European countries. 

Three exceptions are Belgium, Hungary and Lithuania. The estimates for Belgium and 

Lithuania fail to meet the convergence criteria after 500 iterations, and therefore it is likely that 

the 3G diffusion in these countries do not follow an S-shaped curve. The estimated 3G diffusion 

curve for Belgium generated by the previously defined regression processes is plotted together 

with the observed penetration rates in Figure 6-2. It is hard to determine from the chart whether 

the 3G diffusion pattern in Belgium follows an S-shaped curve. However, when the second order 

differential of the observed diffusion data is plotted against time, it is clear that the 3G diffusion 

in Belgium is not in accordance with the nature of an S-shaped model. The slope of an S-shaped 

curve is relatively small at the early stage, and it keeps increasing until the infection point is 

reached. The slope of the curve starts to decline thereafter, and it approaches zero at equilibrium 

level. Meanwhile, the second derivative of the function of an S-shaped curve is positive prior to 

the infection point and is negative afterward. Figure 6-3 shows that the second derivative of the 

observed samples in Belgium fluctuates around zero, which apparently violate the nature of the 

S-shaped model. Similar situation occurs in Lithuania. It is apparent from Figure 6-4 that the 3G 

diffusion in Lithuanian does not follow the S-shaped pattern. An in depth analysis of the observed 

data shows that 3G diffusion in Lithuania is not in accordance with the nature of an S-shaped 

model, as shown in Figure 6-5.  
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Figure 6-2 Estimated 3G diffusion in Belgium 

 

 

 
Figure 6-3 First and second derivative of 3G diffusion in Belgium 
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Figure 6-4 3G diffusion in Lithuania 

 

 
Figure 6-5 First and second derivate of 3G diffusion in Lithuania 
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infection points are statistically significant, the reliability of the results is doubtful. It is likely that 

the Gompertz model is not suitable for describing the 3G diffusion pattern in Hungary.  

Based on the discussion above, Belgium, Lithuania and Hungary are not included in the 

following study.  

6.3 3G Diffusion Patterns of European Countries 

In the previous chapters, the observed 3G diffusion in Albania, Azerbaijan, Belgium, Hungary, 

Lithuania, Macedonia and Montenegro are found inconsistent with the S-shaped diffusion model, 

and therefore are excluded in the following study. In order to keep the 3G diffusion pattern in the 

whole Europe comparable with that of each European country, the 3G diffusion pattern of 39 

European countries as a whole is estimated again with the Gompertz model. The results are listed 

in Table 6-2. 

Table 6-7 NLS regression result of the Gompertz model with aggregated 3G penetration rate 
in 39 European countries 

Coefficient Estimated value Standard error 

k 91.4642** 3.9256 

r 0.0610** 0.0021 

m 32.3014** 0.7306 

R-squared 0.9990  

RSS 0.6576  

RMSE 0.1953  

*Indicates the coefficient is significant at 95% confidence level. 

**Indicates the coefficient is significant at 99% confidence level. 

The distribution of saturation levels of the diffusions of 3G telephony in 39 European 

countries is presented in Figure 6-6, and relevant statistics are listed in Table 6-3. Saturation 

levels of diffusion of 3G telephony in the 39 European countries show great variability. Austria 

shows the largest market potential of 3G technology, measured with penetration rate (m=355.59). 
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In other words, the number of 3G subscriptions in Austria may eventually count 355.59% of its 

total population if the diffusion process continues under the assumption of the Gompertz model. 

On the other hand, the saturation level of the diffusion of 3G telephony in Ukraine is merely 

6.69%. That is, 3G subscriptions may count merely 6.69% of its total population, even when the 

market is completely mature. For Europe as a whole, the maximum 3G penetration rate may 

reach 91.46% eventually. It is higher than the median level of the 39 European countries 

(m=86.82). The average absolute deviation from the overall saturation level in Europe is 63.78, 

and the median average deviation of the 39 European countries is 38.64. Both of these measures 

of dispersion show that the saturation levels of diffusion of 3G telephony in the 39 European 

countries also vary greatly. 

 
Figure 6-6 Saturation level of diffusion of 3G telephony in European countries  
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Table 6-8 Statistics for saturation level of diffusion of 3G telephony in European countries 

 Saturation level 

Maximum 355.5924 

Minimum 6.6925 

Median 86.8202 

Overall European level 91.4642 

Average absolute deviation from the overall European level 63.7842 

Median absolute deviation 38.6425 

 

It is clear from the analysis above that the 3G diffusion pattern in each European country 

highly varies from one another. Previous studies show that such variation is likely to be 

influenced by specific external factors (Rouvinen, 2006; Jang, Dai, & Sung, 2005). In the next 

section, the external determinants of saturation level of 3G diffusion in European countries are 

analyzed in depth.  
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7 Determinants of 3G Diffusion in Europe 

7.1 Control Scheme of the Gompertz Model 

As discussed in Section 5, the Gompertz model was first developed as a model of human 

mortality. The rationale behind the model is that “the average exhaustions of a man’s power to 

avoid death were such that at the end of equal infinitely small intervals of time, he lost equal 

portions of his remaining power to oppose destruction”. In other words, the number of survivals 

at any given age is a function of the age variable, and the maximum “power to oppose destruction” 

and the rate at which such power declines are the major coefficients.  

