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Preface

The thesis consists of three chapters, which can be read independently. The com-

mon theme across all three chapters is the relation between asset prices and investor

preferences and beliefs.

The first chapter addresses the question of whether it is possible to recover physical

probabilities, marginal utilities, and the discount rate from observed asset prices. We

show when such a recovery is possible - and when it isn’t - using a simple but general

“counting argument”. Recovery is possible when the number of states of the economy

is no greater than the number of time periods. Our counting argument shows why

recovery is impossible in most standard financial models where the state space grows

as a multinomial tree. Nevertheless, we provide conditions under which recovery is

possible in such an economy. While leaving probabilities fully free, we show that

recovery is possible in an economy that evolves as a multinomial tree, if the number

of parameters governing the stochastic discount factor is no greater then the number

of time periods.

The second chapter addresses the question of how financial market tail risks vary

over time and how we can infer such tail risks from asset prices. We show how the

market’s higher order moments can be estimated ex ante using options written on the

market. We find that, the market’s higher order moments move together in the sense

that skewness becomes more negative when kurtosis becomes more positive. In other

words, there are times when higher-moment risk is high, in the sense that the return

distribution is both substantially left skewed (due to the large negative skewness) and

fat tailed (due to the large positive kurtosis). Interestingly, higher-moment risk tends to

be high at times when volatility is low, suggesting that when volatility is low, risk hides

in the tails of the market return distribution. We show that this systematic variation
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in higher-moment risk has large implications for investors; for example, the tail loss

probability of a volatility-targeting investor varies from 3.6% to 9.7%, entirely driven

by changes in higher-moment risk. Lastly, we show that times when higher-moment

risk is high are characterized by high market and funding liquidity, high turnover, and

low expected future returns.

The third chapter addresses the question of how investor risk aversion varies over

time and how we can infer this risk aversion from asset prices. Using options written

on the market and historical market returns, I present a new method for estimating the

market’s time-varying risk aversion. Interestingly, I find that the market’s risk aversion

is negatively related to variance, suggesting that the market became more risk tolerant

during the recent 2008-2009 financial crisis. This finding is difficult to reconcile with

the leading asset pricing models. Therefore, I discuss two possible explanations for

this systematic variation in risk aversion. First, I find that my results are consistent

with investors salience. At times of high volatility the expected return on the market is

usually high relative to the risk-free return. The relatively high expected return on the

market becomes salient for investors which induces heightened risk tolerance among

investors. Second, I show how the systematic variation in risk aversion can arise if the

stock market is not a perfect proxy for aggregate consumption.
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Introduction and Summaries

The central formula in asset pricing relates the price of an Arrow-Debreu security to

an investor’s preferences and beliefs:

Price of an Arrow-Debreu security = Preferences× Beliefs

We observe the prices of Arrow-Debreu securities in the option markets. But we do not

directly observe the extent to which these prices are driven by preferences or beliefs.

Decomposing and investigating preferences and beliefs is essential for understanding

asset prices, and it is therefore the focus of this thesis. In chapter one, my co-authors

and I develop a model in which we can disentangle the contribution in asset prices

which is driven by preferences and beliefs. In chapter two, my co-author and I estimate

investor beliefs and study how these beliefs vary over time. In chapter three, I estimate

investor preferences and study how they co-vary with investor beliefs.

1 Summaries in English

Generalized Recovery

Decoding risk preferences and beliefs from asset prices has been viewed as impossible

until Ross (2015) provided sufficient conditions for such a recovery. Ross’ recovery

relies on two critical assumptions: (1) The economy evolves as a time-homogeneous

Markov chain. (2) Preferences are time-separable.

In this paper, we generalize Ross’ recovery theorem to handle a general probability

distribution which makes no assumptions of time-homogeneity or Markovian behavior.

We show when recovery is possible – and when it isn’t – using a simple “counting”
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argument, which focuses the attention on the economics of the problem. Specifically,

we show that recovery is possible if the number of states of the economy is no greater

than the number of time periods with observable option prices. Furthermore, we

show that our recovery inversion from prices to probabilities and preferences can be

implemented in closed form.

Next, we consider an economy that evolves as a standard multinomial tree. We

show that in this economy recovery is impossible because the number of states is

higher than the number of time periods. Hence, achieving recovery without further

assumptions is typically impossible in most standard models of finance where the

state space grows in this way. Nevertheless, we show that recovery is possible in a

large (continuous) state space model under certain conditions. While maintaining

that probabilities are fully general, recovery is possible if we can parameterize the

stochastic discount factor by a number of parameters which is no greater than the

number of time periods with observable option prices.

Finally, we implement our methodology empirically using a large data set of call

and put options written on the S&P 500 stock market index over the time period 1996-

2015, testing the predictive power of the recovered expected return and volatility. The

recovered expected returns have weak predictive power for the future realized returns,

but the predictability is stronger when we exclude the global financial crisis. Recovered

volatility has much stronger predictive power for future realized volatility.

Higher-Moment Risk

This paper investigates how financial market tail risk varies over time. Times of fi-

nancial market distress pose threats to the macroeconomy, as we witnessed in the

2008-2009 financial crisis. For policymakers to act in a timely and preemptive manner

in the event of financial market distress, it is important to measure the perceived tail

risks in real time.

We estimate the market’s higher order moments in real time using a new method

based on Martin (2017) and arrive at five main results. First, we show that the

moments of the market return, measured ex ante using option prices, predict future

realized moments. Specifically,w e show that our ex ante skewness, kurtosis, hyper-
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skewness, and hyperkurtosis all have significant predictive power over ex post realized

moments.

As our second main result, we find that higher order moments move together in the

sense that skewness and hyperskewness are more negative at times when kurtosis and

hyperkurtosis are more positive. In other words, there are times when higher-moment

risk is high, in the sense that the return distribution is both substantially left skewed

(due to the large negative skewness and hyperskewness) and fat tailed (due to the

large positive kurtosis and hyperkurtosis). We estimate the principal components of

the space spanned by skewness, kurtosis, hyperskewness, and hyperkurtosis. The first

principal component explains 90% of the joint variation in the market’s higher order

moments. We define this first principal component as a higher-moment risk index

(HRI) which is meant to capture market tail risk.

As our third main result, we find that higher-moment risk varies systematically

with variance. Higher-moment risk tends to be high at times when volatility is low,

suggesting that when volatility is low, risk hides in the tail of the market return

distribution. In addition, we find that higher-moment risks tend to be high subsequent

to market run-ups, which are usually “calm” times as measured by variance.

As our fourth main result, we show that higher-moment risk has important im-

plications for investors; for example, the tail loss probability of a volatility-targeting

investor and varies from 3.6% to 9.7%, entirely driven by changes in higher-moment

risk.

Finally, as our fifth main result, we investigate what can explain the systematic

variation in higher-moment risk. In particular, we test if financial intermediaries are

more levered when variance is low, and if such variation in financial intermediary

leverage can explain our observed variation in higher moment risk. We find no relation

between higher-moment risks and aggregate financial intermediary leverage. Next, we

investigate how higher-moment risks are related to previously suggested measures of

“bubble” characteristics and market valuation. We consider the “bubble” characteris-

tics: acceleration (Greenwood, Shleifer, and You (2017)), turnover (Chen, Hong, and

Stein (2001)), issuance percentage (Pontiff and Woodgate (2008)), and the market

valuation measures: CAPE, the dividend-price ratio, and cay (Lettau and Ludvigson

(2001)). We find that higher-moment risk is positively related to price acceleration:
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there is more higher-moment risk when the recent price path is more convex. Also,

higher turnover after market run-ups is associated with more higher-moment risk. Fur-

thermore, there is more higher-moment risk when cay (Lettau and Ludvigson, 2001)

is high. We find no conclusive relation between higher-moment risks and CAPE, the

dividend-price ratio, or equity issuance.

The Market’s Time-Varying Risk Aversion

This paper investigates how the market’s risk aversion varies over time. Specifically,

I provide a new method for estimating the market’s time-varying risk aversion. My

methodology allows me to investigate the co-movements between risk-aversion and the

physical distribution of market returns.

I find that the market’s risk aversion is negatively related to market variance,

suggesting that investors are less risk averse during times of financial turmoil, e.g.,

during the recent 2008-2009 financial crisis. Next, I show that the market’s risk aversion

is positively related to market skewness, suggesting that investors are more risk averse

at times when the normalized market return distribution is more risky.

Finally, I discuss two possible explanations for the systematic variation in market

risk aversion. First, I investigate salience theory (Bordalo, Gennaioli, and Shleifer

(2012)) as a possible behavioral explanation. Specifically, I follow Lian, Ma, and

Wang (2018) who argue that, at times of low interest rates the relatively high expected

returns on risky assets are salient, and this salience on the upside of a higher return on

the risky asset induces heightened risk tolerance and “reaching for yield” tendencies

among investors. I therefore regress the ratio of expected gross returns on the market

to gross risk-free returns, Et(Rt,T )/Rft,T , onto risk aversion. Consistently with the

findings of Lian, Ma, and Wang (2018), I find that investors become more risk tolerant

as the ratio of expected returns to risk-free returns increases. Second, I discuss how

the systematic variation in risk aversion can arise if the stock market is not a perfect

proxy for aggregate consumption.
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2 Summaries in Danish

Generalized Recovery

Gendannelse af risiko præferencer og sandsynligheder fra aktivpriser blevet betragtet

som umuligt indtil Ross (2015) gav tilstrækkelige betingelser for en s̊adan gendannelse.

Ross’ metode afhænger af to kritiske antagelser: (1) Økonomien udvikler sig som en

tidshomogen Markov-kæde. (2) Risiko præferencer er tidsseparable.

I dette kapitel generaliserer vi Ross’ gendannelsesteorem til at h̊andtere en generel

sandsynlighedsfordeling, der ikke er afhængig af en antagelse om tidshomogenitet eller

Markov adfærd. Vi viser hvorn̊ar gendannelse er muligt, og hvorn̊ar det ikke er, ved

hjælp af et simpelt “tælle”-argument. Specifikt viser vi, at gendannelse er mulig, hvis

antallet af mulige udfald i økonomien er mindre end antallet af tidsperioder med ob-

serverbare optionspriser. Desuden viser vi, at vores gendannelse fra priser til sandsyn-

ligheder og præferencer kan implementeres i lukket form.

Dernæst betragter vi en økonomi, der udvikler sig som en standard multinomial

træ. Vi viser at, i denne økonomi er gendannelse umulig, fordi antallet af mulige udfald

er højere end antallet af tidsperioder. Dermed viser vi at, gendannelse uden yderligere

antagelser er umuligt i de fleste standardmodeller for finansiering, hvor økonomien

udvikler sig p̊a denne m̊ade.

Herefter viser vi under hvilke forudsætninger, at gendannelse er mulig i et stort

(kontinuerligt) tilstandsrum. Samtidig med at vi lader sandsynligheder være helt

generelle, er gendannelse mulig, hvis vi kan beskrive prisningskernen ved hjælp af

en række parametre, som er mindre end antallet af tidsperioder med observerbare

optionspriser.

Til sidst implementerer vi vores metode empirisk ved hjælp af et stort datasæt af op-

tioner skrevet p̊a det amerikanske aktie indeks S&P 500 i perioden 1996-2015. Vi tester

hvor godt vores gendannede forventede afkast of varians prædikterer de fremtidige re-

aliserede afkast. Det gendannede forventede afkast har en svag forudsigelseskraft for

det fremtidige realiserede afkast, men forudsigeligheden er stærkere, n̊ar vi udelukker

den globale finanskrise. Den gendannede varians har meget stærkere forudsigende kraft

for fremtidig realiseret varians.
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Higher-Moment Risk

I dette kapitel undersøger vi hvordan halerisikoen i finanssektoren varierer over tid.

Tider hvor den finansielle sektor er i nød udgør trusler mod hele makroøkonomien,

som vi oplevede i finanskrisen i 2008-2009. For at regulatorer kan handle rettidigt

og forebygge fremtidige kriser i finanssektoren, er det vigtigt at kunne m̊ale hvordan

investorerne opfatter hale risici i finanssektoren.

Vi estimerer finanssektorens højere ordens momenter i realtime ved hjælp af en

ny metode baseret p̊a resultater i Martin (2017) og kommer frem til de følgende fem

hovedresultater. For det første viser vi, at markedets momenter, m̊alt ex ante ved

hjælp af optionspriser, forudsiger fremtidige realiserede momenter. Specielt viser vi, at

vores ex ante skewness, kurtosis, hyperskewness og hyperkurtosis alle kan prædiktere

fremtidige realiserede momenter.

Som vores andet hovedresultat finder vi, at højere ordens momenter bevæger sig

sammen i den forstand, at skewness og hyperskewness er mere negative, n̊ar kurtosis

og hyper kurtosis er mere positive. Med andre ord er der tidspunkter, hvor risikoen i

de højere momenter er høj i den forstand, at finansmarkedets afkastfordelingen b̊ade er

væsentligt venstre skæv (p̊a grund af den store negative skewness og hyperskewness) og

har fede haler (p̊a grund af den store positive kurtosis og hyper kurtosis) . Vi estimerer

de principale komponenter i rummet udspændt af skewness, kurtosis, hyperskewness og

hyper kurtosis. Det første principale komponent forklarer 90% af den fælles variation i

markedets højere ordens momenter. Derfor definerer vi det første principale komponent

som et højere ordens moment risiko index (HRI).

Som vores tredje hovedresultat finder vi, at risikoen i højere momenter varierer

systematisk med finanssektorens varians. Risiko associeret med de højere momenter

har tendens til at være høj i tider hvor variansen i finanssektoren er lav, hvilket tyder

p̊a, at n̊ar variansen er lav, skjuler risikoen sig i halen af afkastfordelingen. Derudover

finder vi, at risici associeret med højere momenter har tendens til at være høje efter

store opsving i finansmarkedet, hvilket normalt er “rolige” perioder m̊alt ved varians.

Som vores fjerde hovedresultat viser vi, at risici associeret med højere momenter

har store konsekvenser for investorer; for eksempel varierer sandsynligheden for et hale

udfald i porteføljen for en investor der m̊alrettet har konstant varians i hans portefølje
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fra 3,6 % til 9,7 %, denne variation er udelukkende drevet af ændringer i finanssektorens

højere ordens momenter.

Som vores femte hovedresultat undersøger vi hvad der kan forklare den system-

atiske variation i finanssektorens højere ordens momenter. Vi tester om finansielle

institutioner gearer sig mere n̊ar variansen er lav, og hvis en s̊adan variation i fi-

nansiel institutioners gearing kan forklare vores observerede variation i højere ordens

moment risiko. Vi finder ingen sammenhæng mellem højere ordens moment risici og

gearingsniveauet for finansielle institutioner. Dernæst undersøger vi, hvordan højere

ordens moment risiko er relateret til tidligere foresl̊aede variable der er associerede med

finansielle “bubbler”. Vi finder, at risikoen for højere ordens moment risici er positivt

relateret til prisaccelerationen: Der er mere risiko for højere øjeblik, n̊ar den seneste

prisstigning har været mere konveks. Desuden er højere omsætning efter marketsopsv-

ing forbundet med mere risiko i finanssektorens højere ordens momenter.

The Market’s Time-Varying Risk Aversion

Dette kapitel undersøger hvordan markedets risikoaversion varierer over tid. Specifikt

præsenterer jeg en ny metode til at estimere markedets tidsvarierende risikoaversion.

Min metode giver mig mulighed for at undersøge samspillet mellem risikoaversion og

fordeling af markedsafkast.

Jeg finder at, markedets risikoaversion er negativt relateret til markedets varians,

hvilket tyder p̊a, at investorer er mindre risikoaverse i tider med finansiel uro, fx under

den seneste finansielle krise i 2008-2009. Dernæst viser jeg, at markedets risikoaver-

sion er positivt relateret til markedets skewness, hvilket tyder p̊a, at investorer er

mere risikoaverse i tider hvor den normaliserede fordeling for markedets afkast er mere

risikabel.

Til sidst diskuterer jeg to mulige forklaringer for den systematiske variation i

markedsrisikoaversion. Først undersøger jeg salience teori (Bordalo, Gennaioli, and

Shleifer (2012)) som en mulig adfærdsmæssig forklaring. Specielt følger jeg Lian, Ma,

and Wang (2018), som argumenterer for at, i perioder med høj varians er markedets

forventede afkast højt i forhold til den risikofrie rente, og at det høje forventede

markedsafkast er “salient” (ekstra fremtrædende) i bevidstheden for investorer hvilket

xiii



medfører øget risikotolerance blandt investorer. For at teste deres hypotese regresserer

jeg forholdet mellem markedets forventede afkast of det risiko-frie afkast p̊a risikoaver-

sion. Konsistent med resultaterne i Lian, Ma, and Wang (2018) finder jeg at, inve-

storer bliver mere risikotolerante n̊ar forholdet mellem det forventede markedsafkast

og det risikofrie afkast stiger. Dernæst viser jeg hvordan den systematiske variation

i risikoaversion kan opst̊a, hvis aktiemarkedet ikke er en perfekt proxy for det samlet

forbrug i økonomien.
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1 Introduction

The holy grail in financial economics is to decode probabilities and risk preferences from

asset prices. This decoding has been viewed as impossible until Ross (2015) provided

sufficient conditions for such a recovery in a time-homogeneous Markov economy (using

the Perron-Frobenius Theorem). However, his recovery method has been criticized by

Borovicka, Hansen, and Scheinkman (2016) (who also rely on Perron-Frobenius and

results of Hansen and Scheinkman (2009)), arguing that Ross’s assumptions rule out

realistic models.

This paper sheds new light on this debate, both theoretically and empirically.

Theoretically, we generalize the recovery theorem to handle a general probability dis-

tribution which makes no assumptions of time-homogeneity or Markovian behavior.

We show when recovery is possible – and when it isn’t – using a simple “counting”

argument (formalized based on Sard’s Theorem), which focuses the attention on the

economics of the problem. When recovery is possible, we show that our recovery inver-

sion from prices to probabilities and preferences can be implemented in closed form.

We implement our method empirically using option data from 1996-2015 and study

how the recovered expected returns predict future actual returns.

To understand our method, note first that Ross (2015) assumes that state prices

are known not just in each final state, but also starting from each possible current state

as illustrated in Figure 1.1, Panel A. Simply put, he assumes that we know all prices

today and all prices in all “parallel universes” with different starting points. Since we

clearly cannot observe such parallel universes, Ross (2015) proposes to implement his

model based on prices for several future time periods, relying on the assumption that all

time periods have identical structures for prices and probabilities (time-homogeneity),

illustrated in Figure 1.1, Panel B. In other words, Ross assumes that, if S&P 500 is at

the level 2000, then one-period option prices do not depend on the calendar time at

which this level is observed.

We show that the recovery problem can be simplified by starting directly with the

state prices for all future times given only the current state (Figure 1.1, Panel C).

We impose no dynamic structure on the probabilities, allowing the probability distri-

bution to be fully general at each future time, thus relaxing Ross’s time-homogeneity
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assumption which is unlikely to be met empirically.

We first show that when the number of states S is no greater than the number of

time periods T , then recovery is possible. To see the intuition, consider simply the

number of equations and the number of unknowns: First, we have S equations at each

time period, one for each Arrow-Debreu price, for a total of ST equations. Second, we

have 1 unknown discount rate, S − 1 unknown marginal utilities, and S − 1 unknown

probabilities for each future time period. In conclusion, we have ST equations with

1 + (S − 1) + (S − 1)T = ST + S − T unknowns. These equations are not linear, but

we provide a precise sense in which we can essentially just count equations. Hence,

recovery is possible when S ≤ T .

To understand the intuition behind this result, note that, for each time period, we

have S equations and only S − 1 probabilities. Hence, for each additional time period

we have one extra equation that can help us recover the marginal utilities and discount

rate — and the number of marginal utilities does not grow with the number of time

periods.

By focusing on square matrices, Ross’s model falls into the category S = T so

our counting argument explains why he finds recovery. However, our method applies

under much more general conditions. We show that, when Ross’s time-homogeneity

conditions are met, then our solution is the same as his and, generically, it is unique.1

On the other hand, when Ross’s conditions are not met, then our model can be solved

while Ross’s cannot. Further, we illustrate that our solution is far simpler and allows

a closed-form solution that is accurate when the discount rate is close to 1.

To understand the economics of the condition S ≤ T , consider what happens if the

economy evolves in a standard multinomial tree with no upper or lower bound on the

state space: For each extra time period, we get at least two new states since we can go

up from highest state and down from the lowest state. Therefore, in this case S > T ,

so we see that recovery is impossible because of the number of states is higher than

the number of time periods. Hence, achieving recovery without further assumptions is

typically impossible in most standard models of finance where the state space grows

1Generically means that the result holds for all parameters except on a “small” set of parameters
of zero measure. For the measure-zero set of parameters where a certain matrix of prices has less than
full rank such that there is a continuum of solutions to our generalized recovery problem, we show
that the multi-period version of Ross’s problem also has a continuum of solutions.
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in this way. In other words, our model provides a fundamentally different way – via

our simple counting argument – to understand the critique of Borovicka, Hansen, and

Scheinkman (2016) that recovery is impossible in standard models.

Nevertheless, we show that recovery is possible even when S > T under certain

conditions. While maintaining that probabilities can be fully general (and, indeed,

allow growth), we assume that the utility function is given via a limited number of

parameters. Again, we simply need to make our counting argument work. To do this,

we show that, if the marginal utilities can be written as functions of N parameters,

then recovery is possible as long as N + 1 < T . This large state-space framework is

what we use empirically as discussed further below.

We illustrate how our method works in the context of three specific models, namely

Mehra and Prescott (1985a), Cox, Ross, and Rubinstein (1979), and a simple non-

Markovian economy. For each economy, we generate model-implied prices and seek

to recover natural probabilities and preferences using our method. This provides an

illustration of how our method works, its robustness, and its shortcomings. For Mehra

and Prescott (1985a), we show that S > T so general recovery is impossible, but, when

we restrict the class of utility functions, then we achieve recovery. For the binomial

Cox-Ross-Rubinstein model (the discrete-time version of Black and Scholes (1973)),

we show that recovery is impossible even under restrictive utility specifications because

consumption growth is iid., which leads to a flat term structure, a pricing matrix of a

lower rank, and a continuum of solutions for probabilities and preferences. While the

former two models fall in the setting of Borovicka, Hansen, and Scheinkman (2016)

(with a non-zero martingale component), we also show how recovery is possible in the

non-Markovian setting, which falls outside the framework of Borovicka, Hansen, and

Scheinkman (2016) and Ross (2015), illustrating the generality of our framework in

terms of the allowed probabilities.

Finally, we implement our methodology empirically using a large data set of call

and put options written on the S&P 500 stock market index over the time period

1996-2015. We estimate state price densities for multiple future horizons and recover

probabilities and preferences each month. Based on the recovered probabilities, we de-

rive the risk and expected return over the future month from the physical distribution

of returns using four different methods. The recovered expected returns vary substan-
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tially across specifications, challenging the empirical robustness of the results. The

recovered expected returns have weak predictive power for the future realized returns,

but the predictability is stronger when we exclude the global financial crisis. We can

also recover ex ante volatilities, which have much stronger predictive power for future

realized volatility. We note that a rejection of the recovered distribution is a rejection

of the joint hypothesis of the general recovery methodology and the specific empirical

choices including the state space and the available options.

The literature on recovery theorems is quickly expanding.2 Bakshi, Chabi-Yo, and

Bakshi (2017) and Audrino, Huitema, and Ludwig (2014) empirically test the restric-

tions of Ross’s Recovery Theorem. Martin and Ross (2013) apply the recovery theorem

in a term structure model in which the driving state variable is a stationary Markov

chain, illustrating the role played by the (infinitely) long end of the yield curve, a

role already recognized in Kazemi (1992). Several papers focus on generalizing the

underlying Markov process to a continuous-time process with a continuum of values

and an infinite horizon (Carr and Yu (2012), Linetsky and Qin (2016)) and Walden

(2017) in particular derive intuitive results on the importance of recurrence. All these

papers impose time-homogeneity of the underlying Markov process.3 Qin and Linet-

sky (2017) go beyond the Markov assumption, discussing factorization of stochastic

discount factors and recovery in a general semimartingale setting.

These approaches require an infinite time horizon while our approach only re-

quires the observed finite-maturity data. Indeed, the martingale decomposition used

by Borovicka, Hansen, and Scheinkman (2016) is only defined over an infinite horizon,

as is the recurrence condition used by Walden (2017), and the factorization of Qin and

Linetsky (2017).4

2Prior to Ross (2015), the dynamics of the risk-neutral density and the physical density along with
the pricing kernel has been extensively researched using historical option or equity market data (e.g.,
Jackwerth (2000), Jackwerth and Rubinstein (1996), Bollerslev and Todorov (2011), Ait-Sahalia and
Lo (2000), Rosenberg and Engle (2002), Bliss and Panigirtzoglou (2004) and Christoffersen, Heston,
and Jacobs (2013)).

3See also Schneider and Trojani (2017a) who focus on recovering moments of the physical distribu-
tion and Malamud (2016) who shows that knowledge of investor preferences is not necessarily enough
to recover physical probabilities when option supply is noisy, but shows how recovery can may be
feasible when the volatility of option supply shocks is also known.

4Said differently, if we observe a data from a finite number of time periods from an economy
satisfying the conditions on Borovicka, Hansen, and Scheinkman (2016), then there is no unique
Markov decomposition. Recurrence means that each state is being visited infinitely often so it can
only be defined over an infinite horizon. The factorization of Qin and Linetsky (2017) relies on limits
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Our paper contributes to the literature by characterizing recovery of any probability

distributions observed over a finite number of periods, by proving a simple solution

and its closed-form approximation, and by providing natural empirical tests of our

generalized method. Rather than relying on specific probabilistic assumptions (Markov

processes and ergodocity) as in Ross (2015) and Borovicka, Hansen, and Scheinkman

(2016), we follow the tradition of general equilibrium (GE) theory, where Debreu

(1970) pioneered the use of Sard’s theorem and differential topology. Bringing Sard’s

theorem into the recovery debate provides new economic insight on when recovery

is possible.5 Indeed, the martingale decomposition applied by Borovicka, Hansen,

and Scheinkman (2016) relies on knowing the infinite-time distribution of Markov

processes, which imposes much more structure than needed and removes the focus

from the essence of the recovery problem, namely the number of economic variables

vs. economic restrictions.

2 Ross’s Recovery Theorem

This section briefly describes the mechanics of the recovery theorem of Ross (2015) as a

background for understanding our generalized result in which we relax the assumption

that transition probabilities are time-homogeneous.

The idea of the recovery theorem is most easily understood in a one-period setting.

In each time period 0 and 1, the economy can be in a finite number of states which we

label 1, . . . , S. Starting in any state i, there exists a full set of Arrow-Debreu securities,

each of which pays 1 if the economy is in state j at date 1. The price of these securities

is given by πi,j .

The objective of the recovery theorem is to use information about these observed

state prices to infer physical probabilities pi,j of transitioning from state i to j. We

can express the connection between Arrow-Debreu prices and physical probabilities by

introducing a pricing kernel m such that for any i, j = 1, ..., S

πi,j = pi,jmi,j (1.1)

of T -forward measures as T goes to infinity.
5We thank Steve Ross for pointing out the historical role of Sard’s theorem in general equilibrium

theory.
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It takes no more than a simple one-period binomial model to convince oneself, that if

we know the Arrow-Debreu prices in one and only one state at date 0, then there is in

general no hope of recovering physical probabilities. In short, we cannot separate the

contribution to the observed Arrow-Debreu prices from the physical probabilities and

the pricing kernel.

The key insight of the recovery theorem is that by assuming that we know the

Arrow-Debreu prices for all the possible starting states, then with additional structure

on the pricing kernel, we can recover physical probabilities. We note that knowing the

prices in states we are not currently in (“parallel universes”) is a strong assumption.

In any event, under this assumption, Ross’s result is that there exists a unique set

of physical probabilities pi,j for all i, j = 1, . . . , S such that (1.1) holds if the matrix

of Arrow-Debreu prices is irreducible and if the pricing kernel m has the form known

from the standard representative agent models:

mi,j = δ
uj

ui
(1.2)

where δ > 0 is the discount rate and u = (u1, . . . , uS) is a vector with strictly positive

elements representing marginal utilities.

The proof can be found in Ross (2015), but here we note that counting equations

and unknowns certainly makes it plausible that the theorem is true: There are S2

observed Arrow-Debreu prices and hence S2 equations. Because probabilities from a

fixed starting state sum to one, there are S(S − 1) physical probabilities. It is clear

that scaling the vector u by a constant does not change the equations, and thus we can

assume that u1 = 1 so that u contributes with an additional S − 1 unknowns. Adding

to this the unknown δ leaves us exactly with a total of S2 unknowns. The fact that

there is a unique strictly positive solution hinges on the Frobenius theorem for positive

matrices.

It is important in Ross’s setting as it will be in ours, that a state corresponds to a

particular level of the marginal utility of consumption. This level does not depend on

calendar time. In our empirical implementation, a state will correspond to a particular

level of the S&P500 index.

The most troubling assumption, however, in the theorem above is that we must
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know state prices also from starting states that we are currently not in. It is hard to

imagine data that would allow us to know these in practice. Ross’s way around this as-

sumption is to leave the one-period setting and assume that we have information about

Arrow-Debreu prices from several future periods and then use a time-homogeneity as-

sumption to recover the same information that we would be able to obtain from the

equations above.

