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Abstract

We present a new estimation approach that allows us to extract from spreads in

synthetic credit markets the contribution of systematic and idiosyncratic default risk

to total default risk. Using an extensive data set of 90,600 CDS and CDO tranche

spreads on the North American Investment Grade CDX index we conduct an empirical

analysis of an intensity-based model for correlated defaults. Our results show that

systematic default risk is an explosive process with low volatility, while idiosyncratic

default risk is more volatile but less explosive. Also, we find that the model is able to

capture both the level and time series dynamics of CDO tranche spreads.

JEL Classification: C52

Keywords: credit risk, correlated defaults, CDO pricing, intensity-based model
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Campbell and Taksler (2003) show that idiosyncratic firm-level volatility is a major driver

of corporate bond yield spreads and that there has been an upward trend over time in

idiosyncratic equity volatility in contrast to market-wide volatility. This suggests that in

order to understand changing asset prices over time, it is important to separate out and

understand the dynamics of both idiosyncratic and systematic volatility. In this paper, we

present a new approach to separate out the size and time series behavior of idiosyncratic and

systematic (default intensity) volatility by using information in synthetic credit markets.

Markets for credit derivatives have experienced massive growth in recent years (see Duffie

(2008)) and numerous models specifying default and correlation dynamics have been pro-

posed. A good model of multi-name default should ideally have the following properties (see

Collin-Dufresne (2009) for a discussion). First, the model should be able to match prices

consistently such that for a fixed set of model parameters, prices are matched over a period

of time. This is important for pricing non-standard products in a market where prices are

available for standard products. Second, the model should have parameters that are econom-

ically interpretable, such that parameter values can be discussed and critically evaluated. If

a non-standard product needs to be priced and parameters cannot be inferred from existing

market prices, economic interpretability provides guidance in choosing parameters. Third,

credit spreads and their correlation should be modelled dynamically such that options on

multi-name products can be priced. And fourth, since market makers quote spreads at any

given time, pricing formulas should not be too time-consuming to evaluate.

In single-name default modelling the stochastic intensity-based framework introduced in
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Lando (1994) and Duffie and Singleton (1999) has proven very successful and is widely used.1

Default of a firm in an intensity-based model is determined by the first jump of a pure jump

process with a stochastic default intensity. We follow Duffie and Gârleanu (2001) and model

the default intensity of a firm as the sum of an idiosyncratic and a common component,

where the latter affects the default of all firms in the economy. In this setting, credit spreads

are matched, parameters are interpretable, and pricing of options is possible. While the

model has many attractive properties it has not been used much because estimating the

model is challenging.

We present a new approach to estimate intensity-based models from spreads observed in

synthetic credit markets. The main challenge so far has been that the estimation of a model

based on an index with 125 names requires simultaneous estimation of a common factor and

125 idiosyncratic factors. The solution has been to impose strong parameter restrictions on

the idiosyncratic factors (see among others Mortensen (2006), Eckner (2007), and Eckner

(2009)). We specify the process for systematic default risk and show how idiosyncratic risk

can be left unmodelled. This reduces the problem of estimating 126 factors to estimating

one factor. Subsequently, we parameterize and estimate idiosyncratic default factors one at

a time. Thus, our approach reduces the problem of estimating 126 factors simultaneously

to 126 single-factor estimations. Furthermore, restrictions on idiosyncratic factors are not

necessary.

We apply our approach to the North American Investment Grade CDX index, and esti-

mate both systematic and idiosyncratic default risk as affine jump-diffusion processes using

4



CDS and CDO spreads. Papers imposing strong parameter restrictions have found that

intensity-based jump-diffusion models can match the levels but not the time series behavior

of CDO tranche spreads (see Eckner (2007) for a discussion). We find that the models can

in fact match not only the levels but also the time series behavior in tranche spreads. That

is, once parameter restrictions are not imposed, the model gains the ability to match time

series dynamics of systematic and unsystematic default risk. We also find that idiosyncratic

default risk is a major driver of total default risk consistent with the findings in Campbell

and Taksler (2003). Furthermore, we confirm the finding in Zhang, Zhou, and Zhu (2009)

that both diffusion volatility and jumps are important for default risk. More importantly,

our analysis allows us to separate idiosyncratic and systematic default risk into a diffusion

and a jump part, and this yields new insights: compared to systematic default risk, idiosyn-

cratic default risk has a higher diffusion volatility, a higher contribution from jumps, and is

less explosive.

An alternative modelling approach to that of ours is to model aggregate portfolio loss and

fit the model to CDO tranche spreads. This is the approach taken in for example Longstaff

and Rajan (2008), Errais, Giesecke, and Goldberg (2010), and Giesecke, Goldberg, and Ding

(2011). Since the default intensity of individual firms is not modelled, this approach is not

useful for examining individual default risk, whether it is systematic or unsystematic.

The paper is organized as follows. Section 1 formulates the multi-name default model

and derives CDO tranche pricing formulas. Section 2 explains the estimation methodology

and section 3 describes the data. Section 4 examines the ability of the model to match CDO
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tranche spreads and examines the properties of systematic default risk, while idiosyncratic

default risks are examined in section 5 . Section 6 concludes.
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1 Intensity-Based Default Risk Model

This section explains the model framework that we employ for pricing single- and multi-name

credit securities. For single-name Credit Default Swaps (CDSs) we use the intensity-based

framework introduced in Lando (1994) and Duffie and Singleton (1999). For multi-name

Collateralized Debt Obligation (CDO) valuation we follow Duffie and Gârleanu (2001) and

model the default intensity of each underlying issuer as the sum of an idiosyncratic and a

common process. Default correlation among issuers thus arises through the joint dependence

of individual default intensities on the common factor. Furthermore, we generalize the model

in Duffie and Gârleanu (2001) by allowing for a flexible specification of the idiosyncratic pro-

cesses, while maintaining semi-analytical calculation of the loss distribution as in Mortensen

(2006). This extension allows us to avoid the ad hoc parameter restrictions that are common

in the existing literature.

1.1 Default Modelling

We assume that the time of default of a single issuer, � , is modelled through an intensity

(�t)t�0, which implies that the risk-neutral probability at time t of defaulting within a short

period of time ∆t is approximately

Qt(� ≤ t+ ∆t|� > t) ≈ �t∆t:

Unconditional default probabilities are given by

Qt(� ≤ s) = 1− EQ
t

�
exp

�
−
Z s

t

�udu

��
(1)
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which shows that default probabilities in an intensity-based framework can be calculated

using techniques from interest rate modelling.

In our model we consider a total of N different issuers. To model correlation between

individual issuers we follow Mortensen (2006) and assume that the intensity of each issuer

is given as the sum of an idiosyncratic component and a scaled common component

�i;t = aiYt +Xi;t (2)

where a1; : : : ; aN are non-negative constants and Y;X1; X2; : : : ; XN are independent stochas-

tic processes. The common factor Y creates dependence in default occurrences among the N

issuers and may be viewed as reflecting the overall state of the economy, while Xi similarly

represents the idiosyncratic default risk for firm i. Thus, ai indicates the sensitivity of firm i

to the performance of the macroeconomy, and we allow this parameter to vary across firms,

contrary to Duffie and Gârleanu (2001) that assume ai = 1 for all i and thereby enforce a

homogeneous impact of the macroeconomy on all issuers.

We assume that the common factor follows an affine jump diffusion under the risk-neutral

measure

dYt = (�0 + �1Yt)dt+ �
p
YtdW

Q
t + dJQt (3)

where WQ is a Brownian motion, jump times (independent of WQ) are those of a Poisson

process with intensity l ≥ 0, and jump sizes are independent of the jump times and follow

an exponential distribution with mean � > 0. This process is well-defined for �0 > 0. As a

special case, if the jump intensity is equal to zero the default intensity then follows a CIR

process.
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We do not impose any distributional assumptions on the evolution of the idiosyncratic

factors X1; :::; XN . In particular, they are not required to be affine jump diffusions. This

generalizes the setup in Duffie and Gârleanu (2001), Mortensen (2006), and Eckner (2009),

where the idiosyncratic factors are required to be affine jump diffusions with very restrictive

assumptions on their parameters.

