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Option pricing with time-changed Lévy processes

Sven Klinglera∗ , Young Shin Kimb† , Svetlozar T. Rachevc‡ and Frank J. Fabozzid§

Abstract

In this paper, we introduce two new six-parameter processes based on time-changing

tempered stable distributions and develop an option pricing model based on these pro-

cesses. This model provides a good fit to observed option prices. To demonstrate the

advantages of the new processes, we conduct two empirical studies to compare their per-

formance to other processes that have been used in the literature.
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I. Introduction

Since the ground-breaking work of Black and Scholes (1973) and Merton (1973) – typically

referred to as the Black-Scholes model – option pricing has been based on the assumption

that asset returns are normally distributed. However, not only has the normal distribution

assumption been rejected by numerous empirical studies, it is a well-documented fact that

asset returns exhibit asymmetry and heavy tails. There are two ways that have been proposed

in the literature to deal with non-normality. The first is to include stochastic volatility and

allow the variance of the normal distribution to change over time.1 The second approach

uses jumps in the return model.2

In the model we propose in this paper, we combine these two approaches. We use two

probability distributions from the family of tempered stable distributions which are capable

of capturing both asymmetry and heavy tails and apply a stochastic-time change to them.

The application of the first distribution – the classical tempered stable (CTS) distribution3 –

to option pricing was studied by Carr et al. (2002). Carr et al. (2003) further developed this

model and used a stochastic-time change to include stochastic volatility. Although the work

of Carr et al. (2003) is as a milestone in the literature on option pricing with tempered stable

distributions, the use of a stochastic-time change to derive a more realistic price process is not

conceptually new. Clark (1973) applies the concept of stochastic-time change to Brownian

motions in order to obtain more realistic speculative prices. Later, Ikeda and Watanabe

(1981) offer insights in stochastic-time changes from the perspective of stochastic differential

equations. Two centuries later, Barndorff-Nielsen and Shephard (2003) studied non-Gaussion

stochastic volatility models. Carr and Wu (2004) extended the approach further by providing

an efficient way to include the correlation between the stock price process and the stochastic-

time change. Huang and Wu (2004) conducted a specification analysis of different option

pricing models and concluded that the best pricing model is one based on a process with a

high-frequency jump component and diffusion component, with one time change applied to

the jump component and one time change applied to the diffusion component. The second

1The model by Heston (1993) is the most well-known model using this approach.
2This approach was first introduced by Merton (1976).
3This distribution is also known as the CGMY distribution.
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distribution – the rapidly decreasing tempered stable (RDTS) distribution – was introduced

and studied by Kim et al. (2010) and Rachev et al. (2011).

The contribution of this paper is twofold. First, we apply the techniques of Carr et al.

(2003) to the RDTS process and present a simple way to reduce the number of parameters

from seven to six. Second, we conduct an empirical study to illustrate that the reduction of

the number of parameters does not influence the performance of our models. We do not follow

the approaches of Carr and Wu (2004) and Huang and Wu (2004) in this work because we

want to provide an option pricing model with as few parameters and components as possible.

Providing an option pricing model with as few parameters as possible is desirable for two

reasons. First, from a practitioner’s point of view, less parameters are desirable because model

calibration can be done faster and more efficiently. Second, from a theoretical perspective,

by introducing a stochastic-time change we are walking the thin line between capturing the

observed information content correctly and over-fitting our model. A reduction of the number

of parameters reduces the risk of over-fitting our model.

The remainder of this paper is organized as follows. In Section II, we briefly review the

tempered stable distributions of interest and some important formulas from option pricing.

After this introductory section, in Section III, we introduce stochastic volatility using a

continuous-time change. We empirically evaluate the performance of our proposed models in

Section IV and offer some concluding remarks in Section V.

II. Tempered Stable Processes and Option Pricing

In this section, we first introduce the risk-neutral stock price process as a mean-corrected

ordinary exponential of a Lévy process and discuss the merits of the RDTS process afterwards.

Let r denote the risk-free interest rate and assume that the dividend paid by St is zero.