We therefore consider a discrete-time economy with time indexed by t, states in-

dexed by s = 1, ..., S, and πi,jt,t+τ denoting the time-t price in state i of an Arrow-Debreu

security that pays 1 in state j at date t+ τ . The multi-period analogue of Eqn. (1.1)

becomes

πi,jt,t+τ = pi,jt,t+τ m
i,j
t,t+τ (1.3)

Similarly, the multi-period analogue to equation (1.2) is the following assumption,

which again follows from the existence of a representative agent with time-separable

utility:

Assumption 1 (Time-separable utility). There exists a δ ∈ (0, 1] and marginal utili-

ties uj > 0 for each state j such that, for all times τ , the pricing kernel can be written

as

mi,j
t,t+τ = δτ

uj

ui
(1.4)

Critically, to move to a multi-period setting, Ross makes the following additional

assumption of time-homogeneity in order to implement his approach empirically:

Assumption 2 (Time-homogeneous probabilities). For all states i, j and time hori-

zons τ > 0, pi,jt,t+τ does not depend on t.

This assumption is strong and not likely to be satisfied empirically. We note that

Assumptions 1 and 2 together imply that risk neutral probabilities are also time-

homogeneous, a prediction that can also be rejected in the data.

In this paper, we dispense with the time-homogeneity Assumption 2. We start by

maintaining Assumption 1, but later consider a broader assumption that can be used

in a large state space.
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3 A Generalized Recovery Theorem

The assumption of time-separable utility is consistent with many standard models of

asset pricing, but the assumption of time-homogeneity is much more troubling. It

restricts us from working with a growing state space (as in standard binomial mod-

els) and it makes numerical implementation extremely hard and non-robust, because

trying to fit observed state prices to a time-homogeneous model is extremely difficult.

Furthermore, the main goal of the recovery exercise is to recover physical transition

probabilities from the current states to all future states over different time horizons.

Insisting that these transition probabilities arise from constant one-period transition

probabilities is a strong restriction. We show in this section that by relaxing the

assumption of time-homogeneity of physical transition probabilities, we can obtain

a problem which is easier to solve numerically and which allows for a much richer

modeling structure. We show that our extension contains the time-homogeneous case

as a special case, and therefore ultimately should allow us to test whether the time-

homogeneity assumption can be defended empirically.

3.1 A Noah’s Arc Example: Two States and Two Dates

To get the intuition of our approach, we start by considering the simplest possible case

with two states and two time-periods. Consider the simple case in which the economy

has two possible states (1, 2) and two time periods starting at time t and ending on

dates t + 1 and t + 2. If the current state of the world is state 1, then equation (1.3)

consists of four equations:

π1,1
t,t+1 = p1,1

t,t+1 m1,1
t,t+1

π1,2
t,t+1 = (1− p1,1

t,t+1) m1,2
t,t+1

π1,1
t,t+2 = p1,1

t,t+2 m1,1
t,t+2

π1,2
t,t+2 = (1− p1,1

t,t+2)︸ ︷︷ ︸
2 unknowns

m1,2
t,t+2︸ ︷︷ ︸

4 unknowns

(1.5)

We see that we have 4 equations with 6 unknowns so this system cannot be solved in

full generality. However, the number of unknowns is reduced under the assumption

of time-separable utility (Assumption 1). To see that most simply, we introduce the
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notation h for the normalized vector of of marginal utilities:

h =

(
1,
u2

u1
, . . . ,

uS

u1

)′
≡ (1, h2, . . . , hS)′. (1.6)

where we normalize by u1. With this notation and the assumption of time-separable

utility, we can rewrite the system (1.5) as follows:

π1,1
t,t+1 = p1,1

t,t+1δ

π1,2
t,t+1 = (1− p1,1

t,t+1)δh2 (1.7)

π1,1
t,t+2 = p1,1

t,t+2δ
2

π1,2
t,t+2 = (1− p1,1

t,t+2)δ2h2

This system now has 4 equations with 4 unknowns, so there is hope to recover the

physical probabilities p, the discount rate δ, and the ratio of marginal utilities h.

Before we proceed to the general case, it is useful to see how the problem is solved

in this case. Moving h2 to the left side and adding the first two and the last two

equations gives us two new equation

π1,1
t,t+1 + π1,2

t,t+1

1

h2
− δ = 0 (1.8)

π1,1
t,t+2 + π1,2

t,t+2

1

h2
− δ2 = 0

Solving equation (1.8) for h2 yields 1
h2

= (δ − π1,1
t,t+1)/π1,2

t,t+1 and we can further arrive

at

π1,1
t,t+2 −

π1,2
t,t+2π

1,1
t,t+1

π1,2
t,t+1

+
π1,2
t,t+2

π1,2
t,t+1

δ − δ2 = 0 (1.9)

Hence, we can solve the 2-state model by (i) finding δ as a root of the 2nd degree

polynomial (1.9); (ii) computing the marginal utility ratio h2 from (1.8); and (iii)

computing the physical probabilities by rearranging (1.7).
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3.2 General Case: Notation

Turning to the general case, recall that there are S states and T time periods. Without

loss of generality, we assume that the economy starts at date 0 in state 1. This allows

us to introduce some simplifying notation since we do not need to keep track of the

starting time or the starting state — we only need to indicate the final state and the

time horizon over which we are considering a specific transition.

Accordingly, let πτs denote the price of receiving 1 at date τ if the realized state is

s and collect the set of observed state prices in a T × S matrix Π defined as

Π =


π11 ... π1S

...
...

πT1 ... πTS

 (1.10)

Similarly, letting pτs denote the physical transition probabilities of going from the cur-

rent state 1 to state s in τ periods, we define a T×S matrix P of physical probabilities.

Note that pτs is not the probability of going from state τ to s (as in the setting of Ross

(2015)), but, rather, the first index denotes time for the purpose of the derivation of

our theorem.

From the vector of normalized marginal utilities h defined as in (1.6) we define the

S−dimensional diagonal matrix H = diag(h). Further, we construct a T−dimensional

diagonal matrix of discount factors as D = diag(δ, δ2, . . . , δT ).

3.3 Generalized Recovery

With this notation in place, the fundamental TS equations linking state prices and

physical probabilities, assuming utilities depend on current state only, can be expressed

in matrix form as

Π = DPH (1.11)

Note that the (invertible) diagonal matrices H and D depend only on the vector h

and the constant δ so, if we can determine these, we can find the matrix of physical
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transition probabilities from the observed state prices in Π:

P = D−1ΠH−1 (1.12)

Since probabilities add up to 1, we can write Pe = e, where e = (1, . . . , 1)′ is a vector

of ones. Using this identity, we can simplify (1.12) such that it only depends on δ and

h:

ΠH−1e = DPe = De = (δ, δ2, . . . , δT )′ (1.13)

To further manipulate this equation it will be convenient to work with a division of Π

into block matrices:

Π =
[
Π1 Π2

]
=

Π11 Π12

Π21 Π22

 (1.14)

Here, Π1 is a column vector of dimension T , where the first S−1 elements are denoted

by Π11 and the rest of the vector is denoted Π21. Similarly, Π2 is a T × (S−1) matrix,

where the first S − 1 rows are called Π12 and the last rows are called Π22. With this

notation and the fact that H(1, 1) = h(1) = 1, we can write (1.13) as

Π1 + Π2


h−1

2
...

h−1
S

 =


δ
...

δT

 (1.15)

where of course h−1
s = 1

hs
. Given that these equations are linear in the inverse marginal

utilities h−1
s , it is tempting to solve for these. To solve for these S−1 marginal utilities,

we consider the first S − 1 equations

Π11 + Π12


h−1

2
...

h−1
S

 =


δ
...

δS−1

 (1.16)
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with solution6 
h−1

2
...

h−1
S

 = Π−1
12




δ
...

δS−1

−


π11

...

πS−1,1


 (1.17)

Hence, if δ were known, we would be done. Since δ is a discount rate, it is reasonable

to assume that it is close to one over short time periods. We later use this insight to

derive a closed-form approximation which is accurate as long as we have a reasonable

sense of the size of δ. For now, we proceed for general unknown δ.

We thus have the utility ratios given as a linear function of powers of δ. The

remaining T − S + 1 equations give us

Π21 + Π22


h−1

2
...

h−1
S

 =


δS

...

δT

 (1.18)

and from this we see that if we plug in the expression for the utility ratios found

above, we end up with T − S + 1 equations, each of which involves a polynomium in

δ of degree a most T. If T = S, then δ is a root to a single polynomium so at most

a finite number of solutions exist. If T > S, then generically no solution exists for

general Arrow-Debreu prices Π since δ must simultaneously solve several polynomial

equations (where “generically” means almost surely as defined just below Proposition

1). However, if the prices are generated by the model, then a solution exists and it

will almost surely be unique. To be precise, we say that Π has been “generated by the

model” if there exist δ, P , and H such that Π can be found from the right-hand side

of (1.11). The following theorem formalizes these insights (using Sard’s Theorem):

Proposition 1 (Generalized Recovery). Consider an economy satisfying Assumption

1 with Arrow-Debreu prices for each of the T time periods and S states. The recovery

problem has

1. a continuum of solutions if S > T ;

2. at most S solutions if the submatrix Π2 has full rank and S = T ;

6Of course, to invert Π12 it must have full rank. As long as Π2 has full rank, we can re-order the
rows to ensure that Π12 also has full rank.
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3. no solution generically in terms of an arbitrary positive matrix Π and S < T ;

4. a unique solution generically if Π has been generated by the model and S < T .

The proof of this and all following propositions are in the appendix. The proposition

states our results using the notion “generically,” which means that they fail to hold

at most for a set of measure zero. Said differently, if someone picks parameters “at

random,” then our results hold almost surely.7

Further, since Sard’s theorem is not a standard tool in asset pricing theory, some

words here on the basic intuition behind our use the theorem are in order. To get

started, consider a linear function f(x) = Ax from Rm to Rn given by the n × m

matrix A. We know that if n = m and A has full rank, then the image of A is all of

Rn, i.e., every point of Rn is being “hit” by A. If, however, n > m, then the image of A

is a linear subspace of Rn, which is vanishingly small (has Lebesgue measure 0 in Rn).

By Sard’s theorem, we can extend this result to a non-linear smooth function f and

still conclude that, when n > m, the image of f is vanishingly small. Said differently,

there exists no solution x to f(x) = y generically (i.e., if you pick a random y then

almost surely no solution exists).8

4 Generalized Recovery vs. Other Forms of Recovery

Proposition 1 provides a simple way to understand when recovery is possible, namely,

essentially when the number of time periods T is at least as large as the number of

states S. We now show how our method relates to Ross’s method and other recovery

results.

4.1 Generalized Recovery in a Ross Economy

We first show that our method generalizes Ross’s recovery method in the sense that,

if we are in a Ross economy, then any solution to Ross’s problem has a corresponding

solution to our problem.

7We note that the fact that our results hold only generically is not a consequence of our solution
method – indeed, there exist counter-examples for special sets of parameters as discussed in our
examples.

8On a more technical note, Sard’s theorem in fact states, that if M is the set of critical points of
f (i.e., the set of points for which the Jacobian matrix of f has rank strictly smaller than n), then
f(M) has Lebesgue measure zero in Rn. When n > m all points are critical points, and therefore in
this case f(M) is the same as the image of f , which is what we need for our proof.
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It is important to be clear about the terminology here. In Ross’s recovery prob-

lem, physical transition probabilities are specified in terms of a one-period transition

probability matrix P̄ which includes transition probabilities from states that we are

currently not in (“parallel universes”). Our problem focuses on recovering the matrix

P of multi-period transition probabilities as seen from the state we are in at time 0,

which we take to be state 1. We say that P is generated from P̄ if the k’th row of P

is equal to the first row of P̄ k. The same terminology can be applied to state prices,

of course.9

Proposition 2 (Generalized Recovery Works in a Ross Economy). If observed prices

Π over S = T time periods are generated by a Ross economy (i.e., an irreducible matrix

Π̄ of one-period state prices and probabilities P satisfying Assumptions 1 and 2) then

1. The matrix P generated from P̄ is a solution to our generalized recovery problem.

2. P is a unique solution to our generalized recovery problem generically in the space

of Ross price matrices Π̄.

3. If Π12 has full rank, then Ross’s parallel-universe prices Π̄ can be derived uniquely

from multi-period prices Π observed from the current state. Otherwise, there may

exist a continuum of Ross prices Π̄ consistent with the observed prices. The rank

condition is satisfied generically in the space of Ross price matrices.

Part 1 of the proposition confirms that any solution to Ross’s recovery problem

corresponds to a solution to our generalized problem. Part 2 of the proposition con-

siders the deeper question of uniqueness. Ross establishes a unique solution while our

generalized recovery solution in our earlier Proposition 1 only narrows the solution set

down to at most S = T solutions. Interestingly, Proposition 2 shows that our method

too yields a unique solution when prices come from a Ross economy, generically. Thus,

in this sense, nothing is “lost” by using generalized recovery even when we are in a

Ross economy.

One way to understand this result is to note that Ross’s problem comes down to

solving a characteristic polynomial, and, similarly, our generalized recovery problem

9The notion of generating P from P̄ is based on the fact that, in a Ross economy, the matrix of
probabilities of going from state i to state j in k time periods is given by P̄ k. Likewise, the k-period
state prices are given by Π̄k.

15



can be solved via the polynomial given by (1.18). Even though these polynomials come

from different sets of equations, it turns out that they have the same roots when Ross’s

assumptions are satisfied.

Finally, part 3 of the proposition deals with the issue that some of our results only

hold “generically,” that is, for almost all parameters. One might ask whether Ross also

has a similar problem for the (small set of) remaining parameters. The answer turns

out to be “yes,” and for a reason that has not yet been discussed in the context of

Ross’s method. The issue is that Ross finds a unique solution given his parallel universe

price matrix Π̄, but where does this matrix come from? In any real-world application,

we start with observed prices Π over time as in our generalized recovery setting. When

Ross implements his model empirically, he must first find his Π̄ from the observed Π

and then use his recovery method (but he does not consider the mathematics of the

first step, getting Π̄ from Π). Part 3 of the proposition shows that Ross has the same

problem as we do for the small set of parameters where Π12 has less than full rank.

In other words, his lack of uniqueness arises from the difficulty in finding the price

matrix Π̄. Interestingly, this may have been unnoticed since Ross takes Π̄ as given in

his theoretical analysis (and shows that his recovery is unique for each Π̄).

This last point is most clearly seen through an example: Consider two different

one-period transition probability matrices, that are both irreducible:

P̄ =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 and P̄ ′ =


1
3

1
3

1
3

1
3

2
3 0

1
3 0 2

3


If we assume that the current state is state 1, then since all powers of the matrices P̄

and P̄ ′ have the same first row, namely (1
3 ,

1
3 ,

1
3), it follows that the matrices P and P ′

(i.e., the physical transition probabilities as seen from state 1) generated by P̄ and P̄ ′

become the same matrix

P = P ′ =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


For given discount factors D and marginal utilities H, Π = DPH and Π′ = DP ′H
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are then the same, and hence observing the 3 × 3 matrix of state prices Π would

not allow us to distinguish between the physical transition matrices P̄ and P̄ ′. The

problem is not mitigated by observing more periods. It is simply impossible in a

world where we cannot observe parallel universe prices to distinguish between the

two irreducible matrices. In our approach, we do not seek to recover the one period

transition probabilities. Rather, we recover the matrix P , and our ability to do so

depends on the rank of a submatrix the Π matrix. For example, if we let δ = 0.98,

and let h1 = 1, h2 = 0.9, h3 = 0.8, then the sub-matrix of state prices Π12 has rank 1,

and this means that we would not have unique recovery either.

4.2 Ross Recovery in our Generalized Economy

We now establish that our formulation is strictly more general, by showing that for

many “typical” price matrices (e.g., those observed in the data), no solution exists

for Ross’s recovery problem even though a solution exists for the generalized recovery

problem.

Proposition 3 (Generalized Recovery is More General). With S = T , there exists

set of parameters with positive Lebesgue measure for the generalized recovery problem

where no solution exists for Ross’s recovery problem. With S < T , generically among

price matrices for the the generalized recovery problem, there exists no solution to

Ross’s recovery problem.

This proposition shows that generalized recovery may be useful because it can

match a broader class of market prices, in addition to the basic advantage that it

starts with the observed multi-period prices (rather than parallel universe prices).

4.3 Recovery in Infinite Horizon

In addition to generalizing Ross’s method, our result also provides a simple and in-

tuitive way of understanding why, for example, growth may present a challenge for

recovery, cf. the critique of Borovicka, Hansen, and Scheinkman (2016) that recovery

is infeasible in standard models. Indeed, we provide a simple counting argument: Sup-

pose that the economy has growth such that, for each extra time period, the economy
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can increase from the previously highest state and go down from the previously low-

est state. Then we get two new states for each new time period, which implies that

S > T such that recovery is impossible. Nevertheless, we can still achieve recovery

in such a large state space if we consider a class of pricing kernels that is sufficiently

low-dimensional as we discuss below in Section 6.

Our argument is very different from that of Borovicka, Hansen, and Scheinkman

(2016) who rely on a martingale decomposition, which requires infinite time horizon.

Our counting argument is simple and is based on a finite horizon, consistent with the

data observed in practice.

Our finite-horizon recovery theorem is therefore also markedly distinct from the

existing approaches that exist in continuous-time models in that we make no reference

to, and have no need for, recurrence or stationarity conditions. In a diffusion setting,

Walden (2017) shows the fundamental role of recurrence as a necessary condition for

recovery in these models. Recurrence essentially means that each state is being visited

infinitely often so it can only be defined over an infinite horizon. Recurrence bears

some resemblance to Ross’ condition of irreducibility in that an infinite time extension

of an irreducible chain would be recurrent. The result of Walden (2017) is intuitive

since, when states are visited infinitely often, we have a chance to recover probabilities.

Our approach can naturally be used to consider whether recovery is possible in a

finite-time version of infinite-horizon process (i.e., even if a process is defined over an

infinite horizon, we can ask what happens if we only see it over a couple of years).

Further, we can show via some examples that recovery may even be possible for non-

recurrent processes or processes with growth.

To give a simple example of this, consider a two period non-homogeneous Markov

process with two states defined from the probability transition matrices for each time

P̄ (0, 1) =

 0.4 0.6

0.5 0.5

 and, for t ≥ 1, P̄ (t, t+ 1) =

 1 0

0 1


In the first period, the process either stays in its current state or jumps to the other

state, but, after that, the process is absorbed in its current state. If we only observe

prices for two time periods, then this is clearly the restriction of a non-recurrent process.
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Given that S = T = 2, our counting argument shows that generalized recovery is

feasible.

We could also imagine a process with growth, starting in the “lowest state” 1 and

evolving according to a transition matrix specified as an upward drifting process. To

give a simple illustration, imagine Assumptions 1 and 2 hold and that the one-period

transition matrix of physical probabilities across five states is given as

P̄ =



0.5 0.5 0 0 0

0.1 0.5 0.4 0 0

0 0.1 0.5 0.4 0

0 0 0.1 0.5 0.4

0 0 0 0.5 0.5


If we observe prices over five time periods, then our counting argument is satisfied

S = T = 5, and we see that it is not growth per se which makes recovery impossible

— it is the expanding state space necessary to accommodate models with growth that

may cause problems.

In summary, our results complement those in the literature in two ways. First,

generalized recovery may work when other methods don’t and vice versa. Second,

generalized recovery provides an economic intuition in finite economies while other

methods do so in infinite-horizon economies.

4.4 Flat Term Structure and Risk Neutrality

We finally note that the very special case of an observed flat term structure of interest

rates has some special properties. In particular, with a flat term structure there exists

a solution to the problem in which the representative agent is risk neutral, echoing an

analogous result by Ross.

To see this result, note that the price of a zero-coupon bond with maturity τ is

equal to the sum of the τ ’th row of Π, which we write as (Πe)τ . Having a flat term

structure means that the yield on the zero-coupon bonds does not depend on maturity,
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i.e., that there exists a constant r such that

1

(1 + r)τ
= (Πe)τ (1.19)

Let the T × S matrix Q contain the risk-neutral transition probabilities seen from the

starting state, i.e., the k’th row of Q gives us the risk-neutral probabilities of ending

in the different states at date k.

Proposition 4 (Flat Term Structure). Suppose that the term structure of interest

rates is flat, i.e., there exists r > 0 such that 1
(1+r)τ = (Πe)τ for all τ = 1, . . . , T .

Then the recovery problem is solved with equal physical and risk-neutral probabilities,

P = Q. This means that either the representative agent is risk neutral or the recovery

problem has multiple solutions.

We note that this result should be interpreted with caution. The knife-edge (i.e.,

measure zero) case of a flat term structure may well be generated by the knife-edge

case of a price matrix Π with low rank, which implies that a continuum of solutions

may exists and the representative agent may well be risk averse (as one would expect).

Intuitively, a flat term structure may be generated by a Π with so much symmetry

that it has a low rank.

5 Closed-Form Recovery

The recovery problem is almost linear, except for the powers of the discount rate δ

which enter into the problem as a polynomial. In practical implementations over the

time horizons where options are liquid, a linear approximation provides an accurate

approximation given that δ is close to one. For instance, we know from the literature

that δ is close to 0.97 at an annual horizon.

The linear approximation is straightforward. To linearize the discounting of δτ

around a point δ0 (say, δ0 = 0.97), we write δτ ≈ aτ + bτδ for known constants aτ and

bτ . Based on the Taylor expansion δτ ≈ δτ0 + τδτ−1
0 (δ − δ0), we have aτ = −(τ − 1)δτ0

and bτ = τδτ−1
0 . As seen in Figure 1.2, the approximation is accurate for δ ∈ [0.94, 1]

for time horizons less than 2 years.
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With the linearization of the polynomials in δ, the equations for the recovery prob-

lem (1.13) become the following:


π11

...

πT1

+


π12 . . . π1S

...
...

πT2 . . . πTS




h−1
2
...

h−1
S

 =


a1 + b1δ

...

aT + bT δ

 (1.20)

which we can rewrite as a system of T equations in S unknowns as


−b1 π12 . . . π1S

...
...

...

−bT πT2 . . . πTS




δ

h−1
2
...

h−1
S

 =


a1 − π11

...

aT − πT1

 (1.21)

Rewriting this equation in matrix form as

Bhδ = a− π1 (1.22)

we immediately see the closed-form solution

hδ =

 B−1(a− π1) for S = T

(B′B)−1B′(a− π1) for S < T
(1.23)

We see that, when S = T , we simply need to solve S linear equations with S unknowns.

When S < T , we could simply just consider S equations and ignore the remaining T−S

equations.

More broadly, if S < T and we start with prices Π that are not exactly generated

by the model (e.g., because of noise in the data), then (1.23) provides the values of δ

and the vector h that best approximate a solution in the sense of least squares.

The following theorem shows that the closed-form solution is accurate as long as

the value of δ0 is close to the true discount rate:

Proposition 5 (Closed-Form Solution). If prices are generated by the model and B

has full rank S ≤ T then the closed-form solution (1.23) approximates the true solu-

tion in the following sense: The distance between the true solution (δ̄, h̄, P̄ ) and the
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approximate solution (δ, h, P ) approaches 0 faster than (δ0 − δ̄) as δ0 approaches δ̄.

6 Recovery in a Large State Space

A challenge in implementing the Ross Recovery Theorem is that it does not allow

for an expanding set of states as we know it, for example, from binomial models and

multinomial models of option pricing. Simply stated, the expanding state space in a

binomial model adds more unknowns for each time period than equations even under

the assumption of utility functions that depend on the current state only. We next

show how we handle an expanding state space in our model.

We have in mind a case where the number of states S is larger than the number

of time periods T . In a standard binomial model, for example, with two time periods

we need five states corresponding to the different values that the stock can take over

its path. The key to solving this problem is to reduce the dimensionality of the utility

ratios captured in the vector h. To do that, we replace Assumption 1 with the fol-

lowing assumption that the pricing kernels belong to a parametric family with limited

dimensionality.

Assumption 1* (General utility with N parameters) The pricing kernel at time

τ in state s (given the initial state 1 at time 0) can be written as

m1,s
0,τ = δτhs(θ) (1.24)

where δ ∈ (0, 1] and h(·) > 0 is a one-to-one C∞ smooth function of the parameter

θ ∈ Θ, an embedding from Θ ⊂ RN to RS, and Θ has a non-empty interior.

With a large number of unknowns compared to the number of equations, we need

to restrict the set of unknowns, and this is done by assuming that the utilities are

parameterized by a lower-dimensional set Θ.
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6.1 A Large Discrete State Space

Let us first consider two simple examples of how we can parameterize marginal utilities

with a low-dimensional set of parameters. First, we consider a simple linear expression

for the marginal utilities and then we discuss the case of constant relative risk aversion

(a non-linear mapping from risk aversion parameters Θ to marginal utilities).

We start with a simple linear example of how the parametrization works. We

consider a matrix B of full rank and dimension (S − 1)×N such that


h−1

2
...

h−1
S

 =


a1

...

aS−1

+


b11 . . . b1N
...

...

bS−1,1 . . . bS−1,N



θ1

...

θN

 = A+Bθ (1.25)

Combining this equation with the recovery problem (1.15) gives

(Π1 + Π2A) + Π2B


θ1

...

θN

 =


δ
...

δT

 (1.26)

This equation has exactly the same form as our original recovery problem (1.15), but

now Π1 + Π2A plays the role of Π1, similarly Π2B plays the role of Π2, and θ plays

the role of (h−1
2 , ..., h−1

S )′. The only difference is that the dimension of the unknown

parameter has been reduced from S−1 to N . Therefore, Proposition 1 holds as stated

with S replaced by N + 1.

Hence, while before we could achieve recovery if S ≤ T , now we can achieve recovery

as long as N +1 ≤ T . In other words, recovery is possible as long as the representative

agent’s utility function can be specified by a number of parameters that is small relative

to the number of time periods for which we have price data.

Assumption 1* also allows for the marginal utilities to be non-linear function of the

risk aversion parameters θ. This generality is useful because standard utility functions

may give rise to such a non-linearity. As a simple example, consider an economy with

a representative agent with CRRA preferences. In this economy, the pricing kernel in
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state s at time τ (given the current state 1 at time 0) is

m1,s
0,τ = δτ

(
cs
c1

)−θ
(1.27)

where cs is the known consumption in state s of the representative agent and θ is

the unknown risk aversion parameter. Hence, Assumption 1* is clearly satisfied with

h−1
s (θ) = ( csc1 )θ. Our generalized recovery result extends to the large state space as

stated in the following proposition.

Proposition 6 (Generalized Recovery in a Large State Space). Consider an economy

satisfying Assumption 1* with Arrow-Debreu prices for each of the T time periods and

S states such that N + 1 < T . The recovery problem has

1. no solution generically in terms of an arbitrary Π matrix of positive elements;

2. a unique solution generically if Π has been generated by the model.

As one simple application of the proposition, we can recover preferences from state

prices if we know that the pricing kernel is bounded and we have sufficiently many

time periods as seen in the following corollary. Said differently, using a simplified or

winsorized pricing kernel (or state space) is a special case of Proposition 5.

Corollary 7 (Generalized Recovery with Bounded Kernel). Suppose that the pricing

kernel is bounded in the sense that there exist states s̄ > s such that hs = hs̄ for s > s̄

and hs = hs for s < s. Then the conclusion of Proposition 5 applies, where N is the

number of states from s to s̄.

6.2 Continuous State Space

Finally, we note that our framework also easily extends to a continuous state space

under Assumption 1* in discrete time (see Walden (2017) for the case of continuous

time and continuous state space). We start with a continuous state-space density πτ (s)

at each time point τ = 1, . . . , T (given the current state at time 0). As before, πτ (s)

represents Arrow-Debreu prices or, more precisely, πτ (s)ds represents the current value

of receiving 1 at time τ if the state is in a small interval ds around s. Similarly, we let

pτ (s) denote the physical probability density of transitioning to s in τ periods. The
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fundamental recovery equations now become

πτ (s) = δτhs(θ)pτ (s) (1.28)

By moving h to the left-hand side and integrating, we can eliminate the natural prob-

abilities as before. ∫
πτ (s)h−1

s (θ)ds = δτ (1.29)

For each time period τ , this gives an equation to help us recover the N + 1 unknowns,

namely the discount rate δ and the parameters θ ∈ RN . Hence, we are in the same

situation as in the discrete-state model of Section 6.1, and we have recovery if there

are enough time periods as stated in Proposition 6.

As before, the linear case is particularly simple. Suppose that the marginal utilities

can be written as10

h−1
s (θ) = A(s) +B(s)θ (1.30)

where, for each s, A(s) is a known scalar and B(s) is a known row-vector of dimension

N . Using this expression, we can rewrite equation (1.29) as a simple equation of the

same form as our original recovery problem (1.15):

πAτ + πBτ θ = δτ (1.31)

where πAτ =
∫
πτ (s)A(s)ds and πBτ =

∫
πτ (s)B(s)ds. Hence, as before, we have T

equations that are linear except for the powers of the discount rate.

7 Recovery in Specific Models: Examples

In this section we investigate recovery of specific models of interest. In a controlled

environment, we show when, given state prices, our model recovers the true underlying

risk-aversion parameter, time-preference parameter along with the true multiperiod

physical probabilities.