1.2 Risk Premium

For the basic affine process in equation (3) we assume an essentially affine risk premium for

the diffusive risk and constant risk premia for the risk associated with the timing and sizes

of jumps. Cheridito, Filipovic, and Kimmel (2007) propose an extended affine risk premium

as an alternative to an essentially affine risk premium, which would allow the parameter

�0 to be adjusted under P in addition to the adjustment of �1. However, extended affine

models require the Feller condition to hold and since this restriction is likely to be violated

as discussed in Feldhütter (2006) we choose the more parsimonious essentially affine risk

premium.2

This leads to the following dynamics for the common factor under the historical measure

P

dYt = (�0 + �P1 Yt)dt+ �
p
YtdW

P
t + dJPt (4)

where W P is a Brownian motion, jump times (independent of W P ) are those of a Poisson

process with intensity lP , and jump sizes are independent of the jump times and follow an

exponential distribution with mean �P > 0.
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1.3 Aggregate Default Distribution

Our model allows for semi-analytic calculation of the distribution of the aggregate number

of defaults among the N issuers. More specifically, we can at time t calculate in semi-closed

form the distribution of the aggregate number of defaults at time s ≥ t by conditioning on

the common factor. If we let

Zt;s =

Z s

t

Yudu

denote the integrated common factor, then it follows from (1) and (2) that conditional on

Zt;s, defaults are independent and the conditional default probabilities given as

pi;t(s|z) = Qt(�i ≤ s|Zt;s = z) = 1− exp(−aiz)EQ
t

�
exp

�
−
Z s

t

Xi;udu

��
: (5)

The total number of defaults at time s among the N issuers, DN
s , is then found by the

recursive algorithm3

Qt(D
N
s = j|z) = Qt(D

N�1
s = j|z)(1− pN;t(s|z)) +Qt(D

N�1
s = j − 1|z)pN;t(s|z)

due to Andersen, Sidenius, and Basu (2003). The unconditional default distribution is

therefore given as

Qt(D
N
s = j) =

Z 1
0

Qt(D
N
s = j|z)ft;s(z)dz (6)

where ft;s is the density function for Zt;s. Finally, ft;s can be determined by Fourier inversion

of the characteristic function �Zt;s for Zt;s as

ft;s(z) =
1

2�

Z 1
�1

exp(−iuz)�Zt;s(u)du (7)

where we apply the closed-form expression for �Zt;s derived in Duffie and Gârleanu (2001).4
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1.4 Synthetic CDO Pricing

CDOs began to trade frequently in the mid-nineties and in the last decade issuance of CDOs

has experienced massive growth, see BIS (2007). In a CDO the credit risk of a portfolio of

debt securities is passed on to investors by issuing CDO tranches written on the portfolio.

The tranches have varying risk profiles according to their seniority. A synthetic CDO is

written on CDS contracts instead of actual debt securities. To illustrate the cash flows in a

synthetic CDO an example that reflects the data used in this paper is useful.

Consider a CDO issuer, called A, who sells credit protection with notional $0:8 million in

125 5-year CDS contracts for a total notional of $100 million. Each CDS contract is written

on a specific corporate bond, and agent A receives quarterly a CDS premium until the CDS

contract expires or the bond defaults. In case of default, agent A receives the defaulted bond

in exchange for face value. The loss is therefore the difference between face value and market

value of the bond.5

Agent A at the same time issues a CDO tranche on the first 3% of losses in his CDS

portfolio and agent B ”buys” this tranche, which has a principal of $3 million. No money

is exchanged at time 0, when the tranche is sold. If the premium on the tranche is, say,

2,000 basis points, agent A pays a quarterly premium of 500 basis points to agent B on

the remaining principal. If a default occurs on any of the underlying CDS contracts, the

loss is covered by agent B and his principal is reduced accordingly. Agent B continues to

receive the premium on the remaining principal until either the CDO contract matures or

the remaining principal is exhausted. Since the first 3% of portfolio losses are covered by
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this tranche it is called the 0%− 3% tranche. Agent A similarly sells 3%− 7%, 7%− 10%,

10%− 15%, 15%− 30%, and 30%− 100% tranches such that the total principal equals the

principal in the CDS contracts. For a tranche covering losses between K1 and K2, K1 is

called the attachment point and K2 the exhaustion point.

Next, we find the fair spread at time t on a specific CDO tranche. Consider a tranche

that covers portfolio losses between K1 and K2 from time t0 = t to tM = T , and assume that

the tranche has quarterly payments at time t1; : : : ; tM . The tranche premium is found by

equating the value of the protection and premium payments. We denote the total portfolio

loss in percent at time s as Ls, i.e. the percentage number of defaults DN
s =N times 1 − �,

where � is the recovery rate, which we assume to be constant at 40%. The tranche loss is

then given as

TK1;K2(Ls) = max{min{Ls; K2} −K1; 0}

and the value of the protection payment in a CDO tranche with maturity T is therefore

Prot(t; T ) = EQ
t

�Z T

t

exp

�
−
Z s

t

rudu

�
dTK1;K2(Ls)

�
while the value of the premium payments is the annual tranche premium S(t; T ) times

Prem(t; T )

= EQ
t

"
MX
j=1

exp

�
−
Z tj

t

rudu

�
(tj − tj�1)

Z tj

tj�1

K2 −K1 − TK1;K2(Ls)

tj − tj�1

ds

#

where ru is the riskfree interest rate and
R tj
tj�1

K2�K1�TK1;K2
(Ls)

tj�tj�1
ds is the remaining principal

during the period tj�1 to tj. The CDO tranche premium at time t is thus given as S(t; T ) =

Prot(t;T )
Prem(t;T )

.
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We follow Mortensen (2006) and discretize the integrals appearing in Prot(t; T ) and

Prem(t; T ) at premium payment dates, we assume that the riskfree rate is uncorrelated

with portfolio losses, and that defaults occur halfway between premium payments. Under

these assumptions the value of the protection payment is

Prot(t; T ) =
MX
j=1

P

�
t;
tj + tj�1

2

��
EQ
t [TK1;K2(Ltj )]− E

Q
t [TK1;K2(Ltj�1

)]
�

while the expression for the premium payments reduces to

Prem(t; T )

=
MX
j=1

(tj − tj�1)P (t; tj)
�
K2 −K1 −

EQ
t [TK1;K2(Ltj�1

)] + EQ
t [TK1;K2(Ltj )]

2

�
where P (t; s) = EQ

t [exp(−
R s
t
rudu)] is the price at time t of a riskless zero coupon bond

maturing at time s.

2 Estimation

The parameters in our intensity model are estimated in three separate steps. First we imply

out firm-specific term structures of risk-neutral survival probabilities from daily observations

of CDS spreads, second, we use the inferred survival probabilities to estimate each issuer’s

sensitivity ai to the economy-wide common factor Y , and finally we estimate the parameters

and the path of the common factor using a Bayesian MCMC approach.6 An important

ingredient in the third step is our explicit use of the calibrated survival probabilities, which

implies that we do not need to impose any structure on the idiosyncratic factors Xi.
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In other words, we can estimate the model without putting specific structure on the

idiosyncratic factors and this has several advantages, which we discuss in section 2.1. Note

also that our estimation approach is consistent with the common view that CDS contracts

may be used to read off market views of marginal default probabilities, whereas basket

credit derivatives instead reflect the correlation patterns among the underlying entities, see

e.g. Mortensen (2006).

In an additional fourth step of the estimation procedure, we take in section 5 a closer

look at the cross-section of the idiosyncratic factors implicitly given by the inferred survival

probabilities and the estimated common factor. Here, we impose a dynamic structure on

each Xi and then estimate the parameters for each idiosyncratic factor separately, again

using MCMC methods.

2.1 A General Estimation Approach

For each day in our data sample we observe 5 CDO tranche spreads as well as CDS spreads

for a range of maturities for each of the 125 firms underlying the CDO tranches. Previous

literature on CDO pricing has also studied models of the form (2), but only by imposing

strong assumptions on the parameters of the idiosyncratic factors Xi, as well as by disre-

garding the information in the term structure of CDS spreads (Mortensen (2006), Eckner

(2007), Eckner (2009)). In this paper, we remove both of these shortcomings by allowing

the idiosyncratic factors to be of a very general form, while we at the same time use all the

available information from each issuer’s term structure of CDS spreads.
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Theoretically, if we had CDS contracts for any maturity we could extract survival prob-

abilities for any future time-horizon, but in practice CDS contracts are only traded for a

limited range of maturities. To circumvent this problem we assume a flexible parametric

form for the term structure of risk-neutral survival probabilities, and use that to infer sur-

vival probabilities from the observed CDS spreads.7 That is, on any given day t and for any

given firm i we extract from the observed term structure of CDS spreads the term structure

of marginal survival probabilities s 7→ qi;t(s), where

qi;t(s) = Qt(�i > s) = EQ
t

�
exp

�
−
Z s

t

(aiYu +Xi;u)du

��
;

see appendix B for details. Once we condition on the value of the common factor, this

directly gives us the idiosyncratic component

EQ
t

�
exp

�
−
Z s

t

Xi;udu

��

of the risk-neutral survival probability. Thus, we can use observed CDS spreads to derive

values of the function s 7→ EQ
t [exp(−

R s
t
Xi;udu)], which is all we need to calculate the

aggregate default distribution (and hence compute CDO tranche spreads) using equation

(5). Therefore, we do not need to explicitly model the stochastic behavior of each Xi in

order to price CDO tranches.

