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Introduction

The topic of this thesis is the modeling of risks in interest-rate and inflation
markets.

Interest-rate risk is an important issue to investors. For instance, according
to BIS (2010) the notional value of over-the-counter interest-rate derivatives
markets is 465,260 billion US-dollar. This corresponds to 77 percent of the
notional of the entire OTC derivatives market. Thus interest-rate deriva-
tives is at the back-bone of the financial markets. According to ISDA (2009)
83 percent of Fortune 500 companies report using interest-rate derivatives in
their risk management. Furthermore, many mortgage-based loans and pen-
sion contracts contain either explicit or implicit interest-rate options. Thus
a better understanding of the interest-rate derivative markets, and the risk
associated with the traded products is of great value, both to financial and
non-financial companies as well as individuals.

The market for inflation linked products, such as bonds and swaps, is sig-
nificantly smaller than the one for interest-rate derivatives. The market
is also significantly newer than the nominal interest-rate market, with one
of the prominent examples being US Treasury Inflation Protected Bonds
(TIPS). TIPS were introduced in 1997 and with a notional outstanding of
less than 50 billion US dollar. By 2010 the US Treasury has issued TIPS
worth over 600 billion US dollar, see Christensen and Gillan (2011). The
issuance of inflation linked bonds is not limited to the US; countries such
as France, United Kingdom1, Germany and Japan also have a significant
issuance of inflation linked bonds.

With the increase in issuance and trading in inflation linked bonds deriva-
tive markets have evolved. Inflation swaps, which can be compared to
interest-rate swaps, have been traded at least since 1995 (see Barclays Cap-
ital (2008)), and in recent years options on inflation have also been traded.
With the increase in trading in inflation linked products academic interest

1United Kingdom was one of the first countries to issue inflation linked bonds. UK
inflation linked bonds has been issued as early as in 1981.

1



INTRODUCTION 2

has spurred, but perhaps more interesting to individuals, central banks have
started using the information content embedded in inflation linked products
in relation to the economic analysis used to set policy rates.

The goal of this Ph.D. thesis is to add a small piece to the puzzle of un-
derstanding interest-rate and inflation markets. The thesis consists of four
essays, two of which are focused on modeling interest-rate risk and two are
focused on modeling inflations risks and risk premia. Each essay contributes
to the literature in its field and can, of course, be read independently. In
short, here follows a brief motivation for each paper.

Modeling stochastic skewness in a
Heath-Jarrow-Morton framework

Several facts on interest rate behaviour are well known. First, interest-rate
volatilities are obviously stochastic, and these volatilities tend to cluster
in periods with low respectively high volatility (see for instance Ander-
sen and Lund (1997)). Carr and Wu (2007) show that currency options
have time-varying skewness. By using model-free estimates of the volatility
and skewness priced in interest-rate options, it can be shown that interest-
rate distributions also show time-varying skewness (see Trolle and Schwartz
(2010)). The main purpose of the paper is to provide a consistent framework
for modeling the stochastic volatility and skewness. Finally, calibrating the
model to time-series of market data is interesting, as it shows the applica-
bility of the model.

Inflation derivatives modeling using time changed
Lévy processes

With the rise of inflation derivatives and more liquid markets, non-linear
inflation contracts have been introduced. When considering time-series of
inflation swap rates, the fact that changes in inflation swap rates show
large sudden movements, i.e. jumps, is easily acknowledged. The stan-
dard method for modeling inflation derivatives is the Gaussian forward-rate
framework introduced in Jarrow and Yildirim (2003). In this paper we wish
to model inflation derivatives in a no-arbitrage framework which could both
include time varying volatility and jumps. We also want to provide evidence
of the applicability of the model framework by using market data.
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Inflation risk premia in the term structure of interest
rates: Evidence from Euro area inflation swaps

Market based inflation expectations such as inflation swap rates or the
Break Even Inflation Rate, i.e. an inflation measure derived from nominal
and inflation linked bonds, provide market participants with real-time mea-
sures of inflation expectations. However, these measures include both an
inflation expectation and an inflation risk premium. The purpose of the
paper is to use a no-arbitrage model to disentangle the two components by
using nominal swap rates, inflation swap rates, surveys on inflation expec-
tations and CPI data. The model output can be used to interpret whether
changes in inflation swap rates correspond to changes in inflation expecta-
tions or inflation risk premia.

Affine Nelson-Siegel Models and Risk Management
Performance

The ability to correctly assess the interest-rate risk one faces as an investor
is a critical issue. This is obviously the case for a pension fund with a large
bond portfolio, but it is also the case for government debt agencies who need
to assess the risks of different issuance strategies. The importance of using
a good framework for managing interest-rate risk is further emphasized by
the current sovereign debt crisis. The purpose of the paper is to assess the
medium- and long-term forecasts of the Affine Nelson-Siegel model-class in-
troduced in Christensen, Diebold, and Rudebusch (2011) and Christensen,
Lopez, and Rudebusch (2010). With regard to data we use Danish gov-
ernment bond yields from 1987 to 2010, and use a Bayesian Markov Chain
Monte Carlo method to estimate the models.