When the Gompertz model is used to describe a diffusion pattern, the process of human 

mortality becomes a metaphor of the process how one adopts a new technology. Equation (7.1) 

presents the fractional growth rate of the number of adopters of a new technology. It is clear that 

the value of fractional growth rate is completely controlled with the coefficient r. Therefore, the 

coefficient r is considered as the intrinsic growth rate of a diffusion pattern.    

 
( )

( )
( )r t mdN t

re
N t dt

− −=  (7.1) 

The other major coefficient in the Gompertz model is the saturation level of diffusion. As 

shown in equation (5.4), although cumulative number of adopters at time t is determined by K, r 

and m simultaneously, coefficient K is independent from coefficients r and m. Therefore, the 

saturation level of diffusion is completely expressed by coefficient K in the Gompertz model. The 

saturation level is either measured by the number of adopters, or by the amount of revenues, or by 

the penetration rate of an innovation, as in this study.  

The coefficient of infection point m is hardly considered as part of the control scheme of the 

Gompertz model. Assume that the time variable used in the Gompertz model ranges in ( ),−∞ +∞ . 

As the time variable approaches negative infinity, the dependent variable approaches 0. In other 
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words, the introductory phase of a diffusion process is infinitely long, which is clearly 

inconsistent with reality. The coefficient m is therefore added in the model to adjust the length of 

the introductory phase of a diffusion pattern. 

In the next chapter, the nature and possible determinants of the saturation level of diffusion of 

3G telephony are discussed in depth. 

7.2 Influential Factors of Saturation Level of Diffusion 

As discussed in Section 4, the saturation level of diffusion is determined by both the demand 

and the supply of an innovation. For an individual, his/her decision to adopt an innovation is 

determined by the extent to which the characteristics of an innovation match his/her own 

characteristics. For a whole social system, the cumulative demands to an innovation are partially 

determined by the socioeconomic characteristics and communication behaviors of the whole 

society. Meanwhile, the characteristics of an innovation are mainly determined by the suppliers of 

the innovation. The saturation level of diffusion of an innovation is therefore determined by the 

equilibrium of the demands and the supplies. 

It is clear that the supplies and demands determine the saturation level of an innovation 

simultaneously. However, neither the supplies nor the demands can be measured accurately in 

empirical studies. Therefore, it is more practical to study the factors that influence the demands 

and the supplies, and to find out how these factors influence the saturation level of the diffusion 

eventually.  

Possible determinants of the demands and the supplies of 3G telephony are discussed 

respectively. 

7.2.1 Possible Determinants of the Demands to 3G Telephony 

For an individual, his/her decision to adoption is determined by three factors: personality, 

socioeconomic characteristics and communication behaviors. For a whole society, on the other 
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hand, unique characteristics of each individual are likely to be offset by that other individuals and 

are of minimal significance. Only the commonly shared characteristics and the average behaviors 

can be observed. Rogers (1983) reviewed previous studies in innovation adoption and listed 29 

Generalizations about the characteristics of adopters in different categories. Those characteristics 

that can be generalized in a whole social system are discussed below.   

1. Education: It is assumed that the overall demand to a new technology is higher for a 

social system with a higher level of education than that with a lower level of education. In 

this study, the level of education of each country is measured by the percentage of labor 

force with secondary education or tertiary education.   

2. Literacy: For a country with higher literacy rate, the demand for a new technology is 

likely to be higher than those countries with lower literacy rate.  

3. Social status: Demand for a new technology is likely to be higher for those countries 

where average social status is higher. Social status is likely to be indicated by such 

variables as income, level of living, possession of wealth, occupational prestige and so on. 

In most occasions, those who have higher income may enjoy higher social status. 

Therefore, it is convenient to use income measures to describe social status. In this study, 

the measure of income is GDP per capita.  

4. A commercial economic orientation: For a society with a commercial instead of a 

subsistence economic orientation, the demand to a new technology is relatively high. 

However, there are no quantitative measures to this characteristic. Since this characteristic 

does not play a direct or significant role in the demand for a new technology, it is not 

included in this study.  

5. A more favorable attitude toward credit: It is assumed that for those countries where 

overall attitude toward credit is more favorable, the demand for a new technology is likely 

to be higher. This characteristic is measured by domestic credit to private sector as a 

percentage of GDP in this study. 
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6. Exposure to mass media: In a society where people are more exposed to mass media, the 

information about a new technology spreads more widely, which increases the demand for 

the innovation. The level of exposure is also hard to measure with a quantitative measure. 

