
 

                                  

 

 

RosterBuilder
An Architecture for an Integrated Airline Rostering Framework
Doerner, Karl; Kotsis, Gabriele; Strauss, Christine

Document Version
Final published version

Publication date:
2002

License
CC BY-NC-ND

Citation for published version (APA):
Doerner, K., Kotsis, G., & Strauss, C. (2002). RosterBuilder: An Architecture for an Integrated Airline Rostering
Framework. Department of Informatics INF, Copenhagen Business School. Working Paper / Institut for
Informatik. Handelshøjskolen i København No. 2002-15

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 05. Jul. 2024

https://research.cbs.dk/en/publications/777a5370-c025-11db-9769-000ea68e967b


 

 

 

RosterBuilder - An Architecture for an Integrated Airline Rostering 
Framework 
 
 
 
 
 
 
 
Karl Doerner 
University of Vienna 
Department of Business Studies  
Brünner Strasse 72 
AUSTRIA – 1210 Vienna 
karl.doerner@univie.ac.at  
 
Gabriele Kotsis 
Copenhagen Business School 
Department for Informatics 
Howitzvej 60 
DENMARK – 2000 Frederiksberg 
gk.inf@cbs.dk 
 
Christine Strauss 
University of Vienna 
Department of Business Studies 
Brünner Strasse 72 
AUSTRIA – 1210 Vienna 
christine.strauss@univie.ac.at 
 
 
 
 
 
 
 
 
Contact for further correspondence: 
 

Christine Strauss 
University of Vienna 
Department of Business Studies 
Brünner Strasse 72 
AUSTRIA – 1210 Vienna 
christine.strauss@univie.ac.at 



RosterBuilder – An Architecture for an Integrated Airline Rostering Framework 
 

Abstract 
 
Rostering is a crucial planning process in an airline’s overall scheduling hierarchy. Besides addressing the 

issues of crew utilisation and crew costs (which represent two of the major expenses in running an airline), a 

rostering tool must also cover the question of quality requirements. The quality of service can be improved 

by having the rostering tool take into consideration the skills of individual flight attendants during the 

rostering process. The quality of work life that an individual employee enjoys depends on his or her ability to 

participate in the rostering process. To an extent, this participation involves the employee's ability to 

determine his or her own work schedule, which in turn also impacts his or her job performance. Timely and 

ubiquitous access to rostering information therefore represents a crucial benefit for employees, as it enables 

them to not only query data on schedules, but also to submit their preferences at all times and in any place. 

In this paper, we present the architecture for RosterBuilder, a sample framework for flexible rostering at 

airlines and show how RosterBuilder can be integrated into modern computing and communication 

environments. We focus on deriving functional requirements that apply to most airlines using a rostering 

concept and specify those requirements in use case diagrams that follow the UML formalism. Our analysis 

considers the user groups that are involved: crew members, crew assigners and crew operators. 

Considering the need for flexibility, scalability and ubiquitous access to information, we propose a 

component-based system architecture that is easily customisable and adaptable to end users' needs. We 

present and describe the integration of rostering algorithms as the core models and the interfaces to 

additional modules, which include support functions applied when generating rosters and mobile information 

access for crew members. We conclude by presenting the design for the proposed modular architecture. 

 

 
 
Keywords airline application, requirements elicitation, requirements engineering, rostering, software 

architecture, UML-based modelling 

 

 1



Introduction 

The tight market conditions in the airline sector are not only a consequence of economic turndowns triggered 

by market-external factors, but also reflect the long-term effects of liberalization, which has lead to 

intensified competition in the airline market. As a consequence, airlines are being forced to exploit and 

activate idle potentials by applying marketing strategies aimed at raising their turnovers, cutting down their 

expenses and maximizing synergies. The industry's increasingly tight profit margins, as well as a continuous 

rise in flight capacity and frequency, have increased the requirements placed on planning tools in this 

important economic sector with regard to their robustness, flexibility and accuracy. 

The need for appropriate tools for rostering and its applications is especially urgent, because personnel costs 

in the labor-intensive airline industry are generally relatively high. In fact, the cost of personnel represents 

the second highest factor of direct operational costs next to fuel. Besides the relative importance of personnel 

costs, the growth of the industry's workforce provides another indicator for the urgent need for highly 

developed rostering tools. Given that rostering is primarily applied by European airlines, a short look at some 

statistics for the European market can help to substantiate the assumption of growth: 

(1) For the years 1995 to 1999, the average annual percentage increase in the number of flight deck 

personnel was 5.6 percent, while that for the number of flight attendants was 6.5 percent (source: IATA, 

World Air Transport Statistics, data request 5975-00). 

(2) The Association of European Airlines (AEA) reports that the volume of seat kilometers flown by its 

member airlines in the year 2000 was 4.5 higher than in 1999 (AEA, 2001, p. IV-3). 

(3) An indicator for a continuation of this trend can be found in Boeing's forecast that the annual air travel 

growth rate for the European region will average 4.7 percent in the years until 2020. This forecast gives 

further credence to the assumption that the number of personnel being rostered will continue to grow 

(Boeing, 2001, p.10). 

In addition, IATA expects total international passenger traffic to increase at an average annual rate of 3.5 

percent between 2001 and 2005 (this figure already includes the impact of the 2.1 percent fall in passenger 

numbers in 2001; cf. Jeanniot, 2002, p. 11). Both the cost and volume factors imply that powerful 

approaches and solvers need to take additional requirements and attributes into consideration in order to use 

personnel resources more efficiently, i.e., disposing workforce closer to its regulative limits without 

decomposing the problem into “independent” subproblems, while fully exploiting the individual crew 

members’ skills. This implies a complexity that is far too advanced to be managed manually and might even 

force existing tools to their limits. 

Not only does the quality of service provided by airline employees depend to a considerable degree on the 

employees' satisfaction with their work schedules, airlines' ability to meet their staffs' expectations regarding 

work schedules provides a viable means of incentivizing employees and represents an alternative to 

monetary compensations.  

Several factors contribute to the complexity associated with Airline Crew Rostering Problems: (1) a crew 

member’s duty may cover a period of several days (up to 16), (2) each work schedule is tailored for a 

 2

Prof. Strauss
oder push?



specific person with specific needs, (3) a varying number of crew members with specific skills are required, 

depending on the type of aircraft, and (4) the large size of real-world applications of airline rostering and the 

typically large sets of data associated with them make their highly efficient implementation a prerequisite. In 

addition to problem complexity, there are several external factors that hinder or prevent the development of a 

single, monolithic tool. Because requirements often vary widely (e.g., the terms of the work contracts differ 

highly from airline to airline), the constraints for a solution procedure need to be adjusted and customized in 

each implementation. Furthermore, the market for rostering tools in the airline sector is relatively small on 

account of alternative paradigms such as bidlines and preferential bidding. The development of a single 

monolithic tool does not appear to be economically feasible: a single provider would face too much risk, as 

the development of such an integrated software package would require high initial investment and remains 

cost-intensive. Moreover, each customer requires a specific solution. 