The risk-neutral stock price process is given by

St := S0
ert+Xt

E[eXt ]
= S0 exp((r + ω)t+Xt), (1)

where ω is given by the equation e−ωt = φXt(−i) and X is the return process. We consider

two types of Lévy processes as return process: the CTS process and the RDTS process. We
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state without proof the characteristic functions of the two definitions for the Lévy processes:

CTS process: φXt(u) = exp(tCΓ(−α)((λ− − iu)α − λα− + (λ+ + iu)α − λα+)),

where Γ(x) :=
∫∞
0 tx−1e−tdt denotes the gamma function.

RDTS process: φXt(u;α,C, λ+, λ−,m) = exp(ium+ C(G(iu;α, λ+) +G(−iu;α, λ−))),

where

G(x;α, λ) = 2−
α
2
−1λαΓ

(
−α

2

) (
M
(
−α

2 ,
1
2 ; x2

2λ2

)
− 1
)

+2−
α
2
− 1

2λα−1xΓ
(
1−α
2

(
M
(
1−α
2 , 32 ; x2

2λ2

)
− 1
))

,

Γ is the gamma function and M is the confluent hypergeometric function.4

It is also possible to add a drift term to the process X, but based on the empirical results

of Carr et al. (2002), we do not extend our model with an additional drift term.

We next define the expCTS and expRDTS processes as follows. Let St be defined as

in Equation (1) with return process X. If X is a CTS process, St is called an exponential

CTS (expCTS) process. If X is a RDTS process, St is called exponential RDTS (expRDTS)

process.

An efficient way for pricing European contingent claims is through the characteristic

function. Lewis (2001) derived the following pricing formula for European call options. If

the stock price St is given as St = S0
ert+Xt

E[eXt ] , where X is a stochastic process and φXt denotes

the characteristic function of Xt, then the value of an European call option is:

Ct =
K1+ρe−r(T−t)

πSρt
Re

(∫ ∞
0

e−iu logK/St
e(T−t) log φX1

(u+iρ)

(ρ− iu)(1 + ρ− iu)
du

)
, (2)

where ρ < −1 such that φX1(u+ iρ) <∞ for all u ∈ R. A similar result holds for European

put options.

Now we demonstrate why under certain conditions the RDTS model is superior to the

CTS model. Consider a European power call option, which is a European call option with

terminal payoff max (SnT −K, 0) , for n ∈ N fixed. We recall that φXt(u + iρ) < ∞ holds

for −λ+ < ρ < λ− if X is a CTS process and for ρ ∈ R if X is a RDTS process. We start

calculating the expected final payoff to illustrate the problem.

4The work of Carr et al. (2002) and Bianchi et al. (2011) offer a formal introduction of these processes over
the Lévy measure.
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E[(SnT −K)+] =

∫ ∞
−∞

(Sn0 e
nx −K)+fXT (x)dx

=

∫ ∞
log(K/Sn0 )

(enx+n log(S0) −K)fXT (x)dx

=

∫ ∞
log(K/Sn0 )

(enx+n log(S0) −K)
1

2π

∫ ∞
−∞

e−i(u+iρ)xφXT (u+ iρ)dudx

Fubini
=

1

2π

∫ ∞
−∞

∫ ∞
log(K/Sn0 )

(enx+n log(S0) −K)e−i(u+iρ)xdx︸ ︷︷ ︸
=(∗)

φXT (u+ iρ)du

(∗) =

∫ ∞
log(K/Sn0 )

(enx+n log(S0) −K)e−izxdx, z = u+ iρ

= Sn0

∫ ∞
log(K/Sn0 )

enx−izxdx︸ ︷︷ ︸
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Next, we conclude that ρ < −n is necessary to price European power call options with

power n :

e(n−iz)x

1− iz
=

enx−i(u+iρ)x

1− i(u+ iρ)
=

1

1 + ρ− iu
e(n+ρ)xe−iux

and

e(n+ρ)x
n→∞→ 0 if and only if ρ < −n.

Since −λ+ < ρ < λ− is required for the CTS model, it is not possible to price European

power call options in a CTS model with n > λ+. In this case, the RDTS is a good alternative.

