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Abstract 

This thesis examines the improvement in the pricing of the Swedish OMXS30 index options with 

deterministic volatility models and stochastic volatility models, by using Excel VBA. To answer our 

problem statement 

- Do option pricing models which incorporate the volatility smile perform better than BS 

(Black-Scholes) empirically using option prices from OMXS30? 

we compare empirical performances of five alternative option pricing models: (1) The classic Black-

Scholes using the volatility of index returns for the last 30 trading days and fitted volatility, (2) 

Practitioner Black-Scholes that fits the implied volatility surface, (3) Gram-Charlier which incorporate 

skewness and kurtosis, (4) Heston’s continuous-time stochastic volatility model and (5) Heston and 

Nandi’s GARCH model. The alternative option pricing models are compared to the Black-Scholes models 

as benchmark. 

We find that none of the models can fully approximate the market, but they can however improve the 

pricing errors significantly. Both Practitioner Black-Scholes and Heston outperform the benchmarks and 

other models in terms of effectiveness for in-sample and out-of-sample pricing as they are better to fit 

and forecast the volatility smile. The pricing errors show a pattern of being highest for out-of-the-money 

options and decreases as we move to in-the-money options for all models. For delta hedging, only 

Practitioner Black-Scholes are able to outperform Black-Scholes, but the difference in performance is 

marginal. The thesis concludes that models that are able to incorporate the volatility smile and mitigate 

the maturity bias improve the ability of pricing the options. As for hedging, these model parameters are 

of minor importance as Practitioner Black-Scholes barely outperforms Black-Scholes.  
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Chapter 1 Introduction 

Motivation and Objective 

 
Throughout our education in economics and finance, the pricing of assets has been a major topic in 

financial and capital market theory. The introduction of Black & Scholes model (BS) has always been an 

interesting subject as this was the first option pricing model taught in class. However, our curiosity 

sparked after a class in “Derivatives and Risk Management Techniques” at UNSW, Australia where BS 

was criticized for its empirically deficiencies. Our motivation has been to seek other option pricing 

models that are able to perform better and circumvent the documented biases BS has been empirically 

criticized for. To our surprise, there is an extensive number of articles and working papers on alternative 

option pricing models, while the articles that compare these models have no consensus on a superior 

model. As we find the chosen models more theoretically attractive to BS, we want to see which models 

that empirically can perform better than BS as a benchmark. In addition, most papers have used large 

indices such as S&P 500 and FTSE100 to compare the models. As the recent event of the financial crisis 

in 2007-2008, we have decided to use a sample of option prices after the crisis and on a smaller index, 

namely the Swedish OMXS30.  

Problem statement 

 

As indicated earlier, our problem statement is as follows 

- Do option pricing models which incorporate the volatility smile perform better than BS 

empirically using option prices from OMXS30? 

Our objective for this thesis is to investigate and compare performance alternative option pricing 

models empirically on the Swedish OMXS30 in terms of modeling and forecasting the option prices, as 

well as delta hedging. Since there have been several papers that show weakness of the BS model and 

incremental contribution of alternative option pricing models, we want to contribute as a study that 

compare existing models.  
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Structure 

 
The structure of the thesis is as follows. We start with a literature review of the research done prior to 

this thesis and explain how the thesis fit in the option model picture. Chapter 2 introduces the option 

basics to let the reader get a grasp of the concept of option pricing. We continue with financial series 

characteristics and investigate the volatility smile, where it stems from and why this is important in 

option pricing. Afterwards, we explain two important concepts, namely Brownian motion and risk-

neutral valuation to better understand the models presented in Chapter 3. We describe the different 

models with practicality, thus the mathematical aspect is held to a minimum. The focus is on 

understanding the model and their differences, rather than the mathematical derivation. The models 

are presented in this order: Black-Scholes (1973), Practitioner Black Scholes (Dumas et al. (1998), 

Christoffersen & Jacobs (2003)) that fits the implied volatility surface, Gram-Charlier (2004) which 

incorporates skewness and kurtosis, Heston’s (1993) continuous-time stochastic volatility model and 

Heston and Nandi’s (2000) GARCH type discrete model.  In Chapter 4 the data from OMXS30 is 

presented with statistical properties of the call option and followed by data calibration in Chapter 5 

where we try to find parameters that can reproduce the market data efficiently. In this chapter we try to 

effectively and consistently implement parameter calibration from currently traded options. We use 

Excel VBA to calibrate the model as we want this thesis to be practical and implementable by others.  

After the calibration we focus on the pricing and hedging performance of the different models in 

Chapter 6 and compare them with BS as a benchmark. The emphasis will be on in-sample, out-of-sample 

pricing performance and delta hedging errors. At last, we conclude which models produce the best 

results empirically and which should be implemented. 

Limitations 

 
In this thesis we have to our full capacity tried to be consistent and as thorough as possible. Due to time 

constraints and computational limitations, a few simplifying assumptions was made. The assumptions 

are made to the best of our intentions and it is important to point this out and explain their implications.  

1. The Non-Synchronous Bias. We do not have time-stamped data option prices and therefore 

exposed to risk that option price and index value may be recorded at different times. If there is a 

jump in the index shortly after the option price is registered there would be introduced some 

biases.  We try to mitigate these errors by filtering the options. 
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2. We assume that all markets are perfect. The transaction costs do not affect the option price, 

and all the investors are rational and the market is arbitrage-free. 

3. We have attempted to incorporate the dividends by using the Datastream calculated dividend 

yield. This may be an ad hoc approximation and does not reflect the expected dividend payout. 

Since the “futures” market was not reliable enough we assume the Datastream calculated 

dividend yield as a sufficient approximation. 

4. Due to the computational burden, only call options are investigated. The results may have been 

different if the data set included both puts and calls. Still, the put-call parity should ensure some 

consistency. 

5. Another aspect to consider is whether the different loss functions implemented can affect the 

results, as the Practitioner Black-Scholes is calibrated with a different loss function than the rest. 

6. The last point to consider is the use of Excel VBA, if it is powerful enough to handle the 

advanced models. Due to its practicality we chose to implement all the models by using the 

software. It can be interesting to compare the results with other programs such as Matlab, C++ 

and R.1 

Literature Review 

 
The history of option dates back to Louis Bachelier (1900) who first applied the concept of Brownian 

motion in pricing of stocks. His contribution is the first paper to use advanced mathematics and became 

the norm in the study of finance. Prior to the Black & Scholes model, options were priced by discounting 

expected payoff. A major breakthrough was provided by the paper of Black & Scholes (1973) when they 

published their article on option pricing. The formula revolutionized the pricing and boosted options 

trading. The model set a new benchmark in history of finance.  

Although the formula became an important tool for pricing options, its empirical deficiencies and its 

restrictive assumptions have motivated development of more advanced models. After the US market 

crash in October 1987, it is well known that implied volatilities appeared to differ across exercise prices 

(Rubinstein, 1994). Similar patterns have also been documented in the U.K., German and Japanese index 

option markets by Genmill & Kamiyama (1997). The assumption that asset returns follow a log-normal 

distribution and the volatility is constant throughout the life of options is mainly responsible for 

deviation between model and market prices (Cont, 2001). According to BS, all options with the same 

                                                           
1
 http://www.mathworks.se/products/matlab/, http://www.r-project.org/  
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maturity should have the same implied volatility. However, options which are in-the-money or -out-of-

the-money seem to have higher implied volatilities. The magnitude of these violations cannot be 

explained by market imperfections. The pattern known as “volatility smile” suggests that the Black-

Scholes model tends to misprice these options.  

Several studies have suggested extensions of the Black & Scholes model to account for the volatility 

smile and other empirical violations. These extensions can loosely be grouped into two main 

approaches: deterministic volatility models and stochastic volatility models. Deterministic volatility 

models are based on the framework that volatility is determined by variables observable in the market, 

whereas stochastic volatility is based on the framework that volatility itself is stochastic, and the 

parameters are not directly observable in the market (Stein & Stein, 1991). 

According to Buraschi & Jackwerth (2001) deterministic volatility models are attractive for several 

reasons. First, derivative securities can be priced by no-arbitrage without resorting to full-blown general 

equilibrium models and without the need to estimate risk premia, thus markets are dynamically 

complete in these models. Second, the models can potentially capture some empirical regularities, such 

as time-varying volatility, correlation between volatility and returns of the underlying asset and volatility 

clustering. Third, the models enable us to fit the smile exactly by calibrating the volatility surface from 

options on the underlying asset. Conversely, a concern of the practical use of these models is that the 

improved static pricing performance might be obtained at the cost of overfitting. In the deterministic 

volatility family, Constant Elasticity of Variance (CEV) model of Cox (1976), the Deterministic Volatility 

Functions (DVF’s) of Dumas, Fleming & Whaley (1998) and Gram-Charlier model of Backus, Foresi & Wu 

(2004) managed to gain popularity. 

By using models that incorporate stochastic interest rates and jump processes, many researchers argue 

that moneyness, maturity and interest biases stem from the constant variance assumption of the Black-

Scholes model (Johnson & Shanno, 1987; Chesney & Scott, 1989; Hull & White, 1987; Wiggins, 1987; 

Melino & Turnbull, 1990). Consequently, stochastic volatility option pricing models have been developed 

to allow for the impact of changing volatility on option prices. In the stochastic family, model of Hull & 

White (1987), Heston (1993) and Heston and Nandi GARCH (2000) are the most popular. The Heston 

model is the continuous-time volatility model which models the square of the volatility process with 

mean-reverting dynamics, allowing for changes in the underlying asset price to be contemporaneously 

correlated with the changes in the volatility process. Heston and Nandi model uses an autoregressive 

structure of the GARCH process to capture empirical appearances like volatility clustering, leptokurtic 
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return distributions and leverage effects.2 The two latter models were chosen due to closed form 

solutions.  

This thesis fills two gaps. First, this thesis considers improvements over BS by allowing deterministic and 

stochastic volatility models when pricing OMXS30 index options. We compare alternative volatility 

option pricing models with the simple, yet still valuable Black-Scholes, by using Excel VBA and SAS 

Enterprise. We have chosen 2 versions of the standard Black-Scholes model, Practitioner Black-Scholes, 

Gram-Charlier, Heston and Heston Nandi GARCH for this thesis. Although many researchers examined 

the performance of alternative models in major markets such as S&P 500 and FTSE 100, to our 

knowledge, no study has investigated their performance in a small market like the Swedish Stock 

Exchange. The dataset is fairly new and consists of call options on OMXS30 from 1st of June 2011 to 31st 

of May 2012. Second, while there are lacking studies that compare alternative groups of option pricing 

models, there are several studies that compare the incremental contribution of the stochastic volatility 

or more sophisticated models like jump diffusion models. This thesis will therefore contribute as a study 

that empirically compares alternative option pricing models.  

  

                                                           
2
 Leptokurtic is a distribution with a high peak, a thin midrange and fatter tails compared to the normal 

distribution. 
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Chapter 2 Option Pricing 

Option Basics 
 

“A derivative can be defined as a financial instrument whose value depends on (or derives from) the 

values of other, more basic, underlying variables. Very often the variables underlying derivatives are the 

prices of the assets. A stock option, for example, is a derivate whose value is dependent on the price of 

the stock.” 

John C. Hull (2009, p.1) 

Options can be written on many types of financial assets like stocks, currencies, interest rates and stock 

indices. They can also be used to speculate in the underlying asset or to hedge a given exposure. In 

addition, options can be used to leverage the investment compared to investing directly in the asset.  

Options are traded both on standardized exchanges and over-the-counter (OTC) from one party to 

another. Although these transactions are not disclosed to the general public, the OTC is by far the 

biggest market according to volume of trading and often deals with higher values than their 

standardized counterpart. The advantage of using the OTC market is that terms of a contract do not 

have to be those specified by an exchange and market participants are free to negotiate any mutually 

attractive deal. This indicates that options are a vastly used instrument throughout the financial world. 

There exist many types of options, but the most common and traded on many exchanges are the 

European options, where the value of the option is given by the difference between the stock price and 

the exercise price at a pre-specified point in time. In comparison, an American option can be exercised 

throughout the life of the option. Other options often referred to as exotics can have many forms, one 

type is the Asia option where the value of the option is given by the average payoff during the life of the 

option. 

                   (2.1) 

                  (2.2) 

The two types of options: call and put options. A call option gives the holder the right to buy the 

underlying asset for a certain price at a certain day, while a put option gives the holder the right to sell 



Page 12 of 107 
 

the underlying asset at a certain day for a certain price (Hull, 2009). A call option benefits from a stock 

price greater than the strike price and a put option is only valuable when the stock is less than strike at 

maturity. The value of a call and put at maturity is given by equation 2.1 and 2.2. The payoff is illustrated 

by figure 1 for both calls and puts. The value of an option can never be negative and accordingly reduce 

the downward risk compared to investing directly in the asset. 

Figure 1 

 

Call:              ,     Put:              

 

It is emphasized that the holder of the call option has the right to exercise the option without any 

obligations. As the holder of the option does not have to exercise this right, this is what distinguishes 

options from forwards and futures where the holder is obligated to buy or sell the underlying asset. A 

buyer of an option is referred to having a long position while sellers are referred to as having a short 

position. As figure 1 illustrates, it is evident that sellers of call options are exposed to risk as the value of 

a call option can in theory be indefinite. 

Factors that affect option prices 

 Value of the underlying asset (S) 

 The strike price or exercise price (K) 

 Maturity (T-t) 

 Volatility over the underlying asset ( ) 

 Interest rate (r) 

 Dividends expected during the life of the option (q) 
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In the following table the effect of increasing the different values and how this affects the option price. 

For a more thorough explanation of each factor, we refer to Hull (2009, p. 202). 

Table 0.1 

  Stock price Strike price Time to maturity Volatility Risk free rate Dividends 

Call + - ? + + - 

Put - + ? + - + 
The table describes the effect on the price of a stock option of increasing one variable while keeping all others fixed.  

+ indicates that an increase the variable causes the option price to increase, - indicates that increase in variable causes option 

price to decrease, ? indicates that the relationship is uncertain.
3
 

 

For an European option, the upper limit for a call on a non-dividend stock is the stock price itself, while 

the upper limit for a put option is the strike K. The reason why K is the upper limit is that the stock price 

can never be negative and the put option is given by the following equation 

             (2.3) 

The call and the put option cannot be lower than equation 2.4 and 2.5.4 A full argument is explained in 

Hull (2009, p.205), but is easily derived by a simple no arbitrage argument. 

           (2.4) 

           (2.5) 

The relationship between put and call options is not independent, as there exists a no-arbitrage 

relationship amongst them referred to as the put-call parity. 

                                       

If the call price is known, it is an easy task to calculate the price of a put option with the same strike and 

maturity. If this relationship does not hold, an arbitrageur can earn a risk-free profit by selling the more 

expensive option and create a replicating portfolio with the other instruments or vice versa.  

                                                           
3 It is not clear cut whether the DTM has a positive or negative effect on option prices, but in most cases the effect 

is positive, the longer the maturity the more valuable is the option(European options), for American options time 

to maturity has always a positive effect on option prices due to early exercise. 

4 The equations are only valid for European options on a non-dividend paying stock. 
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The effect of dividends can be pronounced in stock options. Table 2.1 shows that the value of a call is 

reduced if there is an expected dividend payout during the life of the option. Similarly, the value of a put 

increases when there is an expected dividend payout. The special case of options on stock indices is that 

dividends can be paid by numerous of different firms. To adjust the index price for dividends, it is 

common to assume a dividend rate q which continuously pays out dividends. In order to incorporate the 

effect of dividends we can change the stock price S to account for dividends. 

                      
    

According to Hull (2009, p. 9), the derivatives market has been outstandingly successful. One of the 

reasons is that the market has a great deal of liquidity, as there is usually no problem for an investor to 

find someone to take the opposite position of an option. This leads to that many different types of 

traders are attracted to the derivatives market, such as hedgers, speculators and arbitrageurs.  Hedgers 

use derivatives to mitigate the risk exposure their position is facing, speculators use them to bet on a 

future direction of a market variable while arbitrageurs take offsetting positions in two or more 

instruments to lock in a profit.  

Hedging 

 
Hedgers use derivatives to reduce the risk that they face from potential future movements in a market 

variable. It is an investment that reduces the price movements of assets/liabilities and can be seen as 

safeguarding the assets by taking an offsetting position in another instrument. By using options, hedging 

is quite fascinating due to its non-linear risk, compared to the linear risk by investing directly in the asset 

and hedged by using futures or forwards. The problem with the non-linear risk is that there is not one 

single instrument that can be used to hedge the portfolio perfectly. By contrast, the option contracts 

provide insurance. Options offer a way for investors to protect themselves against adverse price 

movements in the future while still allowing them to benefit from favorable price movements. 

In option theory there are many different risks that have to be considered. The following Taylor series 

expansion explains the risk that the option f is exposed to, referred to as the greeks. 
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where S is stock price, t is time, σ is volatility and r is interest rate the last term is the gamma of an 

option. The first term of the right hand side of the equation is known as delta (Δ) where the risk is in the 

change of the stock price as this will affect the option price. The second term is known as theta and 

reflects how change in time affects the option value. The third term is known as vega and a risk factor 

that represents change in volatility, while fourth term is rho which represents how interest rate affect 

option pricing. At last, gamma is the second derivative of delta, which means it is interpreted as the risk 

of changes in delta.  

According to Hull (2009) to hedge the greeks one needs to invest in instruments that are dependent on 

the risk factor that is hedged. He argues that finding instruments for more complex risk is hard and can 

be very costly. This thesis will focus on delta hedging as it is easily implemented with only the stock 

index and a risk-free asset. 

Delta hedging 

 

“Delta is the rate of change of the option price with the respect to the price of the underlying asset.” 

John C. Hull (2009) 

Delta (Δ) is the sensitivity of the option to the price of the underlying asset, Δs = 
     

  
 and the aim of 

delta hedging is to keep the value of a position as close to unchanged as possible. 

For a call option, Δ is a strictly positive value (negative for puts) within the range [0, 1]. Δ of zero 

indicates that there is no correlation between the index and the option and a value of 1 indicating a 

perfect relationship. This means if the Δ of a call option is 0.5, the option price changes by about 50% in 

the same direction of the change in the underlying asset. The strategy aims to reduce the risk in price 

movements in the underlying by offsetting long and short positions. Due to delta is a linear relationship 

calculated at a certain value, it only calculates the tangent or the slope. 5 

                                                           
5
 http://www.markaz.com/DesktopDefault.aspx?tabindex=3&tab_ikey=220 
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Figure 2 

 

Since the call option follows a nonlinear structure a linear hedge could not possibly be a perfect hedge 

as seen in figure 2. By analyzing the graph it can be seen that if the asset price has a large movement the 

delta hedge is less accurate. Still, delta hedging should works quite fine for reasonable changes in asset 

price. 

A position with Δ of zero is referred to as being delta neutral and it is important to realize that because 

delta changes, the position remains delta hedged for only short period of time. For this thesis, we will 

focus delta neutral positions for 1 day which will be explained in Chapter 6. 

Financial Times-series Characteristics 

 
Cont (2001) did a research on stylized facts on asset returns. He found significant deviation from the 

normal distribution where the tails where fatter than proposed by the normal distribution, and the 

distribution did not seem to be symmetric. In addition, he found some persistence in volatility indicating 

that volatility is not constant over time. 

Kurtosis, Skewness and the Leverage effect 

The volatility smile is often observed in the foreign currency, interest rate options and is also essential in 

equity options. The volatility smile is observed when ITM and OTM options have higher implied 

volatilities than their ATM counterparts. According to Hull (2009, p.387), this phenomena is observed 

because volatility is not constant and varies over time. Another feature is that the market is not 

continuous, but includes jumps. This effect is closely related to the kurtosis of asset returns. 

Kurtosis affects the height and width of the probability density function. The probability density function 

is symmetric, but is more or less “peaked” than the normal distribution. A positive kurtosis indicates a 
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high peak, fatter tails and a thin midrange.6 A positive kurtosis can be interpreted that fewer 

observations are in the intermediate range and extreme observations occur more often.  A negative 

kurtosis indicates a flat distribution with a fat midrange and thinner tails.  This indicates that returns are 

centered close to the mean while the probability of extreme observations is less likely compared to the 

normal distribution.7 

Figure 3 

 

A high positive kurtosis increases the probability of extreme movements in both directions compared to 

the normal distribution assumed in BS. When there is a higher probability of tail events, the option 

prices in that range are likely to increase (higher implied volatilities) and thereby create a volatility smile. 

The probabilities of intermediate events are less likely compared to the normal distribution and ATM 

options are less attractive.  

                                                           
6
 High peak represents many observations where returns are approximate zero. 

7
 Refer to Excess kurtosis as the normal distribution has a kurtosis of 3. Figure 3 is obtained from 

khttp://financialplanningbodyofknowledge.net/w/index.php?title=Kurtosis 
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Figure 4 

 

In equity and stock indices options there is also observed a volatility smirk (Black, 1976; Christie, 1982). 

The smirk is observed when implied volatility is a declining function of strike. For call options, ITM 

options are the most expensive while the OTM are the cheapest relatively speaking. This “anomaly” is 

pronounced and is observed in almost every equity market.  

The smirk is created when there is a negative correlation between the stock index returns and volatility. 

