

The Cost of Immediacy for Corporate Bonds

Dick-Nielsen, Jens; Rossi, Marco

Document Version Accepted author manuscript

Published in: **Review of Financial Studies**

DOI: 10.1093/rfs/hhy080

Publication date: 2019

License Unspecified

Citation for published version (APA): Dick-Nielsen, J., & Rossi, M. (2019). The Cost of Immediacy for Corporate Bonds. *Review of Financial Studies*, 32(1), 1-41. https://doi.org/10.1093/rfs/hhy080

Link to publication in CBS Research Portal

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 04. Jul. 2025

The Cost of Immediacy for Corporate Bonds

Jens Dick-Nielsen and Marco Rossi

Journal article (Accepted manuscript*)

Please cite this article as:

Dick-Nielsen, J., & Rossi, M. (2019). The Cost of Immediacy for Corporate Bonds. Review of Financial Studies, 32(1), 1-41. https://doi.org/10.1093/rfs/hhy080

This is a pre-copyedited, author-produced version of an article accepted for publication in *Review of Financial Studies* following peer review. The version of record is available online at:

DOI: <u>dx.doi.org/10.1093/rfs/hhy080</u>

* This version of the article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the publisher's final version AKA Version of Record.

Uploaded to <u>CBS Research Portal:</u> September 2019

CEMS

The Cost of Immediacy for Corporate Bonds^{*}

Jens Dick-Nielsen

Copenhagen Business School and Danish Finance Institute

Marco Rossi Texas A&M University

May 26, 2018

Abstract

Liquidity provision for corporate bonds has become significantly more expensive after the 2008 crisis. Using index exclusions as a natural experiment during which uninformed index trackers request immediacy, we find that the cost of immediacy has more than doubled. In addition, the supply of immediacy has become more elastic with respect to its price. Consistent with a stringent regulatory environment incentivizing smaller dealer inventories, we also find that dealers revert deviations from their target inventory more quickly after the crisis. Finally, we investigate the pricing impact of information, changes in ownership structure, and differences between bank and non-bank dealers.

Keywords: Dealer inventory; bond index; market making; transaction costs; Dodd-Frank. *JEL*: C23; G12

^{*}We are grateful to Itay Goldstein (the editor) and two anonymous referees for their helpful feedback and suggestions. We also thank Jennie Bai, Jack Bao, Darrell Duffie, Peter Feldhütter, Thierry Foucault, Jean Helwege, Charles Himmelberg, Soeren Hvidkjaer, David Krein, David Lando, Mads Stenbo Nielsen, Lasse Heje Pedersen, Christophe Perignon, Jonathan Sokobin, Chester Spatt, Ilya Strebulaev, Erik Thiessen, Kumar Venkataraman, Avi Wohl, and participants in the Fixed Income Conference 2012, MFA conference 2012, FINRA/Columbia conference 2015, 2016 4Nations cup, Corporate bond workshop 2016, Financial Econometrics and Empirical Asset Pricing Conference 2016, MIT GCFP conference 2016, Notre Dame conference on financial regulation 2016, 14th Paris December Finance Meeting 2016, AFA conference 2017, Macro Financial Modelling Conference 2018, and SEC, FCA, Danish CFA, CBS, SMU, Texas A&M, Notre Dame, Heriot-Watt University, and Helsinki Aalto seminars for their helpful comments. Special thanks to Jonathan Sokobin (FINRA) for providing the transaction data and to Charles Himmelberg (Goldman Sachs) for providing the aggregate corporate bond inventory data. The paper won 2nd prize in the 2012 SPIVA awards and 1st place in the 2016 4Nations cup. Jens Dick-Nielsen gratefully acknowledges support from the FRIC Center for Financial Frictions (grant no. DNRF102). Send correspondence to Jens Dick-Nielsen at jdn.fi@cbs.dk, or to Marco Rossi at mrossi@tamu.edu.

1 Introduction

Liquidity entails transacting at a fair price *and* on short notice. Low bid-ask spreads may indicate transactions take place near a fair price, but they tell little about the speed of execution. Unlike brokers who simply match customers, dealers provide immediacy by using their inventories.¹ Since the onset of the 2008 crisis, aggregate corporate bond inventories have shrunk by more than 50% (Figure 1a), while bonds outstanding have almost doubled.² Shrinking inventories amid a growing bond market suggest that providing immediacy has become harder, but because we rarely observe expensive trades requiring immediacy, focusing on realized transactions understates liquidity costs.³ An unconditional analysis of transaction costs is particulary problematic if traders anticipate or experience significant changes in market structure and regulatory framework during the sample period. In the spirit of the Lucas (1976) critique, regulations increasing the cost of immediacy may induce market participants to optimally, albeit reluctantly, adjust their trading behavior.

The main contribution of this study is to quantify the cost of immediacy for corporate bonds in a trading environment that circumvents the Lucas (1976) critique. We identify trades in which the motive to obtain immediacy is so strong that liquidity seekers do not orchestrate alternative trading arrangements. Furthermore, these trades reveal no information about the fundamental value of the assets traded. Specifically, we compute liquidity costs around exclusions from the Barclay Capital investment-grade corporate bond index. In this natural experiment, index trackers (the sellers) request immediacy from dealers (the buyers) in order to minimize their

¹See Garman (1976); Stoll (1978); Amihud and Mendelson (1980); Ho and Stoll (1981).

²See, for example, the 2017 SIFMA Fact Book.

³For instance, Trebbi and Xiao (2018); Adrian, Fleming, Shachar, and Vogt (2015); Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018) find that realized trading costs have improved.

tracking error. Moreover, mechanical index rules, not fundamentals, dictate the decision to trade, thus ensuring that the dealer's pricing reflects the cost of providing immediacy, rather than the adverse selection problem of dealing with informed traders (Easley and O'hara, 1987).

We show that the price of immediacy has more than doubled since before the 2008 crisis. Our empirical analysis also shows that the price elasticity of the supply of immediacy has increased significantly after the crisis. This increase in elasticity is indicative of higher market making cost, which translates into higher average transaction costs, thus providing support for standard theories of market maker inventories. For safe bonds, which are quickly turned over again by dealers, the cost of immediacy has approximately doubled, while for more risky bonds, the cost has more than tripled.

We infer the cost of immediacy by computing a dealer-specific abnormal bond return. We do this by defining an intertemporal bid-ask spread which is based on the percentage difference between the post-exclusion ask price and the pre-exclusion bid price. This measure captures the essence of the dealer's role, who uses her inventory to absorb the selling pressure generated by the index trackers unloading their positions, and then resells the bonds to restore the desired level of inventory. These dealer returns point to the conclusion that the cost of providing immediacy has increased in the post-crisis, low-inventory regime.

Before measuring transaction costs around index exclusions, we verify that these exclusions are indeed events during which index trackers request immediacy. Our analysis reveals that the traded volume of bonds exiting the index peaks during the day of the exclusion, and it is at least four to five times higher than in the weeks surrounding the exclusion. The peak in trading volume is consistent with index trackers attempting to minimize their tracking errors by trading close to the index exclusion date.⁴ Back-of-the-envelope calculations indeed show that reluctance to trade away from the exclusion date results in a hidden cost of indexing⁵ for final investors of approximately 34 bps annually.

Having established the existence of a demand for immediacy, we verify that dealers absorb the resulting selling pressure and thus provide such immediacy. Dividing the sample into three sub-periods shows that dealer behavior has changed after the crisis. Our analysis of the cumulative change in inventories demonstrates that dealers' willingness to hold the bonds in their inventories has declined in the post-crisis, lowinventory regime. While before (and even during) the crisis dealers kept a large share of bonds downgraded out of the index for at least one hundred days, after the crisis the inventories return to near pre-exclusion levels within approximately 20 trading days. More formally, we estimate dealer-specific inventory mean reversion parameters following Madhavan and Smidt (1993), and find that after the 2008 crisis dealers are less willing to tolerate deviations from their desired level of inventory. The estimated inventory half-life significantly decreases from before to during, and from during to after the crisis. These findings suggest an increase in inventory costs of market makers.

We conclude our empirical analysis by exploring several potential channels leading to a higher price of immediacy. First, using institutional bond holdings, we document an increased role of mutual funds in the corporate bond space. We find that both insurance companies and mutual funds are net sellers around the exclusions, a change of behavior for mutual funds which used to trade in the same direction as dealers before the crisis. We control for these demand shifts in our multivariate analysis and find that, while important, these shifts do not affect the conclusion that dealers' supply elasticity is higher after the crisis. Second, we control for contemporaneous

⁴Blume and Edelen (2004) show that stock index trackers display a similar behavior.

⁵See also Chen, Noronha, and Singal (2006), Petajisto (2011) and Pedersen (2018) on this cost.

new information potentially affecting bond prices and find that it does not impact earlier conclusions. Third, we test a set of predictions based on search models which suggest that the increase in the cost of immediacy is consistent with an increase in inventory holding costs and not driven by an increase in dealer market power.

In addition to contributing to the literature on corporate bond liquidity, this paper occupies a natural place in the literature connecting regulations to financial market efficiency. The debate on the repercussions of the Dodd-Frank act on the financial system offers positions that view the regulatory changes as potentially harmful (Duffie, 2012) as well as beneficial (Richardson, 2012). Our study cautions against drawing conclusions about liquidity based on realized aggregate transaction costs. Liquidity measures such as the one shown in Figure 1b are the outcome of market participants' optimization problems, and a large-scale policy change alters the optimal behavior of investors and dealers. To use an analogy, new rules that significantly increased the cost of air travel would induce more travelers to use the bus instead. Discouraging air travel might well lower the average realized cost of transportation (taking the bus is cheaper), but average utility would decline because of the loss of immediacy. Getting from Los Angeles to New York in three days by bus is not the same as completing the trip in five hours by plane.

By focusing on a homogenous, information-free event in which agents do not arrange alternative trading strategies before and after the suggested policy change, our analysis is able to uncover the potential adverse effect that the new regulatory, low-inventory regime has had on corporate bond liquidity. Separating dealers into banks and non-banks, we show that the post-crisis change in dealer behavior is most pronounced for banks. This finding is consistent with banks unwinding proprietary trading in response to anticipated tighter regulation, specifically the Volcker Rule. Our paper thus complements other recent papers in this area by documenting an anticipation effect on the cost of immediacy closely linked to dealers' inventory costs. Using a more recent sample that covers the implementation of the Volcker Rule, Bao, O'Hara, and Zhou (2018) confirm its adverse impact on liquidity provision. Similarly, Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018) provide evidence that dealers are less willing to commit overnight capital after the crisis.

Our paper also contributes to the literature on index revisions and trading around predictable events (see e.g. Admanti and Pfleiderer (1991)).⁶ Bond index revisions have recently been studied by Newman and Rierson (2004) and Chen, Lookman, Schürhoff, and Seppi (2014), but these authors focus on special one-time announcement effects, months before the actual index revision date. Newman and Rierson (2004) look at a large and unique issuance event for European telecom companies. Chen, Lookman, Schürhoff, and Seppi (2014) look at the effect of a unique rating rule change for the Lehman index. Unlike these studies, our paper looks at the trading very close to the actual index revision dates.

2 Corporate bond index tracking

We consider exclusions from the Barclay Capital corporate bond index, which was previously known as the Lehman corporate bond index, and is currently called the Bloomberg-Barclay corporate bond index. These exclusions provide an ideal natural experiment for studying the cost of immediacy over time. Each month corporate bond index trackers demand immediacy from dealers when they seek to sell bonds exiting the index.

The rules for bonds entering or exiting the index are both transparent and mechanical which makes the monthly exclusion events information-free and homogeneous

⁶See, e.g., Chen, Noronha, and Singal (2004) for studies on equity index revisions and Lou, Yan, and Zhang (2013) for anticipated trading in the treasury market.

over time. As of July 2005, the index contains all US corporate bond issues with an investment-grade rating by at least two of the three major rating agencies (Standard and Poor's, Moody's and Fitch). Furthermore, the issuance size must be at least \$250 million and time to maturity must be above 1 year.⁷ Bonds exit the index for three main reasons: time to maturity falls below 1 year; issuers call their bonds; their median rating goes from investment-grade to speculative-grade, so if for instance only two ratings are available, the lower and more conservative rating is used. Bonds enter the index for two main reasons: if they are newly issued and index eligible; or if the rating goes from speculative-grade to investment-grade.⁸ These rules result in an index which covers a large fraction of the market. The index is rebalanced once a month on the last trading day of the month at 3:00 PM EST and all bonds that are no longer index eligible are excluded at this point in time. We note that the actual downgrade date of a bond takes place before the bond is excluded from the index, so in principle it represents a separate event from the exclusion itself (we explore actual downgrades in Section 6.3).

Our bond sample consists of all bonds exiting the index between July 2002, and November 2013. The exclusions are fairly equally scattered over time as seen in Figure 2. Table 1 panel A gives characteristics of the excluded bonds. A large number of bonds have been excluded from the index for "other" reasons. These are mainly exclusions due to an increase in the lower size limit for index eligibility which is why the average issuance size of these bonds is far less than for the rest of the sample.

The objective of index trackers is to minimize tracking error between the return

⁷There are certain more qualitative rules for being index eligible. See index rules at https://ecommerce.barcap.com/indices/index.dxml

⁸We do not report any results for index inclusions. This is because there is little price pressure at inclusion events. Because index trackers sample the index, they can select which bonds to buy. Index trackers thus have a selection of maybe 10-30 bonds and they only need to buy 3-10 of them. This freedom in selection alleviates most of the price pressure.

on their portfolio and that of the index. Blume and Edelen (2004) show that index trackers following the S&P 500 index are transacting on the exact day that the index is rebalanced, even though they sacrifice potential profit by doing so (Beneish and Whaley, 1996). Low tracking error is a signal to investors that the index tracker is in fact committed to tracking the index and thus resolves an agency problem.

Bond index trackers are different from stock index trackers in the way they track the target index. Stock index trackers use an exact-replication strategy (Blume and Edelen, 2004), whereas bond index trackers use a sampling strategy (Schwab, 2009; Vanguard, 2009). Exact-replication implies that the investor holds a position in each asset member of the index. For corporate bonds, such a strategy would generate large transaction costs because the index is large, the market is illiquid, and the index is rebalanced every month. Instead, bond index trackers sample the index by holding only a fraction of the bonds currently in the index. This portfolio is designed to match the index with respect to duration, cash flows, quality and callability. As an example, the Vanguard Total Bond Market Index Fund held 3,731 out of 9,168 bonds in the Barclay Capital US aggregate bond index on December 31, 2008. All the large bond index funds, e.g. BlackRock, Vanguard, Schwab and Fidelity, have similar guidelines for tracking an index by sampling. The typical rule is to have 80% of their assets invested in bonds currently in the index and the remaining 20% invested outside the index. The outside investments are usually in more liquid instruments such as futures, options and interest rate swaps but could also be in non-public bonds or lower rated bonds.

The criteria for how to invest the last 20% outside the index are rather loose (Schwab, 2009; Vanguard, 2009) so it is not possible to know exactly which assets the funds have on their balance sheets. The lack of transparency makes it even more important for the funds to keep a low tracking error as a way to signal same investments (Blume and Edelen, 2004). Looking again at the Vanguard Total Bond Market Index Fund, the annual average tracking error has been -20 bps over 1993-2017. This track record can be compared to that of Barclays Global Investors fund that tracks the S&P 500 index with a tracking error of only 2.7 bps per year (Blume and Edelen, 2004).

Index funds do not seek to outperform the index. This is because investors also use the index funds to express a view on a certain credit or asset class (see Levine (2016)). Some investors may want to capture a specific set of factors and get pure exposure to these factors. Many investors, for example, short index funds. Second, conversations with the leading bond funds also support the fact that they demand immediacy exactly when the index is rebalanced (we verify this empirically in section 4.1 and discuss the potential gain/loss from changing the tracking strategy in section 5.3). For most bonds the fund will spread out their selling activity within the exclusion date and for larger bonds, or in a more illiquid market, they might start selling 1-2 days in advance. This would particularly be the case when, for example, large countries are excluded from sovereign bond indices where they had a large overall weight in the index, but this is less often the case for corporate bonds.

3 Data

This study uses a unique dataset of US corporate bond transactions provided to us by FINRA. The dataset is identical to the Enhanced TRACE dataset available on the Wharton Research Data Services (WRDS), except that we also have anonymized counterparty identifiers for each transaction. This allow us to track the changes in individual dealer inventories around the exclusion events.

We look at all bonds excluded from the Barclay Capital corporate bond index

because of a downgrade to speculative-grade or because of time to maturity falling below 1 year. Table 1 panel B shows that not all the excluded bonds are actually traded in the market and therefore not present with transactions in TRACE.

The TRACE data is cleaned up before usage following the guidelines in Dick-Nielsen (2009). We then remove residual price outliers as in Rossi (2014). To compute prices and returns, we only keep trades equal to, or above, \$100,000 in nominal value (Bessembinder, Kahle, Maxwell, and Xu, 2009), but we keep all trades for constructing the inventory variables.

We calculate dealer-bond specific returns by first calculating a dealer specific buying price for each bond. The dealer specific buying price is the volume-weighted average buying price over day -2, -1, and 0 for a given bond and a given dealer. Here day 0 is the index exclusion day, and day -2, and -1 are the two days leading up to the event date. Second, to circumvent the problem that many dealers may not transact the purchased bonds for many days following the event, we calculate a market-wide average selling price on each day following the event date. The selling price is the volume-weighted average selling price over all sell-side transactions across all active dealers in that bond. Since this calculated selling price can be seen as a market-wide price, it is likely the price that the individual dealer would use to mark-to-market her acquired inventory position.

The intertemporal bid-ask spread is the return calculated as the logarithmic difference between these two prices, and adjusted for accrued interest. If there are no transactions on a given day following the event date the return is calculated using the first available price after that date. In order to limit any information bias caused by the non-trading days, the sample is restricted to bonds where the prices are observed within three days of the non-trading date. Furthermore, an abnormal return is formed by subtracting the return of a benchmark index (Barber and Lyon, 1997). The benchmark is a portfolio of bonds matched on rating and time to maturity. When matching on time to maturity the bonds in the benchmark bracket the maturity of the excluded bonds.