A possible proxy of this characteristic is the penetration rate of Internet, because Internet is 

gradually becoming one of the mainstream media, especially in relatively developed 

countries.  

7. Interconnectedness: Information spreads faster in a society with higher level of 

interconnectedness. It may also lead to higher demands for an innovation. The level of 

interconnectedness can hardly be measured by a single quantitative indicator. The proxy 

measure used in this study is the population living in the largest city as a percentage of 

total population of a country.  

8. Others: Rogers also concluded other characteristics of adopters that may have a positive 

influence on the demand for an innovation, including the ability to cope with uncertainty, a 

more favorable attitude toward changes, less dogmatic personality and so on. Although 

these characteristics are not likely to be measured with a single quantitative indicator, they 

may in accordance with features of relatively young persons. In this study, population aged 

from 15 to 64 as a percentage of population is used as a proxy of these characteristics.  

7.2.2 Possible Determinants of the Supply to 3G Telephony 

An individual’s decision to adopt an innovation is also influenced by the supply of the 

innovation. More specifically, the quality and quantity of supply determines the intrinsic 

characteristics of an innovation, and further influences the decision of adoption. The determinants 

of the  supply of an innovation may influence the saturation level of an innovation indirectly.  

Most determinants of the supply of an innovation are industrial- level factors. Several possible 

determinants are discussed below.  

1. Competition: In a highly competitive market, an innovation tends to be imitated rapidly 

after it is released to the market. As a result, the price of the new technology reduced to a 
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level which is only marginally higher than the cost. More people can afford the adoption, 

and the saturation level of the diffusion tends to be higher. Meanwhile, in a highly 

competitive market, firms devote themselves in creating differential advantages over each 

other. One of the major strategies is to improve the innovative product to better meet the 

demands. Therefore, fierce competition in a country may lead to a relatively high 

saturation level of the diffusion. In order to describe the competition within a country with 

higher accuracy, two measures are used in this study: one is the Herfindahl-Hirschman 

index (HHI) in the telecommunication market of a country, the other is the number of 

mobile network operators in a country.  

2.  Resources: When resources used for an innovation is limited, the supply of the 

innovative product or service is also limited in quantity, and the price of the innovation is 

driven high. As a result, the saturation level of the diffusion of the innovation is relatively 

low. In mobile telecommunication industry, the major resources are radio spectrum and 

network license. In this study, the auction prices for 3G licenses and the band size of 

released radio spectrum in each country are used as measures of resources. 

3. Substitution: If an innovation can be substituted by an alternative, or if part of the 

functions of an innovative product is the same as that of its previous generation, people 

may choose to adopt the alternative product, or remain as users of the previous generation. 

Therefore, the saturation level of the diffusion is lower for an innovation that can be easily 

substituted. The major substitutions to the 3G telephony include 2G telephony and fixed 

Internet, since 3G technology functions as both mobile voices and mobile broadband. In 

this study, the penetration rate of 2G telephony and the penetration rate of Internet in each 

country are used as measures of substitution. It is noteworthy that the penetration rate of 

Internet is also used to measure the extent to which people are exposed to mass media. 

Therefore, the influence that Internet penetration rate has on the saturation level of 3G 

diffusion is blurred.  
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7.3 Model 

Possible determinants of the saturation level of diffusion and corresponding indicators are 

discussed in Chapter 7.2. In following chapters, the saturation level of 3G diffusion in 39 

European countries are modeled with the above mentioned indicators to determine the influence 

of each determinant.  

The saturation level of the diffusion of 3G technologies in a country is determined by the 

demand and supply of 3G telephony simultaneously. Assume that both the demand and the supply 

have a linear effect on the saturation level. The saturation level of diffusion can be expressed with 

the following equation: 

 ( ) 1 2,i i i i iK f D S D S= = Α+Β +Β   (7.2) 

where iD  refers to the level of demand in country i and iS  refers to the level of supply. 1Β  

and 2Β  are coefficients of demand and supply respectively. Α  is a constant.  

 As discussed in Chapter 7.2, the demand and supply of an innovation is determined by 

several exogenous factors. Further assume that each factor has a linear effect on the demand or 

the supply. The saturation level of diffusion can be expressed with equation (7.3): 

 

( ) ( )
( ) ( )

1 , 2 ,

1 , 2 ,

1 2 1 , 2 ,( )

i i d i s

d d i d s s i s

d s d i d s i s

K g X h X

X X

X X

α β α β

α α β β

   = Α+Β +Β   
= Α+Β + +Β +

= Α+Β +Β +Β +Β

  (7.3) 

where ,i dX  is a vector of variables that influence the demand in country i, ,i sX  is a vector of 

variables that influence the supply. dβ  and sβ  are vectors coefficients of the demand and that 

of the supply respectively.  