The volatility increases when the stock drops and when the stock price rise the volatility is reduced.  The 

justification is that when the stock falls the stock fluctuate more and the probability of extreme negative 

returns are more likely probability of extreme negative return is higher than the normal distribution; the 

ITM options should be more expensive for call options.8 This effect is related to skewness where the 

probability density function is asymmetric. 

                                                           
8
 The volatility smirk is created when there are both kurtosis and skewness  

7,0 %

8,0 %

9,0 %

10,0 %

11,0 %

12,0 %

13,0 %

90 94 98 102 106 110

Volatility
smile

Volatility
Smirk

Strike price (K) 

Im
p

lie
d

  v
o

la
ti

lit
y 



Page 19 of 107 
 

Figure 5 

 

The graph illustrates price movement of OMXS30 and SIXVX in period 1.6.2001 to  

31.5.2012.The correlation between stock index returns and volatility as measured by SIXVS 

is highly negative, indicating the leverage effect.
9
 

 

Skewness tends to push one tail out and the other tail in. A negative (positive) skew indicates that the 

left tail (right) is longer (fatter) than the right (left) tail. The interpretation is extreme negative (positive) 

events happen more frequently than the positive (negative) ones. It is skewness that creates the 

volatility smirk seen in figure 3, this anomaly is often observed in equity markets.  

Figure 6 

 

 

Although there is no consensus of the explanation behind this anomaly, researchers and academics have 

different theories. Black (1976) and Christie (1982) argue for the “leverage effect". When the stock price 

drops, the 
      

    
 falls and in standard corporate finance theory this suggests more risky equity and 

therefore a higher volatility of equity (Modigliani, 1958). This is also true when the stock price soars and 

  
      

    
 increases and the volatility of equity should decrease. Other papers such as Hasanhodzic & Lo 

(2011), Figlewski & Wang (2006) argue that this is not a leverage effect, but rather a “down market” 

                                                           
9
 SIXVX Volatility Index is an indicator of forward price risk in the Swedish equity market. It is derived from prices of 

standardized OMXS30 index options with an average of 30 days to expiration.  
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effect. A hypothesis is that investors get concerned and thereby increase volatility. This implies that 

people are willing to pay a lot to buy put options to safe their positions. Therefore the OTM for put 

options are more expensive than ATM and ITM options.10  

The put-call-parity ensures that the volatility smile/smirk is the same for both puts and calls (Hull, 2009, 

p. 381). There is an economic interpretation to why this is the case. ITM call options have higher implied 

volatilities because investors use options to leverage their position. Since deep ITM options fluctuate 

approximate the same as the index, investors can increase their return on investment by using the 

leverage incorporated in options. For put options deep OTM can be used as a protective insurance for a 

market turndown. Since deep OTM put options is a “cheap” insurance, investors use these options as 

downside protection and their implied volatilities increase.   

A last note in this chapter is whether the smile/smirk is as pronounced for longer dated options. It is 

found that that longer dated maturities tend to have less smile effect (Duque & Lopes, 2000).11  As 

stated in the beginning of this section the impact of jumps and non-constant volatility creates a volatility 

smile. Hull argues that the effect of non-constant volatility has larger percentage effect on prices, but 

less effect on the percentage change on implied volatilities. The effect of jumps has less effect on both 

prices and implied volatilities on longer dated options. In conclusion longed dated options should have 

less pronounced smiles compared to shorter-dated options. This effect is referred to as the maturity bias 

and is an important factor in the Swedish option market. 

Volatility Clustering  

A clustering effect is often observed in financial time series when stock returns are dependent. In other 

words, large changes in returns tend to be followed by large movements in returns. The same effect is 

seen on small changes in assets returns tend to be followed by small changes. This anomaly results in 

volatility clusters where volatility seem to group together at certain time periods.  An example of this 

effect is seen in figure 7. 

                                                           
10

 Important to keep in mind that ITM for calls is the same as OTM for puts when studying the volatility smile. 
11

 A reason could be that over time no extreme jumps would affect options prices, and returns will on average 
follow the normal distribution. 
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Figure 7 

 

Figure 7 illustrates returns of the Swedish OMXS30 from 1.1.2001-26.06.2013 

In the simple BS model the returns are often assumed to be independent and no correlation between 

the returns. To investigate this assumption one has to graph the correlation between returns and its 

lags.12 

In figure 8 (left graph) this is illustrated by using the Swedish OMXS30. By analyzing this property it is 

easy to conclude that asset returns are not correlated. There seem to be no relationship between 

returns and its lags as the correlation fluctuate around zero and seem to appear randomly. As stated in 

by Cont (2001) the absolute value of returns or squared returns show another interesting property. It 

seems like the absolute returns do in fact show sign of autocorrelation indicating that returns are not 

independent. As seen in figure 8 (right graph) the absolute returns and its lags seem very dependent, 

significant and slow decaying function of lags. It is this dependence that creates the volatility clustering. 

This indicates a time varying persistent volatility where today’s absolute returns are correlated with past 

absolute returns. To conclude the statistical properties indicate that volatility clustering is a factor in the 

Swedish OMXS30.  
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Figure 8 

 

The left graph represents the correlation between returns at time t and returns at time t-q, the right graph is similar except that 

returns are absolute. The graph indicates that absolute returns are correlated and there exists persistence in volatility. Figure 8 

illustrates returns from 1.1.2001 to 26.06.2013 

Two Important Concepts in Option Pricing 

Brownian motion 

In many option pricing models it is assumed that the stock price follows a diffusion process with a 

stochastic component. The Black-Scholes model assumes that the stock process is affected by random 

stochastic shocks and cannot be predicted.13 This conceptual property is achieved by adding a Brownian 

motion which is a stochastic process that evolves randomly over time. It is used in Black-Scholes, Gram-

Charlier, Heston & Nandi GARCH model to include randomness, while in the Heston model this process 

also determines stochastic volatility.  

To better understand the Brownian motion and the effect of stochastic shocks an example is presented 

by a analyzing the diffusion process in BS. 

  

 
          (2.6) 

In equation 2.6     measures the randomness of the process while   is the expected return, S is stock 

price and σ is the yearly volatility. If we assume that the expected return is zero, the only factor that 

determines the stock process is the Brownian motion. 

     √   

The    follows a normal distribution and has a mean of zero and a variance rate of 1 yearly. 

                                                           
13

 The stock has the Markov property where historical values cannot explain the development of the stock price. 
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Figure 9 

 

Figure 9 illustrates 12 simulated paths for S0=1000,       1),                 . 

The effect of this random variable is seen in figure 9, where many different random processes are 

modeled. There is not supposed to be any sign of a path and the terminal value at time T is based on a 

series of random shocks.  

Risk neutral valuation 

Risk-neutral valuation is a valuable tool for the analysis of derivatives and is commonly used when 

pricing options. According to Hull (2009), in a risk-neutral world all investors are indifferent to risk and 

only require the risk-free rate to invest. Investors require no compensation for risk and therefore the 

expected return can be substituted with the known risk free-rate. By using this principle, all the variables 

that enter models are without risk preference and the pricing of options becomes easier. This general 

principle in option pricing is known as risk-neutral valuation. 

The fascinating and surprising fact is that the solution is valid in a world with risk-averse investors as 

well. The argument is in a risk-averse world the expected growth rate in the stock price changes and the 

discount rate that must be used for any payoffs from the derivative changes. These two effects offset 

each other perfectly and the price is valid in the risk-neutral world as well as in the real world. According 

to Hull (2009, p. 291) risk-free valuation is correct when the risk free rate is constant. 
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Chapter 3 Theory of the Models 
 

Black-Scholes 

 
In modern financial theory, the groundbreaking article from Fisher Black and Myron Scholes in 1973 is 

one of the most important contributions to option model pricing.14 Together with Robert Merton, the 

well-known Black-Scholes (or Black-Scholes-Merton) model was developed and has made a huge 

influence on how traders price and hedge options. With a restrictive set of assumptions, Black-Scholes 

(BS) formula calculates the price for a European plain vanilla option. 15
 We will not put emphasis of the 

derivation of the model as BS is well-known and hardly needs introduction. However, by modifying the 

model we can take dividend yield into account and the value of a call option can be calculated as 

 

C = SN(d1) – Ke-r(T-t)N(d2) 

where d1 and d2 equals 

d1 = 
  (

 

 
)                 

 √     
 (3.1) 

d2 = 
  (

 

 
)                 

 √     
 (3.2) 

 

The restricted assumptions include constant risk free rate, constant volatility and the same for all 

maturities. S is the underlying stock price, K is strike price, r is risk free rate, q is dividend yield, σ is 

volatility and T-t is time to maturity. As the model assumes the asset price follows geometric Brownian 

motion with constant volatility, numerous articles have been criticizing the restrictive assumptions. 

Rubinstein (1994) showed that BS implied volatilities tend to differ across exercise prices and time to 

expiration on the S&P 500 index option market.16  In this thesis we will apply 2 different versions of the 

BS model, BS30 which use the returns from the 30 last trading to estimate historical volatility and BS 

                                                           
14

 Black, F., Scholes, M. (1973), “The pricing of Options & Corporate Liabilities”  
15

 A vanilla option is a normal call or put option that has standardized terms and no special or unusual features. 
16

 Rubinstein (1994) 
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which fits the volatility to minimize the %RMSE. The calibration of the models will be explained in 

Chapter 5.  

Practitioner Black-Scholes 

 
“if the volatility of a stock changes over time,  

the option formulas that assume a constant volatility are wrong” 

Fisher Black (1976) 

As mentioned in in the literature review many researchers that have documented the volatility smile. 

The shape of the smile has motivated researchers to model implied volatility as a quadratic function of 

moneyness and maturity. To circumvent the assumption of constant volatility Dumas, Fleming & Whaley 

(1998) introduces an ad-hoc model with a deterministic volatility function (DVF) approach to model 

implied volatility.17 The authors show that the BS model leads to the largest valuation errors, consistent 

with the notion that volatility is not constant across moneyness and maturity. This model was later 

referred to as the Practitioner Black-Scholes (PBS) model by Christoffersen & Jacobs (2004), which is a 

simple way to price options based on implied volatilities and the BS pricing formula. To implement the 

model, a series of BS implied volatilities is required to run multiple regressions under ordinary least 

squares (OLS) by using 4 steps.18 

1. Use cross-section of option prices with a variety of strike price and time to maturity to obtain a 

set of BS implied volatilities. 

2. Choose a deterministic volatility function and estimate its parameters. 

3. For a given strike price and maturity, obtain the volatility as the fitted value of the volatility 

function in step 2. 

4. Obtain the option price using BS formula, using the fitted volatility from step 3 and the same 

strike price and maturity. 

 

 

 
                                                           
17

 Dumas, Fleming and Whaley (1998) ”Implied Volatility Functions: Empirical Tests” 
18

 OLS is a method for estimating the unknown parameters in a linear regression model. 
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In this thesis, we will use the following DVF functions 

DVF 1:  iv = a0 + a1K + a2K
2 

DVF 2:  iv = a0 + a1K + a2K
2 + a3T + a4KT 

DVF 3:  iv = a0 + a1K + a2K
2 + a3T + a4T

2 + a5KT 

where σiv is the BS implied volatility, K is strike price and T is time to maturity. A minimum value of the 

local volatility is imposed to prevent negative values.  According to Dumas et al. (1998) the DVF models 

improves the valuation errors compared to the ordinary BS model. DVF 1 attempts to capture variation 

in volatility attributable to asset price by having a quadratic function of moneyness. a0 is the intercept, 

a1 is the linear function of K while a2 is the quadratic function of K. The parabola opens upward if a2 is 

positive or downwards if a2 is negative. The value of |a2|affects the curve of the parabola: the parabola 

opens wider when |a2| is less than 1 while it opens narrower when |a2| is greater than 1. Thus for DVF 

1 to capture a volatility smile, we expect a negative a1 and a positive a2.  

DVF 2 and 3 capture additional variation attributable to time. DVF 2 has two more parameters than DVF 

1, T and the interaction coefficient KT. According to earlier empirical research, the implied volatility 

differs for same strike prices with different maturities. The options with the nearest expiration date have 

a higher implied volatility. The interaction term, KT means that the effect of moneyness on volatility is 

different for different values of T, time to maturity. Therefore the unique effect of moneyness is not 

limited to a1 and a2, but also depends on the values of a4 and time to maturity. As T is a linear function, 

different values of a3 will change the placement of the fitted volatility smile holding the other 

coefficients constant. In other words, DVF 2 can better fit volatility smiles for different maturities. The 

maturity bias of the option pricing is meant to be captured by a3 and a4 and consequently, we expect 

DVF 2 to perform better than DVF 1. 

In additional to T and the interaction term, DVF 3 has the quadratic function of time to maturity, T2. The 

effect of the coefficient of T2 is more prominent for options with longer maturities and is expected to 

further decrease the maturity bias of options. These quadratic forms of volatility functions are chosen in 

part because the BS implied volatilities for options tend to have a parabolic shape. Because DVF 3 has 

the most parameters to fit the volatility smile, we expect DVF 3 to have the best in-sample fit among the 
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DVF functions. The DVF functions can also be estimated using more flexible nonparametric methods 

such as kernel regressions or splines, but is avoided due to overparameterization.19 

By using S&P 500 index options, Dumas et al. (1998) conclude in their paper that even with fairly 

parsimonious models of the volatility process, they achieve almost a perfect fit of observed option 

prices.20 The DVF models’ prediction errors grow larger as the volatility function specifications become 

less parsimonious when predicting option prices a week ahead.  In particular, specifications that include 

a time parameter do worst of all, indicating that the time variable is an important cause of overfitting at 

estimation stage. And at last, they found that hedge ratios determined by BS appear to be more reliable 

than those obtained from DVF models.  

Gram-Charlier  

 
The Gram-Charlier model (GC) was developed by Backus, Foresi &Wu (2004) and is not restricted by the 

log normal distribution assumption. They implement a Gram-Charlier expansion up to the fourth 

moment which allows the model to incorporate skewness and kurtosis.21 This model does not allow for 

changing volatility as assumed in the BS model.  

 

    ⌈(
      

 
)
 

⌉                     [(
      

 
)
 

]    

 

Here equation    represents the T period skewness and equation    represents the T period excess 

kurtosis. When the authors derive the model, they calculate the BS price first and then adjust for excess 

kurtosis and skewness as seen below. 

The price of a call option according to the GC is shown to be approximately 

 

                                [
   

  
        

   

  
              

  ] (3.3) 

                                                           
19

 See Ait-Sahalia & Lo (1998): “Nonparametric estimation of state-price densities implicit in financial asset prices” 
20

 Parsimony principle is to keep the regression model as simple as possible (Gujarati & Porter, 2009, p. 42) 
21

 The Gram-Charlier expansion was pioneered by Jarrow & Rudd (1972) 
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   (

  
 

)           
   

  
 

 

A nice feature of the GC model is its consistency. By setting y1 and y2 to zero in the bracket of equation 

(3.3) the only remaining function is the traditional BS formula. We refer to Chapter 1 for more thorough 

explanation of skewness and kurtosis. 

The effect of introducing skewness and kurtosis 

In order to analyze the effect of skewness and kurtosis, it is interesting to see the effect on the volatility 

smile/smirk. The values that are used are chosen arbitrary, but indicate the effect of the different 

parameters. 

Figure 10 

 

Figure 10 illustrates skewness and kurtosis by using default values of 0 ,rf = 0, yearly volatility =0,20, dividend =0, T=0,5. The 

figure shows the effects the volatility smile for arbitrarily chosen values of skewness and kurtosis.  

It is evident from the figure 10 (left) that the GC model is able to create the volatility skew by 

introducing skewness. When the skewness parameter is negative, the slope is a downward function of 

strike and this is consistent with the leverage effect. On the contrary, if skewness is positive a forward 

skew is observed.  There is a theoretical justification (leverage effect) for negative skewness since this 

creates a downward slope as seen figure 10 (left), it is expected to detect negative values for this 

parameter when fitting the model to market prices.  

The effect of kurtosis is seen in the figure 10 (right) and it is obvious that a positive kurtosis allows for 

the well-known volatility smile. The larger the parameter value the more pronounced is the volatility 
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smile with low ATM volatilities and high implied volatilities for ITM and OTM options. On the other hand, 

if kurtosis is negative the smile will be reversed. In order to fit the theoretical volatility smile in the GC 

model, we expect the skewness to be negative and the kurtosis to be positive. 

Comparison of BS and GC when introducing skewness 

To further analyze the effect on skewness it is valuable to compare the price difference between GC and 

the BS model when skewness is adjusted.
 In the following graph the price difference between BS and GC 

is graphed with two different values of skewness, specifically skew = -2, skew = 2. 

Figure 11 

 

The graph represents the relative price difference between BS and GC when adding skewness.  

The horizontal numbers reflect the spot price S. The kurtosis parameter is set to zero to emphasize  

the effect of skewness. It is Important to keep in mind that the right side of the figure represents  

in-the-money options for call options. 

 

When there is a negative skewness, the GC assigns a higher price for in the money options and lower 

prices for OTM options. This is illustrated by the blue line in figure 11. The opposite is true for a positive 

skewness, where the OTM prices are priced higher than BS and ITM are priced lower compared to the 

BS model. If the skewness parameter is zero there is no price difference between the models assuming 

that kurtosis is set to zero. 
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Restrictions in the Gram-Charlier 

The GC model uses a Taylor series expansion approximation to calculate the call price.22 This 

approximation can restrict the model. Backus, Foresi, & Wu (2004) studied this phenomenon in their 

article and found evidence that the absolute value of skewness calculated from this expansion 

underestimates the true skewness. They also found evidence that kurtosis is underestimated for larger 

values. They argue that the GC model may perform poorly for some combinations of skewness and 

kurtosis and could lead to a wrongly specified model. Another article by Jondeau & Rockinger (2001) did 

a research on the identification procedure and also discovered that the skewness and kurtosis in this 

model are not stable and tend to differ from their true values. It seems like the GC model is able to 

capture the effects of skewness and kurtosis, but can suffer from a wrongly specified model and it still 

assumes constant volatility. 

Heston 

 
The Heston model is the most popular stochastic model and is commonly used in the industry. Heston 

incorporates stochastic volatility and therefore relaxes the assumption of constant volatility in the BS 

model. The popularity of this model compared to other stochastic models is its closed form solution and 

its ability to reproduce a volatility smile observed in market data.  

The underlying asset or stock index is assumed to follow the following process  

           √           
  

 

                √        
  

 

〈   
     

 〉       

                                                           
22

 Taylor series expansion is an infinite sum of the functions derivatives. 
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The first diffusion process is identical to the BS model.23  The main contribution of this model is that the 

volatility is stochastic. This is achieved by adding another diffusion process that ensures random 

volatility. The Heston model converges to the Black & Scholes model when    is constant.24 

There are some interesting features of this second equation. The first term is similar to the Cox, Ingersoll 

& Ross’ interest rate model (1985), where the interest rates are mean reverting. Heston uses the same 

concept with mean reverting volatility. The current variance      has at some point converged to the 

long term volatility theta    . Even though the current variance is high/low today, it must be some 

underlying dynamic that pulls the volatility to a long run average. The parameter kappa (κ) is the mean 

reverting parameter and determines how fast the current variance converges to the long run mean. The 

second term is the volatility of volatility parameter     and specifies the magnitude of the stochastic 

shock. It is multiplied by a different Wiener process which allows the volatility of the model to be 

stochastic. The two Wiener processes are correlated with a parameter Rho    , which ensures that 

volatility and the stock index returns are correlated. The effect of these parameters will be discussed 

shortly.  

In order to avoid negative variance Albrecher, Mayer, Schoutens, & Tistaert (2007) suggest the Feller 

condition to be fulfilled. This condition ensures that stochastic shocks are not large enough to create 

negative variance as the mean reverting parameter κ and long term variance θ pulls the volatility back.  

       

In order to price the model we apply a risk neutral valuation. This is the same procedure as we 

presented in Chapter 1. The expected value of the stock index is replaced with the risk free rate as the 

investors are assumed to be indifferent to risk and only require the risk free rate. In the Heston model 

additional risk arises from the uncertainty of stochastic volatility. As mentioned earlier, investors are 

always assumed to be risk neutral and the stochastic risk parameter is set to zero. This is standard 

practice in option pricing and allows for pricing options in a consistent way.  

Prior to Heston groundbreaking article from 1993, all stochastic models had to be computed by 

simulating different stock paths. Heston derives a closed form solution which drastically reduced the 

computational burden and made the stochastic models a powerful tool. 

                                                           
23

 The only difference is that variance is a square root process; this ensures that only positive numbers can enter 
the first diffusion process. 
24

 Sigma needs to be approximate zero, as a value of zero will disrupt the calculations in the Heston model. 
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The value of a call option is 

                  

According to Gatheral (2006) the interpretation of P1 and P2 is as follows. P1 is the pseudo expectations 

of the final index level given that the option is in the money, while P2 is the pseudo probability of 

exercising the option. Finding these probabilities is a complicated task and requires the use of 

characteristic functions.25 In addition, the calculations require a numerical integration of complex 

numbers which is quite a burdensome task. The full formula is given in the Appendix C. 