10Note that h−1
s (θ) denotes 1

hs(θ)
, i.e., it is not the inverse function of hs(θ).
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7.1 Recovery in the Mehra and Prescott (1985) model

The Mehra and Prescott (1985a) model works as follows. The aggregate consumption

either grows at rate u = 1.054 or shrinks at rate d = 0.982 over the next period.

This consumption growth between time t− 1 and t is captured by a process Xt. The

aggregate consumption process can be written as

Yt =
t∏

s=1

Xs (1.32)

where the initial consumption is normalized as Y0 = 1.

Consumption growth Xt is a Markov process with two states, up and down. The

probability of having an up state after an up state is φuu; = Pr(Xt = u|Xt−1 = u) =

0.43 and, equally, the probability of staying in the down state is φdd = 0.43. Hence,

the probability of switching state is φud = φdu = 0.57.

The Arrow-Debreu price of receiving 1 at time t in a state st = (yt, xt) is computed

based on the CRRA preferences for the representative agent with risk aversion γ = 4

as

π1,st
0,t = δty−γt Pr(Xt = xt, Yt = yt) (1.33)

where the time-preference parameter is δ = 0.98 and the physical probabilities Pr(Xt =

xt, Yt = yt) of each state are computed based on the Markov probabilities above.11

Based on this model of Mehra and Prescott (1985a), we compute Arrow-Debreu

prices in each state over T = 20 time periods and examine whether we can recover

probabilities and preferences based on knowing only these prices (we have also per-

formed the recovery for other values of T ).

We first notice from equation (1.32) that consumption has growth, which imme-

diately implies that S > T . This means that recovery is impossible without further

assumptions. Hence, we proceed using the method concerning a large state space of

Section 6. The simplest way to proceed is to assume that we know the form of the

11We note that prices of long-lived assets, for example the overall stock market, depends on both
Xt and Yt (even if the aggregate consumption Yt is the aggregate dividend). Therefore, stock index
options would provide information on Arrow-Debreu prices on each state st = (yt, xt). Alternatively,
we could consider recovery based only on Arrow-Debreu securities that depend on yt. This would
correspond to observing options on “dividend strips.” Either way, we get the same recovery results in
the Mehra and Prescott (1985) model.
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pricing kernel (1.33), but we don’t know the risk aversion γ, the discount rate δ, or the

probabilities. We can then write the Generalized Recovery equation set on the form

Πh−1(γ) =
[
δ δ2 . . . δT

]′
(1.34)

where h is a one-to-one C∞ smooth function of the parameter γ based on (1.33), see

Appendix B for details.12 Therefore, we are in the domain of Assumption 1* and, as

long as T > 2 (since N = 1 is the number of risk aversion parameters and 2 is the total

number of variables, δ and γ) then by Proposition 6 we know that the Generalized

Recovery equation set generically has a unique solution.

We first seek to recover γ and δ by minimizing the pricing errors (again, see Ap-

pendix B for details). Panel A of Figure 1.3 shows the objective function for this

minimization problem. As seen from the figure, there is a unique solution to the

problem, which naturally equals the true parameters δ̂ = 0.98, γ̂ = 4.

Finally, we turn to the recovery of natural probabilities. It is worth noticing that

we do not recover the Markov switching probabilities φuu, φdd, φud or φdu. Rather,

what is recovered is the multi-period probabilities p1,st
0,t of transitioning from the ini-

tial state to each future state (consistent with the intuition conveyed in Figure 1.1).13

The probabilities p1,st
0,t are recovered exactly. Fortunately, these multi-period probabil-

ities are all we need for making predictions about such statistics as expected returns,

variances, and quantiles across different time horizons.

7.2 Cox-Ross-Rubinstein and iid. consumption growth

We can capture the standard binomial model of Cox, Ross, and Rubinstein (1979)

(i.e., the discrete time counterpart to Black-Scholes-Merton) as follows. We consider

the same model for aggregate consumption Yt, but now Xt is iid. (corresponding

to φuu = φdu and φdd = φud). In other words, the standard binomial model has

iid. consumption growth. Specifically, we assume that up and down probabilities are

always 50% (φuu = φdu = φdd = φud = 0.5).

This binomial model implies a flat term structure which puts us in the case of

12Matlab code is available from the authors upon request.
13Recovery of the underlying path-dependent probabilities is possible if we have access to Arrow-

Debreu prices for all paths or if we assume that we know the structure of the underlying tree.
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Proposition 4, where recovery is impossible.14 Concretely, the problem is that the

price matrix Π from (1.34) is not full rank. Hence, as seen in Figure 1.3 Panel B, the

objective of minimizing pricing errors has a continuum of solutions. In other words,

recovery is not feasible.

7.3 A non-stationary model without Markov structure

Lastly, we consider a model where the consumption growth Xt is not Markov. Specif-

ically, we still consider the binomial tree described above in Sections 7.1–7.2, but now

we let the probability of transitioning up/down from any state s at any time t depend

on the path taken from time 0 to time t. At each node at each path, we draw a random

uniformly distributed probability for an “up” move, and, of course, assign one minus

this probability to the next “down” node.

We now seek to recover δ and γ. As seen in Figure 1.3 Panel C, the objective

function has a unique solution which again equals the true parameters δ̂ = 0.98 and

γ̂ = 4. Hence, recovery can be possible even when the driving process is non-stationary

and non-Markovian, again under parametric assumptions about the utility function

(i.e., a model outside the scope of Ross (2015) and Borovicka, Hansen, and Scheinkman

(2016)).

8 Empirical Analysis

This section describes our data, empirical methodology, and empirical findings.

8.1 Data and Sample Selection

We use the Ivy DB database from OptionMetrics to extract information on standard

call and put options written on the S&P 500 index for every last trading day of the

month from January 1996 to December 2015. We obtain implied volatilities, strikes,

and maturities, allowing us to back out market prices. As a proxy for the risk-free

rate, we use the zero-coupon yield curve of the Ivy DB database, which is derived

14Iid. consumption growth and standard utility functions generally lead to a flat term struc-
ture because the price of a bond with τ periods to maturity can be written as Et(δ

τ ut+τ
ut

) =

Et(
∏
s=1,...,τ δ

ut+s
ut+s−1

) =: ( 1
1+r

)τ , where the expected utility increments are the same for all s be-

cause they depend on consumption growth
ct+s
ct+s−1

, which has constant expected value when it is iid.
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from LIBOR rates and settlement prices of CME Eurodollar futures. We also obtain

expected dividend payments, calculated under the assumption of a constant dividend

yield over the life time of the option. We consider options with time to maturity

between 10 and 360 days and apply standard filters, excluding contracts with zero

open interest, zero trading volume, and quotes with best bid below $0.50, and options

with implied volatility higher than 100%.

8.2 Recovery Methodology

The Generalized Recovery Theorem relies on the knowledge of Arrow-Debreu state

prices from the current initial state to all possible future states for several future

time periods. Unfortunately, there is currently no market trading pure Arrow-Debreu

securities. Therefore, we use options to back out Arrow-Debreu prices. Further, given

the large number of states, we use the parametric kernel method from Section 6.

To study the robustness of recovery, we consider two different methods for backing

out Arrow-Debreu prices and two different specifications of the pricing kernel, for a

total of four different recovered distributions and preferences.

More specifically, we apply the following two methods of extracting Arrow-Debreu

prices from options: (i) the parametric model of Bates (2000) and (ii) the non-

parametric method of Jackwerth (2004). Each of the methods yields Arrow-Debreu

prices across multiple time horizons and mutliple index levels for each day t as described

in detail in Appendix C.

Given these observed Arrow-Debreu prices, we recover preferences and probabilities

based on the two different specifications of the pricing kernel that we denote “piece-

wise linear” and “polynomial” pricing kernels, respectively, as described in detail in

Appendix D.

8.3 Computing Statistics of the Recovered Distribution

Once we have recovered the probabilities of each state for each future time period, it

is straightforward to compute any statistic under the physical probability distribution.

If the level of the index at time t is St, then the state space consists of all integer values

of the index between the minimum value (1 − 2.5VIXt)St and (1 + 4VIXt)St. Let Nt
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denote the number of states as seen from time t and think of state 1 as the lowest state

and Nt as the highest state. We compute the recovered expected excess return µt at

time t by summing over the Nt possible states:

µt = EP
t [rt,t+1]− rft,t+1 =

Nt∑
ν=1

pt+1,νrt+1,ν − rft,t+1 (1.35)

where rft,t+1 is the risk-free rate, pt+1,ν is the recovered time-t conditional physical

probability for the transition to state ν at time t+ 1, rt+1,ν = St+1(ν)
St

− 1 is the return

in state ν, and St+1(ν) is the value of the index at time t+ 1 if state ν is realized.

We compute the contemporaneous unpredictable innovation in the conditional ex-

pected return as

∆µt+1 = µt+1 − Et[µt+1] (1.36)

where we impose an AR(1)-process on the innovation to the risk premium Et[µt+1] =

α0 + α1µt based on the regression

µt+1 = α0 + α1µt + εt+1 (1.37)

The estimated persistence parameter α1 is 0.3 at the monthly horizon.

We compute the recovered conditional variance, VARP
t (rt,t+1), analogously to how

we computed the expected return and we denote the recovered volatility by σt =√
VARP

t (rt,t+1).

8.4 Empirical Results

We next investigate the properties of the recovered probabilities based on each of

our four methods. We first consider the recovered expected return. Table 1.1 shows

the correlation matrix for the recovered expected returns based on each of our four

methodologies as well as the VIX volatility index and the SVIX variable of Martin

(2017). The good news is that all variables are positively correlated, as we would

expect. The ææless good news is that the correlations between the different recovered

expected returns are modest in magnitude, with an average pairwise correlation of

only 0æ.5. This modest correlation is concerning because all these recovered expected
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returns should be measures of the same thing, namely the market’s expected return at

any given time.

Figure 1.4 shows the time series variation of the recovered expected return based

on one of the methodologies (we plot just one time series since it is difficult to look at

all four together). These recovered expected returns do not look unreasonable, but we

next try to test their predictability of actual realized returns. Specifically, we regress

the ex post realized excess return on the ex ante recovered expected excess return, µt,

and the ex post innovation in expected return, ∆µt+1:

rt,t+1 = β0 + β1µt + β2∆µt+1 + εt,t+1 (1.38)

where εt+1 is a noise term. To understand this regression, note that we are interested

in testing whether the recovered probabilities give rise to reasonable expected returns,

that is, time-varying risk premia. For this, we want to test whether a higher ex ante

expected return is associated with a higher ex post realized return (β1 > 0), whether

an increase in the risk premium is associated with a contemporaneous drop in the price

(β2 < 0), and whether the intercept as zero (β0 = 0).

Table 1.2 reports the results of this regression for each of our four recovery method-

ologies as well as using VIX and SVIX as the expected return over the full sample from

1997 to 2015. First, the intercept β0 is insignificantly different from zero in most speci-

fications, but significantly different from zero using method 2 and using VIX, providing

evidence against these models. Second, β1 is positive and marginally significant from

0 in model 1, but otherwise insignificantly different from zero, providing neither evi-

dence in favor or against the models. The coefficient β2 is highly significant and has

the desired negative sign in all models. Further, as expected the absolute value of β2

is greater than one since a shock to the discount rate leads to a larger shock to the

price (cf. Gordon’s growth model for the extreme example of a permanent shock).

Table 1.3 reports the result of regression (1.38) over the sub-sample that excludes

the global financial crisis (9/2008–7/2009), a sub-sample that has been considered in

the literature (e.g., Martin (2017)). The results here are stronger and more consistent

with theory. All the key parameters have the expected sign, the estimated coefficient

β0 is small and insignificant in all models, the estimated coefficient β1 is positive and
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marginally significant or insignificant, and β2 is negative and significant.

The reason that the models work better when we exclude the crisis is intuitive:

During the crisis, there were several months in which the ex ante recovered expected

return was high, but, nevertheless, the ex post realized return was negative and large

in magnitude. It seems plausible that investors were scared at that time, which means

that it is plausible that the true required return was indeed high, which in turn implies

that the negative realized return was a negative surprise. Hence, one could argue that

the model gets this period wrong for the “right” reason, but we don’t want to push

this argument too far as the most compelling evidence is almost always that of using

the full sample.

Finally, we consider the recovered physical volatility as plotted in Figure 1.5. This

recovered volatility looks reasonable. Further, the recovered volatilities are similar

across the different methodologies with an average pairwise correlation of 0.95 and

an average correlation to VIX of 0.92. It is not that surprising that volatilities can

be recovered, but studying volatility provides a simple and powerful reality check of

our method since the true future volatility is known with much less error than the

expected return. Hence, we regress the ex post realized volatility on the ex ante

recovered conditional volatility, σt:

√
VAR(rt,t+1) = β0 + β1σt + εt,t+1 (1.39)

where the realized volatility
√

VAR(rt,t+1) is computed using close-to-close daily data

over the 4 weeks from t to t + 1 by OptionMetrics. We also run the same regression

where we replace the recovered volatilities by the VIX volatility index. The theory

predicts that β0 = 0 and β1 = 1.

Table 1.4 reports the results. As seen in Table 1.4, the estimated intercept coeffi-

cient β0 is insignificant for models 1 and 2, but significant for models 3 and 4. However,

for all models, the intercept is smaller than that of VIX, suggesting that the recovered

volatilities are less biased than VIX.

The estimated slope coefficient β1 is positive and highly significant for all models.

Further, the estimated slope is close to the predicted value of 1, in particular closer

than the estimated value for VIX. Lastly, we see that VIX has a slightly higher R2,
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which may reflect that the recovery method introduces some noise in the volatility

measures.

In summary, we find substantial differences across the recovered probabilities based

on different methodologies, and the predictive power for future returns appears weak

in the full sample, but slightly stronger in the sample that excludes the gælobal finan-

cial crisis. The recovered volatilities predict well the future volatility in a way that is

less biased than VIX, but slightly lower R2. We are able to reject that the recovered

probabilities provide a perfect description of the future evolution of the market based

on a Berkowitz (2001) test.15 This rejection could be due to the details of our imple-

mentation. For instance, while the true pricing kernel may depend on multiple factors,

we assume that the state space is given by the level of S&P500 since we do not observe

option prices depending simultaneously on multiple factors.

9 Conclusion

We characterize when preferences and natural probabilities can be recovered from

observed prices using a simple counting argument. We make no assumptions on the

physical probability distribution, thus generalizing Ross (2015) who relies on strong

time-homogeneity assumptions.

In economies with growth, our counting argument immediately shows that recovery

is generally not feasible. While this finding parallels results by Borovicka, Hansen,

and Scheinkman (2016), our intuitive counting argument is fundamentally different

and does not rely on the assumptions of an infinite-period time-homogeneous Markov

setting, but, rather, is based on the general methods pioneered by Debreu (1970) for

general equilibrium.

To pursue recovery even in economies with growth, e.g., classical multinomial mod-

els, we show how our method can be used when the pricing kernel can be parameter-

ized by a sufficiently low-dimensional parameter vector. When recovery is feasible,

our model allows a closed-form linearized solution. We implement our model empiri-

15The details of this test are not reported for brievity. The idea is that, given the estimated
distribution F̂t of the excess return rt+1 at time t, the distribution of the transformed variable ut+1 =
F̂t(rt+1) should be uniform and the distribution of the further transformed variable xt+1 = Φ−1(ut+1)
should be standard normal, which is tested by estimated the coefficients in the model xt+1 = c+βxt+εt
and perform a likelihood ratio test of the joint hypothesis that c = β = 0 and V ar(εt) = 1.
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cally using several different specifications, testing the predictive power of the recovered

statistics.
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Panel A. Ross’s Recovery Theorem: one period, two “parallel universes”

t=1t=0

Current state

Other state

Panel B. Ross’s Recovery Theorem: time-homogeneous dynamic setting

t=2t=1t=0

Current state

Other state

Panel C. Our Generalized Recovery: No assumptions about probabilities

t=2t=1t=0

Current state

Other state

Figure 1.1: Generalized Recovery Framework. Panel A illustrates the idea behind
Ross’s Recovery Theorem, namely that we start with information about all Arrow-
Debreu prices in all initial states (not just the state we are currently in, but also prices
in “parallel universes” where today’s state is different). Panel B shows how Ross moves
to a dynamic setting by assuming time-homogeneity, that is, assuming that the prices
and probabilities are the same for the two dotted lines, and so on for each of the other
pairs of lines. Panel C illustrates our Generalized Recovery method, where we make
no assumptions about the probabilities.
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0.90 0.92 0.94 0.96 0.98 1.00

0.80

0.85

0.90

0.95

1.00

δ

a + bδ
δt

Panel A: t = 2 years

0.90 0.92 0.94 0.96 0.98 1.00

0.95

0.96

0.97

0.98

0.99

1.00

δ

a + bδ
δt

Panel B: t = 0.5 years

Figure 1.2: Closed-Form Solution: Approximation Error. The figure shows
that the generalized recovery problem is very close to being linear. We show that
the only non-linearity comes from the discount rate δ due to the powers of time, δt.
However, the function δ → δt is very close to being linear for the relevant range of
annual discount rates, say δ ∈ [0.94, 1], and the relevant time periods that we study.
Panel A plots the discount function and the linear approximation around δ0 = 0.97
given a horizon of t = 2 years. Panel B plots the same for a horizon of a half year.
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Table 1.1: Correlation Matrix. This tables shows the pairwise correlations between
the recovered conditional expected excess return for different specifications of marginal
utilities and method for estimating risk-neutral prices; (i) µt,1: Bates and polynomial,
(ii) µt,2: Bates and piecewise linear, (iii) µt,3: Jackwerth and polynomial, (iv) µt,4:
Jackwerth and piecewise linear. We augment the table with pairwise correlations with
the VIXt index and the lower boundary on the equity premium, SVIXt, due to Martin
(2017).

µt,1 µt,2 µt,3 µt,4 VIXt SVIXt

µt,1 1 0.359 0.393 0.392 0.534 0.485

µt,2 1 0.642 0.523 0.716 0.794

µt,3 1 0.642 0.784 0.830

µt,4 1 0.634 0.689

VIXt 1 0.928

SVIXt 1
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Panel A: Mehra Prescott (1985)

Panel B: Iid. consumption

Panel C: Non-Markovian

Figure 1.3: Generalized Recovery: Objective Function in Specific Economic
Models. This figure shows the objective function used for the generalized recovery
method, the squared pricing errors in (1.48). Panel A shows that the objective function
for the Mehra Prescott (1985) model has a unique minimum, making the generalized
recovery feasible. Panel B shows that generalized recovery is not feasible in the Black-
Scholes-Merton model with iid. consumption as the objective has a continuum of
solutions. Panel C shows that generalized recovery is feasible in the non-Markovian
model.
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Figure 1.4: Recovered conditional expected excess return. The figure plots
monthly conditional expected excess market returns, recovered last trading day of each
month from 1/1996 to 12/2015. Marginal utilities are piecewise linear and risk-neutral
prices are estimated using Jackwerth (2004).
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Figure 1.5: Recovered conditional volatility of excess return. The figure plots
monthly conditional market volatility, recovered last trading day of each month from
1/1996 to 12/2015. Marginal utilities are piecewise linear and risk-neutral prices are
estimated using Jackwerth (2004).
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A Proofs

Proof of Proposition 1. We have already provided a proof for 1 and 2 in the body

of the text. Turning to 3, we note that the set X of all (δ, h, P ) is a manifold-with-

boundary of dimension S · T − T + S. The discount rate, probabilities and marginal

utilities map into prices, which we denote by F (δ, h, P ) = DPH = Π, where, as before,

D = diag(δ, ..., δT ) and H = diag(1, h2, ..., hS)), and F is C∞. If S < T , the image

F (X) has Lebesgue measure zero in RT×S by Sard’s theorem, proving 3. Indeed, this

means that the prices that are generated by the model F (X) have measure zero relative

to all prices Π.

Turning to 4, we first note that P and H can be uniquely recovered from (δ,Π)

(given that Π is generically full rank). Indeed, H is recovered from (1.17) and P is

recovered from (1.12). Therefore, we can focus on (δ,Π).

For two different choices of the discount rate (δa, δb) and a single set of prices Π, we

consider the triplet (δa, δb,Π). We are interested in showing that the different discount

rates cannot both be consistent with the same prices, generically. To show this, we

consider the space M where the reverse is true, hoping to show that M is “small.”

Specifically, M is the set of triplets where Π is of full rank and both discount rates are

consistent with the prices, that is, there exists (unique) Pi and Hi (i = a, b) such that

DaPaHa = DbPbHb = Π.

Given that probabilities and marginal utilities can be uniquely recovered from

prices and a discount rate (as explained above), we have a smooth map G from M to

X by mapping any triplet (δa, δb,Π) to (δa, ha, Pa), where (ha, Pa) are the recovered

marginal utility and probabilities. The image of this map consists exactly of those

elements of X for which F is not injective. The proof is complete if we can show that

this image has Lebesgue measure zero, which follows again by Sard’s theorem if we

can show that the dimension of M is strictly smaller than ST − T + S.

To study the dimension ofM , we note that we can think ofM as the space of triplets

such that the span of Π contains both the points (δa, δ
2
a, ..., δ

T
a )′ and (δb, δ

2
b , ..., δ

T
b )′.

The span of Π is given by VΠ := {Π · (1, h2, h3, ..., hS)′|hs > 0}, which is an affine

(S − 1)-dimensional subspace of RT for Π of full rank. The set of all those Π ∈ RT×S

such that VΠ passes through two given points of RT (in general position with re-
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spect to each other) form a subspace of dimension ST − 2(T − S + 1) since each

point imposes T − S + 1 equations (and saying that the points are in general po-

sition means that all these equations are independent). Therefore, M is a mani-

fold of dimension ST − 2T + 2S since the pair (δa, δb) depends on two parameters,

and, for a given pair, there is a (ST − 2T + 2S − 2)-dimensional subspace of possi-

ble Π (any two distinct points are always in general position). Hence, we see that

dim(M) = ST − 2T + 2S < ST − T + S = dim(X) since S < T , which implies

that G(M) has measure zero in X. Further, the prices where recovery is impossible,

F (G(M)), have measure zero in the space of all prices generated by the model F (X)

where we use the Lebesgue measure on X to define a measure16 on F (X).

Proof of Proposition 2. Let Π̄ be an S × S transition matrix corresponding to

an irreducible matrix (as in Ross). Without loss of generality we assume that the cur-

rent state is the first state. Since prices are generated by a Ross economy, the observed

matrix Π of multiperiod prices is given as

Π :=


(Π̄)1

(Π̄2)1

...

(Π̄S)1


where (Π̄)1 denotes the first row of Π̄, (Π̄2)1 is the first row of Π̄2, etc. We want to show

that all solutions to the eigenvalue problem for Π̄ give rise to solutions to our system

(both the “correct solution” and the ones that, by the Perron-Frobenius theorem, do

not generate viable solutions).

Observe that if z = (z1, . . . , zS)′ is a (right) eigenvector of Π̄ with corresponding

eigenvalue δ, then

Πz = (δz1, δ
2z2, . . . , δ

SzS)′.

If z is the eigenvector corresponding to the maximal eigenvalue of Π̄, then we know that

it is strictly positive. Generically, in the space of matrices Π̄, the matrix is diagonaliz-

16We can define a measure on F (X) by µ∗(A) := µ(F−1(A)) for any set A, where µ is the Lebesgue
measure on X.
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able with eigenvectors that contain no zeros and with distinct non-zero eigenvalues –

in particular, it has full rank. Therefore, generically, even for the other eigenvectors,

we have that the coordinates of z are non-zero, so we can normalize z to have first

coordinate 1. Now let the Ross probability matrix be defined (as in Ross)

P̄ =
1

δ
Diag−1(z)Π̄Diag(z) (1.40)

with corresponding multi-period probabilities given by

P :=


(P̄ )1

(P̄ 2)1

...

(P̄S)1

 .

Note that since the rows of P̄ sum to 1, so do rows of P . Further, using (1.40),

P =


( 1
δ1
Diag(z)−1Π̄1Diag(z))1

...

( 1
δS
Diag(z)−1Π̄SDiag(z))1

 =


( 1
δ1

Π̄1Diag(z))1

...

( 1
δS

Π̄SDiag(z))1

 = D−1ΠDiag(z),

where the second equality uses that z1 = 1 and that we only consider the first rows,

and the last equation uses our maintained notation D = Diag(δ, . . . , δS). We note

that this equation is the same as our equation (1.12), which means that all solutions to

Ross’s eigenvalue problem for the matrix Π̄ also appear as solutions to our equations.

The fact that P generated from the Ross solution P̄ is a solution to the generalized

problem required no assumptions other than irreducibility, and this proves part 1 of

the theorem.

To obtain uniqueness also of our solution, note that, generically, there are S eigen-

vectors for Ross’s matrix from which a matrix P can be generated using (1.40). Each

of these solutions can be used to generate a solution P to our problem, as shown above.

The S−1 solutions are “fake” in the sense that they imply that some marginal utilities

(elements in the eigenvector z above) are negative. Hence, these solutions are also fake

in the context of the generalized recovery framework. Given that Ross’s equations
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yield a total of S possible solutions to our problem, of which S − 1 are fake, we have

a unique viable solution (by Proposition 1) if we can ensure that Π12 has full rank.

This follows from the generic property of Π̄ as being diagnonalizable with distinct,

non-zero eigenvalues. In fact, we can show the stronger statement that Π has full

rank: Consider the diagonalization of Ross’s price matrix as Π̄ = V ZV ′, where Z =

diag(z1, ..., zS) is the matrix of eigenvalues and V is the matrix of eigenvectors. The

k’th row in the generalized-recovery pricing matrix is the first row (still assuming that

the starting state is 1) of Π̄k = V ZkV ′. Letting v denote the first row in V , we see

that the k’th row of Π is vZkV ′ = (v1z
k
1 , ..., vSz

k
S)V ′ so

Π =


1 ... 1
...

...

zT−1
1 ... zT−1

S



v1z1 0

. . .

0 vSzS

V ′ (1.41)

Therefore, Π is full rank generically because it is the product of three full-rank matrices.

Indeed, the first matrix is a Vandermonde matrix, which is full rank when the z’s are

non-zero and different, which is true generically. The second matrix is clearly also

full-rank since the v’s are also non-zero generically, and the third matrix is full rank

by construction. Hence our set of equations can have no more than S solutions, and

since S − 1 of these are “fake”, we have unique recovery of the solution corresponding

to Ross’s solution also, generically.

To see how to derive Π̄ in an economy where Π arises from a time-homogeneous

Ross economy, note that the following equation set must hold:
(Π)2

...

(Π)S


︸ ︷︷ ︸
(S−1)×S

=


(Π)1

...

(Π)S−1


︸ ︷︷ ︸

(S−1)×S

Π̄ (1.42)

where (Π)i is the i’th row of Π. Further, using the notation from (1.14) for blocks of

Π and denoting the first row of Π̄ by Π̄1 and remaining rows by Π̄2, we can rewrite
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this equation as 
(Π)2

...

(Π)S

 =
[
Π11 Π12

]Π̄1

Π̄2

 (1.43)

Given that Π̄1 is known (because the one-period state prices from state 1 are observed),

it is useful to further rewrite this system as
(Π)2

...

(Π)S

−Π11Π̄1 = Π12Π̄2 (1.44)

Hence, when Π12 is full rank, the Ross price matrix Π̄2 can be derived uniquely and

explicitly by pre-multiplying by (Π12)−1. We have already shown in Part 2, that Π12

has full rank generically. If Π12 does not have full rank, there exists a non-zero vector

v ∈ RS−1 for which Π12v = 0. In this case, if we start from a solution for which Π̄2 has

strictly positive elements, we can pick ε > 0 small enough that adding εv to a row of

Π̄2 yields a perturbed matrix Π̄ε
2 whose elements are also strictly positive. Clearly, Π̄ε

2

also satisfies (1.44), and hence the Ross price matrix is not unique, showing part 3.

Proof of Proposition 3. Consider first the case where S < T . The dimension

of the parameter set (transition probabilities + utility parameters) generating the

generalized-recovery price matrix Π is ST − T + S, which is strictly greater than the

dimension S2 of the parameter space generating price matrices in Ross’s homogeneous

case. Hence, generically no time-homogeneous solution can generate a generalized

recovery price Π.

Our framework is also more general in the the case S = T . Recalling that pτi

denotes the probability of going from the current state 1 to state i in τ periods, it is

clear that in a time-homogeneous setting we must have p22 ≥ p11p12, i.e., the proba-

bility of going from state 1 to state 2 in two periods is (conservatively) bounded below

by the probability obtained by considering the particular path that stays in state 1

in the first time period and then jumps to state 2 in the second. However, such a

bound need not apply for the true probabilities if the transition probabilities are not
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time-homogeneous. The set of parameters that can generate Π matrices that are not

attainable from homogeneous transition probabilities is clearly of Lebesgue measure

greater than zero in the S2−dimensional parameter space.

Proof of Proposition 4. Let R denote the diagonal matrix whose k’th diagonal

element is 1
(1+r)k

. Having a flat term structure means that the matrix Π of state prices

as seen from a particular starting state can be written as

Π = RQ

which defines Q as a stochastic matrix (i.e., with rows that sum to 1). Clearly, by

letting δ = 1/(1 + r) and having risk-neutrality, i.e. H = IS (the identity matrix of

dimension S), we obtain a solution to our recovery problem

Π = RQ = DPH = RPIS = RP

by setting P = Q.

Proof of Proposition 5. The result follows from the following lemma.