In order to determine the influences of the factors discussed in Chapter 7.2, the model is 

specified as equation (7.4): 
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 1 2 3 4 5 6

7 8 9 10 11 12 2
i

i

K EDU LR GDPPC CR POPILC POPY
PRI HHI NUM APL BAND PR G
α β β β β β β

β β β β β β ε
= + + + + + +

+ + + + + + +
  (7.4) 

where iε  is the error term.  

Model (7.4) is estimated with an appropriate econometric method in the following chapters.  

7.4 Data 

Table 7-1 presents the definitions and descriptive statistics of the variables that are usable in 

the regression analysis.  

Table 7-2 presents the correlation matrix of the variables. The dependent variable K is 

statistically significantly correlated with the level of credit usage, the population aged from 15 to 

64, the penetration rate of Internet and the band size of radio spectrum used for mobile 

telecommunication. The dependent variable K is not significantly correlated with the rest of 

independent variables. Meanwhile, the correlation coefficient between K and the population from 

15 to 64 is negative, which is opposite to the expectation. Although the pairwise correlation 

between the dependent variable and part of independent variables are insignificant, these 

variables are not excluded from the model based on two reasons: Firstly, there are strong 

theoretical reasons to include these variables; secondly, the real effects these variables have on 

the dependent variable can only be detected when the influences from other variables are 

controlled.  

It is also noteworthy that pairwise correlation coefficients between some independent variables 

are statistically significantly large, as shown in Table 7-2. For example, the correlation 

coefficients between GDP per capita and credit usage, population aged from 15 to 64 and 

penetration rate of Internet are 61.09, -61.49 and 79.83 respectively. Therefore, it is predictable 

that the multiple linear regression may suffer from multicollinearity.  
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Table 7-1 Descriptions of variables 

Variable Description Unit Source Obs. Mean Minimum Maximum Std. Dev.  

EDU Labor force with secondary education or above % WB 35 73.4973 11.0000 94.4000 19.4720 

LR Literacy rate % WB 36 98.3612 99.7942 90.8167 1.9177 

GDPPC GDP per capita constant 2000 $ WB 39 19950.8955 540.5997 99399.6029 21403.1350 

CR Credit to private sector to GDP % WB 36 100.7666 25.1536 249.2818 59.3433 

POPILC Population living in the largest city to total population % WB 38 31.3160 5.6480 100.9178 21.6702 

POPY Population aged from 15 to 64 to total population % WB 36 68.3077 65.0177 72.4672 1.9439 

PRI Users of Internet per 100 habitants N/A ITU 39 56.7122 10.7550 92.9240 21.6679 

HHI Herfindahl-Hirschman index for mobile telecommunication N/A WCIS 39 3966.1103 2255.3951 10000.0000 1575.3411 

NUM Number of mobile network operators N/A WCIS 39 3.74356 1.0000 8.0000 1.2715 

APL Accumulated auction prices for 3G licenses Mil. $ IC 39 3020.1851 0.0000 51707.1000 10073.8192 

BAND Accumulated band size of radio spectrum MHz WCIS 37 141.8351 20.0000 348.3000 88.1477 

PR2G Subscriptions of 2G telephony per 100 habitants N/A WCIS 39 81.9012 9.8097 120.4418 21.9399 

Source: WB refers to World Bank’s world development indicator, ITU refers to International Telecommunication Union’s ICT Indicators Database 2012, WCIS refers to 

World Cellular Information Service, IC refers to Informa’s Intelligence Center 
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Table 7-2 Pairwise correlations (correlation coefficients multiplied by one hundred)  

 K EDU LR GRPPC CR POPILC POPY PRI HHI NUM APL BAND PR2G 

K 100.00             

EDU 10.68 100.00            

LR 12.73 71.28** 100.00           

GDPPC 18.12 2.07 18.27 100.00          

CR 33.76* -20.92 -3.99 61.09** 100.00         

POPILC -15.43 -15.64 -15.74 -6.02** 3.27 100.00        

POPY -34.67* 2.46 -6.57 -61.49** -35.26* -6.34 100.00       

PRI 45.30** -1.40 17.57 79.83** 50.51** -9.34 -50.03** 100.00      

HHI -20.69 -11.48 -11.95 -12.27* -20.59 30.84* 18.47 -15.67 100.00     

NUM 0.34 40.15* 31.72 -19.87 -22.39 -32.54* 29.87 -17.47 -60.50** 100.00    

APL -1.65 5.75 8.91 18.02 13.91 -34.76 -32.68 18.77 -40.56 1.01 100.00   

BAND 57.88** 15.40 19.23 43.46 34.04 -29.94* -56.17* 53.08** -39.79* 12.85 43.22** 100.00  

PR2G 20.99 -2.24 5.27 34.95 24.86 -3.29 -5.83 33.78* 6.17 -14.72 -5.63 -7.73 100.00 

*Indicates the coefficient of correlation is significant at the 95% confidence level. 