   
 

 
 

 

 
∫   [

            

  
]

 

 

   

The calculation of the Heston option price is quite complicated and contains two complex integrals. 

There are other ways to calculate the integrals, as one could merge the two integrals into one to 

increase the computational speed. Another procedure is to use the fundamental transform introduced 

by Lewis (2000). We choose to implement the original integral as this makes the parameter 

interpretation more intuitive. 

Analysis of the Heston parameters and the effect on the volatility smile 

The effect of adding stochastic volatility makes the model quite flexible. By changing the different 

parameters it is quite easy to create a volatility smile. In this section the focus is on the properties of the 

different parameters and how the parameters affect the volatility smile. 

                                                           
25 If we have knowledge about the characteristic functions we can find the probability density function of the 

stochastic variable using an Inverse Fourier transform. This is often easier than working directly with the density 
functions. This approach can be used since the characteristic functions depend on the same state variables as the 

probabilities P. In    for j(0,1), The i is the complex number √  . In the integral it is only the real part of this 

function and is solved by using a numerical integration called trapezoidal integration. Due to the fact that the 
integrals converge quickly it is not necessary to integrate to more than to a 100. The derivations are not showed 
but a proof can be found in Heston (1993). 
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Figure 12 

 

 

Figure 12 illustrates the effects of the parameters by using default values:    =100, ρ = 0, σ = 0,20,              , T-

t= 0.5 

The σ adds kurtosis in the density function and is the parameter that creates the smile. The σ allows for 

higher prices for ITM and OTM traded options The higher the σ the more pronounced is the smile.  In 

contrast, if σ   zero the smile effect disappears and the model converges to the BS model.   

In order to create the equity smirk that is observed in options on equity indices, the skewness 

parameter ρ is essential.  A negative   ensures an equity smirk, with low OTM implied volatilities. A 

positive   will have the opposite effect as seen in the graph. We would always expect the   to be 

negative if we observe a downward sloping smile. 

        : The current variance and the long term variance has no pronounced effect on the smile, but 

lesser or increases the curve as seen in picture. It seems that the    has a more significant effect on the 

variance. 
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  is the mean reverting parameter and also has a significant effect on the smile. A higher   will reduce 

the smile effect while a low kappa will make the smile “pointy” The   is not a smile parameter in itself, 

but when smile is already created by  , the    amplify the smile. 

It is interesting to see how the value of ρ affects the price difference between the Heston and BS model.  

Figure 13 (left) displays the price difference for different values of ρ. When ρ is negative the OTM prices 

are less expensive compared to the BS model and the opposite is true for ITM options. A negative ρ 

decrease the probability of large positive shocks and thereby OTM options become cheaper. The ITM 

options are more expensive than BS model due to the fact that negative skewness increases the left tail 

of the distribution and therefore the ITM call prices increases relatively to the BS model.26 

The effects of changing the ρ in the Heston model are similar to the effects of changing the skewness 

parameter in the GC model.  

Figure 13 

 

The graphs represent the price difference between the Heston model and BS. The first graph shows the price difference when 
changing the skewness parameter  , when   is zero. The second graph represents the price difference when changing  , 
when   is zero. 
 

The effect of changing volatility of volatility is symmetrical for both ITM and OTM options. The effect of 

a positive σ is that ITM and OTM options are priced higher in the Heston model while ATM are priced 

lower. The rationale is that higher kurtosis gives fatter tails and higher probability of extreme values 

which surge the ITM and OTM options compared to BS and lowers the prices of ATM options. The larger 

values of σ, the more pronounced is the price difference. 

                                                           
26

 It can be more intuitive if puts are analyzed, as increased probability of negative shocks would lead to higher put 
prices. The put-call parity ensures that the implied volatility needs to be approximate the same for puts and calls. 
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Heston Nandi GARCH 

GARCH (1.1) 
In order to better understand the Heston and Nandi GARCH model, it is essential to understand the 

Generalized Autoregressive Conditional Heteroskedasticity process as GARCH models are often used to 

estimate and predict variance. In general, GARCH models try to predict today’s variance based on lagged 

values of return and variance on the underlying asset. The main difference between GARCH and 

unconditional variance is that GARCH models emphasize the more recent variance and returns.27  The 

effect of past observations is reflected in the parameters α and β, as in the following equation 

 

                                                                 
    ∑         

  
    ∑   

 
         

  

The   in the equation reflects how much of past returns explain tomorrows variance, while β decides 

how much of the previous variance that predicts tomorrows variance. The number of lagged values of 

(p,q) is in principle indefinite, but in this thesis the focus will be on the p=1, q=1 process 

    
       

     
  

The α emphasize of much of today’s return will explain the variance the following day, while β is how 

much of current variance that explain t+1 variance. ω is an intercept variable and the larger the omega 

the higher the variance. GARCH modeling is an effective way to eliminate autocorrelation as defined in 

Chapter 1 and therefore an effective way to handle the problem of persistence in volatility. 

    represent the persistence of volatility and is restricted to be less than 1 in order to keep the 

process mean reverting, and the variance to be stationary.  The closer     is to zero the stronger the 

mean reverting effect, while there is more persistence in the volatility when it is close to 1. A non-

stationary series where       is not realistic since this implies that variance can grow indefinite, 

which is highly unlikely in the market. 

The Heston Nandi GARCH model 

In the Heston Nandi option pricing model we assume the GARCH process from GARCH(1.1). In the article 

by Heston and Nandi, they prove that this model converge to the stochastic Heston model presented 

                                                           

27
     √

 

   
∑              

  
    in fact unconditional standard deviation, but squaring this value gives the 

unconditional variance. 
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earlier when the time difference between observations converge to zero. The attractiveness of this 

model compared to other GARCH models is that Heston Nandi has a closed form solution which 

simplifies calculation. A nice feature of the GARCH model is that volatility can be obtained by looking at 

historical values instead of implying variance from other traded options, while still it still can create 

volatility smile implied by options. 

The model is driven by this set of equations: 

            
           

    
       

           
  

where       is the logarithmic return of the stock index (ln(St+1/St),   
  is the condition variance,   is the 

risk-free rate,     is the error term distributed as a standard normal variable (          ) and 

          are model parameters. 

This is quite similar to the simple GARCH model. In addition Lambda (   represents the level of risk and 

is multiplied by the conditional variance. The interpretation is that the risk parameter is linearly related 

to the variance of the stock and an investor requires higher returns when adding risk. The last term is 

quite familiar and has the same properties as Heston and BS model, where the value is dependent on a 

normally distributed shock. The most interesting difference is that the squared return is rt^2 is replaced 

by         
 , and cannot be directly interpreted as lagged returns as in the simple GARCH (1,1). 

The risk neutral version is represented in the article by Heston and Nandi (2000) and the equations look 

like; 

       
 

 
    

          
  

    
       

      
       

  

 

Proposition 1 of Heston Nandi ensures that the risk neutral process has similar properties as the real 

process. The difference is that   is replaced by  
 

 
 and   is replaced with        

 

 
 . 
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The price of a call option has the same general formula as the Heston model, and value of the call is 

calculated by finding the probabilities P1 and P2. 

                    

The calculation of the probabilities is quite similar to the Heston model and also includes integration of 

complex numbers.  

   
 

 
 

    

   
∫   [

            

  
]   

 

 

 

   
 

 
 

 

 
∫   [

          

  
]  

 

 

 

 

To find the GARCH variance at t+1, one has to work recursively back from time t+T. In order for the 

model to work, a starting value of the variance needs to be estimated. Following Heston and Nandi the 

unconditional variance is set as a starting parameter. 

Another important feature is that the process will be mean reverting if        , similar to the 

GARCH (1,1) 

Interpretation of the different parameters 

ω determines the height of the variance and can be interpreted as an intercept. The value has similar 

interpretation as the ω in the simple GARCH(1,1). A higher value of omega will increase the height of the 

volatility smile, but will not produce a volatility smile/skew. 

Heston and Nandi show that   represent the kurtosis and a positive   creates the volatility smile. The 

higher the   the more pronounced is the smile. The value of the   is a bit different from the normal 

GARCH(1,1) where   just represent the lagged return to explain the t+1 variance. 

  is the skewness parameter and measures the correlation between variance and the log return of the 

stock index. It is similar to the ρ of the Heston model. According to the Heston & Nandi, the relation is as 

follows: 
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It states when   and γ are positive, the correlation between variance and spot return is negative 

creating a volatility smirk/leverage effect similar to effect we analyzed in Chapter 1. 

The last parameter β is another parameter that determines how much the previous GARCH variance will 

affect t+1 variance. The higher the beta the bigger the effect of lagged GARCH values. The β determines 

how fast the variance returns to its long term variance and the larger the beta the more clustering effect 

is seen in the data.
28

 

  

                                                           
28 If α and β is zero, the process coincides with the discrete time geometric Brownian motion, which is the 

stochastic process for the asset price in the discrete time Black-Scholes model. 
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Chapter 4 Data Description 

Introduction to the OMX 30 Index 
 

“OMXS30 is the third most traded domestic index derivative in Europe and continues to be the world’s 

most used Swedish index”   

Magdalena Hartman, NASDAQ OMX Group. 

The Stockholm Stock Exchange was founded in 1893 and located in Stockholm, Sweden. In 1998, it was 

acquired by OMX and later on merged operations with the Helsinki Stock Exchange. OMX launched a 

virtual Nordic Exchange in 2006 by listing Swedish, Danish and Finnish companies in the same market 

place, which required common rules, trading hours and trading system for the joint market. By 2008 

NASDAQ and OMX merged into NASDAQ OMX Group and is the world’s largest exchange company.29 

The OMXS30 is a capitalization-weighted price index and consists of the 30 most-traded stocks in the 

Swedish stock market, which guarantees that all underlying stocks included are liquid. The index was 

listed in 1986 at a base-value of 125 and a 1:4 split was made in 1998. As of 31st of May 2012 the 

Swedish Stock Exchange had a market capitalization of 3.489 trillion while OMXS30 had 3.01 trillion 

SEK.30 By design, the index tracks the Swedish stock market and act as underlying for financial products 

such as options, futures, exchange-traded and mutual funds. The composition of stock in the index is 

semi-annual reviewed and made effective on the first trading day of January and July every year. 

However, the composition remained unchanged since 1st of July 2009 (prior to our sample period) and 

consists of the same stocks as of today (3rd of June 2013). 

Due to several factors, we found the choice of OMXS30 index interesting. Since there have been a high 

number of empirical research on option pricing models using S&P500 index and similar large indices, it is 

interesting to see how well-known models perform in a smaller market. Even though OMXS30 is smaller 

in size than S&P 500, precautions were made to make sure the index and options are liquid to represent 

the true price.  

                                                           
29

 www.nasdaqomxnordic.com 
30

Source:  Main Market Total Equity Trading 1205 and from Datastream Index Market Capital  
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See the table below for a comparison the Nordic stock exchanges. It is clear that the Swedish Stock 

Exchange has highest market capitalization, number of firms in the respective market and number of 

traded shares.31 

Table 0.1 

May 2012 

Stock Exchange In SEK Listed Companies Traded Shares 

Stockholm 3.489 trillion 256 141 168 527 

Copenhagen 1.382 trillion 175 18 261 600 

Iceland 1.511 trillion 8 12 746 826 

Helsinki 0.983 trillion 123 64 188 188 

The table presents a comparison of the Nordic Stock Exchanges. 

 

For all the indices that represent their respective markets, OMXS 30 is the index with the highest 

turnover compared to all of those indices traded in the Nordic countries. 

Table 0.2 

31st of May 2012 

Index Turnover 

OMXS 30 12 727 883 360 

OMXC C20 3 836 914 126 

OMXC C20 CAP 3 630 232 780 

OMX Nordic 40 1 995 958 424 

OMX Helsinki 25 469 556 445 

OMX Iceland 6 ISK 92 143 722 
Turnover is quoted in local currency.

32
 

 

The contract size is index value multiplied with a 100 of local currency (SEK for OMXS30 and DKK for 

OMXC 20 CAP), and expires the 3rd Friday of the expiration month.33 Of the Nordic indices presented, we 

find that OMXS 30 is an appropriate index for this empirical analysis of option pricing models.  

  

                                                           
31

 Main market Total Equity Trading 1205  
32

 www.nasdaqomxnordic.com  
33

 www.nordic.nasdaqomxtrader.com/trading/optionsfutures/Product_information/Index_Options/ 
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Sample Description 

Our sample period includes 1st of June 2011 through 31st of May 2012. The models used for this thesis 

requires a collection of historical data of daily bid-ask quotes of call options, closing index price, open 

interest and volume traded. Our analysis focuses on plain vanilla call options. We do not find this a 

fundamental limitation of our study as Jiang & Oomen (2001) states that using only European call 

options can provide insights into general risks of derivatives because of the following reasons: first, risks 

of put options are similar to those of call options based on put-call parity (see Chapter 2) and put-call 

symmetry (Carr, Ellis & Gupta (1998)). Second, adjusting for early exercise premium, American option 

prices can be reckoned from European option prices. Third, numerous exotic derivatives can be created 

from portfolios of plain vanilla call and put options. 

The information is collected from Thomson Reuters Datastream 5.1, available at CBS. Datastream is one 

of the world’s largest databases for financial and economic information. It collects data from a number 

of other information providers and contains more than two million financial instruments, securities and 

indicators for over 175 countries in 60 markets.34  The Bloomberg Terminal is another alternative to 

collect the required information, however because both databases use the same source for OMXS30, 

Datastream was chosen out of convenience. 

We use midprices as a proxy for the true market price of an option, Datastream-calculated dividend 

yield and STIBOR as risk-free rate. In the following paragraphs, we will explain the reason behind the use 

of these proxies.  

Midprice 

The bid price represents the highest price a buyer is willing to pay for a security, while the ask price is 

the lowest offered price a seller is willing to receive for the security. Bid-ask prices are therefore 

“quotes” that buyer and seller are willing to do a deal, however these recorded prices are not the actual 

transaction price of the security and may not seem a good proxy for the market price. Nonetheless, the 

true market price has to be in the bid-ask spread as no one are willing to sell below the bid price or buy 

higher than the ask price. On the other hand, “last price” represents the last transaction price recorded 

before the market close. The advantage is that the recorded price represents a fair value of the option at 

the time of the transaction. However, the time of the last transaction may differ from the “true” market 

price, especially if the security is not traded actively. Since the recorded price is not time-stamped, it can 

                                                           
34

 www.datastream.com 
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be affected by a non-synchronous bias. This means that the option price may not be recorded at the 

same time as the index and therefore be a poor proxy for the true market price. Another problem that 

may occur is that if there were no recorded transaction price, then the midprice is quoted by 

Datastream.35 Consequently, by using last price the bid-ask quote may be included in the data set either 

way.  

In our analysis, we first adopted “last price” as a proxy and we found that for some trading days last 

price was outside of the bid-ask spread which may be caused of the non-synchronous bias. A call option 

could be more expensive than a call option with a lower strike price. As these errors distort the option 

pricing models, we assume the mid-price is the best representative for the true market price which is 

the average of the bid and ask price. According to Dumas et al. (1998), by using midprice rather than last 

price reduces noise in the cross-sectional estimation of the volatility function.  

Dividend yield and closing index price 

By using the cost-of-carry condition of futures, the risk-free rate discounted futures price can be used as 

the current value of the index.  Since expected dividend payments are implicitly discounted, no explicit 

dividend correction is needed. However, because Datastream cannot provide satisfactory data (only 

settlement price) on the futures price and futures are not actively traded as the matching maturity 

options starts to trade, futures prices are not used. 

On the other hand, Datastream do calculate daily dividend yield of the index that are approved by 

NASDAQ OMX. Since no or low liquidity may introduce misrepresented futures prices, we use the closing 

index price and take into account the dividend yield.  

Risk-free rate 

For the option pricing models, a risk free rate is needed. According to Hull (2009, p. 75), it is natural to 

assume Treasury bills and Treasury bonds as the correct benchmark for risk free rates. In contrast, 

traders regard the LIBOR (London Interbank Offered Rate) rate as their opportunity cost of capital and 

usually use LIBOR rates as short-term risk-free rates.  Traders argue that Treasury rates are too low to be 

used as risk-free rates because of regulatory requirements and favorable tax treatments. The interbank 

rate is approximately equal to the short-term borrowing rate of an AA-rated company and thus a small 

chance of default. We follow the same procedure as practitioners and use the interbank rate as the risk-

free rate. 

                                                           
35

 See “Last price” definition of Datastream Navigator 
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Figure 14

 

The graph illustrates the STIBOR rate movements for the whole sample period. 

 

Because OMXS30 is traded in Swedish currency, it is rational to use the Swedish Interbank rate. The 3-

month Stockholm Interbank Offered Rate (STIBOR) is provided by Central Bank of Sweden and is used as 

a proxy for the risk-free rate.  

In theory, one should match the maturity of the risk free rate with the remaining days to expiration for 

options. . However, to circumvent this, we interpolate the maturity from the 3-month STIBOR rate as we 

believe the interest rate is of minor importance for short-dated options.  

Filtering the data 

 

The following rules are applied to filter data needed for the empirical test. 

1. Following Bakshi, Cao, & Chen (1997), all observations were checked for lower boundary 

condition 

           

Option prices which do not satisfy the lower boundary restriction are excluded.  

2. Since very deep ITM or very deep OTM options are less actively traded, their price quotes may 

not generally reflect “true” option value. Moneyness (St/K) greater (less) than 1,10 (0,90) are 
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therefore excluded. Within this interval, only actively traded options are included in the sample 

which means there have to be traded volume and open interest for each strike price. The 

moneyness interval from 0.90 to 1.10 captures the majority of the options traded, however 

those options which are outside of this interval are not traded daily and the price quotes are 

generally not supported by actual trades. 

3. Options with less than 3 days and more than 70 days to expiration may induce liquidity-related 

biases. While options with 3 days maturity are highly sensitive to price-volatility bias, options 

with more than 70 days to expiration are typically not traded and are therefore rejected. 

4. Prices lower than 0.50 are not included to mitigate the impact of price discreteness as the errors 

on these prices will relatively have a huge impact. 

5. Swedish public holidays are included as a trading day when the raw data is gathered from 

Datastream. Because there are no trading activity (therefore no change in prices), these 

observations are rejected. 

6. Days with missing observations and with implied volatility less than 1% or greater than 100% are 

deleted, following the approach of Bakshi & Kapadia (2003). Traded options which do not have 

recorded bid and ask-prices are excluded from the sample. As we are using mid-price as a proxy 

for the “true” market price, both bid and ask quotes must be recorded. Options with implied 

volatility as mentioned above may arise from a non-synchronous bias and therefore distorts the 

models. Consequently, these observations are omitted. 

 

The final set of remaining data amounts to 4849 of total 8768 traded call options, which is 55% of all 

traded options. For the purpose of this thesis we divided option data into six categories of moneyness: 

very deep out-of-the-money (very DOTM) if the moneyness is less than 0.94 (<0.94), deep out-of-the-

money (DOTM) if moneyness is between 0.94 and 0.97, out-of-the-money (OTM) if the moneyness is 

between 0.97 and 1.00, in-the-money (ITM) between 1.00 and 1.03, deep-in-the-money (DITM) if the 

moneyness is between 1.03 and 1.06 and very deep in-the-money (very DITM) if moneyness is greater 

than 1.06. The dataset is also divided according to maturity. The following segmentations is used, T < 20, 

20 ≤ T <40 and T ≥ 40, the maturity is divided according to trading days. 
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Table 0.3 
OMXS30 Options Data 

T < 20 

S/K   <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 All 

Option Price 3,22 6,16 14,28 29,35 49,75 76,23 19,05 

Imp.Vol 
 

27,73 % 25,24 % 26,03 % 27,86 % 31,43 % 35,39 % 27,25 % 

Observations 247 370 433 381 222 114 1767 

         20 ≤ T < 40 

S/K   <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 All 

Option Price 6,97 14,51 26,02 40,79 61,24 85,94 25,96 

Imp.Vol 
 

23,45 % 23,80 % 25,26 % 26,53 % 29,99 % 32,18 % 25,30 % 

Observations 426 437 402 287 139 65 1756 

         T ≥ 40 

S/K   <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 All 

Option Price 13,32 21,96 35,09 48,84 69,75 94,58 28,36 

Imp.Vol 
 

23,32 % 23,02 % 24,24 % 24,60 % 27,95 % 30,16 % 23,88 % 

Observations 428 351 311 162 55 15 1322 
This table reports the average option price, implied volatilities by inverting the BS formula and sum of observations separately 
for each moneyness and maturity category. Moneyness is defined as S/K, where S denotes the spot index price, K denotes strike 
price and T denotes days to expiration of the option. 
 

Table 4.3 describes certain sample properties of the OMXS30 option prices used in this thesis. Summary 

statistics are reported for the option price and the total number of observations, according to each 

moneyness and maturity category. We can see that option prices increase when we move from DOTM 

to DITM and the liquidity of OMXS30 is concentrated in the options with short (less than 20 days to 

maturity) and medium-term maturity (between 20 and 39 days to maturity). For all maturities, a 

volatility smile can be observed across the moneyness and maturity categories where it is most 

prominent for options with the nearest contract expiry. These findings of clear moneyness-related and 

maturity-related biases associated with the BS are consistent with those in the existing literature (e.g., 

Bates (1996b)).  

