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Summary

Parallel treebanks have received increasing attention in the past few years,

primarily due to their potential use in statistical machine translation. Cre-

ating parallel treebanks manually is a time-consuming and expensive task

and for this reason there is considerable interest in creating treebanks auto-

matically. This task can be solved using standard tools such as parsers and

aligners. However, because parallel treebanks are based on parallel cor-

pora, we are in a special situation where the same meaning is represented

in two different ways. This thesis is about how we can exploit this infor-

mation to create better parallel treebanks than we can by using standard

tools.

We will work with bilingual parallel treebanks with pairs of closely re-
lated languages. This differs from most work in the field where the lan-

guages differ more. This presents a different challenge since it is exactly

the differences in structure that are the basis of the success of methods that

exploit the bilingual information available.

We will present three data-driven approaches that exploit bilingual in-

formation.

We will describe and analyze bilingually informed parsing. Bilingually

informed parsing is monolingual parsing that is informed by the syntactic

structures of sentences parallel to those being parsed. We argue why this

should also work with the language pairs we use and analyze both the

data we use, and the errors the bilingually informed parsers make. This

approach consistently gives improvement over a baseline parser.

Building on bilingually informed parsing, we present an iterative ap-

proach that rests on the assumption that the better the structures that guide

the parsing, the better the output of the parser. Although we see several in-
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dications that this assumption is correct, we do not see consistent improve-

ments over the bilingually informed parsing with this approach.

Finally, we test a classic reranking approach where monolingual parses

are reranked, based on bilingual features. This approach leads to consistent

improvements over the baseline.

For all approaches we test how the size of the data that the models are

based on affects the effectiveness of the approach. For bilingually informed

parsing and the iterative approach, we see that the increase in quality is

bigger when smaller data sets are used.

We show that all the presented methods are efficient enough to process

large-scale data.



Resumé

I de seneste år har der været øget fokus på parallelle træbanker. Primært

på grund af deres potentielle anvendelse i statistisk maskinoversættelse.

Da det er meget tidskrævende og dyrt at producere parallelle træbanker

manuelt, har der været en øget interesse i at gøre dette automatisk. Denne

opgave kan løses med eksisterende værktøjer som parsere og alignere. Men

da parallelle træbanker er baserede på parallelle korpora, foreligger der en

særlig situation, hvor den samme betydning er repræsenteret på to forskel-

lige måder. Denne afhandling handler om, hvordan vi kan udnytte denne

information til at skabe bedre parallelle træbanker, end dem vi kan skabe

med standard værktøjer.

Vi arbejder med bilingvale parallelle træbanker, hvor de to sprog er

nært beslægtede. Det meste arbejde der tidligere er blevet lavet på området,

har været med sprog med større indbyrdes forskelle. Dette betyder at vi

står overfor en anden udfordring eftersom det ofte er netop forskellen på

sprogene, der bliver betragtet som grunden til, at metoder der anvender

bilingval information virker.

Vi præsenterer tre data-drevne metoder, der forsøger at udnytte den

bilingvale information.

Vi beskriver og analyserer bilingval informeret parsing. Dette er mono-

lingval parsing, som er informeret af de syntaktiske strukturer fra sæt-

ninger, der er parallelle med dem der parses. Vi argumenterer for, at biling-

val informeret parsing også virker med nært beslægtede sprog, og vi ana-

lyserer både de data vi bruger, og de fejl de bilingvalt informerede parsere

laver. Denne metode giver konsekvent bedre resultater end standard pars-

ing.

Vi bygger videre på denne metode og præsenterer en iterativ metode,
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som bygger på den antagelse, at jo bedre de strukturer, der informerer

parseren er, jo bedre vil resultatet af denne parser blive. På trods af at vi ob-

serverer flere indikationer på at antagelsen er korrekt, giver denne metode

ikke konsekvent bedre resultater end bilingval informeret parsing.

Den tredje og sidste metode vi afprøver er en reranking metode, hvor

analyser fra standard monolingvale parsere bliver rerankede på baggrund

af bilingval information. Denne metode giver konsekvent bedre resultater

end standard parsing.

For alle metoder afprøver vi, hvordan størrelsen af det data modellerne

er baserede på, påvirker resultatet af metoden. For bilingval informeret

parsing og den iterative metoder ser vi, at jo mindre data, der bliver brugt,

jo bedre virker metoderne.

Vi viser, at alle de præsenterede metoder er effektive nok til at håndtere

store mængder data.
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Chapter 1

Introduction

The task we address in this work is the creation of parallel treebanks. The

basis for a parallel treebank is a parallel corpus. A parallel corpus consists

of parallel texts in two (or more) languages. The notion of parallel is not

strictly defined. In most cases there will be one original text and the other

text will be a translation of this, but there are also parallel corpora where

the two texts represent the same meaning without either of them being a

direct translation of the other. We will also use the term bitext for a parallel

corpus.

In order to turn a parallel corpus or bitext into a parallel treebank, syn-

tactic trees are added to the sentences on both sides. Some parallel tree-

banks also include alignments between words and/or nodes in the syntac-

tic trees (Buch-Kromann, Wedekind, and Elming, 2007; Volk et al., 2010),

and some do not (Čmejrek et al., 2004). Here, we are interested in the first

kind, i.e. we also want the alignments.

Treebanks can be based on different syntactic theories which result in

different syntactic structures. In this thesis, we will focus only on depen-

dency structures. Figure 1.11 shows an example of the kind of structure we

are interested in, i.e. a bitext (Danish-English) with a dependency structure

for both sentences and an alignment between them. This kind of structure

is the main focus of this thesis. We see that the structure consists of three

independent structures, namely two syntactic trees and an alignment. The

1The sentence seems flawed as is says ”protein can be found in protein”, but this is how
it appears in the corpus.
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Protein forekommer hovedsageligt i protein , fisk og fjerkræ .
Protein is_found primarily in protein , fish and fowl .

subj <ROOT> mod mod nobj pnct conj coord conj pnct

Protein is found primarily in protein , fish and fowl .
subj <ROOT> vobj mod lobj nobj pnct conj coord conj pnct

Figure 1.1: Example of the kind of structure this thesis focuses on, i.e. a
structure consisting of two dependency analyses and an alignment. The
example is from the Copenhagen Dependency Treebank.

problem we are trying to solve is how to create these structures in the best

possible way. Although the structures in themselves are independent, it is

not necessarily a good idea to create them independently. In the next sec-

tions we will describe in a little more detail the different tasks involved in

creating this kind of structure.

The structure in figure 1.1 is created by a human annotator. Manual

treebank annotation is in no way a trivial task, but it is not one we will ad-

dress here. Instead, we are interested in creating the structures and thereby

the parallel treebank automatically. This process might, as we will discuss

later, require an initial treebank created by manual annotation.

1.1 Parsing

Parsing is the task of creating structures like the two syntactic trees in fig-

ure 1.1. Parsing can be done manually (by humans) or automatically (by

computers) - we are interested in the latter.

In parsing, there is often a distinction between grammar-based and

data-driven (Kübler, McDonald, and Nivre, 2009). In data-driven parsing

the approach is to try and learn how to parse new sentences from exist-

ing linguistic data. Grammar-driven approaches rely on formal grammars.

The two approaches are not mutually exclusive, but the approach taken in
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the work here falls entirely in the category data-driven parsing.

1.2 Alignment

Another task that is necessary to solve when creating parallel treebanks,

or doing bitext parsing and alignment, is producing the alignment. The

entities being aligned can be different things. In parallel corpora the sen-

tences and/or the words can be aligned. This is called sentence alignment

and word alignment. In parallel treebanks the nodes in trees can also be

aligned. This is called sub-tree alignment.

If dependency structures are used, a word alignment will actually be a

sub-tree alignment and vice versa, because the only nodes in the syntac-

tic trees are the words-nodes. This means that solving the word alignment

problem also solves the sub-tree alignment problem. We expect that the

trees contain some information that will be helpful to the alignment pro-

cess, and for this reason we will not restrict ourselves to word alignment.

1.3 Combining Parsing and Alignment

A lot of work has been done in alignment and dependency parsing sep-

arately, and these areas are well understood. However, when combining

them new issues arise. In principle the two dependency structures and

the alignment structure are independent of each other (unless the theory

behind the treebank has some criteria of well-formedness where the struc-

tures depend on each other), but a common assumption is that we can learn

to create better structures by letting them influence each other. This is the

basic assumption for all work presented here: we can achieve better results

by letting the structures depend on each other when creating them, than

we can by creating them independently. Apart from trying to show this

empirically by actually creating better structures, we will also address the

question of why this is the case.
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1.4 Data Driven

In all work presented here we use so-called data-driven methods. This

means that we try to create models for parsing and alignment on the ba-

sis of existing linguistic data. The fact that we will only use data-driven

methods implies that we will not at any point try to hand-craft any rules.

That we use data-driven methods implies that machine learning will

play an important role, as machine learning is a way of creating models on

the basis of existing data. Although we use machine learning methods that

are common in Natural Language Processing (NLP), we will describe these

in some detail because the choice of machine learning method has a huge

impact on the results one can achieve.

We do not hand-craft any rules but this does not mean that we will not

look at the linguistic data. The task of feature engineering is extremely

important in order to achieve good results, and it also leads to a better

understanding of the data. As mentioned above, we will try to analyze the

basic assumption that letting the structures affect each other increases the

quality of the structures. Hopefully, this analysis will give us some insight

into the data which will allow us to design better features.

1.4.1 Supervised

In machine learning one typically distinguishes between supervised and

unsupervised learning (and semi-supervised which is a combination of the

two).

In supervised learning the learning algorithm receives input examples

together with the correct output/label for these examples, and tries to learn

a model that can predict the correct output from the input. For instance, a

parser that is trained in a supervised fashion will be given a treebank, and

the learning algorithm will try to learn to map from the sentences to the

correct trees.

In unsupervised learning the learning algorithm is given only the in-

put. It will then try to find some structure in this without having the cor-

rect output to look at. This is commonly used in, for instance, word align-

ment, where the word alignment learning algorithm is given parallel texts

without word alignments. The learner then tries to optimize some given
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objective on these data without having any ’correct’ answers to look at.

Whereas unsupervised methods are widely used in word alignment

they are less common in parsing. The reason for this (apart from giving less

good results) is that the structures learned and outputted by these methods

do not necessarily match the linguistically motivated structures found in

treebanks. As our main goal is the extension of linguistically motivated

treebanks, unsupervised parsing is not well-suited. For this reason, we fo-

cus only on supervised methods2.

1.5 Why Create Parallel Treebanks?

The task we are addressing is the creation of parallel treebanks - more

specifically how to create these automatically. There are at least two rea-

sons why this is an interesting task. The first is that solving the task can

help in the creation of hand-annotated treebanks. The second is that par-

allel treebanks can be used to improve machine translation. There are also

other uses for parallel treebank, but we will not address these.

1.5.1 Hand-Aligned Parallel Treebanks

Parallel treebanks are valuable tools from a linguistic point of view as they

allow a contrastive view on linguistics. In contrastive linguistics, automat-

ically created treebanks may not be useful because they will contain errors

that may make the linguistic conclusions drawn from the treebanks invalid.

However, automatically created treebanks can help in the creation of man-

ually annotated treebanks which are better suited for linguistic investiga-

tions. By using an automatically created treebank as the basis for manual

annotation, a lot of time (and money) can be saved since a lot of the more

trivial annotation has already been done. This of course requires a certain

level of quality of the automatically created treebank in order to avoid that

the annotators will end up spending more time correcting errors from this

than they would have spent annotating the text from scratch.

This use for automatically created treebanks is the main focus of this

thesis.
2As described later we use output from unsupervised word aligners to improve the out-

put of our supervised aligner, but we do not directly use unsupervised methods.
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1.5.2 Machine Translation

Standard phrase-based statistical machine translation (SMT) systems do

not directly include any linguistic information. This makes it difficult for

these systems to produce the correct translation in some cases. In recent

years, there has been a lot of interest in statistical machine translation mod-

els that include some kind of linguistic information. There are several dif-

ferent approaches to how parallel treebanks can be used in this context.

Some existing and proposed systems rely directly on parallel treebanks

(Hearne and Way, 2006; Buch-Kromann, 2007). Another possibility is that

the joint modeling sometimes used in the creation of parallel treebanks can

lead to at least one of the three structures becoming better and then this

can be used to achieve better translation quality. For instance, Burkett and

Klein (2008) get better alignments by doing joint modeling, compared to

individual modeling, and these improved alignments lead to better trans-

lations.

SMT systems that use parallel treebanks will often require that these

are large, and the quality of the translations from the system will gener-

ally depend on the quality and size of the treebanks being used. Because

such large amounts of data are required for statistical MT systems, it is not

feasible to annotate these treebanks by hand, and therefore automatic an-

notation is used. This is probably the main motivation for most work in the

creation of parallel treebanks.

We will focus less on the use of automatically created treebanks in SMT.

With respect to SMT, our focus will mainly be that the methods presented

are efficient enough to process large amounts of text.

1.5.3 Evaluation

It is important to consider that the evaluation criteria might be different

for the two different uses for parallel treebanks we described above, i.e.

manually annotated treebanks and for use in machine translation. In the

first, the best evaluation criteria would be some measurement of how much

time annotators will use on completing the annotation. This will seldom be

a realistic way of testing a system. More realistically, one could use some

held-out hand-annotated data and measure for instance edit distance, or
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even simpler, count the number of errors in the treebank.

For machine translation the goal is good translations, and the treebanks

should be evaluated with respect to this. This may not necessarily corre-

spond with the standard evaluation metrics for parsing and alignment.

We will later describe in more detail how we evaluate the treebanks.

1.6 Thesis Outline

The thesis is structured as follows:

Chapter 2 describes the background of the work we do. This includes

machine learning, more specifically linear classification, dependency

parsing and alignment. We also discuss work in different areas that

we believe is related to our work.

Chapter 3 introduces the data we use, how to evaluate our approaches,

and the basic tools we use in the experiments.

Chapter 4 introduces bilingually informed parsing. We argue why this

approach should work and analyze the data. The errors of this ap-

proach are analyzed and new features are introduced as a result of

the analysis.

Chapter 5 presents two approaches that model the different structures in

the treebank jointly. We introduce an iterative approach that is based

on the approach from the previous chapter and a reranking approach.

Chapter 6 describes further experiments. We evaluate the approaches

from chapters 4 and 5 on another language pair, and discuss how

the approaches can be used in SMT.

Chapter 7 presents results on evaluation data, discussion of the approaches,

and future directions of the work on creating parallel treebanks.
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Chapter 2

Background

2.1 Machine Learning

In this section we will give an overview of the machine learning methods

used in the different experiments described in this thesis.

The focus will be on discriminative learning. The only place non-dis-

criminative learning, i.e. generative, is used, is in the experiments where

GIZA++ is used, and as this is used as an off-the-shelf tool, we will not

discuss this.

2.1.1 Linear Classification

All of the methods used here are instances of linear classification. Linear

classification is often used in NLP because the Zipfian distribution found

in linguistic data makes the number of features needed to get good results

very high. This makes it necessary to use methods that are fast to learn

and fast to apply, and here linear classification fits in nicely. Examples of

non-linear methods are decision trees, nearest neighbor algorithms, artifi-

cial neural networks (with at least one hidden layer).

Notation

To describe linear classification we first need to introduce some notation1 .

1The notation and description used here is heavily inspired by slides by Ryan McDonald
(2009)
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We will use x ∈ X to denote the input to the classifier and y ∈ Y to

denote the output. The input could for instance be a document with some

words w1 . . . wn such that x = w1 . . . wn. The output could be some label

describing the type of document or some structured output such as a tree

or a sequence.

We will assume that the input and possible output is always mapped

using an existing mapping into a (high-dimensional) feature vector:

f(x,y) : X × Y → R
m

In binary classification we can map from the input only into the feature

space:

f(x,y) : X → R
m

We often use multi-class classification and one way of handling this is to

include the label into the feature vector using so-called block notation.

If for instance we have two features f1 and f2, and three labels A,B,C

and the following training data:

f1 f2 label

x1 0 1 A

x2 1 1 B

x3 1 0 C

This will lead to the following three feature vectors (the first row shows the

combination leading to the feature value):

A:f1 A:f2 B:f1 B:f2 C:f1 C:f2
x1 0 1 0 0 0 0

x2 0 0 1 1 0 0

x3 0 0 0 0 1 0

Classification

We can now turn to the actual classification, using linear classifiers.

The score of a classification is given by a linear combination of feature

values and their weights. If we let w ∈ R
m be a given weight vector, then
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for multi-class classification where Y = {0, 1 . . . N} the output of a linear

classifier is found as follows:

y = argmax
y

·f(x,y)

In binary linear classification the weight vector represents (is the norm of) a

x
x

x

x

x

x

x

x

Figure 2.1: Example of separating hyperplane (line) that discriminates
between the two classes.

hyperplane that discriminates between the two classes. Data points that are

located on one side of the plane belong to one class, data points on the other

side belong to another class. This is also called a separating hyperplane.

Figure 2.1 shows an example of a separating hyperplane (which in two

dimensions is a line).

Learning

We will now turn to how the weights in the weight vector w can be learned.

As we are considering supervised methods only, we assume training

instances:

T = {(xt,yt)}|T |
t=1

We also need a feature representation f that maps the input into feature

vectors.
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The task of the learning algorithm is then to output the optimal weight

vector. How optimal is defined depends on, which learning algorithm is

used. Here we consider algorithms that minimize error on the training

data, however algorithms that instead maximize the likelihood of the data

are also commonly used (e.g. Logistic regression, Naive Bayes).

2.1.2 Learning Algorithms

In this section we will describe a number of learning algorithms. All of

them are algorithms used in the following chapters or algorithms that are

considered important in order to understand the ones used.

Perceptron

The perceptron algorithm is probably the simplest and fastest linear classi-

fication learning algorithm. The perceptron algorithm tries to find a weight

vector that minimizes error on the training data. If the data is linearly sep-

arable the perceptron guarantees convergence to a separating hyperplane.

The algorithm is an online algorithm. This means that it treats one input

example at a time. Online algorithms have the advantage that it is not

necessary to keep all of the input data in memory at once. Typically, online

algorithms are trained by iterating over the training data more than once,

which makes the training time trivially linear if a predefined number of

iterations is used.

Algorithm 1 shows the perceptron learning algorithm. For each training

example it updates the weight vector, if the example is classified wrongly.

The change to the weight vector is the difference between the feature vector

representing the correct label and the feature vector representing the incor-

rect output. In this way, weights for features present in the correct example,

but not in the incorrect, will be increased, and weights for features present

in the incorrect example, but not in the correct, will be decreased.
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Algorithm 1: Perceptron learning

Data: N ,T = {(xt,yt)}|T |
t=1

Result: w(i)

w(0) ← 0; i ← 0;

for n ← 0 to N do

for t ← t to T do

y′ ← argmaxy′ w
(i) · f(xt,y

′);
if y′ �= yt then

w(i+1) ← w(i) + f(xt,yt)− f(xt,y
′);

i ← i+ 1

end

end

end

Averaged Perceptron

The perceptron algorithm has a big risk of overfitting - especially to the

last examples in the training data because the last updates are based on

these. The voted perceptron is a variant of the perceptron that addresses

this. It works by keeping a copy of the weight vector after each considered

training example. When applied, all these vectors ’vote’ on the correct clas-

sification of the input example. This method reduces the risk of overfitting

and has certain margin guarantees (Freund and Schapire, 1999). The prob-

lem with the voted perceptron is that it requires that all the weights vectors

are stored.

An approximation to the voted perceptron is the averaged perceptron

(Collins, 2002). Here the final weight vector is found by averaging the

weight vectors obtained after each considered training example. In this

way all the weight vectors will have an influence on the final weight vector

and the risk of overfitting is reduced.

Large Margin Classification

Perceptron is a very simple and efficient algorithm but there are learning al-

gorithms that both in theory and practice provide better results. The prob-
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lem with perceptron learning is, that although it is guaranteed to find a

separating hyperplane (if it exists), there is no guarantee that it will find

the best or even a good separating hyperplane.

Figure 2.2 shows two different linear separations of the same data. In-

tuitively, the line at the right is a better separator. The reason for this is that

the distance between the data points and the separating line is larger than

in the left case. The distance between the data points and the separating hy-

perplane is called the margin and large margin classifiers are classifiers that

try to maximize this. Both in theory and practice large margins classifiers

provide better results than the perceptron.

x
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Figure 2.2: Two different separating lines for the same data set. The line
on the right has a larger margin than the one on the left.

The most commonly used large margin classifiers are Support Vector

Machines (Cortes and Vapnik, 1995). A Support Vector Machine is a batch

learning algorithm that finds a separating hyperplane with the maximum

possible margin.

As mentioned above, online algorithms are often faster2 and require less

memory than batch algorithms. This makes them especially interesting in

NLP where large data sets with a huge amount of features are often used.

Therefore we will now look at an online large margin algorithm.

2Linear SVMs can be trained in linear time (Joachims, 2006), so in theory we cannot have
algorithms faster than this.
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MIRA/PA

Crammer and Singer (2003) present a learning algorithm for online large

margin multi-class classification called MIRA (Margin Infused Relaxed Al-

gorithm). In the binary case this algorithm is the same as the simplest ver-

sion of the PA (Passive-Aggressive) learning algorithm (Crammer et al.,

2006). The difference between the simple PA algorithm and the more com-

plicated PA-I and PA-II is the ability to deal with non-separability. Because

we focus on the algorithm designed for the separable case we will use the

term MIRA even though we initially focus on binary classification.

MIRA is a large margin algorithm because it tries to maintain a margin

of a least 1
2 . Actually, the algorithm enforces this, so that after each update,

if the example was classified incorrectly, there is a margin of at least 1
2 . This

is what makes the algorithm aggressive - no matter how much the weight

vector needs to be changed to achieve this margin, it is done. If the example

was classified correctly and the margin is 1
2 or more no update is made - it

is passive. Simply changing the weight vector so that there is a margin of
1
2 would result in a weight vector that changes a lot after each update, and

would guarantee only good performance on the latest input. Therefore the

algorithm changes the margin as little as possible to achieve a margin of 1
2 .

The quadratic optimization problem in the algorithm can be solved using

standard methods.

