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Abstract

This paper studies how competition and vertical structure jointly determine
generating capacities, retail prices, and welfare in the electricity industry.
Analyzing a model in which demand is uncertain and retailers must commit
to retail prices before they buy electricity in the wholesale market, we show
that welfare is highest if competition in generation and retailing is combined
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1 Introduction

Electricity markets around the world have recently been reformed in an effort to

improve their performance. In several countries, legislators have introduced com-

petition into statutory monopoly and imposed mandatory unbundling on vertically

integrated electricity generators.1 While introducing competition has hardly been

controversial, it is fair to say that the role of vertical structure in the electricity in-

dustry is not very well understood. Why should electricity generators be vertically

separated from other layers of the industry, as suggested by legislators (see, e.g.,

European Commission (2010))? Does mandatory vertical separation undermine

investments in generating capacity when generators compete (Joskow, 2006)?

In this paper, we employ a simple model of the electricity industry to study how

competition and vertical structure jointly determine generating capacities, retail

prices, and welfare. We consider three vertical layers—generation, wholesaling,

and retailing—and examine four industry configurations that vary with respect

to vertical structure and competition: social optimum, integrated monopoly, inte-

grated duopoly, and separated duopoly. Throughout, we assume that retail demand

is rationed if total retail demand exceeds aggregate capacity. Excess demand thus

leads to “brownouts” (rather than “blackouts,” which would reflect a complete

market breakdown).

Our key result is that—apart from the social optimum—welfare is highest (lowest)

1In the UK, for instance, the industry was separated into three generating firms, the National
Grid company, and 12 regional distribution companies by the Electricity Act in 1989. However,
some regional distribution companies later re-integrated into generation (Newbery, 1999, 2005).
Similarly, the Californian restructuring bill from 1996 forced regulated utilities to divest generation
facilities (Borenstein, 2002). The European Union ruled in its Directive 2003/54/EC on 26 June
2003 that electricity generating firms must be functionally disintegrated.
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if competition is combined with vertical separation (vertical integration, respec-

tively). The integrated monopoly yields an intermediate level of welfare. Our

analysis thus supports the view that introducing competition into the electricity

industry should be combined with vertical separation, even though investments in

generating capacity will be smaller than with vertical integration.

The driving force behind this result is the risk of rent extraction that is associated

with vertical integration: An integrated generator whose capacity is insufficient

to serve own retail demand must buy electricity in the wholesale market to honor

its retail commitments. This drives up the wholesale price to a level at which

the troubled generator must give up its rent. To avoid such rent extraction in the

wholesale market, competing integrated generators not only make large capacity

investments, but also set high retail prices, thereby avoiding commitments to large

retail sales. The combination of high capacities and low retail demand gives rise

to inefficient capacity utilization. Vertical separation eliminates the risk of rent ex-

traction because vertically separated generators do not need to serve an uncertain

retail demand at retail prices that they have committed to. As a result, both capac-

ity investments and prices are lower, and welfare is higher, even though consumers

are rationed in high-demand states when demand exceeds capacity. Intuitively, the

result follows because, from a welfare perspective, it is better to reduce demand

in high-demand states only (by rationing) than to reduce demand in all states (by

higher prices).

The risk of rent extraction emerges from the interplay of three ingredients of our

analysis: (i) uncertain retail demand; (ii) retailers must commit to retail prices

before the wholesale price is determined; and (iii) the wholesale price increases
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when demand exceeds capacity. In our view, these are natural ingredients of any

model of the electricity industry that studies multiple vertical layers.

Our paper contributes to two related strands of literature. First, we add to the ex-

tensive literature on the impact of demand uncertainty on capacity choices (Drèze

and Sheshinski (1976), Gabszewicz and Poddar (1997), von der Fehr and Harbord

(1997), Castro-Rodriguez et al. (2009), Boom (2002), Borenstein and Holland

(2005), Murphy and Smeers (2005), Grimm and Zoettl (2013) as well as Fabra

et al. (2011)). The key difference to these papers is that we study the role of

vertical structure for capacity choices when demand is uncertain.

Second, we add to the literature on the role of vertical structure in the electricity

industry, which has either focused on the loss of economies of scope from (manda-

tory) vertical separation (see e.g. Kwoka et al. (2010) and Kwoka (2002)), or in-

terpreted vertical integration into the retail market as forward contracts and anal-

ysed their effects on wholesale prices (see, e.g., Bushnell (2007), Mansur (2007),

Bushnell et al. (2008), de Frutos and Fabra (2012) and Bosco et al. (2012)).2

None of these papers studies the role of vertical structure in determining generat-

ing capacities. Baldursson and von der Fehr (2007) analyze the effect of vertical

integration on the performance of long-term and spot markets when spot market

prices are uncertain and both independent retailers and electricity generators are

risk averse. They find that vertical integration impairs market performance by

increasing the gap between contract prices and expected spot prices. This effect

2These papers build on Allaz and Villa (1993) who show that, if two Cournot competitors can
sell quantities also in a forward market and arbitrageurs equalize the prices in the forward and
the spot market, then the spot market price is lower than without the opportunity to sell forward.
Mahenc and Salanié (2004) show that this result fails to hold if firms compete in prices rather than
quantities.
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disappears if agents are risk neutral as in our framework.

The paper closest to ours is Boom (2009), which uses a similar analytical frame-

work. There are two important differences to this paper. First, we presume that

rationing (rather than a blackout and complete market breakdown) occurs when

retail demand exceeds aggregate capacity in all market configurations. In doing

so, we eliminate extreme punishments from blackouts as the driving force behind

investment and pricing decisions. Second, we introduce the separated duopoly

configuration, which is indispensable for studying how competition and vertical

structure jointly determine generating capacities, retail prices, and welfare.

The remainder of the paper is structured as follows. Section 2 introduces the

model, and Section 3 characterizes the equilibrium outcomes in the various market

configurations. Section 4 provides a ranking of the market configurations in terms

of capacities, retail prices, and welfare, and discusses the role of rent extraction

in determining this ranking. Section 5 discusses extensions and limitations, and

Section 6 offers conclusions and directions for future research.

2 The Model

2.1 Vertical Structure

We consider a stripped-down model of the electricity industry with three vertical

layers: generation, the wholesale market, and the retail market (see Figure 1).

There is ex ante uncertainty about the level of retail demand, which is represented

by the demand shock ε ≥ 0. Before the demand uncertainty is resolved, gen-
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erators A and B must choose capacities kA and kB, and retailers C and D must

commit to retail prices rC and rD at which they are willing to serve demand. Af-

ter the demand uncertainty is resolved and retailers have learned their demands

dC(rC , rD, ε) and dD(rC , rD, ε), retailers buy electricity from generators on the

wholesale market. An auction determines the wholesale price p(pA, pB) and the

quantities yi(pA, pB) ≤ ki, i = A,B, which generators supply to the grid, where

pA, pB denote the generators’ wholesale bids. If necessary, the rationing of retail

demand assures that total capacity covers aggregate demand, dC +dD ≤ kA +kB.

We study how generating capacities, retail prices, and welfare are endogenously

determined across the following market configurations: (i) social optimum, (ii)

integrated monopoly, (iii) integrated duopoly, and (iv) separated duopoly. The

wholesale market is superfluous in the benchmark configurations (i) and (ii), where

capacities and retail prices are chosen so as to maximize welfare and industry

profit, respectively. In configurations (iii) and (iv), however, the wholesale mar-

ket plays a crucial role. To see this, suppose that two integrated supply chains,

(A,C) and (B,D), interact on the wholesale market. In addition, assume that,

say, (A,C) cannot serve its own retail demand, kA < dC , while (B,D) has excess

capacity, kB > dD. Then, (B,D) has an incentive to drive up the wholesale price

p(pA, pB) in order to extract the rent of (A,C) when selling (part of) its excess

capacity.
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A B

p(pA, pB); yA + yB = dC + dD

C D

? ?

? ?

yA(pA, pB) ≤ kA yB(pA, pB) ≤ kB

dC(rC , rD, ε) dD(rC , rD, ε)

Generation

Wholesale Market

Retail Market

Figure 1: Three Vertical Layers of the Electricity Industry

2.2 Demand and Supply

We assume that consumer surplus is given by

V (x, ε, r) = U(x, ε)− rx = x− ε− (x− ε)2

2
− rx, (1)

where x ≥ 0 is the aggregate amount of electricity consumed, r ∈ {rC , rD} is the

retail price per unit of electricity, and the demand shock ε is uniformly distributed

on the interval [0, 1].3 Maximizing V (x, ε, r) with respect to x yields the following

linear retail demand for electricity

x(r, ε) = max{1 + ε− r, 0}. (2)

3This specification implies that the demand shock generates a negative effect on consumer
surplus. Our key results do not rely on this assumption (see Boom and Buehler (2014)).
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If there is more than one retailer, consumers subscribe to the retailer offering the

lower retail price. If retail prices are identical, consumers choose each retailer

with equal probability.

The marginal cost of generating electricity is constant and normalized to zero.

The total cost of electricity generator i = A,B is given by C(ki) = zki, where

z is the constant unit cost of capacity and ki is the generating capacity installed

by firm i. We assume that capacity cost z satisfies z ∈ [0, 1/(2
√

2)] to ensure

strictly positive equilibrium capacity investments by all generators in all market

configurations. For simplicity, we further assume that the marginal cost of selling

electricity to final consumers is constant and normalized to zero.

2.3 Timing

We assume the following sequence of events:

(1) Generators i = A,B simultaneously choose their capacities ki. In line with

Fabra et al. (2011), firms subsequently decide whether or not they want to

mothball part of their capacities, starting with the smaller-capacity firm (or

a randomly chosen firm in case of identical capacities).4

(2) Retailers ` = C,D simultaneously set their retail prices r`, and consumers

subscribe to the firm with the lower retail price.