We define the cost of immediacy as the return on the transaction as seen from the dealer's viewpoint, which is why the bid-ask spread is included in all returns as explained above. Put differently, the cost (or price) of immediacy is the return that dealers must expect to earn in order to provide liquidity promptly and sufficiently. We note that these returns are not replicable by other investors in the economy, who would face a possibly large bid-ask spread to implement the strategy of buying at the exclusion and selling afterward. The rest of the study uses the following terminology. When the benchmark return is subtracted from the raw return, it is called an abnormal return; when the benchmark return is not subtracted, it is called an intertemporal bid-ask spread. The latter method is also used as the event return in Goldstein and Hotchkiss (2008), whereas the the former method is used as the event return in Cai, Helwege, and Warga (2007) and Ambrose, Cai, and Helwege (2012).

4 Volume and inventory dynamics

Costly provision of immediacy has both inventory and pricing implications. In this section we explore the first implication; we deal with pricing in the next section.

4.1 Volume dynamics at index exclusions

Figure 3 and Table 2 show that corporate bond index trackers, similar to the S&P 500 index trackers, seek to transact as close as possible to the exclusion date. Panel A of Figure 3 shows trading volume for all bonds excluded from the index because of low maturity. Day 0, the event day, is the last trading day of the month in which the

bond is excluded. Trading volume is aggregated across all the bonds excluded during a given event and then averaged across all event dates. Panel B replicates panel A for bonds excluded because of a recent downgrade to speculative-grade. Table 2 shows the same data as in the figure as well as the standard error of the mean volume estimate and the trading volume fraction relative to the day 0 volume. For both types of events, trading activity spikes on the exclusion date. Table 2 shows that the volume 20 days before and after the event is only 19% to 25% of that at the event date. The peak in trading activity is thus 4-5 times that of the normal level.⁹ A similar trading pattern can be seen around revisions of the S&P 500 (Shleifer, 1986; Harris and Gurel, 1986; Chen, Noronha, and Singal, 2004), the Nikkei 225 (Greenwood, 2005), and the FTSE 100 (Mase, 2007).

Since corporate bonds trade over-the-counter, index trackers cannot be certain to transact at the desired point in time which is why activity is also high right before and after the exclusion date. Figure 3 and Table 2 show that some investors are tracking the index and that they seek to minimize their tracking error, which leads to a spike in the demand for immediacy.

4.2 Dealer inventory around index exclusions

Turning attention to the supply of immediacy, Figure 4 shows dealer inventories for the bonds excluded from the index. The inventories are cumulative, aggregated over all dealers, and with a chosen benchmark of \$0 100 trading days before the event. The daily change in inventory is calculated as the total volume in dealer buys minus the sales. For the low maturity bonds, we see the increase starting around 3 days prior to the exclusion date whereas the buildup for the downgraded bonds starts earlier but

⁹Table A1 and Table A2 in the internet appendix show that the findings are robust when considering abnormal trading volume.

also increases in magnitude approximately 3 days prior to the event. The buildup in the downgraded bonds from day -23 up to day -4 is in part caused by a buy up from the dealers on the actual downgrade date. On the downgrade date itself other investors, different from index trackers, demand liquidity because many firms have an investment policy that discourages holding speculative-grade assets. This sell out on the downgrade date happens despite a grace period of up to two months in which the institutional investors are allowed to hold these bonds (see e.g. Ellul, Jotikasthira, and Lundblad (2011) and Ambrose, Cai, and Helwege (2012)). As we will show later, in terms of immediacy, the downgrade date is a smaller event than the exclusion date.

After the exclusion event, Figure 4 shows that the dealers sell all or part of their newly acquired inventory. After 2 weeks most of the acquired inventory of the low maturity bonds has been sold off. For downgraded exclusions, only around twothirds of the bonds have been sold after 100 days. The two events thus differ in the way dealers use their inventory. Since dealers on average do not sell one-third of the buildup again within 100 days, the decrease in the general willingness to hold inventory is expected to have affected the transaction cost of the downgraded bonds the most.

4.3 Dealer behavior before and after the 2008 crisis

Figure 5a and 5b show the change in dealer inventories around the event before, during, and after the crisis. Table 3 and 4 show statistics of the corresponding inventory positions.¹⁰ The pre-crisis period is from 2002Q3 to 2007Q2, the crisis period is from 2007Q3 to 2009Q4, and the post-crisis period is from 2010Q1 to 2013Q4. Dealers' behavior for the short maturity bonds has changed from before to after the crisis in

 $^{^{10}\}mathrm{Results}$ are similar when looking at normalized inventory positions (see Tables A3 to A8 of the internet appendix.)

that dealers on average provide twice as much immediacy after the crisis than before. But they decrease the inventory to 0 over roughly the same time interval. Hence, the speed with which they sell off again has approximately doubled (we model this pattern more rigourously in the next section).

For the downgraded bonds there is a clear shift in dealer behavior from before and during the crisis to after the crisis. Before and during the crisis dealers keep a large fraction of the inventory increase on their books. However, after the crisis they only have 16% of the inventory left after 30 days compared to 58% before the crisis and 38% during the crisis. Since the shift in behavior happens after the crisis, and not only during the crisis, it is reasonable to infer that the shift is not driven solely by limited risk-bearing capacity of the dealers. Measures of dealer risk-bearing capacity such as dealer leverage, or the VIX index have improved since the crisis.

This change in behavior after the crisis is consistent with the new regulatory environment successfully discouraging market makers from keeping a risky inventory. Downgraded bonds are no longer kept on inventory but are instead unloaded rather quickly. Note that, although new regulations are not fully implemented during our sample period, the change in behavior happens before the actual implementation date. For instance, starting in 2010 the major investment banks close or sell off their proprietary trading activities, motivating this action with reference to regulatory compliance. The reduction of proprietary trading have two effects on the market. First, it reduced the desired portfolio position of the dealers. Second, it potentially reduced demand for the bonds by eliminating a natural counterparty unless the sold off units maintained the same level of activity (which they did not, since many of them closed down later). Both of these effects would increase inventory holding costs thereby increasing the cost of obtaining immediacy (Madhavan and Smidt, 1993).

4.4 Speed of inventory adjustment

In order to provide liquidity, market makers often have to deviate from their desired level of inventory. Provided that inventories are costly and pose risks commensurate to the volatility of the assets traded, dealer inventories will display mean reversion. To estimate the speed of mean reversion for each dealer and each event, we follow Madhavan and Smidt (1993), who derive the following equation relating inventory changes to the dealer desired level of inventory

$$I_t - I_{t-1} = \beta \times (I_{t-1} - I^*) + \varepsilon_t, \tag{1}$$

where I_t is inventory at time t, I^* is the desired level of inventory, and ε_t is a meanzero unanticipated liquidity-driven volume, which is possibly autocorrelated and heteroscedastic. In Equation (1), $\beta \in (-1, 0)$, and is more negative when either inventory costs or the assets' volatilities are higher.

Madhavan and Smidt (1993) show that failure to account for the time-varying nature of I^* over long time periods affects the estimation of β . While we consider a relatively short window around the exclusion event, we have conditioned the sample on an event which could potentially change the desired inventory level. Figures 4b and 5b, and Tables 3 and 4 did reveal that on average inventories do not revert to zero within 100 days, suggesting that they might settle at a higher level after the exclusion. For this reason, we propose the following specification for the desired level of inventory

$$I^{\star} = \alpha_0 + \alpha_1 \mathbf{1}_{[\mathbf{t} > -\mathbf{3}]},\tag{2}$$

where α_0 represents the desired level of inventory before the exclusion event, while α_1 represents the change in desired inventory after the exclusion. Note that we activate

the indicator variable in Equation (2) at t-3 to account for the fact that the increase in inventory happening right before the event is not necessarily a deviation from an old desired level of inventory, but rather a migration toward a new desired level of inventory. We point out that activating the dummy variable at $t = \{-1, -2, 0\}$ makes almost no difference on estimates of β .

Our objective is to investigate whether dealers have sped up their inventory mean reversion after the 2008 crisis. To answer this question, for each event date and for each top-five dealer, we first estimate Equation (1) with iterated GMM, using a Bartlett kernel with three lags (see Madhavan and Smidt (1993)). To determine top dealers we focus on the dealers that take on the most inventory in $t \in [-2,0]$ in a given event date. Note that the composition of the top dealers changes over time. Next, we run a pooled regression with period dummies indicating the precrisis, crisis, and post-crisis periods. Table 5 shows these regressions for the maturity and downgrade events separately. We consider specifications that also include timeseries variables that proxy for dealers' cost of capital. The third and fourth columns present estimates for regressions including dealer fixed effects. In addition to the point estimates, the first three rows of the table convert the coefficients into half-life quantities using the transformation $-\log(2)/(1+\beta)$. The variables which proxy for dealers' risk bearing capacity are the VIX index as in Lou, Yan, and Zhang (2013) and aggregate leverage growth for broker-dealers from the Federal Reserve Flow of Funds data¹¹ as in Adrian, Etula, and Muir (2014). The VIX is supposed to proxy for the dealers' funding constraints and the aggregate leverage growth is supposed to capture the dealers' leverage constraints. When aggregate leverage growth is low it has become more costly to obtain leverage and when VIX is high dealers face higher

¹¹This data is for primary dealers in the treasury market. Schultz (2001) shows that the major corporate bond dealers overlap significantly with the primary market dealers in the treasury market.

funding constraints. We also include the TED spread to proxy for money market stress.

Table 5 shows a clear pattern. In both types of events, dealers display less tolerance toward deviations from desired inventories. For instance, column two in panel B shows that for the typical dealer the half-life of her inventory of bonds downgraded to speculative-grade falls from seven and half days to almost five and half days, a substantial two-day difference. Note that this result is not due only to a change in the composition of dealers over time, as it continues to hold even in regressions with fixed effects capturing within-dealer variation. We also test whether the increase in the speed of mean reversion is statistically significant. As can be seen from the last row of each panel, we reject the null hypothesis that the coefficient on the post-crisis dummy is equal to the coefficient on the pre-crisis dummy in favor of the alternative hypothesis that the coefficient becomes more negative after the crisis.

In their model, Madhavan and Smidt (1993) derive inventory half-life as a function of holding costs and asset volatility. Since bond volatilities have not increased from before to after the crisis, these results are consistent with increased holding costs.

5 Price Dynamics

Since dealers actively use their inventories to provide liquidity to index trackers, we expect them to earn a positive return on average as compensation for the inventory holding costs. The following section shows that dealers are compensated for providing liquidity. The costs are higher for the downgrade event compared to the low maturity event as would be expected, since the downgraded bonds are both more risky and kept longer on inventory.

5.1 Event study of index exclusions

Table 6 shows the dealer abnormal returns for the two exclusion events.¹² Each of these returns are either equally-weighted or value-weighted. The value-weighted returns are weighted by the dealer buying volume (VW1), or by the dealer inventory buildup (VW2), on the event date and over the previous two days. Hence, those bonds purchased by dealers that increased inventory – provided immediacy – are given more weight.

Looking at Table 6, we see that the abnormal dealer returns for the bonds excluded due to low maturity are uniformly higher after the crisis relative to before the crisis. The equally-weighted column (EW) attributes the same weight to all excluded bonds, even those for which there is very little trading, or inventory buildup. Given the statistical sampling approach to replicating the index, indexers only hold some excluded bonds. For this reason, equally-weighted returns may mistakenly give too much weight to bonds for which traders do not seek immediacy. Both value-weighted returns show a much sharper increase (roughly a 100%) in the cost of immediacy for highly rated, short-term bonds over the sample period. For example, at 1-day and 30-day horizons, the VW2 version shows an increase in the cost of immediacy from 6.17 and 7.50 to 13.30 and 14.37, respectively.

Qualitatively, downgrade exclusions look like maturity exclusions. Quantitatively, the returns are much larger, which is to be expected given the low rating of these bonds and the increased inventory risk that they pose. Moreover, the increase in the cost of immediacy since the pre-crisis period is much larger than the maturity exclusion case. As can be seen from the last two columns, the increase ranges from more than 200% at the one-day horizon (e.g., 81.19 to 294.79 for VW2) to more than

 $^{^{12}\}mathrm{In}$ the internet appendix, we report the average intertemproal bid-ask spreads used to construct abnormal returns.

500% at the 30-day horizon (e.g., 142.36 to 965.48 for VW2).¹³

5.2 Regression analysis of the cost of immediacy

Table 6 shows a remarkable increase in the price of immediacy since the onset of the 2008 crisis. Next, we relate the higher returns earned by dealers to the quantity of bonds transacted, and other variables likely to affect the supply and demand of immediacy. Generally, the price (P) and quantity (Q) of immediacy are jointly determined in the market. Therefore regressing the compensation for immediacy on its quantity subjects the econometrician to simultaneous equation bias. Importantly, we do not usually know whether such regression estimates a supply function or a demand function. More formally, a suitable empirical model to consider would be:

$$Q_t^D = \alpha_0 + \alpha_1 P_t + e_t \tag{3}$$

$$Q_t^S = \beta_0 + \beta_1 P_t + u_t \tag{4}$$

$$Q_t^D = Q_t^S = Q_t, (5)$$

where e_t , u_t contain both observable and unobservable demand and supply shifters, and the last equation imposes market clearing. In order to obtain unbiased and consistent estimates of the slopes, a two-stage least squares (2SLS) is normally used.¹⁴ However, this is not necessary in our setting, which provides a natural identifying restriction.

The premise of this study is that indexers are impatient around bond exclusion events. Our empirical analysis so far suggests that their price demand elasticity

¹³In the internet appendix to this paper, we include a chart (Figure A1) that illustrates graphically the increase in the cost of immediacy documented in Table 6.

¹⁴See Choi, Getmansky, Henderson, and Tookes (2010) for a recent application to this methodology to the analysis of issue proceeds and underpricing for convertible bonds.

around these events is extremely low. Therefore, the identifying restriction that we impose is $\alpha_1 = 0$ in Equation (3).¹⁵ This restriction identifies the empirical relation between prices and quantities as a supply relation, so a non-negative relation between prices and quantities in our data would provide support for our assumption.

5.2.1 Model specification

The dependent variable in the regressions is the cumulative abnormal bond returns (a proxy for the cost of immediacy, i.e. P(Q)). The independent variable of interest is a measure of liquidity provision (Q). Assuming that dealers see the excluded bonds as reasonable substitutes, we define Q as the aggregate dealer inventory imbalance (measured in \$mn) for each dealer from day -2 to 0 across all excluded bonds at the event (downgrade and maturity separately). We drop all dealers with a net negative inventory imbalance. We interact Q with three dummies indicating whether the observation takes place before, during, or after the 2008 crisis.

We expect our specification to capture a non-negative supply relation between the price and the quantity of immediacy. To this end, it is important to account for potential demand-side shifters likely to affect the price of immediacy. It is reasonable to assume that a large event, i.e. an event during which a large portion of the index is reconstituted, is more likely to result in a higher demand of immediacy. For this reason, in our baseline regression we include the percentage of the index excluded each month as a control variable. In subsequent regressions, we control for additional demand shifters such as the demand for immediacy coming from buy-side institutions around index exclusions.

We also include other factors likely to influence the cost of immediacy. Specifi-

¹⁵Chacko, Jurek, and Stafford (2008) impose a similar restriction in their theoretical model of the price of immediacy, but in the context of a limit order book.

cally, we include the amount outstanding of the bond. Larger bonds are likely more transparent and liquid than smaller bonds and are therefore less risky to have on inventory. We include the variables proxing for dealers' risk bearing capacity which we also used in the inventory half-life regression. Finally, we include industry (financials vs. non-financials), rating, and period dummies that are interacted with each other. Lastly, we also include dealer fixed effects. To save space, the estimated coefficients on the dummies are not reported in the regression tables.

Table 7 provides descriptive statistics on the variables used in the regressions.

5.2.2 Cost of immediacy before and after the crisis

Table 8 reports the coefficient estimates of the regressions. As can be seen from the table, the price of providing liquidity is increasing in the amount of liquidity transacted, making the relation reminiscent of a supply curve. Comparing the interaction of Q with the post-crisis dummy to the interaction of Q with the pre-crisis dummy reveals that the supply curve is relatively steeper after the crisis.¹⁶ This result suggests that providing immediacy has become more costly after the crisis, and, consequently, dealers require higher returns for providing additional immediacy. The results on the effect of Q are also economically significant. Noting that the returns are measured in basis points, a one standard deviation change in Q after the crisis (\$16.5 mn) is associated to roughly an additional 18.5 bps of return over three days, and roughly 35 (16.5×2.10) bps over a 20 day horizon. The coefficient on the pre-crisis interaction is statistically and economically insignificant at all horizons, indicating that dealers' strategy to buy and temporarily hold excluded bonds could easily scale up.

The regressions include interacted fixed effects, which capture the fact that bonds

¹⁶We conduct t-tests of the difference in coefficients and find that the difference is generally statistically significant at conventional levels.

with the same rating might be priced differently before, during, and after the crisis. Interacting fixed effects mitigates the concerns that the increased cost of immediacy and the increased supply price elasticity come only from a higher level of risk aversion (hence risk premia) in the market. At the bottom of Table 8, we test whether the interaction terms are jointly zero, and find that these interactions do explain some variation in dealer returns, suggesting that it is important to control for potential changes in risk aversion. However, controlling for changing attitudes toward risk does not explain away our elasticity estimates.

Larger events during which a bigger fraction of the index is reconstituted might require dealers to take on more inventory resulting in larger dealer returns. The positive coefficient on *Pct Index Excluded* is consistent with this intuition, but it is only significant at the 20-day horizon.

The other control variables behave as expected although they are not always significant. Larger bonds have a lower cost of immediacy when considering short horizons, but the effect is insignificant at long horizons. When dealers are more constrained, i.e. a low leverage growth or a high VIX, the cost of immediacy is higher. Finally, when the money market undergoes stress, i.e. a high TED spread, the cost of immediacy increases. Money markets are important for market makers since they often fund their market making activity through repo transactions.