Component-based, customizable software presents a possible means for confronting the drawbacks in this 

challenging application. Such a software approach allows multiple vendors to offer and integrate their 

products. It opens the market to those vendors who might already be successfully established in other 

markets and could provide useful non-airline specific modules. The products available on the market confirm 

this trend1. 

The “missing link” is a framework that specifies how such individual components can be “glued” together. 

This paper provides this missing link by presenting a reference architecture, which is the basis for 

customizable airline rostering software. 

From the point of view of the tool builders, the benefits of a reference architecture include 

• Market assessment: the elements of a reference architecture provide a basis on which to collect and 

structure information about which rostering(-related) modules are provided by whom and on how 

much of the market potential is already supplied/covered. As a result, tool builders can gain an 

insight into the state of competition and the number of competitors in individual market segments. 

• Product placement: a reference architecture allows a broad variety of vendors - not necessarily only 

those from the airline rostering segment, but also tool providers from other business segments - to 

see where their products fit in among the market's offerings. 

• Product differentiation: a market analysis based on a reference architecture can help to point out 

which individual tools will be harder or easier to differentiate from competitors' products. 

• Product diversification: a reference architecture can offer the basis on which airline rostering tool 

builders evaluate their current degree of product diversification and provide an impetus for 

complementary products. 

• Integration: a reference architecture supports the integration of add-on offerings. For example, a 

module for crew preferences or for crew tracking and monitoring can be integrated into an existing 

                                                           
1 We refrain from mentioning specific products, brands or commercial software solutions, as providing a market 
overview would go beyond the scope of this paper. 

 3

Prof. Strauss
In Arbeit.



implementation despite the fact that the details of the rostering kernel might not be in the public 

domain. 

• Market awareness: a reference architecture opens the airline rostering market to vendors from other 

sectors, because it specifies well-defined modules, some of which are not necessarily airline-specific 

and can be provided by vendors established in other sectors. 

• Customer acquisition: the definition of core and auxiliary modules in a reference architecture 

enables the customer to perform a stepwise implementation. Medium and small airlines would rather 

invest into a limited, less cost-intensive start-up solution than in one big product. 

Furthermore, a reference architecture supports the airlines in their roles as customers:  

• Gap analysis: on basis of a reference architecture, an airline can evaluate its own standards, create a 

check list for analyzing the existing IT support in the company and perform a gap analysis. 

• Product evaluation: a reference architecture is the basis on which airlines in their roles as customers 

of software vendors can be provided with a framework for evaluating various competing tools on the 

market. In addition, it helps to describe the quality of the offered tools on a component level and to 

establish to what degree the airlines’ requirements and the functionality offered by a tool match. 

• Priorities of investment: a reference architecture implies a hierarchy of components. It helps to 

identify basic functionalities and add-ons and supports the distinction between core functions, 

auxiliary functions and nice-to-have-modules. Furthermore, a reference architecture supports the 

customer in setting investment priorities when an existing system is updated or a new system is 

implemented.  

• Product variety: as a reference architecture may attract vendors from other sectors, multiple 

vendors will offer solutions and the variety of products being offered on the market will rise; as a 

consequence, customers will have a broader variety of choices available to them. 

• Standardization: a reference architecture supports the process of standardization, which provides a 

viable means for avoiding dependencies on single providers. For example, the definition of the open 

system architecture was a precondition for the development of LINUX. 

• End-User Orientation: the reference architecture not only describes interfaces for crew assigners 

and crew operators, but also provides access functions to crew members. Crew members benefit 

from timely and ubiquitous access to all information related to their duties and can actively 

participate in the rostering process by stating their preferences on work schedules.  

The remainder of this paper is structured as follows: Section 1 describes the planning hierarchy in the airline 

industry, highlights the difference between bidlines and rosters and presents related academic work. In 

Section 2, the requirements of a reference architecture are described by means of three use cases, namely, the 

main user categories “crew member”, “crew assigner” and “crew operator”. Section 3 focuses on 

RosterBuilder's reference architecture as a useful example and describes the core modules and the additional 

modules that address complexity and quality criteria. The methods implemented (e.g., pairing optimizers, 

 4



rostering programs, preference evaluators) ought to be modular and should also conform to the software 

architecture. Section 4 of the paper concludes with a summary and an outlook on future work. 

 

1 Rostering in Airline Applications 

The term “rostering” derives from the practice of manually filling out a grid-lined sheet of paper in order to 

provide a graphical sketch of individual duty schedules. Wren (1996) gives a general definition on the term 

rostering as a specific type of scheduling by „...the placing, subject to constraints, of resources into slots in a 

pattern” (Wren, 1996, p. 53). Once shifts or duties showing the daily work of the personnel have been 

generated, these tasks are placed into a roster, which is a list of people with assigned duties for a particular 

day. Usually, the work pattern for an individual during any time period must conform to a set of rules, which 

are particularly manifold for flying personnel. 

In airline applications, the rostering process is a planning activity embedded in a planning hierarchy, which 

is briefly described in the following paragraphs to give a rough insight into where the data that determines 

the rostering process of flight personnel is derived from (Barhart and Talluri, 1997; Barnhart et al., 1999). 

The primary planning activity is the flight schedule design, which focuses on finding a set of scheduled flight 

legs (characterized by origin, destination and departure times) that maximize an airline's profit within the 

restrictions imposed by fleets, crews, regulatory agencies, etc.; and which may be solved with some 

assistance from automated profitability tools. Flight schedules are an airline's primary products, they are 

generated for six months or a whole year. During the second scheduling phase, called the fleet assignment, 

equipment types are assigned to flights, with the airline trying to find the profit-maximizing assignment of 

aircraft types to flights, given restrictions imposed by flight coverage, fleet balance, and maintainance. Many 

major airlines apply fleet assignment optimizers to solve this problem, a step usually taken three months 

ahead of the start of the schedule. The subsequent planning activity involves aircraft maintenance routing, 

during which the airline tries to find the set of aircraft rotations that maximizes through revenues given 

maintenance requirements; most major airlines use optimization models and algorithms during this phase. 

Crew schedule planning falls into two more or less independent parts: crew pairing and crew assignment. 

The objective of crew pairing is to cover each flight the required number of times – depending on the aircraft 

type – by cost-minimizing work schedules given restrictions imposed by flight coverage, work restrictions 

and crew availability. A pairing is a sequence of flights beginning and ending at a crew base containing a set 

of daily work activities, called duties or duty periods, separated by rest periods. Every pairing is constructed 

so that a single crew member can legally perform all of the work activities it contains; pairings span time 

periods of some hours up to 16 days. Terms used synonymously for pairings are tours of duty, trips, or 

rotations. Extensive research in the last four decades yielded in efficient crew pairing optimizers. 