Lemma 1. Suppose that x∗ ∈ Rn is defined by f(x∗) = 0 for a differentiable function

f : Rn → Rn with full rank of the Jacobian df in the neighborhood of x∗, and x is

defined as the solution to the equation, f(x̄) + df(x̄)(x − x̄) = 0, where f has been

linearized around x̄ = x∗ + ∆x ε for ∆x ∈ Rn and ε ∈ R. Then x = x∗ + o(ε) for

ε→ 0.

Proof of Lemma 1. Since we have x = x̄− df−1f(x̄) we see that, as ε→ 0,

x− x∗

ε
=
x̄− x∗

ε
− df−1 f(x̄)− f(x∗)

ε
→ ∆x− df−1df∆x = 0 (1.45)

Proof of Proposition 6. Following the same logic as the proof of Proposition 1,

we note that the set X of all (δ, θ, P ) is a manifold-with-boundary of dimension S ·

T − T + N + 1. The discount rate, marginal utility parameters, and probabilities

map into prices, which we denote by F (δ, θ, P ) = DPH = Π, where, as before, D =
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diag(δ, ..., δT ) and H = diag(h1(θ), h2(θ), ..., hS(θ))), and F is C∞. Since N + 1 < T ,

the image F (X) has Lebesgue measure zero in RT×S by Sard’s theorem, proving part

1.

Turning to part 2, we first note that P can be uniquely recovered from (θ̄,Π) using

equation (1.12), where θ̄ = (δ, θ). Therefore, we can focus on (θ̄,Π), studying the

solutions to Π(h−1
1 (θ), ..., h−1

S (θ))′ = (δ, ..., δT )′.

For two different choices of the parameters (θ̄a, θ̄b) and a single set of prices Π,

we consider the triplet (θ̄a, θ̄b,Π). We are interested in showing that the different

parameters cannot both be consistent with the same prices, generically. To show this,

we consider the space M where the reverse is true, hoping to show that M is “small.”

Specifically, M is the set of triplets where Π is of full rank and both discount rates

are consistent with the prices, that is, there exists (unique) Pi (i = a, b) such that

DaPaHa = DbPbHb = Π.

Given that probabilities can be uniquely recovered from prices and parameters, we

have a smooth map G from M to X by mapping any triplet (θ̄a, θ̄b,Π) to (δa, θa, Pa).

The image of this map consists exactly of those elements of X for which F is not

injective. The proof is complete if we can show that this image has Lebesgue measure

zero, which follows again by Sard’s theorem if we can show that the dimension of M

is strictly smaller than S · T − T +N + 1.

To study the dimension of M , consider first VΠ := {Π(h−1
1 (θ), ..., h−1

S (θ))′|θ ∈ Θ},

which is an N -dimensional submanifold of RT for Π of full rank and given that h is

a one-to-one embedding. We note that we can think of M as the space of triplets

such that VΠ contains both the points (δa, δ
2
a, ..., δ

T
a )′ and (δb, δ

2
b , ..., δ

T
b )′, where the

corresponding θ’s are given uniquely from the definition of VΠ since Π is full rank and

h is one-to-one. The set of all those Π ∈ RT×S such that VΠ passes through two given

points of RT form a subspace of dimension ST − 2(T − N) since each point imposes

T −N equations. Therefore, M is a manifold of dimension ST − 2T + 2N + 2. Hence,

we see that G(X) has measure zero in X and F (G(X)) has measure zero in F (X).
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B Details on Recovery in Mehra-Prescott

Let

Π =


π0,d

0,1 π1,u
0,1 0 0 0 0 0 . . . 0 0 0 0 . . . 0

0 0 π0,d
0,2 π1,d

0,2 π1,u
0,2 π2,u

0,2 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
... . . .

...
...

...
... . . .

...

0 0 0 0 0 0 0 . . . 0 π0,d
0,T π1,d

0,T π1,u
0,T . . . πT,u0,T


(1.46)

where πk,u0,t is the state price of making a total of k “up” moves in t periods where the last

move was “up,” that is, the Arrow-Debreu price for the state st = (yt, xt) = (ukdt−k, u).

Similarly, πk,d0,t is the state price of making a total of k “up” moves in t periods where

the last move was “down”.

Π has dimension T × (
∑T

t=1 2t). This implies that the h−1(γ) vector of inverse

marginal utility ratios must be (
∑T

t=1 2t)-dimensional. We fix this in the following

way. We let

h−1(γ) =
[
(y0

1)γ (y1
1)γ (y0

2)γ (y1
2)γ (y1

2)γ (y2
2)γ . . . (yTT )γ

]′
(1.47)

where ykt = ukdt−k is the level of aggregate consumption when making a total of k

“up” moves in t periods and γ is the risk-aversion parameter that we wish to recover.

There is no closed-form solution to the non-linear case of CRRA preferences. In

order to obtain model estimates we sort to a numerical exercise, that is to minimize

the objective function g:

min
γ,δ

g(γ, δ) := norm

Πh−1(γ)−


δ

δ2

...

δT



 (1.48)

s.t. γ ∈ R+

δ ∈ (0, 1]

Based on the recovered (γ, δ) that solve this minimizition problem, we can recover the
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natural probabilities from (1.33).

C Computing State Prices Empirically

Before we can recover probabilities, we need to know the Arrow-Debreu prices or, said

differently, characterize the risk-neutral distribution. There exist many ways to do this

in practice based on observed option prices, including various interpolation methods.

We implement two methods; (i) the parametric stochastic volatility model of Bates

(2000) and (ii) the non-parametric “Fast and Stable” method of Jackwerth (2004).

C.1 The Bates (2000) Stochastic Volatility Model with Jumps

To ensure that we start with an arbitrage-free collection of Arrow-Debreu prices by

strike and maturity, we use the model of Bates (2000) to derive state prices from

observed option prices. This parametric approach puts structure on the tails of the

risk-neutral density, which also allows us to extrapolate outside the range of observable

option quotes. While the Bates (2000) model may not be the “true” specification of

the economy, we simply use this framework as a standard method in the literature to

compute state prices, and, consistent with this pragmatic view, we allow parameters

to change over time (which also avoids look-ahead bias).

In this model, the risk-neutral process for the price of the underlying asset, St, and

the instantaneous variance, Vt, are assumed to be of the form

dSt/St = (rf − d− λk̄)dt+
√
VtdZt + kdqt (1.49)

dVt = (α− βVt)dt+ σv
√
VtdZvt (1.50)

where Zt and Zvt are Brownian motions with correlation ρ, and qt is a Poisson counting

process that captures the risk of jumps in the price. The jumps occur with intensity λ

and each jump causes the price to be multiplied by the factor 1+k, which is lognormally

distributed, i.e., ln(1 + k) ∼ N(ln(1 + k̄)1
2δ

2, δ2). Further, rf is the risk-free rate and

d is the dividend yield.

We calibrate these model parameters every fourth Wednesday as follows:17 On each

17We use data for every fourth Wednesday as a compromise between (i) the tradition in the asset
pricing literature on return predictability of focusing on monthly returns, and (ii) the tradition in the
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day, given the current level of the market St and the risk-free term structure rft,t+τ ,

we find the model parameters (α, β, λ, k̄, σv, δ) and state variable Vt that minimize

the vega-weighted squared pricing errors for fifty call and put options, following the

methodology of Trolle and Schwartz (2009). The fifty chosen call/put options are those

with the highest volumes. We allow the model parameters to vary over time since we

simply use the model to smooth observed option prices (that may be noisy) such that

they are arbitrage-free.

Once we have obtained model estimates, we compute the risk-neutral density

f(τ, Sτ ) for any time τ periods into the future and state Sτ given the current time

state St as:

f(τ ;Sτ ) =
1

π

∫ ∞
0

(
Sτ
St

)−iu
ψ(τ, u)du (1.51)

that is, by integrating the characteristic function ψ numerically using the Gauss-

Laguerre quadrature method. Knowing the risk-neutral density, the corresponding

state price density π(τ ;ST ) is the density discounted by the τ -period risk-free rate

rft,t+τ :

π(τ ;Sτ ) = e−r
f
t,t+τ f(T ;Sτ ) (1.52)

This completes the computation of state prices. Indeed, we think of π(τ ;Sτ ) as the

Arrow-Debreu prices we need as starting point for our recovery for each index level.

For example π(1, 2000) is the Arrow-Debreu price of receiving $1 in one year of the

S&P500 is between 2000 and 2001. We consider the grid of maturities and index levels

described in Section 8.2.

C.2 The Jackwerth (2004) “Fast and Stable” Method

We are interested in converting a (noisy) sparse set of implied volatilities into a full

risk-neutral distribution. In section C.1 we imposed a parametric form on the implied

volatility surface through a stochastic volatility model with jumps. In this section

we refrain from imposing any structure on implied volatilities, that is, we fit a non-

parametric method to implied volatilities. The method we have chosen is the “Fast and

Stable” method of Jackwerth (2004). This method has a single tuning parameter, λ,

which simultaneously controls the smoothness of the function and the fit to observed

option literature of focusing on Wednesdays, where among other reasons option liquidity is high.
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implied volatilities. Clearly, there is a trade-off in choosing the value of the tuning

parameter, which is: the smoother the function the worse the fit to observations.

We therefore control the smoothness of the fit by imposing two conditions; (i) the

estimated implied volatilities gives rise to a non-negative risk-neutral distribution, (ii)

the risk-neutral distribution is unimodal in the range from 0.8 to 1.2 in moneyness

(defined as St/S0, the index level at time t relative to the current index level). Under

these conditions we minimize the objective function:

min
σs

1

2(S + 1)

S∑
s=1

(
σ
′′
s

)2
+

λ

2I

I∑
i=1

(σi − σ̄i)2 (1.53)

Where S is the number of states. σs is the implied volatility associated with state

s. σ
′′
s is the second derivative of the implied volatility function with respect to strike

prices. i = 1, ..., I is the index for the observed implied volatilities and σ̄i is the i’th

observed implied volatility. As seen from (1.53), if λ is high then the fit to observations

will be good compared to when λ is low. We therefore choose the highest value of λ

which satisfies our two conditions described above. See Jackwerth (2004) for further

comments on the method.

Once a smooth function for the implied volatilities is obtained we can back out

a risk-neutral distribution by evaluating the Black and Scholes (1973) formula in the

estimated implied volatilities and then differentiate the resulting call function twice

with respect to strike prices as explained in Breeden and Litzenberger (1978).

The Fast and Stable method estimates a single option maturity at a time. In the

period from January 1996 until December 2015 we have at least 7 maturities on any

given last trading day of the month. In the framework of Proposition 6 this allows us

to parameterize the pricing kernel with up to 6 parameters and still obtain generalized

recovery.

D Pricing Kernels used in Empirical Analysis

Piecewise linear. The inverse marginal utilities are piecewise linear over states.

Given the initial state 1 at time 0 the τ -period inverse marginal utility ratio in state
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s is18:

(hτs(θ))−1 = Bsθ (1.54)

Here θ is an N -dimensional column vector and Bs is the s′th row of the known S ×

N “design matrix” B. In our empirical implementation N is 519. Interpreting the

parameters θ1, ..., θN we let the first parameter θ1 determine the initial level of the

inverse pricing kernel H−1e = Bθ. The next parameter, θ2, determines the initial

slope of the first line segment. Similarly, θ3 is the slope of the next line segment

generated by Bθ.

We impose that θ1, ..., θN ≥ 0 which means that the inverse pricing kernel is mono-

tonically increasing or, equivalently, that the pricing kernel is monotonically decreasing

i.e., that marginal utility decreases at higher levels of wealth.

The design matrix is characterized by its “break points” that separate the state

space into N−2 regions. These regions are chosen as follows. The lowest region ranges

over states from (1−2.5VIXt)St to (1−2VIXt)St where St is the current (time t) level

of the S&P 500 index. The highest region covers states ranging from (1 + 2VIXt)St

to (1 + 4VIXt)St. In between these extremes, we consider N − 3 regions of equal size

in the range (1− 2VIXt)S0 to (1 + 2VIXt)St. When using this specification of B and

the estimated Arrow-Debreu prices, we obtain an S ×N matrix ΠB with full rank for

every last trading day of the month for the period 1/1996 to 12/2015.

With this in place we set up the following minimization problem

min
θ,δ

norm
(
D−1ΠBθ − 1

)
(1.55)

s.t. θ > 0

δ ∈ (0, 1]

Given a state price matrix Π and a design matrix B we estimate the θ and δ that best

fit the model in a squared error sense. Once the marginal utilities and discount rate

18Notice again that (hτs (θ))−1 = 1
hτs (θ)

and is not the inverse function.
19The lowest number of maturities with observed option prices in our sample is 7. Therefore, we

can impose a structure on the pricing kernel with at most 6 parameters and hence N can at most be
5 because of the sixth parameter δ.
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have been recovered, we back out the multi-period physical probabilities as

P = D−1Π diag(Bθ) (1.56)

where D is a diagonal matrix with elements Dii = δi and diag(Bθ) is a diagonal matrix

with elements diag(Bθ)jj = Bjθ where Bj is the j’th row of B. We normalize P to

have row sums of one, which is necessary since θ and δ are found from the minimization

problem in (1.55) and not solved perfectly.

Polynomial. The inverse marginal utility ratio is a polynomial in the return on the

market and time horizon. Given the initial state 1 at time 0 the τ -period inverse

marginal utility ratio in state s is:

(hτs(θ))−1 = β0 + β1rs + β2r
2
s + β3τrs + β4τr

2
s (1.57)

Here rs = Ss/S1 − 1 is the return on the market in state s. The parameters of

interest are θ = (β0, β1, β2, β3, β4). In our implementation we impose three conditions

on the parameters; (i) β0 > 0, ensuring a positive pricing kernel when r = 0, (ii) the

risk-premium is non-negative and, (iii) the inverse marginal utility ratios are always

strictly positive (we set a lower bound on the inverse marginal utility ratio at 0.01.).

This means that the parameters β1, β2, β3, β4 can move freely (within the space of the

conditions) and are all allowed to be either positive or negative.

The polynomial specification of the inverse marginal utility ratios illustrates one

possible way of imposing structure on the marginal utilities, not only in the state

dimension, but also in the time horizon dimension. This specification allows marginal

utilities in a given state, say s, to differ when considering different time horizons, that

is, e.g. hτs(θ) 6= hτ+1
s (θ). The polynomial specification nests the linear specification as

a special case when β2, β3, β4 are all zero.
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The minimization procedure for the polynomial specification is:

min
θ,δ

T∑
t=1

((
S∑
s=1

δ−tπts(h
τ
s(θ))−1

)
− 1

)2

(1.58)

s.t. β0 > 0

EP0 (rt|θ, δ)− rft ≥ 0 for all t ∈ (1, ..., T )

(hτs(θ))−1 > 0 for all s ∈ (1, ..., S) and all τ ∈ (1, ..., T )

δ ∈ (0, 1]

where πts is the state price in state s with time horizon t. Here EP0 (rt|θ, δ)− rft is the

excess return given parameter values θ = (β0, β1, β2, β3, β4), and δ.

Given estimates of δ, β0, β1, β2, β3 and β4 we can arrive at the t period physical

probabilities as

Pt = δ−tΠt diag
(
(hτs(θ))−1

)
(1.59)

where Πt is the t’th row of the state price matrix Π and r is an S×1-dimensional vector

of returns over states. We normalize P to have row sums of one, this is necessary since

θ and δ are found from the minimization problem in (1.58) and not solved perfectly.
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Chapter 2

Higher-Moment Risk

Co-authored with Niels Joachim Gormsen

Abstract:
We show how the market’s higher order moments can be estimated ex ante using
methods based on Martin (2017). These ex ante higher order moments predict future
realized higher order moments, whereas trailing realized moments have little predic-
tive power. Higher-moment risks move together in the sense that skewness becomes
more negative when kurtosis becomes more positive. In addition, higher-moment risk
is high when volatility is low, suggesting that risk doesn’t go away – it hides in the
tails. Higher-moment risk has significant implications for investors; for example, the
tail loss probability of a volatility-targeting investor varies from 3.6% to 9.7%, entirely
driven by changes in higher-moment risk. We empirically analyze the economic drivers
of these risks, such as financial intermediary leverage, market and funding illiquidity,
and potential bubbles.
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HEC Paris, London Business School, The London School of Economics, Tilburg University, University
of Toronto, and Warwick Business School. Both authors gratefully acknowledge support from the
FRIC Center for Financial Frictions (grant no. DNRF102) and from the European Research Council
(ERC grant no. 312417).
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1 Introduction

Times of financial market distress pose threats to the macroeconomy, as we witnessed

in the 2008-2009 financial crisis. For policymakers to act in a timely and preemp-

tive manner in the event of financial market distress, it is important to measure the

perceived tail risks in real time.

In this paper, we estimate higher-moment risk in real time using a new method and

arrive at the following five main results: (1) Moments of the market return, measured ex

ante using option prices, predict future realized moments. (2) Higher order moments

co-move in the sense that skewness (3rd moment) and hyperskewness (5th moment)

become more negative when kurtosis (4th moment) and hyperkurtosis (6th moment)

become more positive. In other words, there are times when higher-moment risk is high,

in the sense that the return distribution is both substantially left-skewed (due to large

negative odd-numbered moments) and fat tailed (due to large positive even-numbered

moments). (3) Higher-moment risks tend to be high after market run-ups where the

variance is low. (4) Higher-moment risk has important implications for investors; for

example, the tail loss probability of a volatility-targeting investor varies from 3.6% to

9.7%, entirely driven by changes in higher-moment risk. (5) The times when higher-

moment risks are high are characterized by high market and funding liquidity, high

turnover, and low expected future returns.

Our analysis is based on ex ante moments that are estimated from options prices.

Using methods based on Martin (2017), we translate risk-neutral moments into physical

moments as perceived by an unconstrained power utility investor who wants to hold

the market portfolio. Using S&P 500 as a proxy for the market portfolio, we estimate

ex ante monthly and quarterly moments. These moments are entirely forward looking

and, unlike risk-neutral moments, contain no adjustment for risk, which makes them

well suited for studying time-variation in higher-moment risk.

As our first main result, we show that our ex ante moments are positively correlated

with ex post realized moments. Consistent with previous research, our ex ante variance

predicts ex post realized variance well.1 More importantly, we show that our ex ante

1Previous literature has shown that ex post realized variance is well predicted by historical variance
or option implied variance, e.g. Bollerslev, Tauchen, and Zhou (2009), Andersen, Fusari, and Todorov
(2015), and Bollerslev, Hood, Huss, and Pedersen (2016).
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higher order moments also predict ex post higher order moments. We show that

our ex ante skewness, kurtosis, hyperskewness, and hyperkurtosis all have significant

predictive power over ex post realized moments. We further show that our ex ante

moments are better at forecasting ex post realized moments than their trailing (lagged)

moments.

Next, we show that these predictability results are robust in several ways. First, we

show that our results are not driven by the large price moves that occurred during the

financial crisis of 2008 to 2009. Second, we show that our moment prediction holds even

when controlling for risk-neutral moments. The latter is important because option-

implied risk-neutral skewness has been shown to predict ex post realized skewness, e.g.

Neuberger (2012).

As our second main result, we find that higher order moments move together in the

sense that skewness and hyperskewness are more negative at times when kurtosis and

hyperkurtosis are more positive. Indeed, we find that skewness is negatively correlated

with kurtosis with a correlation coefficient of −0.80, a negative correlation of −0.66

with hyperkurtosis, and a positive correlation of 0.79 with hyperskewness. These co-

movements in higher order moments are so strong that the first principal component

of the space spanned by skewness, kurtosis, hyperskewness, and hyperkurtosis explains

90% of the joint variation in higher order moments.

The first principal component eigenvector has the same signs for skewness and

hyperskewness, while the sign is opposite for kurtosis and hyperkurtosis. As shown in

Ebert (2013), an investor with power utility has preferences for odd number moments

of any order and is averse to even number moments of any order. A high value of

the first principal component can therefore be interpreted as times when higher order

moment risks are, on average, large (negative for odd moments and positive for even

moments). We therefore define the first principal component as a higher-moment risk

index (HRI).

As our third main result, we find that higher-moment risk varies systematically

with variance. Specifically, the correlation between variance and the HRI is −0.53

with 95% bootstrapped confidence bounds of [−0.60,−0.48], which emphasizes that

higher-moment risks tend to be high at times when variance is low. In addition, we

find that higher-moment risks tend to be high subsequent to market run-ups, which
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are usually “calm” times as measured by variance. We find that the HRI is positively

related to the past two year return. The relation is statistically significant at a 99%

level, showing that the return distribution is more left skewed and fat tailed subsequent

to a “good” period where prices have increased significantly.

Fourth, we show that higher-moment risk has large economic implications for in-

vestors. To understand the importance of higher-moment risk, we study the portfolio

risk of a volatility-targeting investor who holds a portfolio of cash and the market.

The investor adjusts the portfolio weights to achieve a constant volatility of σvol target.

Despite having constant variance, the riskiness of the portfolio varies substantially over

time as higher moment risk varies. Because higher moment risk is high when variance

is low, the portfolio is the riskiest when market variance is low.

To understand the economic magnitude of the systematic variation in higher-

moment risks, we estimate the probability that the return on the volatility-targeting

investor’s portfolio is less than −2σvol target. The monthly probability peaked on June

30th 2014 with a probability of 9.7%, almost three times the size of its low, on Febru-

ary 27th 2008, where the probability was 3.6%. Furthermore, the average probability

of a −2σvol target event is 6.6%, which is large compared to the 2.5% that is implied

by a normal distribution. Similarly, the probability of a portfolio return that is less

than −3σvol target peaked on November 30th 2006 with a probability of 3.6%, which is

four times the size of its low on February 27th 2008, when the probability was 0.76%.

These probabilities are also far above what is implied by a normal distribution, which

is 0.13%.

Furthermore, we find that the probability of a portfolio return that is less than

−2σvol target for the volatility-targeting investor is negatively correlated with variance

with a correlation coefficient of −0.70 and 95% bootstrapped confidence bounds of

[−0.78,−0.65]. This strong negative correlation further emphasizes the importance

of considering higher-moment risks in portfolio choice problems. For example, this

finding can help explain why Moreira and Muir (2017b) find that investors can earn

high Sharpe-ratios by moving wealth into the market at times when variance is low and

moving wealth out of the market when variance increases. The relative (to variance)

high expected return in calm times may be compensation for elevated higher-moment

risks.
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Our fifth main result shows how higher-moment risk is associated with several

economic drivers. First, our results are closely related to the volatility paradox (Bun-

nermeier and Sannikov, 2014), which is the notion that systematic risk is high when

variance is low. In their model, risk increases when variance is low because specialized

investors are more levered. We therefore investigate how the level of financial interme-

diary leverage is associated with higher-moment risk. In particular, we test if financial

intermediaries are more levered when variance is low, and if such variation in financial

intermediary leverage can explain our observed variation in higher moment risk. Us-

ing the measure of financial intermediary leverage from He, Kelly, and Manela (2016),

we find no relation between higher-moment risks and aggregate financial intermediary

leverage.

We next investigate how higher-moment risk is related to market illiquidity and

funding illiquidity. We find that higher-moment risks are positively associated with

both market and funding liquidity. Specifically, using the average value-weighted bid-

ask spread of S&P 500 constituents as a proxy for market illiquidity, we find that times

when the average bid-ask spread is low are times when higher-moment risks are high.

Similarly, using the TED spread as a proxy for funding illiquidity, we find that a low

TED spread is associated with high higher-moment risks.

Lastly, we investigate how higher-moment risks are related to previously suggested

measures of “bubble” characteristics and market valuation. We consider the “bubble”

characteristics: acceleration (Greenwood, Shleifer, and You (2017)), turnover (Chen,

Hong, and Stein (2001)), issuance percentage (Pontiff and Woodgate (2008)), and the

market valuation measures: CAPE, the dividend-price ratio, and cay (Lettau and

Ludvigson (2001)). We find that higher-moment risk is positively related to price

acceleration: there is more higher-moment risk when the recent price path is more

convex. Also, higher turnover after market run-ups is associated with more higher-

moment risk. Furthermore, there is more higher-moment risk when cay (Lettau and

Ludvigson, 2001) is high. We find no conclusive relation between higher-moment risks

and CAPE, the dividend-price ratio, or equity issuance.

Our paper relates to and extends the existing literature on estimating time-varying

market tail risk by integrating two different approaches. Previous research on tail

risk is based on either (1) physical moments based on backward looking information
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or (2) risk-neutral moments based on forward looking option prices. We show that

physical higher-moment risks can be estimated in a forward looking manner, and in real

time, which complements the existing literature that uses historical (backward looking)

returns to estimate tail risks; e.g., using realized returns, Bollerslev and Todorov (2011)

suggest using high frequency intraday returns and fit an extreme value distribution to

the tails of returns. Also, Kelly and Jiang (2014) estimate market wide tail risks from

the cross-section of firm-level returns. Our paper also relates to the literature that

studies tail risk using option prices. However, while the existing literature studies

tail risk using risk-neutral moments (e.g. Siriwardane (2015), Gao, Gao, and Song

(2017), Gao, Lu, and Song (2017), Bates (2000), and Schneider and Trojani (2017b)),

we study tail risk using physical moments. Thereby, we can investigate physical tail

probabilities and study which economic drivers can explain the time-varying patterns

in higher-moment risks.

In summary, higher-moment risks can be measured in real time, and a single factor

explains 90% of the joint variation in higher order moments. Furthermore, times

when higher-moment risks are high are characterized by: (1) low variance, (2) large

(and accelerating) recent price run-ups, (3) low market and funding frictions, (4) high

turnover, and (5) low future expected returns.

The paper proceeds as follows: Section 2 covers the theory behind how we estimate

higher order moments and tail probabilities. Section 3 covers the data and the empir-

ical implementation. Section 4 investigates the relation between our ex ante moments

and ex post realized moments. Section 5 studies the commonalities in higher order mo-

ments. Section 6 investigates the systematic patterns in higher-moment risks. Section

7 studies the implications of time-varying higher-moment risks for investors. Section

8 studies the economic drivers of higher-moment risks. Section 9 concludes the paper.

2 Inferring Ex Ante Moments from Asset Prices

We consider an economy where agents can trade two assets, a risk-free asset and a

risky asset. The risk-free asset earns a gross risk-free rate of return Rft,T between time

t and time T . The risky asset has a price of S and earns a random gross return Rt,T .

The risky asset pays dividends, Dt,T , between time t and time T such that its gross
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return is Rt,T = (ST +Dt,T )/St.

Starting from the standard asset pricing formula, we can relate risk-neutral and

physical expected values of the time T random payoff, XT , as

Et[XTmt,T ] = E∗t [XT ]/Rft,T (2.1)

where the asterisk denotes risk-neutral expectation and mt,T is a stochastic discount

factor. If we define the time T random payoff, Xt,T (n), in the following way

Xt,T (n) = Rnt,Tm
−1
t,T (2.2)

then equation (2.1) implies that the n’th moment of the risky asset’s physical return

distribution can be expressed in terms of the risk-neutral expectation of Xt,T (n):

Et[R
n
t,T ] = Et[R

n
t,Tm

−1
t,T︸ ︷︷ ︸

Xt,T (n)

mt,T ] = E∗t [Rnt,Tm
−1
t,T︸ ︷︷ ︸

Xt,T (n)

]/Rft,T (2.3)

So if we know the pricing kernel m, then we can derive all moments of Rt,T directly

from risk-neutral pricing of the claim to Xt,T (n). Following Martin (2017), we compute

the physical expected value of Rnt,T from the point of view of an unconstrained rational

power-utility investor who chooses to be fully invested in the market. This investor

has initial wealth W0 and terminal wealth WT = W0Rt,T . Given the investor’s utility

function, U(x) = x1−γ/(1 − γ), with relative risk-aversion, γ, we can determine the

investor’s stochastic discount factor. Specifically, combining the first order condition

from the investor’s portfolio choice problem with the fact that the investor holds the

market, the stochastic discount factor becomes proportional to R−γt,T :

mt,T = kR−γt,T (2.4)

for some constant k which is unobservable to us. However, we do not need to learn k

to estimate physical moments; we can correct for k by rewriting (2.3) in the following

way. First, setting n = 0 in (2.2) we get Xt,T (0) = m−1
t,T and the standard asset pricing
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formula (2.1) then implies the relation:

E∗t [m−1
t,T ] = Rft,T (2.5)

Then, inserting (2.5) and (2.4) into (2.3), we obtain an expression of the n’th physical

moment perceived by an unconstrained rational power utility investor who chooses to

be fully invested in the market:

Et[R
n
t,T ] =

E∗t [Rnt,T

m−1
t,T︷ ︸︸ ︷

Rγt,T /k]

E∗t [Rγt,T /k︸ ︷︷ ︸
m−1
t,T

]
=
E∗t [Rn+γ

t,T ]

E∗t [Rγt,T ]
(2.6)

since k is a constant.

The relation between physical and risk-neutral moments shown in (2.6) is central

to our empirical analysis. The key insight is that we can estimate the n’th physical

moment directly from risk-neutral pricing of Rγt,T and Rn+γ
t,T . Furthermore, by pricing

claims to the payoffs Rm+γ
t,T for m ∈ {1, ..., n}, we can then estimate standardized

moments.