5.3 The hidden cost of bond index investment

The cost of immediacy includes a price pressure component as well as the bid-ask spread. From the perspective of the institutional investor, the price pressure component is the more interesting part (Hendershott and Menkveld, 2014). Because the bid-ask spread or the half-spread is in some sense a sunk cost once the investor owns the asset and wants to sell, variation in the dealer's buying price is what constitutes the true opportunity cost. Table 9 shows the abnormal event return calculated as in Table 6 but using only dealer buy prices. This is thus the return that the institutional investor could have gotten (all else equal) had she waited to sell instead of selling at the event date. The negative t's indicate the return from before the exclusion and up to the exclusion event. A negative return before the exclusion thus means that the price decreased leading up to the event. From Table 9 we see that for the maturity exclusions the bid price decreases leading up to the exclusion and it also decreases after the exclusion. The dealer return from Table 6 is therefore driven by an increase in the bid-ask spread rather than a rebound of the price. For the downgrade exclusions, the bid price decreases leading up to the event and increases after the event, indicating that much of the dealer return from these exclusions are generated by a rebound of the price level.

The bid-bid returns pick up a hidden cost of index tracking (see e.g. Chen, Noronha, and Singal (2006), Petajisto (2011), and Pedersen (2018)). To see this, consider that the bond index return is calculated using the average price from day 0 and that this price will be heavily depressed by the concentrated selling from index trackers. Although index trackers obtain potentially a zero tracking error by trading on the exclusion date, the actual returns attained are based on severely discounted prices. It is in principle possible to outperform the index on average by avoiding the price pressure and selling several days away from the rebalancing date.

On average 1.2% of the index (in market values) is excluded each month. Using a back of the envelope calculation, the hidden cost of index tracking is the average (monthly) abnormal bid-bid exclusion return times the fraction excluded from the index (multiplying by 12 gives a rough estimate of the annual costs). The ratio of low maturity exclusions to downgrade exclusion is usually 3:1 (in market values). For downgraded bonds it is optimal to sell out 30 days after the event, whereas for maturity exclusions it is optimal to sell out 10 days before the event according to Table 9. The hidden cost of index tracking is thus roughly $0.012 \times 12 \times (0.25 \times 0.0966 + 0.75 \times 0.00129) = 34$ bps.

The cost estimate can be compared to the hidden cost from stock index investment calculated in Petajisto (2011) of 21-28 bps annually for the S&P 500. Note that this annual cost estimate is only indicative since we do not consider what would happen dynamically when volumes are redistributed away from the exclusion day.

The hidden cost of index tracking raises the question why index trackers do not deviate from trading at the rebalancing date. To illustrate this, we look at the Vanguard Total Bond Market Index Fund as an example. The Barclay Capital Corporate Bond Market Index constitutes around one third of the index that the Vanguard fund is tracking. The Vanguard fund had an average yearly tracking error of -20 bps over 1993-2017. The tracking error primarily comes from transaction costs and management fees. Following the strategy from above (using intertemporal returns) and selling out 10 days before the event for maturity exclusions and 30 days after the event day for downgrade exclusions, the Vanguard fund could improve its tracking error by between 3-9 bps, depending on what we assume about how the fund samples the index. However, the improvement in tracking error comes with an increase in the standard deviation of the tracking error which increases from 20.0 bps to 20.5 bps. Hence, there is a trade off between size and stability of the tracking error. The strategy of selling out very close to the exclusion date could thus be explained by a desire to keep the tracking risk low.

Although the increase in tracking error variance that we calculate may seem modest, the fund could have a fear of realizing a very large negative event, which would cause additional variation in the tracking error. This dislike for tracking risk could also be seen in 2002 when the Vanguard fund underperformed the benchmark by 2.00%. This lead the fund to change its tracking strategy from a strategy that used to over-weight some sectors. In the semi-annual report from June, 2002, fund managers stated that they would make this change despite their belief that the over-weighting had rewarded them over the long run. Aversion to such tail risk is consistent with findings that the flow-to-performance relation for corporate bond funds is concave (Goldstein, Jiang, and Ng, 2017).

6 Exploring additional channels

6.1 Evolution of bond ownership structure

The discussion so far has ignored changes in the market structure that could potentially affect the price of immediacy. Based on data from the Lipper eMaxx institutional bond database, Table 10 and Figure 6 show that mutual fund investors have risen in importance in both relative and absolute terms. Figure 6 further shows that high-yield funds, which can be seen as natural buyers for bonds that exit an investment-grade index to join a high-yield index, have also risen in importance, but have grown less than other mutual funds. Table 10 reports absolute and relative frequencies (by sub-period) of fund*quarter observations in the Lipper eMaxx database. As can be seen, insurance companies are a major player in the corporate bond market. However, mutual funds have gained importance in this space. While before the crisis holding reports by mutual funds represent about a third of insurance company reports, after the crisis their number has grown to be more than half. Other types of investors are negligible, so we ignore them going forward.

Next, we explore how mutual funds and insurance companies trade around ex-

clusion events. Figure 7 shows that, compared to the crisis, mutual funds hold a much larger share of excluded bonds. This figure shows the percentage of bonds held by insurance companies and mutual funds before and soon after the exclusion event, and provides *prima facie* evidence of the trading direction of these corporate bond investors around the exclusion event. As can be seen, insurance companies (left graphs) reduce their holdings, especially for downgrade exclusions (Figure 7c). In addition to showing the increased relevance of mutual funds, Figures 7b and 7d show that mutual funds were net buyers of excluded bonds before the crisis, and have become net sellers since. This change in behavior by mutual funds apparently contrasts the results in Choi and Huh (2017), who suggest that some liquidity provision is provided by nondealers after the crisis. A related paper by Anand, Jotikasthira, and Venkataraman (2017) is more consistent with our study in that it suggests that, while some mutual funds could be supplying liquidity in some instances, overall they are still liquidity takers. We note, however, that our findings pertain to bond exclusions, so they do not have the same breadth as the two studies above.

We test the relationship between institutional ownership and trading at the exclusion events in a regression. Contrasting holdings from the three months preceding a bond exclusion against the month of the exclusion and the two months following the exclusion, Table 11 regresses aggregate holdings (as a percentage of issue size) on a dummy (*Post*) indicating the month of or the two months after the exclusion. This set up accounts for the quarterly reporting frequency of mutual funds and insurance companies. The regression also includes the interaction of *Post* with a dummy indicating whether aggregate dealer inventory buildup was above median (*High Inv*).

As can be seen from the top panel of Table 11, on average, insurance companies reduce their positions in downgraded bonds substantially, while the reduction for low maturity bonds is less pronounced and less statistically significant. Lack of significance of the interaction term suggests that insurance companies do not take liquidity at a time when dealers are providing much of it. With regard to mutual funds (bottom panel), before the crisis changes in holdings were practically zero, but over time the reduction in holdings has become more pronounced and statistically significant. Similarly to insurance companies, selling by mutual funds does not happen during events when dealers are building up inventory more than usual.

The analysis of institutional holdings reveals a steady change in market structure that potentially affects the demand and pricing of immediacy. The statistical insignificance of *High Inv*Post* indirectly suggests that the growing mutual fund sector is not driving the increased price of immediacy that dealers charge, since we do not find that selling by mutual funds is elevated during times when dealers provide above-median immediacy. Nevertheless, as a more robust approach we control for institutional trading behavior directly into our main specification.

Table 12 presents regression estimates for a specification that mimics that of Table 8, but with the addition of two regressors capturing the change in percentage holdings of excluded bonds by mutual fund and insurance companies. Indeed, the coefficient on *MF Change (Pct)* and *Ins. Change (Pct)* suggest that the cost of immediacy is larger when mutual funds and insurance companies reduce their position in the bonds that exit the index. However, we note that, while these coefficients are marginally statistically significant, the coefficients on the interaction of Q with the post-crisis dummy do not change and remain statistically significant. For instance, comparing Table 8 to Table 12, we see that the 1-day coefficient on Q * Postcrisis goes from 0.630 to 0.619, and that the 30-day coefficient goes from 1.887 to 1.815.

6.2 Search frictions and inventory costs

In this section, we test a set of predictions derived from search based models (e.g. Duffie, Gârleanu, and Pedersen (2007)). The predictions relate dealer inventory costs to dealer behavior and market power.

The increase in the cost of immediacy seen in Table 6 could be driven by a change in dealers' market power (Lagos and Rocheteau, 2007). The fact that during the crisis many dealers merged or exited the market could potentially increase the market power of the remaining dealers. Alternatively, an increase in the collective market power of dealers could entice new dealers to the market. Table 13 panel A shows the number of dealers participating in the event (i.e. the number of dealers with at least one buy transaction during event day -2 to 0). Panel A also shows the Herfindahl index for dealer share at the event. The table shows that the number of dealers has increased over time and that the concentration is lower. Based on these two findings it seems that competition among dealers has not decreased after the crisis. We find it unlikely that the entry of new dealers is driven by an increase in the collective market power of dealers because dealers were already in a situation where they could extract maximal rent from the price inelastic index trackers. The bargaining power of index trackers are likely primarily determined by the number of participating dealers since with fewer dealers, the index trackers have less outside options when negotiating with a specific dealer.

The entry of new dealers could be consistent with an increase in holding costs of the old dealers. Such an increase in holding costs would allow new dealers to enter the market and compete at the (now) higher prices of immediacy. The dominating precrisis dealers were likely those who were most affected by regulation (Bao, O'Hara, and Zhou (2018)), thereby increasing the bargaining power of potential new entrants in the dealership market. Importantly, the higher number of dealers did not lower the price of immediacy since these dealers are likely less efficient (they could not compete before) and must cover high inventory costs.

Our setting is close to that modelled in An and Zheng (2017). While most search based models assume that investors randomly switch preferences for holding a security, in their model customers will not regain a positive preference for the security. This resembles the situation for index trackers, although search models assume that the loss of preference happens randomly whereas it is deterministic for index trackers. In An and Zheng (2017) dealers can either use their inventory (provide immediacy) or just match customers (riskless principal trading or agency trading). In the latter case customers have to wait in order to be matched. When inventory costs increase the price of immediacy should also increase (as in Table 6) and we should see a higher fraction of riskless principal trading. The bottom section of panel A in Table 13 shows the fraction of riskless principal trading out of the total trading volume. Similar to Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), we define riskless principal trading as a customer sell which can be matched to a customer buy by the same dealer within a time frame of 60 seconds. We find a minor increase in riskless principal trading. The only minor increase should be seen in connection to index trackers having a preference for selling the asset and being price-inelastic. Therefore, even though dealers had an increase in their holding costs, their costs are still much lower than the holding costs for index trackers hanging on to the bond after exclusion.

Another prediction regarding inventory cost from An and Zheng (2017) is that dealers should be more prone to service incoming customers seeking to buy a bond by using their inventory instead of matching to waiting customers when inventory costs increase. In order to test this, we classify each buy by a customer as either having been served using existing inventory (principal at risk) or using a waiting seller (riskless principal). Again, we classify it as a customer match if the same dealer made two opposite transactions in the same bond with the same volume within 60 seconds. We then construct an indicator which is 1 if the customer buy was serviced using the inventory and 0 otherwise. In Table 13 panel B the indicator is the dependent variable and the level of the dealer inventory is the independent variable. The inventory is dealer specific and accumulated from the start of day -2 up to the specific transaction used for calculating the principal at risk indicator (up to day 30). The dealer should be more prone to using her inventory when inventory costs increase and when inventory holdings are large. The increase in the estimated coefficients over time thus suggests that inventory costs are higher after the crisis.

6.3 Information and Trading

New information about the issuer around the time of the index exclusion could impact the observed cost of immediacy for the bonds. Focusing on the bonds excluded because of a downgrade, there could be contemporaneous news at the time of the exclusion or there could be news at the downgrade date itself which is only slowly being incorporated into the prices. In the latter case a recovery from an overreaction to the downgrade information could then coincide with the price pressure reversal from the index exclusion.¹⁷

In order to investigate the potential impact of contemporaneous information about the bonds, we first look at the downgrade date compared to the exclusion date. Figures 8a and 8b show that the downgrade date itself also sees a lot of trading activity. Average trading volume is of the same size as that seen on the exclusion date but the inventory buildup on the downgrade date is far smaller than that on the

 $^{^{17}}$ See , e.g., Katz (1974); Grier and Katz (1976), and see Norden and Weber (2004) for a review of other rating change studies.

exclusion date. While inventory peaked at the exclusion date and then decreased, here the peak is delayed consistent with a larger inventory buildup at the exclusion date instead of at the downgrade date.

Figure 9 shows both the downgrade date and the exclusion date for events with exactly 17 days between the downgrade and exclusion. This is the most common number of days between the two events. The volume figure clearly shows two spikes in trading activity, first on the downgrade date and then on the exclusion date. The inventory graph shows that there is a minor inventory increase at the downgrade date but that the second increase at the exclusion date is larger. Also, after the inventory spike at the exclusion event, dealer inventory immediately starts to decrease.

The figures suggest that the downgrade date and the exclusion date are two separate events. In order to test whether information spillover or a slow recovery from the downgrade could be a contributing factor to the exclusion returns, we augment the main regression from Table 8 with two variables. First, we include the abnormal stock return of the bond issuer over event day -2 to 0. Abnormal returns are calculated by benchmarking the issuer using size and book-to-market value to a matching Fama-French portfolio (Barber and Lyon (1997)). We also include an indicator which is 1 if the downgrade happened in the second half of the month. If the exclusion event return is impacted by a slow recovery from the downgrade date, then we would expect that bonds with a recent downgrade had a higher return than bonds with a more distant downgrade.

Table 14 shows the estimated regression model for downgraded bonds. The abnormal stock return is clearly significant and important. However, it does not affect the significance of the other coefficients of interest. This suggests that contemporaneous new information is of course important but that it is not a main driver of the results. The indicator for a recent downgrade is not significant at long horizons and has the opposite sign compared to expectation when it is significant. This suggests that a slow recovery from the downgrade does not contribute on average to the exclusion returns. A possible reason for this is that to the extent that a slow recovery is predictable it becomes part of the negotiation surplus in the bargaining between dealer and index tracker. With high dealer competition the dealer compensation would still just reflect the cost of providing immediacy.

6.4 Banks vs Non-Banks

The increase in the cost of immediacy coincides with the spin-off of proprietary trading for the largest dealers. The spin-off is likely a strong contributing factor to the lower levels of inventory for dealers after the crisis compared to before the crisis. In their motivation for the spin-off, dealers cite future regulation prohibiting proprietary trading, i.e., the Volcker Rule, as well as other regulations.

In order to test this potential channel, we follow Bao, O'Hara, and Zhou (2018) and classify dealers as either banks or non-banks. The Volcker Rule was not actually implemented during our sample period but the regulation was expected to be applicable only to bank dealers. A differential increase in the cost of immediacy between banks and non-banks from before to after the crisis could thus suggest that anticipation of tighter banking regulation was a contributing factor.

Table 15 panel A shows the market share for banks versus non-banks at the events. Market share for banks is the fraction of the buying volume handled by bank dealers over day -2 to 0. Panel A also shows the share of the inventory buildup over the same days for banks versus non-banks. Inventory share is the inventory buildup for banks divided by the total inventory buildup for all dealers, hence, if either banks or non-banks are net sellers at the event the inventory share will not be bounded by 0 and 1, although it is in most cases. The table shows that the market share for banks have decreased after the crisis, they handle less of the overall activity and they account for less of the total inventory buildup. This is consistent with Duffie (2012) who argue that banning proprietary trading would allow for non-banks to take over part of the market making. The inventory share decrease at the downgrade event for banks is fairly small. This could be a contributing factor explaining why the cost of immediacy has increased more for downgrades compared to maturity exclusions. For downgrade events, non-banks have not yet taken over the supply of immediacy.

As an additional test, we augment the main regression with some triple interactions to capture banks' change in trading behaviour. The specification that we adopt is given by

$$P = \beta_1 Q * PostCrisis * Bank + \beta_2 Q * PostCrisis + \beta_3 Q * Crisis * Bank + \beta_4 Q * Crisis + \beta_5 Q * PreCrisis * Bank + \beta_6 Q * PreCrisis + fixed effects + controls + \epsilon$$
(6)

The coefficients β_1 , β_3 , β_5 in Equation (6) measure the difference in elasticity between banks and non-banks after, during, and before the crisis respectively. A positive coefficient indicates that banks have a higher elasticity than non-banks. We are interested in assessing whether β_1 is larger than β_5 , that is whether the extent to which banks' supply function is more elastic relative to non-banks has increased after the crisis.

For brevity, Table 15 panel B shows only the triple interaction terms of interest. As the t-test at the bottom of the table shows, the difference in the difference $(\beta_1 - \beta_5)$ from before to after the crisis is positive and significant. This shows that the elasticity increases significantly more for banks compared to non-banks from before to after the crisis. This finding complements those of Bao, O'Hara, and Zhou (2018) and Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), who show an effect at the implementation date of the Volcker Rule. Our finding suggests that for the cost of immediacy there is also an earlier anticipation effect.¹⁸

7 Conclusion

The cost of immediacy for corporate bonds has increased significantly after the 2008 crisis. We show that the supply of immediacy has become more elastic with respect to its price and that dealers have become more reluctant to hold risky bonds on inventory for longer periods of time. This post-crisis change in pricing and dealer behavior is most pronounced for banks, consistent with bank dealers closing down proprietary trading and operating with lower inventories. Furthermore, these findings are consistent with Duffie (2012)'s prediction that the post-crisis regulatory regime would impede market making.

Whether or not the post-crisis regulation and less risky dealer inventories can be considered a success depends on which segments of the economy will be affected by future shocks. By encouraging traditional market makers to take on less risk than before the crisis, a shock is less likely to originate in the banking sector (Johnson, 2012; Richardson, 2012). However, the lower willingness to use balance sheet for market making might make it harder for dealers to mitigate the selling pressure originating from shocks to other segments of the economy.