(3) The demand shock ε ∈ [0, 1] is realized, and retailers learn their demand.

4This assumption secures the existence of a pure-strategy subgame perfect Nash equilibrium
in the separated duopoly configuration.
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(4) In the wholesale market each generator simultaneously bids a reservation

price pi for its full capacity ki, i = A,B in a uniform price auction, which

is modelled as in von der Fehr and Harbord (1993) and (1997).5 Retailers

bid their clients’ fixed demand as long as the wholesale price ensures non-

negative profits. The auctioneer determines the market-clearing wholesale

price p and the quantities yi generators can sell. If necessary, retail demand

is rationed.

(5) Finally, supply and demand are balanced, and deliveries and payments are

exchanged.

Note that we require each firm to bid its total capacity in the wholesale market and

therefore abstract from strategic capacity withholding (Le Coq, 2002; Crampes

and Creti, 2005). Instead, we focus on the role of vertical market structure for

capacity investments and retail prices. Whenever our model does not generate a

unique equilibrium, we assume that firms can coordinate on a Pareto dominant

equilibrium.

3 Market Configurations

In this section, we characterize the equilibrium outcomes in the various market

configurations. To simplify exposition, we use reduced-form notation wherever

possible. All proofs are relegated to the Appendix.

5Several European wholesale markets are indeed organized as uniform price auctions (e.g.,
the Nord Pool in Scandinavia, or the Spanish wholesale market). Before the reform in 2001, the
Electricity Pool in England and Wales was also organized as uniform price auction. See Bergman
et al. (1999), Crampes and Fabra (2005) and Newbery (2005).
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3.1 Benchmark Cases

Our benchmark configurations are the social optimum and the integrated monopoly.

In these configurations, price and capacity are chosen so as to maximize expected

welfare and profit, respectively.

Social Optimum. The social planner chooses the generating capacity k and retail

price r so as to maximize expected welfare,

max
k,r

E[W (k, r, ε)] = max
k,r
{E[U(min{x(r, ε), k}, ε)]− zk} , (3)

where the expectation is taken over ε. We derive the following result.

Proposition 1 (social optimum) The welfare-maximizing retail price and capac-

ity are given by rs = 0 and ks(z) = 2−
√

2z.

Proposition 1 shows that the welfare-maximizing retail price is zero, and that ra-

tioning optimally occurs in high-demand states if capacity is costly (z > 0). Since

the marginal cost of generating electricity is zero, restricting consumer demand is

optimal only if capacity is binding. Put differently, the social planner prefers ra-

tioning in high-demand states to setting a strictly positive retail price, as the latter

would imply that demand is restricted in all demand states.

Integrated Monopoly. The integrated monopoly chooses the generating capacity

k and retail price r so as to maximize expected profit

max
k,r
{E[rmin{x(r, ε), k}]− zk} . (4)
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The monopoly’s profit-maximizing retail retail price rm(z) and capacity km(z)

are given in equations (14) and (15) in Appendix A.2, where we also derive the

following results.

Proposition 2 (integrated monopoly) The monopoly retail price and capacity

satisfy rm(z) > rs = 0 and km(z) < ks(z), with drm/dz ≥ 0 and dkm/dz ≤ 0,

for any admissible z.

The integrated monopoly charges a higher retail price than the social planner and

invests less in generating capacity for any capacity cost z. Due to the strictly

positive retail price, consumer demand is smaller than optimal for given capacity

cost. Nevertheless, rationing still occurs in high-demand states. In addition, the

profit-maximizing price (capacity) increases (decreases) with the cost of capacity.

Next, we consider market configurations that combine competition with vertical

integration and separation, respectively.

3.2 Integrated Duopoly

In this market configuration, integrated duopoly generators i, j = A,B, i 6= j,

compete both in the retail and the wholesale market. We use backward induction

to work out the equilibrium outcome.

Wholesale Market. Recall that the wholesale market is organized as a uni-

form price auction. Generating capacities (kA, kB) and aggregate retail demand

xR(rid, ε) = min{x(rid, ε), kA+kB} are predetermined, where rid = min{rA, rB}

denotes the retail price under integrated duopoly and the subscriptR indicates that
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rationing occurs when demand exceeds capacity. Firm i’s predetermined retail de-

mand is

di(ri, rj, ε) =


xR(rid, ε) if ri = rid < rj,

1
2
xR(rid, ε) if ri = rj = rid,

0 if ri > rj = rid.

(5)

Note that firm i’s retail demand is zero if it charges a higher price than firm j. The

generators’ wholesale price bids (pi, pj) determine both the wholesale price

p(pi, pj) = pi

 if pi < pj and ki ≥ xR(rid, ε) or

if pi ≥ pj and kj < xR(rid, ε),
(6)

and the wholesale quantity

yi(pi, pj) =


min{ki, x(r, ε)} if pi < pj,

min{ki,x(r,ε)}
2

+
min{max{0,x(r,ε)−kj},ki}

2
if pi = pj,

min {max{0, x(r, ε)− kj}, ki} if pi > pj

(7)

that generator i can supply to the grid. Using equations (5) to (7), the profit of an

integrated generator is given by

πi(pi, pj) = ridi(ri, rj, ε) + p(pi, pj) [yi(pi, pj)− di(ri, rj, ε)]− zki. (8)

Equation (8) shows that an integrated generator runs the risk of rent extraction:

Generator i must buy electricity in the wholesale market if its retail demand turns

out to exceed its capacity (di(ri, rj, ε) > ki ≥ yi). Generator j can then drive up

the wholesale price p(pi, pj) to a level at which generator i’s rent is fully extracted,
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provided that it has spare capacity (i.e., kj > dj(rj, ri, ε)). If both generators can

cover own retail demand, however, the wholesale price is zero. Note that the com-

mitment to serve uncertain retail demand at predetermined retail prices is key for

the risk of rent extraction. If retail prices were flexible, integrated generators could

always increase retail prices and thereby force retail demand down to capacity.

Retail Market. An integrated generator can undercut, match, or surcharge its

competitor’s retail price (see equation (5)). Clearly, undercutting is not profitable

if own capacity cannot cover the extra demand from the lower price for most

demand states. Similarly, it is not profitable to match a larger rival’s retail price

because of earlier capacity exhaustion. However, it may be profitable to match

a smaller or equally sized rival’s retail price. With equal capacities, each firm

sells its own capacity in case of rationing, whereas with asymmetric capacities the

larger firm acquires the total market profit if the smaller firm cannot serve its own

(rationed) retail demand.

With asymmetric capacities matching each other’s retail prices can only be an

equilibrium if both firms set ri = rj = 0, so that undercutting is not profitable.

However, if the asymmetry in capacities is very large, there exists a retail price

range in which the large firm can serve total demand even in the largest demand

state, whereas the smaller firm cannot even serve half of total demand when it

matches the rival’s retail price in the smallest demand state. The Pareto dominant

retail price equilibrium is then either that the large firm sets the monopoly price

and the small firm overbids, or that the small firm sets the monopoly price and the

large firm overbids or matches. Either way, the large firm earns all the profits in

the market. For symmetric, not too large capacities, matching each other’s prices
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at a positive level where firms are just indifferent between underbidding, matching

and overbidding is an equilibrium.6

Generation. Integrated generators choose capacities in order to maximize prof-

its, anticipating the effects on the retail and wholesale market. As we show in

Appendix A.3.3, their symmetric capacities are always large enough to avoid

rationing. Our next result summarizes the market outcome for the integrated

duopoly.

Proposition 3 (integrated duopoly) There is a unique Pareto dominant subgame

perfect Nash equilibrium in which integrated generators set the retail price

rid =
1

2

(
3−

√
4(k∗)2 − 1

)

and each invests in the capacity k∗, such that total capacity satisfies kid = 2k∗,

with

k∗ = arg max
k∈

[
1√
2
,min{

√
13
4
,k̄}

]{1− 4k2 + 3
√

4k2 − 1

8
− zk

}
, (9)

and with k̄ being the largest capacity level at which matching one’s rival’s capac-

ity investment yields zero profit. Rationining does not occur in equilibrium.

Generating capacity decreases and the retail price increases if capacity costs z

increase. Rationing does not occur in equilibrium, because, as we will show

later, integrated generators not only charge excessively high retail prices, but also

make excessively large capacity investments in order to avoid rent extraction in

the wholesale market.
6See Appendix A.3.2 for the derivation of the Pareto dominant retail price equilibrium.
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3.3 Separated Duopoly

In this configuration, separated generators sell to the wholesale market, while

separated retailers buy from the wholesale market and serve retail demand.

Wholesale Market. The wholesale price p(pA, pB) and the generators’ wholesale

quantities (yA, yB) are determined by the uniform price auction discussed above,

given predetermined capacities (kA, kB) and retail demand xR(rsd, ε), where rsd

denotes the retail price in the separated duopoly market configuration. The profit

of a separated duopoly generator i = A,B is given by

πi(pA, pB) = p(pA, pB)yi(pA, pB)− zki. (10)

Since vertically separated generators do not need to commit to serve uncertain

retail demand at predetermined prices, there is no risk of rent extraction. Best-

response bidding requires each generator to either undercut the competitor or to

bid the maximum price pi = rsd at which retailers break even (at higher whole-

sale prices, retailers are better off declaring bankruptcy and leaving the market).

The undercutting generator serves total demand up to capacity, whereas the other

generator serves residual demand.