Algorithm 2 shows the MIRA learning algorithm. We define Y t = Y \
{yt}, i.e. the set of incorrect predictions. In the binary case the size of this

set is always 1. L(y,y′) is a loss-function that defines the penalty for an

incorrect prediction. In classification a 0/1 loss is often used - i.e. there is

no penalty if the label is correct and the penalty is 1 if it is incorrect. We see

that the overall structure is the same as the perceptron algorithm. The only

difference is the update. The constraint requires that the distance between

the two data points when projected onto the weight vector should be more

than the loss. If a 0/1-loss is used, this means that the distance should be at

least 1 if the example is classified incorrectly. This is equivalent to a margin

of 1
2 .
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Algorithm 2: MIRA learning

Data: N ,T = {(xt,yt)}|T |
t=1

Result: w(i)

w(0) ← 0; i ← 0;

for n ← 0 to N do

for t ← t to T do
w(i+1) ← argminw

1
2 ||w(i+1) −w(i)||2

s.t. w · f(xt,yt)−w · f(xt,y
′) > L(y,y′) ∀y′ ∈ Y t;

i ← i+ 1

end

end

Confidence-Weighted Classification

Dredze, Crammer, and Pereira (2008) introduce confidence-weighted (CW)

linear classifiers, which are online classifiers that maintain a confidence pa-

rameter for each weight and use this to control how to change the weights

in each update. A problem with online algorithms is that because they

have no memory of previously seen examples, they do not know if a given

weight has been updated many times or few times. If a weight has been

updated many times, the current estimation of the weight is probably rel-

atively good and therefore should not be changed too much. On the other

hand if it has never been updated before, the estimation is probably very

poor. CW classification deals with this by having a confidence-parameter

for each weight, modeled by a Gaussian distribution, and this parameter is

used to make more aggressive updates on weights with lower confidence

(Dredze, Crammer, and Pereira, 2008). The classifiers also use Passive-

Aggressive updates (Crammer et al., 2006) to try to maximize the margin

between positive and negative training instances.

CW classifiers are online algorithms and are therefore fast to train, and

it is not necessary to keep all training examples in memory. Despite this

they perform as well or better than SVMs (Dredze, Crammer, and Pereira,

2008). Crammer, Dredze, and Kulesza (2009) extend the approach to multi-

class classification and show that also in this setting the classifiers often
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outperform SVMs. They show that updating only the weights of the best

of the wrongly classified classes yields the best results. We also use this

approach, called top-1, here.

Crammer, Dredze, and Pereira (2008) present different update-rules for

CW classification and show that the ones based on standard deviation rather

than variance yield the best results. Our experiments have confirmed this,

so in all experiments the update-rule from equation 10 (Crammer, Dredze,

and Pereira, 2008) is used.

2.1.3 Structured Prediction

Above we looked at (binary) classification. However, for both syntactic

parsing and alignment, the output from a system is a structured variable.

Given the input, one sentence in parsing and two sentences in alignment,

we want to predict either a syntactic structure or an alignment that contains

some internal structure. In both cases there will only be a finite number

of structures possible. This means that this could in principle be treated

as multi-class classification, but in practice the number of possible output

makes this impossible.

We will now look at two different ways of dealing with structured pre-

diction. Both have been used in both parsing and alignment.

Factorization

In this section we will look at how it is possible to use some of the classifi-

cation methods described above for structured prediction. We will assume

that a structured hypothesis can be represented by a feature vector like in

standard classification.

If we look at the perceptron algorithm, Algorithm 1, the following line

is the one that is problematic with respect to structured prediction:

y′ ← argmax
y′

w(i) · f(xt,y
′)

Given the feature representation we have chosen, and the current weight

vector, we need to find the best scoring hypothesis. In standard classifica-

tion we can simply enumerate the possible hypotheses, calculate the scores
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and pick the best one. In structured classification this is not feasible. In-

stead we need to pick a feature representation that makes it possible to

solve the argmax without having to enumerate all the solutions. This typi-

cally requires some kind of factorization, meaning that the features must be

defined in a way that makes the score of some sub-structure independent

of the rest of the structure. In parsing and alignment we often represent the

structure as a graph and use edge-factored models where the score of one

edge in the graph is independent of the rest of the graph. In both parsing

and alignment algorithms exist that can solve the argmax problem when

appropriate factorization is used, and we will describe these in more detail

later. The conclusion with respect to the perceptron is, that if we can find

the best scoring hypothesis, we can also use the perceptron algorithm for

structured prediction.

We will now look at the MIRA algorithm. In the presentation above we

focused on binary classification. However we can use the same formulation

for multi-class and structured classification. The challenging part of the

algorithm is the following line.:

w(i+1) ← argmin
w

1

2
||w(i+1) −w(i)||2

s.t. w · f(xt,yt)−w · f(xt,y
′) > L(y,y′) ∀y′ ∈ Y t

Again, we cannot enumerate the possible hypotheses.

There are two possible solutions to the problem. The first is to use fac-

torization to split the constraint into a number of constraints - this is called

factored MIRA. If we for instance do this for each edge in dependency pars-

ing, there will be one constraint per possible edge, i.e. n2 constraints. Using

this makes the optimization problem feasible.

Another more widely used approach is to reduce the problem to multi-

class classification by looking only at the k-best scoring hypotheses - this

is called k-best MIRA. This requires an algorithm that can find the k-best

solutions. Often k = 1 is used and then the requirement is the same as

we saw for the perceptron algorithm - an algorithm (and factorization) that

solves the argmax problem.
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Structured Prediction as Classification

Instead of trying to predict the entire structure in one step, we can split the

prediction task into a number of smaller tasks, which are less complicated.

For instance if we look at dependency parsing there are a number of pos-

sible relations. We can iterate through these and train, and later apply, a

classifier that outputs whether or not there should be a relation between

two tokens. This reduces the structured prediction task involved in depen-

dency parsing to binary classification, which is easier to deal with than true

structured prediction, where all of the structure is predicted in one step.

One of the advantages of this approach is that the problem of factor-

ization is no longer present. At any stage in the classification process we

can use whatever information is available. The disadvantage is that be-

cause every decision is basically local there is no guarantee that the optimal

structure, given the model, is found. This problem can be reduced by using

beam-search strategies, but when rich feature models are used the problem

will always persist.

This approach is often used without too much consideration of the the-

oretical implications of doing structured prediction this way, but there is

work investigating these. For instance Daume (2006) presents SEARN which

is a more systematic approach for reducing structured prediction to classi-

fication.

This approach to structured prediction has been used in both parsing

and alignment, and we will return to this later to describe exactly how.

The tools we use in this thesis primarily use graph-based methods so

we will not describe the classification approach in further detail.

2.1.4 Reranking

Reranking is an approach often used in NLP and many different methods

for doing this have been suggested. We will briefly discuss one of these

methods for reranking, a method based on linear classification.

We follow Joachims (2002) in the following description of the (re)ranking

task.

Given a list of input examples x1 . . . xn the task of ranking consists of

finding an ordering r of these. r is a binary relation over X × X , where
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X = x1, x2, . . . xn so that if xi is ranked higher than xj then (xi, xj) ∈ r. We

assume a strict ordering so either (xi, xj) ∈ r or (xj , xi) ∈ r.

In reranking x1, x2, . . . xn will be different solutions to the same prob-

lem, for instance a list of possible parses for a given input, and the task will

be to rank these possible parses.

If r∗ is the correct ordering, the learning task consist in finding an or-

dering rf that is as similar as possible to r∗. The similarity measure used

by Joachims (2002) is Kendall’s τ , which can be defined as:

τ(ra, rb) =
P −Q

P +Q
= 1− 2Q(

m
2

)

where P is the number of concordant pairs, and Q is disconcordant pairs.

If (xi, xj) ∈ ra and (xi, xj) /∈ rb then the pair is disconcordant.

This means that given a training set S with m training examples con-

taining an input list x and the target ranking r∗:

(x1, r
∗
1), (x2, r

∗
2), . . . (xm, r∗m)

the task of the learner is to find a ranking function f that maximizes the

empirical τ

τs(f) =
1

m

m∑

i=1

τ(rf(xi), r
∗
i )

on the training set.

Ranking can be solved using linear classifiers. Given a mapping φ from

an input example to a feature vector, the following are the class of linear

ranking functions:

(xi, xj) ∈ fw(x) ⇔ wφ(xi) > wφ(xj)

Given the description above, Joachims (2002) formulates an optimization

problem that makes is possible to solve the ranking problem as a SVM-

optimization problem.

Joachims (2006) presents a more efficient formulation of the problem.

2.2 Dependency Parsing

Natural language parsing is the task of automatically producing syntactic

analyses for natural language sentences. Here we focus on dependency
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parsing, which means that we will be producing dependency grammar

analyses. We will not go into the subtleties of different kinds of dependency

grammars, which are well described several places (Nivre, 2006; Kübler,

McDonald, and Nivre, 2009). In the following section we will formally de-

fine the dependency analyses that we will work with.

2.2.1 Formal Definition

Here we will formally define dependency graphs and dependency pars-

ing. This will also allow us to define exactly the structures we consider in

this work. The description and definition of the problem is adapted from

(Kübler, McDonald, and Nivre, 2009).

Dependency Trees

First we define a sentence S.

Definition 1. S = w0w1 . . . wn

We assume that the tokenization is done before the parsing step, and

we will not discuss tokenization. w0 is an artificial root-token inserted in

the beginning of every sentence.

Definition 2. Let R = {r1, . . . , rn} be a set of possible dependency relation

types that can hold between any two words in a sentence. A relation type r ∈ R

is additionally called an arc label.

Now we can define dependency graphs

Definition 3. A dependency graph G = (V,A) is a labeled directed graph in
the standard graph-theoretic sense and consists of nodes, V , and arcs, A, such that
for sentence S = w0w1 . . . wn and label set R the following holds:

1. V ⊆ {w0, w1, . . . , wn}

2. A ⊆ V ×R× V

3. if (wi, r, wj) ∈ A then (wi, r
′, wj) /∈ A for all r′ �= r
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This definition allows cycles in the analysis and that a token can have

more than one head (a vertex having more than one incoming edge). Cy-

cles and more than one head for a token are allowed in some dependency

formalisms. For instance figure 2.3 shows an analysis from the Copen-

hagen Danish-English Dependency Treebank (Buch-Kromann, Wedekind,

and Elming, 2007). Here the token ”you” has more than one head. Although

<ROOT> If you do not watch out ...
<ROOT> subj vobj neg vobj part

[subj]

Figure 2.3: Analysis from CDT that uses secondary dependencies, which
can introduce cycles into the structure.

parsing methods that can construct parses like this exists (McDonald and

Pereira, 2006; Sagae and Tsujii, 2008) we will limit our focus to dependency

trees.

Definition 4. A well-formed dependency graph G = (V,A) for an input sen-
tence S and dependency relation set R is any dependency graph that is a directed

tree originating out of node w0 and has the spanning node set V = Vs. We call
such dependency graphs dependency trees.

Kübler, McDonald, and Nivre (2009) show that a dependency tree satis-

fies both the single-head property, excluding the analysis in example 2.3 from

the set of well-formed dependency graphs and also the acyclicity property.

Another property of dependency graphs is whether or not they are projec-

tive. Again we need some definitions.

Definition 5. An arc (wi, r, wj) ∈ A in a dependency tree G = (V,A) is projec-

tive if and only if wi →∗ wk for all i < k < j when i < j, or j < k < i when
j < i.

where wi →∗ wk indicates the reflexive transitive closure of the depen-

dency relation.

Definition 6. A dependency tree is a projective dependency tree if it is a depen-
dency tree and all (wi, r, wj) ∈ A are projective.
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Definition 7. A dependency tree is non-projective if it is a dependency tree and it
is not projective.

Figure 2.4 shows an example of a non-projective tree.

<ROOT> What did you do before you began working for a contract ?
dobj <ROOT> subj vobj time subj vobj dobj pobj nobj nobj pnct

Figure 2.4: Non-projective structure from CDT.

Dependency Parsing

Dependency parsing is often divided into two classes, called data-driven
parsing and grammar-based parsing. Kübler, McDonald, and Nivre (2009)

describe data-driven approaches as being approaches that make essential

use of machine learning from linguistic data to parse new sentences. Gram-

mar-based approaches on the other hand rely on formal grammars. They

also note that the two approaches are not mutually exclusive. A parser

can be based on a formal grammar and use machine learning. In the work

presented here we use only purely data-driven methods. Furthermore we

focus solely on supervised methods. This means that we always have some

annotated data available to learn from. We will only learn from this data,

i.e. we will not use semi-supervised methods.

Now we turn to a formal definition of dependency parsing. Again we

follow Kübler, McDonald, and Nivre (2009).

Definition 8. A dependency parsing model consists of a set of constraints Γ

that define the space of permissible dependency structures for a given sentence,
a set of parameters θ, and a fixed parsing algorithm h. A model is denoted by
M = (Γ, θ, h).

In data-driven parsing there are two phases. A learning phase where the

parameters are learned from annotated data. What exactly these parame-

ters are depends on the learning method and parsing method used. The

other phase is the parsing phase where the learned model is applied to new
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sentences. Here the objective is to find the most likely dependency tree,

given the constraints and the parameters.

2.2.2 Graph-Based

We have seen that a dependency tree is a directed tree that spans all the to-

kens of a sentence. This implies that spanning tree algorithms from graph

theory research can be used as parsing algorithms. A lot of work has been

done on this type of parsing. Here we will focus primarily on the work pre-

sented in (McDonald, Crammer, and Pereira, 2005; McDonald et al., 2005;

McDonald and Pereira, 2006; McDonald, Lerman, and Pereira, 2006). We

call the parser presented in these the MSTParser3. In graph-based parsing

scores over possibly trees are defined, and the job of the parsing algorithm

is to find the tree with the best score, given the model. These scores can

be defined in different ways, and here we will primarily discuss so-called

arc-factored models.

Arc-Factored

McDonald et al. (2005) define the score of a dependency tree as the sum

of the scores of the individual arcs in the tree. In graph-theoretic terms the

arcs would be called edges. Furthermore the score is defined as the dot-

product between a high-dimensional feature representation of the edge and

a weight vector. This means that the score s of an arc (wi, r, wj) is given by

s(wi, r, wj) = w · f(wi, r, wj)

if we do unlabeled parsing the r is just left out of this score. The impor-

tant thing is that the feature function is arc-factored. The means that it is

defined so that the score of one edge is not dependent on the the rest of the

structure.

The score of a dependency tree G = (V,A) for a sentence S is:

s(G,S) =
∑

(wi,r,wj)∈A
s(wi, r, wj) =

∑

(wi,r,wj)∈A
w · f(wi, r, wj)

3There are differences in the parsers from the different papers, but for now we will ignore
these and treat them as one parser.
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Parsing

Above we described parsing with graph-based methods as the task of find-

ing the tree with the highest score given the model. In the setting described

above, the model is given by the weight vector. So, given the weight vector,

we need to find the highest scoring tree. As we have seen, a well-formed

dependency graph is a spanning tree, and therefore an algorithm that finds

the spanning tree that has the highest score solves the parsing problem.

This problem can be solved using the Chu-Liu-Edmonds algorithm (Mc-

Donald et al., 2005; Chu and Liu, 1965; Edmonds, 1967; Georgiadis, 2003).

We will not describe this algorithm, but just note that it has the nice prop-

erty that for dense graphs an implementation with run-time O(n2) exists

(Tarjan, 1977). The Chi-Liu-Edmonds algorithm will output the highest

scoring tree, which means that there are no restrictions on this tree. There-

fore this algorithm is not optimal if only projective trees are allowed. In this

case the Eisner-algorithm can be used instead (Eisner, 1996). The Eisner-

algorithm outputs the highest scoring projective spanning tree and has a

run-time of O(n3).

Learning

The MSTParser uses MIRA for learning. We have described MIRA for

structured prediction in sections 2.1.2 and 2.1.3 so here we will focus on

how it is integrated with the parser.

During training, one training example is parsed as described above.

The output of the parsing algorithm is then compared to the gold-standard

training example, and the weight vector is updated (unless the parse is cor-

rect). Then the next example is parsed with the new weight vector. This

continues for all training examples for a given number of iterations. At the

end the weights are averaged as described in section 2.1.2.

The loss used in the MSTParser is the number of dependents that ei-

ther gets the wrong head or the wrong label (if we are performing labeled

parsing). We will return to the question of how to evaluate dependency

parsing, but for now we will note that this loss corresponds to Labeled At-

tachment Score, so the parser optimizes the measure commonly used to

evaluate dependency parsers.
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Two-Stage Parsing

In the setting described above, the parser produces the structure of the

parse and the labels of the arcs at the same time4. The graph representing

the input to the inference algorithm is a multi-graph as there are multiple

edges (arcs) between each vertex (word).

McDonald, Lerman, and Pereira (2006) present a two-stage dependency

parser. This parser initially performs unlabeled parsing. It then uses a

second stage to label the arcs produced by the first stage. One advantage

of this is that non-arc-factored features can be used in the second stage.

Second-Order

From a linguistic point of view edge-factored models seem very implau-

sible. The factorization means that the score for a given edge is indepen-

dent from the rest of the syntactic structure produced. For instance the

likelihood of something being a subject in the sentence is independent of

whether another subject will also be constructed.

To remedy this problem one can use models where information about

other edges can be used in determining the score of an edge. McDonald and

Pereira (2006) show how to perform exact projective second-order MST-

parsing. Exact second-order non-projective parsing is shown to be NP-hard

so an approximate approach to this is introduced. First a projective tree

is constructed and following this, changes that increase the overall score

of the tree is searched for and applied in a hill-climbing fashion. As the

projective tree is guaranteed to be the best projective tree, any changes to

this that increase the score, will lead to a non-projective tree. McDonald

and Pereira (2006) argue that this approach is reasonable because even in

languages with many non-projective arcs, the trees are mainly projective.

Higher-Order

It is possible to go beyond second-order parsing. Koo and Collins (2010)

present exact third-order projective parsing, that runs in O(n4). Higher-

order exact non-projective parsing is, as mentioned, NP-hard, but approx-

4This is also how the open-source implementation of the MSTParser works.
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imate methods that yields good results exist (Smith and Eisner, 2008; Koo

et al., 2010). We will not use these methods in the work presented here.

Reranking

Another approach to including higher-order features is to produce a k-

best list of parses using a lower-order model, and then rerank these using

higher-order features. By doing this, features over all of the structure can

be used.

Hall, Havelka, and Smith (2007) introduce this approach for non-projec-

tive dependency parsing5. To find the k-best maximum spanning trees

an algorithm proposed by Camerini, Fratta, and Maffioli (1980) is consid-

ered. Using the right data-structures this algorithm runs in O(kn2) for de-

pendency parsing (dense graphs). The output from this algorithm is then

reranked, using higher-order features.

2.2.3 Structured Prediction as Classification

Another approach to dependency parsing is called transition-based pars-

ing. In this approach the structured prediction task is reduced to classi-

fication. We will primarily use graph-based parsing but we will shortly

describe transition-based parsing as this is used in a few experiments.

There are different variants of transition-based parsing, with different

transitions, different search strategies and different learning algorithms.

We restrict ourselves to describing the variant of parsers described by Nivre

(2008).

Transition-based parsing builds on the idea that parsing can be viewed

as a sequence of transitions between states. A transition-based parser (de-

terministic classifier-based parser) consists of three essential components

(Nivre, 2008):

1. A parsing algorithm

2. A feature model

3. A classifier
5For projective parsing the Eisner algorithm can be used.
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We will not describe the feature model further, but instead look at the other

two parts.

The parsing algorithm consists of two components, a transition system
and an oracle. Nivre (2008) defines a transition system S = (C, T, cs, Ct) in

the following way:

1. C is a set of configurations, each of which contains a buffer β of (re-

maining) nodes and a set A of dependency arcs,

2. T is a set of transitions, each of which is a partial function t : C → C,

3. cs is a initialization function mapping a sentence x = (w0, w1, . . . , wn)

to a configuration with β = [1, . . . , n],

4. Ct is a set of terminal configurations.

A transition sequence for a sentence x in S is a sequence C0,m = (c0, c1 . . . , cm)

of configurations, such that

1. c0 = cs(x),

2. cm ∈ Ct,

3. for every i (1 ≤ i ≤ m)ci = t(ci−1) for some t ∈ T

The oracle is used during training to determine a transition sequence that

leads to the correct parse. The job of the classifier is to ’imitate’ the oracle,

i.e. to try to always pick the transitions that lead to the correct parse. The

information given to the classifier is the current configuration. Therefore

the training data for the classifier consists of a number of configurations

and the transitions the oracle chose with these configurations.

Here we focus on stack-based parsing algorithms. A stack-based con-

figuration for a sentence x = (w0, w1, . . . , wn) is a triple c = (σ, β,A), where

1. σ is a stack of tokens i ≤ k (for some k ≤ n),

2. β is a buffer of tokens j > k ,

3. A is a set of dependency arcs such that G = (0, 1, . . . , n, A) is a depen-

dency graph for x. (Nivre, 2008)

In the work presented here we use the NivreEager algorithm which has

four transitions:
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Shift Push the token at the head of the buffer onto the stack.

Reduce Pop the token on the top of the stack.

Left-Arcl Add to the analysis an arc with label l from the token at the head

of the buffer to the token on the top of the stack, and push the buffer-token

onto the stack.

Right-Arcl Add to the analysis an arc with label l from the token on the

top of the stack to the token at the head of the buffer, and pop the stack.

Learning

The third part of the system is a classifier, and this is because transition-

based dependency parsing reduces parsing to consecutive multi-class clas-

sification. From each configuration one amongst some predefined num-

ber of transitions has to be chosen. This means that any classifier can be

plugged into the system. The training instances are created by the oracle,

so the training is offline. This implies that any classification algorithm can

be used.

2.3 Alignment

In NLP alignment is the task of aligning different linguistic entities - typi-

cally in two different languages. The two most common tasks are sentence

alignment, where sentences with the same meaning in two or more lan-

guages are aligned, and word alignment where words with the same mean-

ing are aligned. Another type of alignment is sub-tree alignment where the

sub-trees in a syntactic tree in two (or more) languages are aligned.

Here we will only describe word alignment and sub-tree alignment.