¹⁸Bao, O'Hara, and Zhou (2018) did not find a large anticipation effect but their study was focused on fire sales in connection to the downgrade date and one month ahead. As showed in section 6.3 that event may not be as focused on immediacy provision as the event used in this study.
References

- Admanti, Anat R, and Paul Pfleiderer, 1991, Sunshine trading and financial market equilibrium, *Review of Financial Studies* 4, 443–481.
- Adrian, Tobias, Erkko Etula, and Tyler Muir, 2014, Financial intermediaries and the crosssection of asset returns, *Journal of Finance* 69, 2557–2596.
- Adrian, Tobias, Michael Fleming, Or Shachar, and Erik Vogt, 2015, Has u.s. corporate bond market liquidity deteriorated?, http://libertystreeteconomics.newyorkfed.org/.
- Ambrose, Brent, Kelly Nianyun Cai, and Jean Helwege, 2012, Fallen angels and price pressure, *Journal of Fixed Income* 21.
- Amihud, Yakov, and Haim Mendelson, 1980, Dealership market: Market-making with inventory, Journal of Financial Economics 8, 31–53.
- An, Yu, and Zeyu Zheng, 2017, Conflicted immediacy provision, Working Paper, Stanford University.
- Anand, Amber, Chotibhak Jotikasthira, and Kumar Venkataraman, 2017, Do buy-side institutions supply liquidity in bond markets? evidence from mutual funds, SMU Working Paper.
- Bao, Jack, Maureen O'Hara, and Xing Alex Zhou, 2018, The volcker rule and marketmaking in times of stress, *Journal of Financial Economics (Forthcoming)*.
- Barber, Brad, and John Lyon, 1997, Detecting long-run abnormal stock returns: The empirical power and specification of test statistics, *Journal of Financial Economics* 43, 341–372.
- Beneish, Messod, and Robert Whaley, 1996, An anatomy of the s&p game: The effects of changing the rules, *The Journal of Finance* 51, 1909–1930.
- Bessembinder, Hendrik, Stacey Jacobsen, William Maxwell, and Kumar Venkataraman, 2018, Capital commitment and illiquidity in corporate bonds, *Journal of Finance (Forthcoming)*.
- Bessembinder, Hendrik, Kathleen Kahle, William Maxwell, and Danielle Xu, 2009, Measuring abnormal bond performance, *Review of Financial Studies* 22, 4219–4258.

- Blume, Marshall, and Roger Edelen, 2004, S&p 500 indexers, tracking error, and liquidity, The Journal of Portfolio Management 30, 37–46.
- Cai, Nianyun Kelly, Jean Helwege, and Arthur Warga, 2007, Underpricing in the corporate bond market, *Review of Financial Studies* 20, 2021–2046.
- Chacko, George, Jakub Jurek, and Erik Stafford, 2008, The price of immediacy, *The Journal* of *Finance* 63, 1253–1290.
- Chen, Honghui, Gregory Noronha, and Vijay Singal, 2004, The price response to s&p 500 index additions and deletions: Evidence of asymmetry and a new explanation, *The Journal of Finance* 59, 1901–1930.
- ———, 2006, Index changes and losses to index fund investors, *Financial Analyst Journal* 62, 31–47.
- Chen, Zhihua, Aziz Lookman, Norman Schürhoff, and Duane Seppi, 2014, Rating-based investment practices and bond market segmentation, *Review of Asset Pricing Studies* 4, 162–205.
- Choi, Darwin, Mila Getmansky, Brian Henderson, and Heather Tookes, 2010, Convertible bond arbitrageurs as suppliers of capital, *Review of Financial Studies* 23, 2492–2522.
- Choi, Jaewon, and Yesol Huh, 2017, Customer liquidity provision: Implications for corporate bond transaction costs, *Finance and Economics Discussion Series 2017-116*.
- Dick-Nielsen, Jens, 2009, Liquidity biases in trace, Journal of Fixed Income 19.
- , Peter Feldhütter, and David Lando, 2012, Corporate bond liquidity before and after the onset of the subprime crisis, *Journal of Financial Economics* 103, 471–492.
- Duffie, Darrell, 2012, Market making under the proposed volcker rule, Rock Center for Corporate Governance at Stanford University Working Paper.
- , Nicolae Gârleanu, and Lasse Heje Pedersen, 2007, Valuation in over-the-counter markets, *Review of financial studies* 20, 1865–1900.
- Easley, David, and Maureen O'hara, 1987, Price, trade size, and information in securities markets, *Journal of Financial Economics* 19, 69–90.
- Ellul, Andrew, Chotibhak Jotikasthira, and Christian Lundblad, 2011, Regulatory pressure and fire sales in the corporate bond market, *Journal of Financial Economics* 101, 596– 620.

Garman, Mark, 1976, Market microstructure, Journal of Financial Economics 3, 257–275.

- Goldstein, Itay, Hao Jiang, and David T Ng, 2017, Investor flows and fragility in corporate bond funds, *Journal of Financial Economics* 126, 592–613.
- Goldstein, Michael, and Edith Hotchkiss, 2008, Dealer behavior and the trading of newly issued corporate bonds, *Unpublished working paper*. Boston College.
- Greenwood, Robin, 2005, Short- and long-term demand curves for stocks: theory and evidence on the dynamics of arbitrage, *Journal of Financial Economics* 75, 607–649.
- Grier, Paul, and Steven Katz, 1976, The differential effects of bond rating changes among industrial and public utility bonds by maturity, *Journal of Business* pp. 226–239.
- Harris, Lawrence, and Eitan Gurel, 1986, Price and volume effects associated with changes in the s&p 500 list: New evidence for the existence of price pressures, *The Journal of Finance* 41, 815–829.
- Hendershott, Terrence, and Albert Menkveld, 2014, Price pressures, Journal of Financial Economics 114, 405–423.
- Ho, Thomas, and Hans Stoll, 1981, Optimal dealer pricing under transactions and return uncertainty, *Journal of Financial Economics* 9, 47–73.
- Johnson, Simon, 2012, Restrictions on proprietary trading and certain interests in and relationships with hedge funds and private equity funds, *Comment letter to the SEC*.
- Katz, Steven, 1974, The price and adjustment process of bonds to rating reclassifications: a test of bond market efficiency, *Journal of Finance* pp. 551–559.
- Lagos, Ricardo, and Guilliame Rocheteau, 2007, Search in asset markets: Market structure, liquidity, and welfare, *American Economic Review* 97, 198–202.
- Levine, Matt, 2016, Etfs and hedge funds, BloombergView: Matt Levine's Money Stuff.
- Lou, Dong, Hongjun Yan, and Jinfan Zhang, 2013, Anticipated and repeated shocks in liquid markets, *Review of Financial Studies* 26, 1891–1912.
- Lucas, Robert, 1976, Econometric policy evaluation: A critique, in *Carnegie-Rochester* conference series on public policy vol. 1 pp. 19–46. Elsevier.
- Madhavan, Ananth, and Seymour Smidt, 1993, An analysis of changes in specialist inventories and quotations, *The Journal of Finance* 48, 1595–1628.

- Mase, Bryan, 2007, The impact of changes in the ftse 100 index, *Financial Review* 42, 461–484.
- Newman, Yigal, and Michael Rierson, 2004, Illiquidity spillovers: Theory and evidence from european telecom bond issuance, *Unpublished working paper*. Stanford University.
- Norden, Lars, and Martin Weber, 2004, Informational efficiency of credit default swap and stock markets: The impact of credit rating announcements, *Journal of Banking & Finance* 28, 2813–2843.
- Pedersen, Lasse Heje, 2018, Sharpening the arithmetic of active management, *Financial* Analyst Journal (Forthcoming).
- Petajisto, Antti, 2011, The index premium and its hidden cost for index funds, Journal of Empirical Finance 18, 271–288.
- Richardson, Matthew, 2012, Why the volcker rule is a useful tool for managing systemic risk, *White paper, New York University.*
- Rossi, Marco, 2014, Realized volatility, liquidity, and corporate yield spreads, *The Quarterly Journal of Finance* 4, 1450004.
- Schultz, Paul, 2001, Corporate bond trading costs: A peek behind the curtain, Journal of Finance 56, 677–698.
- Schwab, 2009, Schwab bond funds prospectus, White Paper.
- Shleifer, Andrei, 1986, Do demand curves for stocks slope down?, *The Journal of Finance* 41, 579–590.
- Stoll, Hans R, 1978, The supply of dealer services in securities markets, The Journal of Finance 33, 1133–1151.
- Trebbi, Francesco, and Kairong Xiao, 2018, Regulation and market liquidity, *Management Science (Forthcoming)*.
- Vanguard, 2009, Vanguard bond index funds prospectus, White Paper.

Table 1: Barclay Capital corporate bond index exclusion statistics

The statistics are accumulated from July 2002 to November 2013 for the Barclay Corporate Bond Index (formerly Lehman). Panel A shows characteristics for the excluded bonds. Market value in \$1,000 is the average market value at the time of the index revision. The table shows four reasons for being excluded. The maturity of the bonds can fall below 1 year during the month. The bond can be called. The bond can be downgraded from investment-grade to speculative-grade during the month. Finally, there can be various other reasons for being excluded. Most of these exclusions are due to revisions of the general index rules, mainly that the size requirement has been increased twice over the period. In all cases the bonds are excluded at the end of the month (last trading day). Panel B shows the number of excluded bonds with transactions in TRACE, the number of bonds traded at the exclusion (event day -2 to 0), and he number of bonds sold (bought) by customers (dealers) at the exclusion.

Panel A: Index e	$\mathbf{exclusions}$			
Reason	Ν	Market Value (\$1,000)	OA Duration	Coupon
Maturity< 1 Called Downgrade Other	3,102 392 1,078 2,119	645,374 461,354 484,269 358,501	$0.92 \\ 0.52 \\ 5.1 \\ 6.0$	5.7 7.1 6.8 6.5

Panel B: Bond	Presence in TRACE			
Reason	Total excluded	In TRACE	Traded at exclusion	Sold at exclusion
Maturity < 1	3,102	2,732	2,532	2,452
Downgrade	1,078	893	804	792

Table 2: Trading activity around the exclusions

This table shows the average transaction volume around the monthly exclusions. The average is across all event dates. Day 0 is the exclusion date. SE is the standard error of the mean transaction volume. Fraction is the transaction volume relative to the volume at the exclusion date. Volume is measured in \$millions.

		Downgrade	2		Maturity	r
Event time	Volume	SE	Fraction	Volume	SE	Fraction
-100	40.2	17.1	0.18	42.9	4.1	0.19
-50	51.5	22.6	0.23	43.5	5.2	0.20
-40	35.5	9.8	0.16	39.2	3.7	0.18
-30	37.5	14.6	0.17	39.6	4.0	0.18
-20	46.3	9.5	0.21	55.4	8.4	0.25
-10	77.9	21.4	0.35	58.2	8.0	0.26
-9	72.3	21.2	0.32	52.2	6.2	0.24
-8	83.0	28.9	0.37	57.5	5.4	0.26
-7	86.4	25.0	0.39	56.0	5.0	0.25
-6	66.3	13.8	0.30	62.8	6.5	0.28
-5	63.8	15.3	0.29	66.0	8.2	0.30
-4	97.4	33.0	0.44	123.2	24.0	0.56
-3	107.2	27.8	0.48	164.1	20.9	0.74
-2	107.8	26.7	0.48	155.7	15.5	0.70
-1	125.7	25.1	0.56	131.7	12.5	0.59
0	222.8	50.2	1.00	221.9	18.1	1.00
1	88.9	27.1	0.40	99.2	8.4	0.45
2	101.3	29.1	0.45	93.5	8.5	0.42
3	95.8	21.8	0.43	85.5	7.6	0.39
4	79.8	16.7	0.36	79.1	7.8	0.36
5	74.0	16.7	0.33	73.2	6.9	0.33
6	69.2	17.5	0.31	72.4	7.6	0.33
7	61.2	14.4	0.27	54.8	5.7	0.25
8	64.0	15.7	0.29	65.1	5.4	0.29
9	49.2	10.7	0.22	65.4	5.6	0.29
10	64.7	18.7	0.29	52.2	4.8	0.24
20	53.5	14.7	0.24	41.1	3.7	0.19
30	47.4	11.6	0.21	43.4	4.4	0.20
40	49.4	15.4	0.22	47.0	5.2	0.21
50	50.3	13.0	0.23	40.8	4.7	0.18
100	56.8	27.7	0.25	34.8	4.7	0.16

ne arbitrarily hen averaged the position		Fraction	0.00	0.09	0.06	0.08	0.27	0.48	0.57	0.63	1.00	0.90	0.83	0.74	0.62	0.55	0.31	0.12	-0.01	-0.13	-0.18	-0.34
elative to tl date and t relative to	ost - Crisis	SE	1.9	15.3	14.1	14.5	21.5	21.5	21.6	20.6	26.3	24.8	23.9	23.9	20.9	20.5	18.6	18.4	19.3	19.9	21.2	21.5
aler inventory is r ccluded at a given nventory position 13Q4.	ď	Inventory	-0.3	21.3	13.4	19.4	65.0	117.4	140.0	153.9	244.0	219.6	201.6	179.9	152.1	134.7	76.5	28.4	-1.9	-31.3	-44.6	-82.9
time. The dee ull the bonds ex- action is the i and 2010Q1-20		Fraction	0.01	0.05	0.03	-0.03	0.15	0.78	0.79	0.71	1.00	0.92	0.68	0.47	0.26	0.11	-0.31	-0.45	-0.64	-0.85	-1.10	-1.52
alance over ted across a stimate. F1 3-2009Q4, a	Crisis	SE	1.8	10.5	12.7	10.7	13.0	14.0	15.2	14.4	17.5	18.2	18.4	17.7	16.4	16.9	16.2	18.3	18.1	16.6	15.8	15.3
mulating the imh llions) is aggrega e volume mean e -2007Q2, 2007Q		Inventory	0.5	2.4	1.6	-1.2	7.0	36.8	37.6	33.7	47.3	43.7	32.3	22.1	12.5	5.3	-14.9	-21.2	-30.3	-40.4	-52.2	-72.1
ler buys and cu ventory (in \$mi lard error of th ods are 2002Q3		Fraction	-0.02	0.07	-0.08	-0.15	0.18	0.20	0.38	0.51	1.00	1.02	0.99	0.89	0.82	0.77	0.45	0.22	0.04	-0.01	-0.15	-0.36
ls from deal lay -100. In is the stand se time peri	Pre - Crisis	SE	1.5	10.3	12.0	12.8	38.2	24.1	24.2	24.6	26.0	26.6	26.2	26.2	25.6	25.6	26.3	26.3	25.8	29.4	32.1	42.3
racting dealer sel g point at event c event dates. SE on date. The thre		Inventory	-2.1	8.9	-10.1	-18.7	23.7	25.4	48.6	65.2	128.4	131.1	126.5	113.9	104.9	99.4	57.2	28.1	5.8	-1.9	-19.4	-46.2
found by subt chosen startin across all the at the exclusion		Event time	-30	-20	-10	-5	-4	<u>ئ</u>	-2	-1	0	1	2	n	4	5	10	20	30	40	50	100

Table 3: Cumulative dealer inventory positions for low maturity exclusions

This table shows the average cumulative dealer inventory around the monthly exclusions because of low maturity. Cumulative inventory is

40

chosen starting across all the a at the exclusio	g point at event d event dates. SE i m date. The thre	ay -100. Inv s the stand e time perio	/entory (in \$mi ard error of th ods are 2002Q5	llions) is aggrega e volume mean e 3-2007Q2, 2007Q	ted across <i>i</i> stimate. F1 3-2009Q4, <i>i</i>	ull the bonds ex action is the in and 2010Q1-20	ccluded at a given aventory position 13Q4.	date and t	aen averaged the position
		re - Crisis			Crisis		P	ost - Crisis	
Event time	Inventory	SE	Fraction	Inventory	SE	Fraction	Inventory	SE	Fraction
-30	-1.8	1.3	-0.02	-2.8	3.7	-0.02	0.3	1.8	0.00
-20	-8.3	6.9	-0.08	0.8	8.3	0.01	-7.5	7.1	-0.10
-10	0.3	8.6	0.00	40.9	39.0	0.30	6.1	8.8	0.08
-5	2.3	9.8	0.02	52.6	44.9	0.38	17.0	7.6	0.24
-4	45.8	39.4	0.46	57.9	50.3	0.42	18.5	8.9	0.26
-3	36.3	23.5	0.36	59.3	51.1	0.43	21.5	8.8	0.30
-2	39.6	24.9	0.40	73.2	56.1	0.53	26.2	9.9	0.36
-1	56.4	25.5	0.56	87.8	60.7	0.64	38.0	10.0	0.53
0	99.9	35.0	1.00	137.2	83.6	1.00	72.2	16.5	1.00
1	92.5	31.0	0.93	127.1	77.9	0.93	64.4	14.0	0.89
2	89.9	31.0	0.90	119.6	74.9	0.87	55.8	11.9	0.77
റ	85.7	30.0	0.86	119.2	75.5	0.87	53.5	11.5	0.74
4	85.5	30.3	0.86	109.6	69.4	0.80	48.8	11.0	0.68
5	84.8	30.1	0.85	103.5	67.2	0.75	49.6	11.0	0.69
10	84.8	29.0	0.85	112.7	77.9	0.82	40.3	10.1	0.56
20	71.6	28.1	0.72	64.9	45.7	0.47	21.7	10.0	0.30
30	57.6	24.1	0.58	52.8	33.5	0.38	11.4	11.1	0.16
40	70.5	31.7	0.71	53.8	35.5	0.39	9.0	9.6	0.12
50	51.1	28.4	0.51	38.0	30.3	0.28	13.1	10.9	0.18
100	53.7	36.6	0.54	29.9	46.1	0.22	-11.2	12.8	-0.15

Table 4: Cumulative dealer inventory positions for downgrade exclusions

This table shows the average cumulative dealer inventory around the monthly exclusions because of a downgrade. Cumulative inventory is found by subtracting dealer sells from dealer buys and cumulating the imbalance over time. The dealer inventory is relative to the arbitrarily

41

Table 5: Speed of inventory adjustment

This table reports pooled regression estimates from regressing dealer- and event-specific inventory speed of adjustments over period dummies and other control variables. The speed of adjustments, β , are estimated by fitting the equation $I_t - I_{t-1} = \beta * (I_{t-1} - \alpha_0 - \alpha_1 \mathbf{1}_{[t>-3]})$ with iterated general method of moments (IGMM) with a Bartlett kernel (3 lags), for each dealer and event. I_t represents total inventory (across all bonds) for a given dealer at event-time t, and α_0 and α_1 are two constants representing the desired level of inventory before and after index exclusions. t = 0 represents the exclusion date. In addition to the point estimates, the first three rows convert the coefficients into half-life quantities using the formula $-\log(2)/(1 + \beta)$. The analysis is based on the inventories of the top 5 dealers in each month. See Table 7 for variable definitions.