III. Including Stochastic Volatility

Three alternative ways for modeling stochastic volatility have been proposed in the literature

– regime-switching models, time-series models for the volatility, and stochastic process to

model the stochastic volatility. The principal advantage of the third model class is that it

can be implemented efficiently, thereby enabling model calibration.
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In this paper, we explore the introduction of stochastic volatility by allowing the variance

of the distributions to vary over time by introducing a stochastic-time change. This concept

uses a stochastic process to model stochastic volatility and, as mentioned earlier, has been

subject of researchers since the early 1970s. Carr et al. (2003) apply this technique using the

CTS distribution. Here, we first apply the technique of stochastic-time change as introduced

in Carr et al. (2003) to the RDTS distribution and then, by explaining the intuition behind

the stochastic-time change, we reduce the number of parameters from seven to six. In the

next section, we show empirically that this reduction has no negative effect on the ability of

the model to capture the market’s information content.

Although there is a large class of stochastic processes capable of serving as stochastic-time

change, we restrict our considerations to the Cox-Ingersoll-Ross (CIR) process.5 A process

(yt)t∈T is referred to as a CIR process or a square-root process if the dynamics of y are given

by the following stochastic differential equation: dyt = κ(η − yt)dt+ λ
√
ytdWt, y0 = ỹ, with

κ, η, λ, and ỹ ∈ R.

We choose the CIR process as intrinsic time because of two financial insights this process

provides. First, the CIR process is mean reverting, meaning that it fluctuates around a fixed

mean determined by the parameter η. This is desirable because we want the stochastic-time

change to fluctuate around a fixed average − increasing in turbulent times and falling below

average in quiet times. The second desirable property of the CIR process is that it is a

strictly positive process. From a modelling perspective, a negative time change would not

make sense. We will fix the parameter η and reduce the number of variables of the CIR

process from four to three. We justify the evidence for this step later. We next define

Yt :=

∫ t

0
y(s)ds, (3)

where yt is a CIR process. We will refer to this random variable as the ’economic clock’.

If we let Yt be the random variable given by Equation (3), the characteristic function of

Yt is known in closed form:6

φ(u, t, y(0);κ, η, λ) = A(t, u)eB(t,u)y(0),

5This process was formally introduced by Cox et al. (1985).
6See Cox et al. (1985) for further details.
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with γ =
√
κ2 − 2λ2iu,

A(t, u) =
exp(κ

2ηt

λ2
)

cosh( γt
2
)+κ

γ
sinh( γt

2
)2κη/λ

2 , and

B(t, u) = 2iu
κ+γ coth( γt

2
)
.

T ime–changed processes of interest

We next introduce the formal definition of a time-changed Lévy processes. Let X = (Xt)t∈T

denote a Lévy process and Y = (Yt)t∈T as defined in Equation (3) with X and Y being

independent. Then the process

Zt := XYt (4)

is called a time-changed Lévy process. If X is a CTS process, Z is a time-changed CTS

(TCCTS) process. If X is a RDTS process, Z is a time-changed RDTS (TCRDTS) process.

If the parameter η of the stochastic-time change is fixed to η = 1, we use the notation

TCCTSη if X is a CTS process, and TCRDTSη if X is a RDTS process. As above, we intro-

duce the expTCCTS, the expTCCTSη, the expTCRDTS, and the expTCRDTSη processes

as the mean-corrected ordinary exponential of the TCCTS, the TCCTSη, the TCRDTS, and

the TCRDTSη processes, respectively.

Theoretical evidence for these processes

Our objective is to provide an option pricing model with as few parameters as possible,

therefore, we assume X and Y to be independent. Another beneficial effect of this assump-

tion is that the characteristic function of such a time-changed process is known in closed

form:7

φZ(u, t) = φY (−iψX(u), t), where ψX is the characteristic exponent of X.

One drawback of these processes is that by introducing stochastic volatility, we will have

four more parameters and hence model calibration becomes more difficult and the common

black box optimization algorithms provided by several numerical software packages no longer

7We refer to Carr et al. (2003, p. 353) for a proof of this result.
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provide reliable results. Therefore, we offer a way to reduce the number of free parameters

in the time change from four to three, by fixing η = 1. As we will see in the next section,

this parameter reduction has no major effect on the performance of our model.8

IV. Empirical Investigation

To analyze the performance of our models, we performed two empirical studies. The first

compares the performance of the time-changed CTS model to the time-changed RDTS model

for options with different maturities. The purpose of this study is twofold. First, beyond

its theoretical superiority, we want to empirically test if the time-changed RDTS model is

superior to the time-changed CTS model. Second, we want to measure the potential adverse

influence of fixing the parameter η in the different models.