**Indicates the coefficient of correlation is significant at the 99% confidence level. 
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7.5 Estimation 

Table 7-2 shows that the correlation coefficients between the independent variable and 8 out of 

12 possible variables are not statistically significant. Meanwhile, some variables show 

significantly strong correlation between other variables, which may result in multicollinearity in 

the regression. Therefore, it is predictable that regression coefficients of some variable are 

statistically insignificant. The regression result of model (7.4) is listed in Table 7-3.  

Table 7-3 Regression result of the full model 

Coefficient Estimated value Standard error 

C 207.7666 1090.6774 

EDU 1.7471 1.0318 

LR -5.6747 8.3551 

GDPPC 0.0035+ 0.0018 

CR -0.1988 0.3041 

POPILC 0.4565 0.8726 

POPY 8.8189 11.1138 

PRI -0.7538 1.0092 

HHI -0.0695* 0.0293 

NUM -38.7057+ 19.7725 

APL -0.0047** 0.0014 

BAND 0.7188** 0.2230 

PR2G 1.0218 0.7279 

Observations 34  

R-squared 0.6966  

F-statistic 3.8326  
**Indicates the coefficient is significant at 99% confidence level. 

*Indicates the coefficient is significant at 95% confidence level. 
+Indicates the coefficient is significant at 90% confidence level. 
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The regression result of shows that only 5 out of 12 variables in model (7.4) are statistically 

significant. Meanwhile, the signs of the coefficients of literacy rate, credit usage and penetration 

rate of 2G telephony are opposite to expectations. These results are likely to result from 

multicollinearity. In order to detect the real influence of each variable, it is necessary to remedy 

the model to reduce multicollinearity. 

One effective solution to the problem of multicollinearity is stepwise regression. As discussed 

in Chapter 7.2, all of the listed variables are likely to influence the saturation level of the 

diffusion. But the level of influence of each variable highly varies with that of one another. 

Therefore, the variable that is most likely to influence the demand and the one that is most likely 

to influence the supply are selected as initial variables, and the rest variables are selected by the 

automatic procedure of the stepwise regression. Among all the variables that influence the 

demand to 3G telephony, the income variable is likely to have the highest influence. Those who 

have higher income generally have higher affordability to an innovation, which leads to higher 

demand to the innovation. The most important factor that influences the supply is competition. 

Fierce competition generally leads to lowered prices and more advantageous products. The 

consequences in turn stimulate the demand, and result in a higher level of saturation. Therefore, 

the stepwise regression starts with two variables: GDPPC and HHI. 

The estimation result of stepwise regression is presented in Table 7-4. Four variables are 

selected in the stepwise regression procedure besides GDPPC and HHI, including EDU, NUM, 

APL and BAND. Coefficients for all variables, including the constant, are statistically significant. 

Coefficients for APL and BAND are significant at the 99% confidence level, and coefficients for 

GDPPC, EDU, HHI and NUM are significant at the 95% confidence level. The R-squared value 

is 0.6452, showing that about 64.52% of the saturation level of 3G telephony diffusion in 

European countries can be explained by the 6 variables mentioned above. F-statistic shows that 

the coefficients of all variables in the stepwise regression are jointly significant at the 99% level. 
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Table 7-4 Stepwise regression result 

Coefficient Estimated value Standard error 

C 322.3820* 139.3430 

GDPPC 0.0022* 0.0009 

EDU 1.5288* 0.7237 

HHI -0.0631* 0.0254 

NUM -36.7525* 14.3463 

APL -0.0044** 0.0012 

BAND 0.5021** 0.1659 

Observations 34  

R-squared 0.6328  

F-statistic 7.7554**  

**Indicates the coefficient is significant at 99% confidence level. 

*Indicates the coefficient is significant at 95% confidence level. 

 

Since each European country varies with one another in observation, it is likely that the 

regression suffers from heteroscedasticity, and the estimators are not efficient. It is necessary to 

test if heteroscedasticity exists and, if it does exist, remedy the problem. The residuals and 

squared residuals from the stepwise regression are respectively plotted against predicted 

dependent variable K  in Figure 7-1(a) and Figure 7-1(b). It is apparent from Figure 7-1(a) that 

the residuals spread wider around zero as K  increases. Figure 7-1(b) further shows an explicit 

pattern between the squared residuals and the predicted K. It indicates high possibility that 

heteroscedasticity exists.  

Formal tests show solid evidence of heteroscedasticity. Table 7-5 shows the results of White 

test of the stepwise regression. The White statistic exceeds the critical 2χ  value at the 95% 

confidence level, indicating there is heteroscedasticity in the regression. 
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(a)                                 (b) 

Figure 7-1 Residual Plots 

 

Table 7-5 Results of White Test 

 Coefficient Standard Error 

Constant 2766.6604 2892.4696 

2GDPPC  -8.9907e-07 9.9338e-07 

2EDU   0.0011 0.4036 

2HHI   -6.6490e-05 0.0001 

2NUM   -75.0563 63.5387 

2APL   -5.2518e-06** 1.3472e-06 

2BAND   0.1189** 0.0232 

Observations 33  

n*R-squared 18.6518**  
**Indicates the coefficient is significant at 99% confidence level. 