Model	1	2	3	4
Pa	anel A: Maturity e	xclusions (45 disti	nct dealers)	
Pre-crisis	0960***/6.87	0869***/7.62	0788***/8.45	0752***/8.87
	(0.0052)	(0.0105)	(0.0127)	(0.0151)
Crisis	1371***/4.70	1334***/4.84	0929***/7.11	0907***/7.29
	(0.0092)	(0.0200)	(0.0128)	(0.0206)
Post-crisis	1171***/5.56	1043***/6.30	0993***/6.63	0920***/7.18
	(0.0059)	(0.0132)	(0.0139)	(0.0181)
VIX		0009		0007
		(0.0006)		(0.0005)
TED Spread		0.0002^{**}		0.0002
		(0.0001)		(0.0001)
Dealer Lev. Growth		0100		0.0175
		(0.0262)		(0.0192)
Fixed Effects	NO	NO	Dealer	Dealer
Number of Observations	569	569	569	569
R-Square	0.6291	0.6319	0.7331	0.7366
t-test(Post < Pre)	-2.668***	-2.069**	-1.702^{**}	-1.323*
Pa	nel B: Downgrade	exclusions (57 dist	tinct dealers)	
Pre-crisis	0919***/7.19	0884***/7.49	1042***/6.30	0968**/6.80
	(0.0065)	(0.0118)	(0.0382)	(0.0385)
Crisis	$1205^{***}/5.40$	$1046^{***}/6.27$	$1231^{***}/5.28$	$1092^{**}/6.00$
	(0.0147)	(0.0292)	(0.0396)	(0.0450)
Post-crisis	$1250^{***}/5.19$	$1154^{***}/5.65$	$1296^{***}/4.99$	$1186^{***}/5.49$
	(0.0131)	(0.0192)	(0.0357)	(0.0374)
VIX		0002		0008
		(0.0007)		(0.0007)
TED Spread		0000		0.0001
		(0.0001)		(0.0001)
Dealer Lev. Growth		0.0554^{*}		0.0192
		(0.0304)		(0.0315)
Fixed Effects	NO	NO	Dealer	Dealer
Number of Observations	345	341	345	341
R-Square	0.4969	0.5005	0.7076	0.7000
t-test(Post <pre)< td=""><td>-2.261**</td><td>-1.796**</td><td>-1.879**</td><td>-1.507^{*}</td></pre)<>	-2.261**	-1.796**	-1.879**	-1.507^{*}

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 6: Dealer abnormal returns

This table shows the dealer-bond specific average returns of bonds excluded from the Barclay Corporate Bond Index because of low maturity. Returns are calculated as log price changes between day 0 (the exclusion date) and day t after the exclusion. The returns are calculated as seen from the dealers perspective. First, the intertemporal bid-ask spread is calculated using the dealer-buy price (dealer-specific average buy price over day -2,-1, and 0) and the average dealer sell price at day t (average across all dealers). Second, the abnormal return is the intertemporal bid-ask spread minus the return on a matched portfolio. The portfolio is matched on rating and time to maturity. EW returns are equally-weighted across all excluded bonds. VW1 is weighted by the aggregate buying volume in the specific cusip for all dealers with a positive inventory buildup in the bond. VW2 is weighted by the aggregate inventory buildup for dealers with a net positive inventory change between day -3 to 0. The three time periods are 2002Q3-2007Q2, 2007Q3-2009Q4, and 2010Q1-2013Q4.

		Maturit	y Exclusions			Downgr	ade Exclusions	
[0,t]	N	EW	VW1	VW2	N	EW	VW1	VW2
Pre-c	risis							
1	830	20.22***	6.34***	6.17***	243	98.19***	96.18***	81.19***
-		(1.58)	(0.69)	(0.77)		(22.39)	(11.80)	(14.18)
2	794	20.78^{***}	7.31***	7.13^{***}	245	157.89***	188.18^{***}	166.18^{***}
3	780	(1.09) 01.15***	(0.09) 7 66***	(0.00) 7 04***	2/2	(41.40) 160.68***	(20.10) 184 35***	(32.38) 155.62***
5	180	(1.64)	(0.76)	(0.84)	240	(40.61)	(24.33)	(30.42)
4	777	23 03***	7 87***	8 33***	234	168 71***	195 90***	172 19***
т		(1.86)	(0.99)	(0.89)	204	(34.01)	(19.87)	(24.40)
5	763	22.17***	7.59***	7.74***	229	193.42***	220.81***	196.05***
		(1.69)	(0.87)	(1.02)		(37.09)	(20.18)	(24.74)
10	727	21.29***	8.05***	8.20***	226	251.28***	295.58***	256.95***
-		(1.75)	(1.29)	(1.14)	-	(71.83)	(36.06)	(48.59)
20	688	22.76***	7.20***	7.53***	215	173.15***	154.53***	124.79***
		(2.31)	(0.86)	(1.10)		(36.87)	(17.01)	(19.49)
30	675	23.22***	7.92***	7.50***	209	173.25^{***}	174.94***	142.36^{***}
		(2.35)	(1.11)	(1.16)		(63.66)	(20.69)	(21.05)
Crisis	3							
1	269	46.33***	50.43***	43.02***	107	58.60	59.14	93.56*
		(4.51)	(7.51)	(6.62)		(43.07)	(37.19)	(55.86)
2	254	46.57^{***}	50.86***	42.12***	101	80.74	65.61	112.61^{*}
		(5.73)	(8.13)	(8.22)		(74.52)	(51.91)	(59.99)
3	236	49.80^{***}	56.52^{***}	52.18^{***}	102	42.16	74.38	130.23^{***}
		(6.95)	(9.91)	(10.43)		(88.86)	(68.72)	(17.95)
4	235	52.96^{***}	56.89^{***}	48.79^{***}	93	50.22	118.90	174.51^{**}
		(6.32)	(7.75)	(7.69)		(135.23)	(123.68)	(82.21)
5	230	53.18***	56.27***	47.12***	87	82.48	152.41	260.06**
10		(8.54)	(8.86)	(7.70)		(157.06)	(155.66)	(105.61)
10	211	63.28***	68.71***	54.53^{***}	91	162.46	193.45	344.43***
20	011	(8.59)	(9.81)	(10.72)		(174.87)	(145.00)	(121.83)
20	211	(12.67)	$(2.4)^{(10,70)}$	54.52^{***}	((234.47	334.32^{**}	492.31^{+++}
20	200	(13.07)	(10.70)	(17.35)	71	(203.77)	(109.83)	(173.18)
30	206	90.55 (20.74)	102.(3)	80.71	(1	-139.2	2(0.88) (164.27)	3(3.44)
-		(20.74)	(20.55)	(22.93)		(381.10)	(104.57)	(116.52)
Post-	crisis							
1	1,085	26.27***	13.53***	13.30***	213	99.91	292.93***	294.79***
_		(2.06)	(1.64)	(1.56)		(87.86)	(110.71)	(103.68)
2	1,054	27.16***	13.79***	13.59***	208	149.92*	350.12***	366.33***
	1.0.41	(1.98)	(1.39)	(1.34)	100	(85.42)	(125.27)	(115.78)
3	1,041	26.47^{***}	13.25***	13.06***	193	185.00^{*}	488.51***	508.88^{***}
4	005	(2.06)	(1.31)	(1.29)	105	(109.72)	(1(4.48))	(107.24)
4	995	(2.41)	13.99	(1.56)	180	203.00	(204.04)	(102.88)
5	000	2.41)	(1.02) 14.35***	(1.00)	188	(120.10)	(204.04)	(192.00)
0	990	(2.45)	(1.84)	(1.79)	100	(145.41)	(218,76)	(212.83)
10	954	30 19***	14.87***	14.46^{***}	177	173 39*	381 56***	(212.04)
10	001	(2.26)	(1.61)	(1.57)		(101.57)	(146.80)	(157.25)
20	861	34.06***	15.93***	16.02***	175	314.30	807.29***	869.89***
_ 5	001	(3.25)	(1.67)	(1.74)		(193.71)	(281.61)	(258.22)
30	814	34.20***	15.09***	14.37***	163	332.27	937.37***	965.48***
-		(3.29)	(1.60)	(1.65)		(229.68)	(313.65)	(310.50)

Table 6 (continued)

Table 7: Descriptive statistics of regression variables

This table presents descriptive statistics for the variables used in the regression analysis. The statistics is divided into the whole sample, the downgrade sample, and the low maturity sample. TED spread is the difference between the 3-month LIBOR rate and the 3-month T-bill rate. VIX is the CBOR volatility index derived from the implied volatility on S&P 500 index options. Issue size is the offering amount for the bond in millions. Dealer Lev Growth is the aggregate leverage growth for broker-dealers obtained from the Federal Reserve Flow of Funds data. Pct Index Excluded is the percentage of the index being reconstituted. Q is the dealer-specific aggregate imbalance. MF Change (Pct) and INS Change (Pct) are respectively mutual funds' and insurance companies' percentage change in ownership of an excluded bond. Bond ownership data come from Lipper eMAXX. Equity ret (Excl.) is the stock return, at the exclusion, of the excluded bond's issuer.

Exclusions	Variable	Obs.	Mean	St. Dev.	p25	p50	p75
All	TED Spread	131	45.366	60.474	17.000	24.000	44.000
All	VIX	131	20.397	8.912	14.380	17.740	23.700
All	Dealer Lev. Growth	131	-0.007	0.209	-0.051	0.018	0.052
All	Pct Index Excluded	131	1.146	1.175	0.742	0.910	1.209
All	Issue Size (MIO)	3,314	664.91	569.02	300.00	500.00	750.00
All	Dealer Inventory (Q)	3,314	4.620	13.688	0.000	0.060	2.932
All	Log Issue Size	3,314	17.754	0.679	17.236	17.710	18.175
All	Ins. Change (Pct)	3,230	-0.009	0.035	-0.009	0.000	0.000
All	MF Change (Pct)	3,230	-0.005	0.026	-0.010	-0.000	0.000
All	Equity Ret (Excl.)	2,119	0.002	0.066	-0.021	0.008	0.034
Downgrade	Issue Size (MIO)	695	655.59	593.82	300.00	500.00	750.00
Downgrade	Dealer Inventory (Q)	695	3.863	13.106	0.000	0.004	1.914
Downgrade	Log Issue Size	695	17.572	0.749	17.066	17.461	18.016
Downgrade	Ins. Change (Pct)	687	-0.023	0.059	-0.031	-0.002	0.000
Downgrade	MF Change (Pct)	687	-0.002	0.034	-0.006	0.000	0.004
Downgrade	Equity Ret (Excl.)	461	-0.004	0.083	-0.039	0.001	0.041
Maturity	Issue Size (MIO)	2,619	667.38	562.35	300.00	500.00	750.00
Maturity	Dealer Inventory (Q)	2,619	4.821	13.833	0.000	0.076	3.270
Maturity	Log Issue Size	2,619	17.803	0.650	17.252	17.735	18.187
Maturity	Ins. Change (Pct)	2,543	-0.005	0.023	-0.006	0.000	0.000
Maturity	MF Change (Pct)	2,543	-0.006	0.023	-0.011	-0.000	0.000
Maturity	Equity Ret (Excl.)	1,658	0.004	0.061	-0.018	0.009	0.032

This table presents regression over the period from the exc period/industry/rating and ((post-crisis). We consider two Robust standard errors are c ratings and sub-period fixed	n coefficients f lusion day 0 t dealer fixed e o industry car slustered at th effects are joi	ör a series of r to day t after t ffects. The per cegories (financ e bond issuer ε ntly zero.	egressions. The he exclusion. V riods are 20020 ial Vs non-fina und event date	e dependent ve Jariables are c 33-2007Q2 (pi ncial) and six level. An F-te	ariable is the l lefined in Tab re-crisis), 2007 rating categoi set tests the m	oond- and dea le 7. The regr 7Q3-2009Q4 (ries (AAA-AA ull hypothesis	ler-specific abno essions include crisis), and 201 ., A, BBB, BB, that the intera	rmal return (interacted) 0Q1-2013Q4 B, CCC-C). ctions of the
Event Window: $(0,t]$	1	2	3	4	5	10	20	30
Q*Postcrisis	0.630^{**}	0.821^{***}	1.122^{**}	1.329^{**}	1.629^{**}	0.776^{*}	2.103^{***}	1.887^{**}
	(0.308)	(0.310)	(0.471)	(0.582)	(0.683)	(0.403)	(0.699)	(0.789)
$Q^*Crisis$	0.928	0.741	1.449	2.699^{*}	3.725^{**}	2.970^{*}	4.904^{***}	8.461^{**}
	(0.776)	(0.980)	(1.033)	(1.417)	(1.577)	(1.699)	(1.561)	(3.980)
$Q^*Precrisis$	0.0617	0.180	0.130	0.190	0.217	0.255	0.0426	0.119
	(0.0874)	(0.126)	(0.117)	(0.167)	(0.142)	(0.193)	(0.129)	(0.240)
Pct Index Excluded	3.977	12.17	9.541	6.500	10.25	20.26	12.72^{**}	20.85
	(4.006)	(8.352)	(8.054)	(6.267)	(7.560)	(12.85)	(5.938)	(13.12)
Log Issue Size	-15.16^{**}	-18.44**	-13.04	-7.045	-14.60	-9.497	-14.91	9.723
	(6.610)	(8.790)	(11.08)	(12.54)	(14.19)	(17.98)	(16.49)	(21.25)
Dealer LEv. Growth	-90.08^{*}	-94.07*	-122.4^{*}	-89.27	-138.0	-101.2	-147.5	-236.6^{**}
	(48.55)	(49.74)	(64.70)	(73.04)	(85.26)	(90.99)	(110.9)	(114.9)
VIX	2.446^{*}	2.199	2.510	2.630	2.320	1.786	5.328^{*}	5.237^{*}
	(1.345)	(1.429)	(1.865)	(2.123)	(2.294)	(1.995)	(2.852)	(2.984)
TED Spread	1.066^{**}	1.220^{***}	1.743^{***}	1.832^{**}	1.833^{**}	1.346^{**}	1.774^{*}	2.139^{*}
	(0.416)	(0.450)	(0.593)	(0.721)	(0.816)	(0.673)	(0.966)	(1.112)
Observations	15,713	15,338	14,993	14,779	14,634	14,101	13,401	12,919
Adjusted R-squared	0.219	0.249	0.261	0.257	0.286	0.252	0.368	0.341
Dealer FE	YES	YES	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	YES	\mathbf{YES}
$Rating^*Period FE$	YES	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	YES	\mathbf{YES}
F-test (FE Interactions)	67.46	11.57	6.717	2.592	13.76	57.92	3.935	16.77
Prob>F	0	0	3.86e-10	0.00249	0	0	2.18e-05	0
		Robu	st standard err	ors in parenth	eses			

*** p<0.01, ** p<0.05, * p<0.1

Table 8: Liquidity provision before and after the crisis

Table 9: Bid-bid returns and the hidden cost of indexing

This table replicates Table 6, except that the time $\pm t$ price is an average (across all dealers) of the buy price. For negative t, we compute bid returns from -t to 0; for positive t, we compute bid returns from 0 to t. Consistent, with Table 6, prices at time zero are dealer-specific. Returns are only calculated for the most recent time period.