Generally speaking, crew assignment accomplishes the “personalization” of the anonymous crew pairing 

solutions by linking several pairings with rest periods, training time, leave, etc., to form work schedules that 

cover the period of about one month and can be performed by a single crew member. Crew assignment takes 

into account the need to provide sufficient rest periods between flights and reflects the numerous restrictions 

 5



imposed by regulatory agencies, collective bargaining agreements and labor unions. Depending on the crew 

assignment strategy either lines-of-work or bidlines are used during the crew assignment process. 

Widely used by the airline industry in North America, bidline generation involves constructing anonymous 

cost-minimizing bidlines and then letting the individual crew members express their preferences through a 

bidding process. The eventual assignment of a specific schedule to a specific person is often based on 

individual priority rankings (e.g., seniority). 

Rostering is a commonly used assigment method in Europe and in some other countries (e.g., New Zealand). 

It constructs measure-made lines-of-work for each crew member and takes into account pre-assignments 

(e.g., training, observer flights) and crew-requests (e.g., days-off, annual leave, specific flights) when 

constructing individualized schedules for each crew member. Airline crew rostering’s primary goal is to 

provide a fair-and-even distribution of the workload among all crew members and to maximize the crew 

members' satisfaction with their individual duty schedules. 

Preferential bidding represents a compromise between the bidline and rostering approaches in that it 

generates personalized schedules that also take into account a set of bids that have been weighted to reflect 

the employees' preferences (cf. e.g., Gamache et al., 1998). 

The reason for these two different assignment “philosophies” lies in the differing nature of working contracts 

in various parts of the world. In North America, work schedules involving high workload result in high pay 

and vice versa. By contrast, flight personnel in Europe operate under work contracts that guarantee payment 

for a certain minimum amount of flying hours (so-called block hours), no matter if the crew member actually 

performs these hours or not. An efficient crew planning approach must therefore avoid producing schedules 

whose workload is beneath the guaranteed lower bound set by the crew member's salary. 

The rostering process itself, as well as all other described planning processes that rostering is based on, are 

anticipatory in nature; what-if-scenarios and variants can be tested, with some solutions being kept, while 

others are discarded. The point of time at which a roster is published is crucial insofar as an early publication 

might lead to many changes before the schedule actually starts, while a late publication is not convenient for 

the crew members. After the roster is published, duty swaps and minor changes might occur, as well as 

changes due to disruptions (e.g., maintenance problems, severe weather conditions or no shows). Crew 

recovery is a task performed by crew operations, which does not operate with several roster versions, but 

rather with one real time system. 

Some approaches confront the drawbacks of sequentially solved airline schedule planning (i.e., 

incompatibilities, false infeasibilities) by simultaneously generating solutions, e.g., for fleet assignment and 

crew pairing (Barnhart et al., 1998). 

After the overview over the planning activities, which determine the rostering process, we will in the 

following section describe key functions, which three types of users would expect to be able to perform with 

an intgrated rostering tool. 

 

 6



2 Requirements analysis 

The requirements for a rostering reference architecture are determined by the functionality a typical user 

would expect from such a system and the specific activities he/she would perform. We distinguish between 

three archetypical user categories: (1) the crew member, who not only receives the duty plan through the 

system, but also communicates with the system with regard to duty determinants, (2) the crew assigner, who 

is responsible for the roster generation process, and (3) the crew operator, who is responsible for correctly 

updating the roster once it has been published. 

Needless to say, the emphasis when implementing such a rostering tool in the airline sector is placed on 

reliability functions and recovering mechanisms, because very high upfront and follow-up costs may be 

associated with a shortage of personnel due to delays or no-shows of crew members. In addition, penalties 

and fines might be the incurred if work rules are ignored or work restrictions are violated. 

The majority of users belongs to the “crew member” category, i.e., flightdeck crew (pilot and co-pilot) and 

flight attendants. From their viewpoint, the core function of a rostering tool lies in providing reliable data 

about their duties. Besides receiving data on their current duty, these users expect to be able to comment on 

them (by means of questions, feedback, complaints) and to query their past duties as well. Crew members are 

interested in knowing who their crewmates are and with whom they will be working. Therefore, the system 

should provide crew members with a query function that lists the names of all crew mates on a flight-leg-

basis. Crew members should also be able to query the location of colleagues on a point-of-time basis, with 

the information provided conforming to the “actual” on-line version of the roster. Crew members should also 

be able to query data about transportation issues (e.g., transfer times from an airport to a hotel) and about 

accommodation (e.g., general hotel information, relevant contact details, earliest/latest check-in-time). 

An important functionality addresses crew members’ leave. Crew members expect to be able to declare their 

leave requests, change their requests and perform related activities, such as checking their current leave 

balance, leave status and entitlements. They also expect to receive an explanation if their leave requirement 

was turned down. Because crew members have personal preferences about duties (short hauls, long hauls, 

destinations, days-off, crew mates, etc.), a duty schedule that accurately reflects these preferences contributes 

substantially to a crew member's level of work satisfaction. For this reason, a rostering tool must provide 

crew members with the ability to declare his/her work preferences and to query, change and store them. 

Training courses are another important design factor for a crew members roster. To keep or gain certain 

qualification levels, crew members must attend training units and lectures (e.g., flight deck crew members 

need to pass certain qualification tests periodically and attend flight, simulator and ground training courses). 

The rostering tool should therefore include an alert function that reminds the individual crew member to 

choose from among the training courses being offered and book him/herself a course. If the crew member 

does not use this option before a predefined deadline passes, then the system should automatically enroll that 

person in any course that is obligatory for them. Information about supervisors and course times and 

locations should also be provided. Crew members want to be able to query their own training record and to 

query, book and cancel course assignments. If a crew member has booked a course, he/she should also be 

 7



able to check which of his/her colleagues will also be in the course; this information is analogous to the list 

of crewmates working together on a flight leg. 