2
0.05 (6)χ =12.59516 

Since there are multiple variances in the model, it is hard to determine the structural 

relationship between the error variance and a single variable explicitly. Therefore, the weighted 

least square (WLS) method is not applicable. The solution to heteroscedasticity in the regression 
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is to estimate robust standard errors. Table 7-6 shows the result of regression with White’s 

heteroscedasticity-consistent variances and standard errors. White’s heteroscedasticity-corrected 

standard errors are different from the result of OLS estimation. As a result, the statistical 

significance of the coefficient of EDU is reduced, and that of the coefficient of HHI is enhanced. 

The coefficients of GDPPC, HHI, NUM, APL and BAND are significant at the 95% level, and 

the coefficient of EDU is still significant at 90% level.  

 

Table 7-6 Regression result with White’s heteroscedasticity-consistent variances and 
standard errors  

Coefficient Estimated value Standard error 

C 322.3820* 120.6255 

GDPPC 0.0022* 0.0009 

EDU 1.5288+ 0.7646 

HHI -0.0631** 0.0196 

NUM -36.7525* 13.2889 

APL -0.0044** 0.0010 

BAND 0.5021* 0.2207 

Observations 34  

R-square 0.6328  

F-statistic 7.7554**  

**Indicates the coefficient is significant at 99% confidence level. 

*Indicates the coefficient is significant at 95% confidence level. 

+ Indicates the coefficient is significant at 90% confidence level. 
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7.6 Analysis 

The regression result indicates that the saturation level of diffusion of 3G telephony in 

European countries are influenced by six variables, including GDP per capita, population with 

secondary education or above, concentration rate of mobile industry, number of mobile operators, 

auction price of mobile licenses and released band size of radio spectrum.  

Holding the other variables constant, if GDP per capita in a country increases by $1, the 

maximum market potential of 3G telephony in the country increases by 0.0022 percentage points. 

When GPD per capita in a country increases, the overall affordability of people in the country 

tends to be higher. As a result, more people are able to replace their 2G handsets with 3G ones 

and meanwhile subscribe 3G services. Therefore, the market potential of 3G telephony is larger 

for a country with relatively higher GDP per capita.    

Similarly, if the population with secondary or higher education in a country increases by 1 

percentage point, the saturation level of 3G telephony diffusion increases by 1.5288 percentage 

point. 3G technology enables mobile broadband, which makes smartphones and mobile 

applications more functional and more complex. These innovative products are more likely to be 

accepted by people with higher education. Therefore, the saturation level of 3G telephony is 

higher for a country where people are more educated. 

 Competition level of mobile telecommunication industry in a country also influences the 

market potential of 3G telephony in the country. It is noteworthy that both the concentration rate 

and the number of mobile network operators influence the market potential of 3G telephony. 

These two variables together describe the structure of competition, and each variable reflects one 

aspect of the industry. Therefore, these two variables are described together. When the other 

variables are kept constant, especially when the number of network operators is constant, a higher 

HHI indicates that the market share of the largest operators increases. On the other hand, when 

the concentration rate of the industry is constant, the more operators exist in the market, the 

higher market share the largest operators enjoy. In both cases, leading operators enforce stronger 
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control over the market. Telecommunication industry is featured with monopolistic competition 

all around the world. In most European countries, the market share of the leading operators is 

higher than 40%. As a result, the market leaders are able to price 3G telephony to maximize their 

economic benefits. On the other hand, market followers tend to price 3G telephony at similar 

level in order to survive in the game. Therefore, in a market where leading operator has higher 

power, price of 3G telephony tends to be higher, and the market potential of 3G telephony is 

lower. The coefficients of both HHI and NUM are negative, which jointly supports the argument.   

The last two variables, APL and BAND determine the price and amount of radio spectrum, the 

major resource of 3G telephony. As the accumulated auction price of mobile licenses increases by 

$1 million, the saturation level of 3G telephony decreases by 0.0044 percentage points. For 

mobile operators, it is natural that the license fee is part of their costs. Such costs are likely to be 

transfer to be part of the subscription prices. Therefore, higher price of licenses leads to lower 

market potential of 3G telephony. Meanwhile, if the spectrum band size increases by 1MHz in a 

country, holding other variables constant, the saturation level of 3G telephony increases by 

0.5021 percentage points. When spectrum resources are sufficient, 3G subscribers usually enjoy 

high quality voice and high-speed mobile surfing. Therefore, if more spectrum resources are 

released in a country, keeping other variables constant, the saturation level of 3G telephony is 

usually higher.  

7.7 Policy Implications 

The study in the saturation level of diffusion of 3G telephony is of great practical importance 

for governments, network operators and handset manufacturers.  