		Maturit	y Exclusions			Downg	rade Exclusions	
[0,t]	Ν	EW	VW1	VW2	Ν	EW	VW1	VW2
Intert	emporal B	id-Ask Spreads						
-10	888	-15.04***	-7.20**	-6.66**	179	-236.2**	-357.3**	-349.3**
		(2.83)	(2.89)	(3.03)		(112.38)	(153.68)	(143.63)
-5	973	-10.41^{***}	-2.91	-2.96	198	-286.9**	-216.4^{***}	-196.3^{**}
		(2.20)	(1.90)	(2.03)		(132.66)	(75.00)	(92.02)
-4	1,059	-9.56***	-1.77	-1.70	192	-217.0*	-117.1***	-87.04*
		(2.09)	(1.64)	(1.65)		(127.68)	(42.04)	(47.91)
-3	1,216	-7.86***	-1.28	-1.68	202	-190.0	-111.4**	-87.19
		(2.24)	(1.78)	(1.65)		(123.68)	(48.42)	(61.57)
1	947	5.87***	-2.01*	-2.40*	208	83.49	380.83^{**}	404.00**
		(1.65)	(1.13)	(1.36)		(118.02)	(167.58)	(161.34)
2	911	5.60***	-2.13*	-2.63**	214	158.80	488.26**	515.44**
		(1.73)	(1.13)	(1.27)		(130.18)	(197.33)	(189.08)
3	904	6.37***	-1.05	-1.46	204	210.10	621.78**	662.27**
-		(1.56)	(0.99)	(1.13)	-	(161.63)	(253.37)	(256.40)
4	885	7.29***	-1.28	-1.34	188	231.39	736.97**	756.72**
		(1.30)	(1.02)	(1.17)		(192.10)	(304.91)	(314.49)
5	880	8.34***	-1.96*	-2.53**	181	264.08	830.50**	883.80**
0	000	(1.48)	(1.15)	(1.28)	101	(220.66)	(343.04)	(349.79)
10	895	13.16***	1.15	1.02	174	131.33	475.54**	577.63**
10	000	(2.50)	(1.96)	(2.11)		(147.23)	(218, 24)	(241.65)
20	871	18 79***	4 16	3.61	166	357 55	1043 1***	1124 7**
20	011	(3.36)	(2.79)	(2.56)	100	(301.68)	(373.96)	(358 72)
30	832	23 88***	7 10**	6.02**	174	524 61	1406 5***	1439 4**
00	002	(4.40)	(3.02)	(2.87)	114	(355.04)	(443.29)	(421.69)
Abno	rmal Retur	ns					· · ·	
-10	888	-21.61***	-13.00***	-12.91***	179	-322.3**	-566.6**	-530.1**
		(2.03)	(2.00)	(2.03)		(152.23)	(257.04)	(257.97)
-5	973	-15.35***	-7.64***	-7.78***	198	-354.9**	-385.2**	-363.3**
0	0.0	(1.32)	(1.32)	(1.48)	100	$(154\ 12)$	(153.03)	(169.78)
-4	1.059	-14.44***	-6.66***	-6.86***	192	-290.3**	-293.7**	-262.8**
-	1,000	(1.50)	(1.24)	(1.18)	101	(146.19)	(121.61)	(127.92)
-3	1.216	-12.01***	-5.12***	-5.65***	202	-262.7*	-287.9**	-259.6*
5	-,0	(1.82)	(1.33)	(1.06)	-52	(144.22)	(119.64)	(135.19)
1	947	4.89***	-2.60***	-2.76***	208	55.66	304.63**	324 98**
-	011	(1.65)	(0.80)	(0.91)	200	(100.57)	(136.67)	(133.71)
2	911	3 77**	-3 51***	-3 78***	214	110 44	358 86**	384 37**
2	011	(1.52)	(0.60)	(0.68)	214	(100.92)	(146.05)	(1/2, 10)
3	904	3 9/***	-3.05***	-3.95***	204	1/0.02)	463.04**	504.06**
5	304	(1 40)	(0.76)	-0.20	204	(194.98)	(188 21)	(105 66)
Λ	885	(1.43)	-3 73***	-3 /0***	188	167 47	563 22**	50/ 10**
-1	000	(1.90)	-0.15	-0.43	100	(146 60)	(224 24)	(224.10
5	880	(1.43) 4.61***	-4 75***	-5 10***	191	108.00	647 09**	700 37**
0	000	4.01 (1.96)	-4.10	-0.10	101	(172.02)	(262 52)	(968.05)
10	905	(1.20) 7.00***	(U.00 <i>)</i> 2 95**	(0.94) 9 17**	174	105 16	(202.02) 138 90**	(200.90) 530 66**
10	090	(1.96)	-3.30 (1.95)	-3.17	1/4	(135.07)	(108.07)	(015 99)
20	071	(1.00)	(1.30)	(1.01)	166	(155.07)	(190.27) 701 47***	(210.33) 847 64**
20	8/1	8.09	-2.40	-2.28	100	204.48	(81.4)	84(.04)
20	020	(2.00)	(1.22)	(1.40)	1774	(231.03)	(281.81) 025 90***	(283.36)
30	832	(0.01)	-0.2(-0.21^{+++}	1(4	312.39	935.20	900.08**
		(2.21)	(1.34)	(1.43)		(257.10)	(315.03)	(305.35

Table 10: Distribution of Investment Categories over Time

This table reports the absolute and relative frequencies of the investment categories represented in the Lipper eMAXX institutional bond holdings database. The observations on which the frequencies are computed are at the fund*date level.

Period	Freq.	Insurance	Mut. F.	Pens. F.	Annuities	Other
Pre-Crisis	Count	33,879	11,686	1,255	2,693	482
	%	28.65%	9.88%	1.06%	2.28%	0.41%
Crisis	Count	10,894	$5,\!643$	163	1,364	281
	%	9.21%	4.77%	0.14%	1.15%	0.24%
Post-Crisis	Count	28,100	16,490	305	4,053	975
	%	23.76%	13.94%	0.26%	3.43%	0.82%

Table 11: Institutional Ownership Before and After the Exclusion

This table presents coefficient estimates of a regression of aggregate bond holdings (as a percentage of the issue size) held by insurance companies (top panel) and mutual funds (bottom panel). The regression includes issuer and time (event month) fixed effects. Robust standard errors are clustered at the issuer level. *Post* is a dummy equal to one if the holding refers to either the month of the exclusion or the next two months following the exclusion. *High Inv* (absorbed by the time fixed effects) is a dummy equal to one if the exclusion event was characterized by above-median inventory buildup. *High Inv*Post* is an interaction term meant to capture changes in institutional holdings after exclusions characterized by higher than usual inventory buildup.

	Dow	ngrade Exclu	usions	Mat	urity Exclu	sions
	Pre-Crisis	Crisis	Post-Crisis	Pre-Crisis	Crisis	Post-Crisis
Insurance Companies						
Intercept	0.4686 $(97.61)^{***}$	$0.3562 (49.47)^{***}$	0.1372 (29.58)***	0.0723 (1.25)	0.0653 (0.74)	$0.1049 \\ (3.69)^{***}$
Post	0233 (-2.43)**	0373 (-2.59)***	0440 (-2.59)***	0067 (-1.48)	0131 (-2.57)**	0071 (-1.94)*
High Inv*Post	0074 (-0.54)	0034 (-0.13)	0.0303 (1.12)	0.0001 (0.01)	0.0061 (0.71)	0025 (-0.35)
Adjusted R-Square Num. of Observations	$75.41\% \\ 630$	70.09% 304	91.45% 298	$81.07\%\ 1,596$	$93.01\%\ 404$	$81.22\% \\ 1,752$
Mutual Funds						
Intercept	0023 (-1.43)	0.0064 (2.27)**	0.0058 (1.75)*	0.0013 (0.27)	0.0261 (1.64)	0215 (-0.90)
Post	0.0008 (0.34)	0066 (-1.17)	0199 (-2.20)**	0.0008 (0.84)	0050 (-2.36)**	0112 $(-6.26)^{***}$
High Inv*Post	0.0038 (0.77)	0019 (-0.31)	$\begin{array}{c} 0.0132 \\ (0.94) \end{array}$	0004 (-0.33)	0006 (-0.18)	0023 (-0.73)
Adjusted R-Square Num. of Observations	37.67% 912	85.66% 372	$\overline{93.13\%}_{476}$	$\overline{35.90\%}$ 2,248	69.81% 616	57.21% 2,554

This table presents regre- over the period from the period/industry/rating <i>i</i> (post-crisis). We conside Robust standard errors <i>i</i>	ssion coefficiel e exclusion day und dealer fixe r two industry are clustered a	ats for a series o v 0 to day t afte ed effects. The r categories (fine t the bond issue	f regressions. T ar the exclusion periods are 200 ancial Vs non-fi er and event da	The dependent Variables ar 02Q3-2007Q2 (nancial) and s te level.	variable is the e defined in Ta (pre-crisis), 200 ix rating catego	bond- and dea be 7. The regr 77Q3-2009Q4 (Dries (AAA-AA Dries (AAA-AA	der-specific abn ressions include crisis), and 201 A, A, BBB, BB,	ormal return (interacted) 0Q1-2013Q4 B, CCC-C).
Event Window: (0,t]	1	2	3	4	5	10	20	30
Q*Postcrisis	0.619^{**}	0.815^{**}	1.061^{**}	1.255^{**}	1.573^{***}	0.829^{**}	2.054^{***}	1.815^{**}
	(0.259)	(0.376)	(0.419)	(0.523)	(0.597)	(0.388)	(0.646)	(0.746)
$Q^*Crisis$	0.863	0.744	1.403	2.614^{*}	3.648^{**}	2.826^{*}	4.946^{***}	8.557^{**}
	(0.893)	(0.997)	(1.001)	(1.421)	(1.747)	(1.479)	(1.558)	(3.987)
$\mathrm{Q}^{*}\mathrm{Precrisis}$	0.0636	0.176	0.133	0.195	0.225	0.246	0.0512	0.115
	(0.169)	(0.122)	(0.120)	(0.118)	(0.145)	(0.175)	(0.133)	(0.242)
MF Change (Pct)	-303.5	-246.7	-505.2	-538.5	-342.9	311.9	-429.5	-943.3^{*}
	(328.8)	(370.4)	(385.8)	(497.1)	(613.5)	(545.5)	(675.1)	(541.3)
Ins. Change (Pct)	-275.3^{*}	-302.3^{*}	-125.3	-68.72	-51.15	-621.6^{*}	-129.7	-838.6^{**}
	(162.2)	(178.5)	(304.4)	(298.3)	(385.0)	(345.4)	(379.1)	(356.8)
Pct Index Excluded	3.406	11.64	9.356	6.441	10.16	18.61	12.41^{**}	19.36
	(3.802)	(7.961)	(8.062)	(6.389)	(7.476)	(11.73)	(5.773)	(12.80)
Log Issue Size	-14.95^{**}	-18.15^{*}	-13.69	-8.257	-16.10	-8.562	-15.59	9.928
	(7.248)	(9.682)	(11.72)	(13.09)	(16.09)	(17.93)	(19.01)	(21.75)
Dealer LEv. Growth	-83.88*	-91.61^{*}	-113.6^{*}	-77.83	-123.5	-88.97	-134.9	-212.4^{*}
	(47.18)	(49.58)	(62.32)	(70.22)	(82.52)	(91.26)	(110.6)	(109.9)
VIX	2.546^{*}	2.228	2.566	2.675	2.468	2.130	5.430^{*}	5.428^{*}
	(1.294)	(1.403)	(1.863)	(2.082)	(2.270)	(2.015)	(2.873)	(2.928)
TED Spread	1.058^{**}	1.215^{***}	1.720^{***}	1.805^{**}	1.787^{**}	1.335^{**}	1.730^{*}	2.025^{*}
	(0.405)	(0.443)	(0.575)	(0.692)	(0.780)	(0.669)	(0.952)	(1.070)
Observations	15,443	15,079	14,714	14,506	14,371	13,851	13, 153	12,685
Adjusted R-squared	0.221	0.251	0.266	0.262	0.299	0.245	0.376	0.343
Dealer FE	\mathbf{YES}	\mathbf{YES}	YES	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	YES	\mathbf{YES}
Rating*Period FE	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	${ m YES}$
		Ro	bust standard ϵ *** p<0.01, **	errors in paren p<0.05, * p<	theses 0.1			

Table 12: Liquidity provision and Institutional Ownership

Table 13: Search Frictions and Inventory Costs

Panel A shows the number of dealers participating in buying the excluded bonds over day -2 to 0. The Herfindahl index is calculated using each dealers share of the event dealer-buying volume from day -2 to 0. Riskless principal trading is a dealer-buy in a specific bond which is reversed with a sell from the same dealer within 60 seconds. The riskless principal fraction is the ratio of these trades to the total dealer specific buying volume over day -2 to 0. All numbers are averages over dealers and then months. Panel B shows selling priority as a function of dealer specific inventory. Selling priority is 1 if the dealer executes a principal at risk sell (opposite of riskless principal) and 0 otherwise. Inventory is event and dealer specific and is set to 0 at the start of event date -2. The regression includes all customer buys from day -2 to 0. Inventory is measured in \$100 million. The periods are 2002Q3-2007Q2 (pre-crisis), 2007Q3-2009Q4 (crisis), and 2010Q1-2013Q4 (post-crisis). The T-test is for no difference in estimates between pre-crisis and post-crisis.

	Pre-Crisis	Crisis	Post-Crisis	T-test (Pre vs Post)
Number of participating dealers				
Maturity exclusion	54.0	71.6	77.8	6.74***
Downgrade exclusion	$(2.32) \\ 36.4 \\ (7.01)$	$(12.86) \\ 35.2 \\ (9.68)$	$(2.30) \\ 49.0 \\ (6.61)$	1.26
Herfindahl index for dealer market sh	are			
Maturity exclusion	0.132	0.114	0.101	-2.38**
Downgrade exclusion	$\begin{array}{c} (0.0035) \\ 0.264 \\ (0.0267) \end{array}$	(0.0110) 0.275 (0.0526)	$\begin{array}{c} (0.0034) \\ 0.234 \\ (0.0303) \end{array}$	-0.72
Riskless principal trading fraction				
Maturity exclusion	0.106	0.121	0.116	0.68
Downgrade exclusion	$(0.010) \\ 0.118 \\ (0.014)$	$(0.019) \\ 0.109 \\ (0.021)$	$(0.009) \\ 0.152 \\ (0.021)$	1.47
Panel B: Selling Priority				
	Downgrade exc	lusions	Mat	turity Exclusions
Q*Post-crisis	0.256***			0.379***
Q*Crisis	(0.016) 0.098^{***}			(0.024) 0.256^{***}

Panel A: Dealer statistics

Q*Pre-Crisis

Ν

Period fixed effects

T-test (pre vs post)

Б	1
J	T

(0.006)

0.063***

(0.004)

Yes

237,310

9.60***

(0.081)

0.204***

(0.059)

Yes

45,450

2.73***

This table presents regression coefficients for a series of regressions. The dependent variable is the bond- and dealer-specific abnormal return period/industry/rating and dealer fixed effects. The periods are 2002Q3-2007Q2 (pre-crisis), 2007Q3-2009Q4 (crisis), and 2010Q1-2013Q4 (post-crisis). We consider two industry categories (financial Vs non-financial) and six rating categories (AAA-AA, A, BBB, BB, B, CCC-C). over the period from the exclusion day 0 to day t after the exclusion. Variables are defined in Tabe 7. The regressions include (interacted) Robust standard errors are clustered at the bond issuer and event date level.

Event Window: (0,t]	1	2	c,	4	5	10	20	30
Q*Postcrisis	1.429	2.202^{*}	4.201^{**}	5.590^{***}	5.373^{***}	3.643^{**}	5.998^{**}	7.558^{**}
	(1.329)	(1.204)	(1.781)	(2.065)	(1.832)	(1.516)	(2.699)	(2.882)
$Q^*Crisis$	3.092^{**}	3.829^{**}	4.656^{**}	6.276^{**}	7.859^{***}	6.699^{***}	9.756^{***}	9.471^{**}
	(1.313)	(1.576)	(1.997)	(2.602)	(2.830)	(2.156)	(3.015)	(4.014)
$Q^*Precrisis$	0.112	0.118	0.110	0.264	0.248	0.255	0.00839	0.345
	(0.145)	(0.168)	(0.204)	(0.222)	(0.266)	(0.351)	(0.280)	(0.437)
Recent Downgrade	-74.92^{***}	-94.36^{***}	-115.9^{***}	-105.0^{**}	-105.9^{**}	-79.72	30.72	87.61
	(23.22)	(33.39)	(39.05)	(40.93)	(42.09)	(56.61)	(60.18)	(85.75)
Equity Ret (Excl.)	-872.9**	$-1,048^{**}$	$-1,166^{**}$	-1,103*	$-1,117^{**}$	$-1,700^{***}$	$-2,443^{***}$	-1,257
	(350.5)	(420.4)	(478.6)	(581.0)	(550.9)	(605.4)	(882.6)	(1,282)
MF Change (Pct)	-298.3	-132.7	-391.3	-180.2	-27.45	398.3	$-1,029^{*}$	$-1,447^{*}$
	(257.7)	(355.9)	(396.8)	(402.6)	(545.8)	(640.9)	(565.4)	(749.4)
Ins. Change (Pct)	-183.5	-349.0	-72.76	89.27	241.0	-577.5	22.63	$-1,110^{***}$
	(272.5)	(246.0)	(435.9)	(444.8)	(620.1)	(365.0)	(520.9)	(385.8)
Pct Index Excluded	11.14^{**}	28.43^{***}	23.96^{**}	17.04	25.59^{**}	50.86^{**}	46.51^{***}	50.74
	(5.383)	(10.38)	(9.704)	(10.55)	(12.24)	(19.68)	(14.80)	(32.05)
Log Issue Size	-43.64^{***}	-43.96	-37.87	-18.25	-54.20	-78.84**	-39.43	-31.14
	(16.00)	(27.00)	(36.05)	(36.95)	(42.49)	(38.56)	(25.93)	(50.66)
Dealer Lev. Growth	-94.61	-248.2	-283.1	22.30	-80.62	-205.2	-124.1	-123.2
	(189.6)	(284.2)	(341.1)	(436.9)	(457.5)	(405.3)	(458.1)	(520.1)
VIX	6.287	0.460	1.886	5.342	4.281	-5.037	8.493	15.80
	(4.623)	(6.175)	(7.557)	(8.902)	(8.876)	(7.371)	(8.684)	(10.63)
TED Spread	2.922^{**}	4.752^{***}	4.304^{***}	4.192^{***}	5.192^{***}	2.859^{*}	3.300	2.791
	(1.110)	(0.868)	(1.292)	(1.560)	(1.747)	(1.645)	(2.045)	(2.555)
	200.0			100 0	1000	0 2 2	100	007.0
U bservations	2,805	2,783	2,132	2,081	2,007	2,553	2,074	2,400
Adjusted R-squared	0.376	0.409	0.420	0.424	0.447	0.355	0.566	0.549
Dealer FE	\mathbf{YES}	YES	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	YES	YES	\mathbf{YES}
Rating*Period FE	\mathbf{YES}	\mathbf{YES}	YES	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}	\mathbf{YES}
		Ro	bust standard *** p<0.01, **	errors in pare * p<0.05, * p<	ntheses ≤ 0.1			

Table 15: Bank versus Non-bank reaction

Panel A shows the market share fraction of the event buying volume handled by banks. The buy share is the market share of the buying volume handled over event day -2 to 0. Inv share is the share of the total inventory buildup held by banks over event day -2 to 0. Note that the later measure is not bounded between 0 and 1 because inventory buildup could be negative. All numbers are average across events for downgrade exclusions respectively maturity exclusions. The T-test is for no difference in estimates between pre-crisis and post-crisis. Panel B reports triple interactions of the form Q * Period * Bank, where Period is one of three sub-periods: 2002Q3-2007Q2 (pre-crisis), and 2010Q1-2013Q4 (post-crisis). The triple interactions, including the one involving 2007Q3-2009Q4 (not reported to save space), are from regressions that are otherwise identical to those estimated in Table 12. A t-test for the difference in the postcrisis interaction and the precrisis interaction is reported at the bottom of the table.