Since Carr et al. (2003) already explained that a time change is necessary to obtain good

calibration results for options with different maturities, we did not compare the performance

of the time-changed models to the models without time change in the first study. We con-

duct the second study to compare the performance of the time-changed models to the models

without time change on options with the same maturities.

Calibration to options with different maturities

Our first empirical study is similar to the investigation by Carr et al. (2003). They obtained

market prices of out-of-the-money (OTM) options on the S&P 500 index with maturities

between one month and one year for the second Wednesday of each month of the year 2000.

With these data, they calibrated their proposed models and concluded that the time-changed

CTS model is the best time-changed model for option pricing. To be more precise, they did

not evaluate the same time-changed CTS process as we do. They considered a more general

version of this process, with different values for C and α for the positive and the negative

parts of the Lévy measure.

Instead of OTM option prices, we collected both out-of-the-money and in-the-money

8Beside the empirical power of this approach, this approach can also be justified by the intuitive argument
that fixing the parameter η to 1 means that the economic time should fluctuate around the business time, but
in “normal” market periods we assume that business time and economic time are equal.
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(ITM) call option prices on the S&P 500 index with maturities between one month and one

year and strikes between 80% and 120% of the current spot level from OptionMetrics’s Ivy DB

in the Wharton Research Data Services. Our reason for choosing these call options instead

of OTM options is twofold. First, options with strike prices close to the current spot level

are more liquid than options with strikes far from the current spot level. Therefore, in our

opinion, the observed prices of these near-the-money options are a better representation of the

information content of the market. Second, empirical studies based on OTM options typically

do not consider deep OTM options. For instance, Huang and Wu (2004) in conducting an

empirical study using OTM options choose OTM options with strikes between 67.11% and

119.89% of the current spot level.9 Therefore, the moneyness level in our approach does not

substantially differ from using OTM options.

We use the closing prices of European call options traded on the Chicago Board Option

Exchange (CBOE) between January 1 and September 30, 2008. We restrict our study sample

to options with maturities between four weeks and one year, applying the following three

filters to the dataset. First, we remove options with no positive difference between bid and

ask prices and options where the bid price is not strictly positive. To apply the next two

filters, we consider options with the same maturity for each date. For the second filter, if

there are less than 10 options with the same maturity, we remove them from the sample.

Third, we remove options where the price difference is less than 0.05% of the spot level of

the S&P 500 index.

In order to obtain comparable sample data, we do not consider dates where less than

two or more than five maturities are remaining. We further restrict our study sample to the

dates where between 150 and 200 options are remaining. This leaves 62 sample dates and a

total number of 11,903 options. We performed the calibration by applying the fast Fourier

pricing scheme proposed above using least squares estimation.We used the Matlab command

lsqcurvefit to calibrate the model.10

9They stated that moneyness of options they considered, defined as k = log(K/S), ranges between 0.1814
and 0.3988.

10We used the Matlab command lsqcurvefit to calibrate the model.
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To assess the goodness of fit, we use the average percentage error (APE), defined as:

APE :=

∑n
k=1(|MarketPrice−ModelPrice|)∑n

k=1(|MarketPrice|)
.

There are two principal findings of the empirical analysis. First, as illustrated in panel

(a) of Figure 1, the expTCCTSη process is better able to fit observed option prices than

the expTCRDTSη process in most cases. As we can see in Figure 1 (a), there are some

sample days where the expTCRDTSη process performs better than the expTCCTSη process.

However, the problem with the expTCRDTSη process is that there are sample days where

it exhibits a very poor performance. For instance, between 0 and 10 days, the APE of the

expTCRDTSη is almost twice that of the APE of the expCTSη. The same result holds

when comparing the expTCCTS and the expTCRDTS models, as illustrated in Figure 1

(b). Second, comparing panel (a) and (b) of Figure 1 leads to the conjecture that fixing the

parameter η has no major negative effect on the performance of the option pricing models.