And as it turns out, the two are actually the same when we consider de-

pendency structures. The nodes in a dependency tree are the words in the

sentence, so aligning the sub-trees rooted in these nodes is equivalent to

aligning the words.
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2.3.1 Formal Definition

We will here formally define what we mean by word alignment in this

work. We use the same definition of a sentence as we did in section 2.2.1,

except we leave out the artificial root token.

Definition 9. S = w1, w2 . . . wn

In alignment we have two sentences so we super-scribe both the S and

the w, so that Sa = wa
1 , w

a
2 . . . w

b
n. Now we can define a word alignment:

Definition 10. A word alignment of two sentences Sa and Sb is an undirected
bipartite graph G = (V,A) consisting of the two disjoint set of nodes V a and V b

such that the following holds:

1. V a ⊆ {wa
1 , w

a
2 , . . . , w

a
n}

2. V b ⊆ {wb
1, w

b
2, . . . , w

b
m}

3. V = V a ∪ V b

4. A ⊆ V × V

The bipartite condition implies that A ⊆ Va × Vb, i.e. all edges are

from vertices representing words from one sentence to vertices represent-

ing words from the other sentence.

Sometimes we will distinguish between sure and possible links. In this

case we will instead need to define a labeled graph with the label set R =

{sure,possible} and then A ⊆ V ×R× V

2.3.2 Graph Based

One way to try and create alignments is viewing the problem from a graph-

theoretic point of view and using algorithms from this field to solve the

problem. If we assume that each word or node in a sentence is represented

by a vertex and links between words are edges, the graph will be bipar-

tite, i.e. all edges connects a vertex from one sentence to a vertex from

the other sentence. If all possible links are assigned a score (a weight in

graph-theoretic terms) then the task of finding a maximum scoring align-

ment can be solved using different graph-algorithms, for instance a maxi-

mum matching algorithm. Figure 2.5 shows how such a graph would look

for two sentences with three words each. The edges are possible links.
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One approach using this method is presented by Taskar, Lacoste-Julien,

and Klein (2005) who present a discriminative word aligner using a max-

imum matching approach. In the aligner they use linear programming to

find the maximum matching as this combines well with their learning al-

gorithm, but combinatorial algorithms, as they note, can also be used.

They use Max-Margin Markov Networks (Taskar, Guestrin, and Koller,

2003) for learning and achieve very good results. Especially when using

the output from GIZA++ they get very low alignment error rates, and this

underlines one of the advantages of discriminative learning - that features

like this can easily be used.

Figure 2.5: Graph representing a word alignment task. By doing maxi-
mum matching the highest scoring alignment can be found.

This approach requires edge-factored features. I.e. the score of one

edge cannot be dependent on the rest of the structure. If the features are

not edge-factored, the maximum matching algorithms cannot be used. A

drawback of the approach is that it only allows 1-1, 0-1, 1-0 links.

Lacoste-Julien et al. (2006) present a word aligner that deals with this.

The problem can be solved by viewing the alignment problem as a mini-

mum cost maximum flow problem. In this, the problem is to find the max-

imum flow with the minimum cost through a network represented by a

directed graph. The maximum matching problem can also be viewed this

way by adding a so-called source and sink vertex. To allow fertility more
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than 1, extra edges from the source to the source word vertices and extra

edges from the target word vertices to the sink are added. Figure 2.6 shows

how the initial graph would look with three words in both sentences and

a maximum fertility of 3. It should be noted that compared to the graph

shown in (Lacoste-Julien et al., 2006) our graph contains some extra inter-

mediary fertility nodes. This is to keep to a simple graph, i.e. maximum

one edge from one vertex to another.

Figure 2.6: Directed graph representing a word alignment task with fer-
tility higher than 1 (3 in this example). Solid dots represent the words.
Dashed lines have no cost. The leftmost vertex is called the source and
the rightmost the sink. The problem of finding a maximum scoring align-
ment can be solved using a minimum cost maximum flow algorithm.

As with the maximum matching problem, efficient algorithms exist to

solve this problem. Apart from allowing fertility more than one, Lacoste-

Julien et al. (2006) introduce second-order features. They solve the infer-

ence problem as a quadratic assignment problem and achieve very low

alignment error rates on the Hansard corpus.

The results with this aligner are very good but the approach has one

major drawback which is the training time. Solving the inference problem

is quite slow but especially the learning algorithm is not feasible for larger
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data sets (Daume, 2006). In the work mentioned training sets of 100 and

200 sentences are used.

2.4 Related Work

In this section we will discuss previous work related to bitext dependency

parsing and alignment. We split the work into the following categories:

projection, methods that use trees in alignment, methods that use align-

ments to improve parsing, methods that combine the two and try to solve

the task jointly and grammar-based methods. We will discuss work from

all categories starting with projection.

2.4.1 Projection

Projection is a task closely related to the task we are addressing here - i.e.

using bilingual information to create better parallel treebanks. In projection

an analysis exists on one language and this analysis is projected to another

language. Often this is seen as a solution to help create resources on lan-

guages with few resources, by using resources from a language with many

resources. If, for instance, analyses could be projected from English to an-

other language with a certain quality, it would be much easier to create

large-scale resources on this language. Our work is related to this because

we try to use structure from one language to enrich the structure of an-

other. We use two languages that have structures already, but many of the

assumptions and problems we face are the same as in projection. In some

sense we project the analysis from the target language to the source lan-

guage and use this projected structure to inform the source side parsing.

The literature on projection is vast and we will only consider a very

small part of this.

Hwa et al. (2002) present work on projection from English to Chinese.

They address an assumption which to some degree underlies all work on

projection and bilingually informed parsing. They call this the Direct Cor-

respondence Assumption:
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Direct Correspondence Assumption (DCA):

Given a pair of sentences E and F that are (literal) trans-

lations of each other with syntactic structures TreeE and

TreeF , if nodes xE and yE of TreeE are aligned with nodes

xF and yF of TreeF , respectively, and if syntactic rela-

tionship R(xE ; yE) holds in TreeE, then R(xF ; yF ) holds in

TreeF .

Hwa et al. (2002) show that using an algorithm for doing direct projection

they achieve a F1-score of only 38.1 when projecting from English to Chi-

nese. With relatively simple hand-crafted rules they are able to increase

this number to 67.3. This shows the need for working with more complex

correspondence patterns than simple direct correspondence.

The experiments were performed on fully hand-aligned data, i.e. with

hand-aligned alignments and hand-annotated syntax, although the Chi-

nese tree were obtained by automatically converting phrase-structure trees

to dependency trees.

We will work with related languages which makes the work of Zeman

and Resnik (2008) interesting. Zeman and Resnik (2008) investigate parser

projection between two closely related languages, Danish and Swedish. To

test their approach they need to normalize the Danish treebank6 they use

and the Swedish treebank they use because of the difference in annota-

tion, tag-sets and so on. Furthermore, because they use phrase-structure

parsers, they convert the dependency trees to phrase-structure trees. Using

an automatically aligned corpus for Danish and Swedish, the most proba-

ble translation of each word in isolation is found. When parsing a Swedish

sentence, the sentence is ’translated’ into Danish using these and then a

parser trained on Danish is used to parse the sentence. In this way parses

are projected from Danish to Swedish. Another approach tested is to delex-

icalize the sentences.

The best result achieved is a F1-score of 66.40. Given the closely related

languages this is surprisingly low compared to the results we saw for Chi-

nese and English, using a simpler approach. We believe that one of the

reasons for this is the amount of mapping going on. Both with the nor-

malization of the treebanks and with the dependency to phrase-structure

6Which is the same treebank we use.
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conversion.

In recent work, McDonald, Petrov, and Hall (2011) present a method

for projecting from multiple languages. The method essentially relies on

delexicalization in the same way as the work of Zeman and Resnik (2008).

A universal tag-set (Petrov, Das, and McDonald, 2011) projected from En-

glish data (Das and Petrov, 2011) is used, which makes it very simple to use

delexicalized parsers trained on one language on other languages. Multiple

languages can be used as the source of the projection by simply concate-

nating the data on these languages and then training the parsers on this.

Unlike other work (Søgaard, 2011) this concatenation is found to improve

accuracy.

This simple approach does not rely on alignment at all. McDonald,

Petrov, and Hall (2011) also present a more advanced approach that does.

First parses are projected using the delixicalization approach. These parses

are then used as gold-standard parses to train a target-side monolingual

parser. The model from this parser is used to seed a parser that is trained

using alignment information. This parser is trained using the framework

presented by Hall et al. (2011). When training this parser an external metric

of ’good’ parses is used. This is obtained by creating a k-best list of parses

for each example. The parse in this list that is most parallel (based on fixed

alignments) with the parse of an English parallel sentence is considered the

best and used as the gold-standard in the external metric.

The approach provides very good results and has the advantage that it

does not rely on gold-standard PoS-tags.

2.4.2 Unsupervised Sub-Tree Alignment

To create parallel treebanks several researchers has suggested doing sub-

tree alignment on existing bitext treebanks using the output from an un-

supervised word aligner. Samuelsson and Volk (2007) does this in the cre-

ation of the SMULTRON parallel treebank (Volk et al., 2010). They do word

alignment and create phrase-tables using existing tools for this (GIZA++,

THOT, PHARAOH). Then they search for phrases that are consistent with

the trees on the two languages and use these as phrase alignments. They

report a F0.5-score of up to 65% on Swedish-English with this approach.
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Zhechev and Way (2008) also present work that departs in the unsu-

pervised word alignments created with tools like GIZA++. They present

methods for both creating parallel treebanks from bitexts and from parsed

bitexts. We will focus on the latter.

The translation probabilities from the word aligner are used to score a

given phrase alignment. For two trees S and T spanning 1 . . .m and 1 . . . n

the phrase alignment 〈s, t〉 spanning 〈si . . . six〉 and 〈tj . . . tjy〉 the score is

given as the product of an inside score and an outside score in each trans-

lation direction. Inside are the tokens inside the phrases being aligned and

outside are the tokens outside as described in (1).

inside outside
(1) sl = 〈si . . . six〉 s̄l = 〈S1 . . . si−1six+1 . . . Sm〉

tl = 〈tj . . . tjy〉 t̄l = 〈T1 . . . tj−1tjy+1 . . . Tn〉

(2) γ(〈s, t〉) = α(sl|tl) · α(tl|sl) · α(s̄l|t̄l) · α(t̄l|s̄l)

(3) α(x|y) = ∏|x|
i

∑|y|
j

P (xi|yj)
|y|

The scores are defined in (2) and (3) and assume that translation probabili-

ties P (x|y) exist.

With these scores in place, the alignment is a matter of search. Because

exhaustive search is prohibitly slow, Zhechev and Way (2008) suggest a

number of greedy search algorithms. The algorithms conform to some re-

strictions which are that a node may only be aligned to one other node

and that descendant/ancestors of a source linked node may only be linked

to descendants/ancestors of its linked counterpart. In intrinsic evaluation

the method yields precision just above 60% and recall just above 80% when

evaluated on the HomeCentre treebank (Hearne and Way, 2006). An extrin-

sic evaluation is done, where the Data Oriented Translation system (Hearne

and Way, 2006) is trained on the treebanks and translation quality is mea-

sured with different standard machine translation metrics. We will not go

into these in detail, but note one interesting fact, namely that the quality of

the translations does not match the scores in the intrinsic evaluation. Actu-

ally, the automatically created treebanks lead to better translations than the

hand-aligned. This leads the authors to conclude, that the improvements
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of the aligner should not be aimed at increasing recall and precision com-

pared to the manual alignment, but instead directly at improving transla-

tion quality.

2.4.3 Supervised Sub-Tree Alignment

In the section above we described work that uses word alignment tools

to induce alignments in an unsupervised fashion. Now we turn to work

that learns from existing alignments of parsed text. The advantage of this

approach is that higher accuracy can be expected as supervised learning

methods can be used. The disadvantage is that an existing parallel treebank

is necessary.

Tiedemann and Kotzé (2009a; 2009b) describe an approach for super-

vised sub-tree alignment. Compared to the approaches to structured pre-

diction we looked at earlier they initially separate the learning part and

the inference part. For each possible link between sub-trees a number of

features are extracted. A maximum entropy classifier is then used to score

each of these links. Using a discriminative learner allows the inclusion of

arbitrary features. For instance Tiedemann and Kotzé (2009a) use the out-

put from GIZA++ as features. They also use inside-outside features but

use the maximum translation probability of a span instead of the averaged.

This means changing (3) from above to:

(3b) α(x|y) = ∏|x|
i maxjP (xi|yj)

Additional features are used but we will not describe these in detail

here.

At test time the search for the best alignment is performed greedily with

a bottom-up approach. This allows the inclusion of non-factored features

because decisions can be made on the basis of previously made decisions.

Tiedemann and Kotzé (2009a) test on the SMULTRON corpus (Volk et al.,

2010) and reports F -scores significantly above what they achieve with the

approach described by Zhechev and Way (2008). On the English-Swedish

part of the treebank they get F0.5-scores of around 78.

Tiedemann (2010) presents LinguaAlign which is a publicly available

version of the aligner described above. In LinguaAlign there are some ad-

ditional search strategies available. One is doing a maximum-matching as
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described in section 2.3.2 using the scores from the classifier as weights in

the graph. Another addition is to introduce a SEARN-like learning scheme.

None of these approaches improves accuracy compared to the standard

greedy search strategy described by Tiedemann and Kotzé (2009a).

2.4.4 Bilingually Informed Monolingual Parsing

Huang, Jiang, and Liu (2009) describe an approach for monolingual depen-

dency parsing where information from the same sentence in another lan-

guage (a translation) is used to guide the parsing. The motivation is that

doing actual bitext parsing either is prohibitively slow (see section 2.4.7)

or requires heavy use of approximation (see section for instance 2.4.5 and

2.4.6) to deal with the huge search space involved treating two trees (and

possible alignments) at once.

Instead Huang, Jiang, and Liu (2009) use a standard monolingual transi-

tion-based parser and add features extracted by automatically aligning the

sentences with parallel sentences.

Huang, Jiang, and Liu (2009) argue and empirically show that most er-

rors in transition-based parsing are caused by so-called shift-reduce con-

flicts. These are situations where the parser chooses a shift transition where

a reduce transition would be correct or the other way around. Only three

features templates (and combinations of these) are used, and it is interest-

ing that they are linguistically motivated in that specific situations where a

shift transition should be used instead of a reduce and vice versa are iden-

tified.

The run-time of a standard transition-based parser is linear, and if a

beam of size k is used O(kn). The introduction of the extra features in-

creases this to O(kn2) but in practice it is only slightly slower than the

monolingual parser. On English-Chinese data an absolute improve of around

0.5 in accuracy7 is achieved.

Zhao et al. (2009) also use bilingually based features to improve mono-

lingual parsing. The sentence to be parsed is translated into another lan-

guage using a word-to-word model based on a dictionary. The word pairs

7The paper does not state whether this is unlabeled or labelled, but we assume that it is
unlabelled as nothing else is stated and the referenced results (McDonald, Crammer, and
Pereira, 2005) are unlabeled.
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corresponding to potential dependency relations in the new language are

looked up in a list of word pairs extracted from a treebank in that language,

and features are extracted using this list.

Chen, Kazama, and Torisawa (2010) present a method for what they call

”Bitext Dependency Parsing”. We describe this as ”bilingually informed

monolingual parsing” because although they do parse both languages, the

two models are independent of each other, although dependent on the

other language. The method works by parsing a large amount of text

on the target language. From this automatically parsed treebank a list of

existing sub-trees are extracted and saved in a way that makes it fast to

retrieve them. When parsing the source language, automatically created

alignments are used together with learned mapping rules to map potential

sub-trees (2 or 3 tokens) on the source side to the parallel text. The tree

formed on the target side is then looked up in the list of sub-trees extracted

from the automatically parsed corpus. If the tree exists this is indicative of

a probable sub-tree. The same (without the mapping) is actually done for

the source side using a parsed large corpus on the source side as described

by Chen et al. (2009).

The method provides a more than 2.5 increase in F1-score on both En-

glish and Chinese and has the advantage compared to the approaches we

describe in sections 2.4.5 and 2.4.6, that a parallel treebank is not necessary.

It is only necessary to have text parallel with the treebank used for training

and a parser for the target language.

Chen et al. (2011) show that the same approach works if treebanks

where the parallel sentences are obtained by using machine translation in-

stead of human translation.

Smith and Eisner (2006) introduce quasi-synchronous grammars, which

are a kind of parallel grammar that allows ’sloppy’ alignment between the

syntactic trees of the two sentences, i.e. they do not require the trees to be

isomorphic. Smith and Eisner (2009) show that these grammars can be used

for parser adaptation and parser projection. Parser adaptation is the task of

adapting a parser to a new annotation-style. This task and parser projection

is basically the same as one sentence is parsed with the analysis of a parallel

sentence as input. In principal, the only difference is that alignment in

parser adaptation is trivial.
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When some data is available, this approach falls under what we call

bilingually informed monolingual parsing (Smith and Eisner (2009) call it

supervised cross-lingual projection). Smith and Eisner (2009) evaluate this on

the LDC English-Chinese Parallel Treebank, and find that a bilingually in-

formed parser trained on n sentences has roughly the same accuracy as a

standard parser trained on 2n sentences.

2.4.5 Joint Parsing by Reranking

Burkett and Klein (2008) present a reranking approach for parsing bitext

and creating word alignments. The reranked sentences come from two in-

dependently trained state-of-the art monolingual phrase-structure parsers.

Burkett and Klein (2008) use a maximum entropy model to model the

joint probability of the trees on both languages and of the sub-tree align-

ment. As no gold-standard alignments exist, the alignments are treated as

latent variables in the model. For different reasons, primarily the size of the

search space, training the model directly is not feasible. Instead, an iterative

approach is adopted. First an initial set of weights on alignment features

are used to create a possible alignment of the trees. Then this alignment is

fixed and used to optimize the parameters of the parsing features. Then the

trees are fixed and the alignment features optimized and so forth.

Burkett and Klein (2008) use the English-Chinese translation treebank

(Bies et al., 2007) and achieves a 2.5 F1-score improvement on English trees

and 1.8 F1-score improvement on Chinese trees compared to the monolin-

gual parsers. Furthermore they show a 2.4 BLEU improvement in a down-

stream MT evaluation using a syntactic MT system.

We will now shortly describe some of the features used in this work.

For the alignment, features similar to the inside-outside features de-

scribed earlier are used. In addition hard versions of these are used, where

the count of alignments from an external word aligner between two spans

are used instead of the product (or max) of the probabilities from the word

aligner. The inside-outside features are also scaled using the geometric

means of span lengths.

For parsing the only monolingual features used are the posterior prob-

abilities from the monolingual parsers. The difference in span length be-

tween the two spans dominated by the alignments is used as a feature.
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Another feature indicated the number of children of the nodes in a possible

link. Finally, a feature encoding the occurrence of label pairs of children of

the nodes in the possible link are used. All features are also combined with

the labels of the two nodes.

It is worth noticing that all alignment features pertain only to the two

nodes in question, i.e. they are edge-factored, which allows the use of a

maximum-matching algorithm to find an optimal alignment.

2.4.6 Joint Parsing and Alignment

Burkett, Blitzer, and Klein (2010) present an approach for joint parsing and

alignment. The motivation for this is that grammar-based approaches such

as SCFG (Shieber and Schabes, 1990) does not allow divergence between

the analyses. For this reason they suggest using weak synchronization in-

stead. The idea behind this is to use synchronization when possible and

leave the pieces of the sentences that cannot be synchronized to the mono-

lingual parsers. The monolingual analyses are still required to be well-

formed under monolingual CFGs. The space of alignments is restricted to

those that can be generated by ITGs. This excludes some of the alignments

in the gold-standard but very few (Haghighi et al., 2009).

The two CFG models and the ITG models are independent of each other

and therefore synchronization features are added to impose the weak syn-

chronization. The synchronization features are indicator functions relating

to the labels of the nodes that can be synchronized. The introduction of

these features creates an inference problem that cannot be solved exactly

using known algorithms. Instead mean field inference is used.

Burkett, Blitzer, and Klein (2010) uses the English-Chinese translation

treebank (Bies et al., 2007) and reports F-scores even better than what was

reported by Burkett and Klein (2008), and also get better alignments com-

parable to a state-of-the-art supervised word aligner. Again they also show

improvement in a downstream syntactic MT evaluation.

2.4.7 Grammar-Based Approaches

In parsing and alignment of bitexts a lot of work has been done within

what we here call grammar-based approaches. We call them this, because
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they have in common some formal notion of grammar that models the syn-

tax of the languages in question. We will not try to give a comprehensive

overview of these approaches but instead focus on why we do not think

that these approaches are appropriate for solving the task we address.

One of the most influential grammar-based approaches is Inversion Trans-

duction Grammars (ITG) (Wu, 1997). The analyses that the grammar al-

lows are typically not like the ones found in treebanks annotated by hu-

mans. Another problem in relation to the task we are addressing is the

run-time of grammars like these. Melamed (2003) reports the run-time

of ITGs to be O(n6). Within the literature of grammar-based approaches

the question addressed is often the expressivity of different formalisms, i.e.

the range of structures the grammars allow. Melamed (2003) introduces

Multitext-Grammars (MTGs) which apart from allowing more than two

languages are also more expressive than many other synchronous gram-

mar formalisms, for instance ITGs. But when the expressivity increases the

run-time often follows and some of the parsers introduced by Melamed

(2003) have run-times of O(n10).

The run-time imposes strong restrictions on what can actually be parsed

with these kinds of grammars. Smith and Smith (2004) use a version of

MTG to parse a Korean-English corpus that is lexicalized only on one side,

which leads to a O(n7) run-time. This leads them to use sentences of 15

words and shorter.

We are interested in creating treebanks that are based on the annota-

tion of humans and also we are interested in creating them for sentences

of any length. Grammar-based approaches are not suitable for solving this

problem because of the restrictions described above.

2.4.8 Bitext Parsing Terminology

It is not entirely clear what is meant by the term ’bitext parsing’ in the

litterature. We distinguish between two different kinds of bitext parsing.

The first we called bilingually informed monolingual parsing in the sections

above and the other joint parsing. We will try to describe exactly why we

make this distinction, as we will return to it later.