For each firm i in our sample, the parameter ai measures that firm’s sensitivity to the

overall state of the economy, and this parameter can be estimated directly from the inferred

term structures of survival probabilities s 7→ qi;t(s). Intuitively, ai measures to what extent

the default probability of firm i is correlated with the average default probability (since this
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average mainly reflects exposure to the systematic risk factor Y ), and therefore a consistent

estimate of ai is given by the slope coefficient in the regression of firm i’s short-term default

probability on the average short-term default probability of all 125 issuers.8 Appendix C

provides the technical details.

Once we have inferred marginal default probabilities from CDS spreads and estimated

common factor loadings ai, we can then, given the parameters and current value of the

common factor Y , price CDO tranches.

2.2 MCMC Methodology

In order to write the CDO pricing model on state space form, the continuous-time specifi-

cation in equation (4) is approximated using an Euler scheme

Yt+1 − Yt = (�0 + �P1 Yt)∆t + �
p

∆tYt�
Y
t+1 + Jt+1Zt+1 (8)

where ∆t is the time between two observations and

�Yt+1 ∼ N(0; 1)

Zt+1 ∼ exp(�P )

P (Jt+1 = 1) = lP∆t:

To simplify notation in the following, we let ΘQ = (�0; �1; l; �; �), ΘP = (�P1 ; l
P ; �P ), and

Θ = (ΘQ;ΘP ).

On each day t = 1; :::; T , 5 CDO tranche spreads are recorded and stacked in the 5 × 1

vector St, and we let S denote the 5× T matrix with St in the t’th column. The logarithm
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of the observed CDO spreads are assumed to be observed with measurement error, so the

observation equation is

log(St) = log(f(ΘQ; Yt)) + �t; �t ∼ N(0;Σ�) (9)

where f is the CDO pricing formula. Appendix D gives details on how to calculate f in the

estimation of the common factor Y . For the estimation of each of the idiosyncratic factors

Xi in section 5, Y is replaced by Xi and f is instead the model-implied idiosyncratic part of

the survival probability, i.e. EQ
t [exp(−

R t+s
t

Xi;udu)], calculated for each of the time horizons

s = 0:5, 1, 2, 3, 4, and 5 years.

The interest lies in samples from the target distribution p(Θ;Σ�; Y; J; Z|S). The Hammersley-

Clifford Theorem (Hammersley and Clifford (1970) and Besag (1974)) implies that samples

are obtained from the target distribution by sampling from a number of conditional dis-

tributions. Effectively, MCMC solves the problem of simulating from a complicated target

distribution by simulating from simpler conditional distributions. If one samples directly

from a full conditional the resulting algorithm is the Gibbs sampler (Geman and Geman

(1984)). If it is not possible to sample directly from the full conditional distribution one

can sample by using the Metropolis-Hastings algorithm (Metropolis et al. (1953)). We use

a hybrid MCMC algorithm that combines the two since not all conditional distributions are

known. Specifically, the MCMC algorithm is given by (where Θn�i
is defined as the parameter

vector Θ without parameter �i)
9
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p(�i|ΘQ
n�i
;ΘP ;Σ�; Y; J; Z; S) ∼ Metropolis-Hastings

p(�P1 |ΘQ;ΘP
n�P

1
;Σ�; Y; J; Z; S) ∼ Normal

p(lP |ΘQ;ΘP
nlP ;Σ�; Y; J; Z; S) ∼ Beta

p(�P |ΘQ;ΘP
n�P ;Σ�; Y; J; Z; S) ∼ Inverse Gamma

p(Σ�|Θ; Y; J; Z; S) ∼ Inverse Wishart

p(Y |Θ;Σ�; J; Z; S) ∼ Metropolis-Hastings

p(J |Θ;Σ�; Y; Z; S) ∼ Bernoulli

p(Z|Θ;Σ�; Y; J; S) ∼ Exponential or Restricted Normal

Details of the derivations of the conditional and proposal distributions in the Metropolis-

Hastings steps are given in Appendix E. Both the parameters and the latent processes are

subject to constraints and if a draw is violating a constraint it can simply be discarded

(Gelfand et al. (1992)).

3 Data

In our estimation we use daily CDS and CDO quotes from MarkIt Group Limited. MarkIt

receives data from more than 50 global banks and each contributor provides pricing data

from its books of record and from feeds to automated trading systems. These data are

aggregated into composite numbers after filtering out outliers and stale data and a price is

published only if a minimum of three contributors provide data.
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We focus in this paper on CDS and CDO prices (i.e. spreads) for defaultable entities in

the Dow Jones CDX North America Investment Grade (NA IG) index. The index contains

125 North American investment grade entities and is updated semi-annually. For our sample

period March 21, 2006 to September 20, 2006, the latest version of the index is CDX NA IG

Series 6. We specifically select the most liquid CDO tranches, the 5-year tranches, with CDX

NA IG 6 as the underlying pool of reference CDSs. These tranches mature on June 20, 2011.

Daily spreads of the five CDO tranches we consider: 0%−3%, 3%−7%, 7%−10%,10%−15%,

and 15% − 30%, are not available for the first 7 days of the period, so the data we use in

the estimation covers the period from March 30, 2006 to September 20, 2006. There are

holidays on April 14, April 21, June 3, July 4, and September 4, thus leaving a total of 120

days with spreads available.

The quoting convention for the equity tranche (i.e. the 0% − 3% tranche) differs from

that of the other tranches. Instead of quoting a running premium, the equity tranche is

quoted in terms of an upfront fee. Specifically, an upfront fee of 30% means that the investor

receives 30% of the tranche notional at time 0 plus a fixed running premium of 500 basis

points per year, paid quarterly.10

In addition to the CDO tranche spreads, we also use 0.5-, 1-, 2-, 3-, 4-, and 5-year CDS

spreads for each of the 125 index constituents.11 The total number of observations in the

estimation of the multi-name default model is therefore 90,600: 125×6 CDS spreads and 5

CDO tranche spreads observed on 120 days. Table 1 shows summary statistics of the CDS

and CDO data.
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[Table 1 about here.]

As a proxy for riskless rates we use LIBOR and swap rates since Feldhütter and Lando

(2008) show that swap rates are a more accurate proxy for riskless rates than Treasury yields.

Thus, prices of riskless zero coupon bonds with maturities up to 1 year are calculated from

1-12 month LIBOR rates (taking into account money market quoting conventions), and for

longer maturities are bootstrapped from 1-, 2-, 3-, 4-, and 5-year swap rates (using cubic

spline to infer swap rates for semi-annual maturities). This gives a total of 20 zero coupon

bond prices on any given day (maturities of 1-12 months, 1.5, 2, 2.5, : : :, 5 years) from which

zero coupon bond prices at any maturity up to 5 years can be found by interpolation (again

using cubic spline).

4 Results

4.1 Marginal Default Probabilities

As the first step in the estimation of the multi-name default model, we calibrate for each firm

daily term structures of risk-neutral default probabilities using all the available information

from CDS contracts with maturities up to 5 years. With 125 firms and a sample period of

120 days, we calibrate a total of 125×120=15,000 term structures of default probabilities,

with each term structure based on 6 CDS contracts.

Figure 1 plots for each day in the sample the average term structure of default prob-

abilities across the 125 firms. By definition, the term structures are upward sloping since
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the probability of defaulting increases as maturity increases. Also, the graph shows that on

average the first derivative with respect to maturity is increasing.12 Thus, forward default

probabilities @Qt(��s)
@s

, which measure the probability of defaulting at time s given that the

firm has not yet defaulted, are upward-sloping. Hence, the market expects the marginal

probability of default to increase over time for the average firm. This is likely caused by the

fact that the CDX NA IG index consists of solid investment grade firms with low short-term

default probabilities, and it is therefore more probable that credit conditions worsen for a

given firm than improve.