The equilibrium wholesale price is illustrated in Figure 2. In areas A (rationing),

B, C, and D, the wholesale price is the maximum price at which retailers break

even. The larger generator bids this price, whereas the smaller bids sufficiently

low, such that the larger does not want to undercut. In area C there are also equi-

libria with the roles of the two firms reversed. In order to ensure a unique pay-off

equivalent wholesale market equilibrium, we introduce an additional equilibrium
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6

-

kA

kB

A
p∗ = rsd

x(rsd, ε)

x(rsd, ε)

B

C

D

Ep∗ = rsd

p∗ = rsd

p∗ = rsd

p∗ = 0

Figure 2: Wholesale prices in the separated duopoly

selection criterion which resembles risk dominance (see our Assumption 1 in Ap-

pendix A.4.1). In area E , the wholesale price is zero. Here, different from areas

A, B, C, andD, each individual capacity is sufficient to ensure for each individual

generator a residual demand of zero, which leads to Bertrand bidding.

Retail Market. Separated retailers `, ι = C,D, ` 6= ι, choose their retail price in

order to maximize expected profit, accounting for potential rationing,

max
r`

ER[r`d`(r`, rι, ε)]. (11)

They undercut each other, with the outcome depending on predetermined levels of

capacities. If min{kA, kB} ≥ 1, capacities are too large to induce a rent shift from

retailers to generators for all demand realizations, and retail prices are competed

down to rC = rD = 0. If min{kA, kB} < 1, retailers earn zero profits at retail

prices rC = rD = 1 − min{kA, kB} > 0, and rents are shifted to generators for
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all demand states.7

Generation. Separated generators choose capacities in order to maximize ex-

pected profits (see equation (10)), accounting for the effects of investment on the

retail and wholesale market, and factoring in potential rationing. In the Appendix,

we show that there are two Pareto dominant asymmetric subgame perfect equi-

libria in which the smaller generator realizes a larger profit than the larger one.

Proposition 4 summarizes the equilibrium outcome.

Proposition 4 (separated duopoly) In the Pareto dominant asymmetric subgame

perfect equilibrium, the retail price and total capacity are given by

rsd(z) =
1 +
√

1 + 8z

4
and ksd(z) =

3(3−
√

1 + 8z)

4
.

Note that at this equilibrium retail price and aggregate capacity, rationing occurs

in some high-demand states.

4 Evaluating Market Configurations

We now evaluate the four market configurations in terms of equilibrium prices,

capacities, and welfare. Using Propositions 1 to 4, we derive the following result.

Proposition 5 (ranking) Consider the following market configurations: social

optimum (s), integrated monopoly (m), integrated duopoly (id), and separated

duopoly (sd). These market configurations compare as follows in terms of
7This retail price is Pareto dominant in the whole game, but the retailers in the retail stage

are indifferent between all retail prices with min{rC , rD} ≤ 1 − min{kA, kB}. See also the
discussion in Appendix A.4.2.

16



(i) aggregate capacities:

ks ≥ kid > ksd > km, if 0 ≤ z ≤ 0.0276,

kid > ks ≥ ksd > km, if z > 0.0276,

(ii) retail prices:

rid ≥ rm > rsd > rs for all z,

(iii) welfare levels:

W s > W sd > Wm ≥ W id for all z.

Apart from the social optimum, welfare is highest (lowest) if competition in gen-

eration and retailing is combined with vertical separation (vertical integration,

respectively). The result follows from the fact that both the retail price and ag-

gregate generating capacity are highest under integrated duopoly (except for very

low capacity cost, in which case capacity is higher than in the social optimum).

Consequently, capacity utilization is inefficient under integrated duopoly, and con-

sumers suffer from a high deadweight loss because of the excessively high retail

price in all demand states.

Our analysis thus suggests that introducing competition into statutory monopoly

will increase welfare only if combined with vertical separation. The driving force

behind this finding is the risk of rent extraction under integrated duopoly, which

induces competing generators to charge excessively high retail prices and make

excessively large capacity investments.
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5 Limitations and Extensions

So far, we have employed a specific analytical framework to derive equilibrium

prices, capacities, and welfare endogenously. We now discuss various limitations

and extensions of this framework.

5.1 Demand

Functional Form. It should be clear that the logic of our analysis generalizes

beyond the linear demand setting considered in this paper, as the risk of rent ex-

traction under integrated duopoly is not limited to a particular functional form of

demand. Nevertheless, changing the demand setting may affect the ranking of

market configurations derived in Proposition 5.

Flexible Retail Prices. The assumption that retailers must set their prices before

the demand uncertainty is resolved is key for our analysis. We feel that this as-

sumption is natural because the vast majority of electricity consumers arguably

faces fixed retail prices for the foreseeable future.8 Alternatively, one could as-

sume that retail prices are flexible. For instance, consumers might be willing to

accept retail contracts with flexible prices that condition on available capacity. In

such a setting, integrated generators might be able to deal with insufficient ca-

pacities by increasing retail prices rather than buying electricity in the wholesale

market, thereby delegating the risk of rent extraction to consumers.

8Recent empirical evidence on residential electricity prices provided by Borenstein and Bush-
nell (2018) supports this view. According to these authors, only 4% of US residential customers
face time-varying electricity prices (and among these few customers on time varying electricity
prices most face relatively static time-of-use tariffs).
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5.2 Supply

Wholesale Market. Our analysis presumes that the wholesale market is organized

as a uniform price auction which imposes that generators bid their full capacities.

Yet, the details of the price-setting mechanism in the wholesale market are not

essential. For the risk of rent extraction to play a role, it is key that that the

wholesale price increases in response to a lack of generating capacity. Note that

letting firms auction off only their spare capacities does not eliminate the risk

of rent extraction, because integrated generators with insufficient capacities must

still buy electricity in the wholesale market to honor their retail commitments.

Payments for Installed Capacity. We have abstracted from the possibility of

payments for installed capacity (Cramton and Ockenfels (2012)) because it is dif-

ficult to see how such payments might interact with vertical market structure. In

fact, payments for installed capacity should be expected to increase capacities in

all market configurations, with unclear effect (if any) on the ranking of market

configurations. Note that the driving force behind our results is not a lack of gen-

erating capacity. Under integrated duopoly, aggregate capacity is actually too high

and inefficiently used.

5.3 Repeated Interaction

A referee suggested that integrated generators might be able to coordinate on their

(spare) capacity pricing in a setting with repeated interaction, thereby eliminating

the risk of rent extraction under integrated duopoly.9 In addition, it is conceivable

that such collusion could spill over to the retail market and undermine competition
9See Fabra (2003) for an analysis of tacit collusion in repeated auctions.
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there as well. This line of argument suggests that collusion among integrated

generators might not only eliminate the benefits from competition (the usual effect

of collusion), but also the risk of rent extraction. In the extreme case, collusion

could thus lead to a replication of the integrated monopoly outcome.

6 Conclusion

This paper has studied how competition and vertical structure jointly determine

generating capacities, retail prices, and welfare in the electricity industry. The key

insight of our analysis is that welfare is highest (lowest) if competition is com-

bined with vertical separation (integration). The driving force behind this result is

the risk of rent extraction: A vertically integrated duopoly generator whose capac-

ity is insufficient to serve own retail demand must buy electricity in the wholesale

market at an increasing price. To avoid rent extraction, integrated duopoly gen-

erators choose excessively high capacities and retail prices, which leads to ineffi-

cient capacity utilization. Vertical separation eliminates the risk of rent extraction

and allows for effective competition in electricity generation and retailing. Our

analysis thus suggests that market reforms should combine the introduction of

competition with vertical separation.

There is ample scope for future research. For instance, it would be interesting to

analyze the role of vertical market structure when there is repeated interaction. In

addition, one could study endogenous (and possibly asymmetric) vertical integra-

tion. We hope to address these issues in future research.
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A Appendix

A.1 Proof of Proposition 1 (Social Welfare)

Spelling out the expected social welfare function in equation (3), we have

E[W (k, r, ε)] =



∫ 1

0
U(x(r, ε), ε)dε− zk if r ≥ 2− k,∫ k−1+r

0
U(x(r, ε), ε)dε+∫ 1

k−1+r
U(k, ε)dε− zk if 2− k > r

≥ max{1− k, 0},∫ 1

0
U(k, ε)dε− zk if 1− k > r ≥ 0.

(12)

Maximizing (12) with respect to r yields r = max{1−k, 0}, which is the optimal
retail price for given capacity. Substituting back into (12) and maximizing with
respect to k yields rs = 0 and ks = 2 −

√
2z for 0 ≤ z ≤ 1

2
√

2z
, such that

consumers are rationed in some high-demand states.
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A.2 Proof of Proposition 2 (Integrated Monopoly)

Spelling out the expected profit function in (4), we have

E[π(r, k, ε)] =



∫ 1

max{r−1,0} r(1 + ε− r)dε
−zk, if r ≥ 2− k,∫ k−1+r

max{r−1,0} r(1 + ε− r)dε
+
∫ 1

min{k−1+r,1} rkdε− zk, if max{0, 1− k} ≤ r

< 2− k,∫ 1

0
rkdε− zk, if 0 ≤ r ≤ 1− k

(13)

Maximizing (13) with respect to r and k yields

rm =
1

12

[
(3 + 2z)

(
1 +

3 + 2z

g(z)

)
+ g(z)

]
and (14)

km =
1

12z(g(z))2

{
4h(z)(g(z)− 5z − 3) + 21z(g(z))2 − 9zg(z) (15)

−8z4 − 4(g(z)− 81)z3 − 2[(42 + g(z))g(z)− 81]z2 − 27z
}

with g(z) ≡ 3
√

27 + 54z − 180z2 + 8z3 + 12h(z)

and h(z) ≡
√

3z2 {2z[4z(9− z)− 27]− 27}.

for 0 ≤ z ≤ 1. One can show that rm ≤ min{2 − km, 1}, which implies that
demand is always strictly positive and that rationing is necessary for some high-
demand states. It is straightforward to show that drm/dz ≥ 0 and dkm/dz ≤ 0.