Bilingually informed monolingual parsing is monolingual parsing where

the parser is informed by features that depend on another language - the
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target language. These features will often depend on syntactic informa-

tion from the target language, but not necessarily as in the work by Huang,

Jiang, and Liu (2009). This kind of parsing is essentially monolingual pars-

ing as only the structure of one language is created. Of course this can be

done on both languages in a parallel corpus, but the two parsing models

are independent of each other.

Joint parsing is parsing of bitext where the parsing of one side is not in-

dependent of the parsing of the other language. The reranking approach

used by Burkett and Klein (2008) jointly models the parsing on both sides.

The important distinction is not of whether the parsing is actually done

simultaneously but whether the model used for parsing on one side is in-

dependent of the model parsing the other.

Joint parsing and alignment is similar to joint parsing, only the alignment

will also be modeled. This is the case in the work of Burkett and Klein

(2008), but only as a bi product. In the work of Burkett, Blitzer, and Klein

(2010) the alignments are explicitly modeled.

Grammar-based approaches will typically be instances of joint parsing

(and alignment) as the grammar will model the two (or more) languages

simultaneously.
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Chapter 3

Data, Evaluation and Tools

3.1 Data

Throughout this thesis we use data from the Copenhagen Dependency

Treebank (formerly Danish Dependency Treebank) (Kromann and Lynge,

2004; Buch-Kromann, Wedekind, and Elming, 2007; Buch-Kromann and

Korzen, 2010). The latest version contains text in five languages, Danish,

English, Spanish, Italian and German although there is a big difference in

how much text has been annotated in the five languages.

All of the text has been annotated based on the theory presented by

Buch-Kromann (2006). There exists some hand-annotated word alignment

between Danish and the other languages, most between Danish and En-

glish (Buch-Kromann, Wedekind, and Elming, 2007). In later versions of

the treebank some of the texts have been annotated with discourse struc-

tures (Buch-Kromann and Korzen, 2010). We will not try to parse these so

we will simply ignore them.

<ROOT> What did you do before you began working for a contract ?
dobj <ROOT> subj vobj time subj vobj dobj pobj nobj nobj pnct

Figure 3.1: Non-projective structure from CDT.

Central to the syntactic theory behind the annotation style is the notion

of discontinuous or non-projective structures (Buch-Kromann, 2006). Fig-
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Date Texts Sentences Tokens Dep. relations

Danish Jan 22, 2011 457 4,670 85,204 106

English Jan 22, 2011 457 4,670 94,916 110

Danish Mar 11, 2011 55 519 10,222 88

Spanish Mar 11, 2011 55 519 11,172 94

Table 3.1: Statistics for data used in experiments.

ure 3.1 shows such a structure. The structure is discontinuous because the

phrase dominated by ”do” spans the words from position 1 ”What” to 12

”?” but the words ”did” and ”you” are not dominated by ”do”. This is also

called non-projective structures and a formal definition is given in section

2.2.1.

The theory also allows for so-called secondary dependencies. An ex-

ample of this is shown in figure 2.3. We will ignore these secondary depen-

dencies.

The treebank also contains PoS-tags. The Danish part of the treebank

contains gold-standard tags but the other languages are automatically tagged.

The treebank is work-in-progress and is continuously being modified.

Both because new annotation is being added, but also because the syntactic

theory has been revised during the creation of the treebank. For this reason

the data used in all experiments is a snapshot of how the treebank looked at

a certain point in time. If the data was downloaded today, it would be dif-

ferent. For that reason table 3.1 also contains dates of when the snapshots

used were created.

For Danish and English there are approximately 100.000 words anno-

tated, also with alignments, for the other languages somewhat less. We

only look at Danish-English and Danish-Spanish so the numbers for the

rest of the languages are omitted from table 3.1.

We split each of the two data sets sequentially into four sets, training -
70%, development - 10%, validation - 10% and evaluation - 10%.

The term test data will be used to describe unseen data. In all but the

final experiments this will be the development set. In the final experiments

it is the evaluation set. The treebank is available from http://code.
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google.com/p/copenhagen-dependency-treebank1.

3.2 Evaluation

To evaluate the results of the different approaches we investigate, we need

to decide what evaluation metrics to use. In this section we will describe

the evaluation metrics used in the following sections.

In the introduction we mentioned that if the purpose of the created tree-

banks is to help human-annotators in creating a hand-aligned treebank,

then the ideal metric will be measuring how much time a human annotator

will need to correct the errors made by the automatic method used. This

is not a realistic measure because it will require human annotation every

time we need to evaluate the output of a system. Instead, some kind of

edit-distance can be used under the assumption that this is a reflection of

the ideal measure. An even simpler approach is to measure the amount of

errors in the output of the system, as these are the ones that the annotators

need to address. We choose to use metrics based on the number of errors

as this is simple and allows us to use standard metrics from parsing and

alignment, as these are based on the number of errors in the output.

3.2.1 Parsing

In dependency parsing the standard metrics are the following:

Labeled Attachment Score (LAS) The percentage of tokens that have the

correct head and the correct label.

Unlabeled Attachment Score (UAS) The percentage of tokens that have

the correct head.

Labeled Accuracy score (LA) The number of tokens with the correct label.

Often only non-punctuation tokens are included in the evaluation. This

is the case in CoNLL shared tasks on dependency parsing (Buchholz and

Marsi, 2006; Nivre et al., 2007), and as we use the evaluation script2 from

CoNLL-07 we also exclude punctuation in the evaluation.

1The exact snapshots used for experiments is available by contacting the author.
2http://nextens.uvt.nl/depparse-wiki/SoftwarePage#eval07.pl
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Another commonly used metric is Exact Match. This is the percentage

of sentences that are parsed completely correct. We do not use this metric

here.

3.2.2 Alignment

In the word alignment literature there is often a distinction between sure
and possible links, where the latter are more questionable links. Some align-

ers also include this distinction in their output, but not all. The metrics used

in alignment are precision, recall and AER. If S are the sure links in the gold-

standard, P the possible (and sure) links and A the links in the alignment

being evaluated the metrics are defined as follows (Och and Ney, 2003):

Precision =
|P ∩A|
|A|

Recall =
|S ∩A|
|S|

AER =
|P ∩A|+ |S ∩A|

|A|+ |S|
It is important to note that the P set includes both the possible and the sure

links. The idea is that you will get rewarded for having correct possible

links but not punished for having missed possible links.

If the distinction between probable and sure alignments is dropped, the

metrics will be standard recall and precision, and AER will be equal to

1 − F1-score, where the F1- score is the harmonic mean between precision

and recall.

We will use AER to evaluate alignments. We will also report precision

and recall on both sure an possible links. I.e. we will report standard pre-

cision and recall on both of these, not the combined predicion and recall

defined above3 .

3.2.3 Joint Parsing and Alignment

In most experiments we will simply report both parsing metrics for both

languages and AER for the alignment. In some cases, we will also report
3This is was is reported by the wa eval align.pl-script from the shared task in the

ACL 2005 Workshop on Building and Using Parallel Texts. The script is available from
http://www.cse.unt.edu/˜rada/wpt/code/wa_check_align.pl
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a joint metric for the whole task of joint parsing and alignment. In most

other work on creating parallel treebanks, phrases-structure based parsing

is used. For this F1-scores are often used, and so it is straight forward to

use F1-scores for the whole structure - i.e. the two trees and the alignment.

F1-score is not used in dependency parsing, but this is simply because that

the single-head requirement implies that recall is equal to precision. The

number of edges the parser suggest will always be equal to the number of

edges in the gold-standard. Therefore we could use F1-score over the entire

structure as well. We will almost do this. We will use a weighted average of

UAS for the two sentences and 1−AER for the alignment, i.e. the parallel

treebank score (PTS) will be:

PTSαa,αb,αab

αa · UASa + αb · UASb + αab · (1−AER)

αa + αb + αab

We do this to retain the sure/possible distinction and the exclusion of punc-

tuation tokens in the parsing evaluation. We use UAS instead of LAS be-

cause we are generally more interested in the structure of the parsers than

the labels. We use αa = αb = αab = 1/3, but this can be changed if one the

parts is to be weighed higher than the others.

3.2.4 Significance Tests

We test statistical significance of the results from different approaches in

all experiments. For parsing, we test using McNemar’s test - we do this

with MaltEval (Nilsson and Nivre, 2008). For word alignments we use Dan

Bikel’s compare.pl script4. The test uses a type of stratified shuffling. We

adapt the script to word alignments, and test only on sure links.

Unless otherwise stated we assume that results are significant if p <

0.05.

If we compare more than two systems, we use cross-tables to report

results from significance tests. If we compare only two systems, we use †

to mark significance.

4http://www.cis.upenn.edu/˜dbikel/software.html#comparator
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3.3 Tools

In this section we will describe the parsing and alignment tools used in all

experiments.

3.3.1 Parsers

MSTParser

In most of our experiments we use a modified version of the MSTParser5.

Two-stage Parsing

We have modified the MSTParser so it does only unlabeled parsing. The

labeling is done in a separate step, as described by McDonald, Lerman, and

Pereira (2006). We do this because we are mainly interested in improving

the syntactic structure and not so much the labeling, and doing the two

stages separately makes it easier to analyze the effects on the unlabeled

results of different approaches. The labeler used is from the MSTStacked-

parser (Martins et al., 2008). We use only the labeling part of this parser, i.e.

we do not use stacked parsing.

We have changed the learning algorithm. We have done this primarily

in order to use online learning as we do in the other tools, but also in order

to achieve better results. The labeler originally uses logistic regression, and

we have replaced this with a number of online learning algorithms. Table

3.2 shows results with different learning algorithms. Table 3.3 shows results

Danish English

LAS LA LAS LA

Logistic regression 75.41 78.29 78.85 84.67

Perceptron 75.00 77.92 78.72 84.55

MIRA (PA) 75.33 78.27 78.78 84.59

CW 75.57 78.58 78.86 84.74

Table 3.2: Accuracy with different learning algorithms for labeling in
two-stage parser.

5http://sourceforge.net/projects/mstparser/
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of statistical significance tests for these results.

A B C D

A, Logistic Regression

LAS,LA B, Perceptron

LAS,LA C, MIRA

LA LAS,LA LAS,LA D, CW

Table 3.3: Tests for statistical significance for results with different learn-
ing algorithms. The lower left triangle is for Danish and the upper right
for English.

.

kMST-parser

For the reranking experiments we need a parser that provides k-best lists

of parses. We use the kMST-parser described and implemented by Hall

(2007)6.

We use only the k-best part of the parser - i.e. we do not use the rerank-

ing.

The kMST-parser uses MaxEnt-learning instead of the MIRA-learning

used in the MSTParser. It also uses a different set of features. These two

things combined makes it perform sligthy worse in the 1-best case than the

MSTParser (Hall, 2007).

In our experiments, however, it performs much worse than the MST-

Parser. The reason for this, we presume, is that we have used it completely

out-of-the-box. We have made no optimizations on neither the features nor

the learning.

Baseline Results

Here we will report baseline results on the development data for the parsers

described above. This will serve as a reference for future chapters, where

we will try to improve these results.

6Available from http://homepage.mac.com/khallbobo/KeithHall/

software/depParser0_51.tar.gz.
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Table 3.4 shows results with the MSTParser, and the kMST-parser. In all

of these two-stage parsing have been used, and the confidence-weighted

classification has been used for labeling.

Danish English

LAS UAS LA LAS UAS LA

MST, 1. order, proj 73.92 86.83 77.10 77.97 83.43 83.74

MST, 1. order, non-proj 74.94 87.99 78.12 78.25 83.59 84.18

MST, 2. order, proj 74.51 87.64 77.92 78.55 84.04 84.27

MST, 2. order, non-proj 75.57 88.79 78.58 78.86 84.21 84.74

kMST (no reranking) 68.60 80.14 74.11 66.90 71.08 76.36

Table 3.4: Baseline results for parsing.

For standard monolingual parsing the kMST-parser does much worse

than the MSTParser, and second-order non-projective parsing gives the

highest accuracy. In all subsequent experiments, second-order non-projective

parsing will be used.

In all experiments with the MSTParser, 10 iterations of training were

used. Table 3.5 shows results from tests for statistical significance for the

results.

A B C D E

LA LAS,UAS,LA LAS,UAS,LA LAS,UAS,LA A, 1. order, proj

LA LAS,UAS LAS,UAS,LA LAS,UAS,LA B, 1. order, non-proj

LAS,UAS,LA LA LAS,UAS,LA C, 2. order, proj

LAS,UAS,LA LAS,UAS,LA LAS,UAS,LA LAS,UAS,LA D, 2. order, non-proj

LAS,UAS,LA LAS,UAS,LA LAS,UAS,LA LAS,UAS,LA E, kMST (no reranking)

Table 3.5: Statistical significance tests for baseline parsers. The lower left
triangle is for Danish and the upper right for English.
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MaltParser

In a few experiments we use the MaltParser (Nivre, Hall, and Nilsson,

2006) which is an open-source7 transition-based parser as described in sec-

tion 2.2.3. The default learning algorithm used is support vector machines,

more specifically the LIBSVM learner (Chang and Lin, 2001). The default

is to use a second-degree kernel, and we do not change this in our experi-

ments.

We use the NivreEager algorithm and use the baseline pseudo-projective

approach for handling non-projective trees (Nivre et al., 2006). The perfor-

mance of the parser is very dependent on the features used and of opti-

mization of the hyper-parameters for the SVM learning. Instead of using

the parser out-of-the box we use the features and parameters8 that were

used by the team behind the parsers in the CoNLL shared tasks in 2006 and

2007 (Buchholz and Marsi, 2006; Nivre et al., 2007). The Danish data from

CoNLL-X (2006) are from the Copenhagen Dependency Treebank, so for

Danish, the features and parameters should be quite good. The English pa-

rameters and features are optimized for the data from the shared task and

not for the data we use, which means that these are probably sub-optimal.

3.3.2 Minimum Cost Flow Aligner

All experiments have been done with an aligner we have implemented. We

also tested LinguaAlign, which is described briefly in section 2.4.3, but we

found that the results from this aligner are not competitive9 so we do not

use it in any of the following experiments. The results with LinguaAlign

are reported below.

The aligner we have implemented is based on the work by Taskar, Lacoste-

Julien, and Klein (2005) and Lacoste-Julien et al. (2006) which we have

described in section 2.3.2. The implementation though, is a complete reim-

plementation.

7http://maltparser.org/
8Available from http://maltparser.org/conll/conllx/ and http:

//maltparser.org/conll/conll07/
9We did try several different algorithms and combinations of features, but it is still pos-

sible that better results could have been obtained by using different features, algorithms
and hyper-parameters.



54 Data, Evaluation and Tools

We allow fertility of more than 1 and therefore we cast the inference

problem as a minimum cost flow problem.

We do not use higher-order features as described by Lacoste-Julien et al.

(2006). Instead of Max-Margin Markov Networks (M3N) we use MIRA for

learning. Taskar, Lacoste-Julien, and Klein (2005) report significantly worse

results with averaged perceptron than with M3N, but M3N are reported to

be slow (Daume, 2006) and we want to use much larger training data sets

than the 100 or 200 sentences used in the experiments with M3N.

Minimum Cost Flow Algorithm

The inference problem we must solve is finding the minimum cost flow in

a weighted directed graph. More specifically, we have graphs that look like

the one shown in figure 3.2. The task is to find the maximum flow from the

source (the leftmost vertex) to the sink (the rightmost vertex), that has the

minimum cost.

Several algorithms exists that can solve this problem efficiently (Ahuja,

Magnanti, and Orlin, 1993). Here we use the successive shortest path algo-

rithm. For general graphs, the algorithm has pseudopolynomial running

time O(nU ·SP ), where U is the upper bound on the supply of any node in

the network and where SP is the time it takes to solve a non-negative sin-

gle source shortest path problem. For solving the shortest path problem we

use Dijkstras algorithm which has run-time O(n2). In the specific kind of

network used in this word alignment task, we know what the upper bound

for U is, and this makes the algorithm polynomial instead of pseudopoly-

nomial. The only node having supply is the source node, and the supply

of this node is equal to the maximum amount of flow it is possible to push

through the network. Let l be the number of words in the source sentence,

m the number of words in the target sentence and f the maximum fertility

allowed in the alignment. The number of nodes in the graph will then be

n = fl + fm + l + m + 2. The maximum flow possible in the network is

min(l,m) · f . As the algorithm in the general case terminates in maximum

nU iterations (Ahuja, Magnanti, and Orlin, 1993), it will terminate in max-

imum n · min(l,m) · f iterations in the word alignment case. This makes

the run-time of the algorithm O(n · min(l,m) · f · n2) ≈ O(n4). However,

this is artificially high, as we can easily design the graph to make the run-
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time O(n3). If we delete the sink node and source node and instead give

all the left-most vertices (the non-word vertices) a suppy of 1 and all the

right-most vertices with a demand of -1, then U = 1, which makes the run-

time O(n3) instead (and with two fewer vertices also). We suspect that the

special topography of the graph will actually lead to even lower run-time,

but we have no proof of this.

In practice, edges with score below zero will be left out of the graph

reducing the run-time, and as the timings in figure 3.4 show, the aligner

is fast in actual use. The aligner uses considerably more time on feature

extraction than on actual inference.

Figure 3.2: Directed graph representing a word alignment task with fer-
tility higher than 1 (3 in this example). Solid dots represent the words.
Dashed lines have no cost. The leftmost vertex is called the sink and
the rightmost the source. Finding a maximum scoring alignment can be
solved using a minimum cost maximum flow cost algorithm that.

Features

Here we will list the features used in the aligner. We will split them into

three groups. Internal features which are features relating only to the input

sentences themselves. External features, which are features that are based on
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the output of some other tool - but not from the parsers. Syntactic features
which are features based on the dependency analysis of each of the input

sentences.

All features are edge-factored, i.e. they pertain to one possible link in

the structure.

Internal

word-pair The form of the pair of words in the link. Also for two previous

and two following words.

match Do the two words have the same form? Also when the words are

lower cased.

abs-diff-rel-pos The absolute difference between the relative position of

the words.

LCS Length of longest common substring.

case Source word, target word or both starts with uppercase letter.

punctuation Features describing if the words begin or end with punctua-

tion or are entirely punctuation.

External

POS PoS-tags for the two words. Also for two previous and two following

words.

dice Dice-coefficient for pair of words. Also for two previous and two fol-

lowing words.

GIZA Translation probabilities from GIZA++ in both directions for word

pair. Also for two previous and two following words.

Moses Indicate if links exists in output from symmetrized GIZA++ align-

ments. Also for two previous and two following words.

diff Log Rank Normalized difference in log rank between two words.
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Syntactic

Label pair Pair of the label of the incoming dependency relation of each

token.

span diff Difference in length of spans dominated by the two tokens.

In sections 2.4.2, 2.4.3 and 2.4.5 we saw that a feature that is often used

in sub-tree alignment is the inside-outside feature. As described, there are

different variants of this feature, but they all try to capture the same thing,

which is consistency in the aligned trees. If node a is aligned to node b

and b dominates c it is undesirable that c is aligned to something that is

not dominated by a. We have tested using different variants of the inside-

outside feature but consistently found that it increased AER.

Training

As mentioned above we use MIRA for training. We use k-best MIRA as this

is reported to be much faster than factored MIRA without leading to a large

decrease in accuracy. (McDonald, Crammer, and Pereira, 2005; McDonald

et al., 2005). For all experiments k = 1 as the inference algorithm described

above only provides the optimal solution. We are not aware of any exact k-

best minimum cost flow algorithms. For first-order non-projective parsing,

the MSTParser actually uses a heuristic k-best list10 with good results. We

have not tried using heuristic k-best lists.

We use a fixed set of iterations and average the weights only after the

last iteration. The aligner also allows the use of averaged perceptron (Collins,

2002) but as figure 3.3 shows MIRA consistently yields better results.

The loss-function used is the sum of incorrectly predicted links and

missing sure links. This means that we optimize towards F1-score for sure

links.

Fertility

In theory, the maximum fertility of the aligner should be set to be the high-

est fertility we could imagine a word having. However, this could have a

10Unlike Hall (2007) who uses exact k-best lists.
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Figure 3.3: Results on development data when training with different
learners and different number of iterations.

detrimental effect on the accuracy as the learning problem becomes more

difficult and will definitely increase inference time because the graph will

contain many more vertices. In the data used, we observe a maximum fer-

tility of 12, but as table 3.6 shows lower fertilities are much more common.

Figure 3.4 shows AER on development data and speed of aligner with dif-

ferent settings for maximum fertility. We see that the aligner is very robust

with respect to handling large fertility - the best alignment is actually ob-

tained when maximum fertility is set to 8 even though we have seen that

only around 0.01% of words has fertility this high. The speed of the aligner

of course decreases with higher fertility, but not much. This is due to the

fact that the inference in practice is very fast and most of the computation

time is used on feature extraction.

We use a maximum fertility of 5 in the following experiments as AER is

low with that settings and the aligner is only a little slower than with 3 or

4.
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Danish English

Fertility % Cumulative % Cumulative

0 6.98 6.98 6.42 6.42

1 77.92 84.90 86.69 93.11

2 10.43 95.34 4.95 98.05

3 3.14 98.47 1.48 99.53

4 1.13 99.60 0.32 99.85

5 0.26 99.86 0.09 99.94

6 0.07 99.93 0.02 99.96

7 0.04 99.97 0.00 99.97

8 0.01 99.98 0.02 99.99

9 0.00 99.98 0.00 100.00

10 0.00 99.98 0.00 100.00

11 0.00 99.98 0.00 100.00

12 0.02 100.00 0.01 100.00

Table 3.6: Fertilites of words in corpus.
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Figure 3.4: AER on development data and speed of aligner with different
settings for maximum fertility.
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Training Data

The aligner is trained on gold-standard alignments, but the question is

what to do with the trees. In some cases there will be gold-standard trees

available, but the problem with training on these is that the information

from these will be too reliable compared to when the aligner is used on

new data (assuming that this does not have gold-standard alignments).