Government activities directly influence the development of telecommunication industry. In 

most countries, radio spectrum resources are inherently owned by the government. For any 

mobile network operator deciding to provide mobile services, it is necessary to obtain the rights 

to dispose a specific band of spectrum and, in some cases, to obtain the license for operating with 
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a specific telecommunication standard. For a country where the price of license is relatively low 

and the released spectrum resources are sufficient, more operators are encouraged to provide 3G 

services. As the intensity of competition increases, it is likely that consumers gain more benefits. 

Therefore, the governments are suggested to promote competition by actively releasing resources 

and lowering the barriers to entry for network operators. 

The saturation level of 3G telephony diffusion is of great importance for mobile network 

operators. Given the fact that the market structure of telecommunication is relatively stable, an 

operator can predict its future revenues based on the prediction to the maximum market potential 

of mobile services. Similarly, an operator may also use the saturation level as a reference in 

pricing its services. Therefore, mobile network operators may benefit from the accurate 

prediction of saturation level of the diffusion of 3G telephony.  

Once the penetration rate of 3G telephony exceeds 100%, the incremental subscriptions 

onwards are likely to have more than one handset. Some consumers may subscribe more than one 

contract of mobile services to meet the needs of massive communication, while the others do so 

to “activate” their second or even third handset. Nowadays people desire to communicate and to 

surf Internet regardless to the limitations of time and space. As a result, mobile handsets such as 

smartphones, tablets and USB modems become more popular. In a country where market 

potential of 3G services is relatively high, mobile handset manufacturers see clear potential for 

more advanced and functional products. The determinants of saturation level of the diffusion of 

3G telephony also serve as important references for marketing strategies of handset 

manufacturers.  
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8 Conclusion 

This study investigated the diffusion of 3G telephony in European countries and studied the 

external factors that influence the saturation level of the diffusion. Two major innovative topics 

were discussed in this study. The first was focusing on the diffusion of 3G telephony, which was 

not involved in previous studies. The second and the most important, was studying the external 

factors that influence the saturation level of diffusion of 3G telephony.  

In this study, the Logistic model, the Gompertz model and the Bass model were compared and 

the Gompertz model was selected as the best-fitting model for diffusion of 3G telephony in 

Europe from 2003 to 2012. The Gompertz model was also applied to estimate the diffusion of 3G 

telephony in 39 European countries.  

In the study of external factors that influence the saturation level of diffusion, six determinants 

were found theoretically and empirically relevant. It was found that the overall income level and 

education level had positive impacts on the saturation level of diffusion. Intensive competition 

also positively impacted the diffusion of 3G telephony. Appropriate telecommunication 

regulations were crucial for diffusion of 3G telephony. Both sufficient spectrum resources and 

relatively low price of licenses promoted the diffusion of 3G telephony and led to a high 

saturation level of diffusion.  

For policy makers, this study serves as reference for pricing licenses and releasing spectrum 

resources. For mobile operators and handset manufacturers, the study is also helpful in making 

pricing decisions, product portfolios and marketing strategies.  

Nowadays, the 4G technology has been deployed in many European countries. It is predictable 

that 4G will gradually substitute 3G. Therefore, two questions are crucial for market players: 

firstly, will the diffusion of 3G telephony proceed to saturation? And if not, secondly, what will 

the saturation level of 3G telephony be in the context of 4G deployment? These questions are of 

great importance in practice, and are likely to be one of the directions of future studies.  



75 
 

Bibliography 

Bass, F. M. (1969, 1). A New Product Growth for Model Consumer Durables. Management 

Science, 15(5), pp. 215-227. 

Bass, F. M., Krishnan, T. V., & Jain, D. C. (1994). Why the Bass Model Fits without Decision 

Variables. Marketing Science, 13(3), pp. 203-223. 

CDG. (2012). Worldwide Deployment Search. Retrieved 8 31, 2012, from CDMA Development 

Group: http://www.cdg.org/worldwide/ 

Chu, W.-L., Wu, F.-S., Kao, K.-S., & Yen, D. C. (2009). Diffusion of Mobile Telephony: An 

Empirical Study in Taiwan. Telecommunications Policy, 33, pp. 506-520. 

Fisher, J. C., & Pry, R. H. (1971). A Simple Substitution Model of Technological Change. 

Technological Forecasting and Social Change, 3, pp. 75-88. 

Geroski, P. A. (2000). Models of technology diffusion. Research Policy, 29(4), pp. 603-625. 

Gompertz, B. (1825). On the Nature of the Function Expressive of the Law of Human Mortality, 

and on a New Mode of Determining the Value of Life Contingencies. Philosophical 

Transactions of the Royal Society of London, 115, pp. 513-583. 

Gruber, H., & Verboven, F. (2001, March). The Diffusion of Mobile Telecommunications 

Services in the European Union. European Economic Review, 45(3), pp. 577-588. 