To understand how we estimate standardized moments from (2.6), recall the notion

of the n’th standardized moment formula:

n’th standardized moment of Rt,T = Et

[(
Rt,T − Et[Rt,T ]

Var[Rt,T ]1/2

)n]
(2.7)

Expanding (2.7) and replacing physical moments with risk-neutral counterparts as

presented in equation (2.6), we can arrive at expressions for all physical standardized

moments as functions of risk-neutral moments. For example, the third standardized

physical moment (skewness) can be expressed in terms of risk-neutral moments by first

expanding (2.7) with n = 3:

Skewnesst,T =
Et[R

3
t,T ]− 3Et[Rt,T ]Et[R

2
t,T ] + 2Et[Rt,T ]3

(Et[R2
t,T ]− Et[Rt,T ]2)3/2

(2.8)

and then replacing the physical moments in (2.8) with the risk-neutral counterparts

using equation (2.6). Similar expressions can be written up for other higher order
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moments of interest, as seen in Appendix A. Importantly, the right-hand-side of (2.6)

consists of asset prices which can be estimated directly from current and observable

call and put options written on the risky asset. Hence, higher order moments can be

estimated in real time, without using historical realized returns or accounting data.

2.1 Inferring Ex Ante Market Tail Probabilities

Next, we show how we estimate ex ante tail probabilities from option prices written

on the market. To understand our approach, note first that the probability at time

t of a market return that is lower than α at time T can be written as the physical

expectation of an indicator function in the following way

Pt(Rt,T < α) = Et[1{Rt,T<α}] (2.9)

Using the standard asset pricing formula in (2.1), we can rewrite the probability in

terms of the risk-neutral measure by adjusting the right hand side of equation (2.9)

for the inverse of the stochastic discount factor in (2.4)

Pt(Rt,T < α) =
E∗t [Rγt,T 1{Rt,T<α}]

E∗t [Rγt,T ]
(2.10)

The right hand side of (2.10) is an asset price that has the simple representation

presented in Proposition 8, which generalizes Result 2 in Martin (2017) from log-utility

to general power utility for any level of relative risk-aversion.

Proposition 8. For the unconstrained rational power utility investor who wants to

hold the market, the conditional physical probability that market return from time t to

T is lower than α is:

Pt(Rt,T < α) =
Rft,T

E∗t [Rγt,T ]

[
αγput′t,T (αSt −Dt,T )− γ

St
αγ−1putt,T (αSt −Dt,T ) (2.11)

+

∫ αSt−Dt,T

0

γ(γ − 1)

S2
t

(
K +Dt,T

St

)γ−2

putt,T (K)dK

]
(2.12)

where put′t,T (αSt−Dt,T ) is the first derivative of the put option price with strike αSt−

Dt,T .
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Proof. The results of Breeden and Litzenberger (1978) imply the equality

E∗t [Rγt,T 1{Rt,T<α}] = Rft,T

∫ ∞
0

(
K +Dt,T

St

)γ
1{K<αSt−Dt,T }put′′t,T (K)dK (2.13)

where put′′t,T (K) is the second derivative of the put option price written on the under-

lying process S. Splitting the integral at αSt −Dt,T we have

E∗t [Rγt,T 1{Rt,T<α}] = Rft,T

∫ αSt−Dt,T

0

(
K +Dt,T

St

)γ
put′′t,T (K)dK (2.14)

Proposition 8 then follows from using integration by parts twice.

3 Data and Empirical Implementation

We use the Ivy DB database from OptionMetrics to collect information on call options

and put options that are written on the S&P 500 index for the last trading day of every

month. The data ranges from January 1996 to December 2015. We obtain implied

volatilities, strikes, closing bid-prices, closing ask-prices, and maturities. We proxy the

risk-free rate with the zero-coupon yield curve from the Ivy DB database, which is

derived from the LIBOR rates and settlement prices of CME Eurodollar futures. We

also obtain expected dividend payments. We consider options with times to maturity

between 10 and 360 calender days, and apply common filters, excluding contracts with

zero open interest, zero trading volume, quotes with best bid below $0.50, and options

with implied volatility higher than 100%.

We use daily realized returns to estimate realized daily moments. We also estimate

monthly moments from monthly returns. In Appendix A, we discuss the estimation of

realized moments in detail.

3.1 Estimating Market Moments

There is a large body of literature devoted to pricing asset derivatives such as those in

(2.6), using observable option prices written on the asset. Indeed, Breeden and Litzen-

berger (1978), Bakshi and Madan (2000), and Bakshi, Kapadia, and Madan (2003)

show that the arbitrage free price of a claim on some future (twice differentiable) pay-

off can be expressed in terms of a continuum of put and call option prices. Specifically
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for our purposes, using the results of Breeden and Litzenberger (1978), Martin (2017)

shows that we can write the n’th physical moment of Rt,T as

Et[R
n
t,T ] =

E∗t [Rn+γ
t,T ]

E∗t [Rγt,T ]
=

(Rft,T )n+γ +Rft,T [p(n+ γ) + c(n+ γ)]

(Rft,T )γ +Rft,T [p(γ) + c(γ)]
(2.15)

with

p(θ) =

∫ Ft,T

0

θ(θ − 1)

Sθt

(
StR

f
t,T − Ft,T +K

)θ−2
putt,T (K)dK (2.16)

c(θ) =

∫ ∞
Ft,T

θ(θ − 1)

Sθt

(
StR

f
t,T − Ft,T +K

)θ−2
callt,T (K)dK (2.17)

where Ft,T is the forward price and callt,T (K) and putt,T (K) are call and put option

prices written on the risky asset at time t with horizon T − t and strike K.

In practice, we do not observe a continuum of call and put options and therefore

(2.15) must be numerically approximated. Let Ft,T be the forward price and, using

the notation from Martin (2017), we can write the price, Ωt,T (K), at time t of an

out-of-the money option with strike K and maturity T as

Ωt,T (K) =

 callt,T (K) if K ≥ Ft,T
putt,T (K) if K < Ft,T

(2.18)

We let K1, ...,KN be the (increasing) sequence of observable strikes for the N out-of-the

money put and call options and define ∆Ki = Ki+1−Ki−1

2 with

∆Ki =

 Ki+1 −Ki if i = 1

Ki −Ki−1 if i = N .
(2.19)

We approximate the integrals in (2.16) by observable sums such that the n’th physical

moment becomes:

Et[R
n
t,T ] =

(Rft,T )n+γ +Rft,T

[∑N
i=1

(n+γ)(n+γ−1)
Sn+γ

(StR
f
t,T − Ft,T +Ki)

n+γ−2Ωt,T (Ki)∆Ki

]
(Rft,T )γ +Rft,T

[∑N
i=1

γ(γ−1)
Sγ (StR

f
t,T − Ft,T +Ki)γ−2Ωt,T (Ki)∆Ki

]
(2.20)
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In summary, combining equation (2.20) with the standardized moment formula in equa-

tion (2.7), we can express standardized physical moments in terms of the derivatives

prices written on the risky asset.

When we estimate physical moments for a given horizon, say T , for which we do

not observe put and call prices, we linearly interpolate the (standardized) moments

between the two closest horizons available in the data. In a few cases, we need to

extrapolate to obtain moments for the desired horizon.

Our benchmark investor has power utility and a coefficient of relative risk-aversion

of 3, that is, γ = 3. This level of risk-aversion as the benchmark is motivated by the re-

sults of Bliss and Panigirtzoglou (2004), i.e., using our sample we replicate their results

and find that 3 is the optimal option-implied level of risk aversion when matching re-

alized returns at the monthly horizon. We also estimate moments for the risk-neutral

investor, the log-utility investor, and the power utility investor with a risk-aversion

coefficient of 5.

Figure 2.1 shows monthly higher order moments and Table 2.1 shows the moment

summary statistics. The average ex ante estimated skewness is negative for both

horizons and all levels of risk aversion, suggesting that the physical distributions are

left skewed. Consistent with the results of Neuberger (2012), we find that average

skewness is not diminishing in the horizon, in the sense that skewness is close to the

same on a monthly and quarterly horizon. Similarly, average kurtosis is larger than

3 for both horizons and all levels of risk aversion, which means that the physical

distributions are leptokurtic; that is, the tails of the physical return distributions are

fatter than what is implied by a normal distribution.

3.2 Estimating Market Tail Probabilities

The main challenge when implementing Proposition 8 is that we are required to es-

timate the first derivative of the put option price written on the risky asset at strike

αSt−Dt,T . To handle a sparse and discrete set of observed option prices, we smoothen

observed option prices using a Gaussian kernel smoothening procedure. Specifically,

we smoothen implied volatilities around the strike αSt − Dt,T and choose the kernel

bandwidth to minimize the squared errors between the observed and estimated im-
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plied volatilities under the constraint that the estimated option prices do not allow for

arbitrage.

Given a smooth set of option prices around the strike αSt −Dt,T , we compute the

first derivative as the slope between the two adjacent prices:

put′t,T (αSt −Dt,T ) =
putt,T (αSt −Dt,T + h)− putt,T (αSt −Dt,T − h)

2h
(2.21)

where h is the chosen grid step size in the discretization.

Let K1, ...,KM be the (increasing) sequence of observable strikes for the M out-of-

the money put options where KM is the observed strike that is closest to αSt −Dt,T .

We approximate the integral in Proposition 8 by the observable sum:

M∑
i=1

γ(γ − 1)

S2
t

(
Ki +Dt,T

St

)γ−2

putt,T (Ki)∆Ki (2.22)

Inserting (2.21) and (2.22) into Proposition 8, we can estimate physical probabilities.

4 Estimated Moments Predict Realized Moments

In this section, we show that the ex ante higher order moments estimated using the

methods described in Sections 2 and 3 predict ex post realized higher order moments.

We start with a simple sorting exercise. For each moment, we first sort ex post

realized monthly returns into a “low” or “high” bucket depending on whether the ex

ante moment is lower or higher than its median time series value. Next, we estimate the

ex post moments for each bucket; for example, we estimate moments using the monthly

ex post returns sorted into the “high” bucket. Figure 2.2 shows the monthly ex post

realized moments of the two buckets for all moments. The ex post realized returns

sorted into the “high” buckets exhibit in-sample higher moment values, suggesting

that our ex ante moments predict ex post moments, for example, the “high” bucket

for kurtosis has an in-sample kurtosis of 5.93, while the “low” bucket has a kurtosis of

2.85.

Next, we test more formally the relation between ex ante and ex post moments.

Specifically, we conduct two tests which differ in the way we estimate ex post realized

higher order moments. First, we test if the bucket values following our sorting exercise
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are extreme compared to what a random sample would produce. For each moment,

we bootstrap a distribution using permutations and then evaluate where in this distri-

bution our observed “low” and “high” bucket values lie. Panel A of Table 2.2 reports

the values from the ex ante sorting and significance, which is computed from the boot-

strapped distribution in the following way: for the “low” buckets, we estimate the

frequency at which a random permutation lies below what we observe. For the “high”

buckets, we estimate the frequency at which a random permutation lies above what

we observe. For example, the −0.83 value for skewness in the “low ex ante” bucket is

not in the lower 10% of the bootstrapped distribution and is therefore insignificant at

a 90% level. However, the 5.93 value for kurtosis in the “high ex ante” bucket is in

the upper 5% of the bootstrapped distribution for kurtosis and is therefore significant

at a 95% level. Importantly, our ex ante moments show statistical significance at a

95% level at least once, for every moment except skewness. Comparing these results

to the results we get when sorting the ex post realized returns into two buckets based

on the trailing monthly moments (estimated using daily returns), we find that our ex

ante moments clearly outperform.

Second, we estimate time-varying ex post monthly (and quarterly) realized mo-

ments using daily returns; that is, for a given month, we estimate the in-sample

moments for that month using the daily returns during that month. The first two

columns of Panel B of Table 2.2 report correlations between our ex ante moments and

the ex post realized moments. The latter two columns report correlations between ex

post realized moments and their trailing (lagged) moment. We report bootstrapped

standard errors in the appendix.

Correlations between our ex ante variances and ex post variances are 49% to 67%,

and these correlations are both statistically significant at a 99% level. We also find

strong correlations between ex ante and ex post skewness, ranging from 21% to 25%,

which are both significantly different from zero at a 99% level. Correlations of our ex

ante and ex post hyperskewness are positive and significant at the 99% level. Compar-

ing the correlations of our ex ante moments to those of the trailing moments we find

that, on a monthly horizon, trailing moments do not predict either skewness or hyper-

skewness whereas our ex ante moments do. On a quarterly horizon, trailing moments

do predict ex post realized moments, however the correlations are lower than for our
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ex ante moments.

Neither our ex ante moments nor the trailing moments seem to be able to predict

ex post kurtosis or hyperkurtosis. For our ex ante moments, this might be because of

the fact that there are fewer available option prices in the right tail of the distribution,

that is, deep out-of-the-money call options are traded less frequently than deep out-of-

the-money put options. We therefore test if our ex ante kurtosis (and hyperkurtosis)

can predict left kurtosis, which is for our purposes the important tail of the distribution

to be able to predict. Therefore, we follow Denbee, Julliard, Li, and Yuan (2016), and

estimate ex post realized left kurtosis in the following way:

Realized left kurtosist,T =

∑
s

(
Daily returns−Realized daily meant,T

Realized daily variance
1/2
t,T

)4

Realized kurtosist,T
(2.23)

where s is the days in the month where Daily return < Realized daily meant,T . The

realized right kurtosis is defined in the obvious way, where daily returns are larger than

the realized mean.

Panel C of Table 2.2 shows the correlations between our ex ante kurtosis and the

ex post realized left kurtosis and left hyperkurtosis. Both on a monthly and quarterly

horizon, our ex ante kurtosis and hyperkurtosis are positively and statistically signif-

icantly correlated to ex post realized left kurtosis and left hyperkurtosis. This result

should be interpreted in the following way: times when our ex ante kurtosis is high are

times when the ex post realized kurtosis can be attributed primarily to the left tail of

the return distribution. Comparing the correlations between our ex ante moments and

ex post realized left kurtosis and left hyperkurtosis to the correlations between trailing

moments and ex post left kurtosis and left hyperkurtosis, we find that while monthly

trailing moments do not predict ex post moments, quarterly trailing moments do pre-

dict ex post realized left kurtosis and hyperkurtosis, but the correlations are smaller

than for our ex ante moments.

Overall, Figure 2.2 and Panel A, B, and C of Table 2.2 show that our ex ante

moments predict ex post realized moments. It is natural to worry that the results are

driven by the large price moves that occurred during the period of financial distress

from 2008 to 2009. To address this concern, Panel A of Table 2.3 shows correlations be-

71



tween our ex ante moments and ex post realized moments when removing observations

that overlap with the period August 1st 2008-July 31st 2009. The results are largely

unchanged, suggesting that the financial crisis does not drive the strong predictive

results.

Panel B of Table 2.3 shows th correlations for other levels of risk-aversion. The

results from the point of view of a log-utility investor or a power-utility investor with

a risk-aversion of 5 are not remarkably different from the results presented in Panel B

of Table 2.2 for the power-utility investor with a risk-aversion of 3.

As a second robustness test of moment predictability, we ask if physical higher order

moments predict ex post realized moments when controlling for risk-neutral moments.

Another way to put it is to ask: do we gain anything in terms of predictability for

moving from risk-neutral to physical moments? Table 2.3 shows the results of the

following two-stage procedure. In the first stage, we run the two regressions:

Realized Momentt,T = α1 + β1E
∗
t [Momentt,T ] + εt,T (2.24)

Et[Momentt,T ] = α2 + β2E
∗
t [Momentt,T ] + ηt,T (2.25)

where Et[Momentt,T ] is our ex ante physical moment and E∗t [Momentt,T ] is the corre-

sponding risk-neutral moment. The residuals, ε and η, are by construction orthogonal

to risk-neutral moments, and their correlation therefore determines whether physical

moments can explain the variation in realized moments in excess of what is explained

by risk-neutral moments. In the second stage we estimate the correlation between ε

and η. The first two columns of Panel C of Table 2.3 report these correlations, and

bootstrapped standard errors that correct for the generated regressor problem we face

when estimating the residuals in the first stage regressions are in the appendix.

The correlations between ε and η on a monthly horizon range from 0.09 to 0.16 and

are statistically significant at a 95% level for kurtosis, hyperskewnes, and hyperkurtosis,

implying that our monthly ex ante moments still predict ex post realized moments when

controlling for risk-neutral moments. The results are weaker for quarterly moments;

only hyperskewness is statistically significant and positive.

As a third robustness test of predictability, we test if our ex ante estimated higher

order moments predict ex post realized moments when controlling for trailing (lagged)
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moments. We therefore repeat the two-stage procedure described above. In the first

stage we run the following two regressions

Realized Momentt,T = α3 + β3Realized Momentt−(T−t),t + κt,T (2.26)

Et[Momentt,T ] = α4 + β4Realized Momentt−(T−t),t + ψt,T (2.27)

The residuals, κ and ψ, are by construction orthogonal to the historical moments

and their correlation therefore determines whether physical moments can explain the

variation in the realized moments in excess of what is explained by historical moments.

In the second stage we estimate the correlation between κ and ψ. The last two columns

of Panel C of Table 2.3 report these correlations, and bootstrapped standard errors

that correct for the generated regressor problem we face when estimating the residuals

in the first stage regressions are in the appendix. Controlling for historical (lagged)

moments does not change our results. Our ex ante moments have predictive power for

ex post realized moments in excess of what is explained by historical moments. Since

trailing quarterly moments do predict ex post realized moments, it is particularly

important to notice that our quarterly moments add predictability in excess of what

the realized trailing moment counterpart can predict.

5 Commonalities in Higher-Moment Risks

Higher order moments exhibit persistent and interesting time-series co-movements, i.e.,

higher-moment risks move together, in the sense that skewness and hyperskewness are

more negative at times when kurtosis and hyperkurtosis are more positive. To see

this, Table 2.4 shows monthly (Panel A) and quarterly (Panel B) pairwise correlations

between the first six moments of the physical return distribution. The green (lower

right) box shows pairwise correlations between higher order moments. We have flipped

the signs for skewness and hyperskewness such that a higher (more positive) value

can be translated into higher risk — recall that lower (more negative) skewness and

hyperskewness implies more mass in the left tail of the return distribution and therefore

higher probabilities of large down movements. These correlations are all positive and

large, suggesting that risk as measured by individual higher order moments tends to
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be simultaneously high or low.

The strong co-movement of higher order moments suggests that the joint variation

in higher order moments can be attributed to a single factor. We therefore estimate the

principal components of the space spanned by skewness, kurtosis, hyperskewness, and

hyperkurtosis. The four principal components are shown in Table 2.5. Interestingly,

at both the monthly and quarterly horizon, the first principal components explains

about 90% of the joint variation in higher order moments, underlining the strong co-

movement in higher-moment risks.

As was expected, the first principal component eigenvectors have the same signs

for skewness and hyperskewness, while the sign is opposite for kurtosis and hyperkur-

tosis. We standardize each moment to make the eigenvector loadings comparable. The

size of the loadings for the first principal components are very similar across the mo-

ments, namely −0.45 (−0.47 quarterly) for skewness, 0.52 (0.51 quarterly) for kurtosis,

−0.52 (−0.52 quarterly) for hyperskewness, and 0.50 (0.50 quarterly) for hyperkurto-

sis, implying that the first principal component is approximately the average of the

standardized higher order moments with the signs flipped for skewness and hyper-

skewness. As shown in Ebert (2013), an investor with power utility has a preference

for odd number moments of any order and is averse to even number moments of any

order. A high value of the first principal component can therefore be interpreted as

times when higher order moments (the moments that add mass to the lower tail of

the return distribution) are on average large. It is therefore natural to define the first

principal component as a higher-moment risk index.

Higher-Moment Risk Index: We define a higher-moment risk index (HRI) as the

first principal component of the space spanned by skewness, kurtosis, hyperskewness,

and hyperkurtosis.

6 Systematic Variation in Higher-Moment Risks

Figure 2.1 displays the time-series plot of the monthly HRI which shows clear system-

atic variation in higher-moment risk. During the period of financial market distress

from 2008 to 2009, HRI was low, whereas during the low variance period from 2004 to

2007, leading up to the financial crisis, monthly HRI was high, suggesting that higher-
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moment risks are high at times when markets are calm. In this section we investigate

these systematic patterns.

The blue (upper right) box of Panel A of Table 2.4 shows the pairwise correlations

between variance and higher order moments. Variance is negatively correlated to the

negative of skewness, kurtosis, the negative of hyperskewness, and hyperkurtosis with

correlations ranging from 0.41 to 0.54. This finding is interesting because it reveals

the systematic variation in higher-moment risks; that is, higher-moment risks are high

at times when the market is perceived to be safe and calm as measured by variance.

Said differently, risk doesn’t go away – it hides in the tails.

Figure 2.3 shows time-series plots of variance and the HRI. In the years after the

high variance period in 2003 (following the dot.com bubble), as the market became

more and more safe as measured by variance, higher-moment risks move steadily in

the opposite direction, i.e., skewness became more negative, kurtosis became more

positive, and overall the HRI increase significantly. Furthermore, as the financial crisis

started to reveal itself, following the default of the Bear Sterns hedge funds, then

market uncertainty spread through higher variance – as the tail of the distribution

diminished, higher-moment risks decreased.

Somewhat surprisingly, the HRI peaked on June 30th 2014, when monthly ex ante

variance was at its lowest point in seven years. This period, which was calm as mea-

sured by variance, was associated with high higher-moment risks. The main political

and economical uncertainty during this period was associated with the economic sanc-

tions made by the US targeting Russia over Russia’s continuing involvement in Crimea.

Panel A of Table 2.6 shows correlations between variances and the HRI. Generally,

higher-moment risk as measured through the HRI is high at times when variance is low.

On a monthly horizon, the magnitude of the correlation between variance and HRI is

−0.53 with 95% bootstrapped confidence bounds of [−0.60,−0.48]. The magnitudes

and confidence bounds are quantitatively the same for the quarterly HRI.

Related to the co-movements between variance and higher-moment risks, we also

find that higher-moment risks tend to be high after recent market run-ups. To show

this, Figure 2.4 shows time-series plots of the past two year return and the HRI. Past

returns and the HRI are positively correlated with correlations of 0.38 and 0.35 on

monthly and quarterly horizons respectively. To further investigate the dependencies
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between market run-ups and subsequent higher-moment risks we run a set of regres-

sions of ex ante moments onto the past two year return,2 rt−24,t = Rt−24,t − 1:

Mt,T = β0 + β1rt−24,t + εt,T (2.28)

where the moments, Mt,T , are variance, skewness, kurtosis, hyperkurtosis, hyperskew-

ness, and the higher-moment risk index (HRI). Panel B of Table 2.6 shows the β1

coefficients of regression (2.28) and in Panel C of Table 2.6 we show β1 coefficients of

regression (2.28) when controlling for the lagged ex ante moment.

We find a negative and significant relation between past returns and variance. This

finding is consistent with the intuition that times after market run-ups are “calm”

times where risk, as measured by variance, is low. Looking at skewness, we find

a statistically significant and negative relation with past returns, implying that the

return distribution tilts to the right and leaves more probability mass in the left tail of

the return distribution subsequent to market run-ups. Similarly, kurtosis is statistically

significant and positive in past returns, hyperskewness is negative in past returns, and

hyperkurtosis is positive in past returns. The results are quantitatively similar for

monthly and quarterly moments. Panel C of Table 2.6 shows that controlling for

lagged risk does not change our results. We still find strong significant systematic

variation in higher order moments.

7 Implications for Investors

The results presented in Table 2.4, Table 2.5, and Table 2.6 show that times when

variance is low are times when the market’s return distribution is highly left skewed

(due to large negative skewness and hyperskewness) and fat tailed (due to large positive

kurtosis and hyperkurtosis). That higher-moment risks are high at times when variance

is low runs counter to the way we usually think about risk, i.e., we often equate risk

with variance, saying that risk is high at times when variance is high. To better

understand the importance of higher-moment risks, we next investigate portfolio risks

for two investors who both hold a portfolio of cash and the market.

The first investor holds a constant notional in the market. The probability that

2This is similar to the market run-up period of Greenwood, Shleifer, and You (2017).
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the investor’s portfolio realizes an unexpected return (the shock to the portfolio),

rshock
t,T = Rt,T − Et[Rt,T ], less than α is:

Pt(r
shock
t,T < α) (2.29)

The constant notional investor is exposed to both time-varying variance risk and time-

varying higher-moment risks; that is, the probability that the portfolio realizes an

unexpected return less than α depends on both conditional variance and conditional

higher order moments.

The second investor targets a constant level of portfolio volatility, i.e., the investor

moves wealth in and out of the market such that the portfolio has constant volatil-

ity. Such volatility-targeting strategies are common practice and have been shown to

generate high risk-adjusted returns (e.g. Moskowitz, Ooi, and Pedersen (2012), As-

ness, Frazzini, and Pedersen (2012), Moreira and Muir (2017a), and Moreira and Muir

(2017b)). If σt,T is the market’s conditional volatility, rt,T = Rt,T − 1 is the return on

the market, and rft,T is the risk-free rate of return, then rvol target
t,T is the return on the

volatility-targeting investor’s portfolio who targets a constant volatility of σvol target:

rvol target
t,T =

σvol target

σt,T︸ ︷︷ ︸
ωt,T

rt,T +

(
1− σvol target

σt,T

)
rft,T (2.30)

where ωt,T is the fraction of wealth held in the market. If ωt,T > 1, the investor levers

up by borrowing cash to invest more than all the initial wealth in the market. We

assume for simplicity that the investor is unconstrained. The unexpected return of

the volatility-targeting investor’s portfolio is rvol target,shock
t,T = rvol target

t,T − Et[rvol target
t,T ]

which can be rewritten as:

rvol target,shock
t,T = ωt,T rt,T + (1− ωt,T ) rft,T −

(
ωt,TEt[rt,T ] + (1− ωt,T ) rft,T

)
(2.31)

= ωt,T r
shock
t,T (2.32)

The probability that the volatility-targeting investor’s portfolio realizes an unexpected
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return less than α is:

Pt(r
vol target,shock
t,T < α) = Pt

(
σvol target

σt,T
rshock
t,T < α

)
(2.33)

= Pt

(
rshock
t,T <

α

σvol target
σt,T

)
(2.34)

For example, if σvol target = 5% and α = −10%, then the probability that the volatility-

targeting investor’s portfolio realizes a return that is 10% lower than expected is

Pt

(
rshock
t,T < −2σt,T

)
.3 The volatility-targeting investor’s portfolio is only exposed to

time-varying higher-moment risks, that is, given a level of σvol target, the probability

that the investor’s portfolio realizes a return less than α depends only on conditional

higher order moments. Time-varying variance risk is eliminated by targeting a constant

level of portfolio volatility.

Recall that σt,t+h is the ex ante volatility from time t to t+ h, and we then define

σ̄h as the time series average of σt,t+h. For example, the time-series average of monthly

volatility for the S&P 500 index is σ̄h = 5.0%. Figure 2.5 shows time-series plots of

monthly probabilities, as shown in (2.29) and (2.33), where α = −2σ̄month = −10.1%

and the volatility-target is σvol target = 5.0%.

The top figure shows the probabilities of−2σt,t+1 drops in the market, which are the

probabilities of the volatility-targeting investor’s portfolio return. The horizontal line

shows the probability of a−2σt,t+1 drop in the market implied by a normal distribution,

which is 2.5%. The shaded area between the two lines is higher-moment risk; that is,

the excess probability of a tail event due to negative skewness, excess kurtosis, and

all other higher order moments. Interestingly, the probabilities, in excess of what is

implied by a normal distribution, range from 1.1% to 7.2%, showing that time-varying

higher-moment risks have large economic implications for the risk of the volatility-

targeting investor’s portfolio. The probability of a −2σt,t+1 drop peaked on June 30th

2014 with a probability of 9.7%, almost three times the size of its low on February 27th

2008, where the probability was 3.6%. The systematic variation in the tail probabilities,

from 3.6% at high variance times to 9.7% at low variance times, emphasizes that

investors who manage risk by managing variance are implicitly imposing more risk

3Notice that this probability is not necessarily the same as the probability of a portfolio return of
−10%. In the example, the probability of a portfolio return of −10% is Pt

(
rshockt,T < −2σt,T − Et[rt,T ]

)
.
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into their portfolio when variance is low.

The bottom figure shows the probabilities of −2σ̄ = −10.1% drops in the mar-

ket along with the probabilities implied by a normal distribution. The shaded area

between the two lines is higher-moment risk for the constant notional investor. The

probability of a −10.1% drop in the market is, as expected, high when variance is high.

Importantly, higher-moment risk also contributes to the portfolio risk for the constant

notional investor, and the economic magnitude is large. For example, the probabilities,

in excess of what is implied by a normal distribution, range from 0.5% on October 31st

2006 to 4.8% on August 31st 2015. On August 31st 2015, the total probability of a

−10.1% drop was 9.90%, which means that, on that day, 48% of the probability mass

in the left tail of the return distribution beyond −10.1% was due to higher-moment

risk.

Figure 2.6 shows time-series plots of monthly probabilities, as shown in (2.29)

and (2.33), where α = −3σ̄month = −15.1%. The probability of a portfolio return

that is less than −3σt,t+1 peaked on November 30th 2006 with a probability of 3.6%,

which is four times the size of its low on February 27th 2008, where the probability

was 0.8%. These probabilities are far from what is implied by a normal distribution,

which is 0.13%. Specifically, the average probability of a −3σt,t+1 event is 1.8%, which

is fourteen times higher than what is implied by the normal distribution. Figure 2.6

shows that higher-moment risk is even more important when evaluating the probability

of events further out in the lower tail of the return distribution; that is, the relative

amount of probability mass in the lower tail that is due to higher-moment risk increases

the further we go out in the tail.