A.3 Proof of Proposition 3 (Integrated Duopoly)

In order to derive a subgame perfect equilibrium we apply backward induction.
Specifically, we start with the analysis of the final stage, the bidding behaviour
of the two integrated firms in the wholesale market. Next, we analyze the second
stage, the retail price competition between the two integrated firms. In this stage,
firms anticipate the consequences that their respective retail positions have for the
outcome in the wholesale market. Finally, we consider the capacity choices of
the two firms, assuming that firms anticipate how their choices will influence the
outcomes on the retail and on the wholesale market.

22



A.3.1 The Wholesale Market

Firm i’s profit function in terms of the bids on the wholesale market is given by:

πi(pi, pj; ri, rj, ε) =



riddi(ri, rj, ε) + p(pi, pj, ε)

·
(
min{ki, xR(rid, ε)} − di(ri, rj, ε)

)
if pi < pj,

riddi(ri, rj, ε) +
p(pi,pj ,ε)

2

·
[
min{ki, xR(rid, ε)} − di(ri, rj, ε)

+ max{xR(rid, ε)− kj, 0} − di(ri, rj, ε)
]

if pj = ph,

riddi(ri, rj, ε) + p(pi, pj, ε)

·
(
max{xR(rid, ε)− kj, 0} − di(ri, rj, ε)

)
if pi > pj,

with i, j = A,B and i 6= j. We need to distinguish two different situations: (i)
both firms are able to serve the demand of their retail customers; (ii) only one firm
is able to serve the demand of its retail customers.10

(i) Both firms can serve their respective retail costumers if ki ≥ di(ri, rj, ε)
holds for i, j = A,B and i 6= j. Thus, firm i becomes a net seller on
the wholesale market if it underbids its rival because min{ki, xR(rid, ε)} −
di(ri, rj, ε) ≥ 0 holds. It becomes a net buyer each time it overbids because
max{xR(rid, ε) − kj, 0} − di(ri, rj, ε) ≤ 0 necessarily holds. Therefore,
both firms want to undercut their rival and pi = pj = 0 = p(pi, pj, ε)
is the unique Nash equilibrium. Substituting this into the profit function
πi(pi, pj; ri, rj, ε) yields πi(ri, rj, ε) = riddi(ri, rj, ε), which is the profit
they will anticipate in the earlier retail stage for all demand shocks ε for
which both firms can satisfy their respective retail demand.

(ii) Only firm j can meet its retail demand, kj ≥ dj(ri, rj, ε), while firm i
cannot, ki < di(ri, rj, ε). Then firm i is always a net buyer and firm j a
net seller in the auction irrespective of their price bids. Consider first the
net buyer, firm i. Overbidding firm j at a given pj may lead to a higher
wholesale price, pi > pj , if firm j is not able to cover total demand, and
will certainly lead to a higher quantity that firm i must buy from firm j
because of

ki − di(ri, rj, ε) ≥ max{xR(rid, ε)− kj, 0} − di(ri, rj, ε),
⇔ ki ≥ max{xR(rid, ε)− kj, 0}.

10Note that ki < di(ri, rj) cannot hold for both firms because of rationing.
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Thus, in any Nash equilibrium the net buyer, firm i, always underbids the
net seller, firm j, such that pi < pj .

Now consider the net seller, firm j. For a given bid pi of the net buyer, firm i,
firm j sells a lower quantity xR(rid, ε)−ki−dj(ri, rj, ε) when overbidding
firm i, compared to the quantity min{kj, xR(rid, ε)} − dj(ri, rj, ε) when
underbidding. At the same time, the resulting auction price p(pi, pj, ε) =
pj > pi is certainly higher, when overbidding compared to underbidding.
Firm j’s overbidding profit increases linearly in its bid pj > pi and therefore
its optimal overbidding price is the maximum price pj = p̄j(ri, rj, ε) that it
can bid, such that the net buyer firm i realizes non-negative profits with

p̄j(ri, rj, ε) =
riddi(ri, rj, ε)

di(ri, rj, ε)− ki
.

With pj = p̄j(ri, rj, ε) > pi firm j’s optimized overbidding profit is

πj(pi, pj, ri, rj, ε)|pj=p̄j(ri,rj ,ε)>pi = riddj(ri, rj, ε)

+p̄i(ri, rj, ε)[di(ri, rj, ε)− ki]
= rid[dj(ri, rj, ε) + di(ri, rj, ε)]

= ridxR(rid)

However, firm j only prefers overbidding with pj = p̄j(ri, rj, ε) > pi to
underbidding if the optimal overbidding profit is not exceeded by the op-
timal underbidding profit. If both firms’ capacities are needed to satisfy
market demand (kj < xR(rid, ε)), firm j’s optimal underbidding price bid
from below is any bid with pj < pi . Otherwise, if ki ≥ xR(rid, ε), firm
j’s underbidding profit is linearly increasing in pj , and its optimal under-
cutting bid is pj = pi − µ with µ → 0. The auction price in both cases is
p(pi, pj, ε) = pi, such that firm j’s optimized underbidding profit is

πj(pi, pj; ri, rj, ε)|pj<pi = riddj(ri, rj, ε)

+pi
(
min{kj, xR(rid, ε)} − dj(ri, rj, ε)

)
.

Firm j prefers overbidding to underbidding or matching firm i’s price bid
pi if and only if

πj(pi, pj; ri, rj, ε)|pj<pi ≤ πj(pi, pj, ri, rj, ε)|pj=p̄j(ri,rj ,ε)>pi ,

which is equivalent to pi ≤ p̂j(ri, rj, ε), with

p̂j(ri, rj, ε) =
riddi(ri, rj, ε)

min{kj, xR(rid, ε)} − dj(ri, rj, ε)
< p̄j(ri, rj, ε).
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Thus, if ki < di(ri, rj, ε) for only one firm, there are multiple Nash equilib-
ria with pi ≤ p̂j(ri, rj, ε) and pj = p̄j(ri, rj, ε) > p̂j(ri, rj, ε). For all these
Nash equilibria the auction price is unique with p(pj, ph, ε) = p̄j(rj, rh, ε),
and the firms’ profits are πi(ri, rj, ε) = 0 and πj(ri, rj, ε) = ridxR(rid, ε).11

A.3.2 The Retail Market

The expected profits of the two firms, when they choose their retail prices and
anticipate the wholesale price bidding, depends on whether they undercut, match
or overcharge their rival’s retail price.

Undercutting (ri < rj): The retail price is rid = ri and firm i’s retail demand
is di(ri, rj, ε) = xR(ri, ε). The expected profit net of capacity costs from
undercutting is

Eπi(ri, rj) =


∫ min{1,ki+ri−1}

max{0,ri−1} rix(ri, ε)dε if 1− ki ≤ ri < rj,

0 if 0 ≤ ri

< min{1− ki, rj}.
(16)

Rationing does not affect firm i’s expected undercutting profit Eπi(ri, rj),
because when it undercuts firm j’s retail price, firm i supplies all consumers
in the retail market. However, in all demand states in which firm i lacks the
capacity to serve its retail demand (di(ri, rj, ε) = xR(ri, ε) > ki), firm j
exploits this on the wholesale market by setting pj = p̄(ri, rj, ε), thereby
shifting all the rents to firm j. This happens for smaller demand shocks,
namely at ε = ki+ri−1, than the one for which the system operator would
start to ration demand. The latter happens at ε = ki + kj + ri − 1.

From analysing Eπi(ri, rj) in (16) one can identify firm i’s optimal under-
cutting strategy. It is

ri(rj) =


max

{
2− ki, 3

4

}
if rj > max

{
2− ki, 3

4

}
,

rj − µ if 0 < rj ≤ max
{

2− ki, 3
4

}
,

(17)

with µ→ 0 being the smallest unit in which retail prices can be announced.

11The Nash equilibria in wholesale prices are the same as in Boom (2009) with the only excep-
tion that, due to the assumed rationing instead of a blackout when demand exceeds capacities, a
pure Nash equilibrium in wholesale prices also exists in this case.
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Matching (ri = rj): The retail price is rid = ri = rj and firm i’s retail demand
is di(ri, rj, ε) = xR(ri, ε)/2. In this case, firm i’s expected profit net of
capacity costs depends on its capacity relative to its rival, that is, whether
ki < kj , ki = kj or ki > kj holds.

With ki < kj , rationing does again not affect firm’ i’s profit for the reasons
discussed above for the undercutting case. Rationing happens only in de-
mand states ε > ki + kj + rj − 1 where firm i’s rents will already be shifted
to firm j in the wholesale market, which happens for all ε > 2ki + rj − 1.
Firm i’s expected profit net of capacity costs is given by

Eπi

∣∣∣∣ri=rj
ki<kj

=

{∫ min{1,2ki+rj−1}
max{0,rj−1}

rjx(rj ,ε)

2
dε if rj ≥ 1− 2ki,

0 if 0 ≤ rj < 1− 2ki.
(18)

With ki = kj rationing plays a role because the firm can now continue to sell
up to its capacity even if it cannot satisfy its own retail demand. Here neither
of the two firms can exploit its rival on the wholesale market, because, when
the rival’s retail demand exceeds its capacity, this happens for both firms at
exactly the same demand shock. The expected profit net of capacity costs is
therefore

Eπi

∣∣∣∣ri=rj
ki=kj

=

∫ 1

max{0,rj−1}
rj min

{
x(rj, ε)

2
, ki

}
dε. (19)

With ki > kj , firm i, when matching firm j’s retail price, can appropriate all
its rival’s rents in the wholesale market for some demand shocks with ε >
2kj + rj − 1 in which firm j cannot serve its (rationed) retail demand. Due
to its larger capacity firm i can always serve its (rationed) retail demand. Its
expected profit net of capacity costs is

Eπi

∣∣∣∣ri=rj
ki>kj

=



∫ 1

max{0,rj−1}
rjx(rj ,ε)

2
dε if rj ≥ 2− 2kj,∫ 2kj+rj−1

max{0,rj−1}
rjx(rj ,ε)

2
dε+∫ 1

2kj+rj−1
rjx

R(rj, ε)dε if 1− 2kj ≤ rj

< 2− 2kj,∫ 1

0
rjx

R(rj, ε)dε if 0 ≤ rj

< 1− 2kj.