A short summary of the considered markets

and related literature

For the convenience of the reader we provide a brief description of the main
concepts used in the essays in this thesis. For a general description of
continuous time asset pricing we refer to Duffie (2001) or Björk (2004). For
an introduction to Lévy processes we refer to Cont and Tankov (2004). A
good introductory book on inflation markets and their institutional features
is Deacon, Derry, and Mirfendereski (2004), whereas a textbook treatment
on the modeling of interest-rate and inflation derivatives can be found in
Brigo and Mercurio (2006).
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The term structure of interest-rates

In this section we briefly describe the basics of the term structure of interest-
rates. We also describe the literature on the modeling of the term structure
of interest-rates.

A zero-coupon bond with maturity T (also called T -bond), is a contract
that pays the owner of the zero-coupon bond 1 unit of currency at time T .
The zero coupon bond observed at time t that matures at time T is denoted
p(t, T ).

In the money market it is customary to consider simple compounding, i.e.
we are considering the simple forward rate (LIBOR foward rate) L(t;S, T ).
The LIBOR forward rate agreement is an agreement to borrow or lend
between time S and T at a time t specified simple rate L(t;S, T ). By
no-arbitrage we have the following relationship between zero coupon bond
prices and LIBOR forward rates.

p(t, S)

p(t, T )
= 1 + (T − S)L(t;S, T ) ⇔ L(t;S, T ) = − 1

T − S

p(t, T )− p(t, S)

p(t, T )

The case of the simple spot rates (LIBOR spot rates), is denoted L(t, T ),
i.e. a simple compounded rate starting from today (time t) to some future
point in time T . This implies that the LIBOR spot rate is the same as a
LIBOR forward rate with S = t, ie. L(t, T ) = L(t; t, T ). Hence we have

L(t, T ) = − 1

T − t

p(t, T )− 1

p(t, T )

In most models we are not considering simple rates (the market model being
the exception), but instead it is more convenient to consider continuously
compounded rates.

When considering how to derive the continuously compounded forward rates
from zero-coupon bonds we will use that investors are indifferent between
investing in a zero-coupon bond or an asset with continuously compounded
rate

p(t, S)

p(t, T )
= ey(t;S,T )(T−S) ⇔ y(t;S, T ) = − log p(t, T )− log p(t, S)

T − S

Again, we can find the continuously compounded spot rates, y(t, T ), by
letting S = t in the continuously compounded forward rates

y(t, T ) = − log p(t, T )

T − t
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Finally, in most continuous time interest rate models it is customary to use
instantaneous continuously compounded rates, i.e. rates that prevail over
an instantaneous time interval [T, T + dt]. The instantaneous forward rates
can be obtained by letting (T − S) → 0 in the continuously compounded
forward rates

f(t, T ) = lim
(T−S)→0

− log p(t, T )− log p(t, S)

T − S
= −∂ log p(t, T )

∂T

Similarly, we define the instantaneous short rate as

r(t) = f(t, t)

Using the definitions above we have the following relationship for t ≤ s ≤ T

p(t, T ) = p(t, s) exp

{
−
∫ T

s

f(t, u)du

}
and in particular

p(t, T ) = exp

{
−
∫ T

t

f(t, u)du

}

Term structure models can mainly be put in three categories: Short-rate
models, forward-rate models and market models.

Short-rate models

Short-rate models are based on modeling the instantaneous short rate r(t).
The short rate is typically described as a diffusion process

dr(t) = μ(t, r(t), X(t))dt+ σ(t, r(t), X(t))dW (t)

where μ(t, r(t), X(t)) is the drift of the process and σ(t, r(t), X(t)) is the
diffusion term. X(t) represents factors that are not the short rate, typically
assumed to be latent factors.

An often referenced short-rate model is the Vasicek-model (see Vasicek
(1977)), where the short rate follows an Ornstein-Uhlenbeck process

dr(t) = κ (θ − r(t)) dt+ σdW (t)

Using this specification yields can be shown to be affine functions of the
short rate

y(t, T ) =
A(t, T )

T − t
+
B(t, T )

T − t
r(t)



INTRODUCTION 6

where A(t, T ) and B(t, T ) are functions of the model parameters.

Duffie and Kan (1996) extend the Vasicek-model to include a more general
multivariate affine diffusion process. The framework of Duffie and Kan
(1996) includes prominent short-rate models such as the Vasicek-model and
the Cox-Ingersoll-Ross model, see Cox, Ingersoll, and Ross (1985). The
results in Duffie and Kan (1996) have been generalized further in Duffie,
Pan, and Singleton (2000) and Duffie, Filipovic, and Schachermayer (2003)
such that interest-rate options also can be priced in a general affine model.

A part of the finance literature has focused on short-rate models and their
ability to forecast yields and term premia, see Dai and Singleton (2002),
Dai and Singleton (2003), Duffee (2002), Cheredito, Filipovic, and Kimmel
(2007), Feldhütter (2008) and Christensen, Diebold, and Rudebusch (2011).
Their results point towards that models mainly consisting of Gaussian fac-
tors provide the best forecasts. The fact that a Gaussian model is preferred
can in part be linked to the structure of the affine model framework. Non-
Gaussian models put more restrictions on the interest-rate dynamics due
to admissibility conditions on the diffusion processes.