The two panels in Figure 2 provide further evidence to support this conjecture. First, Figure

2 (a) motivates fixing the parameter η from an empirical perspective. Although at a first

glance the estimates of η for the two processes seem to differ significantly, the parameter is

between 1 and 1.3 for all sample days. Figure 2 (b) shows the difference between the APE

for the processes with fixed and variable η. The average difference between the time-changed

model with fixed and variable η is 0.3% for the CTS models and 0.015% for the RDTS models.

In fact, Figure 2 (b) indicates that the APE for the processes with fixed η is smaller than

the APE of the other processes in some cases. This result seems odd upon initial examination

because fixing η is only a special case of the time-changed tempered stable processes with

variable η. But the optimization problem underlying the model calibration is rather complex

and the black box algorithms used for the calibration cannot guarantee that the result is a

global minimum.11 This result emphasizes the need for an option pricing model with as few

parameters as possible. Figure 2 (a) shows that the parameter η does not substantially differ

from one in the calibration of the expTCCTS and the expTCRDTS process.

11We used the Matlab command lsqcurvefit to calibrate the model.
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Calibration to options with same maturities

Our second study is closely related to the study of Rachev et al. (2011).12 They calibrated

different tempered stable option pricing models to observed option prices on the S&P 500

index on August 6, 2008. We apply the same filters to our observed option prices as they

did. We consider call options with prices between $5 and $180, and between 80% and 120%

of the current spot level. The spot price of the S&P 500 that day was 1289.19. We also use

the same dividend and risk-free interest rate as they did, which are 2.03501% and 1.6%, re-

spectively. We fit the expCTS, expTCCTSη, expRDTS and expRDTSη models to ATM call

options on the S&P 500 index with the same maturities. We calculate the implied volatility

of the market options and the implied volatility of our model prices by solving the equation

CBS(σ) = CMarket, where CBS is the option price calculated with the Black-Scholes formula

as a function of σ and CMarket is the observed option price.

Figure 3 illustrates our results for options with 10 days to maturity and options with 136

days to maturity. The case of 10 days to maturity shows the superiority of the expTCRDTSη

process over the other processes. While the other three processes produce a volatility smile,

the expTCRDTSη process is the only process able to capture the volatility skew of the market

correctly. The case of 136 days to maturity shows that all processes provide similar results

for longer maturities. Table 1 summarizes our estimation results for options with the same

maturities.

V. Conclusion

We present four time-changed Lévy processes for option pricing and embed the theory of

time-changed Lévy processes from Carr et al. (2003) in the option pricing theory with tem-

pered stable distributions. The assumption that the economic time should fluctuate around

business time lead to two new six-parameter processes. Empirically, we find that these mod-

els provide a good fit to observed option prices and provide almost identical results as the

seven-parameter benchmark models. Among all models, the time-changed CTS model with

fixed η performed best for options with different maturities, while the time-changed RDTS

12See section7.5.2 of their book.
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model with fixed η was superior to the other models for options with the same maturity.

We provide two reasons why practitioners should employ time-changed Lévy processes.

First, our empirical study suggests that it is possible to provide a good fit for at-the-money

call options with different maturities. Second, we reduced the number of model parameters

without observing a negative influence on performance.
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Fig. 1: Illustration of the estimation errors for the different processes.
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Fig. 3: Illustration of the implied volatility calculated from market data (August 6, 2008) and the
implied volatility calculated from the calibrated option pricing model.
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No. of
τ Options Model α C λ+ λ− y0 κ λ APE

10 15 expCTS 0.89 0.61 52.40 12.41 – – – 1.72%

expTCCTSη 0.55 – 256.95 61.18 18.98 0.80 1.22 1.52%

expRDTS 1.07 0.19 100.00 3.77 – – – 2.10%

expTCRDTSη 0.58 – 48.96 9.00 15.26 9.93 1.02 0.56%

136 9 expCTS 0.90 0.69 63.08 14.11 – – – 0.65%

expTCCTSη 0.51 – 45.63 192.90 15.08 0.48 1.30 0.41%

expRDTS 0.53 1.73 73.61 10.72 – – – 0.42%

expTCRDTSη 0.71 – 59.67 97.19 9.81 1.10 1.65 0.41%

τ :Days to maturity

Table 1: Results for the calibration of the parameters for options with the same maturity
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