(20)

Overcharging (ri > rj): The retail price is rid = rj and firm i’s retail demand
is di(ri, rj, ε) = 0. Here firm i can only earn positive revenues in those
demand states (ε > rj−1+kj) in which its rival cannot serve the (rationed)
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retail demand of its retail customers, such that firm i appropriates all its
rival’s rents via the wholesale auction. Thus, the expected profit net of
capacity costs from overcharging is:

Eπ̄i(ri, rj) =


0 if ri > rj ≥ 2− kj,∫ 1

max{0,rj−1+kj} rjx
R(rj, ε)dε if 0 ≤ rj <

min{ri, 2− kj}.
(21)

If firm i overcharges firm j, then it is indifferent between all retail prices
satisfying ri > rj , because its profit does obviously not depend on the level
of ri.

Firm i’s overall best response in retail prices is determined by comparing the op-
timized undercutting expected profit Eπi(ri(rj), rj), derived from (16) and (17),
with the relevant expected profit from matching Eπi(ri, rj)

∣∣
ri=rj , given either

in (18), (19) or (20), and with the expected profit from overcharging Eπ̄i(ri, rj)
defined in (21). We need to distinguish again different cases depending on the
capacities ki and kj of the two firms.

(i) Retail Market Competition with Both Firms Having Large Capacities

If both firms have relatively large capacities, ki ≥
√

5
2

and ki ≥ kj >
√

5− k2
i ,

each firm i’s best response in retail prices is ri(rj) = ri(rj) from (17), such that
they always want to undercut each other. The unique Nash Equilibrium in retail
prices is then

ri = rj = 0 = rid.

(ii) Retail Market Competition with Asymmetric, but not Large Capacities

Here we assume throughout that firm i is the large and firm j is the small firm
with min{ki,

√
5− k2

i } > kj . We start with identifying the larger firm’s best re-
sponse function and can show that, depending on the smaller firm’s retail price,
the larger firm usually switches from undercutting to overcharging and then be-
comes indifferent between overcharging and matching when the small firm’s retail
price becomes smaller.

There is, however, one exception. When the two firms’ capacities are extremely
asymmetric, 0 < kj < min{(ki − 1)/2, 1/8}, the larger firm i’s best response in
retail prices is

ri(rj)


= max

{
2− ki, 3

4

}
if rj > max

{
2− ki, 3

4

}
,

≥ rj if 0 ≤ rj ≤ max
{

2− ki, 3
4

}
.

(22)
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It switches directly from undercutting (with the profit-maximizing monopoly price)
to becoming indifferent between overcharging and matching, because the smaller
firm’s capacity is so small that it can never (even for the lowest demand with
ε = 0) serve its own retail demand, if it sets its retail price ri, such that rj ≤ ri ≤
max{2− ki, 3

4
} holds. For all retail prices up to the monopoly price the large firm

realizes all the revenues, whereas the small firm generates always zero profits.

However, the usual pattern already emerges for still very asymmetric capacities
with min{(ki − 1)/2, 1/8} ≤ kj < min{ki − 1, 1

4
}. Here the large firm i’s best

response is

ri(rj)



= max
{

2− ki, 3
4

}
if rj > max

{
2− ki, 3

4

}
,

> rj if 1− 2kj < rj ≤ max
{

2− ki, 3
4

}
≥ rj if 0 ≤ rj ≤ 1− 2kj.

(23)

The smaller firm can serve its own retail demand when matching the large firm’s
monopoly price at the lowest retail demand with ε = 0, but cannot serve it when
undercutting the large firm’s monopoly price with rj ≤ ri ≤ max{2 − ki,

3
4
}.

Therefore, the large firm switches directly from undercutting with its monopoly
price to overcharging if the smaller firm’s retail price decreases, starting from firm
i’s monopoly price. The large firm becomes indifferent between overcharging and
matching at a lower retail price of the low capacity firm, when the low capacity
firm can no longer serve its retail demand with matched retail prices even for the
smallest demand ε = 0.

Finally, for intermediately asymmetric capacities with min{ki − 1, 1
4
} ≤ kj <

min
{
ki,
√

5− k2
i

}
the larger firm’s overall best response is

ri(rj)



= ri(rj) if r̂ < rj,

> rj if max{0, 1− 2kj} ≤ rj ≤ r̂,

≥ rj if 0 < rj ≤ 1− 2kj.

(24)

Note that the rival’s retail price rj = r̂, where the large firm switches from under-
cutting to overcharging, depends on the capacities of both firms (see Table 1 for
the exact definitions) and is lower than the large firm’s monopoly price.

To derive a Nash equilibrium in retail prices, we now need to consider the smaller
firm j’s best response in retail prices. We can distinguish two cases. For not
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0 ≤ ki ≤ 1 1 < ki < 2

0 ≤ kj ≤ max
{

min{
√

1− k2
i , ki}, ki − 1

}
2−

√
k2
j + k2

i 1− kj

max{
√

1− k2
i , ki − 1} ≤ kj ≤ ki

3−
√

2(k2j+k2i )−1

2

Table 1: Definition of r̂ for Different ki and kj

too asymmetric capacities with min{ki,
√

5− k2
i } > kj ≥ max

{
0, ki−1

2

}
, the

smaller firm’s overall best response in retail prices is given by

rj(ri)



= rj(ri) if ri > r′i,

= ri if r′i ≥ ri > r′′i ,

> ri if r′′i ≥ ri > 0,

≥ 0 if ri = 0,

(25)

where the critical prices

r′i =


2−
√

2kj if 0 ≤ kj < min
{√

1
2
, ki

}
,

3−
√

4k2j−1

2
if
√

1
2
≤ kj < ki,

(26)

and r′′i for the rival with the larger capacity again depend on the capacities of the
two firms (see Table 2 for the exact definition of r′′i ).12 For a sufficiently high
retail price of its larger rival i the smaller firm j switches from undercutting the
larger firm’s retail price ri to matching and then to overbidding it, if the larger firm
reduces its retail price ri.

However, for ki−1
2

> kj > 0 the small firm j’s best response in retail prices

12The cells in Table 2 with entries “-” do not exist, that is, there are no capacities ki, kj ∈ [0, 2]
which fulfill simultaneously the conditions given in the vertical column and the horizontal row.
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0 ≤ ki <
1√
2

1√
2
≤ ki < 1 1 ≤ ki <

√
5
2

√
5
2
≤ ki ≤ 2

0 ≤ kj < min

{
ki√

2
,

√
1−k2i

2

}
2−

√
2k2

j + k2
i - -

min

{√
1−k2i

2
, ki−1

2

}
≤ kj -

5−
√

12k2j+6k2i−2

3

< min

{√
2k2i +
√

4k2i−1

2
,

√
9−2k2i

2

}
min

{
ki√

2
,

√
2k2i +
√

4k2i−1

2
, 2−

√
2ki

3−
√

4k2i−1

2
0

√
9−2k2i

2

}
≤ kj < ki

Table 2: Definition of r′′i for Different ki and kj

changes to

rj(ri)



= rj(ri) if ri > r′i,

= ri if r′i ≥ ri ≥ 1− 2kj,

≥ 0 if 1− 2kj > ri ≥ 2− ki,

> ri if 2− ki > ri > 0,

≥ 0 if ri = 0,

(27)

where rj(ri) is still firm j’s optimal undercutting strategy (the equivalent to (17))
and where r′i is still defined in (26). Different from the more symmetric case, the
smaller firm here no longer directly switches from matching to overbidding when
its larger rival’s retail price decreases. Due to the very asymmetric capacities the
smaller firm here is indifferent between matching, overbidding and undercutting
for a particular retail price range of its rival. In this retail price range the smaller
firm is neither able to ever serve its own retail demand while undercutting or only
matching its larger rival (even with the smallest demand, ε = 0), nor can it ever
acquire its larger rival’s revenues in the wholesale market when overbidding the
larger rival in the retail market (even with the largest demand ε = 1), because its
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larger rival is always able to serve its demand.

Now consider first the not too asymmetric case with min{ki,
√

5− k2
i } > kj >

ki−1
2

. For this case one can prove that r′j > min
{
r̂,max{2− ki, 3

4
}
}
> r′′j >

1 − 2kj , where r′ is defined in equation (26), r̂ in Table 1 and r′′ in Table 2.
This means that for all retail prices where the smaller firm wants to undercut the
larger firm, the larger firm wants to do the same. For all the retail prices where
the smaller firm wants to match the larger firm, the larger firm either wants to
undercut or to overcharge, but never wants to match, and, finally, for all retail
prices where the smaller firm wants to overcharge the larger, the larger also wants
to overcharge or is indifferent between matching and overcharging. Therefore,
like in a usual Bertrand competition, the unique equilibrium in retail prices is
given by ri = rj = 0 = rid for all ki > kj >

ki−1
2

. Depending on the exact level
of capacities rationing might or might not take place in equilibrium.