Recently, there has been a significant focus on capturing interest-rate volatil-
ities, see Andersen and Lund (1997), Andersen, Benzoni, and Lund (2004),
Collin-Dufresne and Goldstein (2002), Collin-Dufresne, Goldstein, and Jones
(2008), Jacobs and Karoui (2009) and Christensen, Lopez, and Rudebusch
(2010). Collin-Dufresne and Goldstein (2002) and Collin-Dufresne, Gold-
stein, and Jones (2008) argue that interest-rate volatility is not spanned
by yields, i.e. that interest-rate derivatives cannot be perfectly hedged by
using zero-coupon bonds. On the other hand, Jacobs and Karoui (2009)
argue that the results of Collin-Dufresne and Goldstein (2002) and Collin-
Dufresne, Goldstein, and Jones (2008) are driven by the considered data
and sampling-period.

Forward-rate models

An alternative to modeling the short rate is the forward-rate modeling
framework of Heath, Jarrow, and Morton (1992), also termed the Heath-
Jarrow-Morton framework, henceforth HJM framework.

In this framework we consider the instantaneous forward rate f(t, T ), which
is assumed to solve the stochastic differential equation

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t)

where σ(t, T ) is a volatility loading, which describes how forward rates with
specific maturities are affected by changes in the Wiener processW . α(t, T )
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is a drift term, which ensures that the model is arbitrage-free.

Heath, Jarrow, and Morton (1992) show that, under the risk neutral mea-
sure, the drift term has the following form:

α(t, T ) = σ(t, T )

∫ T

t

σ(t, s)ds

Thus, the risk neutral dynamics are entirely determined by the volatility
loading σ(t, T ). The HJM framework can be specified such that it is con-
sistent with a short-rate model; however, with the modification that the
model has a perfect fit to the initial term structure. For instance, when
σ(t, T ) = σe−κ(T−t) the model is consistent with the Vasicek-model.

A strand in the mathematical finance literature has extended the HJM-
framework to include innovations driven by a Lévy process, see Eberlein
and Raible (1999), Raible (2000) and Kluge (2005). Even though deriving
a HJM framework based on Lévy processes is an accomplishment of its
own, Kluge (2005) show that the Heath-Jarrow-Morton-framework based
on Lévy processes can provide a good fit to market data from single trading
days.

Casassus, Collin-Dufresne, and Goldstein (2005) find that models based on
the HJM framework with particular ease can generate interest-rate volatil-
ity that is not spanned by yields. In recent papers Trolle and Schwartz
(2009) and Trolle and Schwartz (2010) estimate a model based on a HJM
framework with stochastic volatility and find that their model is able to
describe both yields and prices of interest-rate derivatives.

Market models

Market models are an alternative to short-rate and forward-rate models
and are mainly used for pricing of interest-rate derivatives. The market
models were introduced in Miltersen, Sandmann, and Sondermann (1997)
and Brace, Gatarek, and Musiela (1997).

One of the main insights of the market model is that the LIBOR forward
rate is a martingale under an appropriately chosen forward risk neutral
measure:

dL(t;S, T ) = σ(t, T )L(t;S, T )dW T (t)

where σ(t, T ) is a volatility loading, which describes how LIBOR forward
rates with specific maturities are affected by changes in the Wiener process
W T .
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One consequence of the log-normal market model specified above, is that it
is consistent with Black’s formula, which is used as a market convention to
quote cap and floor prices.

Since the market model provides a straightforward way to model interest-
rate derivatives it has been adopted by many banks. Therefore a large part
of the literature on the market model is based on the pricing of interest-
rate derivatives of varying complexity, see Andersen and Andreasen (2000),
Andersen and Brotherton-Ratcliffe (2001) and Brigo and Mercurio (2006).

The market models have also been extended to include Lévy processes, see
Eberlein and Özkan (2005) and Kluge (2005). Similar to introducing Lévy
processes in a forward-rate model, introducing Lévy processes in the market
model improves the fit to market data on single trading days. With respect
to fitting a model on time-series data, Jarrow, Li, and Zhao (2007) estimate
a market model with stochastic volatility and jumps and find that jumps
improve the model performance.

Inflation linked securities

In this section we describe the typical inflation linked products traded in
the market. A good description of inflation derivatives can also be found
in Barclays Capital (2008), which is more exhaustive than the description
given in this section. Finally, we refer to the Consumer Price Index (hence-
forth CPI), which is the price of a consumer basket measured in Dollars, or
the representative local currency.