Therefore, any acceptable alternative to the BS model must show an ability to properly price non-ATM 

options, especially short-term OTM calls. Since there is pattern where prices are the lowest for OTM 

options, we expect the percentage errors to be higher for DOTM options across all maturities.  

 



Page 46 of 107 
 

Chapter 5 Calibration of the Models 
 

“The price to pay for more realistic models is the increased complexity of model 

calibration. Often, the estimation method become as crucial as the model itself” 

 Jacquier.E (2000) 

As expressed in the above statement the calibration of the models is crucial to get good and robust 

results. The importance of correct calibration increases with the complexity and the number of 

parameters to be estimated. It is easy to calibrate a single parameter model like volatility in BS, but it 

can be complicated to calibrate advanced models like Heston and GARCH.36 The results may be spurious 

if the calibration is erroneous and the result can be misleading. In this section the focus is on how to 

calibrate the models by looking at best practice as well as calibrating the models in Excel VBA. 

The problem of perfect calibration may be regarded as an almost impossible task. Obtaining the true 

unbiased parameters that are by nature unobservable seems like rigorous task. There are two ways to 

obtain the unobservable parameters. The first way is to look at historical values and infer the 

parameters from past observations. The second way is to infer the parameters from the current cross-

sectional option prices. 

1. Historical values: 

Historical data only reflect past information and only include the backward-looking information rather 

than future expectations. There can be significant differences between expected values and past 

realizations.  Another unfavorable feature is that risk premiums are hard to obtain from historical 

values. In contrast, historical values are easily available and do not require implying information from 

other instruments. 

2. Cross-sectional data: 

Chernov & Ghysels (2000) propose a way to use forward-looking information as well as mitigating the 

problem of pricing risk. They suggest using current option prices and from this infer the parameters that 

reflect forward looking information.  In this thesis the focus will be on obtaining the parameters from a 

                                                           
36

 GARCH is from now referred to as the Heston Nandi GARCH(1,1) 



Page 47 of 107 
 

cross-section of currently traded option prices. The only exception is the GARCH and BS models, which 

use both historical and cross-sectional data. 

Since there is no guarantee that market makers/traders are in fact rational investors, there is an ill-

posed problem to obtain the parameters form currently traded options. One has to assume that the 

market is close to perfect and all information is known and priced into the options. This method also 

requires that option prices are consistent and “noise” from the data is negligible (Rebonato, 2003).37 

In order to use traded options to calibrate the parameters the models need to have an analytical or 

semi-analytical solution. The reason is that parameters are obtained by inverting the prices that 

minimizes the difference between market and model with the use of an objective function. This strategy 

is common in literature and should yield a good parameter fit if done correctly.  

Objective Function 
 

“The choice of loss function is key because it implicitly assumes a particular error structure”  
 
 

Christoffersen & Jacobs (2004) 
 

The objective function or a loss function is a common procedure to solve complex problem like finding 

parameters from the traded options. In recent research, there has been different use of objective 

functions. There are in general three general common loss functions. Each of them has its strengths and 

weaknesses 

1.          √
 

 
∑     

         
        

    

The dollar Root Mean Squared Errors minimize the dollar amount between the market prices and the 

model prices. It emphasizes the raw difference between them and emphasize expensive in the money 

options. This approach is quite common and is used in many research papers like Bakshi, Cao & Chen 

(1997), Heston & Nandi (2000) and Singh (2013). 

2.         √
 

 
∑     

         
         

         
    

                                                           
37

 Noise could be inaccurate data recording, a high  bid-ask spread and  illiquidity 
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This loss function emphasizes inexpensive OTM option as percentage errors between small values 

become crucial. The better in-sample for the cheap OTM options may be on the expense of ITM and 

long term options. This procedure has been used by Kim & Kim (2004) on Korean KOSPI 200 option index 

market and Su, Chen, & Huang (2010). Jacquier & Jarrow (2000) argue that percentage error can be the 

theoretical correct loss function.  

3.  IVRMSE   √
 

 
∑    

         
        

     

The last loss function focuses on minimizing the market implied volatility and model implied volatility.  

This procedure gives approximate equal weights to each option, since calculating the implied volatilities 

will not produce great differences between ITM options and OTM options. The problem with this loss 

function is that it can be quite computational demanding. 

There is no common consensus on which object function that performs best and different approaches 

have been used. Heston (1993), Bakshi et al. (1997), Heston & Nandi (2000) have used the $RMSE while 

others (Kim & Kim, 2004) have used the %RMSE. Christoffersen & Jacobs (2004) argue that the loss 

function is an issue of pragmatism and the purpose of the study/industry should determine the choice.  

He argues that the loss function should have a connection with the evaluation of the model. This has not 

necessarily been the case in recent research. If one chooses the $RMSE, the evaluation criteria should 

be based on the dollar difference between model and market. Since the evaluation criterion of this 

paper is based largely on percentage errors, the natural candidate is the %RMSE objective function. In 

the rest of the thesis %RMSE is used to estimate the parameters from information on the market prices, 

if not stated otherwise.38 Consequently, we will put more emphasis on MAPE (Mean Absolute 

Percentage Errors) for pricing errors which is explained in Chapter 6. 

       √
 

 
∑      

         
         

        

 

   

 

The objective functions are flexible and if one wish to emphasize liquid options, ATM options or short 

term options this can be achieved by applying different weights to different options. For the rest of the 

thesis all of the options will have equal weights (wi=1). 

                                                           
38

 In Appendix A we have performed a comparison of the loss function $RMSE and the %RMSE for the Heston 
model for July and February. 
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Practical implementation 

To estimate new parameter sets, every sample day is not directly consistent with the fact that the 

parameters in theory are supposed to be slow moving. An article by Mikhailov & Nögel (2003) states 

that the parameters are in fact non-stationary and fluctuate over time. This indicates that in order to get 

the correct market outlook models should be calibrated daily. 

Three consecutive months of option data is used in the calibration. Consider if a model is being 

calibrated for 1st of January. Options that expires in January, February and March is used to calibrate the 

model parameters, given they have passed the filtering rules mentioned in Chapter 4.  

It has been proven that volatility is higher when the assets are traded. The trader tend to ignore days 

when the exchange is not open and only use trading days when calculating time to maturity (Hull, 2009). 

Thus to incorporate this affect trading days are used as days to maturity. 

In the analysis we have put effort in giving every model a level playing field and every model is 

calibrated to current market data. In addition to this, the BS model is tested using historical values. 

Calibrating with using Excel VBA 

In order to solve the complex task of calibrating models we need a statistical software package that is 

able to minimize the objective function with a model with up to up to 5 different parameters. The 

problem is complex and finding the global minimum can be difficult. 

To find a global minimum one needs advanced search algorithms which is very time consuming.39 To be 

more practical we have decided to use Excel VBA to obtain the model parameters. This is generalized 

reduced gradient non-linear searcher and is used for smooth convex problems. Since the advanced 

models often follow non-smooth functions, this optimizer may only produce a local minimum.40 The 

choice of Excel VBA is because we want this to be a practical and applicable approach to option pricing, 

as most people have this software package available.  

It is argued that local minima can give less accurate results. On the other hand, it is found in Mikhailov & 

Nögel (2003) that Excel can provide robust and reliable results if used right.  

                                                           
39

 An example is Adaptive Simulated Annealing (ASA) which is a Global minimum searcher developed by Lester 
Ingber, http://www.ingber.com. This procedure is very time demanding,  making it unpractical for empirical work 
40

 Calculates the “derivatives” of the parameters and then adjust the parameters which have the largest effect on 
the loss function. For further information we refer to: http://www.solver.com/content/basic-solver-what-solver-
can-and-cannot-do  
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The problem that often occurs by using Excel is that the solution may only be a local minimum instead of 

the preferred global minimum.41  This can affect the stationarity of the parameters since different local 

minima can be different from each other. Due to the local minimum constraint, the initial guess 

becomes important. This is especially true for complex models like Heston and GARCH, but is of minor 

importance for the simpler models. To mitigate this problem, we have taken precautions to acquire 

appropriate results in estimating the model parameters. 

Figure 15 

 

The figure illustrates an example of local minima versus global minima.
42

 

  

                                                           
41

 Local minimum searchers are also common when using other software packages, for example Matlab. 
42

 Source: http://mnemstudio.org/neural-networks-multilayer-perceptron-design.htm  
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Estimation Procedure 

Black & Scholes and Gram-Charlier 

 

When calculating BS30 based on historical values, the returns from the 30 last trading days is used is 

used to estimate historical volatility. The volatility is updated every day so the historical values fit the 

new market condition. The rule of thumb is to use the same number of observations as the length of the 

option. One can argue whether we should put more emphasis on recent volatility, but as we want this 

so be a simple benchmark we have decided not to do so. The volatility is calculated from the formulas 

below with n being the last 30 trading days. 

When finding the volatility for the BS and GC, one has to estimate volatility [σ] for the BS and [Volatility, 

Skewness and Kurtosis] for the GC.43  We follow the strategy presented in Chapter 3 and minimize the 

%RMSE to obtain the parameter values. Since this is an easy task in Excel, the initial guess is of less 

importance and set at an arbitrary level of 20% for BS and 〈               〉 respectively for GC.  

 

Daily returns      (
  

    
) 

                   √
 

   
∑             

 

 

   

 

                   ̂  
 

√ 
 

Practitioner Black-Scholes 

 

In the PBS model, the calibration procedure looks somewhat different than the other models. PBS finds 

the fitted implied volatility by using Ordinary Least Squares. As mentioned in Chapter 3 of the thesis, the 

deterministic functions look like 

 

                                                           
43 One has to keep in mind that the different parameters have to be in the same time period. If we use a three 

month kurtosis and three month skewness, the interest rate and volatility needs to be three months estimates. 
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DVF1:  iv = a0 + a1K + a2K
2 

DVF2:  iv = a0 + a1K + a2K
2 + a3T + a4KT 

DVF3:  iv = a0 + a1K + a2K
2 + a3T + a4T

2 + a5KT 

 

In order to extract the parameters in this model we calculate implied volatilities from market prices. 

Then the deterministic volatility function is used to create fitted volatilities. Finally, we use OLS to 

minimize the difference between the implied volatilities and fitted volatilities by changing the structural 

parameters in our model {                 }  Then fitted volatilities is obtained and inverted to find 

the correct option prices. 

The estimation procedure is somewhat different from the other models as an implied loss function is 

used and not %RMSE. This can impact the model evaluation later on and we bear in mind this 

difference. Even so as found by Christoffersen & Jacobs (2004), there are other researchers that also 

have specified different loss functions and we believe this will not greatly alter our results . According to 

the authors, the industry usually use the implied volatility loss function for PBS, hence we follow the 

industry standard. 

Heston 

  

The stochastic volatility model is one of the more complex models that are included in the thesis. The 

importance of good calibration is vital to get robust results for a complex model like Heston. As stated 

earlier, the use of Excel is not the best program for such complicated integration and it is important with 

a good initial guess. Using Excel Solver for the Heston model, we followed the same VBA programming 

of Rouah & Vainberg (2007). The complexity of this task also results in considerable long run time for 

Excel and due to the computational limitations, a time constraint was set. The following rules were used 

in the calibration process; 

1. Using the initial guess for the day. 

2. Max iterations of 15 approximate or 2000 seconds.44 

3. Used previous days calculated parameters as an initial guess the next day. 

                                                           
44

 If the time constraint limit was reached before the 10
th

 iteration we continued the calibration to at least 11 
iterations. A comparison on how different time/iterations restrictions affected the results are illustrated by two 
random examples in Appendix B. 
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4. When the result clearly indicated a wrongly specified parameter set the calibration that day was 

recalibrated with a new initial guess. 

Initial guess and parameter restrictions in Heston 

Excel Solver can be a satisfactory approximation if the initial guess is good. For the initial guess, we used 

market data to pin-point the size of the parameters 

〈             〉 

    (Current variance) is approximated from the SIXVIX where currently traded ATM options indicate 

daily volatility.  The long term variance (   ) was approximated by the averaging the yearly SIXVX. 

The rest of the parameters it is less clear cut what the start values should be. Since the leverage effect 

seem to be a major concern in stock indices, the parameter ρ is set to -0.5. Since there are no suitable 

initial guess for σ, trial and errors where done to obtain a decent approximation. The κ was set to a low 

integer at 2 and the price of risk parameter (λ) is set to zero.45 

Table 0.1 

ρ 
 

κ 
 

θ 
 

σ 
 

v λ 

-0,5 
 

2 
 

Yearly Average SIXVX 
 

(0,2;0,7;0.9) 
 

Daily SIXVX 0 

 

Each Wednesday/Thursday the initial guess was evaluated and compared to the last days parameter set. 

The better of these two conditions was used to calibrate the model. 

In order to avoid negative variance the Feller condition has to be fulfilled        . We set this 

condition to be true in Excel and later evaluate whether the restriction should be included in the 

parameter estimation. According to Andersen (2007) and Haastrect & Pellser (2008) this condition is 

rarely fulfilled in the market data. 

Heston & Nandi GARCH 

In the Heston & Nandi model, previous research has used two different calibration methods. The first 

one is based on Maximum likelihood based solely on historical data. The other approach is based on 

cross-sectional data and extracts the current variance from historical data. In this thesis, the focus will 

                                                           
45

 Further restrictions:                    . Theta was also restricted to be larger than 0.008 to avoid long 

term negative volatility. These restrictions are not very restrictive as the parameters rarely “touched” their 

restricted boundaries. 
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be on the latter since all the models are tested on this basis. Another fact is that estimating the option 

parameters solely from historical values is not highly accurate and does not include forward looking 

information. 

As in the Heston model we experienced irregular values when Excel tried to find a local minimum, 

therefore restrictions on different parameters was included. All the parameters were restricted to be 

positive, to avoid extreme or negative values for the variance. As Heston & Nandi (2000) we use 

historical values from the previous year (252 observations) to obtain conditional current variance. The 

starting variance 1 year prior is set to the unconditional variance of the previous year. This is standard 

practice when using Heston and Nandi GARCH(1,1) model. Heston & Nandi argue that the 1 year data 

should be sufficient time to revert itself to its hopefully correct variance. 

After extensive hours of work the result is an estimation of 23*12 days of market data for up to 5 

models each day.46 Note that complex models like GARCH and Heston are models that are quite time 

consuming when estimating a parameter set, especially GARCH and a single estimation can easily be 

going for hours without finding an solution.  Before analyzing any result one can conclude that 

computational burden is quite high for GARCH and Heston. 

  

                                                           
46

 Average time for Heston was about 2500 seconds and for GARCH approximate 7000 seconds. 
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Comments to the calibration of the models 

 

Heston 

The Feller condition was a restrictive condition for many of the calibrated days. So we decided not to 

implement this condition. Another fact as mentioned by Moodley (2005) is Excel has trouble handling 

small numbers and due to its restrictions the Feller condition was abandoned. 

As stated previously the Heston model is hard to calibrate and the results obtained may be local 

minimum instead of global minima. Although Excel did or did not find the optimal solution for every 

calibration we feel quite comfortable with the result.  By letting Excel find an optimal solution for a few 

dates without time restriction, and compared to the result found by stopping the calibration at 2000 

seconds/15 iterations, did not alter the results substantially.47  Still, there is no guarantee the preferred 

global minimum was found due to the limitations of Excel. 

GARCH 

Excel used tremendously amount time for each calibration and did not have the ability to manage the 

skew parameter gamma. In order to facilitate the process we decided to only calibrate the model every 

week and every time there was a structural break in the option data. Although this is not entirely 

consistent with the rest of the models, this procedure is the same as taken by Heston & Nandi (2000) 

and Christoffersen et al. (2006). Instead of estimating the model parameters every day, the parameters 

〈     〉 were updated weekly, while the historical value of log returns where updated daily. This is 

important to bear in mind when analyzing the results.  

Another caveat is that Excel Solver did not find an appropriate value of gamma (leverage parameter), 

therefore every calibration day the estimation was executed by setting the gamma equal to 0, 50 or 100. 

Then the best fit was used to calculate in sample and out of sample results. The values 0, 50 and 100 

were chosen arbitrary and seemed to be the best parameters for our sample. Although we tried to 

achieve a proxy for this value, we are full aware of its implications and that the result of the Heston 

Nandi GARCH model will be negatively biased compared to the other models.  

 

 

                                                           
47

 See appendix for a comparison. 
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Table 0.2 

HN (0) HN (50) HN (100) HN (Best) 

α 8,10E-06 α 1,01E-05 α 8,43E-06 α 8,85E-06 

 
(6,85E-06) 

 
(1,09E-05) 

 
(7,58E-06) 

 
(7,09E-06) 

β 0,8196 β 0,8064 β 0,7840 β 0,8027 

 
(0,1535) 

 
(0,1562) 

 
(0,1601) 

 
(0,1522) 

γ 0,5068 γ 50,50 γ 100,50 γ 64,068 

 
(0) 

 
(0) 

 
(0) 

 
(40,428) 

ω 1,24E-05 ω 1,0106E-05 ω 1,01E-05 ω 9,416E-06 

 
(1,88E-05) 

 
(1,30E-05) 

 
(1,21E-05) 

 
(1,24E-05) 

σ2
t+1 1,87E-04 σ2

t+1 1,82E-04 σ2
t+1 1,55E-04 σ2

t+1 1,69E-04 

  (1,15E-04)   (1,11E-04)   (9,48E-05)   (1,09E-04) 
The table reports the estimation results of the parameters. HN(Best) consists of 23% of γ=0 , 28% of γ=50 and 49% of γ=100 

where best in-sample results from the most appropriate γ where used. Consequently, HN(Best) has the least in-sample errors. 

GARCH parameters were obtained by testing the values 〈        〉 for the skewness parameter γ and 

the results are reported in table 5.2.48 It seems like the different parameters do not change much 

although the skewness parameter is changed. The model appears to have problems adapting to market 

data as the parameters are less volatile compared to the other models. To compensate for the skewness 

parameter, we have chosen the parameters that give the best in-sample fit, which is HN (Best). 

Analysis of the parameters 
The parameters that represent the volatility smile have the expected sign for every model.   (PBS) is 

positive, volatility of volatility σ is positive (Heston) and the kurtosis parameter for GC is also positive. 

This indicates that on average every model creates a volatility smile which is consistent with theory.  

Another interesting property is whether the models capture the volatility smirk. The smirk which 

indicates the leverage effect represented in Chapter 1. All of K (PBS), ρ (Heston) and skewness 

parameter in GC are negative indicating the different models capture the volatility smirk on average.  

To further analyze the different models we can see what kind of volatilities the different models imply 

from the market. The BS implied volatility (21.6%), historical volatility (27,9%), current variance Heston 

(26,1%), volatility GC (27,7%), SIXVX (26,0%), It seems that models which incorporates smile/smirk 

effects seems to imply the same volatility, while BS Fitted is significantly lower. 

                                                           
48 The only exception is the parameter λ, but this value was insignificant and had no effect on option prices. 
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Stationarity of the Parameters 

 
Table 5.3 is a summary of the different parameter estimates throughout the period and it seems no 

model have stationary parameters. For some models the standard deviation is larger than the 

parameter itself. The GARCH parameters are more stationary than the other models, which is to be 

expected. This was also evident in the article by Kim & Kim (2004). The non-stationarity of the 

parameters clearly indicates that the market changes and the model have to absorb new information by 

changing its parameters. This is the contrary of what the theory suggests: The model parameters should 

be slow moving and change little throughout time. Other articles such as Kim & Kim (2004) found 

evidence that parameters have large standard deviations. They argue that stability of the 

interdependence between the parameters is far more important than focusing on the standard 

deviations. 

Table 0.3 

This table reports the mean and standard deviation (in parenthesis) of the parameter estimates for each model. The parameter 

estimates are explained in Chapter 3. For BS,    is fitted volatility using %RMSE,     is historical volatility N=30,    is SIXVX ATM 

implied volatility. 

 

In our case the index moves a lot during our sample and making the model parameters even more 

volatile. The implied volatility of the year is seen in figure 5 indicating that there are large movements in 

market sentiment throughout the year. By prohibiting the parameters to adjust can negatively bias the 

results. 

σ1 0,2160 Vol 0,1389 α0 3,7672 α0 2,9785 α0 2,8942 ρ -0,6697 α 8,85E-06

(0,0719) (0,0389) (4,5706) (3,0856) (2,9951) (0,2122) (7,09E-06)

σ2 0,2788 Skew -0,3504 α1 -0,0062 α1 -0,0047 α1 -0,0045 κ 4,3445 β 0,802723

(0,0972) (0,3706) (0,0082) (0,00541) (0,0052) (2,5268) (0,1522)

σ3 0,2604 Kurt 0,1543 α2 2,70E-06 α2 1,96E-06 α2 1,9E-06 θ 0,1114 γ 64,068

(0,0778) (0,4840) (3,69E-06) (2,4E-06) (2,25E-06) (0,0943) (40,428)

α3 -0,7790 α3 -0,8853 σ 0,7880 ω 9,42E-06

(3,50272) (3,1635) (0,3778) (1,24E-05)

α4 7,560E-04 α4 8,70E-04 ν 0,0683 σ2
t+1 1,69E-04

(3,11E-03) (0,0028) (0,0439) (1,09E-04)

α5 -0,0212

(2,2204)

GARCHBS DVF1 DVF2 DVF3GC Heston 
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The instability of parameters suggests that out-of-sample pricing can be somewhat mispriced since the 

parameters are unstable. On the other hand, the table is a summary of all observations and maybe the 

parameters are in fact more stationary if we decrease the time period. In the following figure the 

skewness parameters of the different models is graphed, to see how volatile the parameter is. It seems 

that there are not any distinctive patterns and we conclude that the parameters fluctuate much during 

the sample period. 