		/		
	Dowr	ngrade	Matu	urity
	Buy Share	Inv Share	Buy Share	Inv Share
Post-crisis	0.696	0.874	0.663	0.640
	(0.016)	(0.035)	(0.017)	(0.038)
Crisis	0.779	0.844	0.552	0.759
	(0.017)	(0.030)	(0.048)	(0.160)
Pre-Crisis	0.760	0.906	0.769	0.825
	(0.013)	(0.025)	(0.024)	(0.047)
T-test (pre vs post)	3.02***	0.75	3.61^{***}	3.05***

Panel A: Market share for banks (vs Non-Banks)

Panel B: Diff-in-Diff of bank vs non-bank elasticity estimate

Event Window: (0,t]	1	3	5	10	20	30
Q*Post-crisis*Bank	0.872***	1.247***	1.848***	1.444***	2.673***	2.566***
	(0.317)	(0.437)	(0.641)	(0.539)	(0.688)	(0.711)
Q*Pre-crisis*Bank	-0.142	-0.531*	-0.294	-0.562^{**}	-0.0419	-0.162
	(0.191)	(0.272)	(0.336)	(0.277)	(0.283)	(0.426)

Controls and lower-level interactions included

Observations	$15,\!443$	14,714	$14,\!371$	13,851	$13,\!153$	$12,\!685$
Adjusted R-squared	0.222	0.266	0.300	0.246	0.377	0.344
Dealer FE	YES	YES	YES	YES	YES	YES
Rating*Period FE	YES	YES	YES	YES	YES	YES
t-test (Diff-Diff)	13.47^{***}	24.89***	13.87^{***}	14.40^{***}	19.71^{***}	12.48^{***}

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

(b) Market Illiquidity Factor

Figure 1: Corporate bond market statistics

Panel A shows the primary dealer inventories in corporate securities (investment-grade above 1 year in maturity) and in corporate bonds. The first series can be retrieved from the New York Fed statistics on primary dealer holdings. The graph on corporate bonds can be retrieved from the same place after March 2003. The numbers prior to that date have been computed by Goldman Sachs using yearly SEC-filings from the primary dealers. Panel B shows the market liquidity measure from Dick-Nielsen, Feldhütter, and Lando (2012) which can be downloaded from peterfeldhutter.com.

Reason for Exit=Maturity<1Y 70 Number of Bonds ---- Number of Firms 60 50 40 30 20 10 0 01/01/2002 01/01/2004 01/01/2006 01/01/2008 01/01/2010 01/01/2012 01/01/2014 Exclusion Date

(a) Maturity < 1 Year

(b) Rating Less Then investment-grade

Figure 2: Index Exclusions Over time

This figure plots the number of bond (square) and firm (circle) exclusions from the Barclay's investment-grade Index. The top panel presents the exclusions due to maturity; the bottom panel presents the exclusions due to rating deterioration. The shaded area represents the sub-prime crisis.

(a) Maturity < 1 Year

(b) Rating Less Then investment-grade

This graphs show the average trading volume around the monthly exclusions. Panel A shows the trading volume for the bonds excluded because of low maturity. Panel B is for the bonds excluded because of a downgrade to speculative-grade. Trading volume is aggregated across all the bonds excluded at a given event date and then averaged across all event dates.

(a) Maturity < 1 Year

(b) Rating Less Then investment-grade

Figure 4: Cumulative dealer inventory around the event date. This graphs show the average cumulative dealer inventory around the monthly exclusions. Panel A shows the inventory for the bonds excluded because of low maturity. Panel B is for the bonds excluded because of a downgrade to speculative-grade. Cumulative inventory is found by subtracting dealer sells from dealer buys and cumulating the imbalance over time. The dealer inventory is relative to the arbitrarily chosen starting point at event day -100. Inventory is aggregated across all the bonds excluded at a given date and then averaged across all the event dates.

(a) Maturity < 1 Year

(b) Rating Less Then investment-grade

Figure 5: Cumulative dealer inventory by sub-period.

This graphs shows the cumulative dealer inventories for three periods. Pre-crisis: 2002Q2 to 2007Q2, Crisis: 2007Q3 to 2009Q4, and Post-crisis: 2010Q1 to 2013Q4. The cumulative inventory and the two panels are calculated as in Figure 4, except that the referencing point is now event day -30.

Figure 6: Mutual Fund Growth

The figure shows the total bond par value (blue line) held by mutual funds covered by Lipper eMAXX. The red line with triangles reports holdings by mutual funds specializing in speculative-grade bonds.

(c) Downgrade - Insurance

Figure 7: Institutional Ownership Before and After Index Exclusions

The figure shows the holdings, as a percentage of the issue size, held by insurance companies (left charts) and mutual funds (right charts) in bonds that exit the Barclays Investment-Grade Index either because they are within one year of maturity (top charts), or because the median bond rating falls below investment-grade (bottom charts). Each chart reports bond ownership for each subperiod considered in this study. Within each subperiod, the charts also report bond ownership before the exclusion (blue, left bars, labeled as 0) and up to two months after the exclusion (red, right charts, labeled as 1).

(a) Volume at downgrade date

(b) Cumulative inventory at downgrade date

Figure 8: Trading and inventory around the downgrade date.

This graphs show the average trading volume and cumulative dealer inventory around the downgrade date. The downgrade date is the date at which the bond changes index rating from investment-grade to speculative-grade. Trading volume is aggregated across all the downgraded bonds. The cumulative inventory is calculated as in Figure 4, except that the referencing point is now event day -50 and event time is now relative to the downgrade date.

(a) Volume: 17 days lag

(b) Inventory: 17 days lag

Figure 9: Trading and inventory for specific downgrade constellations The graphs show trading activity (calculated as in Figure 3) and cumulative inventory (calculated as in Figure 4). Event time in these graphs are relative to the index exclusion date (the right vertical line). The left vertical line is the downgrade date. The time lag between downgrade date and index exclusion is kept constant at 17 days which is the most common number of days between the two events. Volume and inventory are not averaged as in the former graphs.

Internet Appendix: The Cost of Immediacy for Corporate Bonds

Table A1: Abnormal trading activity around maturity exclusions

This table shows the average abnormal transaction volume around the monthly exclusions due to low maturity. The first average is across event dates for all bonds excluded at the event (the portfolio of bonds excluded). The benchmark trading volume is the average over event day -100 to -50 before the event. The second average is across all bonds (each bond separately), the benchmark is again average daily trading volume over event day -100 to -50. Event time is measured relative to the exclusion date which is day 0. Fraction is the transaction volume relative to the volume at the exclusion date. Volume is measured in \$millions.

		By event			By bond	
Event time	Volume	T-test	Fraction	Volume	T-test	Fraction
-100	4,5	1,53	0,02	0,2	1,56	0,02
-50	5,1	1,26	0,03	$0,\!3$	$1,\!37$	0,03
-40	0,7	0,25	$0,\!00$	$0,\!0$	0,24	0,00
-30	0,9	$0,\!30$	0,01	$0,\!0$	$0,\!35$	0,01
-20	$16,\! 6$	2,36	0,09	$0,\!8$	3,02	0,09
-10	19,4	3,02	$0,\!11$	1,0	3,06	$0,\!11$
-9	13,2	$2,\!80$	0,07	0,7	4,08	0,07
-8	18,9	4,25	$0,\!11$	1,0	4,73	$0,\!11$
-7	17,5	$4,\!58$	$0,\!10$	0,9	$5,\!46$	$0,\!10$
-6	23,5	4,58	$0,\!13$	1,2	$6,\!43$	$0,\!13$
-5	27,1	$4,\!17$	$0,\!15$	1,4	$5,\!33$	$0,\!15$
-4	67,7	$5,\!14$	$0,\!38$	3,4	12,10	0,38
-3	114,1	$7,\!65$	$0,\!64$	$5,\!8$	$17,\!83$	$0,\!64$
-2	116,9	9,09	$0,\!65$	5,9	$16,\!33$	$0,\!65$
-1	91,5	8,88	0,51	4,6	$16,\!43$	0,51
0	178,9	$12,\!38$	1,00	$_{9,0}$	$25,\!29$	$1,\!00$
1	59,0	9,16	0,33	3,0	$13,\!03$	0,33
2	$54,\!4$	8,51	$0,\!30$	2,8	$11,\!00$	$0,\!30$
3	46,9	8,25	0,26	2,4	$10,\!13$	0,26
4	40,4	6,51	$0,\!23$	2,0	9,21	0,23
5	34,2	6,72	$0,\!19$	1,7	8,09	$0,\!19$
6	32,5	5,72	$0,\!18$	$1,\!6$	$7,\!13$	$0,\!18$
7	16,0	$3,\!58$	0,09	$0,\!8$	$4,\!12$	0,09
8	26,3	6,26	$0,\!15$	$1,\!3$	$7,\!46$	$0,\!15$
9	26,7	$6,\!53$	$0,\!15$	$1,\!3$	$7,\!52$	$0,\!15$
10	13,3	$3,\!40$	0,07	0,7	4,09	0,07
20	2,2	0,77	0,01	$_{0,1}$	0,79	0,01
30	4,7	$1,\!34$	0,03	0,2	$1,\!64$	0,03
40	7,9	2,06	$0,\!04$	0,4	$2,\!20$	0,04
50	2,1	0,50	0,01	0,1	$0,\!64$	0,01
100	-3,8	-1,08	-0,02	-0,2	-1,16	-0,02

Table A2: Abnormal trading activity around downgrade exclusions

This table shows the average abnormal transaction volume around the monthly exclusions due to a downgrade. The first average is across event dates for all bonds excluded at the event (the portfolio of bonds excluded). The benchmark trading volume is the average over event day -100 to -50 before the event. The second average is across all bonds (each bond separately), the benchmark is again average daily trading volume over event day -100 to -50. Event time is measured relative to the exclusion date which is day 0. Fraction is the transaction volume relative to the volume at the exclusion date. Volume is measured in \$millions.

		By event			By bond	
Event time	Volume	T-test	Fraction	Volume	T-test	Fraction
-100	-4,1	-1,03	-0,02	-0,5	-1,03	-0,02
-50	7,2	0,88	0,04	0,9	1,33	0,04
-40	-8,8	-1,30	-0,05	-1,1	-2,31	-0,05
-30	-6,0	-2,35	-0,03	-0,8	-2,27	-0,04
-20	4,6	$0,\!45$	0,03	$_{0,5}$	0,79	0,02
-10	$33,\!6$	$1,\!88$	$0,\!19$	4,0	3,73	$0,\!18$
-9	27,9	2,00	$0,\!15$	3,3	$3,\!49$	$0,\!15$
-8	38,9	1,76	0,21	4,6	$4,\!27$	0,21
-7	41,9	2,95	0,23	5,0	$5,\!14$	0,23
-6	21,1	2,31	$0,\!12$	2,5	3,74	$0,\!11$
-5	18,4	$2,\!66$	$0,\!10$	2,1	3,33	$0,\!10$
-4	$_{30,1}$	$2,\!48$	$0,\!17$	3,6	5,11	0,16
-3	48,2	4,01	0,27	5,8	$6,\!99$	0,26
-2	60,3	$4,\!58$	0,33	7,4	9,74	$0,\!34$
-1	81,4	$4,\!99$	$0,\!45$	$_{9,9}$	$10,\!35$	$0,\!45$
0	181,2	$5,\!33$	1,00	21,9	$12,\!27$	$1,\!00$
1	43,0	$3,\!48$	$0,\!24$	5,1	$7,\!12$	0,23
2	56,2	$3,\!90$	0,31	6,8	7,79	0,31
3	57,4	4,71	0,32	6,9	$6,\!45$	0,32
4	34,5	2,85	$0,\!19$	4,1	5,08	0,19
5	$27,\!6$	3,92	$0,\!15$	3,3	5,09	$0,\!15$
6	23,2	$3,\!34$	$0,\!13$	2,8	4,05	$0,\!13$
7	16,5	$1,\!66$	0,09	$1,\!9$	3,06	0,09
8	18,7	2,22	0,10	2,2	$3,\!31$	$0,\!10$
9	3,4	0,53	0,02	$0,\!4$	$0,\!84$	0,02
10	19,1	2,08	0,11	2,3	$3,\!85$	0,11
20	9,2	0,96	0,05	1,0	1,55	0,05
30	6,5	0,93	0,04	0,8	1,05	0,03
40	4,3	0,99	0,02	0,5	0,91	0,02
50	5,5	$0,\!42$	0,03	$0,\!6$	0,92	0,03
100	11.9	0,93	0,07	1,3	1,47	0,06

day -100. Inv SE is the star three time per	entory (in millic entory (in millic riods are 2002Q;	as excluded is aggreg te volume me: 3-2007Q2, 200	ated across al an estimate. I 37Q3-2009Q4,	If the bonds exc fraction is the in and 2010Q1-20	luded at a gi nventory posi 13Q4.	ven date and the to the to	then averaged a the position a	across all the the exclusion	event dates. n date. The
		Pre - Crisis			Crisis			Post - Crisis	
Event time	Inventory	SE	Fraction	Inventory	SE	Fraction	Inventory	SE	Fraction
-30	-0.004	0.0005	-0.02	-0.0002	0.0004	-0.01	0.0002	0.0005	0.01
-20	0.0010	0.0019	0.05	-0.0009	0.0019	-0.04	-0.0006	0.0009	-0.03
-10	0.0041	0.0034	0.20	0.0071	0.0089	0.31	0.0045	0.0018	0.20
-5	0.0045	0.0046	0.22	0.0087	0.0099	0.38	0.0067	0.0019	0.29
-4	0.0086	0.0054	0.41	0.0096	0.0112	0.42	0.0068	0.0023	0.30
<u>ئ</u>	0.0085	0.0049	0.41	0.0090	0.0115	0.39	0.0081	0.0023	0.36
-2	0.0103	0.0051	0.50	0.0117	0.0127	0.52	0.0098	0.0034	0.43
-1	0.0139	0.0053	0.67	0.0130	0.0136	0.57	0.0187	0.0102	0.82
0	0.0208	0.0054	1.00	0.0228	0.0184	1.00	0.0227	0.0068	1.00
1	0.0208	0.0055	1.00	0.0214	0.0174	0.94	0.0202	0.0054	0.89
2	0.0210	0.0056	1.01	0.0199	0.0168	0.88	0.0204	0.0068	0.90
co	0.0204	0.0057	0.98	0.0203	0.0171	0.89	0.0219	0.0084	0.96
4	0.0199	0.0052	0.95	0.0182	0.0158	0.80	0.0211	0.0083	0.93
5 D	0.0200	0.0051	0.96	0.0167	0.0154	0.74	0.0216	0.0078	0.95
10	0.0201	0.0054	0.96	0.0206	0.0178	0.90	0.0193	0.0075	0.85
20	0.0140	0.0058	0.67	0.0118	0.0112	0.52	0.0130	0.0047	0.57
30	0.0139	0.0053	0.67	0.0097	0.0086	0.43	0.0110	0.0052	0.48
40	0.0130	0.0055	0.62	0.0110	0.0090	0.48	0.0071	0.0038	0.31
50	0.0098	0.0053	0.47	0.0076	0.0077	0.34	0.0075	0.0040	0.33
100	0.0079	0.0064	0.38	0.0098	0.0108	0.43	0.0008	0.0057	0.03

found by subtracting dealer sells from dealer buys and cumulating the imbalance over time. Each month the imbalance is scaled by the This table shows the average cumulative dealer inventory around the monthly exclusions because of a downgrade. Cumulative inventory is

Table A3: Cumulative dealer inventory positions for downgrade exclusions: Scaled by total size of bonds

uggregaveu av nean estimat 2007Q3-2009(24, and 2010Q1-2	excutueu a i inventory p 2013Q4.	osition relative	and the position	the exclusion in the exclusion of the ex	une evenu uave ision date. Thi	e three time peri	iods are 2009	2Q3-2007Q2,
	I	Pre - Crisis			Crisis			Post - Crisis	
Event time	Inventory	SE	Fraction	Inventory	SE	Fraction	Inventory	SE	Fraction
-30	-7.2	9.1	-0.02	-4.7	7.1	-0.01	6.3	16.3	0.01
-20	15.0	31.5	0.04	-18.9	36.0	-0.04	-18.3	26.3	-0.03
-10	68.9	57.3	0.20	135.7	172.0	0.31	124.7	49.9	0.18
-5	75.3	78.4	0.21	162.9	191.4	0.37	193.8	51.5	0.29
-4	143.0	91.5	0.41	182.1	217.1	0.42	200.2	62.2	0.29
<u>-</u> ع	143.1	83.3	0.41	167.5	223.1	0.38	242.8	64.6	0.36
-2	174.6	87.3	0.50	222.0	245.9	0.51	293.9	101.9	0.43
-1	234.5	89.8	0.67	245.4	262.7	0.56	573.2	320.5	0.84
0	352.0	92.3	1.00	437.2	356.7	1.00	679.6	209.9	1.00
1	352.1	92.4	1.00	410.5	336.4	0.94	603.7	165.3	0.89
2	354.1	95.0	1.01	382.5	326.1	0.88	615.3	209.4	0.91
c.	344.7	95.9	0.98	389.1	331.1	0.89	663.4	262.8	0.98
4	335.3	86.7	0.95	348.2	306.3	0.80	639.4	258.9	0.94
S	336.6	85.2	0.96	319.5	298.2	0.73	653.6	241.9	0.96
10	339.8	91.5	0.97	395.1	346.0	0.90	579.2	234.0	0.85
20	235.7	96.8	0.67	225.8	217.2	0.52	388.6	142.2	0.57
30	236.1	87.9	0.67	186.0	168.2	0.43	332.9	160.9	0.49
40	220.6	91.2	0.63	213.6	175.3	0.49	219.8	113.9	0.32
50	164.4	88.6	0.47	146.0	149.4	0.33	235.9	121.5	0.35
100	131.5	108.4	0.37	197.2	209.3	0.45	37.2	176.5	0.05