An Inflation Protected Zero-Coupon bond is a bond where the payoff at
maturity, T , is compounded by the CPI2

pIP (T, t0, T ) =
I(T )

I(t0)

where I(T ) is the value of the CPI at time T . The denominator I(t0)
normalizes the dependence of the CPI, such that the inflation indexation
is initiated at the issuance of the bond. The price of an inflation protected
bond will be given by the expectation

pIP (t, t0, T ) = EQ
t

[
exp

(
−
∫ T

t

n(s)ds

)
I(T )

I(t0)

]
= pn(t, T )E

T
t

[
I(T )

I(t0)

]
2Typically inflation protected bonds are linked to the CPI some months prior to

maturity, however we use this simpler specification to enhance the understanding of the
product.
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where n(t) is the nominal spot rate and pn(t, T ) is the nominal Zero coupon
bond with maturity T , observed at time t.

Based on the observed market price of an inflation protected ZCB, we define
the real ZCB as

pr(t, T ) =
pIP (t, t0, T )I(t0)

I(t)

such that pr(T, T ) = 1. Note that the relation above tells us that pr(t, T )
is measured in units of the CPI-basket, and the real bond will give the
investor one CPI-basket at time T . Also note that real bonds are derived
quantities and thus not directly traded. Finally differences between yields
from nominal and real ZCBs are termed Break Even Inflation Rates, as it
reflects the inflation compensation required by investors.

A Zero-Coupon Inflation Indexed Swap (ZCIIS) is a swap agreement where
one party pays the percentage change on the CPI over the period [t, T ] and
the other party pays a fixed amount K. The payoff, at maturity, for the
holder of the ZCIIS is then given by

ZCIIST (t, T,K) =

(
I(T )

I(t)
− 1

)
−
(
(1 +K)T−t − 1

)
=
I(T )

I(t)
− (1 +K)T−t

ZCIISs are initiated with a value of zero and are quoted in terms of the
fixed payment K, and thus ZCIIS quotes offer a term structure of the
expected (risk adjusted) future inflation, also known as Swap Break Even
Inflation Rates. Although it may not appear so, the pricing of a ZCIIS
is completely model independent and only depends on nominal and real
zero-coupon bonds.

In terms of modeling real and nominal interest-rates there are two main
strands in the literature. First, an approach which is mainly focused on the
modeling of prices of inflation derivatives, i.e. both linear and non-linear
derivative contracts. Secondly, a macro-finance based view where the main
purpose is to extract information from the inflation linked bonds.

Jarrow and Yildirim (2003) were among the first to consider modeling in-
flation, nominal and real rates in a no-arbitrage framework. By using a
forward-rate framework, they derive drift conditions for the CPI, real and
nominal forward rates. Hinnerich (2008) extends the results of Jarrow and
Yildirim (2003) to include a jump process. Three papers that use a mar-
ket model framework are Mercurio (2005), Mercurio and Moreni (2006)
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and Mercurio and Moreni (2009). Mercurio (2005) use a standard log-
normal market model, where Mercurio and Moreni (2006) and Mercurio
and Moreni (2009) introduce a volatility smile in their model by adding
stochastic volatility.

In terms of the macro-finance view the modeling is typically based on the
no-arbitrage relationship between real and nominal pricing kernels

MR(t) =MN(t)I(t)

where MR is the real stochastic discount factor and MN is the nominal
stochastic discount factor. The no-arbitrage relationship implies, that in a
no-arbitrage setting we can 1) model nominal rates and inflation and then
infer real rates, 2) model real rates and inflation and infer nominal rates, and
3) model real and nominal rates and infer the CPI. These three approaches
are the ones used in the literature, with no consistent pattern on which to
prefer. The models based on the macro-finance view are typically based on
a short-rate model, sometimes including observable factors such as GDP.

A number of papers analyse inflation markets using TIPS, see Ang, Bekaert,
and Wei (2008), D’Amico, Kim, and Wei (2008), Chernov and Mueller
(2008) and Christensen, Lopez, and Rudebusch (2008). With regard to
Euro Area data, we are aware of three papers, namely Tristani and Hördahl
(2007), Garcia and Werner (2010) and Tristani and Hördahl (2010). All
papers extract real yields from inflation indexed bonds, and then estimate
inflation expectations and inflation risk premia.

Overall, only a few of these studies agree on the size of the inflation risk
premia. Some papers have inflation risk premia of up to 300 basis points
(Chernov and Mueller (2008)), where others show more moderate fluctu-
ations (-50 to 50 basis points, see for instance Christensen, Lopez, and
Rudebusch (2008)). These differences seem to arise from small differences
in data periods and the data included, e.g. for instance the inclusion of sur-
veys or not. Finally, only Tristani and Hördahl (2007) present confidence
bands on their of estimates inflation risk premia. They find that their es-
timate of inflation risk premia is statistically insignificant for most of the
considered maturities.



Summary

English Summary

Modeling stochastic skewness in a
Heath-Jarrow-Morton framework

In this paper we model the stochastic skewness present in interest-rate
options by using a Heath-Jarrow-Morton framework and time-changed Lévy
processes. The approach is insprired by Carr and Wu (2007) who consider
modeling stochastic skewness in currency options.