The other two user categories consist of crew assigners and crew operators, both of which involve few 

people in comparison to the number of crew members. The specific number of crew assigners required at any 

one airline depends on the technology being used (which in turn determines the degree of automation), as 

well as on the number and type of personnel for which the crew assigner is responsible. At a medium-sized 

airline with traditional technology, a crew-assigner usually handles 100 to 300 flight attendants or 50 to 150 

persons for flightdeck. Traditional crew assignment activities are often split according to such factors as 

aircraft types and crew categories. With each crew assigner only bearing responsibility for the roster 

construction phase of a subproblem, this approach reduces the likelihood of creating a roster that is globally 

“good”. From the viewpoint of a crew assigner, a rostering system should generate a set of pairings and, to a 

certain extent, provide an explicit control over the pairings generated (e.g., define desirable pairings). As the 

pairing process depends highly on alternative what-if scenarios, the system should not only generate suitable 

pairings, but also store, alter, drop and administer them on a perpairing basis, as well as on the basis of an 

individual scenario or a subsection of a scenario. Furthermore, the crew assigner should be given a choice 

among several rostering approaches or solvers and be able to define the one that seems most appropriate to 

him. He/she expects support in generating lines-of-work, in which pairings are combined to form a legal and 

valid duty for a specific person that conforms to that crew member's preferences. It should be possible for the 

crew assigner to query work rules and regulations, to define hard and soft rules and to make annotations. 

Given that the rostering process resembles the pairing process in relying heavily on a what-if scenarios 

technique, the crew assigner expects the system to create and manage both lines-of-work and roster 

alternatives. A rostering tool should also provide a function to quickly and reliably publish the final roster 

and pass it on to all crew members. 

While the crew assigner works with a wide variety of roster versions and roster subsections, the crew 

operator only works with the one monolithic “real online version” of the roster. He distributes the released 

roster to all crew members and needs to take appropriate actions if a crew member has not confirmed that 

he/she has received his/her duties. In light of these requirements, the system should provide the crew 

operator with a list of those crew members who have not confirmed their duties by a certain deadline/due-

date. As crew members are likely to comment on their duties or ask questions about them, the crew operator 

must be able to read these comments, compose answer messages and alter, delete and store the 

communications. A powerful query function about crew locations represents another prerequisite for making 

good decisions about changes to an existing roster. 

Most of a crew operator's activities involve duty changes, which are increasingly time critical and have a 

decreasing set of solution alternatives the closer the start of a duty approaches. Less critical activities include 

duty swaps that crew members might propose right after roster dissemination in order to improve their 

schedules. In such cases, the crew operator checks conformity with work rules and regulations before 

performing the swap in the roster and notifying the relevant crew members about the performed swap. The 

 8



critical activities in operations deal with crew recovery and aim at solving those crew plan disruptions that 

are due to such factors as maintenance problems or severe weather conditions. These disruptions often 

provide the reasons for very urgent and short term duty reassignments (e.g., stand-by's need to be activated, 

substitutes with the appropriate qualification for pilots who did not check-in on time have to be called in, 

etc.). The crew operator should be able to check the work rules and regulations and recent changes to them in 

a very efficient manner, as this ensures that they will be able to quickly reach a decision on such issues as 

overruling a soft constraint. Annotation and report functions should support the documentation process. 

In order to provide a synoptic overview of the functionalities expected by the user categories “crew 

member”, “crew assigner” and “crew operator”, figure 1 applies the graphical design elements of the unified 

modeling language UML (cf., Booch et al., 1999).  

 

Crew Assigner

RosterBuilder

Crew Operator

notify crew members

read / manage
comments

RosterBuilder

Crew Member

receive / query /
comment duty

declare / change
leave requests

query current
leave status

query / book /
cancel course assignment

query crew
locations

query training
course offers

query T&A data

query team members

declare / query /
change work preferences

RosterBuilder

choose rostering
approach

create / manage
what-if pairings

generate set of
pairings

query / annotate
work R&R

create / manage
what-if rosters

publish roster

query / comment
duty

query / manage
stand bys

reassign duties in
real time

query work R&R

query / change duty

query crew
locations

 

Figure 1: UML Use Cases for Actors „Crew Member“, „Crew Assigner“, and „Crew Operator" 

 

3 Software Architecture 

There is an observable trend towards component-based systems technology both in the commercial software 

market and in academic research (Herzum et al., 1999). Major software vendors have recognized the need for 

and the potential of component-based systems in providing customer-tailored solutions at lower costs. 

Research in software engineering, driven mainly by academia, has focused on the underlying core concepts, 

 9



such as module interconnection languages, architecture description languages and architecture-driven system 

composition. 

On the basis of the requirements analysis presented in section 2, we conclude that the airline sector would 

benefit from this approach and therefore propose a component-based reference architecture. The objective of 

a reference architecture is to describe the major components of the system, as well as their interdependencies 

and interfaces. A reference architecture should also address core functions and additional, optional 

functionalities, as well as security requirements and quality criteria such as performance (cf. Strauss, 2001). 

 

3.1 Component and Deployment Diagram 

A UML component and deployment diagram is used to illustrate the proposed software architecture (Figure 

2). The component diagram describes the logical organization of the system. A component, represented by a 

rectangle with tabs, provides the physical building block of the system (a piece of code), and produces a 

group of operations by the means of interfaces, which are depicted as a line with a small circle. 

Dependencies between components are depicted as directed, dashed arrows. 

The deployment diagram extends the component diagram in that it also includes physical resources. Physical 

resources, depicted as cubicles, are hosting (or executing) the components. Associations, which are physical 

connections between the resources, are depicted as solid lines.  

 

«intranet»

«intranet»

«intranet»

«HTTP/WAP/SMS»

«intranet»

Application Server

«XML»

«XML»

«intranet»

«intranet»

«intranet»

«XML» «intranet»«intranet»

External DB Server

«database»
Accom odation

External DB Server

«database»
Transport

Internal DB Server

«database»
Work  R&R

Internal DB Server

«database»
Fleet Assignm ent

Internal DB Server

«database»
Flight Schedules

Internal DB Server

«database»
Crew

Application Server

«executable»
Crew  Leave

«executable»
Crew  Training

«executable»
Crew  Pre ferences

Application Server

«executable»
Rosterer

«executable»
Crew  Pairing

Application Server

«executable»
Crew  T&M

«executable»
Booking of Crew  T&A

«executable»
Accounting

Application Server

«executable»
Crew  Notification

«executable»
Crew  Operations

 

Figure 2: Component and Deployment Diagram of RosterBuilder 

 

 10



Rosterer and Crew Pairing (corresponding to the lowest level of the planning hierarchy as discussed in 

section 1) constitute the core components of the system. A small to medium-sized airline would typically 

host those two core components on a single application server, while larger airlines might consider hosting 

them on single servers for performance reasons. Both the rosterer and the crew pairing component would be 

accessed by the crew assigner and offer the functions illustrated in the use case involving the crew assigner 

in Figure 1. The other components, which have interfaces to internal and external databases support, are not 

directly accessible for the crew assigner, but offer services for the pairing and rostering processes. The Crew 

Preferences, Crew Leave and Crew Training components all interface with the Crew database, which 

contains the personnel data and demands a high level of security and privacy in its role as one the enterprise's 

core databases. As a consequence, the components accessing this database ought to be hosted on a separate 

server on which special security mechanisms are implemented. Both crew pairing and rostering are related to 

the planning phase, during which access to the Accounting system is needed in order to also include cost 

planning. Access to the services offered by the booking module (Booking of Crew T&A) enables the rosterer 

to make reservations for crew transport and accommodation. 