[Figure 1 about here.]

The sensitivity of each firm’s default probability to the economy-wide factor Y is cap-

tured in the parameter ai, which is estimated model-independently through the covariance

between firm-specific instantaneous default probabilities and market-wide instantaneous de-

fault probabilities. Figure 2 shows the distribution of ai’s across firms (remember that the

ai’s are normalized such that the average across firms is 1). There is a significant amount of

variation in the ai’s, and for a large fraction of the firms the default probabilities are quite

insensitive to market-wide fluctuations in credit risk. This suggests that the assumption in

Duffie and Gârleanu (2001) to let all firms have the same sensitivity through identical ai’s

is not supported by the data.

[Figure 2 about here.]

To examine whether the subset of firms with large ai’s have common characteristics,

we split the index into its five subindices (fraction of total index in parenthesis): Energy
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(11%), Financials (19%), Basic Industrials (23%), Telecommunications, Media and Technol-

ogy (18%), Consumer Products and Retail (29%), and we find that firms with large ai’s are

fairly evenly distributed across these five sectors.13

The correlation between ai’s and the average 5-year CDS spread for firm i (averaging

across the 120 days) is 0.78 across the 125 firms. This strong positive correlation indicates

that the ad hoc assumption in Mortensen (2006), Eckner (2007) and Eckner (2009), where

ai is exogenously set based on the firm-specific 5-year CDS spread, is reasonable.14

4.2 CDO Parameter Estimates and Pricing Results

The multi-name default model is estimated on the basis of a panel data set of daily CDS and

CDO tranche spreads as described in section 2, and we assume that the measurement error

matrix Σ� in (9) is diagonal and use diffuse priors. We run the MCMC estimation routine

using a burn-in period of 20,000 simulations and a subsequent estimation period of another

10,000 simulations, where we use every 10th simulation to calculate parameter estimates.

The parameter estimates are given in Table 2, and the first thing we note is that the

volatility of the common factor is � = 0:0166, which is low compared to estimates in the

previous literature: Duffee (1999) fits CIR processes to firm default intensities using corpo-

rate bond data and finds an average � of 0.074 and Eckner (2009) uses a panel data set of

CDS and CDO spreads similar to the data set used here and estimates � to be 0.103. An

important factor in explaining this difference in the estimated size of � is the extent to which

systematic and idiosyncratic default risk is separated. Duffee (1999) is not concerned with
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such a subdivision of the default risk and therefore estimates a factor that includes both sys-

tematic and unsystematic risk. Eckner (2009) has a model that is similar to ours, but when

estimating the model he imposes strong restrictions on the parameters of the systematic and

idiosyncratic factors. For example, he requires �2 of the common factor to be equal to the

average �2
i of the idiosyncratic factors.

Our results suggest that separating default risk into an idiosyncratic and a common

component, and letting these factors be fully flexible during the estimation, reveals that

the common factor is ”slow-moving” in the sense that the volatility is low. In addition, we

estimate the total contribution of jumps l×� to be 6 · 10�5 which is lower than the estimate

of 3 ·10�3 in Eckner (2009), further underlining that the total volatility of the common factor

is low when properly estimated.15 Finally, we note that although the common factor is not

very volatile, it is explosive with a mean reversion coefficient of 0.94 under the risk-neutral

measure. Under the actual measure, the factor is estimated to be mean-reverting, although

the mean-reversion coefficient is hard to pin down with any precision due to the relatively

short time span of our data sample.

[Table 2 about here.]

We now examine the pricing ability of our model by considering the average pricing

errors and RMSEs (Root-Mean-Squared-Errors) given in Table 3. We see that on average

the model underestimates spreads for the 3%−7% tranche by 7 basis points and overestimates

the 10%−15% tranche by 4 basis points. For comparison, Mortensen (2006) reports average

bid-ask spreads for the 3% − 7% tranche to be 10.9 basis points and for the 10% − 15% to
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be 5 basis points. In both cases, average pricing errors are smaller than the bid-ask spread.

The RMSEs of the model are larger than the average pricing errors, so the model errors are

not consistently within the bid-ask spread, but RMSEs and pricing errors do suggest a good

overall fit.

[Table 3 about here.]

Figure 3 shows the observed and fitted CDO tranche spreads over time, and the graphs

confirm a reasonable fit to all tranches apart from a slight underestimation of the 3%− 7%

tranche and overestimation of the 15% − 30% tranche. It is particularly noteworthy that

the time series variation in the most senior tranches – especially the 15% − 30% tranche –

is well matched. This is surprising because both the level and the time series variation of

the 15% − 30% tranche have been difficult to capture by models in the previous literature.

Mortensen (2006) finds that jumps in the common factor are necessary to generate sufficiently

high senior tranche spreads, but even with jumps it has been difficult to reproduce the

observed time series variation in senior tranche spreads, as argued by Eckner (2009) and in

a previous version of this paper.16 What enables our model to fit the time series variation of

senior tranche spreads well is that we have not imposed the usual set of strong assumptions

on the parameters of the common and idiosyncratic factors as done in Mortensen (2006),

Eckner (2009), and in a previous version of this paper. Thus, a careful implementation of

the multi-name default model frees up the model’s ability to fit tranche spreads in important

dimensions.

[Figure 3 about here.]
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To examine the contribution of systematic default risk to the total default risk across

different maturities, we calculate the following: for each maturity, date, and firm we use the

estimated sensitivities ai and the path and parameters of the common factor Y to calculate

the systematic part of the risk-neutral default probability according to equation (1) and (2).

We then find an average term-structure of systematic default risk by averaging across firms

and dates and plot the result in Figure 4 together with the average total default risk inferred

from observed CDS spreads. The figure shows that the systematic contribution to the overall

default risk is small for short maturities but increases with maturity. As shown in Table 4

the average exposure to systematic default risk on a 6-month horizon is merely 0:003% and

constitutes only 6% of the overall default risk, but increases to 0:874% and a fraction of 26%

of the total default risk for a 5-year horizon. Hence, out of the total average 5-year default

probability of 3:309%, 0:874% is systematic and non-diversifiable.

[Figure 4 about here.]

[Table 4 about here.]

5 Idiosyncratic Default Risk

So far in the estimation we have put structure on the systematic part of default risk through

the specification of the common factor, while total default risk has been estimated model-

independently. Combining the two elements gives us for each firm and each date a term

structure of idiosyncratic default risk calculated as the “difference” between total default
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risk and its systematic component.17 Thus, for each firm we have a data set consisting of

the idiosyncratic part of the survival probability EQ
t [exp(−

R t+s
t

Xi;udu)] for maturities of

s = 0:5; 1; 2; 3; 4; 5 years for each of the 120 days in the sample. Given this panel data set

we can now put structure on the idiosyncratic default risk and estimate the parameters of

this structural form.

We can allow idiosyncratic default risk to be the sum of several factors and the factors

can be of any distributional form subject only to the requirements of non-negativity and

that we can calculate the expectation

EQ
t

�
exp

�
−
Z s

t

Xi;udu

��
:

We choose to let the idiosyncratic factors have the same functional form as the common

factor, namely be a one-factor affine jump-diffusion

dXi;t = (�i;0 + �i;1Xi;t)dt+ �i
p
Xi;tdW

Q
i;t + dJQi;t

with an essentially affine risk premium for diffusive risk and constant risk premium for

the jump risk. This allows us to compare the results of our general estimation approach

with those in previous literature, where a number of restrictions are placed jointly on the

common and idiosyncratic factors. Thus, for each of the 125 firms in the sample, we estimate

by MCMC the parameters of the idiosyncratic factor in the same way as the parameters of

the common factor, but in this estimation we observe a panel data set of the idiosyncratic

part of default probabilities instead of CDO prices. Note that structural assumptions on

the idiosyncratic risk were not necessary in order to price CDOs in the previous section,
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but adding structure here enables us to gain further understanding of the nature of the

idiosyncratic default risk.

The results from the estimation of the idiosyncratic default factors are given in Table 5.