However, this changes for extremely asymmetric capacities with ki−1
2

> kj ≥ 0.
Analyzing (27) together with the large rival’s counterpart, which is either (22) or
(23), reveals that for these extremely assymmetric capacities additional equilibria
exist, in which the large firm i earns positive profits and the small firm j earns
nothing. One can show that for all ki−1

2
> kj ≥ 0 a whole range of retail price

equilibria exist in which the small firm j undercuts or matches the large firm i’s
retail price ri with max{rj, 2 − ki} ≤ ri ≤ min{1 − 2kj, 3/4} without being
able to ever cover its own retail demand with its capacity. The retail price is
then rj . The small firm is indifferent between all these equilibria, whereas the
large firm obviously prefers ri = rj = 2 − ki for ki ≤ 5/4 and ri = rj =
min{3/4, 1 − 2kj} for ki > 5/4. For even more asymmetric capacities with
0 ≤ kj < min{(ki − 1)/2, 1/8} another retail price equilibrium occurs where the
small firm j overcharges the large firm i with ri = max{2 − ki, 3/4} < rj . The
retail price would be ri.

Thus, there is a unique Pareto dominant retail price equilibrium for extremely
asymmetric capacities, ki−1

2
> kj ≥ 0, with

ri =

{
2− ki if ki ≤ 5

4
3
4

if ki > 5
4

and rj ≥ ri if kj <
1

8
also holds, (28)

and ri = 1− 2kj = rj if kj ≥
1

8
. (29)

Rationing never takes place in this Pareto dominant equilibrium.

(iii) Retail Market Competition with Symmetric, but not Large Capacities

Here we assume that ki = kj = k <
√

5
2

holds. Each firm has the same best
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response in retail prices, given by:

ri(rj) =



= ri(rj) if rj > r̂,

≥ rj if rj = r̂,

> rj if r̂ > rh > 0,

≥ 0 if rj = 0,

(30)

with r̂ defined in Table 1, given ki = kj = k. For all rival’s prices above rj = r̂,
each firm wants to undercut, at the rival’s price rj = r̂ each firm is indifferent
between overcharging and matching the rival’s price, whereas for all rival’s retail
prices below, with r̂ > rj > 0, each firm wants to overcharge, and finally at rj = 0
each firm is indifferent between overcharging and matching. Thus, obviously the
Nash equilibrium with ri = rj = 0 and zero profits always exists.

For k ≤
√

5
2

there is, however, also another equilibrium with

ri = rj = r̂|ki=kj=k =

2−
√

2k if 0 ≤ k <
√

1
2
,

1
2

(
3−
√

4k2 − 1
)

if
√

1
2
≤ k <

√
5
2
.

(31)

In this retail price equilibrium rationing is never necessary because 2 − r̂ < 2k
always holds. Since the expected profits of the two firms with ri = rj = r̂|ki=kj=k

is positive, this is the unique Pareto-dominant Nash equilibrium in retail price for

k=kj = k <
√

5
2
.

The following Lemma summarizes all our results with respect to the retail prices.

Lemma 1 Assuming that the two firms always act according to the Pareto optimal
Nash equilibrium in case of multiple Nash equilibria in retail prices, the equilib-
rium in retail prices, anticipating the outcomes for different demand states on
the wholesale market, depends on how large and how asymmetric the integrated
firms’ i, j ∈ {A,B} and i 6= j, generating capacities are.

(i) With intermediately asymmetric capacities, ki > kj ≥ ki−1
2

, or with large

symmetric capacities, ki = kj = k ≥
√

5
2
, firms choose ri = rj = 0 = rid

in equilibrium and realize an expected profit of zero, net of their capacity
costs. Rationing may be necessary in equilibrium.
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(ii) If the firms’ capacities are more extremely asymmetric, ki−1
2

> kj ≥ 0, they
choose the retail prices, depending on the exact capacities, defined either
in equation (28) or in (29), where the retail price paid by the consumers is
in both cases rid = ri, the respective retail price demanded by the larger
firm. The small firm’s j expected profit net of capacity costs is always zero,
whereas the large firm’s i net expected profit is positive. Rationing is never
necessary in this equilibrium.

(iii) For not too large symmetric capacities with ki = kj = k <
√

5
2

both firms

choose ri = rj = r̂|ki=kj given in (31), and consumers pay rid = r̂|ki=kj .
Both firms realize positive expected profits net of their capacity costs and
rationing is never necessary in equilibrium.

A.3.3 The Integrated Firms’ Investment Decision

When deciding on their electricity generating capacities, integrated firms antici-
pate the consequences of their capacity choices on the wholesale prices for the
different demand scenarios and on retail price competition.

Let us assume for now that they stick to their original capacity investments ki and
kj and do not mothball any capacities. Then, their expected profit Πi(ki, kj) is
characterized in Table 3.13 Since demand in our model is never larger than 2 we
assume that ki, kj ∈ [0, 2].

The capacity decisions of the two firms are determined in three steps. First both
firms invest in capacity ki and kj and bear the respective capacity costs. Then
the smaller firm, let us suppose it is firm i, due to ki ≤ kj after the investment
decisions, has the opportunity to costlessly mothball part of its capacity, such that
it has only k̂i ≤ ki < kj left to bid later into the wholesale market. Finally, the
originally larger firm j can also reduce its capacity to k̂j ≤ kj .

(i) Let us first consider the final step, the choice of firm j with kj ≥ ki ≥ k̂i. In-
vestment costs are sunk at this stage. Therefore we analyze Πj(k̂i, k̂j)+zkj ,
implicitly characterized in Table 3, in order to derive firm j’s best response
to firm i’s potentially adapted capacity k̂i ≤ ki which depends also on its

13As before in Table 2, a cell with entry “-” indicates that no combination of ki and kj exists
which satisfies simultaneously the conditions given in both the description of the row and of the
column.
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0 ≤ kj <
1
8

1
8
≤ kj <

1
2

1
2
≤ kj <

√
1
2

√
1
2
≤ kj <

√
5
2

√
5
2
≤ kj ≤ 2

ki < kj −zki

ki = kj k2
i

(
1− ki√

2

)
− zki 1

8
(1− 4k2

i + −zki
3
√

4k2
i − 1

)
−zki

kj < ki ≤ −zki
2kj + 1

2kj + 1 (2− ki)× -
< ki ≤ 5

4

(
ki − 1

2

)
−zki

max{5
4
, 9

16
− zki (1− 2kj)× -

2kj + 1}
(

1
2

+ 2kj
)

< ki ≤ 2 −zki

Table 3: Firm i’s expected Profit Πi(ki, kj) in Terms of ki and kj
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own originally invested capacity kj . It is given by

k̂j(k̂i, kj) =


kj if 0 ≤ k̂i < min{0.45063,

kj−1

2
},

k̂i if min{0.45063,
kj−1

2
} ≤ k̂i <

√
5
2
,

kj if
√

5
2
≤ k̂i ≤ 2,

(32)

and implies that the larger firm j either reduces its capacity and matches the
smaller firm’s capacity k̂i, resulting in both firms having the same positive
profit, or it sticks to its original investment kj . The latter is beneficial if firm
i has either such a small capacity k̂i that firm j can monopolize the market
(with profits described in the south west of table 3), or if firm i has chosen

such a large capacity k̂i ≥
√

5
2

that neither of the two firms can earn any
profits.

(ii) In the intermediate step firm i anticipates the best response k̂j(k̂i, kj) of
firm j and knows therefore that it can never become the large supplier by
mothballing capacity and that it can only generate positive profits if firm j
later matches k̂i in the final step. Firm i chooses k̂i such that it maximizes
Πi(k̂i, k̂j(k̂i, kj)) + zki for k̂i ≤ ki ≤ kj . Its best response is

k̂i(ki, kj) =

{
ki if 0 ≤ ki ≤ min{

√
13
4
, kj}√

13
4

if
√

13
4
≤ ki ≤ kj.

(iii) In the first step neither of the two firms has an incentive to invest in a level of
capacity such that it later is going to mothball it in either stage 2 or stage 3
of the process. Therefore only two different types of equilibria are possible.
Either one firm monopolizes the market with kj = 5

4
− z

2
and the other firm

does not invest at all, ki = 0, or both firms match each others capacities
with 0 ≤ ki = kj ≤

√
13
4

.

Let us first consider the monopolization equilibrium. This can only exist as
long as the small firm i which earns zero profits in this case cannot deviate
to a positive capacity kj−1

2
= 1

8
− z

4
< ki ≤ min{

√
13
4
, 5

4
− z

2
}, which would

later, in step 3, induce the large firm to reduce its capacity to the level of
firm i, such that firm i generates a positive profit with matched capacities.
One can show that such a profitable deviation exists for firm i, as long as
0 ≤ z < 1

2
√

2
. In addition the monopolizing firm should not realize zero

profits. From Table 3 one can see that for (kj, ki) = (5
4
− z

2
, 0) firm j’s

expected profit is

Πj

(
5

4
− z

2
, 0

)
=

1

16
(4(z − 5)z + 9) ≥ 0⇔ z ≤ 1

2
.
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Thus the monopolization equilibrium exists only for 1
2
√

2
≤ z ≤ 1

2
and not

for the range of capacity costs assumed here with 0 ≤ z < 1
2
√

2
.

Now consider a potential matching equilibrium with 0 ≤ ki = kj . Note
that matching equilibria cannot exist for ki = kj >

√
13
4

because then the
firm, which is allowed to mothball part of its capacity first, always can do
better by reducing ki to k̂i =

√
13
4

. This capacity level is then matched by the
other firm j with k̂j =

√
13
4

. In addition there should be neither an incentive
to choose ex ante a capacity of zero in order to avoid negative profits in a
matching equilibrium, nor should there be an incentive to ex ante invest in a
capacity which would allow the respective firm to monopolize the market.