The operational business starts once the roster for a certain time period has been published and involves two 

core supporting components: Crew Operations and Crew Notification. The Crew Notification component is 

the interface to the crew members, who can either actively query information on assignments (pull service) 

or receive notification from the system via push services. All functions described in the UML use case 

related to the crew member are provided via this component. The server deploying the Crew Notification 

component must be accessible in a multi-modal way, including internet access (wired and wireless), 

notification and query by SMS or other mobile communication technologies. Crew Operations provides the 

services for managing a roster once it has been published. This includes all functions related to 

communications with the crew members (see the first three functions in the UML use case involving the 

crew operator, Figure 1) and all functions related to changes on duties (either on demand from crew 

members or in real-time, e.g. due to emergencies). 

As can be seen in the reference architecture, ten of the components are executables, i.e., they are (pieces of) 

code providing functions and interfaces to other components or end users. Four of those components 

(namely, crew pairing, rosterer, crew operations and crew notification) provide functionality to the end-users 

of RosterBuilder and are therefore called public executable components (providing interfaces to the public). 

The other six components are private2 in the sense that they only offer their services via interfaces accessible 

to other components within the system. 

The database components, hosted on database servers, store information needed by the executable 

components. Typically, information on accommodation and transport will reside on external databases (e.g., 

a tourism information system), while the other databases are most likely to be located within the airline's IT 

infrastructure. 

 11



 

3.2 Description of Public Executable Components 
 
3.2.1 Crew Pairing 

The service expected from the crew pairing component can be described in a simple sentence: taking flight 

schedules and fleet assignments as input to generate a set of pairings. However, the complexity of this 

service is significant with respect to qualitative and quantitative requirements. 

There are three major considerations to be observed in generating pairings: first of all, feasible solutions 

must be generated, i.e., the scheduled flights must be serviced with sufficient and qualified personnel 

according to fleet assignment. As finding all possible pairings for given flight schedules and fleet 

assignments is typically a complex problem, the pairing component must assist the crew assigner in this 

process. Therefore, the degree of automation offered in finding pairings represents a central quality criterion. 

Solutions range from manual approaches, in which tool support is restricted to storing and visualizing the 

generated pairings, to semi- or fully-automated generation of pairings. The latter include functions for re-

applying pairings for following time periods, fixing some pairings and re-planning of others, generating 

alternatives, automatically correcting overbooked pairings, performing downgrades, etc. As the generation of 

pairings is a computationally hard problem, performance is another critical criterion: the tool must provide 

feasible solutions in a reasonably short amount of time. Some current research efforts are addressing the 

possibility of parallelizing the pairing process as a means of increasing its speed, see for example the Parrot 

Project (Parrot, 1999). 

Secondly, the pairing procedure must consider work rules and regulations. A good tool support would 

control conformity to work rules and regulations, but would also allow deviations if they are necessary. The 

control function should not only send out alerts when violations of rules and regulations occur, but also 

provide warnings if some conditions are close to be violated (signaling function). 

Finally, crew pairings are selected mainly according to cost criteria. The crew pairing component must have 

an interface to an accounting component, as costs are the most crucial criterion in evaluating the quality of 

the generated pairings. The ideal crew pairing component would not only generate sets of feasible pairings, 

but would include optimization techniques, suggest what-if scenarios and make it possible to query generated 

pairings according to different attributes (e.g., date, flight number, sector, fleet, route, flight time or other 

operational figures) to support planning, as well as provide a history or annotation function for tracking 

changes in pairings. 

The output of the crew pairing process is the set of pairings, which constitutes the starting point for the 

rostering process. In addition, the pairing component offers an interface for reporting operating figures (e.g., 

costs and utilization), which are used by the accounting component. 

 

                                                                                                                                                                                                 
2 Please, note, that we are not using the term "private" in the strict sense as defined in UML, according to which a 
private function is only accessible within the component. We use the terms "private" and "public" to denote interfaces 
accessible from the outside or within the system. 

 12



3.2.2 Rosterer 

The rosterer component supports the crew assigner in generating lines-of-work and in matching the 

workforce demand and capacity, i.e., selecting for each crew member exactly one duty out of a large number 

of alternatives (lines-of-work) which were generated for this specific crew member. While costs were the 

major criterion in pairing, the rostering process aims at generating “fair” assignments of lines-of-work, 

considering preferences of crew members where possible. 

Similar to the pairing process, we can identify the minimum degree of support as assisting the crew assigner 

in finding at least a feasible roster, i.e., a way of covering all lines-of-work with qualified, available 

personnel. Restrictions to be considered are amongst the already mentioned fairness criterion, personal 

preferences of crew members (regarding preferred destinations, team members, schedules, etc.), work rules 

and regulations, crew leave (holidays, illness, temporary deficiency, etc.) and crew training. 

In order to find a feasible solution, the actual qualification of crew members available at the home base must 

be considered. A good rostering component will be able to consider crew members with more than one home 

base and might include suggestions for transfer of personnel to avoid shortages. The minimum support 

necessary is the identification and visualization of those lines-of-work that have not yet been (adequately) 

assigned, while the best support once again consists of a (semi-)automated optimization procedure. To 

support fairness, the ideal rostering component would retrieve crew preferences in an anonymized way in 

order to keep decisions from being based on any possible personal preferences that a crew assigner might 

have for specific crew members; ideally, the rostering component would consider also crew preferences in an 

automated rostering process. An interface to a booking module is a desirable feature, as it allows the crew 

assigner to make appropriate reservations (and to also consider crew preferences) for crew transport and 

accommodation. Crew trainings should not only be considered as a period in time during which personnel is 

not available for regular work duties, but the rostering component should also pro-actively schedule 

mandatory trainings and observe stipulations on the number of hours that crew members have to work on 

certain aircraft types in order to maintain their respective licenses. 

The rostering component must support different time scales for planning, ranging from a whole season to a 

couple of days and last-minute changes before publication. When the roster has been finalized, it should be 

automatically published to both all crew members and crew operations in order to ensure consistency. An 

electronic signature should be used to ensure authentification, integrity and validity of the published roster. 