We see that the average volatility across all firms is � = 0:14, almost 10 times higher than the

volatility estimate of 0.017 for the common factor. Combined with the parameter estimates

discussed in the previous section, this shows that the idiosyncratic factors are more volatile

than the systematic factor. The fact that the volatility of our systematic factor is lower

than that reported in previous papers reflects that our estimation procedure allows us to

fully separate the dynamics of the systematic factor from the dynamics of the idiosyncratic

factors. This leads to a low-volatility systematic factor and high-volatility idiosyncratic

factors, while previous research finds something in-between. In addition, we see that the

average total (risk-neutral) contribution from jumps is l× � = 4 · 10�2, which is higher than

the total jump contribution in the systematic factor of 6 · 10�5, reinforcing the conclusion

that volatilities of the idiosyncratic factors are higher than that of the systematic factor.

[Table 5 about here.]

We see that �1 is positive on average, so the idiosyncratic factors are on average explosive

under the risk-neutral measure. However, they are less explosive than the systematic factor,

implying that when pricing securities sensitive to default risk, the relative importance of

systematic risk increases as maturity increases in accordance with our observations in Figure

4.
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6 Conclusion

We present a new approach to estimate the relative contributions of systematic and idiosyn-

cratic default risks in an intensity-based model. Based on a large data set of CDS and CDO

tranche spreads on the North American Investment Grade CDX index, we find that our

model is able to capture both the level and time series dynamics of CDO tranche spreads.

We then go on and split the total default risk of a given entity into its idiosyncratic and

systematic part. We find that the systematic default risk is explosive but has low volatility

and that the relative contribution of systematic default risk is small for short maturities, but

of growing importance as maturity increases. Our subsequent parametric estimation of the

idiosyncratic default risks shows that idiosyncratic risk is more volatile and less explosive

than systematic risk.
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A CDS Pricing

This section briefly explains how to price credit default swaps (CDSs). More thorough

introductions are given in Duffie (1999) and O’Kane (2008).

A CDS contract is an insurance agreement between two counterparties written on the

default event of a specific underlying reference obligation. The protection buyer pays fixed

premium payments periodically until a default occurs or the contract expires, whichever

happens first. If default occurs, the protection buyer delivers the reference obligation to the

protection seller in exchange for face value.

For a CDS contract covering default risk between time t0 = t and tM = T and with

premium payment dates t1; : : : ; tM , the value of the protection payment is given as

Prot(t; T ) = EQ
t

�
(1− �) exp

�
−
Z �

t

rudu

�
1(��T )

�

where � is the recovery rate, while the value of the premium payment stream is S ·Prem(t; T ),

where S is the annual CDS premium and

Prem(t; T ) = EQ
t

"
MX
j=1

exp

 
−
Z minftj ;�g

t

rudu

!Z tj

tj�1

1(�>s)ds

#
:

The CDS premium at time t is settled such that it equates the two payment streams, i.e.

S(t; T ) = Prot(t;T )
Prem(t;T )

.

In order to calculate the CDS premium S(t; T ) we make the simplifying assumptions that

the recovery rate � is constant at 40%, that the riskfree interest rate is independent of the

default time � , and finally that default, if it occurs, will occur halfway between two premium

29



payment dates. With these assumptions we can rewrite the two expressions above as

Prot(t; T ) = (1− �)
MX
j=1

P
�
t;
tj�1+tj

2

�
·
�
Qt(� > tj�1)−Qt(� > tj)

�
(10)

Prem(t; T ) =
MX
j=1

P
�
t;
tj�1+tj

2

�
· tj − tj�1

2
·
�
Qt(� > tj�1)−Qt(� > tj)

�
+

MX
j=1

P (t; tj) ·
�
tj − tj�1

�
·Qt(� > tj): (11)

B Calibration of Survival Probabilities

For the calibration of firm-specific survival probabilities from observed CDS spreads we

assume that risk-neutral probabilities take the flexible form

Qt(� > s) =
1

1 + �2 + �4

�
e��1(s�t) + �2e

��3(s�t)2

+ �4e
��5(s�t)3

�
s ≥ t (12)

with all �j ≥ 0. The calibrated survival probabilities s 7→ Qt(� > s) for a given firm at time

t are then calculated by minimizing relative pricing errors using (10)–(12)

X
T

 
Prot(t; T )�Prem(t; T ) − Sobs(t; T )

Sobs(t; T )

!2

where Sobs(t; T ) is the empirically observed CDS spread at time t on a contract with maturity

T . The calibration is based on observed CDS spreads for maturities of T = 0:5; 1; 2; 3; 4; 5

years and is carried out separately for each firm, at each time t, and results in a very accurate

fit to the observed CDS term structure.18
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C Estimation of Common Factor Sensitivities

The common factor sensitivities ai appearing in the specification (2) of individual default

intensities can be estimated by ordinary linear regression, and without exploiting specific

assumptions on the dynamic evolution of the processes Y;X1; : : : ; XN except for a mild

stationarity condition. As we argue in the following, this model-independent technique only

relies on the availability of term structures of risk-neutral survival probabilities for each of

the N issuers in the portfolio.

The simple idea that we build upon is the fact that (1) and (2) imply

− lim
s&0

@

@s
Qt(�i > t+ s) = �i;t = aiYt +Xi;t

and that we can calculate this quantity simply by inserting the calibrated survival probabil-

ities on the left-hand-side of this expression.

If we now for fixed i consider the regression

Wi;t = �0;i + �1;i(Vt − V̄ ) + "t t = 1; : : : ; T

where

Wi;t = aiYt +Xi;t

W̄i =
1

T

TX
t=1

Wi;t

Vt =
1

N

NX
j=1

Wj;t

V̄ =
1

T

TX
t=1

Vt
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and "t is a Gaussian noise term, then it follows by standard estimation theory that

�̂1;i =

P
t

�
Wi;t − W̄i)(Vt − V̄

�P
t

�
Vt − V̄

�2 :

Under the assumption of stationarity of each of the processes X1; : : : ; XN ; Y (and hence also

of Wi and V ), we can rewrite the estimated regression coefficient as

�̂1;i =
\Cov(Wi; V )

\V ar(V )
: (13)

Since X1; : : : ; XN ; Y are mutually independent then for sufficiently large N

Cov(Wi; V ) =
1

N
V ar(Xi) + aiV ar(Y ) ≈ aiV ar(Y ) (14)

and similarly

V ar(V ) =
1

N2

NX
j=1

V ar(Xj) + V ar(Y ) ≈ V ar(Y ) (15)

where we have applied the normalization 1
N

P
i ai = 1. By combining (13), (14) and (15) it is

now straightforward to see that �̂1;i is an approximate estimator of the unknown sensitivity

ai.

To increase numerical robustness in the calculations, we make a small approximation and

replace everywhere the instantaneous derivative

− lim
s&0

@

@s
Qt(�i > t+ s)

with the one-year default probability

1−Qt(�i > t+ 1) = −Qt(�i > t+ 1)−Qt(�i > t)

1− 0
≈ − lim

s&0

@

@s
Qt(�i > t+ s)
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since our calibration of the term structure of survival probabilities uses CDS contracts with

maturities from 0.5 to 5 years, which results in minor numerical instabilities (across calendar

time) in the very short end of the term structure.

D Estimation of Common Factor

Once we have inferred marginal risk-neutral survival probabilities s 7→ qi;t(s) from CDS

spreads and estimated the common factors sensitivities ai, we are ready to estimate the

parameters and the path of the common factor process Y . Throughout the estimation of the

common factor process, all the qi;t(s) and all ai are taken as given (and thus held fixed).

Given an initial path of Y and initial values of the common factor parameters, the

estimation procedure runs as follows:

(i) Calculate the common factor component of survival probabilities

EQ
t

��
−ai

Z s

t

Yudu

��
for all firms i, all dates t and all maturities s.

(ii) Use the common factor components EQ
t [(−ai

R s
t
Yudu)] from (i) and the calibrated term

structures of survival probabilities qi;t(s) to determine the idiosyncratic component of

survival probabilities

EQ
t

��
−
Z s

t

Xi;udu

��
for all firms i, all dates t and all maturities s using the relation

qi;t(s) = EQ
t

��
−ai

Z s

t

Yudu

��
· EQ

t

��
−
Z s

t

Xi;udu

��
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(iii) Use the idiosyncratic components EQ
t [(−

R s
t
Xi;udu)] from (ii) as input to equation (5)

and calculate spreads for the 5 CDO tranches for all dates t (this is what is referred to

as the “pricing formula” f in section 2.2).

(iv) Use the MCMC estimation routine to update the parameters and the path of the

common factor Y , and repeat steps (i)-(iv) until convergence.