Figure 16 

 

 

 

The figure illustrates the first 150 estimations for the volatility smirk parameters K, ρ and skewness 

Conclusion of the calibration 
 

Calibrating models is essential to obtain good results. In this section we have used Excel VBA to estimate 

parameters and we are positive that the parameter set obtained from the calibration are reasonable. 

The Heston model may to some extent be calibrated slightly better without the time constraint, but we 

believe this is of minor importance. The GARCH would probably also perform better with the “true” 

estimated parameter γ. 

-0,021

-0,011

-0,001
K (DVF3)

-1,2

-0,2

0,8 skew(GC)

-1,01

-0,81

-0,61

-0,41
ρ (Heston) 
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In spite of model theory, the parameters have large standard deviations making them flexible and 

adaptable to new market conditions. This seems to be a major concern since models that have large 

standard deviations in parameters seem to perform better (Kim & Kim, 2004). All of the parameters 

seem to incorporate the volatility smile and leverage effect which gives us confidence in the results.  

As a last note, one should not spend infinite time for the perfect calibration when the model by itself is 

imperfect. It is just as vital to understand the assumptions behind the models and how the different 

parameters affect the output. 

To sum it up, the alternative option pricing models included in this thesis are BS30, BS, GC, PBS with 

deterministic volatility functions, Heston and GARCH. BS30 volatility parameter is based on the returns 

from the 30 last trading days to estimate historical volatility, while BS, GC and Heston obtains the 

volatility parameter by minimizing %RMSE. PBS uses OLS on the implied volatility from the cross-

sectional options prices that have passed through the filtering rules.49. GARCH on the other hand, 

arbitrary values are chosen for the skewness parameter γ, while the remaining parameters were 

updated weekly except for historical value of log returns which is updated daily. Of those weekly 

estimations, the parameters that gave the best in-sample fit were chosen for the GARCH model. 

In the next chapter, we will explain how the pricing errors are calculated for in-sample, out-of-sample 

and how the regression analysis is commenced and at last, delta hedging errors.   

                                                           
49

 See Chapter 4. 
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Chapter 6 Methodology 
 

We follow the approach of Bakshi, Cao & Chen (1998) and employ 3 yardsticks to compare empirical 

performances of the option pricing models:  In-sample, out-of-sample pricing errors and hedging. 

According to the authors, in-sample and out-of-sample errors reflect a model’s static performance while 

hedging errors reflect the model’s dynamic performance.  

First, in-sample testing shows how consistent the parameters are with the option prices. The authors 

state that the structural parameters of each model is required to be consistent with implicit in the 

relevant time-series data. Second, while a model with more parameters will generally give a better fit in-

sample, it will not necessarily give a better fit out-of-sample. The model misspecification is measured by 

the pricing errors in out-of-sample as overfitting may be penalized.  Third, hedging errors measures how 

well a model captures the dynamic properties of option and underlying index prices. In this thesis we 

will implement delta hedging strategy to determine the forecasting power of the volatility of the 

underlying index.  

To evaulate the pricing errors to compare the performances of the models, we will use the 

measurements of Kim & Kim (2004) by using  

MPE = 
 

 
 ∑    

   imodel - Cimarket)/Cimarket)  

 

MAPE = 
 

 
 ∑     

   imodel - Cimarket)/Cimarket)| 

 

 MAE = 
 

 
 ∑     

   imodel -Cimarket)| 

 

MSE = 
 

 
 ∑    

   imodel - Cimarket)2 

 

where Ci
model is the call price estimated by the model and Ci

market is the observed market price of the 

option. To measure the magnitude of the pricing errors, we use mean absolute errors (MAE) and mean 
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absolute percentage errors (MAPE). Mean percentage errors (MPE) indicate the direction of the pricing 

errors while mean squared errors (MSE) measures the volatility of errors. This analysis will be based on 

these 4 measurements, although we will mainly deal with MAPE because the relative comparison is 

important above all else.  

In-sample performance 

 
The in-sample performance of each model is evaluated by comparing market prices with model prices 

computed by the estimated parameters of the current day. As mentioned earlier, the daily re-estimation 

of parameters is admittedly potentially inconsistent with constant or slow-changing parameters used to 

compute option prices. On the other hand, such estimation is useful for indicating market outlook on a 

daily basis.  

Out-of-sample performance 

 
The results of in-sample performance may be a consequence of increasingly larger number of structural 

parameters and cause overfitting. Including more parameters without improving the structural fit will 

have the models penalized for out-of-sample pricing. The analysis also evaluates each model’s 

parameter stability over time by analyzing the out-of-sample valuation errors for the next day. To 

conduct the 1 day ahead out-of-sample analysis, we use the estimated structural parameters from the 

previous day to price the options today. The pricing errors of the models are then compared to the 

benchmark BS. If the results show that a model is not able to outperform the benchmark, we will 

conclude that the model is not appropriate to forecast option prices 1 day ahead. 

We follow the same procedure for 3 day ahead out-of-sample pricing where the estimated parameters 

are used to forecast 3 days ahead. To further check the robustness of the models we can assess if the 

model parameters are stable through longer time periods and their ability to predict option prices.  

Regression analysis 

To further analyze the out-of-sample pricing errors, we perform a regression analysis MAPE as the 

dependent variable and moneyness, maturity and interest rate as the explanatory variables. This 

approach is adopted by Madan, Carr & Chang (1998) which will let us further infer the degree of errors 

explained by the well-known biases and will be seen in comparison of the pricing errors produced.  
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εn.t   β0 + β1 (St/Kn    β2 (St/Kn)2   β3 τn   β4 rt  ηn(t) 

where εn.t is denote the 1 or 3 day ahead absolute percentage error on day t, St/Kn is the moneyness and 

τ is time to maturity, rt the risk-free interest rate at time t.50  A negative linear term (β1) and positive 

quadratic term (β2) of moneyness are consistent with the volatility smile and confirms the moneyness 

bias. Another systematic bias is the maturity bias which is mentioned earlier. In this regression, we 

expect that if a model has a maturity bias, β3 should be negative and significant. This means that a 

model with maturity bias will have a higher MAPE as the days to expiration decreases. 

To check for significance of the individual regression coefficients, a t-test is conducted. According to 

Gujarati & Porter (2009, p.115), a test of significance is a procedure by which sample results are used to 

verify the truth or falsity of a null hypothesis. The null hypothesis is to check if the individual parameters 

are significant on a certain significance level. The significance level is the probability of rejecting the 

“true” hypothesis and commonly fixed at the 1, 5 or at the most, 10 percent. An example of a hypothesis 

can be 

H0: β3 = 0 

HA  β3 ≠   

to check if a model has a maturity bias. The null hypothesis of β3 being insignificant means the days to 

maturity do not affect the prediction errors of the model, while the alternative hypothesis states it is 

significant. The critical t value is commonly 1.96 for a two-tailed significance test, which means each of 

the parameters |t| value will have to exceed the critical value to be statistically significant.51 

To test the overall significance of the regression coefficients the usual t-test cannot be used. According 

to Fomby, Hill & Johnson (1984, p.37) 

…testing a series of single (individual) hypothesis is not equivalent to testing those same hypotheses 

jointly. The intuitive reason for this is that in a joint test of several hypotheses any single hypothesis is 

“affected” by the information in the other hypothesis.52 

                                                           
50

 Parameter τ is divided by 252 trading days.  
51

 The critical value is based on 95% confidence interval.  
52

 Thomas B. Fomby, R. Carter Hill & Stanley R. Johnson, Advanced Econometric Methods, Springer-Verlag, New 
York, 1984, p.37.  
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Since the usual t-test cannot be used to test the joint hypothesis that coefficients are zero 

simultaneously, the F-test can be used. The joint hypothesis is 

H0:  β1   β2 = β3 = β4 = 0 

HA: β1 ≠ β2 ≠ β3 ≠ β4 ≠ 0 

 

If the null hypothesis is false, this means the moneyness, maturity and interest rate explains the 

forecasting errors of a model. The critical F value is 2.37 and if exceeded, the null hypothesis is rejected. 

To compare the regression results relatively, the F value can tell us the magnitude of how much the 

biases explain the absolute percentage pricing errors of a model. In this case, a higher F value means a 

higher degree of the biases affecting the model. 

As a penalty of adding regressors to explain the dependent variable, Henry Theil developed the adjusted 

R2. On the contrary to R2, adjusted R2 only increases if the absolute t value of the added variable is 

greater than 1. In other words, it tells us how much of the absolute percentage errors are explained by 

the moneyness, maturity and interest rate bias. The derivation of statistics mentioned above has not 

been included as they are provided by SAS and can be found in Basic Econometrics by Gujarati & Porter 

(2009,p. 493).  

Hedging performance 

 
For hedging performance we implement a delta-neutral hedge strategy. The strategy is applied by 

shorting a call option    
  then create a replicating portfolio by investing in     . To implement this 

strategy we have to borrow the remaining funds from a risk free asset(r),      
      ). The next 

trading day we liquidate this position by buying the same option     
  , sell the         and repay the 

borrowed money. The loss/gain from this strategy is given by53 

 

εt =  SS(t    t)   δe    –      
  

 

                                                           
53

 The cost of implementing this delta-neutral strategy is the risk-free rate. 
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For the BS models and PBS, Δ for call options is computed by taking the cumulative density function the 

normal distribution of d1 (equation 3.1) which is mentioned in Chapter 3, in mathematical expression, 

ΔCall = N(d1). The difference between the deltas of BS and PBS is that in the PBS the delta is calculated 

from the fitted volatilities which is different from model to model, while the BS uses the same volatility 

for every option. 

For the Gram-Charlier model, Δ is calculated by first calculating the BS delta, and then adds the effect of 

kurtosis and skewness to the delta. For a full proof of this approach we refer to Chapter 3. As for Heston 

and GARCH model, authors of the articles argue that the Δ of their models is the probability P1.
54 

  

                                                           
54

 Chapter 3 explains how to obtain the probability.  
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Chapter 7 Empirical Findings 

In-sample Pricing Performance 

 
DVF 3 shows best performance with respect to MAPE, MAE and MSE for the whole sample period. As 

the table below shows, it is within our expectations that DVF 3, one of the models with the most 

parameters, has the best fit in-sample and BS30 has the highest errors throughout the sample. All of the 

models fit the prices better than BS30 and BS. In-sample results suggest that the BS30 cannot fit the 

option prices satisfactory as BS30 has nearly 5 times higher MAPE than BS, which indicate the model is 

not correctly specified. BS does not have the best performance, but makes a good fit considering it uses 

a single parameter compared to the more advanced models. According to Bates (1996a, 1996c), the 

parameters should be consistent with in-sample data. Consequently, we find the parameter of BS30 

inappropriate and the results are therefore not reported for the rest of the in-sample and out-of-sample 

pricing performance.55 BS is then left as the only benchmark. 

Table 0.1 
In-sample pricing performance 

  BS30 BS GC DVF 1 DVF  2 DVF 3 Heston GARCH 

MPE 57,72 % -6,01 % -4,75 % 1,26 % 0,21 % -0,12 % -1,09 % -4,04 % 

MAPE 63,54 % 13,10 % 10,28 % 8,01 % 3,91 % 2,40 % 5,34 % 10,09 % 

MAE 6,61 2,90 2,67 1,08 0,48 0,24 1,16 2,13 

MSE 74,99 15,83 17,90 3,22 0,79 0,22 3,30 8,81 
The table reports in-sample pricing errors. Due to weekly estimation model parameters, GARCH estimated 1045 of 4846 
option prices compared to the other models. Denoting εn = Cn*- Cn, where Cn* is the model price and Cn is the market price. 
MPE, MAPE, MAE and MSE are calculated using the equations in Chapter 6. 
 

Table 7.2 sorts the pricing errors according to days to maturity using intervals of less than 20 days (short 

maturity), between 20 and 39 days (medium maturity) and above 40 days (long maturity). GARCH 

results are only included in the table above due to the limitations we had for estimating GARCH 

parameters. When sorting errors for maturity (and moneyness later) the lack of observations may be 

distorted for certain maturity or moneyness categories and hence GARCH is excluded to give a fair 

interpretation of the results. 

                                                           
55

 All the pricing performance tests were still conducted for BS30. As the model has the highest pricing errors for 
in-sample and out-of-sample pricing, the results are not reported.  
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As MAPE stays relatively the same, DVF 3 is still the best model to fit the option prices in all of the 

maturity categories. It is shown among the DVF functions, having T, T2 and KT improves the fitting of the 

models because DVF 2 and 3 are able to model the short maturity options better than DVF 1, while the 

difference is less prominent for medium and long maturity. Both Heston and GC perform better than 

DVF 1 for short maturity options suggesting the parameters of DVF 1 cannot fully describe the prices 

when the volatility smile is the most prominent. BS has larger pricing errors for short maturities 

compared to medium and long term maturities in terms of MAPE. This confirms the maturity bias which 

has been documented empirically where the volatility smile is less prominent for longer expiration 

dates. 

Table 0.2 
In-sample pricing performance sorted by option maturity 

3 ≤ T < 20 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE -10,56 % -6,01 % 1,22 % -0,18 % -0,25 % -1,41 % 

MAPE 14,52 % 7,74 % 9,48 % 3,34 % 2,42 % 4,68 % 

MAE 2,47 1,66 0,67 0,20 0,15 0,83 

MSE 11,26 7,80 0,97 0,09 0,05 1,89 

        20 ≤ T < 40 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE -4,72 % -2,71 % 1,80 % 0,56 % -0,29 % -1,14 % 

MAPE 12,18 % 11,29 % 6,69 % 4,38 % 2,29 % 5,80 % 

MAE 3,03 2,92 1,01 0,59 0,26 1,32 

MSE 17,45 19,55 2,63 0,94 0,20 3,67 

        40 ≤ T 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE -1,66 % -5,78 % 0,60 % 0,27 % 0,29 % -0,60 % 

MAPE 12,43 % 12,33 % 7,79 % 4,03 % 2,52 % 5,63 % 

MAE 3,29 3,70 1,73 0,72 0,35 1,41 

MSE 19,77 29,20 6,99 1,52 0,47 4,69 
Table reports in-sample pricing errors sorted by days to maturity. GARCH is not included as  
the number of observations is significantly lower compared to the other models. T represents 
the remaining trading days to expiration of the option. 
 

To see the degree of moneyness biased errors for in-sample pricing, table 7.3 sorts the pricing errors for 

both maturity and moneyness and figure 17 to 19 illustrates MAPE across moneyness for each maturity 

category. The intervals of moneyness categories expands from less than 0.94 (very deep OTM), 0.94-
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0.97 (deep OTM), 0.97-1.00 (OTM) and 1.00-1.03 (ITM), 1.03-1.06 (deep ITM) and above 1.06 (very deep 

ITM).    

Considering short maturity options, all models show moneyness-based errors and exhibit the worst fit 

for OTM options except for GC where the highest errors are centered ATM options. Figure 17 illustrates 

MAPE for short term maturity options. MPE show that Heston, GC and BS seem to undervalue across 

moneyness while the DVF 2 and 3 undervalue very deep OTM and ITM options and overvalue near ATM 

options. As we move from DOTM to DITM options the errors measured by MAPE steadily decrease for 

Heston and DVF models. DVF 1 and BS pricing errors do however peak for OTM options. Among the DVF 

models, there is a significant difference by adding parameter T as seen in figure 17. DVF 1 has more than 

twice as high MAPE compared to DVF for all options below moneyness of 1.03. For very deep OTM 

options, GC is able to model fit the prices nearly on par with DVF 3. Furthermore, BS is outperformed by 

all of the models except for GC for very deep ITM options. 

Figure 17 

Figure 17 shows in-sample MAPE of the models for short maturity options across moneyness. 
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Table 0.3 
In-sample pricing performance sorted by maturity and moneyness 

S/K <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06

MPE BS 1,96 % -14,79 % -14,93 % -12,06 % -9,07 % -5,31 % 8,74 % -6,68 % -10,63 % -9,97 % -10,14 % -8,42 % 5,68 % -2,24 % -7,07 % -6,50 % -8,38 % -8,36 %

GC -2,94 % -5,74 % -6,61 % -6,96 % -7,32 % -5,59 % 13,64 % -1,38 % -9,67 % -12,53 % -12,33 % -11,87 % 5,94 % -5,97 % -13,64 % -16,19 % -17,60 % -17,29 %

DVF 1 0,52 % 2,09 % 3,01 % 0,19 % -0,51 % -0,08 % 5,56 % 0,66 % 0,02 % 1,32 % 0,97 % -0,12 % -0,31 % 0,75 % 0,64 % 2,10 % 1,72 % 2,12 %

DVF 2 -0,82 % -0,48 % -0,04 % 0,24 % 0,38 % 0,03 % 0,06 % 0,86 % 0,39 % 0,30 % 0,22 % 0,11 % 1,36 % 0,49 % -0,60 % -0,12 % 0,04 % 0,39 %

DVF 3 -3,29 % -0,34 % 1,14 % 0,13 % -0,18 % -0,08 % -0,03 % -0,89 % -0,72 % 0,38 % 0,44 % 0,26 % 1,84 % -0,06 % -1,15 % -0,20 % 0,15 % 0,41 %

Heston -0,41 % -0,41 % -1,23 % -2,07 % -2,95 % -2,31 % 2,24 % -1,50 % -2,40 % -2,20 % -3,21 % -3,98 % 0,84 % -1,01 % -1,40 % -0,94 % -3,32 % -2,27 %

MAPE BS 16,21 % 18,73 % 16,60 % 12,90 % 9,07 % 5,31 % 14,00 % 9,89 % 13,17 % 12,95 % 11,09 % 8,42 % 12,23 % 12,57 % 13,25 % 11,91 % 10,74 % 9,16 %

GC 5,68 % 7,68 % 8,58 % 8,86 % 7,58 % 5,74 % 15,62 % 6,33 % 10,51 % 12,90 % 12,33 % 11,87 % 10,18 % 10,32 % 14,23 % 16,49 % 17,60 % 17,29 %

DVF 1 15,79 % 17,86 % 10,69 % 3,41 % 1,21 % 0,36 % 9,95 % 7,40 % 5,85 % 5,16 % 2,79 % 0,73 % 7,60 % 9,12 % 7,71 % 6,77 % 5,27 % 4,10 %

DVF 2 6,79 % 6,53 % 4,57 % 1,58 % 1,87 % 0,30 % 5,80 % 5,59 % 2,59 % 2,74 % 0,65 % 0,36 % 5,29 % 3,96 % 3,66 % 0,51 % 1,20 % 0,69 %

DVF 3 5,29 % 4,37 % 2,28 % 0,73 % 0,31 % 0,19 % 4,44 % 2,69 % 1,24 % 1,13 % 0,78 % 0,40 % 3,55 % 2,81 % 1,84 % 1,23 % 0,75 % 0,59 %

Heston 6,43 % 5,42 % 4,64 % 4,31 % 3,29 % 2,53 % 6,58 % 5,81 % 5,57 % 5,92 % 4,59 % 3,98 % 5,62 % 5,70 % 6,02 % 5,12 % 5,01 % 3,82 %

MAE BS 0,36 0,89 2,28 3,87 4,59 4,05 0,82 1,41 3,46 5,38 6,89 7,17 1,53 2,30 4,48 5,83 7,62 8,78

GC 0,14 0,28 1,08 2,56 3,82 4,47 0,87 0,83 2,80 5,37 7,60 10,28 1,08 1,96 4,91 8,00 12,17 16,31

DVF 1 0,34 0,60 0,90 0,84 0,58 0,26 0,44 0,79 1,24 1,74 1,51 0,62 0,89 1,52 2,21 2,80 3,17 3,63

DVF 2 0,24 0,17 0,67 0,41 0,85 0,23 0,26 0,47 0,44 0,95 0,37 0,32 0,41 0,38 0,92 0,20 0,77 0,66

DVF 3 0,09 0,12 0,19 0,18 0,15 0,14 0,16 0,22 0,24 0,38 0,43 0,34 0,26 0,30 0,43 0,50 0,45 0,53

Heston 0,15 0,25 0,61 1,26 1,68 1,97 0,41 0,73 1,37 2,28 2,81 3,46 0,68 1,01 1,93 2,27 3,43 3,60

MSE BS 0,26 1,62 8,02 19,26 26,45 22,38 1,40 3,80 16,61 35,78 54,10 60,32 5,24 8,39 26,24 44,98 73,09 98,86

GC 0,04 0,17 2,37 10,79 23,25 29,95 1,43 1,38 11,71 37,77 69,51 121,57 1,95 6,50 32,29 75,23 164,08 282,33

DVF 1 0,26 0,82 1,36 1,54 0,93 0,15 0,40 1,15 2,59 6,44 7,25 0,86 1,89 4,44 9,00 16,43 18,26 27,24

DVF 2 0,18 0,05 1,09 0,60 2,08 0,22 0,19 0,56 0,58 2,40 0,68 0,33 0,39 0,44 2,16 0,11 1,95 0,78

DVF 3 0,01 0,02 0,06 0,06 0,05 0,04 0,05 0,10 0,13 0,42 0,57 0,39 0,18 0,31 0,89 0,73 0,60 0,51

Heston 0,05 0,17 0,84 2,87 4,90 6,36 0,40 0,99 3,05 7,30 10,89 15,39 1,18 2,01 7,85 8,67 16,65 15,19

3 ≤ T < 20 20 ≤ T <40 40 ≤ T
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For medium maturity options, figure 18 graphically illustrates MAPE for all models. BS is still 

outperformed except by GC for very deep OTM options and moneyness above 1.03. However, all of the 

DVF models fit the prices better than Heston for moneyness above 1.00.  