Table 3.7 shows results when training on gold-standard trees and when

using 10-fold jack-knifing to create trees for the training data. The differ-

ence is not huge, but we still see that using gold-standard trees is not a

good idea. Table 3.8 shows statistical significance for these results.

prec (S) rec (S) prec (P) rec (P) AER

LinguaAlign (gold) 86.36 79.61 89.71 77.62 15.54

LinguaAlign (10-fold) 86.42 79.67 89.77 77. 68 15.49

MCFAligner (no trees) 88.81 83.18 91.86 80.74 12.63

MCFAligner (gold) 89.52 83.52 92.60 81.08 12.10

MCFAligner (10-fold) 89.73 83.86 92.84 81.45 11.80

Table 3.7: Scores when using either gold trees or jack-knifed trees as input
when training aligners.

A B C D E

P R P R P R A, LinguaAlign (gold)

P R P R P R B, LinguaAlign (10-fold)

P P R C, MCFAligner (no trees)

D, MCFAligner (gold)

E, MCFAligner (10-fold)

Table 3.8: Statistical significance tests for alignment results. P means that
precision of sure alignments is significantly better, R means that recall of
sure alignments is significantly better.
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3.3.3 Reranker

For reranking we use SVMrank 11 (Joachims, 2002). We have described the

theory behind this in section 2.1.4.

3.3.4 Sizes

We are interested in developing a method that can be used both for cre-

ating resources for machine translation but also can make the creation of

hand-aligned parallel treebanks less time consuming. For the latter task it

will not often be the case that a large amount of annotated data already ex-

ists. Instead the process could start with hand-annotating a small number

of sentences, and then use these to train a system to automatically create

annotation, which then could be corrected by hand. Therefore, we are in-

terested in how our different approaches perform when different amounts

of training data are available.

Figure 3.5 shows the performance of the baseline parsers depending on

the size of the training data12. As expected the performance increases with

the number of training sentences.

11Available from http://www.cs.cornell.edu/People/tj/svm_light/svm_

rank.html
12We have used the same parameters for all parsers. This probably means that for the

smaller training sets there is a huge risk of overfitting as the parsers have been trained for
10 iterations.
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Chapter 4

Bilingually Informed Parsing

In this chapter and the next we will present different approaches to creat-

ing parallel treebanks. First we will look at how bilingually informed parsing,

can improve the parses on each side in a parallel treebank. Bilingually pars-

ing in itself does not create a parallel treebank, but when we want to create

a parallel treebank a parallel corpus is available. This makes bilingually in-

formed parsing possible. And the assumption is that bilingually informed

parsing leads to better parses than standard monolingual parsing.

After a formal definition of the task of creating a parallel treebank we

will turn to a more general discussion of approaches to creating these. Es-

pecially why we believe bilingual parsing will work.

This will be followed by a more in-depth analysis of bilingual parsing

for closely related languages.

4.1 Formal Definition

Defining the task of creating the structures in a parallel treebank formally

consists in combining the definition of the parsing task and the alignment

task.

Let S and T be two sentences as defined in definition 1, i.e. S = ws
0w

s
1 . . . w

s
n

and T = wt
0w

t
1 . . . w

t
n. To create a parallel structure we need to find a well-

formed dependency graph Gs = (V s, As) for S and Gt = (V t, At) for T , as

defined in definition 4. In this work we use non-projective trees as defined

in definition 7.



64 Bilingually Informed Parsing

The two sentences also need to be aligned as defined in definition 10.

The crucial point is that the two node sets used for the alignment, and the

two node set used for the two trees are the same - this is what combine

the structures. There is one exception though, and that is the artificial root-

tokens used in parsing. We do not align these. This means that V a =

V s \ {ws
0} and V b = V t \ {wt

0} where V a and V b are the two disjoint sets in

the bipartite graph that is the alignment (definition 10).

4.2 Baseline Approach

The most straight forward approach to doing bitext dependency parsing is

to create the three structures separately. This means using a monolingual

parser on one language, using one on the other language and then using a

word aligner for aligning the words in the two sentences. This will create

the desired structure.

The work presented here, including bilingually informed parsing, fo-

cuses on how to combine alignment and parsing. Presumably, the result

will be better if we combine the prediction in a way that will make the

three structures depend on each other.

4.2.1 Why Can We Improve the Baseline?

The baseline approach will create the desired structure, however we expect

that we can do better than creating the tree structures separately. The three

structures should be able to affect each other in a beneficial way. First let

us consider how the two syntactic structures might help the word align-

ment process. Consider the bitext in figure 4.1. This example is easy to

<ROOT> Han er forsvundet
He is disappeared

<ROOT> He has disappeared

Figure 4.1: Parallel sentences.
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align but in some cases it is not obvious if the words ”has” and ”er” should

be aligned. If the input to the word aligner is instead as in figure 4.2

The aligner has a lot more useful information. Both of the words are the

<ROOT> Han er forsvundet
He is disappeared

<ROOT> He has disappeared

Figure 4.2: Parallel trees with dependency analyses.

root in the sentence and their dependents are probable translations of each

other. With this extra information it is considerably more likely that the two

words should be aligned. Now let us turn to the main focus of this chapter,

how parsing of one language can benefit from an existing word alignment

and a parse for the other language as illustrated in figure 4.3. If the parser

<ROOT> Han er forsvundet
He is disappeared

<ROOT> He has disappeared

Figure 4.3: Example of how alignment and target side tree can help
source side parsing.

has to decide whether or not ”er” should be the head of ”forsvundet”, it

can now look at the alignments and check if the word aligned to ”er” is the

head of the word aligned to ”forsvundet”. In this case it is, and that makes

it more likely that ”er” should be the head of ”forvundet”.

This example is good to illustrate the basic idea behind bilingually in-
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formed parsing, but the example is not very realistic because the Danish

sentence will probably not be a problem for the Danish parser. And if the

Danish parser has problems with this construction there is a good chance

that the English will as well. If the English parser also has problems there

is a large risk that the output from this will be erroneous, which will make

the input to the bilingually informed parser incorrect. The reason for this

is that the two sentences are highly parallel. Most work on bilingually in-

formed parsing actually focuses on languages that are not highly parallel.

For instance Chen, Kazama, and Torisawa (2010) use the example in figure

4.4 to motivate why bilingually informed parsing is useful. In English pp-

attachement is a problem, but apparently not in Chinese. For this reason

the Chinese sentence, where there is no ambiguity, can help disambiguate

the English sentence where there is.

We focus on languages that are closely related, primarily Danish-English.

This leaves the question whether bilingually informed parsing will work

for closely related languages. We go into this question in detail in section

4.4.

Figure 4.4: Example of how Chinese parse tree can disambiguate English
parsing.

We discussed the problem with erroneous input from a parser, but still

the example shown here oversimplifies the issue. There are several poten-

tial problems to consider. The most obvious is that we will not have gold-

standard trees and alignments to use in practice. For the word alignment

case, this means that the trees available on the two languages may contain

errors. For the parsing case in means that not only can the word alignment

be wrong, but the tree on the other language can also be wrong. In the ex-
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ample above, the fact that there is a relation between the two words that

the considered words are aligned with is a very strong indication that there

should be a relation between the two words. In real life, this might not be

the case because of errors in the word alignment and in the tree on the other

side.

4.2.2 Graph-Based Approach

We focus mainly on graph-based approaches, and therefore it is natural to

consider whether we can formulate the problem in a way where we can

apply some graph-algorithm to solve the problem. For the parsing prob-

lem we saw that MST-algorithms can be used, and for alignment we can

use assignment or minimum cost flow algorithms. These cannot simply be

combined, but it is possible that the problem can somehow be described in

a way where one algorithm can create all three structures simultaneously.

We have not pursued this direction because of the following problem. If

this algorithm requires edge factored features the results will be the same

as creating the structures independently of each other. The factorization

will make all scores of the edges of the parses independent of the rest of the

structure, also the other parse and the alignment, and the alignment scores

will be independent of the parses. Therefore there will be no interaction

between the structures.

With edge-factorization it will make no difference to treat the three

structures simultaneously. The question is then whether we can use a richer

features-structure. As discussed earlier second-order non-projective pars-

ing is NP-hard. This implies that an algorithm for solving everything at

once will also be NP-hard if we want non-projective parsing. Of course

a hill-climbing approach can be used to change the projective parse trees

into non-projective trees as described earlier, but then the edges that the

alignment and the other tree are based on will be changed.

The problems described above do not imply that a graph-based ap-

proach will not work. It only implies that it will be an approximate ap-

proach. We can only find the optimal solution with edge-factorization and

this is equivalent to creating the three structures independently of each

other.
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4.3 Extended Parser

Before turning to the analysis of bilingually informed parsing we will de-

scribe the parser we have used for doing experiments with bilingually in-

formed parsing.

4.3.1 Modified MSTParser for Extended Parsing

We have modified the MSTParser (see section 3.3.1) to also do bilingually

informed (extended) parsing. Extended parsing allows the parser to use in-

formation given by a word alignment and a syntactic (dependency) struc-

ture of the sentence aligned to.

This modification consists in reading input containing this information,

and extending the feature-extraction part of the parser to use this informa-

tion.

The extra features will have weights attached to them which are learned

in the same way as the weights for the standard monolingual features.

This way of treating the bilingual information corresponds to weak syn-

chronization (Burkett and Klein, 2008; Burkett, Blitzer, and Klein, 2010) or

sloppy transfer (Smith and Eisner, 2006; Smith and Eisner, 2009), i.e. the

parser is not forced to generate a structure corresponding to the target side

structure - it only has information from this to guide the parsing.

All the standard features from the MSTParser are left unchanged. To

these we add a few features that use the information from the alignment

and the analysis of the parallel sentence. The features are first-order, i.e.

they relate only to the possible relation between two words. All the fea-

tures indicate whether or not there exists a relation in the parallel analysis

between tokens aligned to the head and tokens aligned to the dependent.

head1-dep1 The head and the dependent is each aligned to exactly one

token and there is a relation from the token aligned to the head to the token

aligned to the dependent.

head1-depm The head is aligned to exactly one token and there is a rela-

tion from this to a token aligned to the dependent.
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headn-dep1 The dependent is aligned to exactly one token, and there is a

relation to this token from a token aligned to the head.

headn-depm There is a relation from a token aligned to the head to a

token aligned to the dependent.

In addition to these there are corresponding features that indicate if a

relation in the opposite direction exists.

As mentioned extended parsing is an instance of bilingually informed

monolingual parsing as described in 2.4.8. The parsing approach is similar

to the one used by Chen, Kazama, and Torisawa (2010), although they also

use second-order features.

4.3.2 Training Data

To train an extended parser the training data needs to have alignments and

trees on the target language. We do have gold-standard treebanks with

both alignments and trees available so we could simply train the parsers

on this.

This is not a good idea though. We have already seen in section 3.3.2

that the aligner performs better when not trained on gold-standard trees.

Instead we can use jack-knifing to create training data where the target

side structures and the alignments are output from a parser and an aligner

instead of gold-standard. The idea is that by doing this, the extended input

at training time will be similar to the extended input at test time.

Trees Alignments Danish English

gold gold 84.03 84.44

gold cross 85.99 85.27

cross gold 88.89 85.93

cross cross 88.79 85.72

Baseline 88.79 84.21

Table 4.1: Accuracy (UAS) of extended parsers when trained of different
combinations of gold-standard data and parser/aligner output data.
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Table 4.1 shows results when using different combinations of gold-stan-

dard data for training the extended parsers - 10-fold jack-knifing was used

here and is used in all subsequent experiment. We see that training on gold-

standard trees on the target side is a bad idea - especially for Danish where

there is an increase of around 3 points by using the jack-knifed parses of

the target side. On the English side the difference is smaller but still there.

We actually see that using gold-standard alignments is slightly better than

using the output from the aligner. This is counter intuitive as we expect that

the system performs better when the training data resembles the data at test

time. Later experiments with other features also showed the opposite effect

so jack-knifing will be used to create both the alignments and the trees in

the training data for the extended parsers in all subsequent experiments.

Table 4.2 also shows that the difference between the two is not statistically

significant.

A B C D

UAS UAS UAS A, gold-gold

UAS UAS UAS B, gold-cross

UAS UAS C, cross-gold

UAS UAS D, cross-cross

Table 4.2: Tests for statistical significance of UAS with different training
data. The lower left triangle is for Danish and the upper right for English.

.

4.3.3 Sizes

Figure 4.5 shows the difference between the UAS of the baseline parser

and the extended parser for different amounts of training data. We see

quite clearly that the extended parsing works better with small amounts of

training data. The reason may simply be that there is much more room for

improvement.
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Figure 4.5: Difference in UAS between baseline parsers and extended
parsers with different amounts of training data.

4.4 Analysis

In this section we will try to analyze the Danish-English data in order to

shed more light on some of the basic assumptions underlying the work in

bitext dependency parsing. Furthermore, this analysis will provide some

insight into the kind of features that are necessary in order to obtain good

results.

In the analysis we will look both at the data that is used in the exper-

iments, and at the output from the extended parsers in order to analyze

which errors these make, and if it is possible to reduce the number of er-

rors.

4.4.1 An Example

Before we turn to the more in-depth analysis, let us reconsider why we

believe that bilingual information can actually help parsing. We saw a

Chinese-English example, but the question remains whether there are good
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Manden køber en mobiltelefon
The-man buys a mobile-phone

The buys a mobile phoneman

Figure 4.6: Example of systematic difference between Danish and En-
glish.

reasons to believe that it will help with Danish-English.

We believe that it will. One reason for this is the use of compound

words in Danish. Another concerns the different use of definite determin-

ers in the Danish. Figure 4.6 shows an example that contains both of these

phenomena. We see two cases where the Danish word is written as one,

and the English equivalent is written with two. In both cases there is a

relation between the two English words. The hyphens in the glosses also

heavily suggest that these relations exist. The hypothesis is that if two (and

only two) English words are aligned to one (and only one) Danish word,

there is a relation between the two English words. If this is true, this could

be a big help in parsing English. The Danish orthography will always pre-

dict a relation correctly (although not in which direction it is).

2-1 Baseline UAS

Danish 92% 95%

English 96% 93%

Table 4.3: Statistics for 2-1 alignments. The ”2-1” column shows part of
2-1 configurations where there is a relation between the two source side
tokens. The ”Baseline UAS” column shows accuracy of baseline parser
on these relations.

The example is made up, and we need to test this assumption in real
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data. To do this we look at the CDT data for 2-1 alignments and check how

often there is a relation (in either direction) between the two words. For

completeness, we include the information in the other direction (two words

in Danish and one in English) although we do not hypothesize anything

about this.

The results can be seen in the 2-1 column in table 4.3. We see that it

is very often the case that there is a relation - especially when we look at

English. The reason for this is of course the compound words and different

use of determiners in Danish, which we discussed earlier and saw in figure

4.6. It is not always the case though. The reason for this is the annotation

used in the CDT. Figure 4.7 shows an example where there is a 2-1 relation,

but not a relation between the two words.

their two teenage daughters almost turn ...
subj possd mod nobj quant <ROOT>

vælter deres to teenagedøtre ...
<ROOT> subj possd nobj

Figure 4.7: Example of 2-1 alignment without a relation between the two
tokens.

In order to avoid the 4% where the hypothesis does not hold, and hope-

fully find information that is even more reliable for extended parsing, we

try to look for a more specific pattern. If we look at the example in figure

4.6 we see that in both of the 2-1 cases, the heads of the tokens involved in

the alignment are also aligned. Therefore we will look at situations where

the head of the Danish token in the 2-1 alignment is aligned to a token that

is the head of only one of the two English tokens. Figure 4.8 shows how

this configuration can look.

If we do the same statistics for these as we did for the more generic 2-1

configuration, we see a very high correspondence. Table 4.4 shows this.
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Figure 4.8: More specific 2-1 configuration.

The correspondence is very strong in both cases, but this may not be very

spec. 2-1 Baseline UAS

Danish 92% 95%

English 99.6% 92%

Table 4.4: Statistics for more specific 2-1 alignments where there is a rela-
tion between the two source side tokens, and accuracy of baseline parser
on these relations.

helpful because many of these relations may be easy for the baseline parser

which means there is very little to gain. This is in fact the case, as table 4.3

and table 4.4 show. The accuracy of the relation between the two words

in a 2-1 configuration (where there is supposed to be a relation) is very

high. Nonetheless, it is possible that thisaccuracy can become even higher

by using the fact that the relation very often exists.

4.4.2 Correspondence

The idea, that joint parsing of bitexts leads to better parser accuracy, rests

on the assumption that there is some syntactic correspondence between the

two sentences. This assumption has been empirically justified by research

that shows that better results can be achieved using joint or bilingually in-

formed parsing. Several examples of this have been discussed in section

2.4.
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Furthermore, we saw that Hwa et al. (2002) investigated the assump-

tion more systematically and found that projecting analyses directly from

English to Chinese gives a F1-score of only 38.1, but that by hand-crafting

simple rules this number increases to 67.3.

The data we use here, differs from the data used in other experiments,

which makes it interesting to retest the assumption of correspondence. First

of all, the data used in our experiments has both hand-annotated depen-

dencies and alignments. This is also the case in (Hwa et al., 2002), but

otherwise most work relies on automatically created alignments. Further-

more, in our case the languages are closely related, and the annotation on

each language is done using the same underlying syntactic theory (Buch-

Kromann, Wedekind, and Elming, 2007).

Instead of looking at the parser accuracy when projecting an analysis

from one language to another, we test the assumption by looking at config-

urations where the analysis on one language could possibly be beneficial

when parsing the other.

Initially, we look at four types of configurations. Figure 4.9 illustrates

these.

TRUE For a given dependency arc, both the dependent and the head

is aligned to exactly one token in the other sentence and there exists a

dependency-relation between these (in the same direction).

FUZZY For a given dependency arc, the head or the dependent (or both)

is aligned to more than one token and there exists a relation (in the right

direction) between some of the tokens aligned to the head and some of the

tokens aligned to the dependent.

FALSE There is no relation between the token(s) aligned to the head and

the token(s) aligned to the dependent.

NEITHER Either the head or the dependent is not aligned.

Table 4.5 shows the distribution of the types of configurations on a de-

velopment set of 416 sentences in Danish and English. We see that around
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TRUE FUZZY

FALSE OTHER

Figure 4.9: Types of configurations.

60% of all dependencies are of the type TRUE. This is high, but not sur-

prising, as Danish and English are closely related languages and the same

annotation scheme has been used for both languages.

Danish English

TRUE 59.7% 65.1%

FUZZY 28.5% 15.2%

FALSE 7.9% 16.8%

NEITHER 3.9% 2.9%

Table 4.5: Distribution of types on configuration for Danish-English.

More interestingly, there is a big difference between the numbers for

FUZZY and FALSE. There are two main reasons for this, rooted in the

differences between English and Danish we discussed above. Figure 4.10

shows an example of why this affects the distribution. The two sentences
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are highly parallel, but we see that where the Danish side is classified with

FUZZY the English side is classified with FALSE.

Manden køber en mobiltelefon
The-man buys a mobile-phone

The buys a mobile phoneman

TRUE

TRUE

FUZZYFUZZY

TRUE TRUE

FALSE FALSE

Figure 4.10: Example of configurations leading to more FALSE in English
than in Danish.

We conclude that the categories are too coarse for measuring correspon-

dence. To get a better idea of this, we introduce two new configurations,

based on the more specific 2-1 configuration we looked at above. These are

illustrated in figure 4.11.

P-TRUE For a dependency arc, the dependent is aligned to one token, the

head is aligned to (only) the same token and the head of the head is aligned

to (only) the head of the token the dependent and head is aligned to.

P-FUZZY For a dependency arc, the head and dependent is aligned to the

same token and there exists a relation between at least one of the tokens the

dependent is aligned to and at least one of the tokens the head of the head

is aligned to.

This leads to a new distribution of configurations, shown in table 4.6.

We see that a large part of the FALSE on English were due to this kind of

configuration. Figure 4.12 shows the example sentence again, but with the

new categories. We see that these categories better captures the fact that the

sentences are parallel.
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P-TRUE P-FUZZY

Figure 4.11: New P-Types.

Manden køber en mobiltelefon
The-man buys a mobile-phone

The buys a mobile phoneman

TRUE

TRUE

FUZZYFUZZY

TRUE TRUE

P-TRUE P-TRUE

Figure 4.12: Same example as above but with new configurations. Now
there are no FALSE arcs in English.

This systematic difference underlines the importance of designing good

features for the extended parsing. Even with such closely related languages

as English and Danish there are some systematic differences that need to be

taken into account.

Correspondence in Parser Errors

Above we saw that there is a high degree of correspondence between the

analyses in Danish and English in the treebank. This can be explained by
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Danish English

TRUE 59.7% 65.1%

P-TRUE 2.0% 7.9%

P-FUZZY 0.5% 0.8 %

FUZZY 28.5% 15.2%

FALSE 5.4% 7.9%

NEITHER 4.0% 3.0%

Table 4.6: Distribution of types on configuration for Danish-English.

two facts, namely that English and Danish are closely related languages1,

and that the annotation guidelines were the same for both languages. This

poses the question whether something can actually be learned from the

parsed parallel sentences in the other languages. If the analyses are basi-

cally the same, then there is a good chance that the parsers will make the

same kind of mistakes. If this is the case, the Danish parser cannot learn

from the output of an English, as the errors will largely be in the same

places.

We now investigate this and determine whether or not it is in fact the

case that the parsers make the same errors. Table 4.7 shows the distribution

of configurations when we look only at the tokens which a standard parser

assigns the wrong head. As the correspondence is based on output from

parsers on both sides, a large degree of correspondence will mean that the

parsers makes the same errors, i.e. even in the errors in the parser output,

the analyses on both languages are the same. As we see, the correspon-

dence is much lower than the general correspondence we saw above. This

implies that the analyses from the parsers are not the same.

Unfortunately, this does not mean that the output from e.g. the English

parser can help the Danish. We know that in many cases where the Danish

parser makes mistakes, the English parser does not create the same anal-

ysis. But we do now know whether or not the English parser creates the

correct analysis, and even if it does, it might not be an analysis that can

1In the Copenhagen Dependency Treebank in particular as the translators were in-
structed to translate from Danish to English as directly as possible (Buch-Kromann,
Wedekind, and Elming, 2007).
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Danish English

TRUE 21.9% 37.6%

P-TRUE 0.8% 3.0%

P-FUZZY 0.1% 0.2 %

FUZZY 15.6% 11.6%

FALSE 57.5% 45.24%

NEITHER 4.2% 2.9%

Table 4.7: Correspondence in parser errors.

help the Danish parser.