E Conditional Posteriors in MCMC Estimation

In this Appendix the conditional posteriors stated in the main text and used in MCMC

estimation are derived. Bayes’ rule

p(X|Y ) ∝ p(Y |X)p(X)

is repeatedly used in the calculations.

E.1 Conditionals of S; Y; J, and Z

The conditional posteriors of S; Y; J , and Z are used in most of the conditional posteriors

for the parameters and are therefore derived in this section.
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E.1.1 p(Y |Θ;Σ�; J; Z) and p(S|Θ;Σ�; Y; J; Z)

With the discretization in (8) we have that

p(Y |Θ;Σ�; J; Z) =
� TY
t=1

p(Yt|Yt�1;Θ;Σ�; J; Z)
�
p(Y0)

= p(Y0)
TY
t=1

1
�
√

∆tYt�1
exp

�
− 1

2
[Yt − (�0∆t + (�P1 ∆t + 1)Yt�1 + JtZt)]2

�2∆tYt�1

�
∝ p(Y0)��TY

� 1
2

x exp
�
− 1

2

TX
t=1

[Yt − (�0∆t + (�P1 ∆t + 1)Yt�1 + JtZt)]2

�2∆tYt�1

�
(16)

where Yx =
QT

t=1 Yt�1. Note that the posterior p(Y |Θ;Σ�; J; Z) differs from p(Y |Θ;Σ�; J; Z; S).

The conditional posterior of S is found as

p(S|Θ;Σ�; Y; J; Z) =
TY
t=1

|Σ�|�
1
2 exp

�
− 1

2
[St − f(ΘQ; Yt)]

0Σ�1
� [St − f(ΘQ; Yt)]

�
= |Σ�|�

T
2 exp

�
− 1

2

TX
t=1

ê0tΣ
�1
� êt)

�
; (17)

where êt = St − f(ΘQ; Yt). If Σ� is diagonal this simplifies to

p(S|Θ;Σ�; Y; J; Z) ∝
NY
i=1

Σ
�T

2
�;ii exp

�
− 1

2Σ�;ii

TX
t=1

ê2
t;i

�
:

This posterior does not depend on J; Z; �P0 ; and �P1 .
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E.1.2 p(Z|Θ;Σ�; Y; J; S) and p(J |Θ;Σ�; Y; Z; S)

Since Zt is exponentially distributed we have that

p(Z|Θ;Σ�; Y; J; S) ∝ p(S|Θ;Σ�; Y; J; Z)p(Z|Θ;Σ�; Y; J) (18)

∝ p(Y |Θ;Σ�; J; Z)p(Z|Θ;Σ�; J)

∝ p(Y |Θ;Σ�; J; Z)
TY
t=1

1

�P
exp(− Zt

�P
)

∝ p(Y |Θ;Σ�; J; Z)(�P )�T exp(−Z�
�P

) (19)

where Z� =
PT

t=1 Zt.

The jump time Jt can only take on two values so the conditional posterior for Jt is

Bernoulli. The Bernoulli probabilities are given as

p(J |Θ;Σ�; Y; Z; S) ∝ p(S|Θ;Σ�; Y; J; Z)p(J |Θ;Σ�; Y; Z) (20)

∝ p(Y |Θ;Σ�; J; Z)p(J |Θ;Σ�; Z)

∝ p(Y |Θ;Σ�; J; Z)p(J |Θ)

∝ p(Y |Θ;Σ�; J; Z)
TY
t=1

�
(lP∆t)

Jt(1− lP∆t)
1�Jt

�
∝ p(Y |Θ;Σ�; J; Z)(lP∆t)

J�(1− lP∆t)
T�J� (21)

with J� =
PT

t=1 Jt
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E.2 Conditional Posteriors

The conditional posteriors are derived and the choice of priors for the posteriors are discussed

in this section.

(i) The conditional posterior of the error matrix Σ� is given as

p(Σ�|Θ; Y; J; Z; S) ∝ p(S|Θ;Σ�; Y; J; Z)p(Σ�|Θ; Y; J; Z)

∝ p(S|Θ;Σ�; Y; J; Z)p(Σ�|Θ)

∝ |Σ�|�
T
2 exp

�
− 1

2

TX
t=1

ê0tΣ
�1
� êt

�
p(Σ�|Θ)

= |Σ�|�
T
2 exp

�
− 1

2
tr(Σ�1

�

TX
t=1

êtê
0
t)
�
p(Σ�|Θ):

The last line follows because−1
2

PT
t=1 ê

0
tΣ
�1
� êt = −1

2

PT
t=1 tr(ê

0
tΣ
�1
� êt) = −1

2

PT
t=1 tr(Σ

�1
� êtê

0
t) =

−1
2
tr(
PT

t=1 Σ�1
� êtê

0
t) = −1

2
tr(Σ�1

�

PT
t=1 êtê

0
t). If the prior on Σ� is independent of the

other parameters and has an inverse Wishart distribution with parameters V and m

then p(Σ�|:::) is inverse Wishart distributed with parameters V +
PT

t=1 êtê
0
t and T +m.

The special case of V equal to the zero matrix and m = 0 corresponds to a flat prior.

(ii) The conditional posterior of �P1 is found as

p(�P1 |Θn�P
1
;Σ�; Y; J; Z; S) ∝ p(S|Θ;Σ�; Y; J; Z)p(�P1 |Θn�P

1
;Σ�; Y; J; Z)

∝ p(�P1 |Θn�P
1
;Σ�; Y; J; Z)

∝ p(Y |Θ;Σ�; J; Z)p(�P1 |Θn�P
1
;Σ�):

According to equation (16) we have

p(�P1 |:::) ∝ exp
�
− 1

2

TX
t=1

[Yt − (�0∆t + (�P1 ∆t + 1)Yt�1 + JtZt)]
2

�2∆tYt�1

�
p(�P1 |Θn�P

1
;Σ�)
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so

p(�P1 |:::) ∝ exp
�
− 1

2

TX
t=1

[at�
P
1 − bt]2

�2∆tYt�1

�
p(�P1 |Θn�P

1
;Σ�)

where

at = −∆tYt�1

bt = �0∆t + Yt�1 + JtZt − Yt:

Using the result in Frühwirth-Schnatter and Geyer (1998, p. 10) and assuming flat

priors we have that �P1 ∼ N(Qm;Q) where

m =
TX
t=1

atbt
�2∆tYt�1

Q�1 =
TX
t=1

a2
t

�2∆tYt�1

:

(iii) For the jump size parameter �P the conditional posterior is found as

p(�P |Θn�P ;Σ�; Y; J; Z; S) ∝ p(S|Θ;Σ�; Y; J; Z)p(�P |Θn�P ;Σ�; Y; J; Z)

∝ p(Y |Θ;Σ�; J; Z)p(�P |Θn�P ;Σ�; J; Z)

∝ p(Z|Θ;Σ�; J)p(�P |Θn�P ;Σ�; J)

∝ p(Z|Θ)p(�P |Θn�P ;Σ�)

∝ (�P )�T exp(−Z�
�P

)p(�P |Θn�P ;Σ�):

If the prior on �P is flat then the conditional posterior inverse gamma distributed with

parameters Z� and T − 1.

38



(iv) The same calculations as for the jump-size parameter �P yields the conditional poste-

rior of the jump-time parameter lP as

p(lP |ΘnlP ;Σ�; Y; J; Z; S) ∝ p(J |Θ)p(lP |ΘnlP ;Σ�)

∝
�

(lP∆t)
J�(1− lP∆t)

T�J�
�
p(lP |ΘnlP ;Σ�):

Assuming a flat prior on lP the conditional posterior of lP∆t is beta distributed, lP∆t ∼

B(J� + 1; T − J� + 1).

(v) The parameters � and �0 are sampled by Metropolis-Hastings since the conditional

distributions are not known. Denoting any of the two parameters �i, the conditional

distribution is found as

p(�i|Θn�i
;Σ�; Y; J; Z; S) ∝ p(S|Θ;Σ�; Y; J; Z)p(�i|Θn�i

;Σ�; Y; J; Z)

∝ p(S|Θ;Σ�; Y; J; Z)p(Y |Θ;Σ�; J; Z)p(�i|Θn�i
;Σ�; J; Z)

∝ p(S|Θ;Σ�; Y; J; Z)p(Y |Θ;Σ�; J; Z)p(�i|Θn�i
;Σ�):

Flat priors on both parameters are assumed.