A matching equilibrium yields negative profits if both firms invest in the
same level of capacity ki = kj below k which is the smallest capacity that,
when matching it, just ensures zero profit with

k ≡ 1√
2

(
1−

√
1− 2z

√
2

)
. (33)

or if both firms invest in the same level of capacity ki = kj above k̄ with

k̄ ≡

{
k ∈

[
1√
2
,

√
5

2

] ∣∣∣∣1− 4k2 + 3
√

4k2 − 1

8
− zk = 0

}
. (34)

Note that k ≤ k̄ for all 0 ≤ z ≤ 1/(2
√

2). In addition, one can show that
k̄ >

√
13
4

for all 0 ≤ z < 9/(8
√

13) ≈ 0.312, such that k̄ is only relevant for
9/(8
√

13 ≤ z ≤ 1/(2
√

2) ≈ 0.35355 as a limit for how much integrated
firms could potentially invest in a matching equilibrium.

The best deviating monopolization strategy from ki = kj is to choose ex
ante kj = min{2ki + 1, 5/4 − z/2}. However, this is only more profitable
than matching the competitor’s capacity ki as long as ki ≤ k̃ with

k̃ ≡
{
k ∈

[
0,

1

2

] ∣∣∣∣k2

(
1− k√

2

)
− zk = (35)

(1− 2k)

(
1

2
+ 2k

)
− z(2k + 1)

}
.

Note that k̃ < min{k̄,
√

13/4} for all 0 ≤ z ≤ 1/(2
√

2) and that k̃ ≤ k for
all 0.2484 ≤ z ≤ 1/(2

√
2).

Thus, we can prove the following Lemma.
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Lemma 2 For 0 ≤ z < 1/(2
√

2) multiple subgame perfect equilibria exist. All
these equilibria are characterized by both firms i, j ∈ {A,B} choosing ki =
kj = k with max{k̃, k} ≤ k < min{

√
13/4, k̄}. Rationing is never necessary in

all these subgame perfect equilibria.

Since we focus here on Pareto dominant subgame perfect Nash equilibria we can,
of course, identify the equilibrium ki = kj = k∗ among the multiple matching
equilibria with 0 ≤ z < 1/(2

√
2) which maximizes each firm’s profit. It is given

by

k∗ = arg max
k∈

[
1√
2
,min{

√
13
4
,k̄}

]{1− 4k2 + 3
√

4k2 − 1

8
− zk

}
. (36)

Corollary 1 For 0 ≤ z < 1
2
√

2
the unique Pareto dominant subgame perfect Nash

equilibrium is that the two firms choose kA = kB = k∗ defined in (36). The
resulting retail price is

r∗ =
1

2

(
3−

√
4(k∗)2 − 1

)
(37)

and rationing is never necessary in this equilibrium.

Note that kid defined in Proposition 3 coincides with 2k∗ from equation (36) and
that rid is equivalent to r∗ from equation (37) after substituting k∗, the explicit
solution to equation (36). Both can be represented by

rid =
3

2
− 1

2

{[√
3
√

26 + 16z2 +m(z)

12
− z +

(
13

12
− 2z2

3
− m(z)

48

− 5
√

3z

2
√

26 + 16z2 +m(z)

)2

− 1

 1
2

 and

kid =

[
13

12
+

2z2

3
− m(z)

48
− 5

√
3z

2
√

26 + 16z2 +m(z)

] 1
2

− z

+

√
3
√

26 + 16z2 +m(z)

12
,

with m(z) ≡ (13− 16z2)2

n(z)
+ n(z),

n(z) ≡ 3
√
−2197 + 144q(z)z − 22992z2 − 9984z4 + 4096z6,

and q(z) ≡
√

3
√

2197 + 7440z2 + 9984z4 − 4096z6.
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A.4 Proposition 4 (Separated Duopoly With Rationing)

A.4.1 The Wholesale Market

Analyzing each firm’s profit function πi(pA, pB) in equation (10) reveals that
wholesale bidding game is the same as the one analyzed in appendix A of Le Coq
(2002), or in the proofs of Proposition 1-3 in Crampes and Creti (2005), taking
into account that marginal generating costs are constant and normalized to zero
by assumption and that the maximum wholesale price with positive demand is
p = rsd. We summarize their results with regard to the Nash equilibria in the
wholesale market in Lemma 3.

Lemma 3 (wholesale prices) Depending on capacity levels (kA, kB) and the re-
tail price rsd, there are the following types of Nash equilibria in price bids:

(i) If kA + kB < x(rsd, ε), any pair (pi, pj) = (rsd, pj) with pj ≤ rsd, i, j ∈
{A,B} and i 6= j forms a Nash equilibrium in price bids. The resulting
equilibrium wholesale price is psd = rsd, and each firm sells its total ca-
pacity, meaning yi(rsd, pj) = ki and yj(rsd, pj) = kj .

(ii) If ki ≥ x(rsd, ε) > kj , with i, j = A,B and i 6= j, the Nash equilibrium in
pure strategies is characterised by pi = rsd and pj < rsd(x(rsd, ε)−kj)/ki.
The resulting equilibrium wholesale price is psd = rsd, and firms sell the
quantities yi = x(rsd, ε)− kj and yj = kj .

(iii) If kA+kB ≥ x(rsd, ε) > max{kA, kB}, there are two types of Nash equilib-
ria in pure strategies: one with pA = rsd and pB < rsd(x(rsd, ε)− kB)/kA,
and another with pB = rsd and pA < rsd(x(rsd, ε)−kA)/kB. The wholesale
price is the same (psd = rsd) for both types of equilibria, but the quantities
sold in equilibrium differ: in the former yA = x(rsd, ε)− kB and yB = kB,
whereas in the latter yA = kA and yB = x(rsd, ε)− kA.

(iv) If min{kA, kB} ≥ x(rsd, ε) the Nash equilibrium pA = pB = 0 is unique.
The resulting equilibrium wholesale price is psd = 0, and firms sell the
quantities yA = yB = x(rsd, ε)/2.

The retail demand is only rationed in case (i) where xR(rsd, ε) = kA + kB holds.

The uniform price auction has multiple equilibria in all the cases (i)-(iii). These
are pay-off equivalent in case (i) and (ii), but not in case (iii), where each firm
prefers to be the low price bidder instead of the high price bidder, with pi = rsd

because both firms get the same uniform price with psd = rsd , but only the low
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bidder sells its total capacity. In order to be able to derive the subgame perfect
equilibrium of the whole game via backward induction we need an assumption
on which equilibrium the two generators coordinate. Here we follow Fabra et al.
(2011) and apply

Assumption 1 If capacities satisfy kA + kB ≥ x(rsd, ε) > max{kA, kB}, gener-
ators coordinate on the Nash equilibrium where the large-capacity firm bids the
maximum price and the small-capacity firm bids low enough to avoid undercut-
ting by the large firm. If generators have equal capacities, they play each type of
equilibrium with equal probability.

Assumption 1 can also be motivated by applying risk-dominance as a selection
criterion to a very similar game.14

A.4.2 The Retail Market

For retailers to obtain non-negative profits, the realized demand shock must satisfy
ε ∈ (ε, ε), where ε ≡ r − 1 is the critical value below which demand is zero, and
ε ≡ min{kA, kB}+ r − 1 is the maximum value such that demand is sufficiently
small to avoid a wholesale price psd = rsd. If psd = rsd holds, generators extract
all the rents from the retailers (areas A, B, C and D in Figure 2).

Retailers compete à la Bertrand and the expected profits of retailer ` = C,D is
given by

π`(r`, rι) =



0 if r` > rι,

1
2

∫ max{0,min{ε̄,1}}
max{0,ε} r`(1 + ε− r`)dε if r` = rι,∫ max{0,min{ε̄,1}}

max{0,ε} r`(1 + ε− r`)dε if r` < rι,

(38)

with `, ι = C,D, and ` 6= ι. Equation (38) indicates that retailers undercut each
other until they reach zero profits. Therefore, the following Nash equilibrium or
equilibria in retail prices emerge(s).

Lemma 4 (retail prices) Depending on the capacity levels (kA, kB), there are the
following Nash equilibria in retail prices.

14The game is the same as ours in this stage here, but the price bids can only be made as a
multiple of the smallest monetary unit γ which is small but not zero. See Boom (2008) for a
detailed discussion of how risk dominance can be applied in such a game.
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(i) If min{kA, kB} ≥ 1 there is a unique pure-strategy Nash equilibrium with
rC = rD = 0.

(ii) If min{kA, kB} < 1 all pure-strategy Nash equilibria are characterised by
rC ≤ 1−min{kA, kB} and rD ≤ 1−min{kA, kB}.

Its proof is equivalent to a standard proof for a Bertrand equilibrium.15 In case
(i) retail competition results in a unique equilibrium, whereas in case (ii) we have
again multiple equilibria.

In case (i) the generators’ minimum capacity is too large and induces positive prof-
its for the retailers for some small demand realizations if r ≥ 0 holds. Therefore,
retailers compete each other down to r = 0 in a Bertrand type manner.

In case (ii) the minimum capacity of the generators is small enough for all rents
to be shifted from retailers to generators at some positive retail prices, even if
the demand realization is very small (ε = 0). We can deal with the multiplicity
problem in case (ii), if we apply Pareto dominance as an equilibrium selection
criterion.

Corollary 2 If min{kA, kB} < 1 holds, the unique Pareto dominant Nash equi-
librium is

rC = rD = 1−min{kA, kB}. (39)

Corollary 2 means that retailers select the equilibrium strategy in which they
choose the highest possible price which generates zero profits. The equilibrium is
Pareto dominant, although the retailers C and D in the retailing stage are indiffer-
ent between all prices described in case (ii). The generators A and B, however,
clearly prefer the retailers to choose the retail price identified in Corollary 2.