The probabilities co-move in the sense that, when the probability of a −2σt,T event

is high, then the probability of a−2σ̄ event is low. To further investigate these patterns,

Panel A of Table 2.7 reports correlations between variance and the probability of a

portfolio return that is less than α for the constant notional investor and the volatility-

targeting investor. The first column of Panel A shows the correlations between variance

and the probability that the market realizes an unexpected return less than −2σ̄h (the

probability of a constant notional investor)

Pt(r
shock
t,t+h < −2σ̄h) (2.35)
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The correlations range from 0.94 to 0.98 with tight bootstrapped confidence bounds,

showing that the conditional probability that the market realizes a return less than

−10.1% monthly or −15.1% quarterly is highly correlated with conditional variance,

which would be expected just from looking at Figure 2.5.

Panel A of Table 2.7 also reports correlations between variance and the probability

of a portfolio return that is less than α for the volatility-targeting investor. Specifically,

we estimate the correlations between variance and the probabilities of a −2σt,t+h

Pt(r
shock
t,t+h < −2σt,t+h) (2.36)

This probability is equivalent to the probability in (2.33) with α
σvol target = −2. Inter-

estingly, the correlations in the last two column of Panel A are all negative and range

from −0.70 to −0.44, with tight bootstrapped confidence bounds. These high negative

correlations show that the portfolio of the volatility-targeting investor is most risky at

times when variance is low, even though the investor has eliminated all dependencies

on variance in the portfolio.

This finding can help explain why Moreira and Muir (2017a) and Moreira and

Muir (2017b) find that investors can earn high Sharpe ratios by moving wealth into

the market at times of low variance and moving wealth out of the market when variance

increases (in some sense mimicking a volatility targeting strategy). The relatively (to

variance) high expected return in calm periods may be compensation for the elevated

higher-moment risks.

To better understand the systematic variation in higher-moment risks, we next

investigate the relation between tail probabilities and past returns. Specifically, we

regress tail probabilities onto past two year returns, e.g. the probability of a −2σt,t+1

drop as

Pt(r
shock
t,t+h < −2σt,t+h) = β0 + β1rt−24,t + εt,T (2.37)

Panel B of Table 2.7 reports β1 coefficients from regressions such as in (2.37). We find

that the probability of both a −2σt,t+1 and a −3σt,t+1 drop in the market is statistically

significant and positively related to past returns. The economic magnitude is such

that a 50% market run-up over the past two years implies a 1% higher probability of
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a monthly −2σt,t+1 drop in the market. Furthermore, the monthly probability of a

−10% drop in the market is negatively related to past returns, which is to be expected,

because this probability is highly correlated to variance, as shown in Table 2.6, and

periods after market run-ups are usually associated with low variance. Panel C of

Table 2.7 reports β1 coefficients from regressions such as in (2.37) when controlling for

lagged probabilities. Controlling for lagged probabilities does not change our results:

high past two year returns imply higher current tail probabilities for the volatility-

targeting investor.

Our finding that market run-ups are related to contemporaneously higher higher-

moment risks supplements the existing literature that relates market run-ups to subse-

quent (realized) market “crashes”, e.g. Greenwood, Shleifer, and You (2017). Specifi-

cally, we find that the probability of an x% drop in the market decreases in past returns.

High past returns means low current volatility and a low probability of a subsequent

x% drop in the market price. However, conditional on variance, the probability of an

x% drop in the market increases in past returns.

8 What Explains Higher-Moment Risk?

In this section we investigate three possible explanations for the systematic variation in

higher-moment risk. First, we investigate how higher-moment risk is associated with

financial intermediary leverage. Second, we study how market and funding liquidity

relates to higher-moment risk. Third, we investigate how higher-moment risk is asso-

ciated with common “bubble” characteristics. Throughout this section, we will focus

on monthly horizon ex ante higher-moment risk.

8.1 The Volatility Paradox and Intermediary Leverage

The volatility paradox is the phenomenon that endogenous risk is high even though

exogenous risk is low (Brunnermeier and Sannikov (2014)). Loosely speaking, exoge-

nous risk can be seen as variance and endogenous risk can be seen as higher-moment

risk. When variance is low, investors take on more risk in their positions, for in-

stance through leverage, which creates endogenous risk. This negative relation be-

tween higher-moment risk and variance is closely related to our empirical findings,
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we therefore test if our finding can be linked to the economic drivers suggested by

Brunnermeier and Sannikov (2014).

One way in which this endogenous risk may arise is through intermediary leverage.4

We test if financial intermediary leverage can help explain higher-moment risks by

running the following regression:

Mt,T = β0 + β1Leveraget + εt,T (2.38)

where the risk, Mt,T , is variance, skewness, kurtosis, hyperkurtosis, hyperskewness, and

the higher-moment risk index (HRI). Leverage is the financial intermediary leverage

ratio of He, Kelly, and Manela (2016). Regression (2.38) relates aggregate financial

intermediary leverage to contemporaneous higher-moment risks. Panel A of Table 2.8

shows the results of regression (2.38). We find that leverage is positively associated

with contemporaneous ex ante variance, which is consistent with financial intermediary

leverage being counter-cyclical, as noted in He, Kelly, and Manela (2016). The first

column of Panel A shows that aggregate financial intermediary leverage is not related

to the HRI: we find a regression coefficient pf −0.15 which is statistically insignificant.

Decomposing higher-moment risks into individual moments, we do not find a significant

relation between financial intermediary leverage and individual higher order moments.

Overall, aggregate leverage does not help explain higher-moment risks.

Next, we test if conditional (on variance) financial intermediary leverage is associ-

ated with higher-moment risks. We run the regression:

Mt,T = β0 + β1Leveraget + β2Variancet,T + εt,T (2.39)

Panel B of Table 2.8 reports the results of regression (2.39). Interestingly, we find that,

conditioning on ex ante variance, financial intermediary leverage can help explain con-

temporaneous higher-moment risks. We find that skewness, kurtosis, hyperskewness,

and hyperkurtosis all load statistically significantly on financial intermediary leverage,

with negative signs for skewness and hyperskewness and positive signs for kurtosis

4Several papers have shown that financial intermediary leverage is associated with asset returns,
e.g. He, Kelly, and Manela (2016), He and Krishnamurthy (2013), Adrian and Boyarchenko (2012),
and Adrian, Etula, and Muir (2014).
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and hyperkurtosis. Furthermore, the HRI is positively related to conditional financial

intermediary leverage. Given a level of ex ante variance, higher leverage is associated

with higher contemporaneous higher-moment risks.

Panel C in Table 2.8 reports regression (2.39) when controlling for lagged risk.

Controlling for lagged risk does not change our results. Aggregate financial intermedi-

ary leverage is in general not associated with higher-moment risks. Given a level of ex

ante variance, and controlling for lagged risk, higher leverage is associated with higher

contemporaneous higher-moment risks.

8.2 Market Liquidity and Funding Liquidity.

Several previous papers link market liquidity and funding liquidity to aspects of the

stock market’s return distribution. Christoffersen, Feunou, Jeon, and Ornthanalai

(2016) suggest market illiquidity as an economic factor driving risk-neutral market

variance and jump risks, or equivalently, higher order moments. They argue that mar-

ket illiquidity is the common culprit of market price drops in cases when the price

drop happened without news about fundamentals, and it is therefore a reasonable eco-

nomic driver of market moments. Brunnermeier and Pedersen (2009) show that, from

a theoretical point of view, stocks with low market (and funding) liquidity have high

variance because they are associated with high margin requirements. Furthermore,

Danilova and Julliard (2015) develop a model in which volatility and illiquidity are

jointly determined by the same equilibrium forces.

First, we test if high market illiquidity is associated with high contemporaneous

ex ante variance. Thereafter, we investigate the relation between market illiquidity

and higher-moment risks. When testing the relation between higher-moment risks (or

variance) and market illiquidity, we run the regression:

Mt,T = β0 + β1Bid-ask spreadt + εt,T (2.40)

where the risk, Mt,T , is variance, skewness, kurtosis, hyperkurtosis, hyperskewness,

and the higher-moment risk index (HRI). As a proxy for market illiquidity, we fol-

low Christoffersen, Feunou, Jeon, and Ornthanalai (2016), and use the average value-
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weighted bid-ask spread of constituents of the S&P 500 index.

Panel A of Table 2.9 reports the results of regression (2.40). We find that higher

market illiquidity is associated with higher contemporaneous ex ante variance, which

is consistent with the model of Brunnermeier and Pedersen (2009). The effect is

statistically significant at a 99% level and controlling for lagged variance does not

change the result.

The HRI is negatively related to market illiquidity with a regression coefficient of

−1.22, which is statistically significant at a 99% level. When we control for lagged

HRI, we still get a negative relation between market illiquidity and higher-moment

risks, but the relation is insignificant. The negative relation between the HRI and

market illiquidity shows that higher-moment risks tend to be high at times when the

market is most liquid.

Next, we test the relation between funding illiquidity and higher-moment risks. We

run the regression:

Mt,T = β0 + β1TED spreadt + εt,T (2.41)

where the risk, Mt,T , is variance, skewness, kurtosis, hyperkurtosis, hyperskewness,

and the higher-moment risk index (HRI). The TED spread is a common proxy for

funding illiquidity, e.g. Frazzini and Pedersen (2014). The TED spread is the three

month LIBOR intrabank interest rate minus the three month T-bill interest rate and

it is available from the St. Louis FED.

Panel B of Table 2.9 reports the results of regression (2.41). Contemporaneous ex

ante variance is positively related to funding illiquidity, higher TED spread is associated

with higher ex ante variance. We find that the HRI is negatively related to funding

illiquidity which means that, higher-moment risks are high at times when there is low

friction in the funding market. Controlling for the lagged HRI does not change our

result.

Figure 2.7 shows time-series plots of market illiquidity and funding illiquidity with

the HRI. Consistent with the results presented in Table 2.9, we see that the HRI is

negatively correlated with both the bid-ask spread and the TED spread.
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8.3 “Bubble” Characteristics

A range of macroeconomic variables have been proposed as possible indicators of in-

creased market “crash” risks, or equivalently, increased higher-moment risks. A partial

list of the variables include the suggestion of Chen, Hong, and Stein (2001), who sug-

gest turnover, Pontiff and Woodgate (2008), who use issuance as a characteristic, and

Greenwood, Shleifer, and You (2017), who propose price acceleration as a higher-

moment risk characteristic.

In this section we investigate the relation between common market “crash” indica-

tors and contemporaneous ex ante higher-moment risks. We therefore run regressions

on the form:

HRIt,T = β0 + β1Characteristict + εt,T (2.42)

where the “bubble” characteristics are: 1) The Greenwood, Shleifer, and You (2017)

variable acceleration, which is defined as the annualized past two year return minus the

return of the first year of the two year return. Acceleration captures the convexity in

the recent price path and a high value of acceleration is intended to be associated with

high contemporaneous ex ante higher-moment risks. 2) Issuance as the percentage of

firms in the S&P 500 index that issued equity in the past year. We follow Greenwood,

Shleifer, and You (2017), and define an equity issuance as the event that a firm’s

split-adjusted share count increased by five percent or more. 3) Market turnover. The

market valuation measures are: 4) CAPE, the Shiller cyclically adjusted price-earnings

ratio. 5) The dividend price ratio as the past two year dividends divided by the current

market price. 6) Cay, the Lettau and Ludvigson (2001) log consumption - aggregate

wealth ratio.

Table 2.10 reports the results of regression (2.42). Marginally, we find that cay is

negatively and significantly related to the HRI. Calm times when expected returns, as

proxied by cay, are low are times when higher-moment risks are high.

Interacting turnover with the past two year return, we find that turnover is posi-

tively related to the HRI. This finding is consistent with the findings in Chen, Hong,

and Stein (2001), that is, subsequent to market run-ups, a higher turnover is associated

with higher higher-moment risks.

For issuance, we find that, subsequent to market run-ups, a higher level of equity
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issuance implies a lower level of contemporaneous higher-moment risks. This finding is

counter to the results of Pontiff and Woodgate (2008). Firms have incentives to issue

equity when the stock price is higher than its fundamental value, which should be

associated with higher contemporaneous higher-moment risks. Other characteristics

show no marginal relation with higher-moment risks.

As a last test, we run a horse race including all “bubble” characteristics. The last

column of Table 2.10 reports the results of the horse race. Jointly, we find that acceler-

ation is statistically significant and positively related to the HRI, and cay is negatively

related to the HRI. Conditional on market run-ups, turnover is positively associated

with the HRI. Interestingly, issuance changes sign in the horse race compared to the

marginal regressions. Indeed, we find that higher issuance is associated with higher

contemporaneous higher-moment risks when controlling for other characteristics.

Figure 2.8 shows time-series plots of the HRI and cay. The two time-series are

negatively correlated with an in-sample correlation coefficient of −0.57. Figure 2.9

shows time-series plots of the HRI and turnover times past two year return. The two

time-series are positively correlated with a correlation coefficient of 0.43, implying that,

after market run-ups when turnover is high, then so are higher-moment risks.

9 Conclusion: when volatility is low, risk hides in the tails

We show that ex ante physical moments estimated using methods based on Martin

(2017) are superior to historical moments and risk-neutral moments at predicting ex

ante realized moments.

Ex ante higher order moment risks co-move such that the first principal component

of the space spanned by skewness, kurtosis, hyperskewness, and hyperkurtosis explains

90% of the joint variation. We define this first principal component as a higher-moment

risk index (HRI) which captures the time-variation in higher-moment risks.

Interestingly, the HRI is negatively related to variance. We show that times when

variance is low are the times when the physical return distribution is most left skewed

(due to large negative skewness and hyperskewness) and fat tailed (due to large positive

kurtosis and hyperkurtosis). The economic importance of higher-moment risk is most

easily understood from the point of view of a volatility-targeting investor. The portfolio
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risk of this investor is high at times when variance is low, even though the investor

has eliminated variance risk in the portfolio. For example, the probability that the

investor’s portfolio realizes a return less than two standard deviations varies from 3.6%

during times of financial distress to 9.7% during periods of low variance.

We show empirically how higher-moment risk is associated with market liquidity,

funding liquidity, turnover, and the market valuation variable cay. Times with low

liquidity frictions, low cay, and high turnover are times when higher-moment risks are

high.
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Figure 2.1: Higher order moments and the higher-moment risk index. The fig-
ures show a time-series plot of monthly higher order moments and the higher-moment
risk index (HRI) for the S&P 500 index. HRI is estimated as the first principal com-
ponent of the space spanned by skewness, kurtosis, hyperskewness, and hyperkurtosis.
Times when the HRI is high are times when higher-moment risks are high.
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Figure 2.3: Higher-moment risk index and variance. This figure shows time-
series plots of monthly and quarterly higher-moment risk index (HRI) and variances.
The HRI is high at times when variance is low.
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Figure 2.4: Higher-moment risk index and the past two year return. These
figures show time-series plots of the past two year return and the S&P 500 higher-
moment risk index (HRI). Past return and the HRI are positively correlated, implying
that higher-moment risk is high subsequent to market run-ups.
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Figure 2.5: Market tail loss probabilities – two sigma. The top figure shows port-
folio tail loss probabilities for the volatility-targeting investor; that is, the probability of
an unexpected return lower than −2σmonth

t . The dashed line is the tail loss probabilities
implied by a normal distribution. The shaded area between the lines is higher-moment
risk, that is, the part of the tail loss probability that is entirely driven by changes in
higher order moments. The bottom figure shows portfolio tail loss probabilities for the
constant notional investor. Here, σmonth

t is the conditional monthly ex ante variance
and σ̄month is the time-series average of σmonth

t . In our sample, σ̄month = 5.0%.
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Figure 2.6: Market tail loss probabilities – three sigma. The top figure shows
portfolio tail loss probabilities for the volatility-targeting investor; that is, the proba-
bility of an unexpected return lower than −3σmonth

t . The dashed line is the tail loss
probabilities implied by a normal distribution. The shaded area between the lines
is higher-moment risk, that is, the part of the tail loss probability that is entirely
driven by changes in higher order moments. The bottom figure shows portfolio tail
loss probabilities for the constant notional investor. Here, σmonth

t is the conditional
monthly ex ante variance and σ̄month is the time-series average of σmonth

t . In our sample,
σ̄month = 5.0%.
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Figure 2.7: Higher-moment risk index and market and funding illiquidity.
The top figure shows time series plots of the HRI and market illiquidity (proxied by
the average value-weighted bid-ask spread of S&P 500 constituents). The bottom
figure shows time series plots of the HRI and funding illiquidity (proxied by the TED
spread).
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Table 2.1: Moment Summary Statistics. In this table we report the average
time-series values for ex ante estimated moments: excess return (ER−Rf), standard
deviation (St. dev.), skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and
hyperkurtosis (Hkurt). We estimate ex ante moments from the point of view of a risk-
neutral investor (γ = 0), a log-utility investor (γ = 1), and two power-utility investors
(γ = 3, γ = 5).

Annualized (%)

Horizon Risk-aversion ER−Rf St. dev. Skew Kurt Hskew Hkurt

Month γ = 0 0 21.07 -1.45 8.90 -46.58 347.41
Month γ = 1 4.44 19.89 -1.31 8.25 -41.01 307.44
Month γ = 3 12.00 18.33 -1.08 7.20 -31.16 233.07
Month γ = 5 18.36 17.32 -0.89 6.43 -23.47 175.88

Quarter γ = 0 0 21.07 -1.17 5.78 -20.58 110.36
Quarter γ = 1 4.44 19.59 -1.09 5.57 -18.64 97.45
Quarter γ = 3 11.48 17.55 -0.95 5.23 -15.56 80.69
Quarter γ = 5 17.12 16.25 -0.81 4.94 -12.93 68.19
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Table 2.2: Ex Ante Conditional Moments Predict Ex Post Realized Mo-
ments. Panel A reports ex post moments for monthly returns sorted into a low or
high bucket based on the ex ante moment. Panel B reports correlations between our
ex ante moments and ex post realized moments. Panel C reports correlations between
our ex ante kurtosis and hyperkurtosis with ex post left kurtosis and left hyperkur-
tosis. We also report correlations between historical moments and ex post moments.
We report bootstrapped standard errors in the appendix and significance as; * when
p < 0.1, ** when p < 0.05, and *** when p < 0.01.

Panel A: Sorting on ex ante monthly moments

Our moments Historical moments

Low ex ante High ex ante Low ex ante High ex ante

Variance (%) 0.08∗∗∗ 0.31∗∗∗ 0.07∗∗∗ 0.28∗∗∗

Skewness −0.83 −0.48 −0.49 −0.75

Kurtosis 2.85 5.93∗∗ 3.35 4.46

Hyperskewness −19.03∗∗ −4.24 −5.40 −9.01

Hyperkurtosis 15.70 95.24∗∗∗ 15.34 40.10

Panel B: Correlation between ex ante moments and ex post realized moments

Our moments Historical moments

Month Quarter Month Quarter

Variance 0.67∗∗∗ 0.49∗∗∗ 0.72∗∗∗ 0.46∗∗∗

Skewness 0.21∗∗∗ 0.25∗∗∗ 0.07 0.24∗∗∗

Kurtosis −0.01 0.00 0.06 0.04

Hyperskewness 0.17∗∗∗ 0.20∗∗∗ 0.07 0.15∗∗∗

Hyperkurtosis −0.03 0.06 0.03 0.01

Panel C: Left kurtosis and left hyperkurtosis

Our moments Historical moments

Month Quarter Month Quarter

Left kurtosis 0.19∗∗∗ 0.26∗∗∗ 0.02 0.14∗∗

Left hyperkurtosis 0.17∗∗∗ 0.21∗∗∗ 0.05 0.13∗∗
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Table 2.3: Ex Ante Conditional Moments Predict Ex Post Realized Moments
— Robustness. Panel A reports correlations between our ex ante moments and ex
post realized moments when we remove observations that overlap with the period from
August 1st 2008 to July 31st 2009. Panel B reports correlations between our ex ante
moments (estimated with different levels of relative risk aversion) and ex post realized
moments. Panel C reports correlations when controlling for risk-neutral moments or
historical moments. We report bootstrapped standard errors in the appendix and
significance as; * when p < 0.1, ** when p < 0.05, and *** when p < 0.01..

Panel A: Excluding August 1st 2008 to July 31st 2009

Our moments Historical moments

Month Quarter Month Quarter

Variance 0.52∗∗∗ 0.49∗∗∗ 0.51∗∗∗ 0.42∗∗∗

Skewness 0.23∗∗∗ 0.23∗∗∗ 0.11 0.25∗∗∗

Kurtosis −0.01 0.00 0.07 0.06

Hyperskewness 0.18∗∗∗ 0.18∗∗∗ 0.09 0.13∗∗∗

Hyperkurtosis −0.03 0.04 0.04 0.01

Panel B: Other levels of risk-aversion

γ = 1 γ = 5

Month Quarter Month Quarter

Variance 0.67∗∗∗ 0.48∗∗∗ 0.67∗∗∗ 0.48∗∗∗

Skewness 0.20∗∗∗ 0.25∗∗∗ 0.21∗∗∗ 0.23∗∗∗

Kurtosis −0.03 0.00 0.01 0.02

Hyperskewness 0.13∗∗∗ 0.17∗∗∗ 0.20∗∗∗ 0.22∗∗∗

Hyperkurtosis −0.06 0.04 −0.01 0.07

Panel C: Marginal correlations

Controlling for Controlling for
risk-neutral moments historical moments

Month Quarter Month Quarter

Variance 0.09 0.12 0.18∗∗ 0.20∗∗∗

Skewness 0.09 0.01 0.20∗∗∗ 0.17∗∗∗

Kurtosis 0.11∗∗ −0.02 −0.02 0.01

Hyperskewness 0.16∗∗∗ 0.14∗∗∗ 0.16∗∗∗ 0.17∗∗

Hyperkurtosis 0.09∗∗ 0.07 −0.03 0.05
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Table 2.4: Correlations Between S&P 500 Moments. Panel A reports pairwise
correlations between monthly S&P 500 moments. Expected return (Er), variance
(Var), skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and hyperkurtosis
(Hkurt). Panel B shows the correlation between quarterly horizon moments. We report
95% bootstrapped confidence bounds in brackets.

Panel A: Month

Er Var −Skew Kurt −Hskew Hkurt

Er 1 0.99 −0.46 −0.50 −0.48 −0.41
[0.99,1] [−0.56,−0.37] [−0.57,−0.46] [−0.55,−0.43] [−0.48,−0.37]

Var 1 −0.52 −0.54 −0.51 −0.44
[−0.60,−0.43] [−0.60,−0.50] [−0.58,−0.47] [−0.51,−0.40]

-Skew 1 0.80 0.78 0.66
[0.76,0.84] [0.74,0.82] [0.60,0.72]

Kurt 1 0.97 0.93
[0.95,0.98] [0.90,0.95]

-Hskew 1 0.98
[0.97,0.98]

Hkurt 1

Panel A: Quarter

Er Var −Skew Kurt −Hskew Hkurt

Er 1 0.99 −0.46 −0.54 −0.58 −0.56
[0.99,0.99] [−0.55,−0.37] [−0.60,−0.49] [−0.64,−0.54] [−0.62,−0.52]

Var 1 −0.54 −0.62 −0.65 −0.62
[−0.62,−0.47] [−0.67,−0.57] [−0.71,−0.61] [−0.68,−0.57]

-Skew 1 0.83 0.86 0.74
[0.79,0.86] [0.82,0.90] [0.68,0.79]

Kurt 1 0.96 0.94
[0.95,0.97] [0.92,0.96]

-Hskew 1 0.97
[0.96,0.98]

Hkurt 1
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Table 2.5: Principal Components of Higher-Moment Risks. We estimate the
four principal components (PC) spanning the space of monthly (Panel A) and quarterly
(Panel B) skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and hyperkur-
tosis (Hkurt). Panel A reports the loadings on each of the monthly moments. Panel
B reports the loadings on each of the quarterly moments. The last column of Panel
A shows that the first principal component (PC 1) explains 89% of the variation in
monthly higher order moments. Similarly, the last column of Panel B shows that 91%
of the variation in quarterly higher order moments is captured by the first principal
component.

Panel A: Month

Skew Kurt Hskew Hkurt Variation explained

PC 1 eigenvector −0.45 0.52 −0.52 0.50 89%
PC 2 eigenvector 0.85 0.07 −0.20 0.48 10%
PC 3 eigenvector −0.23 −0.83 −0.16 0.48 1%
PC 4 eigenvector −0.13 0.19 0.81 0.54 0%

PC 1 correlation −0.85 0.98 −0.99 0.95

Panel B: Quarter

Skew Kurt Hskew Hkurt Variation explained

PC 1 eigenvector −0.47 0.51 −0.52 0.50 91%
PC 2 eigenvector −0.84 −0.16 0.11 −0.51 7%
PC 3 eigenvector −0.13 −0.84 −0.32 0.40 2%
PC 4 eigenvector −0.25 0.01 0.78 0.57 0%

PC 1 correlation −0.89 0.98 −0.99 0.96
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Table 2.6: Cyclicality in Higher-Moment Risks. Panel A reports correlations
between ex ante variance and the higher-moment risk index (HRI). We report
bootstrapped 95% confidence intervals in brackets. Panel B reports β1 coefficients
when regressing physical moments onto the past two year returns:

Mt,T = β0 + β1rt−24,t + εt,T

where the moment Mt,T is variance (Var), skewness (Skew), kurtosis (Kurt), hyper-
skewness (Hskew), hyperkurtosis (Hkurt), and the higher-moment risk index. Panel
C reports the regression when controlling for lagged moments. We report t-statistics
in parentheses and significance as; * when p < 0.1, ** when p < 0.05, and *** when
p < 0.01. We correct standard errors for autocorrelation using Newey and West (1987).

Panel A: Variance and the higher-moment risk index

Horizon HRI

Month −0.53
95% CI [−0.60,−0.48]

Quarter −0.64
95% CI [−0.69,−0.59]

Panel B: Past return and higher-moment risks

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month 2.26∗∗∗ −0.30∗ −0.61∗∗∗ 2.75∗∗∗ −24.57∗∗∗ 201.65∗∗

(sd) (0.79) (0.16) (0.14) (1.01) (9.41) (98.06)

Quarter 2.13∗∗ −0.68∗ −0.45∗∗∗ 1.02∗ −9.62∗∗ 50.63∗∗

(sd) (0.88) (0.39) (0.12) (0.56) (3.83) (25.23)

Panel C: Past return and higher-moment risks — controlling for lagged risk

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month 0.94∗∗∗ −0.07∗∗ −0.23∗∗∗ 1.16∗∗∗ −11.11∗∗ 109.07∗

(sd) (0.34) (0.03) (0.06) (0.39) (4.53) (57.91)

Quarter 0.47∗∗ −0.14∗∗ −0.15∗∗∗ 0.25∗ −2.04∗∗ 11.98∗∗

(sd) (0.19) (0.06) (0.04) (0.14) (0.86) (5.33)
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Table 2.7: Constant Notional, Volatility-Targeting, and Higher-Moment
Risks. Panel A reports correlations between ex ante variance and tail loss prob-
abilities. The probabilities are P (rht < −2σ̄h) and P (rht < −2σht ) where rht =
Rt,t+h − Et[Rt,t+h], σht is the ex ante volatility from time t to t + h, and we define
σ̄h as the time series average of σht . We report bootstrapped 95% confidence intervals
in brackets. Panel B reports regression slope coefficients when regressing physical tail
loss probabilities onto the past two year returns. Panel C reports coefficients when
controlling for lagged probabilities. We report t-statistics in parentheses and signif-
icance as; * when p < 0.1, ** when p < 0.05, and *** when p < 0.01. We correct
standard errors for autocorrelation using Newey and West (1987)

Panel A: Correlations between variance and tail probabilities

Horizon P (rht < −2σ̄h) P (rht < −3σ̄h) P (rht < −2σht ) P (rht < −3σht )

Month 0.97 0.98 −0.70 −0.54
95% CI [0.96,0.98] [0.96,0.99] [−0.78, −0.65] [−0.62,−0.47]

Quarter 0.97 0.94 −0.58 −0.44
95% CI [0.96,0.98] [0.92,0.96] [−0.66,−0.51] [−0.53,−0.35]

Panel B: Tail probabilities (%) and past return

Horizon P (rht < −2σ̄h) P (rht < −3σ̄h) P (rht < −2σht ) P (rht < −3σht )

Month −5.28∗ −2.23 2.02∗∗∗ 0.65∗∗∗

(sd) (3.03) (1.44) (0.63) (0.17)

Quarter −5.67 −2.09 1.24∗∗ 0.38∗∗

(sd) (3.61) (1.46) (0.57) (0.18)

Panel C: Tail probabilities (%) and past return - controlling for lagged probabilities

Horizon P (rht < −2σ̄h) P (rht < −3σ̄h) P (rht < −2σht ) P (rht < −3σht )

Month −1.17∗ −0.56∗ 0.55∗∗∗ 0.26∗∗∗

(sd) (0.60) (0.30) (0.20) (0.09)

Quarter −0.96∗ −0.44∗ 0.38∗∗ 0.11∗∗

(sd) (0.54) (0.26) (0.16) (0.05)
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Table 2.8: Financial Intermediary Leverage and Higher-Moment Risk. Panel
A reports regression slope coefficients when regressing higher-moment risks onto the
financial intermediary leverage of He, Kelly, and Manela (2016). Panel B reports
coefficients when conditioning on ex ante variance. Panel C reports coefficients when
conditioning on ex ante variance and controlling for lagged risk. We report standard
errors in parentheses and significance as; * when p < 0.1, ** when p < 0.05, and ***
when p < 0.01. We correct standard errors for autocorrelation using Newey and West
(1987).