Figure 18 2

Figure 18 shows in-sample 1 day ahead MAPE of the models for medium maturity options across moneyness. 

For long term maturity, the pattern of decreasing MAPE across moneyness remains the same for Heston 

and DVF models and the ranking remains the same. The graphs illustrates that the pricing errors 

diminish as expiration increases.  
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Figure 19

Figure 19 shows in-sample 1 day ahead MAPE of the models for long maturity options across moneyness. 
 

To sum it up, DVF 3 shows the best in-sample performance and BS30 has the worst performance. We 

find that by adding more parameters to describe the volatility smile decreases the pricing errors 

significantly as all of the models outperform the benchmarks on average. Among the DVF models, 

including parameters T, T2 and KT significantly increases the models ability to fit the option prices. 

Meanwhile for GC, the percentage loss function is not able to improve pricing errors for OTM and DOTM 

options compared to BS, and it is more prominent for medium and long maturity options. For in-sample 

pricing, all models are unable to fit the prices perfectly where the worst fit for OTM options, which is to 

be expected. Nonetheless, the models significantly improve the in-sample pricing errors and are able to 

model the volatility smile compared to BS. The results therefore suggest that on average, the models 

(except for BS 30) included in the thesis are consistent with option prices in our sample period.  
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Out-of-sample Pricing Performance 

1 day ahead results 

For all of the models, the pricing errors worsen when shifting from in-sample pricing to 1 day ahead out-

of-sample pricing. Looking at both table 7.1 and 7.4, MAPE increases for all models as expected. The last 

row of table 7.4 shows how many times MAPE multiplies from in-sample to 1 day ahead out-of-sample. 

The multiples indicate the degree of penalization of including more parameters for a better in-sample fit 

compared to out-of-sample. The multiplier shows the in-sample fit does not necessarily mean better 

prediction of option prices the following day. 

Table 0.4 
1 day ahead out-of-sample pricing errors 

  BS GC DVF 1 DVF  2 DVF 3 Heston GARCH 

MPE -4,41 % -3,82 % 2,25 % 1,24 % 1,41 % 0,47 % -2,97 % 

MAPE 17,13 % 17,23 % 12,16 % 9,83 % 9,61 % 13,40 % 18,46 % 

MAE 3,07 3,18 1,61 1,29 1,19 2,00 2,95 

MSE 17,31 21,70 5,56 3,58 2,76 8,31 16,72 

Multiplier 1,31 1,68 1,52 2,52 4,01 2,51 1,83 
The table reports 1 day ahead out-of-sample pricing errors. Multiplier is calculated by taking each of models 1 day  
ahead MAPE divided by in-sample MAPE to indicate the degree of overfitting. Due to weekly estimation model 
parameters, GARCH estimated 2059 of 4600 option prices compared to the other models. Denoting εn = Cn*- Cn,  
where Cn* is the model price and Cn is the market price. MPE, MAPE, MAE and MSE are calculated using the equations  
in Chapter 6. For MPE and MAPE, εn is divided by the option market price today. 
 

For the whole sample period, the DVF models perform the best followed by Heston, BS, GC and GARCH. 

Comparing the DVF models, they all overprice the options on average and it seems that including the T 

parameter increases the forecasting ability of the model, although DVF 3 only marginally performs 

better than DVF 2 with the quadratic parameter of T. As mentioned in Chapter 3, Dumas et al. (1998) 

found that prediction errors grow larger with DVF functions were less parsimonious. Our results are on 

the contrary of the authors results on S&P 500 as T, T2 and KT decrease pricing errors for 1 day ahead.  

Between Heston and PBS, the ranking is changed compared to the in-sample ranking. Heston which has 

a better in-sample fit compared to DVF 1, now falls behind all of the DVF models in forecasting the 

prices 1 day ahead. In contrast of the in-sample results, both Heston and DVF 3 now overvalue the 

option prices as shown by MPE. 
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Note that GARCH has the highest MAPE of all of the models, although with merely half of the 

observations. Considering BS is more accurate in predicting the option prices the next day, it is surprising 

GC and GARCH perform worse than the benchmark model for the whole sample period. This indicates 

both GC and GARCH are not appropriate for forecasting 1 day ahead as they are outperformed by the 

benchmark. Since DVF models and Heston produce the lower pricing errors in terms of MAPE, MAE and 

MSE, we find the models superior to BS in forecasting 1 day ahead. 

Table 0.5 
1 day ahead pricing errors sorted by maturity 

3 ≤ T < 20 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE -9,03 % -6,19 % 2,59 % 1,29 % 1,62 % 0,39 % 

MAPE 19,34 % 18,21 % 14,32 % 11,57 % 11,92 % 15,26 % 

MAE 2,62 2,23 1,26 1,12 1,12 1,55 

MSE 12,64 10,92 2,99 2,50 2,45 4,66 

        20 ≤ T < 40 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE -2,94 % -0,93 % 2,71 % 1,32 % 1,18 % 0,13 % 

MAPE 16,23 % 17,04 % 10,88 % 9,12 % 8,31 % 12,78 % 

MAE 3,23 3,40 1,60 1,32 1,18 2,11 

MSE 18,75 22,93 5,13 3,36 2,62 8,23 

              

40 ≤ T 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE 0,29 % -4,27 % 1,11 % 1,08 % 1,41 % 1,04 % 

MAPE 15,13 % 16,09 % 10,74 % 8,26 % 8,03 % 11,56 % 

MAE 3,50 4,24 2,15 1,49 1,29 2,52 

MSE 22,10 35,59 9,86 5,43 3,41 13,66 
Table reports 1 day ahead out-of-sample pricing errors sorted by days to maturity. GARCH is  

not included as the number of observations is significantly lower compared to the other models. 

T represents the remaining trading days to expiration of the option. 

 

The table above sorts the errors according to maturity for 1 day ahead pricing errors. For short maturity, 

all of the models actually outperform BS. Surprisingly, DVF 2 has lower MAPE than DVF 3 indicating that 

T2 does not improve forecasting ability for short term maturity options. MPE tells us DVF 3 on average, 

overprice the short maturity options more than DVF 2. This is unexpected as T2 is added to better fit the 

volatility smile across moneyness and time to expiration. However, for both medium and long term 
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categories, DVF 3 outperforms all of the models while GC has higher MAPE, MAE and MSE than BS. Since 

the number of option prices are higher for medium and long maturity combined than for short maturity, 

in overall the results confirms the findings of GC inferior to BS. 

Figure 20

Figure 20 illustrates 1 day ahead out-of-sample MAPE of the models for short maturity options across moneyness. 
 

Table 7.6 reports the pricing errors sorted by maturity and moneyness. Figure 20 illustrates MAPE of the 

models for short maturity options and shows DVF 2 has lower MAPE in 4 of 6 moneyness categories 

than DVF 3. As mentioned earlier, this suggests parameter T2 does not improve the structural fit and 

penalize the model with higher errors compared to DVF 2 for DOTM and DITM for options with less than 

20 days to maturity. The pattern of highest MAPE for very deep OTM options and steadily decreases 

across moneyness is common for all of the models. This is in contrast of the in-sample results for BS, GC 

and DVF 1 for short maturity options.  The pattern of the pricing errors indicates the moneyness bias, 

where the largest errors are concentrated at DOTM options. However, this can also be due to the fact 

that DOTM option prices relatively are lower than DITM options.56  

                                                           
56

 See table 4.3 for option prices sorted by maturity and moneyness. 
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Figure 21

Figure 21 illustrates 1 day ahead out-of-sample MAPE of the models for medium maturity options across moneyness. 
 
 

For medium maturity options, DVF 3 has the lowest MAPE, MAE and MSE for across moneyness 

followed by DVF 2, DVF 1 and Heston. Those models still outperforms BS in every moneyness category. 

The difference between DVF 1 and Heston is now larger compared to options with shorter expiration 

date. Considering options with long expiration date, the difference diminishes between the two of them 

as figure 22 displays. Note that Heston has the least MAPE, MAE and MSE for very DITM options while 

DVF 2 outperforms DVF 3 for very DOTM options.  
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Table 0.6 
1 day ahead out-of-sample pricing errors sorted by maturity and moneyness 

S/K <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06

MPE BS 4,12 % -11,94 % -13,29 % -11,63 % -8,28 % -4,88 % 12,01 % -5,51 % -9,32 % -9,04 % -8,53 % -7,26 % 7,96 % 0,70 % -5,75 % -6,25 % -7,80 % -7,28 %

GC -8,27 % -6,56 % -4,65 % -6,33 % -6,55 % -5,11 % 18,35 % -0,52 % -8,89 % -12,13 % -11,76 % -11,02 % 8,33 % -3,75 % -13,35 % -16,10 % -18,41 % -15,21 %

DVF 1 1,83 % 4,82 % 5,07 % 0,65 % -0,40 % -0,13 % 6,86 % 1,58 % 0,99 % 1,81 % 1,50 % 0,04 % -0,71 % 2,68 % 1,46 % 1,98 % 1,43 % -1,37 %

DVF 2 -2,96 % 2,70 % 4,13 % 0,58 % 0,07 % -0,11 % 3,18 % 0,64 % 0,61 % 0,81 % 1,10 % 0,47 % 1,47 % 1,92 % -0,13 % 0,57 % 0,11 % 4,16 %

DVF 3 -2,84 % 3,78 % 4,50 % 0,60 % 0,05 % -0,15 % 3,13 % 0,34 % 0,40 % 0,74 % 1,16 % 0,58 % 2,76 % 1,81 % -0,22 % 0,17 % 0,54 % 2,35 %

Heston 1,33 % 3,44 % 1,02 % -1,71 % -2,19 % -1,84 % 4,88 % -0,93 % -1,75 % -1,43 % -1,59 % -2,41 % 2,79 % 1,30 % -0,65 % 0,42 % -2,47 % -1,56 %

MAPE BS 34,83 % 27,55 % 18,63 % 12,92 % 8,28 % 4,88 % 25,40 % 15,17 % 13,76 % 12,45 % 9,73 % 7,26 % 18,33 % 15,22 % 13,65 % 11,36 % 10,47 % 8,25 %

GC 34,73 % 28,99 % 15,84 % 9,70 % 7,63 % 5,38 % 29,27 % 14,24 % 12,29 % 13,17 % 11,93 % 11,04 % 17,99 % 14,10 % 15,14 % 16,46 % 18,41 % 15,21 %

DVF 1 26,79 % 24,60 % 14,91 % 5,96 % 2,90 % 1,83 % 18,93 % 11,50 % 8,01 % 6,84 % 4,45 % 2,65 % 12,29 % 12,17 % 9,39 % 7,61 % 6,67 % 3,92 %

DVF 2 22,07 % 18,83 % 11,86 % 5,42 % 2,81 % 1,81 % 15,62 % 10,15 % 6,89 % 5,14 % 3,25 % 2,11 % 11,56 % 8,60 % 5,68 % 5,16 % 4,47 % 4,99 %

DVF 3 22,06 % 20,19 % 12,06 % 5,47 % 2,83 % 1,79 % 14,73 % 9,26 % 5,92 % 4,32 % 3,09 % 2,08 % 12,23 % 8,56 % 4,91 % 3,58 % 3,28 % 3,63 %

Heston 31,86 % 24,75 % 14,20 % 6,93 % 3,89 % 2,47 % 21,82 % 14,23 % 9,60 % 7,23 % 4,63 % 3,41 % 16,11 % 11,60 % 8,54 % 7,40 % 6,63 % 3,36 %

MAE BS 0,87 1,32 2,52 3,88 4,19 3,73 1,48 2,11 3,60 5,10 6,06 6,20 2,12 2,62 4,46 5,63 7,29 7,91

GC 0,92 1,30 1,91 2,81 3,86 4,21 1,66 1,87 3,24 5,45 7,38 9,51 1,96 2,66 5,27 8,00 12,83 14,24

DVF 1 0,65 0,96 1,45 1,59 1,42 1,37 0,88 1,26 1,77 2,42 2,54 2,24 1,27 1,84 2,63 3,31 4,19 3,60

DVF 2 0,51 0,78 1,25 1,45 1,38 1,36 0,78 1,13 1,50 1,82 1,90 1,79 1,06 1,20 1,66 2,24 2,82 4,67

DVF 3 0,52 0,80 1,25 1,46 1,39 1,34 0,73 0,98 1,29 1,55 1,82 1,78 1,03 1,16 1,44 1,57 2,06 3,37

Heston 0,83 1,14 1,63 1,96 1,97 1,92 1,33 1,87 2,37 2,75 2,81 2,98 1,96 2,15 2,80 3,56 4,50 3,20

MSE BS 1,55 3,66 11,05 21,57 24,37 19,32 5,09 8,19 19,95 34,97 46,17 46,28 10,33 12,03 27,98 42,64 71,13 78,91

GC 1,62 3,33 6,83 14,19 26,72 29,25 6,20 6,79 16,97 40,53 71,70 108,44 8,18 11,85 40,45 81,63 190,97 222,49

DVF 1 0,80 1,82 3,59 4,61 3,56 2,82 1,48 2,73 5,26 10,09 12,82 7,55 3,53 6,28 11,69 21,83 31,95 21,63

DVF 2 0,50 1,34 2,93 3,92 3,23 2,82 1,13 2,20 3,92 5,96 6,44 4,60 2,21 3,09 5,46 10,94 15,04 60,17

DVF 3 0,49 1,32 2,82 3,86 3,26 2,74 1,01 1,69 2,92 4,37 5,37 4,24 1,80 2,62 3,98 4,71 8,02 26,92

Heston 1,44 2,74 4,90 6,57 6,87 6,31 4,06 6,45 9,35 12,03 13,54 13,43 8,84 8,56 15,04 26,82 36,76 16,74

3 ≤ T < 20 20 ≤ T <40 40 ≤ T
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Figure 22

Figure 22 illustrates 1 day ahead out-of-sample MAPE of the models for long maturity options across moneyness. 
 

Across all of the maturity categories, the pricing errors decreases for all of the models as the maturity 

increases, except for BS30. This indicates the models suffer from a maturity bias and the fact that MAPE 

decreases across moneyness confirms a moneyness bias. These biases will be further examined in the 

regression analysis.  

3 day ahead results 

The table below reports the 3 day ahead pricing errors. For all of the models, MAPE, MAE and MSE 

increase the longer period of time ahead each model tries to forecast. PBS ranks 1st again followed by 

Heston, however the difference between the DVF models is diminishing compared to the results from 1 

day ahead. GC and GARCH still have higher errors than BS and we can therefore suggest when it comes 

to predict option prices 1 and 3 day ahead, the models are inferior to the classic BS. We find that DVF 

models and Heston overvalues the options on average while BS and GC undervalues. 
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Table 0.7 
3 day ahead out-of-sample pricing errors 

  BS GC DVF 1 DVF  2 DVF 3 Heston GARCH 

MPE -3,32 % -3,35 % 2,79 % 1,81 % 1,89 % 1,20 % -1,90 % 

MAPE 22,86 % 23,89 % 16,97 % 15,19 % 15,15 % 21,07 % 24,10 % 

MAE 3,50 3,77 2,13 1,88 1,81 2,94 3,73 

MSE 23,13 29,23 9,66 7,49 7,01 18,45 26,74 

Multiplier 1,75 2,32 2,12 3,89 6,31 3,94 2,39 
The table reports 3 day ahead out-of-sample pricing errors. Multiplier is calculated by taking each of models 3 day  
ahead MAPE divided by in-sample MAPE to indicate the degree of overfitting. Due to weekly estimation model 
parameters, GARCH estimated 1688 of 4074 option prices compared to the other models. Denoting εn = Cn*- Cn,  
where Cn* is the model price and Cn is the market price. MPE, MAPE, MAE and MSE are calculated using the equations 
on p.60. For MPE and MAPE, εn is divided by the option market price today. 
 

When sorting for maturity, the ranking remains the same for the DVF models as the ranking for 1 day 

ahead results. On average, both DVF models and Heston overvalues the option price for all maturities 

(except Heston for medium maturities) where the overvaluing is prominent for short maturity options. 

This suggests that the parameters that accounts for the volatility smile, overestimate the smile or smirk 

when forecasting a longer time period ahead.  For short maturity options, DVF 2 is the superior model 

followed by DVF 3, DVF 1 and Heston. Furthermore, considering medium and long maturity, DVF 3 is 

now back on top followed by DVF 2, DVF 1 and Heston in terms of MAPE, MAE and MSE. The ranking is 

consistent with the 1 day ahead results and confirms that T2 is excessive for short term options for both 

1 and 3 day ahead pricing performance. On the other hand, it improves the forecasting accuracy for 

medium and long maturity options on average. 

Table 0.8 

3 ≤ T < 20 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE -6,86 % -5,92 % 3,78 % 2,36 % 2,85 % 2,63 % 

MAPE 26,12 % 26,69 % 19,91 % 18,02 % 19,09 % 24,21 % 

MAE 2,91 2,81 1,69 1,62 1,64 2,24 

MSE 16,06 16,12 5,54 5,51 5,66 10,05 

        20 ≤ T < 40 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE -2,57 % -0,72 % 2,51 % 1,30 % 0,99 % -0,22 % 

MAPE 21,54 % 22,77 % 15,50 % 14,15 % 13,14 % 20,04 % 

MAE 3,77 4,08 2,25 2,02 1,89 3,26 

MSE 26,74 32,70 10,55 8,31 7,42 20,46 
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        40 ≤ T 

  BS GC DVF 1 DVF  2 DVF 3 Heston 

MPE 1,53 % -2,90 % 1,54 % 1,62 % 1,59 % 0,89 % 

MAPE 19,35 % 20,85 % 14,21 % 11,97 % 11,49 % 17,32 % 

MAE 4,08 4,92 2,69 2,10 1,97 3,65 

MSE 29,71 46,13 15,27 9,61 8,65 29,60 
Table reports 3 day ahead out-of-sample pricing errors sorted by days to maturity. GARCH is not 

included as the number of observations is significantly lower compared to the other models. T  

represents the remaining trading days to expiration of the option. 

 

Figure 23

Figure 23 illustrates out-of-sample 3 day ahead MAPE of the models for short maturity options across moneyness. 