The usability of the rostering component represents a major concern in addition to the issues of privacy and 

security. The crew assigner is not typically an IT expert and needs process-driven support in his work. A 

good rostering tool would guide the crew assigner through the necessary steps in the rostering process. In the 

future, we might find learning and adaptive tools on the market that are able to capture and understand the 

working behavior of the crew assigner and would therefore provide a better level of support. Existing 

rostering procedures (e.g., Butchers et al., 2001; Dawid et al., 2001; Day and Ryan, 1997; Desaulniers et al., 

1997; Gamache and Soumis, 1998; Gamache et al., 1999; Ryan, 1992;) could - after adaptation - be 

integrated into this module. Some approaches focus on skills (e.g., language skills) of the crew members to 

 13



raise the service level on board and the passengers content (König and Strauss, 2000a) or focus on 

qualifications – allowing short term downgrading of crew members widenes the spectrum of options for crew 

assigners and crew operators (König and Strauss, 2000b). Categorization schemes should be developed to 

quickly identify the abilities of the approach (in analogy to e.g., Krishnamoorthy and Ernst, 2000). 

Due to the complexity of functions involved in the rostering process, this component itself must be 

customizable (cf. e.g., Mason and Nielsen, 1999). 

 

3.2.3 Crew Operations 

Once a roster has been published, the rosterer component no longer has access to it; all subsequent 

modifications and changes are performed with support of the crew operations component. Two major 

support functions are distinguished: (1) support for changes according to explicit requests from crew 

members and (2) support for ad-hoc changes necessary due to unforeseen circumstances (e.g., delays, 

maintenance reasons). These two functions are separated because of their very different demands. When 

changes are to be made on the basis of crew requests, basically the same functions must be performed as in 

the planning phase when generating the roster: appropriate alternatives must be sought and evaluated under 

the aspect of fairness; all changes must be documented and traceable.  

In contrast, time is the critical resource in ad-hoc changes. Although the same type of functions are involved, 

the system must allow much greater flexibility, such as allowing violations of soft work rules and 

regulations. The main operative need is to find a solution as quickly as possible. 

The Crew Operations component also provides a security function in that it is able to validate the integrity of 

the published rosterer and of subsequent modified versions and can always provide the authorized up-to-date 

version of the roster. In addition, access rights are administered in this component. Crew members who want 

to retrieve information on their rosters will need to identify themselves and their identity is subsequently 

checked in the crew operations module by means of electronic signatures. 
 
3.2.4 Crew Notification 

The crew notification component is the interface to and for crew members and as such must be able to 

inform crew members in a timely and ubiquitous (any time any place) manner (cf. e.g., Kotsis et al., 2001). 

Given these demands, the crew notification module must provide multi-modal access consisting not only of 

internet access and access via mobile phones, but also the integration of such traditional media as fax or 

wired phones. We generally distinguish between so-called push services, which involve information being 

sent from the system to the crew member (with the trigger for sending the information ariseing within the 

system) and pull services, in which the crew members trigger the delivery of information by explicitly 

querying information. The past few years have seen the presentation of research prototypes for such 

reachability and information delivery architectures (cf. e.g., Appenzeller et al, 1996). In the future, we might 

find commercial offers for such services on the market, and this function could potentially be outsourced as a 

result. 

 14



We propose that only the crew operations component ought to interact with crew notification, i.e., that all 

correspondence to and from crew members should be routed via this component. This principle of 

modularization is very common in software engineering. It not only enhances flexibility, but also contributes 

to security, as all identification and authorization procedures can be performed in an efficient, centralized 

manner. The type of information crew members will have access to is governed by their role and function in 

the roster. For example, in order to ensure privacy, location information is available for crew members in the 

same team, but not for other crew members. The notification component is also the communication media 

for changing rosters among crew members, although we expect this function to become less important by 

considering preferences already in the rostering process. 

 

3.3 Description of Private Executable Components 
 
3.3.1 Crew Preferences 

The crew preference component administers all information related to crew personnel. This information 

includes crew availability (or unavailability due to leave or training), crew qualifications, home base(s) of 

crew members or crew preferences (regarding vacancies, buddy requests, destinations, number of spare days 

in between flights, etc.). Both the rosterer component in the planning phase and the crew operations 

component in the deployment phase access this information when assigning lines-of-work to crew members. 

The quality of service can be improved by considering individual skills of flight attendants during the 

rostering process; furthermore the quality of work life of an employee depends on his or her possibility to 

participate in the rostering process, i.e., determine to a certain extent his or her own work schedule, which in 

turn also effects his or her performance. 

The minimum expected support function provides information on preference requests to the crew assigner, 

i.e., highlighting lines-of-work where preferences have (not) been met or proposing “good” assignments, i.e., 

assignments in conformance with preferences. The preference component must keep track of the assignments 

where preferences have (not) been considered in order to ensure fairness, at least in the long-term. Managing 

crew preferences, especially in the planning and optimization phase, is a highly complex problem and cannot 

be represented in models in a straightforward way. Ongoing research work on finding formal representation 

of the preferences can be included in the framework. The ideal preference component would allow the crew 

assigner to formulate preferences as conditions to be considered in an automated rostering process. 

The preference component also manages the preferences submitted from the crew members. As already 

discussed, the access for crew members is established via the notifications module and routed through the 

crew operations component. A direct interface offered from crew preferences to crew notifications is not 

desirable, considering that the notification component could well be outsourced. It is better to use the 

security functions embedded in crew operations to ensure safe access to crew preferences. 

 

 15



3.3.2 Crew Leave 

The crew leave component administers all kinds of vacancies and offers an interface to query and modify the 

availability status of any crew member at any time. In the proposed reference architecture, this interface is 

not public to all other components, but rather is only accessible from the crew preference component in order 

to ensure security and privacy; any other component requiring information on availability must access this 

function via the crew preference module. In addition, crew members entering vacancy requests or requests 

for change of vacancies do not have direct access to the leave component, but must rather access their 

services via the notification component. Such a design is chosen for two reasons: on the one hand, the 

availability of a crew member is not only determined by its leave due to vacancies, but also on account of 

participation in training courses. Therefore, a centralized unit such as the crew preference module can 

aggregate the true availability status of crew members based on both crew leave and crew training. 

Combining all three components into a single component would also be an option, but at the costs of a loss in 

flexibility. If the components are separated, it is easier to perform modifications, updates or changes within 

each component without necessarily influencing the other components. The minimum support includes the 

ability to query the number of vacancy days available/spent, while a good optional component would also 

allow comments, specify if vacancy requests have not been considered and provide mechanisms for 

controlling the fair assignment of vacancies. 

The consistency and timeliness of the information represents a crucial requirement in this component. The 

leave status of all crew members must always be up-to-date. 

 

3.3.3 Crew Training 

The crew training component keeps track of the training history and status (level) of each crew member. It 

schedules mandatory training courses for crew members. For flight-deck crew, mandatory regulations on the 

number of hours on certain aircraft types to maintain a certain qualification level must also be considered. 

The crew training component provides this information to the rosterer component, which must plan 

accordingly.  