Panel A: Leverage and higher-moment risks

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −0.14 0.11∗∗∗ 0.05 −0.22 1.27 −4.65
(sd) (0.29) (0.03) (0.07) (0.30) (3.41) (28.54)

Quarter −0.03 0.24∗∗ 0.01 −0.00 0.23 0.37
(sd) (0.51) (0.10) (0.06) (0.39) (2.00) (15.64)

Panel B: Conditional leverage and higher-moment risks

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month 0.51∗∗ — −0.07 0.65∗∗∗ −6.59∗∗∗ 68.43∗∗∗

(sd) (0.20) — (0.05) (0.24) (2.49) (24.94)

Quarter 0.76∗∗∗ — −0.10∗∗∗ 0.51∗∗∗ −3.28∗∗∗ 22.29∗∗∗

(sd) (0.19) — (0.03) (0.08) (0.80) (2.60)

Panel C: Conditional leverage and higher-moment risks — controlling for lagged risk

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month 0.29∗∗∗ — −0.03∗ 0.38∗∗∗ −3.93∗∗∗ 45.12∗∗∗

(sd) (0.10) — (0.02) (0.13) (1.35) (15.42)

Quarter 0.34∗∗∗ — −0.05∗∗ 0.26∗∗∗ −1.44∗∗∗ 10.16∗∗∗

(sd) (0.10) — (0.02) (0.08) (0.37) (2.37)
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Table 2.9: Market Liquidity, Funding Liquidity, and Higher-Moment Risks.
This table reports the results when regressing higher-moment risks onto market liq-
uidity (Panel A) and funding liquidity (Panel B). We use the value-weighted bid-ask
spread of S&P 500 constituents as a proxy for market illiquidity. We use the TED
spread as a proxy for funding illiquidity. Panel C and Panel D report results when
controlling for lagged market or funding illiquidity respectively. We report t-statistics
in parentheses and significance as; * when p < 0.1, ** when p < 0.05, and *** when
p < 0.01. We correct standard errors for autocorrelation using Newey and West (1987).

Panel A: Market illiquidity

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −1.22∗∗∗ 0.17∗∗∗ 0.27∗∗∗ −1.53∗∗∗ 14.18∗∗∗ −128.26∗∗∗

(sd) (0.20) (0.05) (0.04) (0.25) (2.47) (28.29)

Quarter −1.44∗∗∗ 0.40∗∗∗ 0.24∗∗∗ −0.85∗∗∗ 6.30∗∗∗ −37.05∗∗∗

(sd) (0.19) (0.11) (0.03) (0.12) (0.81) (5.85)

Panel B: Funding illiquidity

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −1.41∗∗∗ 0.25∗∗∗ 0.18 −2.12∗∗∗ 14.19∗∗∗ −128.26∗∗∗

(sd) (0.39) (0.11) (0.11) (0.52) (2.47) (28.28)

Quarter −1.37∗∗∗ 0.54∗∗ 0.08 −1.07∗∗∗ 6.30∗∗∗ −37.05∗∗∗

(sd) (0.51) (0.22) (0.11) (0.32) (0.81) (5.85)

Panel C: Market illiquidity — controlling for lagged risk

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −0.68∗∗∗ 0.08∗∗∗ 0.14∗∗∗ −0.78∗∗∗ 8.37∗∗∗ −83.77∗∗∗

(sd) (0.17) (0.02) (0.02) (0.20) (2.15) (24.75)

Quarter −0.55∗∗∗ 0.15∗∗∗ 0.11∗∗∗ −0.31∗∗∗ 2.51∗∗∗ −14.96∗∗∗

(sd) (0.11) (0.05) (0.02) (0.07) (0.51) (3.93)

Panel D: Funding illiquidity — controlling for lagged risk

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −0.57∗∗∗ 0.10∗∗∗ 0.08∗∗∗ −0.88∗∗∗ 8.37∗∗∗ −83.77∗∗∗

(sd) (0.18) (0.02) (0.03) (0.23) (2.15) (24.75)

Quarter −0.38∗∗∗ 0.20∗∗∗ 0.05∗ −0.31∗∗∗ 2.51∗∗∗ −14.96∗∗∗

(sd) (0.12) (0.07) (0.03) (0.08) (0.51) (3.93)
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A Ex Ante Physical Moments, Risk-Neutral Pricing, and Realized

Moments

Ex ante physical moments and risk-neutral pricing

Using equation (2.6) we can represent physical ex ante moments in terms of asset

prices:

Et[R
i
t,T ] =

E∗t [Ri+γt,T ]

E∗t [Rγt,T ]
(2.43)

for i ∈ {1, ..., 6}. These asset prices can be used to estimate ex ante physical mo-

ments by expanding the standardized moment formula in equation (2.7). We estimate

kurtosis, hyperskewness, and hyperkurtosis in the following way:

Kurtosist,T =
Et[R4

t,T ]− 3Et[Rt,T ]4 + 6Et[Rt,T ]2Et[R2
t,T ]− 4Et[Rt,T ]Et[R3

t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)2

(2.44)

(2.45)

Hyperskewnesst,T =
Et[R5

t,T ] + 4Et[Rt,T ]5 + 10Et[Rt,T ]2Et[R3
t,T ]− 10Et[Rt,T ]3Et[R2

t,T ]− 5Et[Rt,T ]Et[R4
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)5/2

(2.46)

(2.47)

Hyperkurtosist,T =
Et[R6

t,T ]− 5Et[Rt,T ]6 + 15Et[Rt,T ]4Et[R2
t,T ]− 20Et[Rt,T ]3Et[R3

t,T ] + 15Et[Rt,T ]2Et[R4
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)3

(2.48)

−
6Et[Rt,T ]Et[R5

t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)3

(2.49)
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Estimating ex post realized moments

Let N be the number of daily realized returns between time t and T and denote the

daily return between day s and s+ 1 as rs,s+1. The realized moments between time t

and T are estimated from daily realizations in the following way:

µt,T =
1

N

N∑
i=1

ri−1,i (2.50)

(2.51)

σ2
t,T =

N
∑N

i=1(ri−1,i − µt,T )2

N − 1
(2.52)

(2.53)

Realized Skewnesst,T =
N1/2

∑N
i=1 (ri−1,i − µt,T )3

σ3
t,T

(2.54)

(2.55)

Realized Kurtosist,T =
N
∑N

i=1 (ri−1,i − µt,T )4

σ4
t,T

(2.56)

(2.57)

Realized Hyperskewnesst,T =
N3/2

∑N
i=1 (ri−1,i − µt,T )5

σ5
t,T

(2.58)

(2.59)

Realized Hyperkurtosist,T =
N2
∑N

i=1 (ri−1,i − µt,T )6

σ6
t,T

(2.60)

This is similar to the methods used by Amaya, Christoffersen, Jacobs, and Vasquez

(2015).
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B Appendix Tables

Table AI: Ex Ante Conditional Moments Predict Ex Post Realized Moments
(Test statistics). This Table reports test statistics for the results reported in Table
2.2. Panel A reports p-values from the bootstrapped distribution. Panel B reports
bootstrapped standard errors for the correlation coefficient between ex ante moments
and ex post realized moments. Panel C reports bootstrapped standard errors for the
correlation coefficient between ex ante kurtosis and ex post realized left kurtosis. Panel
C reports also reports correlations for hyperkurtosis.

Panel A: Sorting on ex ante monthly moments

Our moments Historical moments

Low ex ante High ex ante Low ex ante High ex ante

Variance 0.00 0.00 0.00 0.01

Skewness 0.19 0.46 0.54 0.74

Kurtosis 0.21 0.03 0.46 0.20

Hyperskewness 0.02 0.45 0.47 0.75

Hyperkurtosis 0.39 0.01 0.38 0.20

Panel B: Correlation between ex ante moments and ex post realized moments

Our moments Historical moments

Month Quarter Month Quarter

Variance 0.07 0.09 0.09 0.10

Skewness 0.06 0.06 0.07 0.06

Kurtosis 0.06 0.07 0.05 0.04

Hyperskewness 0.05 0.06 0.06 0.04

Hyperkurtosis 0.05 0.06 0.04 0.03

Panel C: Left kurtosis and left hyperkurtosis

Our moments Historical moments

Month Quarter Month Quarter

Left kurtosis 0.06 0.07 0.07 0.06

Left hyperkurtosis 0.06 0.06 0.07 0.06
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Table AII: Ex Ante Conditional Moments Predict Ex Post Realized Moments
— Robustness (Test statistics). Panel A reports bootstrapped standard errors for
the correlations between our ex ante moments and ex post realized moments when we
remove observations that overlap with the period from August 1, 2008 to July 31, 2009.
Panel B reports bootstrapped standard errors for the correlations between our ex ante
moments (estimated with different levels of relative risk aversion) and ex post realized
moments. Panel C reports bootstrapped standard errors for the correlations when
controlling for risk-neutral moments or historical moments. We report bootstrapped
standard errors in the appendix and significance as; * when p < 0.1, ** when p < 0.05,
and *** when p < 0.01..

Panel A: Excluding August 1, 2008 to July 31, 2009

Our moments Historical moments

Month Quarter Month Quarter

Variance 0.06 0.05 0.07 0.08

Skewness 0.06 0.05 0.07 0.06

Kurtosis 0.06 0.08 0.06 0.07

Hyperskewness 0.05 0.06 0.07 0.07

Hyperkurtosis 0.05 0.07 0.06 0.05

Panel B: Other levels of risk-aversion

γ = 1 γ = 5

Month Quarter Month Quarter

Variance 0.07 0.10 0.06 0.09

Skewness 0.06 0.06 0.06 0.06

Kurtosis 0.06 0.06 0.05 0.06

Hyperskewness 0.05 0.05 0.05 0.07

Hyperkurtosis 0.05 0.05 0.05 0.06

Panel C: Marginal correlations

Controlling for Controlling for
risk-neutral moments historical moments

Month Quarter Month Quarter

Variance 0.17 0.10 0.12 0.06

Skewness 0.06 0.06 0.06 0.06

Kurtosis 0.05 0.06 0.06 0.07

Hyperskewness 0.05 0.06 0.05 0.06

Hyperkurtosis 0.04 0.06 0.05 0.06
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Chapter 3

The Market’s Time-Varying Risk

Aversion

Abstract:
I present a new method for estimating the market’s time-varying risk aversion using
historical market returns and option prices written on the S&P 500 index. Market risk
aversion varies in a systematic way; it tends to be low during times of financial market
distress, e.g., during the 2008-2009 financial crisis, and it tends to be high at times
when the market is considered to be calm as measured by variance. This systematic
variation in market risk aversion is difficult to reconcile with the leading asset pricing
models. I discuss several possible explanations for these time-varying patterns in risk
aversion including investor salience and time-varying correlations between aggregate
consumption and the market.

I am grateful for helpful comments from Niels Joachim Gormsen, David Lando, and Lasse Heje
Pedersen. I gratefully acknowledge support from the FRIC Center for Financial Frictions (grant no.
DNRF102) and from the European Research Council (ERC grant no. 312417).
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1 Introduction

Risk averse market participants require compensation for taking on market risk. The

amount of compensation required depends on the level of investor risk aversion and

the expected distribution of future market returns. Understanding how risk aversion

and the expected distribution of future market returns co-vary over time is therefore

important in understanding market prices.

In this paper, I provide a new method for estimating the market’s time-varying

risk aversion. My methodology allows me to investigate the co-movements between

market risk aversion and the physical distribution of market returns. I arrive at the

following two main results: (i) Market risk aversion varies over time and tends to

be low when volatility is high, e.g., during the recent 2008-2009 financial crisis. (ii)

Market risk aversion tends to be high at times when market tail risk is high. This

systematic variation in market risk aversion is difficult to reconcile with the leading

asset pricing models. In the last part of the paper, I discuss possible explanations for

the systematic variation in risk aversion. Specifically, I consider salience theory as a

behavioral explanation and time-varying correlation between the market and aggregate

consumption as a rational explanation.

Before I go into the details on my results, it is instructive to understand how I

estimate the market’s time-varying risk aversion. As in Martin (2017) and Gormsen

and Jensen (2017b), I consider the preferences of a power utility investor who chooses

to be fully invested in the market. I estimate option implied risk neutral distributions

for multiple horizons corresponding to the last trading day of the month from January

1996 until December 2015. Using these risk neutral distributions, I estimate the time

series of risk aversion coefficients which best match the historical realized monthly

returns on the market while still being consistent with observable option prices. To do

so, I rely on the generalized recovery methodology developed in Jensen, Lando, and

Pedersen (2017) combined with the Berkowitz test as used in Bliss and Panigirtzoglou

(2004). Specifically, I estimate the power utility investor’s time preference parameter

by minimizing the Berkowitz test statistic under the constraint that, for a given value

of the time preference parameter, the time-varying risk aversion coefficients solves the

generalized recovery equation set.
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As my first main result, I show that the market’s risk aversion varies systematically

with variance. Specifically, risk aversion is negatively correlated with market variance

with a correlation coefficient of −0.65 and tight bootstrapped 95% confidence bounds

of [−0.70,−0.62].1 The negative correlation suggests that market participants are more

risk tolerant at times when the market is generally considered highly risky, i.e., during

times of high market volatility. This finding is hard to reconcile with the leading asset

pricing models. For example, Campbell and Cochrane (1993) explain asset prices with

a risk aversion that is countercyclical.

To understand why it is reasonable that market risk aversion is low at times when

variance is high, consider the following heuristic example. Under power utility and

log-normality of the market return distribution then the expected excess return on the

market is equal to γσ2, where γ is market risk aversion and σ2 is market variance.

Suppose risk aversion is equal to 3 and constant, which is a commonly chosen value

in the financial economics literature, see e.g. Bliss and Panigirtzoglou (2004) and

Gormsen and Jensen (2017b). Then, during the peak of the financial crisis in 2008-2009

where annualized realized market variance reached almost 60%, the implied annual

expected return on the market was about 180%. It is hard to believe that the market

participants believed that, in expectation, the market was going to bounce back with

an increase of 180% from the peak of the crisis. Therefore, if annualized expected

returns were truly lower than 180% during the financial crisis, then either risk aversion

is lower than 3 and constant or it fluctuates and was low during the crisis.

I find that risk aversion on average is 2.77 and that it falls to 1.49 during the peak

of the financial crisis. Using the heuristic argument above, this level of risk aversion

implies an expected excess return on the market during the peak of the crisis of about

90% annually and 7.5% on a monthly horizon.

As my second main result, I show that the market’s risk aversion varies system-

atically with market tail risk. Specifically, I find that risk aversion is: (i) negatively

correlated with market skewness with a correlation of −0.42 with bootstrapped 95%

confidence bounds of [−0.51,−0.31] and (ii) positively correlated with market kurtosis

with a correlation of 0.62 and bootstrapped confidence bounds of [0.54, 0.70]. This

1Bliss and Panigirtzoglou (2004) also find evidence of a risk aversion which is negatively related to
variance.
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finding suggests that the investor becomes more risk averse as the market’s higher

order moments become more risky, i.e., there is more probability mass in the tail of

the market return distribution.

Next, I discuss evidence of this systematic variation in risk aversion that is already

in the finance literature. For example, in a recent paper by Moreira and Muir (2017b),

the authors show that investors can earn large alphas by timing market volatility.

They find that investors should exit the market when volatility increases and enter

the market when it drops. Their result arises because expected excess returns are high

relative to variance during low variance periods, i.e., the ratio ERt
σ2
t

varies over time and

becomes high when variance is low. Their findings imply a time variation in market

risk aversion which is consistent with the results I present. To see why, recall that we

can express the expected excess return on the market as ERt = γtσ
2
t which implies

a market risk aversion of γt = ERt
σ2
t

. Their results are therefore reminiscent of a risk

aversion that is low at times when volatility is high. Similarly, Gormsen and Jensen

(2017a) also find evidence that the market price of risk is high during low volatility

periods.

In the final part of the paper, I discuss two possible explanations for the systematic

variation in market risk aversion. First, I show that my results are consistent with

aspects of salience theory by Bordalo, Gennaioli, and Shleifer (2012). Specifically,

I follow Lian, Ma, and Wang (2018) who argue that, at times of low interest rates

the relatively high expected returns on risky assets are salient, and this salience on

the upside of a higher return on the risky asset induces heightened risk tolerance

and “reaching for yield” tendencies among investors. I therefore regress the ratio of

expected gross returns on the market to gross risk-free returns, Et(Rt,T )/Rft,T , onto

risk aversion. Consistently with the findings of Lian, Ma, and Wang (2018), I find

that investors become more risk tolerant as the ratio of expected returns to risk-free

returns increases.

Lastly, I discuss how the systematic variation in risk aversion can arise if the stock

market is not a perfect proxy for aggregate consumption. Specifically, for an investor

with power utility who cares about aggregate consumption, then the stock market

implied risk aversion can be expressed as αt = ρtγ
c
tσ

c
t/σt where ρt is the correlation

between the stock market and aggregate consumption, σct is consumption volatility,
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γct is the investor’s risk aversion, and σt is the volatility of the stock market. As an

illustrative example, I consider the case where risk aversion and consumption volatility

are constant, i.e., γct = γc and σct = σc. In this case, the stock market implied risk

aversion is proportional to the ratio of the correlation between the stock market and

aggregate consumption and the volatility of the stock market. During times of financial

distress, stock market volatility increases, if the correlation between the stock market

and aggregate consumption does not increase enough to offset the increase in stock

market volatility then αt will decrease.

My paper relates to and extends the existing literature on estimating market risk

aversion. I present a new method for estimating the market’s risk aversion by integrat-

ing the Berkowitz test with the generalized recovery method of Jensen, Lando, and

Pedersen (2017). Previous research which use option prises to estimate time-varying

risk aversion is based either (1) a full identification (e.g. a parameterization through a

GARCH model) of the market’s physical return distribution from historical returns or

(2) parameterization of investor preferences, e.g. Ross (2015) and Jensen, Lando, and

Pedersen (2017). My method allows for the identification of time-varying risk aver-

sion while leaving the physical probability distribution fully free, which compliments

the existing literature that imposes structure on the physical return distribution, e.g.

Barone-Adesi, Engle, and Mancini (2008), Jackwerth (2004), Jackwerth (2000), Ait-

Sahalia and Lo (2000). My paper also relates to Bliss and Panigirtzoglou (2004) who

use the Berkowitz test, but they use it to estimate a constant risk aversion.

The paper proceeds as follows: Section 2 describes how I estimate the market’s

time-varying risk aversion. Section 3 covers data and details on the empirical im-

plementation. Section 4 studies the empirical results of the time-varying market risk

aversion. Section 5 studies the relation between market risk aversion and the market’s

physical moments. Section 6 investigates what might explain the systematic variation

in the market’s time-varying risk aversion. Section 7 concludes the paper.

2 Inferring Financial Market Risk Aversion

I consider the preferences and beliefs of a power utility investor who optimally chooses

to be fully invested in the market. The economy consists of a risk-free asset with gross
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risk-free return of Rft,T and a risky asset, the stock market, with price S, dividends

Dt,T , and gross returns

Rt,T =
ST +Dt,T

St
(3.1)

The power utility investor’s utility function at time t is Ut(x) = x1−γ(t)/(1−γ(t)) where

γ(t) is the investor’s (possibly time-varying) risk aversion coefficient. The investor has

initial wealth W0 and terminal wealth W0Rt,T . Given that the power utility investor

chooses to be fully invested in the stock market, I can express the investor’s stochastic

discount factor in the following way:

mt,T (Rt,T ) = δ(t, T )R
−γ(t)
t,T (3.2)

where δ(t, T ) is a time-preference parameter and γ(t) is the market’s risk aversion2.

Table 3.1 reports the five different specifications of the stochastic discount factor in

(3.2) which I investigate in this paper.

Next, I show how I infer the market’s time-varying risk aversion. I combine the

results of two related papers, the generalized recovery methodology of Jensen, Lando,

and Pedersen (2017) and the Berkowitz test as used in Bliss and Panigirtzoglou (2004).

The main methodological objective of both these papers is to backward engineer pref-

erence parameters from observable asset prices,3 in this paper I exploit these methods

in a joint setting.

I start by fixing some notation. I write the standard asset pricing formula in the

following common way:

πt,T (r) = pt,T (r)mt,T (r) (3.3)

where πt,T is the time t and T − t horizon known state price density, pt,T is the cor-

responding unknown physical probability density, and mt,T is the unknown stochastic

discount factor. In Section 3, I discuss how I estimate state price densities using option

prices written on the market. Given the standard asset pricing formula, I can write

2I assume that the market’s risk aversion is independent of the horizon. There are several papers
that address horizon dependent risk aversion, see e.g., Bliss and Panigirtzoglou (2004) and Lazarus
(2018). The methodology I use in this paper can accommodate a horizon specific risk aversion, however,
I choose to focus on the variation in the time series of risk aversion rather than the term structure of
risk aversion.

3
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the market’s probability distribution function, say F , as

Ft,T (r) =

∫ r

−∞
pt,T (x)dx =

∫ r

−∞

πt,T (x)

mt,T (x)
dx (3.4)

If I insert the power utility investor’s stochastic discount factor from (3.2) into (3.4),

then I can rewrite the market’s distribution function as follows

Ft,T (r) =

∫ r

−∞

πt,T (x)xγ(t)

δ(t, T )
dx (3.5)

Given values of the parameters δ(t, T ) and γ(t), I can estimate the market’s probability

distribution as perceived by the power utility investor who chooses to invest everything

in the market. The objective now is figuring out what the true values of δ(t, T ) and

γ(t) are.

To estimate these true values of the preference parameters, I follow Bliss and Pani-

girtzoglou (2004) and use the so-called Berkowitz test, cf. Berkowitz (2001). The idea

behind the Berkowitz test is that, for the true values δ̂(t, T ) and γ̂(t), the distribution

of ut,T = F̂t,T (Rt,T ) is uniform and the distribution yt,T = Φ−1(ut,T ) is standard nor-

mal. Here F̂t,T (Rt,T ) denotes the distribution function in (3.5) with the true values,

δ̂(t, T ) and γ̂(t), inserted. In the Berkowitz test, I estimate the coefficients in the

regression model:

yt,T = â+ β̂yt−1,T−1 + εt,T , εt,T ∼ N(0, σ̂) (3.6)

and perform a likelihood ratio test of the joint hypothesis that a = β = 0 and

Var(εt,T ) = 1. The hypothesis that b = 0 is natural when considering non-overlapping

returns, for overlapping returns see e.g. Bliss and Panigirtzoglou (2004) for a thorough

discussion of the test. It is also worth noticing that, even though there might be mo-

mentum effects in returns, then we will still want b = 0 because the true distribution

should take these momentum effects into account.

The Berkowitz likelihood ratio test for non-overlapping returns is then:

LR = −2(LL(0, 0, 1)− LL(â, β̂, σ̂)) ∼ χ2
3 (3.7)
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where LL(â, β̂, σ̂) is the log likelihood of (3.6).

I find the true values of δ(t, T ) and γ(t) by minimizing the Berkowitz test statistic

in (3.7) under the constraint that, for all dates t and horizons T − t, the equation∫∞
−∞

πt,T (x)xγ(t)

δ(t,T ) dx = 1 must hold. This constraint ensures that the resulting physical

return distribution integrates to one. The optimization problem is therefore:

min
δ(t,T )

− 2
(
LL(0, 0, 1)− LL(â, β̂, σ̂)

)
(3.8)

s.t. γ(t) solves

∫ ∞
−∞

πt,T (x)xγ(t)

δ(t, T )
dx = 1, for all t, T (3.9)

For a given level of δ(t, T ),4 the constraints provide enough equations to solve for the

time-varying risk aversion, γ(t). Specifically, for a given level of δ(t, T ), at any point

in time, I only have to solve for the risk aversion coefficient, γ(t). If γ(t) were linear

in the constraint, then solving for the parameter would be straightforward. However,

γ(t) enters non-linearly in the equation
∫∞
−∞

πt,T (x)xγ(t)

δ(t,T ) dx = 1 and I need to address

this non-linearity. Luckily, the generalized recovery methodology of Jensen, Lando,

and Pedersen (2017) provides me with a way of recovering γ(t). The authors show

that, at any point in time, if we know the state price densities for multiple horizons,

say M different horizons, then recovery is possible if the stochastic discount factor is

characterized by a number of of parameters, say N , that is less than the number of

horizons with known state price densities, i.e., if M > N . At any point in time and for

a given level of δ(t, T ), I have N = 1 (the risk aversion parameter) and can therefore

solve for γ(t) if I know state price densities for two or more horizons.

My methodology is closely related to the methodology used in Bliss and Panigirt-

zoglou (2004), specification (3) in Table 3.1, and it is therefore instructive to under-

stand how my methodology differs from theirs. In short, their methodology implies a

constant level of risk aversion but time-varying time preferences. My methodology on

the other hand implies structure on time preferences and allows for time-varying risk

aversion. To understand their approach in my setting, notice that for a constant level

of risk aversion, γ(t) = γ,5 I can write the Bliss and Panigirtzoglou (2004) distribution

4I need to add structure on the time preference parameter in order to minimize (3.8). Specifically,
I need to make δ(t, T ) a function of just one free parameter. Table 3.1 shows the five specifications I
investigate in this paper.

5Note that Bliss and Panigirtzoglou (2004) minimize (3.8) over γ and not over δ(t, T ). Specifically,
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function, F
(3)
t,T

6 as

F
(3)
t,T (r) =

∫ r
−∞ πt,T (x)xγdx∫∞
−∞ πt,T (x)xγdx

(3.12)

The denominator is time-varying due to time-varying state price densities. I can restate

the denominator in terms of time preferences as δ(t, T ) =
∫∞
−∞ πt,T (x)xγdx. Essentially,

at any point in time, for a given (constant) level of risk aversion, they force the time-

varying time preference parameter to solve the equation
∫∞
−∞

πt,T (x)xγ

δ(t,T ) dx = 1, simply

because the resulting physical probabilities must integrate to one. This condition is

similar to the one I impose, but, as noted above, I impose structure on time preferences

and allow for time-varying risk aversion. Using one method over the other is simply a

question of whether you find it more reasonable to have time-varying risk aversion or

time-varying time preferences.

3 Data and Risk Neutral Distributions

I use the Ivy DB database from OptionMetrics to gather information on call and put

options written on the S&P 500 index for the last trading day of every month. The data

are from January 1996 to December 2015. I obtain implied volatilities, strikes, closing

bid-prices, closing ask-prices, and maturities. As a proxy for the risk- free rate, I use

the zero-coupon yield curve from the Ivy DB database. I also obtain expected dividend

payments. I apply standard filters, excluding contracts with zero open interest, zero

trading volume, quotes with best bid below $0.50, and options with implied volatility

higher than 100%.

Using prices of options written on the market, I estimate risk neutral distributions

using the “Fast and Stable” method proposed by Jackwerth (2004). I follow the im-

plementation procedure described in Jensen, Lando, and Pedersen (2017). For each

last trading day of the month in the period from January 1996 until December 2015,

their minimization problem is:

min
γ
− 2

(
LL(0, 0, 1)− LL(â, β̂, σ̂)

)
(3.10)

s.t. δ(t, T ) solves

∫ ∞
−∞

πt,T (x)xγ

δ(t, T )
dx = 1, ∀t (3.11)

6Here the superscript in F
(3)
t,T denotes the third specification in Table 3.1.
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I estimate risk neutral distributions for two different horizons. I choose the horizon

which is closest to 30 calender days along with the horizon with the shortest maturity

that is longer than 30 calender days and which has observable options written on the

market.

4 Testing the Estimated Distributions

Next, I test how the estimated physical distributions match the historical return dis-

tributions. I have estimated the parameters for each specification of the stochastic

discount factor shown in Table 3.1 using the methods described in Section 2. Then I

convert the risk neutral distributions into the corresponding physical return distribu-

tions using the estimated parameters of the stochastic discount factor.

For example, for specification (4) in Table 3.1, on the last trading day of January

1996, I estimate the monthly horizon risk neutral distribution, say qt,t+1(Rt,t+1),7 using

options written on that date and convert this risk neutral distribution into a physical

distribution:

p
(4)
t,t+1(Rt,t+1) =

qt,t+1(Rt,t+1)

m
(4)
t,t+1(Rt,t+1)

(3.13)

=
qt,t+1(Rt,t+1)

1.0056×R−3.17
t,t+1

(3.14)

where γ(t) = 3.17 was the market’s risk aversion on the last trading day of January

1996 and δ(t, T ) = 1.0056 is the time preference parameter. Also, the superscript of

p
(4)
t,t+1(Rt,t+1) denotes that I am talking about the 4’th specification of the stochastic

discount factor in Table 3.1. I then compute the cumulative distribution function and

evaluate the realized return over the subsequent month, R̃t,t+1:

F
(4)
t,t+1(R̃t,t+1) =

∫ R̃t,t+1

−∞
p

(4)
t,t+1(x)dx (3.15)

For each last trading of the month from January 1996 until December 2015, I estimate

these probabilities, giving me 240 non-overlapping periods with cumulative proba-

7If there are no observable options with exactly one month maturity, then I estimate risk neutral
distributions for maturities closest to one month and linearly interpolate the cumulative probabilities
estimated in (3.15) between these maturities.
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bilities F
(4)
s,s+1(R̃s,s+1) for s ∈ {1, ..., 240}. Given this time series of probabilities, I

perform a Berkowitz test on both the full distribution and parts of the distribution. If

the estimated distributions reflect the ’true’ realized distribution, then F
(4)
t,t+1(R̃t,t+1)

is uniformly distributed and any partition of the distribution should not be rejected

by the Berkowitz test. Therefore, I test if the estimated distribution reflects the ’true’

distribution using multiple partitions of the uniform distribution.