(vi) The parameters �Q1 , lQ, and �Q are sampled by Metropolis-Hastings. The only dif-

ference in the derivation of their conditional distributions compared to derivation of

the distributions of � and �0 is that the distribution of Y does not depend on these

three parameters. Letting �i represent any of the three parameters, the conditional
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distribution is found as

p(�i|Θn�i
;Σ�; Y; J; Z; S) ∝ p(S|Θ;Σ�; Y; J; Z)p(�i|Θn�i

;Σ�; Y; J; Z)

∝ p(S|Θ;Σ�; Y; J; Z)p(Y |Θ;Σ�; J; Z)p(�i|Θn�i
;Σ�; J; Z)

∝ p(S|Θ;Σ�; Y; J; Z)p(�i|Θn�i
;Σ�):

Flat priors on all three parameters are assumed.

(vii) The latent jump indicators Jt’s are sampled individually from Bernoulli distributions.

To see this, note that equation (21) implies that

p(J |Θ;Σ�; Y; Z; S)

∝
TY
t=1

exp
�
− 1

2

[Yt − (�0∆t + (�P1 ∆t + 1)Yt�1 + JtZt)]
2

�2∆tYt�1

�� lP∆t

1− lP∆t

�Jt

:

In the actual implementation we use

p(J |Θ;Σ�; Y; Z; S)

∝
TY
t=1

exp
�
− 1

2

(−2[Yt − (�0∆t + (�P1 ∆t + 1)Yt�1)] + JtZt)JtZt
�2∆tYt�1

�� lP∆t

1− lP∆t

�Jt

since this is numerically more robust.

(viii) For the latent jump sizes Zt we have according to equation (19) that

p(Z|Θ;Σ�; Y; J; S) ∝
TY
t=1

exp
�
− 1

2

[Yt − (�0∆t + (�P1 ∆t + 1)Yt�1 + JtZt)]
2

�2∆tYt�1

− Zt
�P

�
so the Zts are conditionally independent and are sampled individually. If Jt = 0

then Zt is sampled from an exponential distribution with mean �P . If Jt = 1 tedious
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calculations show that

p(Zt|Θ;Σ�; Y; J; ZnZt ; S) ∝ [((�P1 + �P�2)∆t + 1)Yt�1 − (Yt − �0∆t) + Zt]
2

�2∆tYt�1

�
;

where Zt ≥ 0. Therefore, Zt is drawn from a N((Yt − �0∆t) − ((�P1 + �P�2)∆t +

1)Yt�1; �
2∆tYt�1) distribution and the draw is rejected if Zt < 0. In practice the

number of rejections are small.19

(ix) The latent Yts are sampled individually by Metropolis-Hastings and for t = 1; :::; T − 1

the conditional posterior is

p(Yt|Θ;Σ�; YnYt ; J; Z; S) ∝ p(S|Θ;Σ�; Y; J; Z; S)p(Yt|Θ;Σ�; YnYt ; J; Z)

∝ p(St|Θ;Σ�; Yt; J; Z; S)p(Yt|Θ;Σ�; Yt�1; Yt+1; J; Z)

∝ p(St|Θ;Σ�; Yt; J; Z; S)

×p(Yt|Θ;Σ�; Yt�1; J; Z)p(Yt+1|Θ;Σ�; Yt; J; Z)

For YT the conditional posterior is

p(YT |Θ;Σ�; YnYT
; J; Z; S) ∝ p(YT |Θ;Σ�; YT�1; J; Z; S)

∝ p(ST |Θ;Σ�; YT ; J; Z; S)p(YT |Θ;Σ�; YT�1; J; Z)

while for Y0 it is

p(Y0|Θ;Σ�; YnY0 ; J; Z; S) ∝ p(Y0|Θ;Σ�; Y1; J; Z)

∝ p(Y1|Θ;Σ�; Y0; J; Z)p(Y0):
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E.3 Implementation Details

In the RW-MH steps of the MCMC sample, the proposal density is chosen to be Gaussian,

and the efficiency of the RW-MH algorithm depends crucially on the variance of the proposal

normal distribution. If the variance is too low, the Markov chain will accept nearly every draw

and converge very slowly while it will reject a too high portion of the draws if the variance is

too high. We therefore do an algorithm calibration and adjust the variance in the first half

of the burn-in period in the MCMC algorithm. Roberts et al. (1997) recommend acceptance

rates close to 1
4

and therefore the standard deviation during the algorithm calibration is

chosen as follows: Every 100’th draw the acceptance ratio of each parameter is evaluated.

If it is less than 10 % the standard deviation is doubled while if it is more than 50 % it is

cut in half. This step is prior to the second half of the burn-in period since the convergence

results of RW-MH only applies if the variance is constant (otherwise the Markov property

of the chain is lost).

The Fourier inversion in equation (7) is calculated by using Fast Fourier Transform and

the number of points used in FFT is 218. We use Simpson’s rule in the Fast Fourier Transform

routine as suggested by Carr and Madan (1999), and our results suggest a significant im-

provement in overall accuracy. The characteristic function is not evaluated in every Fourier

transform point. Instead, since the characteristic function is exponential-affine with func-

tion A and B, the functions A and B are splined from a lower number of points. The spline

uses a total number of 60 points. Also, the integration in (6) is done using Gauss-Legendre

integration and the number of integration points is 60.
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Notes

1Examples of empirical applications are Duffie and Singleton (1997), Duffee (1999), and Longstaff, Mithal,

and Neis (2005).

2To illustrate why the Feller condition is necessary in extended affine models consider the simple diffusion

case, dYt = (�Q0 +�Q1 Yt)dt+�
√
YtdW

Q. The risk premium Λt = �0√
Yt

+�1

√
Yt keeps the process affine under

P but the risk premium explodes if Yt = 0. To avoid this, the Feller restriction �0 >
�2

2 under both P and

Q ensures that Yt is strictly positive.

3The last term disappears if j = 0.

4Duffie and Gârleanu (2001) derive an explicit solution for EQt [exp(q
R s
t
Yudu)] when q is a real number,

but as noted by Eckner (2009) the formula works equally well for q complex.

5Pricing CDS contracts is explained in Appendix A.

6For a general introduction to MCMC see Robert and Casella (2004) and for a survey of MCMC methods

in financial econometrics see Johannes and Polson (2006).

7This procedure is essentially similar to the well-known technique for inferring a term structure of interest

rates from observed prices of coupon bonds, see Nelson and Siegel (1987).

8The average of the a′is are without loss of generality normalized to 1.

9All random numbers in the estimation are draws from Matlab 7.0’s generator which is based on Marsaglia

and Zaman (1991)’s algorithm. The generator has a period of almost 21430 and therefore the number of

random draws in the estimation is not anywhere near the period of the random number generator.

10Upfront payments may be converted to running spreads using so-called “risky duration”, see e.g. Amato

and Gyntelberg (2005). This calculation requires a fully parametric model, and hence is not possible within

our modelling framework. Instead we use the original upfront payment quotes available from MarkIt for the

equity tranche.

11The 5-year CDS contracts for the period March 21, 2006 to June 19, 2006 mature on June 20, 2011,

consistent with the maturity of the 5-year CDO tranches, but for the period June 20 to September 19, 2006,
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the maturity of the 5-year CDS contracts is September 20, 2011 (and the maturity of the other CDS contracts

are similarly shifted forward by 3 months from June 20 and onwards). However, this maturity mismatch

between the CDS and CDO contracts in the latter part of our sample period is automatically corrected for,

when we imply out the term structures of firm-specific survival probabilities from observed CDS spreads (see

appendix B), and hence poses no problem to the estimation of the model.

12This observation is apparent from a visual inspection of the graph, and quantitative estimates are

available upon request.

13The distribution on sectors of the firms with the 20% largest market sensitivities ai is: Energy (8%),

Financials (8%), Basic Industrials (16%), Telecommunications, Media and Technology (28%), Consumer

Products and Retail (40%).

14Mortensen (2006) fixes ai implicitly through a parameter restriction but notes that it effectively corre-

sponds to setting ai equal to the fraction of firm-specific to average (across all firms) 5-year CDS spread.

15In a previous version of this paper, we imposed parameter restrictions similar to Eckner (2009), which

resulted in parameter estimates consistent with those that he reports.

16The previous version of the paper entitled ”An empirical investigation of an intensity-based model for

pricing CDO tranches” is available upon request.