Most of the term structure modeling literature is focused on capturing
stochastic volatility, see for instance Casassus, Collin-Dufresne, and Gold-
stein (2005), Trolle and Schwartz (2009) and Jarrow, Li, and Zhao (2007).
The only paper to consider stochastic skewness is Trolle and Schwartz
(2010), who use a Heath-Jarrow-Morton-framework driven by Wiener pro-
cesses with two stochastic volatility factors. Trolle and Schwartz (2010) are
able to generate the skewness implied by the 1-year option on the 10-year
swap rate. However, Trolle and Schwartz (2010) acknowledge that their
model will understate volatility and skewness for short-term swaptions. Our
contribution is to provide a framework which can capture skews, also for
short-term interest-rate options. Our calibration to data suggests that the
model provides a reasonable fit to the skewness data and that the jump
components in the time-changed Lévy processes mainly affect short-term
maturities.

The structure of the paper is a follows. First, we show model-free evidence
of time-varying skewness in the LIBOR distributions and describe results
on the relationship between volatilities and skews at different maturities.
Secondly, we use the intuition from these results to specify a model based
on a Heath-Jarrow-Morton-framework and time-changed Lévy processes.
The model framework allows for semi-analytical solutions of caplet prices
and moments of the LIBOR distribution. Finally, by using these model-
based moments we calibrate a simple case of the model to time-series of

11
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the model-free volatility and skewness and show that the model is able to
capture the volatility and skewness in the data.

Inflation derivatives modeling using time changed
Lévy processes

In this paper we consider a consistent no-arbitrage framework for mod-
eling inflation which incorporates both stochastic volatility and jumps in
inflation, real and nominal rates.

More precisely, we model inflation derivatives by using the time changed
Lévy processes of Carr and Wu (2004) in a Heath-Jarrow-Morton frame-
work, i.e. we consider an extension of the model framework found in Jarrow
and Yildirim (2003). Incorporating stochastic volatility into an inflation
derivatives model is also considered in Mercurio and Moreni (2006) and
Mercurio and Moreni (2009), where Hinnerich (2008) describes the possi-
bility of adding jumps to the model of Jarrow and Yildirim (2003). The
paper adds to the existing literature on inflation modeling by providing
a model framework which can incorporate both stochastic volatility and
jumps, while still being analytically tractable. The modeling framework
can also form a good basis for an analysis of time-series of inflation swaps
and caps.

The structure of the paper is a follows. First, we briefly describe inflation
linked securities, and show evidence of volatility smiles, i.e. non-Gaussian
behaviour. Secondly, we describe the framework and derive drift conditions
for nominal and real forward rates. Similarly, a drift condition for the
consumer price index is found. Thirdly, we show how to price standard
inflation derivatives by considering a complex (time dependent) measure.
By specifying the subordinator as an affine process, the prices of the consi-
dered derivatives can be obtained up to ordinary differential equations and
possibly Fourier inversion. Finally, we calibrate our model to market data.
Our results show that even though Lévy processes can improve the fit to
data, an investigation into the exact specification of the Lévy process and
volatility loading is still needed.

Inflation risk premia in the term structure of interest
rates: Evidence from Euro area inflation swaps

We consider the estimation of inflation risk premia in the Euro area by using
inflation swaps. Our approach is based on a reduced-form no-arbitrage term
structure model.
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With regard to similar research, Ang, Bekaert, and Wei (2008), D’Amico,
Kim, and Wei (2008), Chernov and Mueller (2008) and Christensen, Lopez,
and Rudebusch (2008) analyze inflation markets by using TIPS. With re-
gard to Euro Area data, we are aware of three papers, namely Tristani
and Hördahl (2007), Garcia and Werner (2010) and Tristani and Hördahl
(2010). All papers extract real yields from inflation indexed bonds, and then
estimate inflation expectations and inflation risk premia. Only one other pa-
per uses inflation swaps, namely Haubrich, Pennacchi, and Ritchken (2008),
who use US inflation swap data. However, in the US, TIPS dominate the
inflation linked market, thus having a negative effect on the liquidity of US
inflation swaps.

Our contribution to the literature is that we are the first to derive inflation
risk premia based on fairly liquid inflation swap data, namely Euro area
inflation swaps. Secondly, by using a Bayesian Markov Chain Monte Carlo
approach we present confidence intervals for the inflation risk premia and
by using this model output we can assess the impact of using surveys on
inflation expectations in the identification of inflation risk premia.

The structure of the paper is a follows. First, we examine the relationship
between nominal swap rates and inflation swap rates and use this informa-
tion to specify a no-arbitrage term structure model. Secondly, we estimate
the model using Markov Chain Monte Carlo and find that estimates of in-
flation risk premia on average show an upward sloping term structure, with
1 year risk premia of 18 bps and 10 year risk premia of 43 bps; however,
with fluctuations in risk premia over time. Thirdly, our estimates suggest
that surveys are important in identifying inflation expectations and thus
inflation risk premia. Finally, we relate estimates of inflation risk premia to
agents beliefs, and find that skews in short term inflation perceptions drive
short term inflation risk premia, where beliefs on GDP growth drive longer
term risk premia.

Affine Nelson-Siegel Models and Risk Management
Performance

In this paper we assess the ability of the Affine Nelson-Siegel model-class
with stochastic volatility to match the observed distributions of Danish
Government bond yields.