To try and get an idea of whether or not the parser output can help, we

will look at the data in another way. For every token in the source language

that has the wrong head in the parser output, we look at the token that this

is aligned to (gold-standard) and see if this token has the correct head. If

it is aligned to more than one token, we see if any of these tokens have the

correct head. The results from this analysis are shown in table 4.8.

Danish-English English-Danish

Alignment type incorrect correct incorrect correct

1-1 47% 35% 35% 54%

1-M 5% 13% 3% 8%

Table 4.8: How often there is help available in the parse of the parallel
sentence.

We see that there is help available from the parses on the other lan-

guage. If we look at the Danish-English case where the output from the

English parser should help the Danish parser, we see that in 35% of the

cases the token is aligned to only one token and that token has the correct

head. In these situations it is definitely possible that an extended parser

can learn something from the analysis on the target language. In 13% of

the cases one of the aligned tokens has a correct head. This is very vague

and is not necessarily situations where the extended parser can benefit from

the target side analysis. For the remaining 52% there is no help to get, as
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the analysis on the target side is wrong. In the other direction the situation

is slightly better as 54% of the 1-1 aligned tokens has the correct head.

4.4.3 Different Annotation Style

We have discussed the problem that if two similar languages are used and

the same annotation guidelines are used, the parsers for the two languages

will often make the same kind of mistakes or at least make mistakes in the

same places. In work on joint or bilingually informed parsing it is also often

noted that it is the difference between the two languages that leads to im-

provements. For instance that pp-attachment is ambiguous in English but

not in Chinese (Chen, Kazama, and Torisawa, 2010). While we cannot use

different languages when parsing Danish-English, we could try to use dif-

ferent structures on one of the languages to see if the structural divergence

that arises from this will help the parsers. Earlier, we have seen (section

4.3.2) that the best input to an extended parser is the output of a target lan-

guage parser and not the gold-standard trees on the target language. This

implies that we do not need a parallel treebank with different annotation

styles on the two languages to perform this experiment - we only need two

different parsers.

To try this approach we use data from the Penn Treebank (Marcus,

Santorini, and Marcinkiewicz, 1994). We add noun phrase-structure as

described (and implemented) by Vadas and Curran (2007). We then con-

vert the treebank to dependency notation using ’The LTH Constituent-to-

Dependency Conversion Tool for Penn-style Treebanks’ 2 (Johansson and

Nugues, 2007).

To make a more reasonable comparison we randomly select sentences

from the PTB to make the training set the same size as the set we use from

the CDT (3,333 sentences). The annotation styles of the two treebanks are

very different. We trained a parser on the PTB-dependency data and ap-

plied it on the CDT data. The UAS was below 50%. There are two reasons

for this. One is of course the difference in annotation style. The other is

that the parser will parse data that at least to some degree is out of domain.

However, this guarantees divergence between the structures on the Danish

2http://nlp.cs.lth.se/software/treebank_converter/
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side and on the English side which we use for input to the extended Dan-

ish parser. Table 4.9 shows the results from this experiment. We see that

using the English data parsed with the PTB-style annotation is not helpful

for the extended parser - it actually decreases accuracy slightly. The con-

clusion from this small experiment is that it is not necessarily better to use

structures with larger divergence.

UAS

Baseline 88.79

CDT-input 88.79

PTB-input 88.42

Table 4.9: Scores of extended parser with different structures in the ex-
tended input.

4.4.4 Different Parsers

In this section we will again address the problem that because the same

parsers and the same annotation guideline is used for parsing both lan-

guages, the errors in the parser output may be in the same places on the two

languages. In the section above we tried varying the annotation guideline

for one language by training a parser on completely differently annotated

data.

In this section we will try to use another parser to parse one language.

It is well known that different kinds of parsers make different kinds of mis-

takes (McDonald and Nivre, 2011). This means that a parser can possibly

benefit from the output of another parser. This is often called stacked pars-

ing and has been shown to work well (Nivre and McDonald, 2008; Martins

et al., 2008).

What we propose here is a kind of stacking, where the input to the

parser is on a different language than the language it is parsing. In some

sense bilingually informed parsing is just stacked parsing, but it is more

difficult as alignment is not trivial.

We use the MaltParser described in section 3.3.1 as the parser on the

target language. We do not perform the experiment in the opposite direc-
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tion as we have not implemented a version of the MaltParser that can do

extended parsing. Both the training data and the test data is parsed with

the MaltParser. The training data is made with 10-fold jack-knifing as in

the other experiments.

Stacking parsers on one language has been shown to provide improve-

ments, so we need to consider if any improvement in our experiment is

simply due to the stacking and not the ’bilingual stacking’, so we also try

using the output from the MaltParser on one language to train an extended

parser on the same language. This is stacked parsing, but we use the same

features we use for the bilingual parsing (all alignments will of course be

1-1 so only the head1-dep1 feature will be used).

Danish English

Extended 88.79 85.72

Stacked 89.44 84.57

Extended, Malt input 88.39 86.05

Table 4.10: UAS when using MaltParser output as input to the extended
parser.

Table 4.10 shows the results. We see that the results are quite contradic-

tory. For Danish, stacked parsing is helpful but not extended parsing with

MaltParser input. For English, the result is the opposite. As the results are

inconclusive we will not pursue this direction further.

4.4.5 Errors From Extended Parsers

We saw in the baseline results for the extended parser that the extended

parsers yielded better results than the baseline parser for English, but not

for Danish. The output from the standard Danish parser is not the same

as the output from the extended Danish parser, although the accuracy is

the same. This implies that the extended parser makes both good and bad

changes compared to the standard parser. This is probably also the case for

the extended English parser, although the overall accuracy is better. In the

following we will investigate this further.
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Total 8,681 std true ext true

Diff 512 6.00% 36.28% 40.69%

not aligned 6.91% 47.22% 36.11%
aligned to one 84.84% 35.97% 40.95%

aligned token has true head 49.10% 20.74% 66.36%
head is root 1.81% 12.50% 62.50%
head not aligned 2.26% 30.00% 40.00%
head aligned to one 79.41% 36.71% 39.32%

head aligned to true head 36.71% 7.58% 91.97%
head aligned to head

65.81% 38.10% 47.61%
of aligned token

aligned to many 8.25% 30.23% 41.86%
head is root 9.30% 25.00% 75.00%
head not aligned 0% - -
head aligned to one 69.77% 40.00% 50.00%
connected 65.12% 25.00% 50.00%

Table 4.11: Error analysis on extended Danish parsing.

Quantitative Analysis

Table 4.11 and 4.12 show some statistics from the output of the standard

parser and the monolingual parser on the development data. In table 4.11

we see that when there is a difference between the standard and the ex-

tended parser, it is more common that the extended parser makes the cor-

rect analysis than it is that the standard makes the correct analysis. This

does not seem to match with the previous evaluation, which showed that

the extended parser was not more accurate. The only explanation is that

the main part of the difference is in non-scoring tokens (punctuation) and

that the rest is too little to change the overall accuracy3.

The tables give an overview of the situations where there is a difference

between the output of the standard parser and that of the extended parser.

We see that although the extended parsers are correct in more cases than

the standard parsers, they actually make a lot of wrong decisions as well.

In general, the distributions over the two classes are the same for the differ-

3Evaluation with punctuation confirms this. UAS for baseline parser is 87.29 and for the
extended parser it is 87.56.
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Total 9,464 std true ext true

Diff 901 9.52% 30.41% 44.62%

not aligned 4.44% 40.00% 30.00%
aligned to one 92.34% 29.93% 45.43%

aligned token has true head 65.14% 19.19% 65.31%
head is root 3.61% 30.00% 63.33%
head not aligned 2.16% 16.67% 38.89%
head aligned to one 90.38% 30.19% 44.95%

head aligned to true head 51.99% 15.35% 78.26%
head aligned to head

77.79% 29.57% 51.79%
of aligned token

aligned to many 3.22% 31.03% 41.38%
head is root 3.45% 100.00% 0%
head not aligned 0% - -
head aligned to one 89.66% 30.77% 46.15%
connected 79.31% 26.09% 47.83%

Table 4.12: Error analysis on extended English parsing.

ent situations we look at. There are some notable differences though. There

is one situation where the standard parser is better4. This is when the de-

pendent token on the source side is not aligned. In this case, the extended

parser can of course not get any help from the target side, but there is no

reason that is should do worse than the standard parser. These results sug-

gest that the non-extended part of the model turns out worse than in the

standard case.

The two other categories that differ most from the overall distribution

are ’aligned to one - aligned token has true head’ and ’aligned-to-one -

head-aligned to one - head aligned to true head’. In these categories, the

extended parser is much better than the standard parser. This is not sur-

prising as these are situations that are indicative of good input. In the first,

the analysis of the token aligned to the source-side dependent is correct. In

the second, the head is aligned to the true head of the token aligned to the

source side dependent.

4Excluding the ’aligned to many’ - ’head is root’, which we exclude because there is only
one example.
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Although the analysis only gives a very coarse view of what is happen-

ing in the extended parsers, it does show that the extended parsers work as

we expect - when the input is good so is the output. Apart from this con-

clusion, it is difficult from this analysis to identify situations that can help

us in designing additional features.

Qualitative Analysis

In the following, we present a qualitative analysis of the errors made by

the extended parser and not by the standard parser. We do this by ana-

lyzing situations where the extended parsers make errors and the standard

parsers do not, to investigate why this happens. We hope that this anal-

ysis will help us to design features to help prevent these errors. This can

be seen as a conservative way of increasing the quality of the output of the

extended parser. Instead of trying to get it to make more of good changes

compared to the standard parser, we focus on how to help it make fewer

incorrect changes.

We will show some examples to illustrate the configurations we are dis-

cussing. In these examples, the structure at the top will be the output of the

extended parser and the structure at the bottom will be the extended input

to the extended parser. Dependency arcs that are incorrect are drawn with

dashed lines. The token with the vertical lines around it is the central token

in the analysis.

Prepositions and Punctuation

Prepositions and punctuations are overrepresented when looking at the

dependents that are incorrect in the output from the extended parsers, com-

pared to the output from the standard parsers. These are high frequency

words that often carry little meaning, and are often considered difficult to

align correctly. There will often be more than one punctuation token in a

sentence, which can make it difficult to pick the correct one. With respect

to the prepositions, these are often part of 1-n, m-1 or n-m alignment - also

making it difficult to align them correctly. Figure 4.13 shows an example

where the extended parser makes an error involving a preposition. We see

that ”foran” gets the wrong head. There is no clear indication why this

is the case, but as said, we see an overrepresentation of prepositions and
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punctuation when looking at the errors.

har et forspring |foran| den siddende

has a lead over the sitting

Figure 4.13: Error from extended parser involving a preposition.

Head and Dependent Aligned to Same

Situations where the head and dependent on the source side are aligned

to the same token on the target side also seem to be overrepresented when

looking at the errors from the extended parser. Figure 4.14 shows an ex-

ample of this. We have no really good reason why this causes errors in the

extended parser.

" believes |Detective| Inspector Chr

" mener kriminalinspektør Chr.

Figure 4.14: Error from extended parser involving head and dependent
aligned to the same token.

Wrong Input

Most of the errors are caused by the parser being misguided by either

wrong alignments or a wrong analysis on the target side. To reduce the

number of variables in our analysis we have tried redoing it with gold-

standard alignments instead. The biggest source of errors after this is a
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wrong analysis on the target side language. Figure 4.15 shows an example

of this.

To remedy this, one would have to be able to do some kind of prediction

on how likely it is that the target side analysis is correct. This is almost

parsing, as it requires predicting how likely a dependency arc is, so this

really reduces to making the target side better. An alternative would be to

make some soft-link features that return some score to indicate how likely

the target side analysis is, given the target side model. We have not pursued

this idea further.

Prince Frederik |and| Prince Joachim

Kronprins Frederik og prins Joachim

Figure 4.15: Error from extended parser involving a wrong analysis on
the target side.

n-1 Alignments

We could identify one other major source of errors in the extended parser

- i.e. situations where the monolingual parser makes the correct analysis,

and the extended parser does not. These are situations where the parser is

misguided by n-1 alignments. Figure 4.16 shows an example of this.

If the possible dependent is part of such a feature, the head1-dep1 and

headn-dep1 -features are activated, but the information from the target sen-

tence is a lot less reliable if the target-side token is also aligned to more

words in the source sentence.
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er bange |for| , at

am afraid that

Figure 4.16: Error from extended parser involving a n-1 alignment.

4.5 More Features for Extended Parsing

The analysis of correspondence and the analysis of the errors from the ex-

tended parsers points to some configurations that could be helpful for the

parser to identify. This leads us to introduce new features that are designed

to avoid the errors.

4.5.1 Correspondence

Based on the analysis in section 4.4.2, we include features that indicate

whether the current possible edge is part of the additional configurations

described:

p-true The dependent is aligned to exactly one token, the head is aligned

to (only) the same token and the head of the head is aligned to (only) the

head of the token the dependent is aligned to.

p-fuzzy The dependent and head are aligned to the same token, and there

exists a relation between at least one of the tokens the dependent is aligned

to and at least one of the tokens the head of the head is aligned to.

4.5.2 2-1 Alignment

We also try to capture the more general 2-1 configurations with the follow-

ing feature.
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2-1 Head and dependent token are aligned to the same token, and only

that token, and this token is only aligned to these.

4.5.3 Prepositions and Punctuation

We saw in section 4.4.5 that certain word classes seemed to give the ex-

tended parser more problems than others. In order to deal with this, we

introduce the possibility of combining all the other extended features with

the PoS-tag of the dependent, with the PoS-tag of the head and with this

PoS-tag for both. Hopefully, this can help the extended parser to trust the

extended input more with certain word-classes than with others.

4.5.4 Head and Dependent Aligned to Same

To reduce the number of errors related to the problem of the head and de-

pendent being aligned to the same token, we introduce the following fea-

tures.

same Head and dependent token are aligned to the same token, and only

that token. The aligned token can be aligned to any number of tokens.

same-fuzzy Head and dependent token are aligned to the same token,

and at least one of them is also aligned to another token. The aligned token

can be aligned to any number of tokens.

This same-feature is very similar to the 2-1-feature but allows the target

side token to be aligned to other tokens as well. This make the 2-1-feature

a special case of the same feature.

4.5.5 n-1 Alignment

The error analysis suggests introducing features to help the parser to avoid

being misguided by n-1 alignments. If the possible dependent is part of

such a feature, the head1-dep1 and headn-dep1-features are activated. The

following features help prevent errors in configurations like these.

depn1 headn-depm and dependent token is part of n-1 alignment.
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headn1 headn-depm and head token is part of n-1 alignment.

depheadn1 headn-depm and both dependent and head token are part of

(possible different) n-1 alignments.

The depheadn1-feature is different than same-feature and the 2-1-feature

because it requires that there is a relation between tokens the head and de-

pendent are aligned to. This is not possible with the two other features as

the head and dependent are aligned to the same token in these.

4.5.6 Empirical Evaluation of Features

We have introduced features based on different analyses of the data. Al-

though we have good reasons to believe that these features should help

the parsers and increase the quality of the output from these, this has to be

tested empirically.

Table 4.13 shows the results from the baseline parser, from the extended

parser and from the extended parser with each of the new features dis-

cussed here. The variation in the accuracy on the development data seems

Development Cross-validation

Danish English Danish English

baseline 88.79 84.21 87.24 83.06

extended 88.79 85.72 87.72 84.85

+ PoS 88.78 86.17 87.71 85.12

+ same 88.93 85.89 87.69 85.14

+ same + PoS 88.83 85.99 87.68 85.20

+ p 88.48 86.09 87.59 85.02

+ p + PoS 88.55 85.84 87.60 85.14

+ n-1 89.53 86.06 87.67 85.05

+ n-1 + PoS 88.89 85.88 87.59 85.12

+ 2-1 88.87 85.99 87.57 85.06

+ 2-1 + PoS 88.83 86.07 87.65 85.18

Table 4.13: UAS with simple features.
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somewhat random. For instance, the addition of PoS-tags does not have a

large effect in most cases, but with the n-1 feature it leads to a large drop in

accuracy. Because of this we have tested all the additional features with 10-

fold cross-validation as well. Here we see a smaller variation, which leads

us to believe that these results are more reliable.

Earlier, we saw that the extended parsing did not help on Danish. When

using cross-validation, the result is different. Here extended parsing helps,

but on the other hand none of the additional features help. In English, all

additional features increase accuracy. In English, combining the features

with their PoS-tags consistently improves accuracy. In Danish, there is no

clear tendency with respect to this.

In this first evaluation we look at each of the features in isolation, but

of course we need to see if they will work when using more features at the

same time. Table 4.14 shows results when the features are used together.

In general, there is no clear benefit from combining the features, but the

highest accuracies are found with combined features. In Danish, the best

combination of features is ’same + p + n-1’. In English, there are two feature

combinations that has the highest score, ’+ p + 2-1 + PoS’ and ’+ same + n-1

+ 2-1 + PoS’. We let the results on the development data break the tie and

assume that ’+ same + n-1 + 2-1 + PoS’ is the best combination of features

to use.

These feature combinations will be used in all subsequent experiments

involving extended parsing on Danish and English.

Table 4.15 summarizes the results from the test of features and shows

results from significance results when comparing the simple extended fea-

tures to the ones we found to perform best.

4.5.7 A Note on PoS-Tags

We have seen that the baseline parser performs better on Danish, most

likely because of gold-standard PoS-tags and also that the extended parser

improves much more on English than on Danish. We believe that this is

basically because the Danish baseline parser is better. To test it, we try to

use non-gold-standard PoS tags on Danish. We do not have a PoS-tagger

available for Danish so we create the tags using 10-fold jack-knifing with
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Development Cross-validation

Danish English Danish English

baseline 88.79 84.21 87.24 83.06

extended 88.79 85.72 87.72 84.85

+ same + p 88.74 85.77 87.74 85.14

+ same + p + PoS 88.81 85.95 87.71 85.21

+ same + n-1 88.75 86.07 87.73 85.18

+ same + n-1 + PoS 88.99 86.04 87.46 85.16

+ p + n-1 89.02 85.98 87.66 85.06

+ p + n-1 + PoS 89.07 85.93 87.62 85.12

+ same + 2-1 89.29 86.01 87.70 85.18

+ same + 2-1 + PoS 88.90 85.89 87.70 85.20

+ p + 2-1 88.74 86.01 87.74 85.05

+ p + 2-1 + PoS 88.50 85.71 87.63 85.24

+ n-1 + 2-1 89.15 85.99 87.60 85.18

+ n-1 + 2-1 + PoS 88.78 85.92 87.57 85.12

+ same + p + 2-1 88.75 86.16 87.73 85.11

+ same + p + 2-1 + PoS 88.93 85.99 87.58 85.18

+ same + n-1 + 2-1 89.02 86.27 87.65 85.13

+ same + n-1 + 2-1 + PoS 88.91 86.12 87.64 85.24

+ p + n-1 + 2-1 89.02 86.15 87.65 85.06

+ p + n-1 + 2-1 + PoS 88.83 85.99 87.69 85.23

+ same + p + n-1 89.13 86.17 87.81 85.09

+ same + p + n-1 + PoS 89.02 85.98 87.59 85.17

+ same + p + n-1 + 2-1 88.85 85.98 87.64 85.14

+ same + p + n-1 + 2-1 + PoS 89.05 86.04 87.69 85.21

Table 4.14: UAS with combined features.

the SVMTool-tagger5 (Giménez and Màrquez, 2004).

In the experiment, we exclud all information in the treebank except the

PoS tags, which is why the English baseline results also change. Table 4.16

shows baseline results and results with the simple extended features. We

5http://www.lsi.upc.edu/˜nlp/SVMTool/
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Development Cross-validation

Danish English Danish English

simple 88.79 85.72 87.72 84.85

best 89.13 86.17 87.81 85.24†

Table 4.15: Results with simple features and best features for extended
parsing.

see that the Danish parser is still better than the English, but the difference

is a lot smaller. We also see that with the extended parsing, the Danish

parser now improves on the baseline, and that the English improves less

than it did with gold-standard PoS tags. This confirms that the reason the

English extended parser works better than the Danish, is simply that the

input it gets, i.e. the output from the Danish parser, is better.

PoS-tags Danish English

Gold

Baseline 88.79 84.21

Extended 88.79 85.72

Difference 0 1.51

Non-Gold

Baseline 85.00 83.83

Extended 85.72 84.64

Difference 0.72 1.01

Table 4.16: Results for extended parsing with data sets with non-gold
PoS-tags.



Chapter 5

Joint Models

In the previous chapter we saw how bilingually informed parsing could

improve parsing accuracy, and earlier we saw how sub-tree alignment could

improve alignment accuracy compared to word alignment. The models

used in bilingually informed parsing rely on bilingual data, but not on

each other. The model used for extended parsing on Danish is indepen-

dent of the model used for extended parsing on English. In this chapter we

will present two approaches where the models are not independent of each

other. The hope is, that this will lead to even better results as the bilingual

information can be used even better.

We use the term ”joint models” to describe approaches where the mod-

els for the different sub-structures are dependent of each other. The actual

processing of the sub-structures is not necessarily done simultaneously.

5.1 An Iterative Approach

In this section we will describe an approach to bitext dependency parsing

which we call the iterative approach.

There are three basic assumptions behind this approach. The first two

are that bilingually informed parsing is better than standard parsing, and

that sub-tree alignment gives better results than word alignment. We have

seen that both of these assumptions hold. The extended parsers are better

than the standard parsers and the aligner is better with trees in the input

than without. The third assumption is that the higher the quality of the
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input is, the higher the quality of the output will be.

5.1.1 Better Input Makes Better Output, Random Errors

Before we turn to the describing the approach we will investigate the as-

sumption that better input leads to better output in the case of extended

parsing.

To test the assumption we introduce some random errors in the data to

simulate different levels of accuracy of the parser used on the parallel sen-

tences. More concretely we run through the English train and development

data and randomly introduce wrong dependencies with a certain probabil-

ity. We do so on both train and development data so the number of errors

in the input at train and test time is the same. The hypothesis is then, that

as the number of errors in the English data decrease the accuracy of the

Danish parser that uses this as input will increase. Figure 5.1 shows that

this is indeed the case. In this case the alignments used are gold-standard

alignments.