17More specifically, the relation

Qt(�i > s) = EQt

��
−ai

Z s

t

Yudu

��
· EQt

��
−
Z s

t

Xi;udu

��

allows us to infer the idiosyncratic part of survival probabilities directly from the estimated common factor

and the CDS implied survival probabilities, EQt
��
−ai

R s
t
Yudu

��
and Qt(�i > s) respectively.

18This calibration approach is close to the industry benchmark of fitting the observed CDS term structure

perfectly using piecewise constant intensities, see O’Kane (2008).

19If the draws were frequently rejected the method in Gelfand, Smith, and Lee (1992) could be used.
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Figure legends

Figure 1. Default probabilities. The figure shows the average calibrated term structure of risk-neutral

default probabilities for 0 to 5 years over the period March 30, 2006 to September 20, 2006, averaging across

all 125 constituents of the CDX NA IG 6 index. Default probabilities are calibrated on a firm-by-firm basis

following the procedure outlined in appendix B.

Figure 2. Common factor sensitivities. The figure shows the distribution of the estimated common factor

sensitivities ai for the 125 constituents of the CDX NA IG 6 index. The sensitivities are estimated following

the procedure outlined in appendix C.

Figure 3. CDO tranche spreads. The graphs show the observed (solid black) and model-implied (dashed

gray) CDO tranche spreads for the five CDX NA IG 6 tranches: 0%− 3%, 3%− 7%, 7%− 10%, 10%− 15%,

and 15%−30% over the period March 30, 2006 to September 20, 2006. The model-implied spreads are based

on the parameter estimates reported in Table 2.

Figure 4. Average default probabilities. The figure shows the average term structure of risk-neutral default

probabilities, averaging across all 125 constituents of the CDX NA IG 6 index and across all trading days

in the period March 30, 2006 to September 20, 2006. The default probabilities are decomposed into their

common (dark gray) and idiosyncratic (light gray) parts. The total default probabilities (dark and light gray)

are calibrated from CDS spreads (see appendix B), and the common part is calculated using the parameter

estimates reported in Table 2.
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Figures

Figure 1. Default probabilities. The figure shows the average calibrated term structure of risk-neutral
default probabilities for 0 to 5 years over the period March 30, 2006 to September 20, 2006, averaging
across all 125 constituents of the CDX NA IG 6 index. Default probabilities are calibrated on a
firm-by-firm basis following the procedure outlined in appendix B.
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Figure 2. Common factor sensitivities. The figure shows the distribution of the estimated common factor
sensitivities ai for the 125 constituents of the CDX NA IG 6 index. The sensitivities are estimated
following the procedure outlined in appendix C.
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Figure 3. CDO tranche spreads. The graphs show the observed (solid black) and model-implied (dashed
gray) CDO tranche spreads for the five CDX NA IG 6 tranches: 0%− 3%, 3%− 7%, 7%− 10%,
10%− 15%, and 15%− 30% over the period March 30, 2006 to September 20, 2006. The model-implied
spreads are based on the parameter estimates reported in Table 2.
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Figure 4. Average default probabilities. The figure shows the average term structure of risk-neutral
default probabilities, averaging across all 125 constituents of the CDX NA IG 6 index and across all
trading days in the period March 30, 2006 to September 20, 2006. The default probabilities are
decomposed into their common (dark gray) and idiosyncratic (light gray) parts. The total default
probabilities (dark and light gray) are calibrated from CDS spreads (see appendix B), and the common
part is calculated using the parameter estimates reported in Table 2.
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Tables

Panel A: CDS spreads for CDX NA IG 6 constituents

Maturity 0:5 yr 1 yr 2 yrs 3 yrs 4 yrs 5 yrs
(in bps) (in bps) (in bps) (in bps) (in bps) (in bps)

Mean 6.78 8.75 14.58 21.52 30.52 39.14

Std. 5.77 6.62 11.25 16.74 23.44 29.82

Median 4.86 6.56 10.72 16.07 22.51 29.03

Min. 0.41 1.73 2.65 2.94 3.99 5.45

Max. 56.46 59.82 103.73 140.48 181.60 222.19

Observations 15,000 15,000 15,000 15,000 15,000 15,000

Panel B: CDO tranche spreads for CDX NA IG 6 tranches

Tranche 0%− 3% 3%− 7% 7%− 10% 10%− 15% 15%− 30%
(in %) (in bps) (in bps) (in bps) (in bps)

Mean 29.95 91.83 20.43 9.33 5.13

Std. 2.92 15.37 4.27 1.58 0.74

Median 30.29 92.48 20.31 9.06 5.17

Min. 21.97 65.52 13.96 6.40 3.54

Max. 35.75 125.02 28.97 13.02 6.84

Observations 120 120 120 120 120

Table 1. Summary statistics. Panel A reports summary statistics for CDS spreads of the 125 constituents
of the CDX NA IG 6 index over the period March 30, 2006 to September 20, 2006. Panel B reports
summary statistics for the five CDO tranches: 0%− 3%, 3%− 7%, 7%− 10%, 10%− 15%, and 15%− 30%
of the CDX NA IG 6 index over the same period.
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�0 (×105) �1 � (×102)

2.32 0.94 1.66
(2.15, 2.58) (0.90, 0.99) (1.48, 1.81)

l (×103) � (×102)

3.74 1.59
(2.54, 4.59) (1.11, 2.12)

�P1 lP (×102) �P (×1010)

-3.45 2.54 8.34
(-15.09, 5.08) (3:40 · 10−13, 2:18 · 104) (8:19; 1:57 · 108)

√
Σ11

√
Σ22

√
Σ33

0.11 0.19 0.16
(0.10, 0.33) (0.15, 0.43) (0.11, 0.51)

√
Σ44

√
Σ55

0.35 0.38
(0.30, 0.64) (0.28, 0.67)

Table 2. Parameter estimates (common factor). The table reports point estimates and 95% confidence
intervals (in parenthesis) for the parameters of the multi-name default model outlined in section 1.
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Tranche 0%− 3% 3%− 7% 7%− 10% 10%− 15% 15%− 30%
(in %) (in bps) (in bps) (in bps) (in bps)

Mean -0.7888 -6.93 0.55 3.96 -1.12

RMSE 1.7907 14.31 2.94 4.42 1.31

Table 3. CDO pricing errors. The table reports mean and standard deviation of the daily pricing errors
for each of the five CDO tranches: 0%− 3%, 3%− 7%, 7%− 10%, 10%− 15%, and 15%− 30% of the CDX
NA IG 6 index over the period March 30, 2006 to September 20, 2006. The pricing errors are calculated as
model-implied minus observed tranche spreads, and the model spreads are based on the parameter point
estimates in Table 2.
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Maturity 0:5 yr 1 yr 2 yrs 3 yrs 4 yrs 5 yrs

Total DP 0,051% 0,134% 0,460% 1,080% 2,042% 3,309%

Common part

of total DP 0,003% 0,010% 0,048% 0,147% 0,376% 0,874%

Common part

in % of total DP 5,88% 7,64% 10,40% 13,59% 18,42% 26,41%

Table 4. Average default probabilities. The table reports average risk-neutral default probabilities (DP),
averaging across all 125 constituents of the CDX NA IG 6 index and across all trading days in the period
March 30, 2006 to September, 2006. “Total DP” reports the total default probability and corresponds to
the total gray area (dark and light) in Figure 4, and “Common part of total DP” similarly expresses the
common factor part of the total default probability corresponding to the dark gray area in Figure 4.
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�0 (×106) �1 �

9.08 0.80 0.14
0.41 0.87 0.16

(36.61) (0.24) (0.08)

l (×103) �

4.48 8.93
2.68 0.30

(6.05) (59.12)

�P1 lP (×10�2) �P (×109)

0.14 1.31 1.66
-0.60 1.30 1.66
(5.79) (0.34) (0.07)

√
Σ11 (×104)

√
Σ22 (×104)

√
Σ33 (×104)

1.10 1.19 1.37
1.01 1.04 1.18

(0.26) (0.42) (0.52)

√
Σ44 (×104)

√
Σ55 (×104)

1.40 1.66
1.23 1.09

(0.69) (2.55)

Table 5. Parameter estimates (idiosyncratic factors). The table reports mean, median and standard
deviation (in parenthesis) of the 125 parameter point estimates resulting from the idiosyncratic factor
estimations in the multi-name default model outlined in section 1.
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