Gruber, H., & Verboven, F. (2001, July). The Evolution of Markets under Entry and Standards 

Regulation — the Case of Global Mobile Telecommunications. International Journal of 

Industrial Organization, 19(7), pp. 1189-1212. 

Gupta, R., & Jain, K. (2012). Diffusion of Mobile Telephony in India: An Empirical Study. 

Technology Forecasting and Social Change, 79, pp. 709-715. 

ITU. (2012). All About the Technology. Retrieved 9 19, 2012, from International 

Telecommunication Union: http://www.itu.int/osg/spu/ni/3G/technology/index.html 

Jang, S.-L., Dai, S.-C., & Sung, S. (2005). The Pattern and Externality Effect of Diffusion of 



76 
 

Mobile Telecommunications: the Case of the OECD and Taiwan. Information Economics 

and Policy, 17, pp. 133-148. 

Meade, N., & Islam, T. (1998, August). Technological Forecasting—Model Selection, Model 

Stability, and Combining Models. Management Science, 44(8), pp. 1115-1130. 

Meade, N., & Islam, T. (2006). Modelling and Forecasting the Diffusion of Innovation - A 

25-year Review. International Journal of Forecasting, 22, pp. 519-545. 

Michalakelis, C., Varoutas, D., & Sphicopoulos, T. (2008). Diffusion models of mobile telephony 

in Greece. Telecommunications Policy, 32(3-4), pp. 234-245. 

Rogers, E. M. (1983). Diffusion of Innovations (Third Edition ed.). New York, N. Y., the United 

States of America: The Free Press. 

Rouvinen, P. (2006). Diffusion of Digital Mobile Telephony: Are Developing Countries Different? 

Telecommunication Policy, 30, pp. 46-63. 

Schmittlein, D. C., & Mahajan, V. (1982). Maximum Likelihood Estimation for an Innovation 

Diffusion Model of New Product Acceptance. Marketing Science, 1(1), pp. 57-78. 

Sridhar, K. S., & Sridhar, V. (2007). Telecommunications Infrastructure and Economic Growth: 

Evidence from Developing Countries. Applied Econometrics and International 

Development, 7(2). 

Srinivasan, V., & Mason, C. H. (1986). Nonlinear Least Squares Estimation of New Product 

Diffusion Models. Marketing Science, 5(2), pp. 169-178. 

Waverman, L., Meschi, M., & Fuss, M. (2005). The Impact of Telecoms on Economic Growth in 

Developing Countries.  

Winsor, C. P. (1932, 1 15). The Gompertz Curve as a Growth Curve. Proceedings of the National 

Academy of Sciences, 18, pp. 1-8. 

Wu, F.-S., & Chu, W.-L. (2010). Diffusion Models of Mobile Telephony. Journal of Business 

Research, 63, pp. 497-501. 



1 
 

Appendix 

Table A1-1 Summary of 3G telecommunication market in each European country 

Country Start time Current penetration rate 

Albania 2011Q1 10.72% 

Andorra 2008Q1 20.12% 

Armenia 2008Q4 15.10% 

Austria 2003Q2 114.79% 

Azerbaijan 2007Q2 8.97% 

Belgium 2005Q3 26.29% 

Bosnia Herzegovina 2009Q2 4.46% 

Bulgaria 2006Q1 75.17% 

Croatia 2005Q4 55.25% 

Cyprus 2004Q4 35.10% 

Czech Republic 2004Q3 67.41% 

Denmark 2003Q4 80.70% 

Estonia 2005Q4 36.97% 

Finland 2004Q4 112.24% 

France 2004Q4 49.73% 

Georgia 2006Q3 44.59% 

Germany 2004Q2 47.72% 

Greece 2004Q1 50.94% 

Hungary 2005Q3 18.53% 

Iceland 2007Q3 70.51% 

Ireland 2004Q4 58.29% 

Italy 2003Q1 75.23% 
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Table A1-2 (Continued) 

Country Start time Current penetration rate 

Latvia 2004Q4 40.14% 

Liechtenstein 2007Q1 11.90% 

Lithuania 2006Q1 41.28% 

Luxembourg 2003Q2 62.82% 

Macedonia 2008Q3 20.95% 

Malta 2006Q3 46.98% 

Moldova 2003Q1 13.26% 

Monaco 2006Q2 42.05% 

Montenegro 2007Q2 15.95% 

Netherlands 2004Q2 54.49% 

Norway 2004Q4 76.66% 

Poland 2004Q3 76.29% 

Portugal 2004Q2 108.89% 

Romania 2001Q1 27.05% 

Russia 2003Q1 13.48% 

Serbia 2006Q4 30.47% 

Slovak Republic 2006Q1 63.52% 

Slovenia 2003Q4 30.04% 

Spain 2004Q2 76.65% 

Sweden 2003Q2 103.57% 

Switzerland 2004Q4 66.39% 

Turkey 2009Q3 18.03% 

Ukraine 2007Q1 4.56% 

UK 2003Q1 64.77% 
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