This table shows the average cumulative dealer inventory around the monthly exclusions because of a downgrade. Cumulative inventory is found by subtracting dealer sells from dealer buys and cumulating the imbalance over time. Each month the imbalance is scaled by the total nominal size of bonds excluded at the event divided by the total size of the index, i.e., the fraction of the index Table A4: Cumulative dealer inventory positions for downgrade exclusions: Scaled by fraction of index excluded

excluded at the event. The dealer inventory is relative to the arbitrarily chosen starting point at event day -100. Inventory (in millions) is

all the event c exclusion date									
		Pre - Crisis			Crisis		P	ost - Crisis	
Event time	Inventory	SE	Fraction	Inventory	SE	Fraction	Inventory	SE	Fraction
-30	-0.01	0.01	-0.03	0.00	0.00	-0.01	0.00	0.00	-0.01
-20	0.13	0.12	0.24	0.00	0.12	-0.01	0.00	0.03	0.00
-10	0.20	0.17	0.38	0.16	0.22	0.45	0.15	0.06	0.29
-5	0.17	0.22	0.33	0.26	0.24	0.71	0.31	0.11	0.61
-4	0.22	0.22	0.41	0.24	0.24	0.65	0.32	0.12	0.63
-3	0.26	0.22	0.48	0.20	0.27	0.54	0.32	0.11	0.63
-2	0.27	0.22	0.51	0.23	0.29	0.62	0.32	0.11	0.61
-1	0.34	0.22	0.63	0.24	0.32	0.67	0.32	0.11	0.63
0	0.54	0.21	1.00	0.36	0.32	1.00	0.51	0.15	1.00
1	0.55	0.21	1.02	0.32	0.33	0.88	0.50	0.14	0.98
2	0.62	0.24	1.16	0.30	0.35	0.82	0.46	0.14	0.90
3 S	0.62	0.26	1.16	0.36	0.40	1.00	0.46	0.15	0.89
4	0.66	0.29	1.23	0.35	0.40	0.97	0.43	0.15	0.84
5	0.68	0.29	1.26	0.33	0.39	0.90	0.45	0.15	0.87
10	0.69	0.28	1.28	0.42	0.44	1.16	0.38	0.14	0.75
20	0.55	0.33	1.02	0.46	0.45	1.26	0.31	0.15	0.60
30	0.69	0.34	1.28	0.37	0.43	1.03	0.22	0.16	0.43
40	0.83	0.46	1.55	0.36	0.40	0.98	0.18	0.19	0.35
50	0.74	0.45	1.38	0.32	0.38	0.88	0.29	0.21	0.56
100	0.49	0.53	0.91	0.23	0.25	0.64	0.05	0.20	0.11

Table A5: Cumulative dealer inventory positions for downgrade exclusions: Scaled by customer selling This table shows the average cumulative dealer inventory around the monthly exclusions because of a downgrade. Cumulative inventory is found by subtracting dealer sells from dealer buys and cumulating the imbalance over time. Each month the imbalance is scaled by volume

the total size of the customer selling volume between event day -2 and 0. The dealer inventory is relative to the arbitrarily chosen

Crisis Post - Crisis	Inventory SE Fraction Inventory SE Fraction	0.0002 0.0002 0.04 0.0000 0.0001 0.00	-0.0002 0.0010 -0.05 0.0009 0.0006 0.08	-0.0004 0.0012 -0.09 0.0007 0.0006 0.06	-0.0003 0.0011 -0.06 0.0011 0.007 0.09	0.0010 0.0014 0.23 0.0030 0.0009 0.26	0.0033 0.0016 0.76 0.0056 0.0009 0.48	0.0033 0.0016 0.75 0.0067 0.0009 0.58	0.0030 0.0015 0.69 0.0074 0.0008 0.64	0.0044 0.0018 1.00 0.0115 0.0009 1.00	0.0043 0.0020 0.99 0.0103 0.009 0.89	0.0031 0.0019 0.70 0.0095 0.0008 0.83	0.0021 0.0019 0.48 0.0083 0.0009 0.72	0.0014 0.0018 0.32 0.0071 0.0008 0.62	0.0009 0.0019 0.21 0.0062 0.008 0.53	-0.0009 0.0020 -0.20 0.0032 0.008 0.28	-0.0028 0.0027 -0.65 0.0008 0.008 0.07	-0.0033 0.0028 -0.75 -0.0006 0.0009 -0.05	-0.0045 0.0027 -1.02 -0.0018 0.0009 -0.16	-0.0059 0.0024 -1.35 -0.0023 0.0010 -0.20	-0.0084 0.0019 -1.92 -0.0038 0.0011 -0.33
	Fraction	0.04	-0.05	-0.09	-0.06	0.23	0.76	0.75	0.69	1.00	0.99	0.70	0.48	0.32	0.21	-0.20	-0.65	-0.75	-1.02	-1.35	-1.92
Crisis	SE	0.0002	0.0010	0.0012	0.0011	0.0014	0.0016	0.0016	0.0015	0.0018	0.0020	0.0019	0.0019	0.0018	0.0019	0.0020	0.0027	0.0028	0.0027	0.0024	0.0019
	Inventory	0.0002	-0.0002	-0.0004	-0.0003	0.0010	0.0033	0.0033	0.0030	0.0044	0.0043	0.0031	0.0021	0.0014	0.0009	-0.0009	-0.0028	-0.0033	-0.0045	-0.0059	-0.0084
	Fraction	-0.02	0.05	-0.08	-0.08	0.50	0.35	0.51	0.61	1.00	1.01	0.96	0.89	0.83	0.81	0.53	0.34	0.20	0.01	-0.09	-0.36
Pre - Crisis	SE	0.0001	0.0008	0.0009	0.0010	0.0076	0.0042	0.0042	0.0041	0.0042	0.0043	0.0042	0.0042	0.0042	0.0042	0.0043	0.0043	0.0040	0.0045	0.0046	0.0050
	Inventory	-0.0002	0.0007	-0.0010	-0.0011	0.0067	0.0047	0.0068	0.0080	0.0133	0.0134	0.0128	0.0118	0.0111	0.0107	0.0071	0.0046	0.0026	0.0002	-0.0012	-0.0048
	Event time	-30	-20	-10	-5	-4	မ်	-2	-1	0	1	2	c,	4	ъ	10	20	30	40	50	100

Table A6: Cumulative dealer inventory positions for maturity exclusions: Scaled by total size of bonds This table shows the average cumulative dealer inventory around the monthly exclusions because of low maturity. Cumulative inventory is found by subtracting dealer sells from dealer buys and cumulating the imbalance over time. Each month the imbalance is scaled by the excluded.

total nominal size of bonds excluded at the event. The dealer inventory is relative to the arbitrarily chosen starting point at event

7
aggregated a mean estimat 2007Q3-2009	cross all the bonds te. Fraction is the Q4, and 2010Q1-2(excluded at inventory po 013Q4.	a given date a osition relative	nd then averaged to the position a	1 across all at the exclu	the event dates ision date. The	. SE is the stand three time perio	lard error o ods are 2002	t the volume 2Q3-2007Q2,
		Pre - Crisis			Crisis		P(ost - Crisis	
Event time	Inventory	SE	Fraction	Inventory	SE	Fraction	Inventory	SE	Fraction
-30	-3.6	2.3	-0.02	2.9	4.0	0.03	0.2	3.1	0.00
-20	12.2	14.1	0.06	-5.1	19.3	-0.06	30.0	19.7	0.08
-10	-18.6	16.3	-0.08	-7.9	23.0	-0.09	20.6	18.8	0.06
-5	-19.4	16.5	-0.09	-4.6	20.9	-0.05	35.1	19.9	0.10
-4	107.2	122.9	0.48	19.8	27.5	0.23	105.1	32.1	0.29
-3	76.1	68.0	0.34	66.0	30.0	0.76	188.4	30.5	0.51
-2	110.6	67.5	0.50	67.4	30.3	0.78	219.1	29.7	0.60
-1	131.9	67.2	0.60	61.5	29.0	0.71	238.9	28.1	0.65
0	221.5	68.3	1.00	86.9	35.1	1.00	367.7	31.6	1.00
1	223.3	69.6	1.01	85.0	37.8	0.98	330.2	29.7	0.90
2	212.9	68.3	0.96	60.6	36.0	0.70	304.2	28.7	0.83
c,	196.1	68.4	0.89	42.1	35.9	0.48	266.3	29.6	0.72
4	183.8	68.3	0.83	28.0	35.0	0.32	228.6	27.9	0.62
n	177.6	68.1	0.80	18.3	35.8	0.21	199.4	27.2	0.54
10	115.8	69.7	0.52	-18.0	36.3	-0.21	105.9	25.5	0.29
20	72.3	69.5	0.33	-57.6	53.4	-0.66	32.1	25.4	0.09
30	39.5	65.4	0.18	-66.4	54.2	-0.76	-12.6	26.9	-0.03
40	-4.8	74.9	-0.02	-89.1	53.2	-1.03	-53.6	26.8	-0.15
50	-28.7	76.5	-0.13	-117.5	47.2	-1.35	-70.8	29.0	-0.19
100	-90.4	83.0	-0.41	-166.6	38.4	-1.92	-124.8	30.8	-0.34

Table A7: Cumulative dealer inventory positions for maturity exclusions: Scaled by fraction of index This table shows the average cumulative dealer inventory around the monthly exclusions because of low maturity. Cumulative inventory is excluded.

found by subtracting dealer sells from dealer buys and cumulating the imbalance over time. Each month the imbalance is scaled by the total nominal size of bonds excluded at the event divided by the total size of the index, i.e., the fraction of the index excluded at the event. The dealer inventory is relative to the arbitrarily chosen starting point at event day -100. Inventory (in millions) is

8

starting point all the event c exclusion date	at event day -100 lates. SE is the s b. The three time	standard er periods are	ror or the volun 2002Q3-2007C	ле теал еклиаю 22, 2007Q3-20090	Q4, and 201				
		Pre - Crisis			Crisis			Post - Crisis	
Event time	Inventory	SE	Fraction	Inventory	SE	Fraction	Inventory	SE	Fraction
-30	-0.01	0.01	-0.04	0.00	0.01	0.02	0.02	0.02	0.02
-20	0.00	0.03	-0.01	-0.06	0.08	-0.45	0.07	0.04	0.07
-10	-0.09	0.05	-0.33	-0.09	0.10	-0.67	0.13	0.11	0.14
-5	-0.09	0.05	-0.31	-0.07	0.08	-0.49	0.20	0.13	0.21
-4	-0.04	0.07	-0.14	-0.01	0.10	-0.04	0.73	0.54	0.76
-3	0.00	0.05	-0.01	0.10	0.11	0.70	0.80	0.54	0.84
-2	0.06	0.05	0.20	0.09	0.11	0.63	0.81	0.54	0.86
-1	0.09	0.05	0.32	0.08	0.11	0.59	0.83	0.54	0.87
0	0.29	0.05	1.00	0.14	0.12	1.00	0.95	0.54	1.00
1	0.29	0.05	0.99	0.16	0.10	1.15	0.91	0.54	0.96
2	0.27	0.05	0.92	0.09	0.10	0.65	0.86	0.51	0.91
ന	0.23	0.05	0.80	0.04	0.10	0.33	0.73	0.42	0.77
4	0.20	0.05	0.71	-0.01	0.11	-0.05	0.55	0.29	0.58
5	0.18	0.05	0.64	-0.02	0.11	-0.14	0.52	0.28	0.55
10	0.06	0.06	0.21	-0.16	0.15	-1.17	0.23	0.12	0.24
20	-0.02	0.06	-0.08	-0.26	0.18	-1.92	0.12	0.09	0.13
30	-0.07	0.06	-0.25	-0.28	0.20	-2.04	0.16	0.19	0.17
40	-0.22	0.11	-0.78	-0.34	0.21	-2.50	0.05	0.14	0.05
50	-0.28	0.10	-0.97	-0.39	0.17	-2.82	-0.01	0.09	-0.01
100	-0.43	0.13	-1.49	-0.56	0.18	-4.06	-0.02	0.12	-0.02

Table A8: Cumulative dealer inventory positions for maturity exclusions: Scaled by customer selling This table shows the average cumulative dealer inventory around the monthly exclusions because of low maturity. Cumulative inventory is found by subtracting dealer sells from dealer buys and cumulating the imbalance over time. Each month the imbalance is scaled by volume.

the total size of the customer selling volume between event day -2 and 0. The dealer inventory is relative to the arbitrarily chosen

9

Table A9: Dealer intertemporal bid-ask spreads

This table shows the dealer-bond specific returns of bond excluded from the Barclay Corporate Bond Index because of downgrade from investment-grade to speculative-grade. Returns are calculated as log price changes between day 0 (the exclusion date) and day t after the exclusion. The returns are calculated as seen from the dealers perspective. The intertemporal bid-ask spread is calculated using the dealer-buy price (dealer-specific average buy price over day -2,-1, and 0) and the average dealer sell price at day t (average across all dealers). EW returns are equally-weighted across all excluded bonds. VW1 is weighted by the aggregate buying volume in the specific cusip for all dealers with a positive inventory buildup in the bond. VW2 is weighted by the aggregate inventory buildup for dealers with a net positive inventory change between day -3 to 0. The three time periods are 2002Q3-2007Q2, 2007Q3-2009Q4, and 2010Q1-2013Q4.

		Maturit	y Exclusions		_	Downgr	ade Exclusions	
[0,t]	N	\mathbf{EW}	VW1	VW2	Ν	\mathbf{EW}	VW1	VW2
Pre-c	risis							
1	830	22.87***	9.34***	9.45***	243	139.73***	162.06***	147.54***
		(1.59)	(1.03)	(0.95)		(30.24)	(15.24)	(19.32)
2	794	25.34^{***}	12.61^{***}	12.34^{***}	245	250.70^{***}	333.73***	307.93^{***}
		(1.72)	(1.16)	(1.20)		(73.42)	(41.01)	(49.27)
3	780	26.63^{***}	14.36^{***}	14.45^{***}	243	282.37^{***}	368.52^{***}	335.56^{***}
		(1.71)	(1.10)	(1.17)		(76.85)	(38.67)	(46.17)
4	777	29.42^{***}	16.05^{***}	15.97^{***}	234	267.30^{***}	328.41^{***}	308.38^{***}
		(1.78)	(1.16)	(1.21)		(53.98)	(19.80)	(22.74)
5	763	30.26^{***}	17.09^{***}	16.79^{***}	229	318.45^{***}	389.00***	367.67^{***}
		(1.76)	(1.18)	(1.36)		(63.18)	(20.36)	(23.37)
10	727	35.49^{***}	24.30^{***}	23.55^{***}	226	389.65^{***}	500.46^{***}	460.66***
		(1.95)	(1.55)	(1.55)		(108.18)	(48.83)	(61.31)
20	688	51.52^{***}	39.69***	37.04***	215	367.99***	399.81***	373.50***
		(2.67)	(3.82)	(2.84)		(72.77)	(16.13)	(18.71)
30	675	64.94^{***}	54.87***	51.80***	209	422.03***	513.42^{***}	470.94***
		(3.47)	(4.53)	(4.18)		(133.35)	(42.26)	(48.03)
Crisis	3							
1	269	55.87***	58.36***	51.22***	107	48.13	65.43	110.55^{*}
		(4.70)	(8.42)	(6.84)		(64.33)	(56.01)	(61.98)
2	254	55.15***	57.95***	50.15***	101	70.68	76.11	135.18^{*}
		(3.99)	(8.42)	(7.31)		(114.00)	(82.37)	(76.22)
3	236	59.07***	61.12***	58.62^{***}	102	14.65	87.71	161.95^{***}
		(5.81)	(7.51)	(8.99)		(155.69)	(110.50)	(32.63)
4	235	63.17^{***}	62.12^{***}	58.59^{***}	93	30.42	155.40	233.01**
		(7.61)	(8.42)	(8.96)		(218.53)	(175.20)	(106.29)
5	230	70.03***	67.27^{***}	62.56^{***}	87	65.02	193.97	334.67^{**}
		(7.25)	(6.91)	(8.61)		(259.23)	(217.94)	(135.26)
10	211	82.52***	79.42^{***}	73.19^{***}	91	241.79	296.57^{*}	463.31^{***}
		(7.72)	(10.07)	(14.24)		(239.84)	(175.62)	(162.54)
20	211	122.81^{***}	94.50^{***}	86.86***	77	442.86^{*}	467.30^{***}	576.55^{**}
		(21.98)	(15.90)	(12.27)		(237.83)	(157.09)	(245.28)
30	206	156.75^{***}	130.99^{***}	119.01^{***}	71	125.36	412.56^{***}	427.40^{***}
		(30.15)	(30.79)	(25.94)		(401.03)	(108.75)	(95.25)
Post-	crisis							
1	1,085	27.34***	14.15***	13.67***	213	123.91	365.93***	372.42***
		(1.98)	(1.53)	(1.53)		(104.34)	(140.10)	(130.75)
2	1,054	29.08***	15.21^{***}	14.64^{***}	208	193.05^{*}	474.34***	494.84***
		(2.08)	(1.33)	(1.36)		(113.65)	(176.12)	(161.93)
3	1,041	29.04***	15.38^{***}	14.89^{***}	193	240.29^{*}	644.88***	667.15***
		(2.25)	(1.29)	(1.26)		(145.11)	(238.38)	(227.59)
4	995	32.47^{***}	16.57^{***}	15.84^{***}	185	263.72	757.23***	770.70***
		(2.67)	(1.77)	(1.76)		(170.14)	(281.96)	(270.09)
5	990	33.71^{***}	17.38^{***}	16.85^{***}	188	301.42	844.22***	874.81***
		(2.79)	(1.97)	(1.95)		(189.23)	(293.98)	(287.45)
10	954	36.16^{***}	19.36^{***}	18.70^{***}	177	199.79^{*}	413.16**	475.31^{***}
		(2.98)	(2.15)	(2.14)		(114.79)	(165.45)	(183.77)
20	861	44.38^{***}	22.90^{***}	21.85^{***}	175	398.41	1061.0^{***}	1136.2^{***}
		(4.90)	(3.33)	(3.22)		(259.29)	(383.43)	(350.20)
30	814	51.82^{***}	27.64^{***}	25.31^{***}	163	538.57^{*}	1407.1^{***}	1434.4^{***}
		(5.95)	(3.84)	(3.50)		(317.62)	(441.14)	(430.70)

Table A9 (continued)

(b) Downgrade (EW)

Exclusion Event=d / Returns Weighted=Equaly

15

10

Abnormal Returns (bps)

Exclusion Event=m / Returns Weighted=by Dealer Buying Volume

4

5

Event Window (days)

Crisis 🔳 After 🔳 Before

3

(d) Downgrade (VW1)

Figure A1: Cost of immediacy before and after the crisis. The figure provides a graphical representation of the estimates in Table 6.

20

10

30