 

The figure above displays the 3 day ahead MAPE while table 7.9 reports the errors sorted for moneyness 

and maturity. As the figure shows, the pattern is different from the 1 day ahead errors. Both DVF 1 and 

DVF 2 have a steady MAPE near the 20% mark, while BS, GC, DVF 3 and Heston have the familiar 

declining MAPE across moneyness. DVF 2 and DVF 1 outperform DVF 3 in terms of MAPE for options 

with moneyness up to 1.00. This means T2 is excessive for all options that are OTM, but improves the 

pricing errors for options above 1.00. Heston is on par with BS for DOTM options up to 1.00.  
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Table 0.9 
3 day ahead out-of-sample pricing performance sorted by maturity and moneyness 

S/K <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06

MPE BS 10,01 % -8,05 % -11,22 % -10,84 % -7,68 % -4,52 % 11,37 % -6,20 % -8,92 % -8,35 % -7,81 % -4,55 % 10,36 % 0,73 % -4,60 % -5,80 % -8,13 % -5,93 %

GC -16,83 % -3,32 % -3,16 % -4,93 % -4,95 % -3,95 % 17,64 % -1,42 % -8,76 % -11,77 % -11,99 % -10,69 % 11,16 % -3,80 % -12,41 % -16,12 % -18,89 % -13,49 %

DVF 1 0,04 % -0,53 % 15,12 % 8,38 % -9,54 % -5,85 % 3,45 % 3,77 % 3,77 % 2,72 % -8,51 % -1,20 % 0,92 % 2,37 % 6,84 % -1,63 % -18,15 % -8,14 %

DVF 2 -2,67 % 0,27 % 10,93 % 5,39 % -3,48 % -10,92 % 1,63 % 3,08 % 2,44 % 0,51 % -6,52 % -2,56 % 2,14 % 3,45 % 4,77 % -4,59 % -11,71 % -11,18 %

DVF 3 -5,23 % 7,99 % 7,00 % 1,07 % -0,45 % 0,02 % 2,79 % 0,33 % -0,08 % 0,71 % 1,18 % 0,79 % 4,58 % 0,22 % 0,31 % -0,54 % -1,84 % 3,28 %

Heston 4,41 % 8,78 % 3,56 % -1,04 % -1,89 % -1,57 % 3,80 % -2,07 % -1,94 % -1,57 % -1,66 % -1,05 % 2,61 % 0,67 % 0,70 % -0,89 % -3,08 % -0,85 %

MAPE BS 57,39 % 39,72 % 23,42 % 13,19 % 7,93 % 4,57 % 37,24 % 21,38 % 16,35 % 13,18 % 9,20 % 5,14 % 26,28 % 19,88 % 15,59 % 11,17 % 9,44 % 6,97 %

GC 52,43 % 46,04 % 24,70 % 11,73 % 7,52 % 4,65 % 41,59 % 20,98 % 15,41 % 13,71 % 12,42 % 10,87 % 27,08 % 18,91 % 16,94 % 16,69 % 18,91 % 13,49 %

DVF 1 19,60 % 18,12 % 21,57 % 17,76 % 20,49 % 25,92 % 16,00 % 10,11 % 11,07 % 26,23 % 20,66 % 19,48 % 10,99 % 8,44 % 19,04 % 24,70 % 21,93 % 10,59 %

DVF 2 18,50 % 16,47 % 19,77 % 13,54 % 20,07 % 26,13 % 15,05 % 9,19 % 9,11 % 23,84 % 21,18 % 17,18 % 8,71 % 7,54 % 16,52 % 20,33 % 18,22 % 11,87 %

DVF 3 34,72 % 33,58 % 20,45 % 7,96 % 3,78 % 2,05 % 23,16 % 14,11 % 9,93 % 6,65 % 3,51 % 3,40 % 16,97 % 11,23 % 7,94 % 5,73 % 5,64 % 3,87 %

Heston 54,62 % 40,22 % 22,10 % 9,51 % 5,03 % 2,69 % 34,93 % 21,53 % 14,77 % 10,51 % 6,46 % 4,73 % 24,79 % 17,47 % 13,20 % 9,06 % 9,34 % 3,27 %

MAE BS 1,39 1,91 3,03 3,93 3,97 3,47 2,26 3,06 4,28 5,50 5,78 4,37 2,93 3,70 4,90 5,59 6,76 6,47

GC 1,44 2,10 3,01 3,44 3,74 3,58 2,50 3,00 4,10 5,75 7,63 9,31 3,00 3,77 5,67 8,07 13,07 12,31

DVF 1 1,95 2,18 1,60 1,18 1,78 1,49 2,79 2,09 1,84 2,54 2,01 1,00 2,38 2,26 3,28 3,39 3,00 1,56

DVF 2 1,82 2,09 1,58 1,01 1,71 1,69 2,59 1,90 1,57 2,16 1,99 0,88 1,81 1,99 2,54 2,51 1,87 1,16

DVF 3 0,81 1,24 1,95 2,13 1,83 1,52 1,25 1,65 2,23 2,50 2,09 2,80 1,52 1,77 2,27 2,49 3,53 3,50

Heston 1,37 1,87 2,54 2,72 2,48 2,03 2,98 2,99 3,68 4,23 4,02 4,03 2,92 3,43 4,11 4,47 6,80 3,02

MSE BS 3,76 7,79 17,40 25,27 23,95 17,10 11,18 19,01 30,76 47,21 50,21 24,56 17,71 24,31 37,62 47,75 62,04 58,70

GC 3,99 9,38 17,77 20,91 26,53 22,89 12,82 18,79 29,78 53,84 87,21 99,10 17,54 25,44 52,13 92,50 221,90 184,67

DVF 1 8,47 7,40 4,29 2,32 7,16 5,64 16,46 7,34 6,74 14,22 8,18 1,92 12,25 8,70 21,40 24,14 25,61 5,96

DVF 2 7,67 7,61 4,59 1,87 6,43 7,79 13,50 6,28 4,89 9,16 8,88 1,57 7,41 7,32 13,68 14,54 6,86 2,49

DVF 3 1,30 3,27 7,62 8,80 6,29 3,48 3,25 5,35 9,66 11,98 8,11 16,30 4,44 6,09 10,28 15,01 31,27 22,10

Heston 3,69 7,54 13,14 13,39 11,19 6,63 10,82 18,27 24,13 30,09 27,93 21,52 20,49 21,96 33,83 43,11 102,93 10,37

3 ≤ T < 20 20 ≤ T <40 40 ≤ T
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Figure 24

Figure 24 illustrates out-of-sample 3 day ahead MAPE of the models for medium maturity options across moneyness. 

 

For medium and long maturity options, DVF 1 and DVF 2 still have MAPE pattern that stands out from 

the other models. Both models outperform DVF 3 for options up to 0.97 moneyness. This implies that 

when forecasting option prices a longer time period ahead, T2 increases pricing errors for options up to 

0.97 in moneyness and reduces pricing errors for options above 0.97. The findings are consistent across 

maturity for 3 day ahead forecasting. We also see that Heston outperforms all models for options above 

1.06 moneyness and long maturity which is the same for 1 day ahead.  
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Figure 25

Figure 25 illustrates 3 day out-of-sample ahead MAPE of the models for long maturity options across moneyness. 

 

In conclusion, the results of 3 day ahead out-of-sample have shown us that only DVF models and Heston 

are able to outperform the benchmark. Among the DVF models, T2 is found to excessive for options with 

moneyness up to ATM options, but improves the pricing errors for all of the short maturity ITM options. 

For medium and long maturity options, DVF 2 has the lowest MAPE up to 0.97 moneyness before T2 

starts improving the pricing errors of DVF 3. On the other hand, Heston is the best performer for very 

deep ITM options with long maturity.  

Regression results 

As the Heston and the DVF models are the only models to outperform the benchmark, the regression 

results for the other models are not reported (see appendix). The results of regression analysis are 

presented in the table below. For all of the models we observe a high degree of predictability in pricing 

errors with a high adjusted R2 which tells us moneyness, maturity and interest rate biases are 

systematically related to MAPE. The errors are also negatively related to the interest rates. The adjusted 

R2 shows us how much of MAPE is explained by the explanatory variables. The F statistic reported shows 

that we must reject the hypothesis that the biases do not explain the pricing errors for all models.  

The Heston model appears to be the most affected by the biases as the each of the coefficients are 

more significant than the other models. Note that DVF 1 does not have a significant quadratic 

moneyness variable on a 5% level, but still have a higher MAPE than DVF 2 and DVF 3 (table 7.10). 
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Table 0.10 
Regression coefficients for 1 day ahead pricing errors 

Coefficients DVF 1 DVF 2 DVF 3 Heston 

β0 3.81*** 5.16*** 5.83*** 7.53*** 

β1 
-5.09*** -8.22*** -9.45*** -12.69*** 

β2 
1.86* 3.56*** 4.16*** 5.60*** 

β3 -0.52*** -0.45*** -0.51*** -0.53*** 

β4 
-17.70*** -15.43*** -17.00*** -11.88*** 

Adj. R2 0.1633 0.1687 0.1769 0.2058 

F 225.39 234.35 248.05 298.96 

*, **, ***, Indicates significance at 10%, 5% and 1%, respectively. The regression 
 results is based on the equation  εn.t = β0 + β1 (St/Kn) + β2 (St/Kn)

2
 + β3 τn + β4 rt +ηn(t) 

using OLS to analyze the 1 day ahead out-of-sample pricing errors. 

DVF 1 shows the best performance in the regression analysis because of the lowest F values and 

adjusted R2. In other words, 16.87% of absolute percentage errors are explained by moneyness, 

maturity and interest rate biases. Based on these results, we can infer that even though a model is less 

affected these biases, it does not necessarily mean that the model’s ability to forecast 1 day ahead 

improves. Despite the fact that DVF 3 has the highest adjusted R2 and F value among the DVF models, 

we found earlier that DVF 3 in general is the most suited model to forecast 1 day ahead due to the 

lowest pricing errors. 

These findings imply that if a model is less affected by moneyness, maturity and interest rate biases do 

not necessarily improve the 1 day ahead forecasting ability of the model as there are more errors that 

may stem from parameter misspecification.   

Table 0.11 
Regression coefficients for 3 day ahead pricing errors 

Coefficients DVF 1 DVF 2 DVF 3 Heston 

β0 6.76*** 6.20*** 6.41*** 12.23*** 

β1 
 -10.05*** -9.13*** -9.39*** -21.07*** 

β2 
4.00*** 3.62** 3.73** 9.22*** 

β3 
 -0.87*** -0.86*** -0.96*** -1.00*** 

β4 
 -20.09*** -20.21*** -22.29*** -5.62* 

Adjusted R2 0.1716 0.1518 0.1393 0.1580 

F 211.90 183.26 165.71 191.98 

*, **, ***, Indicates significance at 10%, 5% and 1%, respectively. The regression 
results is based on the equation  εn.t = β0 + β1 (St/Kn) + β2 (St/Kn)

2
 + β3 τn + β4 rt +ηn(t) 

using OLS to analyze the 3 day ahead out-of-sample pricing errors. 
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For the 3 day ahead regression results as reported in table 7.11, DVF 3 is now the best performer in 

terms of lowest adjusted R2 and F value. All of the models are less affected by the biases as the 

predictability of the errors is dropped compared to 1 day ahead. This infers that the longer the time 

frame, less pricing errors is attributable to the biases. DVF 2 and 3 which include time variable T  and T2 

are less affected by the biases mentioned earlier than DVF 1 model which is on the contrary of 1 day 

ahead regression results.   

For 3 day ahead, it can be inferred the importance of reducing the errors stemming from the biases as it 

improves the models ability to forecast option prices. However, although Heston and DVF models are 

superiors to BS in forecasting 3 day ahead, the pricing errors are higher compared to 1 day ahead. This 

suggests the parameters of the models are less stable for a longer forecasting period.    

Hedging Performance 

 
Table 7.12 presents 1 day ahead delta hedging results. The delta hedge strategy is implemented by 

shorting a call option, long Δ shares, borrow at risk-free rate and then the position is liquidated the day 

after.  

Table 0.12 
1 day ahead delta-hedging errors 

  MPE MAPE MAE MSE 

BS30 -7,18 % 24,69 % 1,63 5,69 

BS -4,33 % 16,24 % 1,39 4,92 

GC -7,54 % 24,24 % 1,80 6,88 

DVF 1 -3,74 % 15,80 % 1,30 3,76 

DVF 2 -3,61 % 15,49 % 1,29 3,75 

DVF 3 -3,54 % 15,38 % 1,29 3,74 

Heston -6,47 % 20,71 % 1,72 6,52 

GARCH -4,99 % 16,58 % 1,43 4,64 
 Denoting εn = Cn*- Cn, where Cn* is the model price and Cn is the  

 market price. MPE, MAPE, MAE and MSE are calculated using the  

 equations on p.60. For MPE and MAPE, εn is divided by the option 

 market price at the time of liquidation. 

 

For the whole sample period, all models show negative MPE which means the delta hedged portfolio 

has losses on average. This is on the contrary of the findings of negative risk premium associated with 
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the volatility risk (Bakshi & Kapadia, 2003) found in Kim & Kim (2004). The authors find that all models 

have positive mean hedging errors on average across moneyness.  

DVF 3 has the best hedging performance, but the difference is small among the DVF models. It seems 

that an additional parameter barely improves the performance in hedging of the DVF models. 

Surprisingly, BS performs better than Heston regardless of only using a single parameter while the 

difference between DVF models and BS is not large. In delta hedging, GARCH estimate the same number 

of observations as the other models. However, due to weekly estimations the parameters do not update 

every day which can either improve or worsen the hedging results of the model. GARCH now performs 

similar to BS, with a barely higher MAPE, but a lower MSE. We recognize that GARCH shows a weak 

point in pricing 1 and 3 day ahead, but a strong point in forecasting volatility. The hedging results for 

GARCH are consistent with the findings of Kim & Kim (2004).  

In terms of MAPE, GC, Heston and GARCH underperform the benchmark. BS30 is still ranked last but 

shows more similar results with the other models contrary to in-sample and out-of-sample pricing. The 

results suggests that even though a model is theoretical advanced, it does not imply a better delta 

hedging performance than BS. It seems that parameters that incorporates the volatility smile and 

maturity for options prices, has less effect in hedging.  

We can see in table 7.13 that the losses on average are most profound for DOTM options where actually 

BS has the least errors when sorting for moneyness. The hedging errors are highest for OTM and 

decreases as we move to ITM options. However, all models show positive gains for very DOTM options 

while only BS30, DVF models and GARCH have positive gains for very DITM options. In overall, DVF 

models perform the best except in terms of MAPE for DOTM and OTM options.  

  



  

Page 85 of 107 
 

Table 0.13 
Delta hedging errors sorted by moneyness 

  S/K <0,94 0,94-0,97 0,97-1,00 1,00-1,03 1,03-1,06 >1,06 

MPE BS30 6,86 % -18,37 % -10,33 % -3,90 % -1,71 % 0,14 % 

 
BS 3,68 % -8,53 % -6,48 % -4,67 % -2,96 % -0,23 % 

 
GC 5,66 % -16,48 % -11,21 % -5,74 % -2,76 % -0,05 % 

 
DVF 1 5,16 % -8,19 % -6,63 % -3,95 % -1,30 % 0,16 % 

 
DVF 2 5,10 % -7,83 % -6,46 % -3,99 % -1,29 % 0,15 % 

 
DVF 3 5,07 % -7,56 % -6,45 % -3,99 % -1,28 % 0,15 % 

 
Heston 4,09 % -12,72 % -10,01 % -5,51 % -2,83 % -0,11 % 

 
GARCH 2,63 % -8,89 % -7,65 % -4,95 % -2,84 % 0,02 % 

        MAPE BS30 32,68 % 37,38 % 21,29 % 9,70 % 4,95 % 1,87 % 

 
BS 18,41 % 20,82 % 16,88 % 10,37 % 6,16 % 2,23 % 

 
GC 30,84 % 33,92 % 23,06 % 11,63 % 5,97 % 2,07 % 

 
DVF 1 15,28 % 22,04 % 17,26 % 9,59 % 4,63 % 1,85 % 

 
DVF 2 14,82 % 21,44 % 17,04 % 9,62 % 4,61 % 1,85 % 

 
DVF 3 14,72 % 21,12 % 17,04 % 9,62 % 4,62 % 1,85 % 

 
Heston 23,84 % 28,01 % 21,40 % 11,44 % 6,04 % 2,11 % 

 
GARCH 16,65 % 22,10 % 17,84 % 10,87 % 6,21 % 2,36 % 

        MAE BS30 1,30 1,58 1,72 1,89 1,89 1,39 

 
BS 0,78 1,09 1,54 2,00 2,29 1,60 

 
GC 1,37 1,68 1,91 2,21 2,24 1,47 

 
DVF 1 0,70 1,10 1,48 1,83 1,77 1,32 

 
DVF 2 0,70 1,09 1,47 1,83 1,78 1,32 

 
DVF 3 0,69 1,09 1,47 1,83 1,78 1,32 

 
Heston 1,09 1,52 1,93 2,26 2,27 1,51 

 
GARCH 0,81 1,15 1,56 2,07 2,33 1,68 

        MSE BS30 3,45 5,25 6,35 7,48 7,71 2,97 

 
BS 1,91 2,97 5,37 8,61 11,06 4,37 

 
GC 3,90 5,73 7,58 10,01 10,63 3,78 

 
DVF 1 0,93 2,43 4,49 7,09 6,53 2,99 

 
DVF 2 0,92 2,41 4,45 7,13 6,51 3,01 

 
DVF 3 0,91 2,38 4,43 7,15 6,50 3,00 

 
Heston 3,06 5,07 7,49 10,17 10,40 3,92 

  GARCH 1,19 2,53 5,02 8,97 11,46 4,58 
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Since the results are quite even among DVF models and BS, it is interesting to see if the ranking of their 

performances change for the different periods in our sample. Figure 26 illustrates the index and the 

average Black-Scholes implied volatility of all options traded on the same day.57 We can see that the 

index movement and the implied volatility of the options are highly negatively correlated and is very 

similar to the movements of SIXVX for the same period.  

Figure 26 

The figure illustrates the movements of OMXS30 and the average implied volatility of the options during our sample period. The 

index values are displayed on the left axis while implied volatility values are displayed on the right axis.  

 

Based on the pattern of the implied volatility, the sample can be divided into three periods where the 

market conditions are different from each other.58 Table 7.14 shows the statistics for each period and 

the market condition is based on the characteristics of the index movement and implied volatility.  

A noticeable characteristic in period 1 is that the market is somewhat stable until the sudden jump of 

the index falling 137 points at the start of August 2011.   

  

                                                           
57

 The average is calculated for the filtered options based on the filtering rules in Chapter 5. 
58

 The sample period were divided for in-sample and out-of-sample pricing. The ranking did not change for 
different periods and are therefore not reported. 
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Table 0.14 
Period statistics 

  Start End Return Volatility Impl.Vol 
Market 

Condition 

Period 1  1.6.2011  20.7.2011 -0,18 % 0,2386 0,1827 Low volatility 

Period 2  21.07.2011  7.12.2011 -0,07 % 0,3884 0,3194 High volatility 

Period 3  8.12.2011  31.05.2012 0,01 % 0,2318 0,2004 Bull, then bear 

All  1.6.2011  31.05.2012 -0,05 % 0,3052 0,2460   
The table reports statistics of each period. The statistics show the average return, historical and implied volatility 
for that period. The historical volatility of the returns is annualized by taking the standard deviation of the return 
and multiplied with the root of 252 trading days. Implied volatility is calculated by taking the daily BS implied 
volatility of the filtered options and then averaged over the specific period.  
 

The index stays fairly under 1000 for period 2 and the implied volatility is nearly twice as much as in 

period 1, and therefore considered as a high volatility period.  It can also be seen that due to the 

movements of the index in the period, realized volatility is substantially higher. Period 3 can be seen as a 

trending bullish market followed by a trending bearish market. The implied volatility pattern follows the 

index inversely while the index is trending upwards and then downwards. As the returns do not have 

any big jumps as compared to period 1 and 2, the realized volatility is the lowest of all periods. One 

could ask why period 3 is not split into a bull and bear market conditions, the ranking of all of the 

hedging performance errors employed in the thesis does not change if the split is made and therefore 

considered as one.  

Table 0.15 
Delta hedging results for Period 1 

Period 1 

  MPE MAPE MAE MSE 

BS30 -9,43 % 20,01 % 0,89 1,41 

BS -6,22 % 12,90 % 0,71 0,99 

GC -12,92 % 26,60 % 1,20 2,37 

DVF 1 -5,87 % 14,72 % 0,69 0,92 

DVF 2 -5,17 % 13,35 % 0,68 0,90 

DVF 3 -5,12 % 13,31 % 0,68 0,89 

Heston -10,23 % 19,99 % 1,12 2,07 

GARCH -7,95 % 16,28 % 0,88 1,45 
The table reports delta hedging errors from 1.6.2011 to 20.7.2011. 
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In period 1, MPE are more negative on average than for the whole period which can be interpreted as 

higher losses on the delta neutral portfolio. This suggests that in a declining market an option holder are 

willing to pay a larger premium for hedging. Bakshi & Kapadia (2003) propose the impact of the volatility 

risk premium is more prominent during times of greater stock market uncertainty and emphasize that 

the effect may be related to demand for options as hedging instruments. As figure 26 illustrates the 

index movement starts with a declining trend then followed by two spikes. The tree declining stages in 

period 1 may explain the highly negative MPE. Table 7.15 shows that BS has the least and GC has the 

highest hedging errors for period 1 in terms of MAPE. It is also unexpected that Heston barely performs 

better than BS30 and worse than BS. 

For period 2 which we consider as a high volatility period, BS still have the best performance in terms of 

MAPE while Heston and GC now ranks in front of BS30. However, DVF models do have a slightly better 

MAE and MSE. MPE decrease in period 2 for all of the models and MAPE is slightly improved for GC,  

DVF 1, Heston and GARCH.  

Table 0.16 
Delta hedging results for Period 2 

Period 2 

  MPE MAPE MAE MSE 

BS30 -4,09 % 20,45 % 1,77 5,37 

BS -1,90 % 13,38 % 1,51 4,29 

GC -4,45 % 19,74 % 2,01 6,82 

DVF 1 -1,85 % 14,10 % 1,50 4,06 

DVF 2 -1,72 % 13,97 % 1,50 4,08 

DVF 3 -1,68 % 13,93 % 1,50 4,07 

Heston -4,65 % 18,28 % 1,98 7,03 

GARCH -2,52 % 14,56 % 1,64 4,89 
The table reports delta hedging errors from 21.7.2011 to 7.12.2011. 

 

Furthermore, BS falls behind the DVF models for period 3 and the rest of models ranking remain 

unchanged. In overall, the DVF models have fewer errors on average for the whole sample period 

because period 3 has a longer timeframe than period 1 and 2. In period 3 where the index has a growing 

and then a declining phase produce similar MPE as period 1.  
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Table 0.17 
Delta hedging results for Period 3 

Period 3 

  MPE MAPE MAE MSE 

BS30 -10,08 % 30,79 % 1,68 7,22 

BS -6,56 % 20,42 % 1,44 6,71 

GC -9,57 % 28,72 % 1,74 8,20 

DVF 1 -5,29 % 18,02 % 1,23 4,20 

DVF 2 -5,33 % 17,80 % 1,22 4,16 

DVF 3 -5,21 % 17,59 % 1,21 4,14 

Heston -7,51 % 23,67 % 1,59 7,16 

GARCH -6,99 % 18,97 % 1,35 5,24 
The table reports delta hedging errors from 8.12.2011 to 31.5.2012. 