Optionally, this component can offer functions for administering internal training courses, which would 

include schedule timing, the assignment of course instructors and course participants (trainees) and the 

tracking of participation and successful completion. 

 

3.3.4 Booking of Crew Transportation and Accommodation 

The booking of crew transportation and accommodation (T&A) component offers an interface to external 

booking systems that is accessible by the rosterer and by the crew operations component. The component 

must know about up-to-date rates, check-in/check-out times, travel distances, etc., as all these parameters 

influence the costs incurred by generating pairings and lines-of-work.  

From a technical point of view, the key challenge in the component involves using the appropriate interface 

to the external booking systems (Bichler et al., 2001). While EDI/EDIFACT has not really proven itself as a 

 16



vital, worldwide standard, current initiatives to extend the use of XML (Extended Markup Language) to 

electronic commerce may offer a solution to this problem. By using XML, accommodation and 

transportation information can be exchanged in a standardized - and thus, machine-processable - manner. 

 

3.3.5 Accounting 

The accounting component offers cost-tracking services. It will have an interface to the other accounting 

programs within the airline, including salary payment systems 

It must provide specific functions, such as calculating profit on routes, calculating travel costs to/from home 

base, accounting for costs on a per home base basis, providing cost estimates for future alternative flight 

schedules and allowing comparisons of what-if scenarios on costs. 
 
3.3.6 Crew Tracking and Monitoring 

The crew tracking and monitoring (T&M) component allows the crew operator to locate and view the 

(graphical) position of crew members. From a technical point of view, techniques such as GPS or the mobile 

phone-based location services could be used, although privacy remains a critical consideration. In any case, 

an interface to the airport's crew check-in systems is needed to verify that the complete crew arrived on time. 

Location information is also needed in order to track – to provide an example - those flights that are over- or 

under-staffed, or to establish the current status of crew member's block hours. The crew operator’s attention 

must be drawn to such problems, and he should be able to request alternative suggestions from the system. 

Thus, he must also be allowed to ignore them if no other solution can be found. 

A subset of location information is also provided to crew members, who should be able to view and track the 

location of their team members if needed. In fact, crew members might be a valuable source of information 

for T&M information. For example, a pilot should be able to report immediately to crew operations, if his or 

her co-pilot does not show up in time for the preparatory meetings. 

 

3.4 Description of Database Components 
 
3.4.1 Internal Databases 

Crew. The crew database contains all information on crew personnel, including name, address, reachability, 

qualifications, etc. This information must be treated as personal and confidential. Therefore, only authorized 

entities must be allowed access to this database. As a single interface contributes to security, only the crew 

preference module accesses this database in the proposed architecture. 

 

Work rules and regulations. Both the work rules and regulations defined by external authorities (e.g., 

government) and the internal (i.e., airline-specific) rules and regulations are stored in this database3. This 

                                                           
3 Current research focuses on reducing the complexity of explicit rules and regulations by defining few restriction 
categories (cf. e.g., Unger, 2002). 

 17



information is accessed by the preference module, which the rosterer can use to make annotations to rules 

and regulations (e.g., identifying hard and soft rules).  

 

Flight Schedules and Fleet Assignment. The flight schedules are maintained in an airline-specific database 

that contains information on which flights have to be operated and when. The fleet assignment represents an 

additional airline-specific database and contains information on the assignment of aircraft types to specific 

flights. As information on schedules and assignments determines the number and qualifications of crew 

members needed, this database must be accessible to the crew pairing component, which annotates the 

generated pairings accordingly. Any subsequent allocation of individual crew members during planning 

(rosterer) or operations does not access these databases, but rather uses the annotations in the rosterer where 

all necessary information can be found. This approach decouples the access to databases and might increase 

the performance during rostering and operations. 

 

3.4.2 External Databases 

Information on available hotels, discount rates, check-in/out times, location, booking conditions, booking 

interface, options for transportation, including flights, train, bus, taxi etc., must be available in the planning 

phase and in operations. A direct, on-line interface to external hotel booking systems and transportation 

databases is a desirable feature. The most crucial issue is the definition of appropriate protocols for the 

exchange of information. We propose to use XML as a means of describing this information in a 

standardized way. This choice is motivated by observable trends in electronic commerce towards the 

deployment of XML for exchange of business information (c.f., Bichler et al., 1998). 

 

4 Conclusions 

Having recognized the crucial role of rostering in the airline business, the need for appropriate support tools 

becomes apparent. Crew assigners need fast and flexible tools and methods in the planning phase, crew 

operators need reliable real-time support and services for ad hoc changes in the operational phase, and crew 

members demand interactive involvement into the rostering process, the fulfilment of their personal 

preferences and timely and ubiquitous access to rostering information. This diversity of user requirements is 

our first argument in favor of a component-based software architecture, as opposed to a monolithic approach. 

By implementing a component-based software architecture, each component can be tailored to specific needs 

of the end users involved. 

The structure of the market provides another factor promoting the deployment of components. Given the 

comparatively small number of customers and their specific needs, it is neither technically nor economically 

feasible for a single software vendor to develop and market “the” rostering tool. A component-based 

approach gives sufficient flexibility for customization or for the integration of products from other sectors. 

By selling components and adaptation services instead of off-the-shelf software, software vendors will be 

 18



able to address a larger number of potential customers and to meet the demands of their customers more 

effectively. 

In this paper, we have offered a detailed presentation of the specific requirements placed on a rostering 

framework and have derived a generic software architecture for RosterBuilder on the basis of this process of 

determining requirements. In the proposed architecture, crew pairing, rosterer, crew operations and crew 

notifications are the core components accessed by the users of the system, which consist of the crew 

assigner, the crew operator and the crew member. Enhanced functionalities can be provided through the 

integration of additional components, such as booking or accounting components in the crew pairing process. 

This specific integration supports the crew assigner in performing what-if scenarios and in evaluating the 

costs of alternatives, which represents the most important selection criterion in crew pairing. An interface to 

a crew preference component in the crew rostering process allows crew members to participate in this 

process: crew members can state their preferences, receive feedback on why their preferences were or were 

not taken into consideration; comment on rosters or even use the system to swap duties (in an operations-

controlled way) once the roster has been published. These functions contribute to transparency of the crew 

rostering process and help to ensure its fairness, thus contributing directly to the crew members' level of 

satisfaction and indirectly improving work performance levels. 

We expect the reference architecture introduced in this paper to be of value for airlines, which can use the 

framework as a comparison schema on which to match their needs with the products on the market. A survey 

of rostering tools could also make use of this framework to provide a general classification of existing 

components and modules on the market. 

Future work will be twofold: one research direction will focus on a formal definition of interfaces among the 

components, which is an important prerequisite for tool builders interest in integrating their products into a 

general roster framework. A clear distinction should be made between those functions and data inputs that 

are mandatory and those that are optional. 