A.4.3 The Investment Decisions of the Separated Generators

Anticipating the outcome of the wholesale market price bidding and the retail-
ers’ Bertrand competition on the retail market, the generator i’s profit in terms
of capacities with i, j = A,B and i 6= j, given that none of the two generators

15Suppose that r` > rι with `, ι = C,D and ` 6= ι. This can only be an equilibrium if
r` ≤ 1 − min{kA, kB}, because otherwise firm ` could increase its profits by undercutting and
firm ι by increasing its price. Suppose, alternatively, that r` = rι. Then either r` = rι = 0, if
min{kA, kB} ≥ 1 holds, or r` = rι ≤ 1 −min{kA, kB}, if min{kA, kB} < 1 holds. Otherwise
each retailer could double its profit by slightly undercutting its rival.
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mothballs any capacity, is

Πi(ki, kj) =



max{0, 1− kj}
∫ 1

0
min{ε, ki}dε− zki if ki > kj,

max{0,1−kj}
2

[∫ 1

0
min{ε, ki}dε+

∫ 1

0
kidε

]
−zki if ki = kj,

max{0, 1− ki}
∫ 1

0
kidε− zki if ki < kj.

(40)

Let us assume that firm i has originally invested more than firm j in the first stage
of the three-stage investment process, meaning ki ≤ kj and consider the final
stage of the investment process first.

(i) In the final third stage ot the investment process firm j decides on whether
to mothball part of its capacity, after potential mothballing by firm i in the
second stage. Thus, firm i’s capacity is k̂i with k̂i ≤ ki ≤ kj . In order
to decide on whether to reduce its current capacity kj to k̂j ≤ kj , firm j

maximizes Π̂j = Πj(k̂i, k̂j) + zkj , given by

Π̂j =



0, if 1 < k̂i and 1 < k̂j,
1−k̂i

2
, if k̂i ≤ 1 < k̂j,

(1− k̂i)
[
(1− k̂j)k̂j +

k̂2j
2

]
, if k̂i < k̂j ≤ 1,

1−k̂i
2

[
(1− k̂j)k̂j +

k̂2j
2

+ k̂j

]
, if k̂i = k̂j ≤ 1,

(1− k̂j)k̂j, if k̂j < k̂i and k̂j ≤ 1.

(41)

Maximizing this profit function with respect to firm j’s capacity k̂j yields
firm j’s best response in stage 3 of the investment process for a given ca-
pacity k̂i of the originally smaller firm i and for a given original capacity kj
of firm j. It is either

k̂j(k̂i, kj) =

{
k̂i − α with α→ 0 if kj < 1−

√
1− 2k̂i

min{kj, 1} if kj ≥ 1−
√

1− 2k̂i,
(42)

and if k̂i ≤ 1
2
, or it is

k̂j(k̂i, kj) =
1

2
, if k̂i >

1

2
. (43)

If the originally smaller firm’s capacity after stage 2 is small, then firm j
prefers to become the small capacity provider via sufficient mothballing, if
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its own original capacity is also relatively small. Otherwise it stays larger. If
the originally smaller firm’s capacity after stage 2 of the investment process
is larger, firm j always mothballs its large capacity such that it becomes the
smaller firm.

(ii) In stage 2 the originally smaller firm i with ki ≤ kj anticipates firm j’s best
response in stage 3, when it itself can reduce its capacity ki to k̂i ≤ ki. It
knows that if kj ≥ k+(k̂i) holds with

k+(k̂i) ≡ 1−
√

1− 2k̂i, and k̂i ≤
1

2

then firm j does not reduce its capacity kj in stage 3 below the level of k̂i,
but sticks to k̂j = kj . If either kj < k+(k̂1) holds or, alternatively k̂i > 1

2
,

then firm j reduces its capacity in stage 3 below the capacity level of firm i
and chooses k̂j = min{k̂i − α, 1

2
} with α→ 0.

Considering now Π̂i = Πi(k̂i, k̂j(k̂i, kj)) + zki as implicitly defined by (41)
and by firm j’s best response function (42) or (43) above, reveals that the
small firm i in stage 2 has no interest in firm j becoming later in stage 3 the
small firm. Firm i’s profit in stage 2, Π̂i, is maximized if firm i chooses in
stage 2 of the investment process

k̂i = min

{
ki,

(
1− kj

2

)
kj

}
for all ki ≤ kj ≤ 1

and k̂i = min

{
ki,

1

2

}
for all ki ≤ kj and kj > 1.

This capacity choice of firm i in stage 2 with ki ≤ kj triggers later a final
capacity choice of firm j in stage 3 with k̂j = min{kj, 1}. Note that this is
also true, if firms are symmetric with ki = kj to begin with. Then the firm
which can accidentally mothball part of its capacity first, will do so.

(iii) In stage 1 of the investment process both generators simultaneously choose
their capacity and anticipate how the investment process continues in stage
2 and 3. One can show that both generators choosing the same capacity
is never an equilibrium because each firm has an incentive to deviate to
ki = (1−kj/2)kj < kj ensuring that it always becomes the small generator,
instead of playing this role only with a probability of 1/2. Both generators
also anticipate that, finally, a generator, which chooses a larger capacity than
its rival in stage 1, will always continue to be the larger capacity provider
and might only mothball any capacity in stage 3, exceeding kj = 1, if it
invests into kj > 1. Thus in equilibrium 1 ≥ kj > ki must hold.
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Therefore the optimal larger capacity in stage 1 must maximize

Π̄j(ki, kj) = (1− ki)
[
(1− kj)kj +

k2
j

2

]
− zkj

which yields the best response from above in stage 1, being

k̄j(ki) = 1− z

1− ki
(44)

as long as k̄j(ki) > ki ⇔ ki < 1−
√
z holds.

The smaller firm i maximizes

Πi(ki, kj) = (1− ki)ki − zki

subject to ki ≤
(

1− kj
2

)
kj and Π̄j(ki, kj) ≥ Πj(ki, kj).

Note that the second of the two constraints is equivalent to ki ≤ ki(kj) with

ki(kj) =
1

4

{
2 + (2− kj)kj − 2z (45)

−
√

4z2 − 4(2− kj(kj + 2))z + (2− (2− kj)kj)2

}
≤

(
1− kj

2

)
kj for all 0 ≤ z < 1,

meaning that ki ≤ ki(kj) is the only binding constraint.16 It ensures that
a generator, which chooses to be the large generator in the first stage of
the investment process does not want to deviate and become the smaller
generator. In addition one can show that

arg max
ki

Πi(ki, kj) =
1− z

2
≥ ki(kj),

for all 0 ≤ z < 1 and 0 ≤ kj ≤ 1. This means that the best response from
below in stage 1 is ki = ki(kj) defined in equation (45).

Solving kj = k̄j(ki) and ki = ki(kj) from equations (44) and (45) simul-
taneously for (ki, kj), yields the two Nash equilibria identified in Lemma
5. With these capacities both firms choose best responses to each other’s
capacity and, by construction of ki, the large generator j does not want to
become the small generator and the small generator i is in no way tempted
to choose ki > kj .

16This is intuitive. If the small capacity is small enough, such that the large generator does not
want to become the small generator in stage 1 where it even can save capacity costs by deviating,
then it is certainly small enough to prevent the large firm from becoming the small firm in the third
stage where mothballing does not save any capacity costs.
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Lemma 5 With two generators i, j = A,B with i 6= j which are separated
from the two retailers `, ι = C,D, and ` 6= ι, and with 0 ≤ z ≤ 1

2
√

2
there exist two subgame perfect Pareto dominant Nash equilibria in which
assumption 1 is satisfied. In each of these two equilibria the two generators
i, j = A,B with i 6= j invest in (ki, kj) such that

ki =
3−
√

1 + 8z

4
and kj =

3−
√

1 + 8z

2
. (46)

The total capacity is ksd = ki+kj , and can easily be derived from equation (46) in
Lemma 5. It is explicitly given in Proposition 4 together with the retail price rsd.
The latter can be derived from substituting ki from equation (46) into the highest
retail price which generates zero profits for the retailers, given in equation (39) in
Corollary 2. Rationing occurs for high demand states with ε > kj = 3−

√
1+8z
2

.
Obviously, capacities decrease and the retail price increases if capacity costs z
increase.

A.5 Proof of Proposition 5 (Ranking)

The statements in (i) and (ii) directly follow from comparing the capacities and
retail prices for the two benchmark cases and the two market configurations char-
acterized in Propositions 1, 2, 3 and 4, given the range of investigated capacity
costs 0 ≤ z ≤ 1

2
√

2
.

For statement (iii) we need to compare welfare for the different cases. Welfare
is given by the expected social welfare defined in equation (12), where U(·) is
implicitly defined in equation (1), x(r, ε) is defined in (2), and r refers to the retail
price and and k to the total capacity in the considered configuration. Substituting
the relevant retail price and total capacity for the two benchmark cases, given in
Proposition 1 and characterized in Proposition 2, and for the two market configu-
rations, characterized in Proposition 3 and Proposition 4, yields the result, stated
in (iii) in Proposition 5. The relevant capacities, retail prices and social welfare
levels compared in Proposition 5 are illustrated in Figures 3, 4 and 5.

Note that the social welfare if no electricity is consumed coincides with

W0 =

∫ 1

0

−ε− (−ε)2

2
dε = −2

3
,

which can be derived from integrating V (x, ε, r) from equation (1) for x = 0 over
all demand states ε ∈ [0, 1]. Thus, it is no problem that social welfare for some
configurations and capacity cost levels z is negative, because it always exceeds
the social welfare level without any electricity consumption.
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Figure 3: The Capacities in the Different Market Configurations
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Figure 4: The Retail Prices in the Different Market Configurations
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