We actually see that using data with random errors does a lot better than

using actual output from parsers. For instance with an error rate of around

20% we see that the parser is 4 points better than the baseline. This is far

more than the gain we get when using parser output where we saw no in-

crease in accuracy for Danish. The reason for this, we believe, is that when

using randomly created wrong edges, the chance of the extended parsing

actually changing the results of the parser is much smaller than when using

output from a parser. We believe there is one main reason for this. There

is a good chance that the randomly created relation is very unlikely. This

means that a relation on the source side matching this will have a very low

score. The relation is simply not competitive with the correct edge so even

though the extended features fire for this relation, it will not receive high

enough score to be chosen. When the score of the source side edge is high

and it matches a target side edge, this edge is probably not incorrect.

We see that the assumption holds when synthetic data is used, but we

do not know for sure if the assumption also holds for real data.
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Figure 5.1: Effect of quality of input on quality of output in extended
parsing. Based on synthetic data with random errors. The horizontal line
shows the accuracy of the baseline parser.

5.1.2 Basic Iterative Approach

In the iterative approach the different sub-tasks of bitext parsing and align-

ment will inform each other in an iterative fashion. The idea is, that as the

input to one sub-task gets better, so does the output. And as this is the in-

put to another sub-task, the output of this sub-task and so on. Of course

the quality will stop increasing at some point, but hopefully the quality at

this point will be better than simply doing the extended parsing once.

The tools needed to use the iterative approach are extended parsers and

a sub-tree aligner.

The iterative process can begin with either parsing or alignment. He we

will consider the case where parsing is performed as the first step.

The process will start with the training of a standard monolingual parser

for each language and an extended parser for each language. The standard

parsers will then be used to parse the unseen data. Furthermore a sub-tree
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aligner is trained. This aligner will then be used to align the unseen data

using the output from the parsers as input.

With these things in place the actual iterative process can begin. To-

gether the output from the parsers and the aligner provide the input for

doing extended parsing. So now the extended parsers will be applied on

the unseen data using the output of the two other sub-tasks as input. We

choose to run the parsers in parallel so in each iteration the trees from the

previous iteration are used. The alternative would be to first do one lan-

guage and then use this as input for the other.

Algorithm 3: Iterative - no retraining
Data: trainA, trainB, extTrainA, extTrainB, trainAB, test
Result: test parsed and aligned

train parser A0 on trainA; train parser B0 on trainB;

apply A0 on testA → parsedA0; apply B0 on testB → parsedB0;

train ext-parser A′
0 on extTrainA; train ext-parser B′

0 on extTrainB;

train aligner AB0 on trainAB;

for i ← 1 to maxIter do
apply ABi−1 on test with parsedAi−1 and parsedBi−1 as input →
alignedABi;

apply A′
i−1 on alignedABi → parsedAi;

apply B′
i−1 on alignedABi → parsedBi;

end

The number of iterations can either be given in advance or a stop-criterion

can be used. Algorithm 3 describes the iterative approach with a fixed

number of iterations.

Figure 5.2 shows the scores from the output after each iteration when

using the iterative approach. The best features found in section 4.5 are used.

We see that overall the approach does work. The largest improvement

is in the first iteration but there are small improvements after this. Inter-

estingly, we also see that the accuracy goes up and down periodically, and

that this change is shifted between Danish and English. In one iteration the

accuracy of the English parser drops, then in the next the accuracy of the

Danish parsers drops and then the English drops and so on. This seems to
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confirm the third assumption - better input means better output. When the

English output gets worse, the input to the Danish parser in the next iter-

ation gets worse, which leads to worse Danish output and so on. Shifted

from this we see the opposite effect. When the English output gets better,

the Danish gets better in the next iteration and so on. The alignment output

gets slightly worse compared to the simple sub-tree alignment (iteration 0).
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Figure 5.2: Result per iteration with the basic iterative approach.

5.1.3 Iterative With Validation

For the iterative approach to work it is necessary that the quality gets better

after each iteration, and this is of course not guaranteed to be the case. If

the quality of the output decreases in an iteration this will hurt the parser

on the other language in the next iteration. Figure 5.2 shows an example

where this happens and leads to the output of the parsers going up and

down.

To avoid this, we use a validation set. After each iteration the validation
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set is parsed and only if the accuracy on this increases compared to the best

parse so far do we use this as input in the next iteration. This also provides

a natural stop-criterion. When neither the accuracy of the parsers nor the

accuracy of the aligner on the validation data increase, the algorithm stops.

Figure 5.3 shows the accuracy after each iteration using this approach.

In principle it works as we do not see any decreases in accuracy. But it

stops very early and for English it does no continue after the initial ex-

tended parsing. We also see that the best score from the approach without

validation was actually higher than the best scores using this approach.
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Figure 5.3: Result per iteration with the iterative approach with valida-
tion.

5.1.4 Iterative With Retraining

In the approach described above the only thing that changes after each iter-

ation is the input data to the extended parsers and the input to the aligner.

In the experiments with the training data (sections 3.3.2 and 4.3.2) we saw

the importance of the training data matching the test data. If we train on
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gold-standard data and then use non gold-standard data at test time we

will not get good results. This also points to a possible problem with the

iterative approach as described above. The models are static and therefore

reflect the quality of the data used for training them. This data was created

using jack-knifing of a standard parser. As the quality of the input data at

test time hopefully increases as a result of the iterative approach, there will

be a gap between the quality of the training data used for the models and

the input data at test time. We will now describe an approach that tries to

deal with this problem.

We want to make the quality of the training data match the quality of

the test data. To do this we need to retrain the models in each iteration.

We cannot use the trained model that we use when parsing the test data,

to parse the training data and then use this as input when training the ex-

tended parser in the other language, because the quality of the parses on

the data used for training will be too high. To deal with this we can use

jack-knifing in the same way we used it for creating the original training

data. This means splitting the training data for the extended parser into

n parts and then training n parsers on n − 1 parts and use each of these

for training the held out part. We choose a similar approach that leads to

a little less retraining. In each iteration we choose n − 1 parts for training

and 1 part as a left-out part. We then train the parsers on the n − 1 parts

and parse the left-out part. If the new parses of the left-out part is better

than the previous parses on this part, we replace the old parses with the

new. This means that we update the training data for the extended parser

on the target language if the parses on the source languages gets better and

vice versa. In each iteration we also train a model on all the parts and use

this to parse the test data. The idea is as described above. In each iteration

the quality of the left-out part should increase which leads to an increase in

the quality of the training data for the extended parser in the next iteration.

And hopefully this retraining of the model leads to a better correspondence

between the model and the quality of the input to the extended parser at

test time.

This method has the validation-approach described above build-in. Af-

ter each iteration we only update the parses on the left-out part if they are

better than the best parses so far. We also only update the test data input if
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the left-out part improves. Algorithm 4 describes the algorithm. We have

left out the alignment part of the algorithm for clarity.

Algorithm 4: Iterative - with retraining
Data: trainA, trainB, trainAB, extTrainA, extTrainB, trainAB, testA,

testB, testAB, testAparsed, testBparsed
Result: test parsed and aligned

split trainA, trainB, extTrainA, extTrainB into n parts;

for i ← 1 to maxIter do

for leftOut ← 1 to n do

leftOutA = leftout-part of trainA;

leftOutB = leftout-part of trainB;

train extended parser on n− 1 parts of extTrainA → modAi;

train extended parser on n− 1 parts of extTrainB → modBi;

train extended parser on extTrainA → modTAi;

train extended parser on extTrainB → modTBi;

apply modAi on leftOutA → parsedAi;

apply modBi on leftOutB → parsedBi;

apply modTAi on testA with testBparsed as input →
parsedTAi;

apply modTBi on testB with testAparsed as input →
parsedTBi;

if parsedAi better than leftOut part of extTrainB then

update extTrainB with parsedAi;

testAparsed = parsedTAi;

end

if parsedBi better than leftOut part of extTrainB then

update extTrainA with parsedAi;

testAparsed = parsedTAi;

end

end

end

Figures 5.4 and 5.5 show the accuracy after each iteration of both the data

used as input to the extended parsers and the accuracy of the output. We



5.1 An Iterative Approach 103

see that the accuracy on the training data increases consistently. The biggest

increase is in the first 10 iteration where baseline parser output is replaced

with extended parser output. But also after iteration 10 we see improve-

ments. The accuracy is monotone as we only update the training data if the

accuracy on the left-out part increases.

Unfortunately, the correspondence between the accuracy of the training

data and the output from the extended parsers are difficult to see. We do

not see any consistent increase in accuracy on the test data. The best results

of all iterations (Danish, 89.26 and English 86.41) are actually better than the

best results from the other iterative approaches (Danish 89.15 and English

86.17), but it seems very difficult to predict in advance which iteration will

yield the best results.
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Figure 5.4: Accuracy of input and output of Danish extended parser in
the iterative-with-retraining approach.
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Figure 5.5: Accuracy of input and output of English extended parser in
the iterative-with-retraining approach.

5.1.5 Sizes

In section 4.3.3 we investigated the influence of the size of the training data

on the extended parsing. In this section we will do the same for the iter-

ative approach. We will leave out the initial approach without validation,

because it is difficult to know which iteration to use. We will not perform

the experiments for the ’with-retraining’ approach. We saw that the lack of

correspondence between training data and test data seems to cause prob-

lems in this approach. This problem will only be more severe with less

training data, so we choose to skip these experiments.

With validation

Figures 5.6 and 5.7 show the results from running the iterative approach

with validation for different subsets of the training data. The figures show

the relative UAS compared to the baseline parser. We see that especially for

Danish the improvement is bigger for smaller training sets. We see though
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that the biggest improvement is still in iteration 1, so the question remains

if it is only the extended parsing part of the approach that works better, or

if it is actually the iteration-part of it that improves the results.
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Figure 5.6: Relative UAS per iteration for different training set sizes (Dan-
ish).

Figure 5.8 shows the UAS of the iterative approach relative to the ex-

tended parser for different training set sizes. In general there are small im-

provements, and it seems to be the case that the iterative approach works

better with small training sets.

5.2 Reranking

Reranking is a method often used in NLP. The idea behind reranking is that

we have some method for doing some task that outputs a list of hypotheses

for each input it receives. Subsequently, a reranker is applied to (re)rank

the hypotheses, and we can then use the best one (if we are only interested

in one). The reason why this makes sense is because the initial methods

used often require some restriction of the feature space. We saw this both
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Figure 5.7: Relative UAS per iteration for different training set sizes (En-
glish).

for dependency parsing and alignment. A reranking model will not be

restricted by this, and therefore features can be included in the reranking

model, which cannot be used in the method that creates the hypotheses.

Reranking has been used both in parsing (Collins and Koo, 2005; Char-

niak and Johnson, 2005; Hall, Havelka, and Smith, 2007; Hall, 2007), word

alignment (Venkatapathy and Joshi, 2007) and joint parsing and alignment

(Burkett and Klein, 2008).

Here we will also try to use reranking to create better parallel treebanks

but in a more classical reranking sense than the work of Burkett and Klein

(2008). We will create k-best lists for parses for both languages and rerank

all combinations of these in hope of obtaining better parses. We will not use

k-best lists for the alignments because the aligner we use cannot provide

reliable k-best lists.



5.2 Reranking 107

●

●

●

●
●

●

●

●

● ●

50 100 200 500 1000

0.
0

0.
5

1.
0

1.
5

Sentences

R
el

at
iv

e 
U

A
S

● Danish
English

Figure 5.8: Comparison of extended parsing and iterative approach for
different training set sizes.

5.2.1 Features

We use the scores of the kMST-parser as features. These scores from the

parser are log-scores, and we use both the non-log version of these and

normalized log-scores.

Apart from the scores from the parser we do not include any monolin-

gual features. This is because we want to see what benefit we can achieve

from using both languages. We are not interested in the possibilities of

improving the output using reranking in general.

All the features used in the extended parser are also used for the rerank-

ing. These features are described in sections 4.3.1 and 4.5.

In addition to these we use the following features:

non-consistent If token s is aligned to token t, and s is the head of si

and si is aligned to ti, and the head of ti is not t the token-pair (s, t)

is considered inconsistent. The value of the feature is the ratio of

inconsistent token pairs in a sentence alignment.
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non-consistent-transitive If token s is aligned to token t, and s is a transi-

tive head of si and si is aligned to ti, and a ti is not a transitive head

of ti, the token- pair (s, t) is considered inconsistent. The value of the

feature is the ratio of inconsistent token pair in a sentence alignment.

correspondence This feature measures correspondence between the sen-

tences and is very similar to the basic features we used for extended

parsing (section 4.3.1). Two aligned tokens correspond if their heads

are also aligned. The features are divided into 6 sub-features depend-

ing on the alignment configuration. These are 1-1, 1-m, n-1, n-m, root-

1, root-m where the first parts denotes the number of tokens the head

on the source side is aligned to and the second part the number of

tokens the dependent on the source side is aligned to. The feature

values are the ratio of corresponding tokens in the sentence and are

included in both direction, i.e. source-target and target-source.

5.2.2 Experiments

We use the kMST-parser described in section 3.3.1 for creating the k-best

parse lists, the MCFAligner to create the alignment and the SVMrank-tool

described in section 3.3.3 to do the reranking.

In all experiments we use k = 50 which means that there are up to

2,500 hypotheses per sentence. This number of hypotheses creates a huge

amount of constraints in the learning, and we need to reduce this number.

For the 10 best parses on each language we use all combinations - i.e. 100

combination. For the rest we randomly sample 10% of the combinations.

This leads to approximately 340 hypotheses per training example.

The reranker has to be trained on output from the parsers. We use 10-

fold jack-knifing to create 50-best list for the training data. When we create

the training data for the reranker, we need to provide a ranking for the

hypotheses. This ranking will depend on the loss-function we decide to

use. Because we are not reranking the alignments, we use only the loss

from each parse. We do not consider one language more important than

the other so for the reranking task we use the sum of these two losses as

our loss 1.
1It is worth remembering though, that as the English parser is not as good as the Danish,
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Figure 5.9: Scores on reranked output depending on cost parameter of
reranker.

The results of support vector machines are sensitive to the value of the

cost-parameter, so we have optimized this on a development set. Figure

5.9 shows the scores on the development sets depending on the value of

the cost-parameter.

Table 5.1 shows the results from the reranking, together with the base-

line results (1-best), the average score on the parses in the k-best list, and

the oracle results from the k-best list. We see that the accuracy increases

with about 1.5 point on Danish and 2.5 point on English. We have earlier

seen that the English seems to gain more from the joint strategy than Dan-

ish and this pattern is confirmed here. Again we have to note that there is

also more room for improvement in the English parses. The absolute im-

provements are better with this approach than the improvement we saw

from the extended parser and with the iterative approach. Unfortunately,

we cannot compare these results as the baseline results from the parser are

much lower.

the loss from the English sentences will often be bigger than from the Danish sentences.
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Danish English

1-best 80.14 71.08

Average (50-best) 76.90 68.63

Oracle (50-best) 87.95 79.78

Reranked (50-best) 81.77† 73.75†

Table 5.1: Results from reranking experiment on development data. Both
reranked results are significant compared to the baseline.

Sizes

We also investigate how the result of the reranking approach is influenced

by different training set sizes. We use the same approach for all sizes. This

means that we sample even though it is not necessary with the smaller data

sets and we use the cost parameter optimized on the entire data set for all

sizes. Figure 5.10 shows the results from the experiments. We do not see

the same pattern we did for the other approaches. If anything the effect is

opposite. The improvement gets bigger with bigger data sets. A possible

explanation is that the reranker overfits on the smaller data sets.



5.2 Reranking 111

●

●

●

●

●

●

● ●

●

●

●

●

50 100 200 500 1000 2000

−
1

0
1

2
3

# training sentences

D
iff

er
en

ce
 in

 U
A

S

● Danish
English

Figure 5.10: Difference in UAS between baseline parser and reranked ap-
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Chapter 6

More Experiments

6.1 Danish-Spanish

In the previous chapters we have worked with and analyzed Danish-English

data. We have discussed in some detail how the relatedness of the two

languages impacts the results and the approaches. In this section we will

repeat the different experiments with Danish-Spanish data. We are still

working with two closely related languages, especially compared to most

work on bitext parsing that works with English-Chinese, but the languages

are less related than Danish and English. Furthermore the amount of data

available for this experiment is much smaller than with Danish-English (see

section 3.1).

6.1.1 Baseline and Extended

Table 6.1 shows results with the baseline parsers1 and the extended parser.

6.1.2 Analysis

We will not do an error analysis on the Danish-Spanish data, but restrict

ourselves to looking at correspondence, and to empirically test the features

we found in the analysis of the Danish-English data.

1We have tested first-order and projective parsing, but also for the Danish-Spanish data
set second-order non-projective parsing gave the best results.
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Danish Spanish

LAS UAS LA LAS UAS LA

MST, 2. order, non-proj 68.70 82.02 72.42 66.91 80.54 71.73

Extended, 10 fold 71.28† 84.50† 74.28† 67.28 81.65 71.46

Table 6.1: Results for baseline and extended parsing for Danish-Spanish.

Correspondence

First we will look at the 2-1 configurations, which we argued was a strong

argument in favor of parsed Danish parallel text being able to help an En-

glish parser. The hypothesis was that if two English words were aligned to

one Danish word there would be a relation between them. This hypothe-

sis was not entirely correct, primarily because of the analyses used in the

treebank.

En sandfærdig beretning ...
<ROOT> attr nobj

Un verdadero relato ...
<ROOT> attr nobj

Figure 6.1: Example of different analyses in Danish and Spanish.

With respect to the compound words and determiners there is the same

relation between Spanish and Danish as between English and Danish. Fur-

thermore the analyses on Spanish in the treebank are different from those

on Danish and English. Figure 6.1 shows an example of this. With this in

mind we would expect that the hypothesis will actually hold for Danish-

Spanish. Table 6.2 shows that this is not the case. The numbers are roughly

the same as we saw for Danish-English. The only real difference is that

the accuracy of the parsers on the relations in question is even higher here.

By looking at the data we again see that the lack of correspondence is pri-
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2-1 Baseline UAS

Danish 91% 100%

Spanish 94% 98%

Table 6.2: Statistics for 2-1 alignments. The ”2-1” column shows part of
2-1 configurations where there is a relation between the two source side
tokens. The ”Baseline UAS” column shows accuracy of baseline parser
on these relations.

marily due to the choice of annotation used in the treebank. Most of the

situations where the hypothesis does not hold are due to alignments like

the one seen in figure 6.2, where the middle ”de” is not aligned.

hombre de negocios
attr nobj

forretningsmand

Figure 6.2: Example of Spanish-Danish 2-1 alignment where there is no
relation between the two Spanish tokens.

Table 6.3 shows the numbers for the more specific 2-1 configuration de-

scribed earlier. Here the numbers are lower than for Danish-English, and

there is absolutely nothing to gain with respect to accuracy in these situa-

tions.

2-1 Baseline UAS

Danish 94% 100%

Spanish 96% 100%

Table 6.3: Statistics for more specific 2-1 alignments where there is a rela-
tion between the two source side tokens, and accuracy of baseline parser
on these relations.

We test for correspondence in the same way we did for Danish-English.
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Table 6.4 shows results from these, including the results for Danish-English

for comparison. The numbers show quite clearly that the correspondence

is a lot weaker between Danish and Spanish than between Danish and En-

glish.

Danish Spanish Danish English

TRUE 32.5% 34.8% 59.7% 65.1%

P-TRUE 1.8% 6.1% 2.0% 7.9%

P-FUZZY 0.7% 2.2% 0.5% 0.8 %

FUZZY 36.5% 29.1% 28.5% 15.2%

FALSE 15.5% 20.4% 5.4% 7.9%

NEITHER 13.0% 8.3% 4.0% 3.0%

Table 6.4: Distribution of types on configuration for Danish-Spanish.

Empirical Evaluation of Features

Table 6.5 and table 6.6 show results with the different features both on de-

velopment data and with cross-validation. We see a very big variance on

the results on development data, and as the development set is quite small

(52 sentences) these results are probably not reliable. If we look at the cross-

validated results we see that most of the features improve on the basic ex-

tended features, but that there is no gain from combining features.

We see that extended parsing with the features selected from cross-

validation leads to improvement in the same magnitude as we saw for

Danish-English. This time it is in the opposite direction though - Dan-

ish improves more than English. The comparison is not quite fair though,

as the Danish-English data set is much larger than the Danish-Spanish. If

we use only a subset of the Danish-English data with the same size as the

Danish-Spanish the picture is quite different. Table 6.7 shows this. We see

that the improvement in Danish-English with this small data set is much

bigger than in Danish-Spanish. We have not analyzed in more detail why

this is the case, but it must be remembered that the features we use have

been designed on the basis of the Danish-English data, and on the basis of

the errors the extended parser made on the Danish-English data set. Table
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Development Cross-validation

Danish Spanish Danish Spanish

baseline 82.02 80.54 79.83 76.49

extended 82.85 80.91 81.02 78.78

+ PoS 83.37 81.65 80.28 78.59

+ same 83.47 81.19 80.28 78.59

+ same + PoS 82.85 81.09 80.46 79.05

+ p 82.02 80.72 80.84 78.60

+ p + PoS 83.37 80.63 79.98 78.58

+ n-1 83.16 80.91 81.23 78.71

+ n-1 + PoS 83.79 81.19 80.47 78.56

+ 2-1 81.51 80.72 80.32 78.43

+ 2-1 + PoS 84.40 81.65 80.66 78.80

Table 6.5: UAS with simple features.

6.8 summarizes the results from the test of features and shows results from

significance tests when comparing the simple extended features to the ones

we found to perform best.

6.1.3 Iterative

Figure 6.3 shows results from using the iterative approach. We see pretty

much the same picture as we did with Danish and English.

Figure 6.4 shows results with the iterative-with-validation approach.

We see that for Danish the match between the development and test set

is poor, so the accuracy on the test set drops after the first iteration. On the

Spanish data and on the alignments there are small improvements after the

initial iteration with extended parsing.