The ability of affine term structure models to capture interest-rate volatil-
ity has recently been discussed in Collin-Dufresne, Goldstein, and Jones
(2008), Jacobs and Karoui (2009) and Christensen, Lopez, and Rudebusch
(2010). Collin-Dufresne, Goldstein, and Jones (2008) argue that unspanned
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stochastic volatility is needed to capture the dynamics of volatility, where
Christensen, Lopez, and Rudebusch (2010) argue that their preferred 3-
factor affine Nelson-Siegel model can capture the one-month interest-rate
volatility reasonably well. Our contribution is to use the models in Chris-
tensen, Lopez, and Rudebusch (2010), with respect to both short-term and
long-term forecasts. Most other related papers focus on short-term fore-
casts, i.e. one month. However, in some applications the long-term dynam-
ics of interest-rates are of greater interest. Furthermore, in our estimation
we use Danish Government bond yields.

The structure of the paper is a follows. First, we describe the data and
describe the 7 different models used in the forecasting exercise. Secondly,
based on data from 1987 to 2010 and using a Markov Chain Monte Carlo
estimation approach we estimate the 7 different model specifications and
test their ability to forecast yields (both means and variances) out of sample.
We find that models with 3 CIR-factors perform the best in short term
predictions, while models with a combination of CIR and Gaussian factors
perform well on 1 and 5-year horizons. Overall, our results indicate that
no single model should be used for risk management, but rather a suite of
models.
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Dansk Resumé

Modellering af stokastisk skævhed i
Heath-Jarrow-Morton modelrammen

I dette papir modellerer vi stokastisk skævhed i renteoptioner. Vi modellerer
stokastisk skævhed ved at benytte en Heath-Jarrow-Morton-modelramme
og tidstransformerede Lévy processer. Vores fremgangsmåde er inspireret
af Carr and Wu (2007), der beskriver en model med stokastisk skævhed for
at beskrive priser p̊a valutaoptioner.

Store dele af rentestruktur-litteraturen fokuserer p̊a at fange stokastisk
volatilitet, se for eksempel Casassus, Collin-Dufresne, and Goldstein (2005),
Trolle and Schwartz (2009) og Jarrow, Li, and Zhao (2007). Det eneste
papir, der beskriver stokastisk skævhed, er Trolle and Schwartz (2010).
Her benyttes en Heath-Jarrow-Morton modelramme baseret p̊a Wiener-
processer med to faktorer der genererer stokastisk volatilitet. Trolle and
Schwartz (2010) kan generere skævheder der er meget lig den implicitte
skævhed fra 1-̊arige optioner p̊a en 10-̊arig swap rente. Trolle and Schwartz
(2010) bemærker dog, at deres model vil undervurdere skævheden for renteop-
tioner med kort restløbetid. Vores bidrag er at beskrive en modelramme, der
kan beskrive denne skævhed, ogs̊a for renteoptioner med kort restløbetid.
En kalibrering p̊a data viser, at vores model giver en god beskrivelse af
skævheden, og at springkomponenterne i de tidstransformerede Lévy pro-
cesser hovedsageligt p̊avirker korte løbetider.

Strukturen af papiret er som følger. Først beskriver vi modeluafhængige es-
timater af tidsvarierende skævhed i fordelingen af LIBOR og sammenhæn-
gen mellem volatiliteter og skævheder med forskellige løbetider. Dernæst
benytter vi intuitionen fra disse resultater til at specificere en model baseret
p̊a en Heath-Jarrow-Morton modelramme og tidstransform-erede Lévy pro-
cesser. Modelrammen tillader semi-analytiske løsninger til priser p̊a caplet-
ter og momenter af fordelingen af LIBOR. Endelig, ved at benytte disse
modelbaserede momenter, kalibrerer vi modellen baseret p̊a tidsrækker af
modeluafhængige estimater af volatilitet og skævhed. Kalibreringen viser,
at modellen er i stand til at beskrive volatiliteten og skævheden i data.

Modellering af inflationsderivater ved brug af
tidstransformerede Lévy processer

I dette papir beskriver vi en konsistent arbitrage-fri modelramme med b̊ade
stokastisk volatilitet og spring i inflationen samt reale og nominelle renter.
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Mere præcist modellerer vi inflationsderivater ved at benytte de tidstrans-
formerede Lévy processer fundet i Carr and Wu (2004). Disse processer
anvendes i en Heath-Jarrow-Morton modelramme. Herved betragter vi en
udvidelse af modelrammen i Jarrow and Yildirim (2003). Indarbejdelsen
af stokastisk volatilitet i en model, der anvendes til prisning af inflations-
derivater, er ogs̊a beskrevet i Mercurio and Moreni (2006) og Mercurio and
Moreni (2009). Hinnerich (2008) beskriver, hvorledes spring kan indarbe-
jdes i den samme Heath-Jarrow-Morton modelramme. Dette papir bidrager
til den eksisterende litteratur ved at tilbyde en modelramme, der b̊ade kan
indarbejde stokastisk volatilitet og spring og samtidig være analytisk tilgæn-
gelig. Modelrammen kan ogs̊a være en god base for en tidsrækkeanalyse af
inflationsswaps og -caps.