DVF models are now the best performing models followed by GARCH and BS. As one can see from figure 

26, period 3 seems to have less volatile and mean-reverting properties which may be in favor for the 

GARCH model as it has fewer errors than BS.  

In sum, BS is only outperformed by the DVF models in terms of delta hedging performance.  Considering 

that DVF 3 uses 5 parameters, BS does a good job as the MAPE difference is less than a percentage point 

for the whole sample. This shows BS is still competent in delta hedging with the advantage of simplicity, 

compared to in- and out-of-sample pricing. Based on implied volatility traits of our data set, our results 

suggests that BS is the recommended model for delta hedging when market has a high or low volatility 

periods while PBS is recommended when market is trending upwards or downwards, although PBS is the 

best performer on average. The hedging results of the models suggests that including parameters to 

incorporate the volatility smile have less effect on hedging compared to in- and out-of-sample pricing.  

The ranking of our models differs with the findings of Kim & Kim’s (2003) article on the Korean KOSPI 

200 index. On the contrary of our results of Heston ranking 6th place, they find that Heston improves 

hedging errors by 1.16% compared to BS, making Heston the best performer.59 Their results show PBS is 

the worst performer, although they only use a version of DVF 1. On the contrary, our results indicate 

that by adding parameter T, T2 and KT marginally increase the delta hedge performance.  

  

                                                           
59

 See table 8 of Kim & Kim (2003), p. 137. Ranking is based on MAPE. 
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Chapter 8 Conclusion 
 

For our thesis, we have studied pricing and hedging performances of alternative option pricing models: 

Black Scholes (1973), Practitioner Black-Scholes (Dumas et al. (1998), Christoffersen & Jacobs (2004)) 

that fits the implied volatility surface, Heston’s (1993) continuous-time stochastic volatility model, 

Gram-Charlier (2004) which incorporates skewness and kurtosis and Heston and Nandi’s (2000) GARCH 

type discrete model. A daily cross-section of the OMXS30 index option prices has been used to estimate 

each model. 

Our sample shows that the option prices produce the well-known implied volatility smile, where the 

smile is prominent for short-term maturity options. The sample statistics show the implied volatility 

varies across moneyness and maturity. Therefore, any acceptable alternative model must show ability to 

incorporate the volatility smile and maturity effects better than the benchmark model BS. Our results 

are as follows. 

We find that none of the models can fully approximate the market, but they can however improve the 

pricing errors significantly compared to BS in terms of in-sample and out-of-sample pricing. PBS 

outperforms the other models in terms of in-sample pricing, out-of-sample pricing for both 1 day and 3 

day ahead. As expected with additional parameters to fit the option prices in-sample, we find that PBS 

performs better in general with parameters such as T, T2 and KT. However, it is surprising that the 

Heston model does not fit the prices any better than DVF 1. 

For out-of-sample pricing, none of models are able to avoid pricing errors stemming from the biases. For 

1 day ahead, PBS has the least errors followed by Heston, BS, GC, GARCH and BS30. Only PBS and 

Heston outperform the benchmark models. Table 10.3 in the appendix lists the models categorically 

best for option pricing and the results are consistent with the findings of Singh (2013) where PBS and 

Heston are recommended. The regression analysis infers that models which are less affected by the 

biases mentioned earlier, do not necessarily improve the accuracy in forecasting 1 day ahead. 

As for 3 day ahead, DVF 3 has the lowest MAPE, F value and adjusted R2. Among the DVF models, for 

options with less than 20 days to maturity, DVF 2 performs better than DVF 3. The same results was 

found for 1 day ahead as well, which suggests T2 is excessive when it comes to forecast options with less 

than 20 days to maturity. On the contrary of 1 day ahead results, 3 day ahead regression analysis imply 
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that models which are less affected by the less affected a model is by moneyness, maturity and interest 

rate biases, the better is the model to forecast option prices, but only given the model has lower MAPE 

than BS. 

In delta hedging, DVF 3 again has the least errors. Even though DVF 3 uses 5 parameters, BS barely has a 

percentage point higher MAPE than DVF 3. To see if there are any differences between PBS and BS in 

certain market conditions, we divided our sample period based on implied volatility patterns. We find 

that BS outperforms all models for a high and low implied volatility market, while PBS outperforms all 

when the market is trending upwards or downwards. Table 10.4 in the appendix sorts the best models in 

delta hedging categorically across moneyness. 

Both PBS from deterministic volatility family and Heston from the stochastic volatility family have 

outperformed the benchmark BS in option pricing. As our thesis shows evidence that even if a model is 

more theoretical advanced, the application is just as an important factor. By using Excel VBA, the 

implementation of PBS is rather less time-consuming and can be effortlessly applicable by others. On 

the other hand, we suspect Heston model may improve its performance by using a more powerful 

statistical program.   

In conclusion, to efficiently price call options there are alternative models which incorporate the 

volatility smile to the simple BS. We find that PBS and Heston are the better suited models and should 

be used in forecasting the option prices.60
 In respect of our problem statement, these models which are 

able to incorporate the volatility smile and mitigate the maturity bias perform better than BS in terms of 

fitting and forecasting the volatility smile.  On the contrary of in-sample and out-of-sample results, we 

found that BS is still useful and may be used as a delta hedging model. However, by adding parameters 

of PBS, the improvement of hedging errors is marginal. We conclude that incorporating volatility smile in 

hedging is less important and can actually perform worse than the simple BS. 

  

                                                           
60 A diffusion process it can be used to price path dependent options. This is not possible with the PBS and one has 

to use the simple BS model to capture the dynamics of path dependent options. According to our studies the 
Heston outperformed the BS model with a margin, and should be favored 
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Future research 

 
We propose two models that we believe could be interesting for further research study 

Heston with a Jump Component 

It would be interesting to investigate the Heston model with a jump component. The problem for a 

model like Heston is its ability to price “extreme” OTM options. Since the Heston model follows a 

diffusion process, it is hard to incorporate ”very unlikely” deep OTM options which can arise for short-

dated options. In an economical perspective a large jump can occur, but a model that follows diffusion 

process without jumps will have problems incorporating extreme smiles for short-dated options.61 

Bakshi et al. (1997) also discuss the fact that diffusion stochastic models are not flexible enough to 

capture this jump component. Gatheral (2006) suggests a way to cope with this problem in the Heston 

framework is to add a stochastic jump. He states that introducing jumps can create extreme short-dated 

skews in the data that quickly dies out.  According to his studies the Heston with jumps performs 

substantially better than the original Heston model, especially when there are many short-dated 

options. Therefore, in further research this could be an interesting extension of the Heston model. Since 

the Swedish OMXS30 is a much smaller index than S&P 500 and FT 100, jumps may be more likely than 

in bigger indices. 

The Variance Gamma model 

The Variance Gamma model (VG) by Madan et al. (1998) uses a three parameter stochastic process that 

generalizes Brownian motion as model for the dynamics of the logarithm of stock price. These additional 

parameters provide control over the skewness and kurtosis of the return distribution. The process is 

obtained by evaluating Brownian motion (with constant drift and volatility) at a random time change 

given by a gamma process. In their article, the authors conduct orthogonality tests on the pricing errors 

and show that the model is relatively free of moneyness and maturity biases and consequently superior 

to BS. Kim & Kim (2003) find that VG ranks 2nd in 1 day ahead pricing and 1st one week ahead and 

confirms that VG is the least affected by these biases. Therefore VG is recommended in future research 

to see if the model will perform likewise on OMXS30.62 

                                                           
61

 DOTM options can have a significant positive price even though the probability(statistical speaking) of this 
happening    
62

 See table 5 and 6 of Kim & Kim (2003), p. 130-132. Ranking is based on MAPE.  
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Non-Synchronous Bias 

As we have mentioned earlier in the thesis, our data is not time-stamped and may therefore be subject 

to non-synchronous bias. Although we have taken precautions to mitigate the bias, it can be interesting 

if our results hold for a data set that is free of the non-synchronous bias. Kim & Kim (2003), have all used 

last reported transaction price in a specific time window to minimize problems stemming from intra-day 

variation in volatility, Bakshi et al. (1997) used index levels recorded at the same time as the 

corresponding bid-ask quote.63 Also, including put option prices is recommended to see if the models 

perform the same way as for call options.  

  

                                                           
63

 All of the articles avoid the non-synchronous price issue, except the index itself may contain stale component 
stock prices at each point of time. 
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Appendix A 
The figure below illustrates the effect of changing the loss function for the Heston model. The top fis 

 

S/K  Loss functon <0,94 0,94-0,97 0,97-1,00 1,00-1,03 1,03-1,06 ≥1,06 

MPE RMSE 7,71 % 4,80 % 0,33 % -0,48 % -1,84 % -1,52 % 

 
%RMSE 0,83 % 0,28 % -2,20 % -2,48 % -3,42 % -2,61 % 

        MAPE RMSE 14,65 % 6,38 % 3,57 % 2,28 % 1,97 % 2,06 % 

 
%RMSE 3,66 % 3,59 % 3,59 % 3,81 % 3,54 % 3,02 % 

        MAE RMSE 0,48 0,57 0,41 0,77 1,24 1,87 

 
%RMSE 0,14 0,40 0,73 1,44 2,29 2,66 

        MSE RMSE 0,46 0,60 0,29 1,06 3,09 4,52 

  %RMSE 0,05 0,41 0,95 3,02 9,66 8,50 

S/K 

 

 

 

 

 

 

 

 

 

S/K  Loss functon <0,94 0,94-0,97 0,97-1,00 1,00-1,03 1,03-1,06 ≥1,06 

MPE RMSE 31,85 % 21,70 % 5,69 % 1,63 % 0,98 % -1,52 % 

 
%RMSE -1,83 % -0,68 % -1,93 % -3,25 % -2,48 % -3,96 % 

        MAPE RMSE 32,28 % 25,66 % 12,68 % 5,36 % 3,78 % 1,65 % 

 
%RMSE 8,15 % 9,11 % 8,14 % 7,47 % 5,77 % 4,15 % 

        MAE RMSE 0,54 0,59 1,13 1,53 1,84 1,46 

 
%RMSE 0,27 0,54 1,31 2,41 2,95 3,65 

        MSE RMSE 0,49 0,57 1,98 3,38 4,87 2,92 

  %RMSE 0,19 0,65 3,19 8,70 11,81 16,14 
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The figure below illustrates the effect of changing the loss function for the Heston model. The RMSE 

indicates the loss function which focuses on the dollar difference between the model and the market 

price, while the %RMSE focuses on the percentage difference. The sample is the months of July and 

October.  

 

 

This figure graph of the difference between the %RMSE and $RMSE for Heston for a random day in July.
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Appendix B 
 

To illustrate the difference between Excel finding an “optimal” solution without time restrictions 

compared to stopping the calibration after 2000 seconds or 15 iterations for the Heston model. The 

minimum required number of Iterations was set to 10 no matter the time constraint.64  Two random 

dates from July and October is chosen.  

July 

July - No time constraint or iteration constraint 

 

Målcelle (Minimum) 
  

 
Celle Navn Opprinnelig verdi Sluttverdi 

 

 
$C$26 lfh_13 0,2230 0,0460 

 

      

      Variabelceller 
   

 
Celle Navn Opprinnelig verdi Sluttverdi Integer 

 
$C$8 rho -0,50 -0,73 Forts 

 
$C$9 kapp 2 2,378253201 Forts 

 
$C$10 theta 0,0625 0,084566784 Forts 

 
$C$11 lambda 0 0 Forts 

 
$C$12 sigmav 0,5 0,915858141 Forts 

 
$C$13 V 0,0256 0,043762672 Forts 

 

Resultat: Har kommet til gjeldende løsning. Alle begrensninger er oppfylt. 
     Problemløsermotor 

        

 
Motor: Ikke-lineær GRG 

        

 
Løsningstid: 3659,768 Sekunder. 

        

 
Gjentakelser: 23 Delproblemer: 0 

         
Alternativer for Problemløser 

        

 
Maksimal tid 20000 sek, Gjentakelser 60, Precision 0,000001 

      

 
Sammenfall 0,0001, Populasjonsstørrelse 100, Tilfeldig seeding 0, Differensialkvotient for Fremover, Krev grenser 

  

 
Maksimalt antall delproblemer Ubegrenset, Maksimalt antall heltallsløsninger Ubegrenset, Heltallstoleranse 5%, Løs uten heltallsbegrensninger 

 

July -Time and iteration constrained 

     

Celle Navn 
Opprinnelig 

verdi Sluttverdi 
 $C$26 lfh_13 0,2230 0,0465 
 

     

     
                                                           
 



  

Page 102 of 107 
 

     

Celle Navn 
Opprinnelig 

verdi Sluttverdi Integer 

$C$8 rho -0,50 -0,73 Forts 

$C$9 kapp 2 1,908899222 Forts 

$C$10 theta 0,0625 0,089223937 Forts 

$C$11 lambda 0 0 Forts 

$C$12 sigmav 0,5 0,818711296 Forts 

$C$13 V 0,0256 0,042494198 Forts 

 

Maximum time of 2000 seconds was reached 

 

 

 

October  

October- No time constraint or iteration constraint 

Microsoft Excel 14.0 Svarrapport 
        Regneark: [Chapter5Heston_oct.xlsm]11 

       Rapport opprettet: 10.08.2013 13:02:20 
       Resultat: Har kommet til gjeldende løsning. Alle begrensninger er oppfylt. 

     Problemløsermotor 
        

 
Motor: Ikke-lineær GRG 

        

 
Løsningstid: 5795,796 Sekunder. 

        

 
Gjentakelser: 22 Delproblemer: 0 

        Alternativer for Problemløser 
        

 
Maksimal tid 20000 sek,  Gjentakelser 60, Precision 0,000001 

      

 

Sammenfall 0,0001, Populasjonsstørrelse 100, Tilfeldig seeding 0, 
 Differensialkvotient for Fremover, Krev grenser 

  

 

Maksimalt antall delproblemer Ubegrenset, Maksimalt antall heltallsløsninger Ubegrenset, 
 Heltallstoleranse 5%, Løs uten heltallsbegrensninger 

            Målcelle (Minimum) 
        

 
Celle Navn Opprinnelig verdi Sluttverdi 

       

 
$C$26 lfh_11 0,3487 0,0558 

       

            

            Variabelceller 
         

 
Celle Navn Opprinnelig verdi Sluttverdi Integer 

      

 
$C$8 rho -0,50 -1,00 Forts 

      

 
$C$9 kapp 2 2,068309277 Forts 

      

 
$C$10 theta 0,09 0,484525236 Forts 

      

 
$C$11 lambda 0 0 Forts 

      

 
$C$12 sigmav 0,9 0,886070675 Forts 

      

 
$C$13 V 0,0625 0,07767207 Forts 

      



  

Page 103 of 107 
 

 

 

October Time and Iteration constrained 
 
Regneark: [Chapter5Heston_oct.xlsm]11 

        Rapport opprettet: 10.08.2013 14:50:34 
       Resultat: Problemløseren ble stoppet av brukeren. 
       Problemløsermotor 
       

         

 
Motor: Ikke-lineær GRG 

        

 
Løsningstid: 2096,591 Sekunder. 

        Alternativer 
for 
Problemløser Gjentakelser: 8 Delproblemer: 0 

        

         

 
Maksimal tid 2000 sek,  Gjentakelser 15, Precision 0,000001 

      

 

 Sammenfall 0,0001, Populasjonsstørrelse 100, Tilfeldig seeding 0, 
 Differensialkvotient for Fremover, 
 Krev grenser 

  

 

Maksimalt antall delproblemer Ubegrenset, Maksimalt antall heltallsløsninger Ubegrenset, 
 Heltallstoleranse 5%, Løs uten heltallsbegrensninger 

Målcelle 
(Minimum) 

           

         

 
Celle Navn Opprinnelig verdi Sluttverdi 

       

 
$C$26 lfh_11 0,3487 0,0674 

       

            Variabelceller 
           

          

 
Celle Navn Opprinnelig verdi Sluttverdi Integer 

      

 
$C$8 rho -0,50 -1,00 Forts 

      

 
$C$9 kapp 2 2,007699384 Forts 

      

 
$C$10 theta 0,09 0,441157117 Forts 

      

 
$C$11 lambda 0 0 Forts 

      

 
$C$12 sigmav 0,9 0,886813916 Forts 

      

    0,08006739 Forts 
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Appendix C - The formulas 

Gram-Charlier 

Wu etc breaks the integral into four different part where the first is the familiar BS expression while 

the bracket adjust for excess kurtosis and skewness 

They use the Gram-Charlier expansion to calculate the probability function for the standardized T 

period return    (
    

    

  
) 

           [  
   

  
         

   

  
        ] 

The first is the density of the standard normal distribution, while the second equation is the k 

derivative of this density function, which is used to obtain skewness and kurtosis. 
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The Heston formulas 

The full Heston formula is stated below. The PDE and the derivation of Itos lemma is not included 

and we refer to the original article written by Heston. The closed form approach is solved by using 

the characteristic functions to obtain probabilities     
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If we have knowledge about the characteristic functions we can find the probability density function 

of the stochastic variable using an Inverse Fourier transform. This is often easier than working 

directly with the density functions. This approach can be used since the characteristic functions 

depend on the same state variables as the probabilities P. In    for j(0,1), The i is the complex number 

√  . In the integral it is only the real part of this function and is solved by using a numerical 

integration called trapezoidal integration. 
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Heston Nandi Garch (1,1) 
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Hestn and Nandi have proved in their article that the generating function takes a log-linear form for 

Garch (1,1) 

       
 
              

   

                 
 

 
               

          
 

 
         

 
       

        
 

It is important to keep in mind that the values          are found by working recursively from the 

time to maturity t+T. The starting values are            . 

Appendix D 
 

Table 0.1 
Regression coefficients for 1 day ahead  

Coefficients BS30 BS GC DVF 1 DVF 2 DVF 3 Heston GARCH 

β0 
116.54*** 7.41*** 11.02*** 3.81*** 5.16*** 5.83*** 7.53*** 1.68 

β1 
-197.02*** -12.41*** -19.89*** -5.09*** -8.22*** -9.45*** -12.69*** -0.65 

β2 
89.18*** 5.53*** 9.34*** 1.86* 3.56*** 4.16*** 5.60*** -0.38 

β3 
-1.65** -0.53*** -0.42*** -0.52*** -0.45*** -0.51*** -0.53*** -0.60*** 

β4 
-313.75*** -13.86***  -12.22*** -17.70*** -15.43*** -17.00*** -11.88*** -19.32*** 

Adj. R
2
 

0.1159 0.1697 0.1401 0.1633 0.1687 0.1769 0.2058 0.1692 

F 151.68 235.98 188.34 225.39 234.35 248.05 298.96 105.88 

 

 

Table 0.2 
Regression coefficients for 3 day ahead 

Coefficients BS30 BS GC DVF 1 DVF 2 DVF 3 Heston GARCH 

β0 
133.90*** 14.68*** 14.29*** 6.76*** 6.20*** 6.41*** 12.23*** 6.54*** 

β1 
-230.75*** -25.86*** -25.32***  -10.05*** -9.13*** -9.39*** -21.07*** -10.19** 

β2 
105.93*** 11.68*** 11.41*** 4.00*** 3.62** 3.73** 9.22*** 4.13* 

β3 
-1.42** -0.99*** -0.98***  -0.87*** -0.86*** -0.96*** -1.00*** -0.85*** 

β4 
-330.99*** -10.12*** -4.91  -20.09*** -20.21*** -22.29*** -5.62* -11.26*** 

Adjusted R
2
 0.1242 

0.2004 0.1394 0.1716 0.1518 0.1393 0.1580 0.1687 

F 145.35 256.19 165.85 211.90 183.26 165.71 191.98 86.59 
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Appendix E 
Table 0.3 
Categorically segregation of option pricing models 

1 day ahead 

S/K  

 
<0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 

Short maturity 
       (T < 20) 
 

DVF 3 DVF 2 DVF 2 DVF 2 DVF 2 DVF 3 

        Medium maturity 
       (20 ≤ T < 40) 
 

DVF 3 DVF 3 DVF 3 DVF 3 DVF 3 DVF 3 

        Long maturity 
       (40 ≤ T)   DVF 2 DVF 3 DVF 3 DVF 3 DVF 3 Heston 

The table sorts the best model for 1 day ahead across moneyness. The ranking is based on MAPE. 

 

Table 0.4 

3 day ahead 

S/K  

 
<0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 ≥1.06 

Short maturity 
       (T < 20) 
 

DVF 2 DVF 2 DVF 2 DVF 3 DVF 3 DVF 3 

        Medium maturity 
       (20 ≤ T < 40) 
 

DVF 2 DVF 2 DVF 2 DVF 3 DVF 3 DVF 3 

        Long maturity 
       (40 ≤ T)   DVF 2 DVF 2 DVF 3 DVF 3 DVF 3 Heston 

The table sorts the best model for 3 day ahead across moneyness. The ranking is based on MAPE. 

 