Figure 6.5 shows the results from the iterative-with-retraining on the

Danish-Spanish development set. We see the same pattern as we did for

Danish-English. The accuracy of the data the extended parsers are trained

on increases but the accuracy of the unseen data goes up and down. Again

the results at the best iteration are better then from the other approaches,

but this could be due to chance.
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Development Cross-validation

Danish Spanish Danish Spanish

baseline 82.02 80.54 79.83 76.49

extended 82.85 80.91 81.02 78.78

+ same + p 84.50 81.00 80.49 78.78

+ same + p + PoS 83.68 80.72 80.55 78.58

+ same + n-1 84.09 80.54 80.46 78.51

+ same + n-1 + PoS 82.02 81.28 80.24 78.74

+ p + n-1 83.37 81.00 80.22 78.64

+ p + n-1 + PoS 82.44 80.63 80.58 78.12

+ same + 2-1 82.95 80.82 80.39 78.66

+ same + 2-1 + PoS 81.30 81.28 80.18 78.84

+ p + 2-1 83.47 81.09 80.33 78.57

+ p + 2-1 + PoS 83.16 81.46 81.10 78.55

+ n-1 + 2-1 84.09 82.48 79.99 78.59

+ n-1 + 2-1 + PoS 84.09 81.19 80.49 78.74

+ same + p + 2-1 82.85 82.30 80.85 78.53

+ same + p + 2-1 + PoS 83.78 80.72 80.71 78.85

+ same + n-1 + 2-1 83.78 81.65 80.05 78.64

+ same + n-1 + 2-1 + PoS 82.85 80.44 80.11 78.58

+ p + n-1 + 2-1 82.75 81.56 80.61 79.01

+ p + n-1 + 2-1 + PoS 83.57 80.91 80.38 78.05

+ same + p + n-1 83.57 80.63 80.48 78.89

+ same + p + n-1 + PoS 82.23 81.37 80.59 78.68

+ same + p + n-1 + 2-1 83.26 81.00 80.29 78.57

+ same + p + n-1 + 2-1 + PoS 83.37 82.21 80.41 78.56

Table 6.6: UAS with simple features.

6.1.4 Reranking

We also also repeat the reranking approach for the Danish-Spanish data.

Although the data set is much smaller and we can probably use the entire

data set for training we performe the sampling described in section 5.2.2.

Table 6.9 shows the results from the experiment. Again we compare
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Danish English/Spanish

Danish - English, full 0.34 1.91

Danish - English, 373 sent. 3.44 3.35

Danish - Spanish 1.14 0.55

Table 6.7: Improvement in UAS with different language-pairs.

Development Cross-validation

Danish Spanish Danish Spanish

simple 82.02 80.54 79.83 76.49

best 83.16 81.09 81.23† 79.05†

Table 6.8: Results with simple features and best features for extended
parsing.

Danish Spanish

Baseline 77.58 66.08

Average (k=50) 77.57 64.53

Oracle (k=50) 85.53 72.85

Reranked 79.24† 68.21†

Table 6.9: Reranking results for Danish-Spanish.

the improvements with the improvements for Danish-English. Table 6.10

shows this comparison. For Danish, we see the same pattern as with the ex-

tended parsing. The improvement in Danish-Spanish is roughly the same

as the improvement in Danish-English for the full data set, but much larger

for Danish-English with the smaller data set. For the smaller data set though,

the improvement for English is smaller than in the other two cases.



120 More Experiments

0 2 4 6 8 10

70
72

74
76

78
80

82

Iteration

U
A

S
/1

−
A

E
R

Danish
Spanish
Alignment

Figure 6.3: Result per iteration with the basic iterative approach.
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Figure 6.4: Result per iteration with the iterative approach with valida-
tion.
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Figure 6.5: Result per iteration with the iterative approach with retrain-
ing.

Danish English/Spanish

Danish - English, full 1.63 2.67

Danish - English, 373 sent. 7.00 1.69

Danish - Spanish 1.66 2.13

Table 6.10: Improvement in UAS with different language-pairs. Rerank-
ing
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6.2 Extrinsic Evaluation - SMT

The evaluation metrics traditionally used for parsing and alignment are not

necessarily appropriate for measuring the usefullness of an automatically

created parallel treebank for SMT. In fact the lack of correlation between

AER and MT evaluation metrics such as BLEU are well-studied (Lopez and

Resnik, 2006). Zhechev and Way (2008) also reports a lack of correspon-

dence between the intrinsic measures and the quality of the MT-output.

In this section we will discuss how parallel dependency treebanks can

be used SMT and discuss if the methods we present are efficient enough for

this.

6.2.1 Using Parallel Dependency Treebanks in SMT

Most of the work done in creating parallel treebanks automatically is aimed

at improving SMT and are often evaluated with respect to this. Some of

these evaluations are done with SMT-systems that directly uses the tree-

banks. For instance Zhechev and Way (2008) evaluates the treebanks using

the Data-Oriented Translation System.

Tinsley, Hearne, and Way (2009) present a more indirect way of using

parallel treebank in SMT. Phrase-based SMT (PBSMT) does not directly use

any linguistic structures, but are based on n-grams that are obtained using

automatic word alignment. Tinsley, Hearne, and Way (2009) show that by

expanding the (aligned) phrases obtained by the standard PBSMT-system

with phrases extracted from the parallel treebank, a higher quality of trans-

lations can be obtained. Phrases are extracted from the treebank simply by

letting a phrase-pair consist of the words dominated by the aligned word

on one side to the words dominated by the aligned word on the other side.

This method can easily be used with dependency grammars, and it has

been shown that there is no significant difference in translation quality

between using phrase-structure parsers and dependency parsers for this

(Tinsley, 2010).

Tinsley, Hearne, and Way (2009) try a number of different ways of com-

bining the phrases from the standard PBSMT-system and the phrases from

the treebank and find that simply adding them leads to the best results. The

only exception is that it is beneficial to exclude all 1-1 phrases.
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We have tried to follow the approach described by Tinsley, Hearne, and

Way (2009) with the Moses system (Koehn et al., 2007) and Europarl data

(Koehn, 2005), but have not been able to get any positive results. In all

experiments the addition of extra phrases lead to lower translation quality

(BLEU and NIST) than the baseline system. We have tried this for both

Danish-English and Danish-Spanish, with corpora of different sizes2.

An explanation for this could be that in some sense we do not do sub-

tree alignment, but sub-tree informed word alignment. For instance we

have no condition that requires the trees to be consistent. Also we found

that the inside-outside features used in most work on tree alignment lead

to an increase in AER so we have not used these. We have tried filtering the

phrases from our system to include only consistent phrase-pairs, but this

did not change the outcome.

By manual inspection the phrases extracted look to be of at least the

same quality as the ones extracted by Moses, but they consistently lead to

lower translation quality. Figure 6.6 shows the 20 first extracted phrase-

pairs for Danish-English (with the baseline parser) to illustrate the quality

of the extracted phrases.

6.2.2 Efficiency

In this section we will look at the efficiency of the methods we have dis-

cussed. We have aimed at using only methods that are fast enough to pro-

cess large amount of data. Europarl is often used in SMT, and we will use

this data for testing the empirical run-time of the tools we use.

Time Complexity

We will focus on the empirical run-time but briefly discuss the time com-

plexity of the tools used.

The baseline parser runs in O(n3) because it uses second-order parsing.

In the data we have used we have filtered out sentences with more than

100 words or more as GIZA++ cannot handle these. With these sentences

we have not had any problems with the baseline parser. The same is the

2Tinsley (2010) reports that the effect of the extra phrases seems to disappear when the
corpus is big enough.
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et skoleeksempel an extreme exercise

i disse værdier for the said values

alle forudsætningerne all the conditions

af ruslands aktuelle intentioner of russia ’s current intentions

i georgien in georgia

særlig relevant particularly relevant

ruslands aktuelle intentioner russia ’s current intentions

test af ruslands aktuelle intentioner test of russia ’s current intentions

på prøve to the test

række medlemsstater several member states

inden invasionen prior to the invasion

200 observatører hundred observers

til konfliktområderne to the scenes of conflict

med rusland with russia

af georgien of georgia

i regionen in the region

den russiske invasion af georgien the russian invasion of georgia

med den russiske invasion af georgien of the russian invasion of georgia

eu ’ s energisikkerhed the union ’s energy security

for eu ’ s energisikkerhed to the union ’s energy security

Figure 6.6: Phrases extracted from automatically created treebank based
on Europarl.
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case for the aligner which also has run-time O(n3). The kMST-parser runs

in O(kn2) and we have not had any problems with this either.

The algorithm used in extended parsing is the same as in baseline pars-

ing, i.e. runs in O(n3). Before applying an extended parser a baseline

parser has to be used on the other language, so in practice the run-time

will double. We have not tested the iterative approaches, but in these the

parsers will also be used a constant number of times - not changing the

theoretical run-time. Given that the number of features extracted for the

reranker is linear in the number of words in the sentences the run-time of

the reranker is linear in the number of words. This means that the run-time

of the reranker will be O(k2n), because there will be k2 combinations per

sentence.

Empirical Run-Time

We have tested the empirical run-time by processing 10,000 Europarl sen-

tences, with less than 100 words. We have only tested on Danish with En-

glish as target language because the methods used are the same for all lan-

guages. Table 6.11 shows timings for these experiment, and also the pro-

jected time it would take to process the entire Europarl Danish-English data

set3. We see that none of the approaches we present are considerable slower

than using the baseline parser. It may seems strange that the reranker is not

faster than the parsers, but the reason for this is that for 10,000 examples it

has to rerank 25,000,000 hypotheses.

10,000 1.7 mil.

Baseline parser 24m 68h

Extended parser 30m 85h

Aligner 6m 17h

kMST 62m 176h

Reranker 29m 81h

Table 6.11: Timings for processing Europarl data with different tools.

3Experiments were performed on an Intel Xeon Quad-Core 2.26 GHz CPU, but all of the
tools use only one CPU.
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Chapter 7

Results, Future Work, and
Conclusion

7.1 Results and Discussion

In this section we will present results on evaluation data, since all previous

experiments have been evaluated on development data. We will discuss

the different results from the different approaches and draw more general

conclusions about the task of creating parallel treebanks for related lan-

guages. We report PTS for approaches where the alignments vary but oth-

erwise we leave out the results for alignment. The results are similar to

those we saw for the development data, i.e. sub-tree alignment is better

than word alignment, and the iterative approach does not result in any sig-

nificant improvements.

7.1.1 Bilingually Informed Parsing

Table 7.1 shows results for bilingually informed parsing for Danish-English.

We see a significant improvement over the baseline (for Danish only in

UAS). Most previous work in bilingually informed parsing has focused on

relatively different language pairs, so the question we posed was whether

or not bilingually informed parsing would also work for related languages,

and it does.

Table 7.2 shows results for Danish-Spanish. Here we see improvements

in UAS, but they are not significant. In the analyses of correspondence we
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saw that the correspondence between English and Danish is much larger

than between Spanish and Danish. We have argued that divergence is nec-

essary for bilingually informed parsing to work, but as we have seen in

several experiments more divergence does not necessarily lead to better

results. This is apparently confirmed by the experiments on the Danish-

Spanish data as we do not see any significant improvements. On the other

hand, the reason for the lack of significance may simply be the small eval-

uation set used (56 sentences).

Danish English

LAS UAS LA LAS UAS LA

Baseline 74.38 87.70 77.54 77.46 83.14 83.82

Extended 74.72 88.30† 77.67 79.25† 85.23† 85.11†

Table 7.1: Evaluation of extended parsing on evaluation data. Danish-
English.

Danish Spanish

LAS UAS LA LAS UAS LA

Baseline 67.70 80.14 72.53 63.99 79.06 68.63

Extended 67.59 80.35 71.91 65.06 79.95 69.88

Table 7.2: Evaluation of extended parsing on evaluation data. Danish-
Spanish.

In section 4.3.3 we saw that the increase in accuracy from using ex-

tended parsing was bigger when the training set was smaller. Figure 7.1

shows results on the evaluation data for the baseline and extended parsers

with different training set sizes. We see that the results follow the pattern

reported by Smith and Eisner (2009). Training an extended parser on n sen-

tences gives roughly the same results as training a standard parser on 2n

sentences. The baseline results are of course worse when there is less data,

which means that there is more room for improvement. However, this in

itself cannot explain the results. The smaller the training set, the larger the

risk of some construction being learned incorrectly. When we add the ex-
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Figure 7.1: UAS of baseline parsers and extended parsers with different
amounts of training data.

tra information that is used in extended parsing, there is a chance that this

construction was learned correctly in the other language, so in a way the

training data is doubled. Of course, large parts of the data correspond so

there is little to learn from these. However, we have seen that there is not

100% correspondence and this is enough to allow the extended parsers to

learn how to parse constructions correctly where the baseline parser could

not.

When we looked at different features for extended parsing we saw chan-

ges in parsing accuracy, which did not always seem logical. For instance,

combining two apparently good features did not provide good results. It

is often difficult to predict which features that will work, but it seems that

there may be a general problem related to learning the weights for extended

features. It is difficult to say what the problem is. The features used are

quite general so overfitting does not seem plausible. It seems more plau-

sible that the features are actually too general, which makes it difficult to

learn when the bilingual information is helpful and when it is not.

Overall the conclusion with respect to bilingually informed parsing for

related languages is that it works, and that is works better when little train-

ing data is available.
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7.1.2 Joint Models

Iterative

Table 7.3 shows results on evaluation data using the iterative approaches.

For Danish the results are worse than the extended parsing, and for English

better, but none of the differences are significant. This is in line with the

results on development data.

Danish English
LAS UAS LA LAS UAS LA PTS 1

3 ,
1
3 ,

1
3

Extended 74.72 88.30 77.67 79.25 85.23 85.11 87.07
Iterative, basic 74.60 88.15 77.64 79.25 85.28 85.14 87.04
Iterative, validation 74.60 88.15 77.64 79.25 85.28 85.14 87.07
Iterative, retraining 74.66 87.96 77.55 79.49 85.52 85.13 87.06

Table 7.3: Evaluation of the iterative approach on evaluation data.
Danish-English. Significance is compared to extended parsing.

Table 7.4 shows the same results for Danish-Spanish. Here, there are no

significant improvements (although the iterative-with-validation approach

is significantly better than the baseline on LAS and UAS). The results from

Danish Spanish
LAS UAS LA LAS UAS LA PTS 1

3 ,
1
3 ,

1
3

Extended 67.59 80.35 71.91 65.06 79.95 69.88 76.45
Iterative, basic 67.59 80.35 71.91 65.06 79.95 69.88 76.51
Iterative, validation 67.59 80.56 72.22 64.88 80.21 69.25 76.67
Iterative, retraining 68.21 80.04 72.33 64.71 79.77 69.96 76.29

Table 7.4: Evaluation of the iterative approach on evaluation data.
Danish-Spanish. Significance is compared to extended parsing.

the iterative approaches are not too convincing. We do not see a consistent

and significant improvement over the extended parser. For smaller data

sets the results were better as shown in section 5.1.5.
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Reranking

Table 7.5 shows the results of the reranking approach on Danish-English.

We see consistent improvements but only the improvements for English

are significant. Table 7.5 shows the results for Danish-Spanish.

Danish English

LAS UAS LA LAS UAS LA

Baseline 68.43 80.06 73.92 65.84 69.97 75.52

Reranked 68.70 80.44 74.33 68.57† 73.06† 77.68†

Table 7.5: Evaluation of the reranking approach on evaluation data.
Danish-English.

Danish Spanish

LAS UAS LA LAS UAS LA

Baseline 63.37 75.51 69.44 55.53 67.02 62.83

Reranked 64.81 77.57† 69.96 56.15 67.65 63.55

Table 7.6: Evaluation of the reranking approach on evaluation data.
Danish-Spanish.

The overall conclusion with respect to the reranking approach is that

we see good results.

7.1.3 Sizes

We have commented on the effect of using different training set sizes above

but we will take one more look at this. Table 7.7 shows the relative UAS

with the different training sets for all three approaches. We have chosen the

iterative-with-validation approach here, because these results are the most

stable of the three iterative approaches. The results on the evaluation data

confirm the results on the development data. For extended parsing and for

the iterative approach the improvements are bigger for smaller data sets.

For the reranking approach this is not the case. Table 7.7 also shows that

for smaller data sets the improvements are significant in most cases.
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extended iterative reranking

da en da en da en

50 5.75† 2.87† 1.17† 0.89† -0.12 1.46†

100 4.42† 3.66† 0.19 0.52† 0.78† 1.74†

150 2.69† 3.80† 0.71† 0.61† 0.17† 1.15†

200 3.89† 2.67† 0.26 0.81† 1.16 2.18†

300 2.95† 3.60† 0.30 -0.02 0.58 1.21†

373 3.95† 3.03† 0.37† 0.86† 0.23 1.64†

400 3.65† 2.88† 0.41 1.10† 0.98† 1.91†

600 3.12† 3.44† 0.09 0.66† 0.26 1.92†

800 2.16† 3.72† 0.23 0.49† 0.01 1.59†

1200 2.26† 3.36† 0.37† 0.55† 0.94† 2.35†

1600 2.26† 3.24† 0.00 0.00 0.30 1.91†

3333 0.60† 2.09† -0.15 0.05 0.38 3.09†

Table 7.7: Relative UAS for all smaller data sets with the three ap-
proaches. The results for extended and reranking are compared to the
two baseline parsers. For iterative, it is compared to extended parsing.

7.2 Future Directions

In this section we will discuss ways to continue our research on the task

of creating parallel treebanks automatically. We will divide the discussion

into two parts. First, we will discuss future work that relates directly to the

work presented here. Following this, we will discuss other approaches to

solving the task.

7.2.1 This Work

Learning

In many cases the results from the different approaches, in particular from

the iterative, seemed to vary more than we expected. We saw this with

regards to the empirical tests of new features, and also with the iterative

approach, which in general worked better for smaller training sets, but did

not work at all on the development set with 200 sentences (see table 5.8
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in section 5.1.5). We believe that in general the learning for the extended

parsing is not stable enough and we would like to look into this in more

detail. One possibility would be to first train the standard parser, then

fix the parameters learned in this, and finally learn the parameters for the

extended features. Presently, all the parameters in the parser are learned

simultaneously. The alternative is not guaranteed to give better results, but

will make it easier to analyze the results because the baseline parameters

will not vary.

Features and Optimization

Although we have tested a number of different features, we still have a

lot of work to do with respect to these. For instance, we have not tested

combining the extended features with the standard features. The idea in

the kind of data-driven approach we adapt is that the parser itself has to

learn when to use the extended information. This might possibly be easier

if the extended features are combined with the standard features.

Another natural continuation of the work will be to add second-order

features.

In the aligner, we made some initial feature selection when implement-

ing it, but we did not do a systematic feature selection on the data used

in the experiments. We believe that the accuracy of the aligner will benefit

substantially from this.

We have done almost no optimization of hyper-parameters of the tools

used1. This includes the number of training iterations used in the learning

in the parsers and the aligner, but also, for instance, the weighing of pre-

cision and recall in the aligner. We weigh them equally, but this may not

be optimal. Even for word alignment some work weigh one higher than

the other (Lacoste-Julien et al., 2006) and especially in sub-tree alignment it

might be better not to optimize directly on AER.

The challenge is that there will most likely be an interference between

the different hyper parameters, which makes it necessary to optimize them

jointly.

1The only exception being the cost parameter for the reranker
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Data

Another line of experiments we would like to conduct is to use different

data. We would like to use different language-pairs to see how the ap-

proaches work with these - also to make our work more comparable with

other work.

None of the suggested approaches actually requires a parallel treebank

because we always train the models on output from parsers. This makes

it possible to do experiments where there are more training data available

on one language than the other. This is a quite typical case when one is

interested in enriching the resources of a low-resource language using the

resources from a high-resource language.

7.2.2 Other Approaches

As with many tasks, there are several possible approaches to the task of

creating parallel treebanks. We will briefly discuss some other approaches

we have considered.

Post Processing

The challenge in creating parallel treebanks where the trees and the align-

ments affect each other is the need for higher-order features to account for

this interaction. We saw that one general approach to allowing higher-

order interaction was reranking. There are other approaches where we first

create the parallel tree using some method and then afterwards change the

analysis in hope of creating a better analysis. One approach is to define

higher-order features and then search for a better tree, using local search.

An example of this is the hill-climbing used in the MSTParser for second-

order non-projective parsing (see section 2.2.2). Another similar approach

is the error-corrective approach described by Hall and Novák (2010).

Transition-Based

We have discussed earlier why a graph-based approach will be difficult for

bitext parsing and alignment (section 4.2.2). The other approach to struc-

tured prediction we have discussed is reducing this to classification, and for
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parsing, we have in particular looked at transition-based parsing. Maybe it

is possible to do bitext parsing and alignment with a transition-based sys-

tem. It will probably require two buffers instead of one, as we have two

input sentences. If we just consider a system that is basically two times

a normal transition-based system but with only one decision process, it is

possible to imagine how the two parses can benefit from each other. If an

arc is created in one sentence first, this can inform the parallel sentence and

vice versa. If the alignment process is to be included, the system will have

to be extended. If we imagine a system where, for instance, an alignment

between the two tokens at the head of the two stacks can be added, it is not

possible to create crossing alignments. Therefore, something will have to

be added to the system to include alignments in the process.

7.3 Conclusion

The task we have addressed is how to create parallel treebanks using data-

driven methods. We have presented a number of approaches that all ex-

ploit the information that is available in parallel data.

To make use of the bilingual data in parsing, the data needs to be aligned

at sub-tree level. We have implemented an aligner that can do this, based

on state-of-the-art word aligners.

We have primarily investigated bilingually informed parsing. We have

discussed and analyzed why this works even for closely related languages

that are annotated with the same kind of syntactic structures. We have

also showed that for both Danish-English and Danish-Spanish bilingually

informed parsing consistently increases parsing accuracy compared to a

baseline parser.

Building on the bilingually informed parsing, we have introduced a

number of iterative approaches to bitext parsing and alignment. These ap-

proaches are based on the hypothesis that when the input to the bilingually

informed parsers gets better, so should the output. We have seen several

indications that this hypothesis holds, but we have found it difficult to pro-

duce consistent improvements with any of the iterative approaches.

We have also investigated a traditional reranking approach and found

that this also results in consistent improvements of parsing accuracy. For
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the two first approaches we have shown that the improvement compared

to the baseline increases when the size of the training data decreases. This is

especially interesting because it allows the possibility of enriching parsing

on low-resource languages with parsers from high-resource languages.
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