Another research direction will concentrate on advanced approaches to cooperation, such as ensuring that the 

module managing crew preferences provides mechanisms that support the crew members in their decision-

making in the “market of preferences” (e.g., auctions). Another advanced approach that contributes to crew 

satisfaction can be found in the concept of partially autonomous and self-organizing crews, which could be 

achieved by providing a team portal as a part of the notification module. 

 

References 
 
AEA - Association of European Airlines (2001). Yearbook 2001. 
 http://www.aea.be/Yearbook/download/ Yearbook01.pdf 
Appenzeller, G., Lai, K., Maniatis, P., Roussopoulos, M., Swierk, E., Zhao, X. and Baker, M. (1996). The 

Mobile People Architecture. Technical report, Stanford University, 1996.  
Barnhart, C. and Talluri, K.T. (1997) "Airline Operations Research." In A. McGarrity and C. Revelle (eds.), 

Design and Operation of Civil and Environmental Engineering Systems. New York: Wiley, p. 
435-469. 

 19



Barnhart, C., Lu, F. and Shenoi, R. (1998). "Integrated Airline Schedule Planning." In G. Yu (ed.): 
Operations Research in the Airline Industry. Norwell: Kluwer, p. 384-403. 

Barnhart, C., Johnson, E. L., Nemhauser, G. L. and Vance, P. H. (1999). "Crew Scheduling." In R. W. Hall 
(ed.), Handbook of Transportation Science. Norwell, Kluwer, p. 493-521. 

Bichler, M., Segev, A. and Zhao, J.L. (1998). "Component-Based E-Commerce: Assessment of Current 
Practices and Future Directions", ACM Sigmod Record: Special Section on Electronic 
Commerce 27, 7-14.  

Bichler, M., Hansen, H.R., Kotsis, G. and Neumann, G. (2001). "Collaboration on Electronic Markets, in 
Information Age Economy." In Buhl, Huther, and Reitwieser (eds.), Proceedings of the WI-
Tagung, Physica.  

Boeing Commercial Airplane Group (2001): 2001 Current Market Outlook. Meskill, T., Griffiths, J. (eds.), 
Boeing Commercial Airplane Group, Seattle, June 2001. 

Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The Unified Modeling Language User Guide, Addison-
Wesley. 

Butchers, E.R., Day, P.R., Goldie, A.P., Miller, S., Meyer, J.A., Ryan, D.M., Scott, A.C. and Wallace, C.A. 
(2001) “Optimized Crew Scheduling at Air New Zealand.” Interfaces 31, 30-56. 

Dawid, H., König, J. and Strauss, C. (2001). "An enhanced rostering model for airline crews." Computers 
and Operations Research 28, 671-688.  

Day, P. R. and Ryan, D. M. (1997). "Flight attendant rostering for short-haul airline operations." Operations 
Research 45, 649-661.  

Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M. M. and Soumis, F. (1997). 
"Crew pairing at Air France." European Journal of Operational Research 97, 245-259. 

Gamache, M. and Soumis, F. (1998). "A method for optimally solving the rostering problem". In G. Yu 
(ed.): Operations Research in the Airline Industry. Norwell: Kluwer, p. 124-157. 

Gamache, M., Soumis, F. and Villeneuve, D. (1998). "The Preferential Bidding System at Air Canada." 
Transportation Science 32, 246-255. 

Gamache, M., Soumis, F., Marquis, G. and Desrosiers, J. (1999). "A Column Generation Approach for 
Large-scale Aircrew Rostering Problems." Operations Research 47, 247-263. 

Herzum, P. and Sims, O. (1999). Business Component Factory: A Comprehensive Overview of Component-
Based Development for the Enterprise, John Wiley & Sons. 

Jeanniot, P.C. (2002). Annual Report. International Air Transportation Association for the 58th Annual 
General Meeting, Shanghai. 

 http://www1.iata.org/NR/ContentConnector/CS2000/SiteInterface/pdf/ar02.pdf 
Kotsis, G., Deiters, W. and Ferscha, A. (2001): "Pervasive Computing and Information Logistics. " In K. 

Bauknecht, W. Brauer, and T. Mück (eds.), Proceedings of the GI/OCG-Jahrestagung 2001, 
Vienna: OCG Schriftenreihe, Bd. 157.  

König, J. and Strauss, C. (2000a). "Supplements in Airline Cabin Service." In D.R. Fesenmaier, S. Klein and 
D. Buhalis, (eds.), Information and Communication Technologies in Tourism 2000. Wien: 
Springer, p. 365-374. 

König, J. and Strauss, C. (2000b). "Rostering-integrated Services and Crew Efficiency." Information 
Technology & Tourism 3, 27-39. 

Krishnamoorthy, M. and Ernst, A. (2000). "The Personnel Task Scheduling Problem." In X. Q. Yang, K. L. 
Teo and L. Caccetta (eds.), Optimization Methods and Application, Norwell: Kluwer. 

Mason, A.J. and Nielsen, D. (1999). PETRA: A Programmable Optimisation Engine and Toolbox for 
Personnel Rostering Applications. Presented at the 15th Triennial International Federation of 
Operational Research Societies Conference IFORS 99, August 16-20, 1999, Beijing, China; 
available as School of Engineering Technical Report 593, 1999. 

 20



Parrot Project (1997). Executive Summary, Esprit 24960, 1997, http://www.upb.de/~parrot/ 
Ryan, D. M. (1992). "The solution of massive generalized set partitioning problems in air crew rostering." 

Journal of the Operational Research Society 43, 459-467. 
Strauss, C. (2001). Quantitative Personaleinsatzplanung im Airline Business. Frankfurt/Main: Peter Lang 

Verlag. 
Unger, G. (2002). Modellierung von Arbeitszeitregeln im Airline Crew Rostering mit Constraint 

Programming, diploma thesis, University of Vienna (in progress, supervisor C. Strauss). 
Wren, A. (1996). Scheduling, Timetabling and Rostering – A Special Relationship? In G. Goos, J. 

Hartmanis, J. van Leeuven (eds.), Practice and Theory of Automated Timetabling. Berlin: 
Springer, p. 46-75.  

 

 21


	Introduction
	Rostering in Airline Applications
	Requirements analysis
	Software Architecture
	Component and Deployment Diagram
	Description of Public Executable Components
	Crew Pairing
	Rosterer
	Crew Operations
	Crew Notification

	Description of Private Executable Components
	Crew Preferences
	Crew Leave
	Crew Training
	Booking of Crew Transportation and Accommodation
	Accounting
	Crew Tracking and Monitoring

	Description of Database Components
	Internal Databases
	External Databases


	Conclusions