Strukturen i papiret er som følger. Først beskriver vi inflationsindek-
serede aktiver og p̊aviser tegn p̊a volatilitetssmil, dvs. ikke-Gaussisk adfærd.
Dernæst beskriver vi modelrammen og udleder betingelser for driften for
reale og nominelle renter. Tilsvarende udleder vi en betingelse for driften for
prisindekset. Vi viser ogs̊a, hvorledes standard inflationsderivater kan pris-
fastsættes ved at benytte et komplekst, tidsafhængigt sandsynlighedsmål.
Ved at definere tidstransformationen som en affin proces kan vi finde priser
ved at løse ordinære differential ligninger og muligvis Fourier inversion. En-
delig kalibrerer vi modellen p̊a markedsdata og vores resultater viser, at selv
om en model baseret p̊a Lévy processer kan forbedre beskrivelsen af data,
vil en nærmere undersøgelse af volatilitetsspecifikationen kunne forbedre
modellen yderligere.

Inflationsrisikopræmier i rentestrukturen: Resultater
baseret inflationsswaps fra Euro-omr̊adet

Vi betragter estimationen af inflationsrisikopræmier i Euro-omr̊adet ved at
benytte inflationsswaps. Vores fremgangsmåde er baseret p̊a en statistisk
arbitragefri rentestruktur model.

Hvad ang̊ar lignende forskning analyserer Ang, Bekaert, and Wei (2008),
D’Amico, Kim, and Wei (2008), Chernov and Mueller (2008) og Chris-
tensen, Lopez, and Rudebusch (2008) inflationsmarkedet ved at anvende
TIPS. Med hensyn til data p̊a Euroomr̊adet kender vi til tre papirer, Tris-
tani and Hördahl (2007), Garcia andWerner (2010) and Tristani and Hördahl
(2010). Alle disse papirer anvender reale renter baseret p̊a inflationsin-
dekserede obligationer, og estimerer derefter inflationsforventninger og -
risikopræmier. Det eneste andet papir, der benytter inflationsswaps, er
Haubrich, Pennacchi, and Ritchken (2008), som benytter inflationswaps fra
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USA. I USA dominerer TIPS det inflationsindekserede marked, og de har
derved en negativ effekt p̊a likviditeten i inflationsswaps.

Vores bidrag til litteraturen er, at vi er de første til at estimere inflations-
risikopræmier baseret p̊a likvide inflationsswaps, nemlig inflationsswaps fra
Euro-omr̊adet. Dernæst, ved at benytte en Bayesiansk Markov Chain
Monte Carlo metode til at estimere modellen, kan vi præsentere konfi-
densb̊and for inflationsrisikopræmien. Ved at benytte disse modelresultater
kan vi analysere effekten af at inkludere spørgeskemaundersøgelser omkring
inflationsforventninger p̊a identifikationen af inflationsrisikopræmier.

Strukturen p̊a papiret er som følger. Først undersøger vi sammenhængen
mellem nominelle swap-renter og inflationswap-renter, og dernæst benyt-
ter vi denne information til at specificere en arbitragefri rentestruktur-
model. Vi estimerer modellen ved at benytte en Markov Chain Monte
Carlo metode og finder, at vores estimater p̊a inflationsrisikopræmier er
stigende som funktion af løbetiden. Den 1-̊arige inflationsrisikopræmie er
p̊a 18 bps og den 10-̊arige inflationsrisikopræmier er 43 bps. Begge tid-
srækker udviser dog betydelig variation over tid. Vores estimater viser ogs̊a,
at identifikationen af inflationsrisikopræmierne forbedres ved at inklud-
ere spørgeskemaundersøgelser omkring inflationsforventninger. Endelig re-
laterer vi vores estimater p̊a inflationsrisikopræmier til agenters antagelser.
Vi finder, at skævheder i den kortsigtede inflationsopfattelse beskriver kort-
sigtede inflationsrisikopræmier, hvor forventninger til BNP vækst beskriver
langsigtede inflationsrisikopræmier.

Affine Nelson-Siegel modeller og
risikostyringsperformance

I dette papir analyserer vi de affine Nelson-Siegel modellers evne til beskrive
de observerede fordelinger af danske statsobligationsrenter.

Affine rentestrukturmodellers evne til at beskrive rentevolatiliteten er for
nyligt blevet diskuteret i Collin-Dufresne, Goldstein, and Jones (2008), Ja-
cobs and Karoui (2009) og Christensen, Lopez, and Rudebusch (2010).
Collin-Dufresne, Goldstein, and Jones (2008) argumenterer for at s̊akaldt
unspanned stochastic volatility er nødvendigt for at beskrive rentevolatilitets-
dynamikken, hvorimod Christensen, Lopez, and Rudebusch (2010) argu-
menterer for, at deres fortrukne 3-faktor affine Nelson-Siegel model har
en god beskrivelse af rentevolatiliteten én måned frem. Vores bidrag er
at anvende modellerne i Christensen, Lopez, and Rudebusch (2010) b̊ade
til kort- og langsigtede fremskrivninger. De fleste andre papirer fokuserer
p̊a kortsigtede fremskrivninger, dvs. én måned, men i nogle anvendelser er
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langsigtsdynamikken af større interesse. Endelig benytter vi danske stat-
sobligationsrenter i vores estimation.