Table 3.2 shows the result of Berkowitz tests of the five specifications of the stochas-

tic discount factors as shown in Table 3.1. Panel A shows the results when testing the

full distribution. Panel B reports results when testing partitions of the distribution.

The second column reports the results when testing the risk neutral specification, that

is, specification (1) in Table 3.1. The first row of Panel B reports the results when

testing the distribution of F
(1)
t,t+1(R̃t,t+1) on the interval from 0 to 0.5. This means that,

when looking strictly at those cumulative probabilities that are lower than 0.5, I test

whether these probabilities are uniform on 0 to 0.5. The test statistic is 5.20 which

gives a p-value of 0.16 when evaluated in a χ2-distribution with 3 degrees of freedom.

Therefore, I cannot reject that the realized returns that fall within the lowest 50% of

the risk neutral distributions are actually drawn from these distributions. Looking at

the remaining rows, I can reject that the risk neutral distributions match the realized

returns, that is, the test statistics for the intervals from 0 to 0.7 or higher are all

statistically significant. The risk neutral distribution is therefore a poor proxy for the

historical ’true’ distribution. This result is not surprising as we expect investors to be

risk averse and thereby adjust their physical beliefs accordingly when pricing financial

assets.

The third column of Table 3.2 reports the results of the Berkowitz test when eval-

uating the second specification of the stochastic discount factor in Table 3.1. The

distribution of F
(2)
t,t+1(R̃t,t+1) is rejected on the interval from 0 to 0.8 and higher, which

means that this specification is a poor match for the realized return distribution.

The fourth column of Table 3.2 reports the results of the Berkowitz test when eval-

uating the Bliss and Panigirtzoglou (2004) parameterization of the stochastic discount

factor (3.2), that is, specification (3) in Table 3.1. Their specification of the stochastic

discount factor performs very well. The estimated physical distributions, F
(3)
t,t+1(R̃t,t+1),

arising from a constant level of risk aversion, γ = 2.44, and time-varying time pref-
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erences match realized returns very well. However, I can reject the full distribution

estimated using the Bliss and Panigirtzoglou (2004) methodology simply because there

are too few realized observations in the far right tail (upper 2.5%) of the estimated

distributions.

The fifth column of Table 3.2 reports the result of the Berkowitz test when risk

aversion is time-varying and time preferences are constant, that is, specification (4) in

Table 3.1. The distribution F
(4)
t,t+1(R̃t,t+1) cannot be rejected by the Berkowitz test on

the interval from 0 to 0.975 and any partition within these boundaries. However, as

for specification (3), the full distribution is rejected because of too few realizations in

the far right tail of the estimated distribution.

The last column of Table 3.2 reports the result of the Berkowitz test when risk

aversion is time-varying and time preferences are affine in the inverse of the gross

risk-free return, that is, specification (5) in Table 3.1. As with specifications (3) and

(4), the distribution F
(5)
t,t+1(R̃t,t+1) is not rejected by the Berkowitz test on the interval

from 0 to 0.975 and any partition within these boundaries but it is rejected on the full

distribution.

Table 3.2 shows that the transformation from the risk neutral distributions to the

physical distributions using constant relative risk aversion preferences with parame-

terization (3), (4), or (5) of the stochastic discount factor as shown in Table 3.1 can

help explain historical realized returns. According to the Berkowitz tests, the three

specifications perform equally well. This result is not surprising since the number of

free parameters in each specification is the same. Specification (3) has 1 degree of free-

dom in the risk aversion parameter and 240 degrees of freedom in the time preference

parameters (one for each month in my sample). Specification (4) has 240 free variables

in the risk aversion parameters and 1 time preference parameter. Specification (5) has

240 free variables in the risk aversion parameters and 1 time preference parameter,

however, this free variable in the time preference parameter measures the (constant)

difference between the inverse of the gross risk-free return and the time preference

parameter.
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4.1 Empirical Risk Aversion Estimates

In this section, I focus on three of the specifications of the stochastic discount factor as

shown in Table 3.1, that is, specifications (3), (4), and (5). Figure 3.1 shows empirical

estimates of market risk aversion, that is, the market’s time-varying risk aversion, γt,

along with the constant risk aversion implied by the Bliss and Panigirtzoglou (2004)

methodology.

As seen from the figure, the time-varying risk aversion implied by specifications (4)

and (5) are almost identical. Therefore, for the remainder of the paper, I will focus on

one just of them. My choice falls on specification (5), simply because it allows time

preferences to be dependent on the risk-free rate.

Panel A of Table 3.3 reports summary statistics for the estimated risk aversion

parameter. The market’s time-varying risk aversion implied by specification (5) varies

from 1.49 during the peak of the financial crisis in 2008-2009 to 5.03 in the post crisis

period of 2014-2015. The average risk aversion is 2.77, slightly higher than the constant

risk aversion estimate implied by the Bliss and Panigirtzoglou (2004) methodology

which is 2.44.

4.2 Empirical Time Preference Estimates

Panel B of Table 3.3 reports summary statistics for the estimated time preference

parameter. The time-varying time preferences implied by the Bliss and Panigirtzoglou

(2004) methodology, specification (3), vary from 0.9985 to 1.0239. Similarly, the time

preferences implied by specification (5) vary from 0.9982 to 1.0076 with an average

value of 1.0057. The constant time preference parameter implied by specification (4)

is 1.0056. A value of the time preference parameter which is larger than one implies

that investors prefer future over immediate consumption. It is therefore surprising that

the estimates of the time preference parameter are on average above one. However,

given the form of the stochastic discount factor in (3.2), a value of the time preference

parameter above one fits the data best.

To better understand the magnitude of the time preference parameter, I first in-

vestigate how a commonly used value for the time preference parameter fits the data.
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Therefore, in specification (2) from Table 3.1, I fix δ(t, T ) = 0.98T−t.8 The second

column of Table 3.2 shows the Berkowitz test for specification (2). The constant time

preference parameter with an annualized value of 0.98 is strongly rejected by the data.

This result means that, if δ(t, T ) = 0.98T−t, there is no time series of γ(t) which can

simultaneously match the historical returns on the market and the observable option

prices. From the point of view of a power utility investor who wants to hold the mar-

ket, if we want to match both option prices and returns, then we need to accept that

time preferences are on average above one.

It is worth noting that, even though δ(t, T ) is above one, the setting I adopt will

always (and by constriction) match interest rates. To understand how, recall that the

law of one price gives us the following relation:

Et [mt,T (Rt,T )] =
1

Rft,T
(3.16)

which for the power utility investor is equivalent to:

Et

[
δ(t, T )R

−γ(t)
t,T

]
=

∫ ∞
−∞

pt,T (x)δ(t, T )x−γ(t)dx (3.17)

From the standard asset pricing formula in (3.3), I am given the relation pt,T (r) =

πt,T (r)/mt,T (r) which is equal to πt,T (r)rγ(t)/δ(t, T ) for the power utility investor.

Inserting this expression of physical probabilities into (3.17), I get:

∫ ∞
−∞

πt,T (x)xγ(t)

δ(t, T )
δ(t, T )x−γ(t)dx =

∫ ∞
−∞

πt,T (x)dx =
1

Rft,T

∫ ∞
−∞

qt,T (x)dx (3.18)

where qt,T (r) is the risk-neutral distribution. The integral on the rhs. of (3.18) is equal

to one since qt,T (r) is a probability distribution. Therefore, for any level of δ(t, T ), my

setting will by construction match interest rates.

Next, I want to better understand the scenarios in which δ(t, T ) > 1. Therefore,

I consider the following equation which again arises from the law of one price and a

8E.g. Campbell and Cochrane (1993) derive an annualized value of the time preference parameter
close to 0.98.
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power utility investor who choses to hold the market

δ(t, T )

∫ ∞
−∞

pt,T (x)x−γ(t)dx =
1

Rft,T
(3.19)

Now, if
∫∞
−∞ pt,T (x)x−γ(t)dx < 1

Rft,T
then δ(t, T ) must, by the law of one price, be above

one. This scenario can for example arise if the physical return distribution has most

of its probability mass in the states where the market increases in value, that is, when∫∞
1 pt,T (x)dx is large (close to one). In this case, the integral

∫∞
−∞ pt,T (x)x−γ(t)dx could

potentially be lower than 1/Rft,T because x−γ(t) < 1 for values of x > 1 and γ(t) > 0.

Therefore, a value of δ(t, T ) which is larger than one can arise in a scenario where

the probability of a positive return on the market is large. That is, the investor is

more willing to postpone consumption into the future when the probability of a future

good state (a state with high consumption) is high.9 This result is highly unintuitive.

I expected the exact opposite result, that the investor is willing to postpone (smooth)

consumption if the probability of a bad state in the future is high.

The result may arise for several reasons. For example, it might be a consequence of

a misspecified functional form of the stochastic discount factor. Also, it can be because

the state variable is wrong, that is, market returns might not be a perfect proxy for

aggregate consumption. There are of course several other possible explanations.

5 Systematic Variation in Market Risk Aversion

Figure 3.1 shows the market’s time-varying risk aversion. As seen from the figure,

risk aversion was low during the 2008-2009 financial crisis and high both in the years

leading up to the crisis and in the post crisis period of 2010-2015. This variation in

risk aversion suggests that the market became less risk averse during the peak of the

financial crisis and more risk averse after the crisis. In this section, I investigate these

time-varying patterns of market risk aversion.

First, using methods developed in Martin (2017) and Gormsen and Jensen (2017b),

I estimate the market’s physical return distribution. Table 3.4 shows the summary

9Similarly, a value of δ(t, T ) which is lower than one can arise in a scenario where the probability
of a negative return on the market is large. That is, the investor is more willing to consume today if
the probability of a future bad state (a state with low consumption) is high.
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statistics for the first four moments of the physical return distribution: expected excess

return, variance, skewness, and kurtosis. Looking at the last row of Table 3.4 we see

the market’s time-varying moments implied by specification (5) of Table 3.1. The

physical return distribution implied by this specification of the stochastic discount

factor is on average negatively skewed and exhibit excess kurtosis. Results are similar

for specification (3) and (4).

Figure 3.2 shows a time-series plot of the market’s time-varying risk aversion and its

physical conditional variance. Clearly, risk aversion tend to be low at turbulent times

when variance is high. Panel A of Table 3.5 shows the correlations between the market’s

time-varying risk aversion and the market’s physical moments. The correlation between

market risk aversion and variance is −0.65 with bootstrapped 95% confidence bounds

of [−0.70,−0.62].

Figure 3.3 shows the market’s risk aversion and its physical conditional skewness.

Risk aversion and skewness are negatively correlated with a correlation of −0.42 and

95% bootstrapped confidence bounds of [−0.51,−0.31] as shown in Table 3.5. The

negative correlation between risk aversion and skewness suggests that the market is

more risk averse at times when market tail risk is high.

The expected return on the market is negatively related to risk aversion with a cor-

relation coefficient of−0.56 and bootstrapped 95% confidence bounds of [−0.61,−0.52].

This negative relation suggests that the expected return on the market is high during

times of financial market distress when risk aversion is low. Similarly, the market’s

Sharpe ratio tends to be high during periods of high volatility. To better understand

why the market’s Sharpe ratio is high at times when risk aversion is low, notice that,

under power utility and log-normal market returns, the expected excess return on the

market is ERt = γtσ
2
t . Rewriting this equation leads to the following expression of

risk aversion:

γt = SRt/σt (3.20)

where SRt = ERt/σt is the market’s Sharpe ratio. Even though the market’s Sharpe

ratio might increase at times of financial market distress when volatility also increases,

then the market’s risk aversion can decrease if the increase in the Sharpe ratio is too

low to offset the higher market volatility.
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6 Understanding the Market’s Time-Varying Risk Aversion

As shown in the previous section, market risk aversion varies in a systematic way,

that is, it tends to be high at times when volatility is low and vice versa. A natural

question to ask is; does it make sense at all that market risk aversion is low during

times of financial distress when volatility is high? It is definitely difficult to reconcile

this systematic variation in market risk aversion with the leading asset pricing models.

For example, Campbell and Cochrane (1993) use habit formation as a mechanism for

time-varying risk aversion and find that a countercyclical risk aversion can help explain

asset prices and the behavior of the stock market.

As a start to understanding this systematic variation in market risk aversion, it is

instructive to think about the following heuristic argument: standard textbook asset

pricing tells us that, under power utility and a log-normal assumption on market

returns, the expected excess return on the market is:

ERt = γtσ
2
t (3.21)

During the financial crisis of 2008-2009, annualized monthly variance reached 60%. If

I assume that risk aversion is constant and at a level of 3, which is a common choice

in the financial literature10, then (3.21) implies an annualized expected excess return

of 180% and a monthly expected excess return of 15%. It is hard to believe that the

market expected the excess returns on the monthly horizon was as high as 15% during

the peak of financial crisis, not to mention the extremely high annualized expected

excess returns. Therefore, since we can estimate market variance rather accurately,

then if we want expected excess returns to be at a realistic level during times of high

volatility, then market risk aversion should go down when volatility spikes.

As noted above, this systematic variation in market risk aversion is difficult to rec-

oncile with the leading asset pricing models. However, when looking at the intersection

between option prices and market returns, this variation seems to be a persistent pat-

tern and it is therefore interesting to understand how it can arise in our data.

10See e.g. Bliss and Panigirtzoglou (2004) and Gormsen and Jensen (2017b)
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6.1 Evidence of a Procyclical Market Risk Aversion

In a recent paper, Moreira and Muir (2017b) show that investors can earn large alphas

by timing market volatility. They find that investors should exit the market when

volatility increases and enter the market when it drops. Their result arises because

expected excess returns are high relative to variance during low variance periods, i.e.,

the ratio ERt
σ2
t

varies over time and becomes high when variance is low. Similarly,

Gormsen and Jensen (2017a) also find evidence that the market price of risk is high

during low volatility periods.

These findings have implications for how we should think about the time variation

in market risk aversion. To see why, consider again equation (3.21) which tells us that

the expected excess return to variance ratio is equivalent to market risk aversion and

their results are therefore reminiscent of a risk aversion that is high at times when

volatility is low.

The results of Moreira and Muir (2017b) can also in part be explained by the

fact that market tail risk is higher at times of low volatility, see e.g. Gormsen and

Jensen (2017b). The higher expected excess return to variance during low volatility

periods could simply be compensation for higher tail risk (or a combination of higher

tail risk and higher risk aversion). Nevertheless, it is an artifact of the data that

risk aversion tends to be high at times when the market is generally considered to be

calm. In the following two subsections, I discuss two possible explanations for these

time-varying patterns. First, I investigate a behavioral explanation through investor

salience. Second, I consider a rational explanation through time-varying correlations

between the market and aggregate consumption.

6.2 Salience Theory and Market Risk Aversion

In this subsection, I discuss investor salience as a possible explanation for the sys-

tematic variation in market risk aversion which I document in this paper. Bordalo,

Gennaioli, and Shleifer (2012) develop a model in which the focus of investors are

drawn to unusual, different or odd events. Specifically, an investor is risk-seeking if his

attention is drawn to the “upside” of a lottery and risk-averse if his attention is drawn

to the “downside” of a lottery. They refer to the state which has drawn the investor’s
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attention as the salient state or salient outcome.

A practical example of salience theory can be found in Lian, Ma, and Wang (2018).

The authors show that, investors have greater appetite for risk taking when interest

rates are low. They argue that, at times of low interest rates the relatively high

expected returns on risky assets become salient, and this salience on the upside of

a higher return on the risky asset induces heightened risk tolerance and “reaching

for yield” tendencies. Also, they refer to Weber’s law and argue that investors tend

to evaluate assets in terms of proportional returns rather than by differences. In

my setting both the risk-free rate and the expected return on the market fluctuate.

Therefore, to test how their hypothesis fits into my setting, I regress my measure of

risk aversion onto the ratio of gross expected returns to gross risk-free returns:11

γ(t) = β0 + β1
Et(Rt,T )

Rft,T
+ εt,T (3.22)

The idea is that, as expected returns on the risky asset increase relative to the safe

return on the risk-free asset, investors will find the higher return on the risky asset

salient and therefore increase their risk tolerance which results in a lower γ(t).

Table 3.6 presents the results of regression (3.22). The coefficient β1 is −6.97 with

95% bootstrapped confidence bounds of [−8.63,−5.92]. This results suggests that an

increase in the ratio of gross expected return on the market to risk-free gross return

of, say 0.1, results in a decrease in risk aversion of almost 0.7, that is, as expected

returns on the market increase relative to the return on the risk-free asset, the investor

becomes more risk tolerant.

6.3 Consumption and Stock Market Correlation

A natural critique of the method I apply in this paper is that the power utility investor

only cares about how the stock market develops and gains all utility from market

movements. In this subsection, I discuss what can drive my results if I in fact have

11Lian, Ma, and Wang (2018) argue that, when looking at gross returns the effect of salience is lower
than when considering ’normal’ returns because the ratio of, say 1.1/1.05, is much smaller than the
ratio 0.1/0.05. Nevertheless, they find evidence that investors still exhibit salient preferences when
considering gross returns. I do not consider ’normal’ returns because they, at the end of my sample,
are very close to zero.
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postulated the wrong state variable.

Suppose for now that the true state variable is aggregate consumption and that

the stock market is not a prefect proxy for aggregate consumption. Also, suppose that

risk aversion is actually constant, say γc, the power utility investor’s ’true’ stochastic

discount factor is then:

mt,T = δT−t
(
CT
Ct

)γc
(3.23)

where Ct is aggregate consumption at time t. If I assume that consumption is log-

normally distributed with constant variance, σ2
c , then in the standard Merton (1973)

model, I can express expected return on the stock market in the following way:

ERt = γcσtσcρt (3.24)

where ρt is the time-varying correlation between the stock market and aggregate con-

sumption. Keeping the stock market volatility constant, then as the correlation be-

tween the stock market and aggregate consumption increases, so does the required

expected return on the stock market.

Now, if I define the time-varying parameter αt = ρtγcσc
σt

12 then I can rewrite (3.24)

as

ERt = αtσ
2
t (3.25)

which is equivalent to imposing that the stock market is the state variable, log-normally

distributed, and that the power utility investor has time-varying risk aversion αt.

Therefore, even though risk aversion is constant at γc, the stock market implied risk

aversion can be time-varying because the correlation between consumption and the

stock market is time-varying.

As a consequence of the assumptions made in this subsection, the time-varying

correlation between consumption and the stock market is proportional to the market’s

Sharpe ratio, ρt ∝ ERt
σt

, and the stock market implied time-varying risk aversion is pro-

portional to the consumption to stock market correlation over stock market volatility,

12In a (more realistic) setting where risk aversion (γct ), consumption volatility, and the correlation

between the market and aggregate consumption are time-varying, then αt =
ρtγ

c
t σ
c
t

σt
is the market’s

implied risk aversion as seen from the point of view of a power utility investor who holds the market.
Clearly, in this setting, I cannot distinguish between the contributions in the time variation of αt which
comes from either of the time-varying parameters.
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αt ∝ ρt
σt

.

The correlation between consumption and the stock market is proportional to the

Sharpe ratio of the market and is therefore high during high volatility periods. For

instance, during the recent financial crisis when stock market volatility spiked, then

so did the correlation between consumption and the stock market. However, the in-

crease in correlation between consumption and the stock market was not enough to

offset the increase in stock market volatility and as a consequence stock market risk

aversion decreased. Figure 3.4 shows the time series of implied correlations between

consumption and the stock market when consumption risk aversion is constant at 38 as

implied by the equity premium puzzle, cf. Mehra and Prescott (1985b), and monthly

consumption volatility is constant at 0.0075.

Clearly, a setting in which both risk aversion and consumption volatility are con-

stant is too simplified to fully capture the real world. Many of the conclusions which I

draw in this subsection can be altered simply by assuming that, for example, risk aver-

sion (γc) is time-varying or consumption volatility is time-varying. Nevertheless, the

discussion in this subsection highlights that the time variation in market risk aversion,

which I document in this paper, can be a consequence of a misinterpretation of the

implied risk aversion. That is, the risk aversion implied by the market is time-varying

and tends to be low at times when volatility is high because the mapping from the true

state variable, aggregate consumption, onto the market is time-varying, e.g., through

time-varying correlations.

7 Conclusion

I present a new method for estimating the market’s time-varying risk aversion directly

from option written on the market and historical market returns. My method com-

bines the generalized recovery method of Jensen, Lando, and Pedersen (2017) and the

Berkowitz test as used in Bliss and Panigirtzoglou (2004).

The estimated market risk aversion coefficients are on average 2.77 and vary from

1.49 to 5.03 over the period from 1996 to 2016. Interestingly, market risk aversion is

negatively related to variance. During the peak of the financial crisis in 2008-2009 when

market volatility was high, risk aversion was at its all-time low. These co-movements
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between risk aversion and variance are difficult to reconcile with the leading asset

pricing models.

I discuss two possible explanations for the negative relation between risk aversion

and variance. First, I show that my results are consistent with salience theory. Specif-

ically, during periods of high volatility when expected returns on the market are high

relative to the risk-free returns, investors find the relatively high expected return on

the market salient and therefore become more risk tolerant. Secondly, I show that my

results can arise if the stock market is a poor proxy for aggregate consumption.
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Table 3.1: Specifications of the stochastic discount factor. This table reports
five different specifications of the CRRA stochastic discount factor that I use in this
paper. The stochastic discount factors take the form:

mt,T (Rt,T ) = δ(t, T )R
−γ(t)
t,T (3.26)

Here δ(t, T ) is a time preference parameter and γ(t) is the coefficient of relative risk
aversion.

Parameterization

# Comments δ(t, T ) γ(t)

(1) Risk neutral distribution 1/Rft,T 0

(2) Fixed time preferences 0.98T−t γt
Time-varying risk aversion

(3) Time-varying time preferences (Bliss and Panigirtzoglou (2004)) δT−tt γ
Constant risk aversion

(4) Constant time preferences δT−t γt
Time-varying risk aversion

(5) Time preferences affine in the inverse of the gross risk-free return 1/Rft,T + δT−t − 1 γt
Time-varying risk aversion
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Table 3.2: Berkowitz tests. This table reports Berkowitz test statistics for five
different specifications of the stochastic discount factor (SDF) as shown in Table 3.1.

Specifically, I test if the distribution of Ft,T (Rt,T ) =
∫ Rt,T
−∞

πt,T (x)xγ(t)

δ(t,T ) dx is uniform on
the interval from 0 to 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, and 1. If the specification
of the stochastic discount factor perfectly captures the ’true’ historical distribution of
realized returns, then any partition of the interval from 0 to 1 should not be rejected by
the Berkowitz test. I report significance as: * when p < 0.1, ** when p < 0.05, and ***
when p < 0.01. P-values are found by evaluating the test statistic in a χ2-distribution
with three degrees of freedom.

Panel A: The full distribution

Specification of SDF (#)

Uniform on (1) (2) (3) (4) (5)

0 to 1 15.84∗∗∗ 14.08∗∗∗ 12.08∗∗∗ 12.33∗∗∗ 12.25∗∗∗

Panel B: Partitions of the distribution

Specification of SDF (#)

Uniform on (1) (2) (3) (4) (5)

0 to 0.5 5.20 6.14 3.38 0.35 1.26

0 to 0.6 5.53 3.49 1.49 1.41 1.84

0 to 0.7 8.06∗∗ 5.21 4.77 0.81 0.83

0 to 0.8 7.83∗∗ 6.94∗ 3.06 2.20 2.15

0 to 0.9 10.99∗∗ 7.83∗∗ 5.38 2.80 3.87

0 to 0.95 12.32∗∗∗ 7.24∗ 2.87 2.62 2.70

0 to 0.975 12.28∗∗∗ 9.76∗∗ 6.93∗ 6.98∗ 6.92∗
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Table 3.3: Parameter summary statistics. This table reports the average time-
series values for the estimated preference parameters, δ(t, T ) and γ(t). The number
(#) refers to the specification of the stochastic discount factor from Table 3.1. I do
not show results for specification (1) and (2) since they were strongly rejected in the
data as seen from Table 3.2.

Panel A: Risk aversion

# γ(t) Mean St. dev. Min Median Max

(3) γ 2.44 - - - -
(4) γt 2.76 0.83 1.54 2.58 5.38
(5) γt 2.77 0.71 1.49 2.62 5.03

Panel B: Time preferences

# δ(t, T ) Mean St. dev. Min Median Max

(3) δT−tt 1.0055 0.0046 0.9985 1.0047 1.0239
(4) δT−t 1.0056 - - - -

(5) 1/Rft,T + δT−t − 1 1.0057 0.0019 0.9982 1.0063 1.0076
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Table 3.4: Moment summary statistics. This table reports the average time-series
values for estimated physical moments: expected excess return (ER−Rf), standard
deviation (St. dev.), skewness, and kurtosis. Moments are estimated using methods
developed in Gormsen and Jensen (2017b). The number (#) refers to the specification
of the stochastic discount factor from Table 3.1. I do not show results for specification
(1) and (2) since they were strongly rejected in the data as seen from Table 3.2.

Parameterization Annualized (%)

# δ(t, T ) γ(t) ER−Rf St. dev. Skewness Kurtosis

(3) δT−tt γ 9.98 18.81 −1.14 7.46
(4) δT−t γt 9.78 17.82 −1.09 7.09

(5) 1/Rft,T + δT−t − 1 γt 9.83 17.81 −1.09 7.12
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Table 3.5: Correlations. Panel A reports correlations between the market’s time-
varying risk aversion (estimated using specification (5) from Table 3.1) and the market’s
physical moments estimated using methods developed in Gormsen and Jensen (2017b):
expected excess return (ER−Rf), variance, skewness , and kurtosis. Panel B reports
correlations between the market’s physical moments. The number (#) refers to the
specification of the stochastic discount factor from Table 3.1.

Panel A: Risk aversion and moment correlations

# ER−Rf Variance Skewness Kurtosis

(5) γt −0.56 −0.65 −0.42 0.63
[−0.61,−0.52] [−0.70,−0.62] [−0.51,−0.31] [0.54, 0.70]

Panel B: Moment correlations

# ER-Rf Variance Skewness Kurtosis

(5) ER−Rf 1 0.97 0.36 −0.50
[0.96, 0.98] [0.25, 0.46] [−0.56,−0.44]

(5) Variance 1 0.41 −0.53
[0.32, 0.50] [−0.60,−0.49]

(5) Skewness 1 −0.75
[−0.80,−0.69]

(5) Kurtosis 1
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Table 3.6: Salience Theory. This table reports the regression result when regressing
the market’s risk aversion onto the ratio of gross expected return on the market to
gross risk-free returns:

γ(t) = β0 + β1
Et(Rt,T )

Rft,T
+ εt,T (3.27)

γ(t) is estimated using specification (5) in Table 3.1. The expected return on the
market is estimated using methods developed in Gormsen and Jensen (2017b). As the
ratio of expected return on the risky asset to the risk-free return increases, then the
high expected return on the risky asset becomes salient making the investor more risk
tolerant. I report 95% bootstrapped confidence bounds on the estimates.

β0 β1 Adj. R2

Coefficient 10.41 −6.97 0.29
95% CI [8.89, 11.93] [−8.63,−5.92]
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Figure 3.1: Risk aversion estimates. This figures shows risk aversion estimates for
specification (3), (4), and (5) from Table 3.1. The solid blue line is when risk aversion
is time-varying and time preferences are proportional to the gross risk-free return.
The dashed black line is when risk aversion is time-varying and time preferences are
constant. The dashed gray line is the constant risk aversion implied by the Bliss and
Panigirtzoglou (2004) methodology. I do not show results for specification (1) and (2)
since they were strongly rejected in the data as seen from Table 3.2.
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Figure 3.2: Risk aversion and market variance. This figure shows the market’s
time-varying risk aversion (left axis) and the physical conditional variance of the market
(right axis). Conditional variance is estimated using methods developed in Martin
(2017) and Gormsen and Jensen (2017b). Risk aversion is estimated using specification
(5) from Table 3.1. Correlation: −0.65.
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Figure 3.3: Risk aversion and market skewness. This figure shows the market’s
time-varying risk aversion (left axis) and the physical conditional skewness of the mar-
ket (right axis). Conditional skewness is estimated using methods developed in Martin
(2017) and Gormsen and Jensen (2017b). Risk aversion is estimated using specification
(5) from Table 3.1. Correlation: −0.42.
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Figure 3.4: Implied consumption and stock market correlation. This figure
shows the implied correlation between the stock market and aggregate consumption
(left axis) and the markets condition monthly horizon volatility (right axis). Condi-
tional variance is estimated using methods developed in Martin (2017) and Gormsen
and Jensen (2017b)
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