Strukturen p̊a papiret er som følger. Først beskriver vi data samt de 7
forskellige modeller brugt til at fremskrive med. Dernæst, baseret p̊a data
fra 1987 til 2010, og ved at benytte en Markov Chain Monte Carlo metode,
estimerer vi de 7 modeller. Disse 7 modeller anvendes til at fremskrive renter
(b̊ade middelværdier og varianser) out-of-sample. Vi finder at modeller
med 3 CIR-faktorer klarer sig bedst ved kortsigtede fremskrivninger, hvor
modeller med en kombination af CIR- og Gaussiske-faktorer klarer sig bedst
p̊a 1- og 5-̊arige horisonter. Overordnet set indikerer vores resultater, at en
samling af modeller, i modsætning til en enkelt model, bør benyttes til
risikostyring.
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Modeling stochastic skewness in a

Heath-Jarrow-Morton framework

Abstract

In this paper we model the stochastic skewness present in interest-rate op-
tions. More precisely, we show model-free evidence of time-varying skewness
in the LIBOR distributions and use the intuition from these results to spec-
ify a model based on a Heath-Jarrow-Morton framework and time-changed
Lévy processes. The model framework allows for semi-analytical solutions
of caplet prices and moments of the LIBOR distribution. By using these
model-based moments, we calibrate a simple case of the model to time-
series of the model-free volatility and skewness and show that the model is
able to capture the volatility and skewness in the data.

Stochastic skewness, HJM framework, Time-changed Lévy processes, Markov
Chain Monte Carlo

JEL Classification: G12, G13, C11, C58

1Parts of this paper are based on the previous paper ’A tractable Heath-Jarrow-
Morton framework based on time changed Lévy processes’. I would like to thank Bjarne
Astrup Jensen, Fred Espen Benth, and Anne-Sofie Reng Rasmussen for useful comments.
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1.1 Introduction

Several facts on interest rate behaviour are well known. First interest-rate
volatilities are obviously stochastic, and these volatilities tend to cluster
in periods with low respectively high volatility (see for instance Andersen
and Lund (1997)). Another stylized fact is that changes in interest rates
and changes in volatility tend to be positively correlated (see Andersen
and Lund (1997) and Trolle and Schwartz (2009)). Finally, jumps have also
been shown to be an integral part of interest rate dynamics (see Das (2002),
Andersen, Benzoni, and Lund (2004) and Johannes (2004)). Furthermore,
in a recent analysis of swaption prices, Trolle and Schwartz (2010) also find
evidence of stochastic skewness in the probability distributions implied by
swaption prices.

A model used in the pricing and risk management of interest-rate depen-
dent assets should ideally capture all of these facts. Indeed, models based
on Wiener processes have implemented the time-inhomogeneous behaviour
through stochastic volatility processes. This allows for semi-analytical pric-
ing of many interest rate derivatives, which is indeed preferable. Among pa-
pers taking this approach can be mentioned Duffie and Kan (1996), Casas-
sus, Collin-Dufresne, and Goldstein (2005), Trolle and Schwartz (2009) and
Jarrow, Li, and Zhao (2007).

In terms of capturing stochastic skewness in interest-rates, only Trolle and
Schwartz (2010) model the stochastic skewness explicitly. Using a Heath-
Jarrow-Morton framework driven by Wiener processes with two stochastic
volatility factors, they are able to generate the skewness implied by the
1-year option on the 10-year swap rate. They also find that a model with
a single stochastic volatility factor does capture the correct volatility pat-
terns, but not the correct skewness patterns. The main objective in Trolle
and Schwartz (2010) is not the modeling of stochastic skewness, but rather
explaining the dynamics of medium and long-term swaption distributions.
They also acknowledge that their model will understate volatility and skew-
ness for short-term swaptions.

The model in Trolle and Schwartz (2010) is closely linked to the foreign
exchange model of Carr and Wu (2007). However, where Carr and Wu
(2007) use the time-changed Lévy processes of Carr and Wu (2004), Trolle
and Schwartz (2010) only use a special case of the Lévy process, namely
the Wiener process.

In this paper we complete the link between Carr and Wu (2007) and Trolle
and Schwartz (2010) and specify a Heath-Jarrow-Morton framework with
stochastic skewness, where the changes in forward rates are driven by time-
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changed Lévy process. To generate stochastic skewness, we need to consider
a framework where positive and negative skewness can evolve independently.
When using Lévy processes with jumps, distributions showing positive and
negative skewness are easily obtained as the skewness is an integral part
of the jump process.2 The amount of skewness generated by each factor is
governed by the activity rates associated with each process.3

First, we show evidence of stochastic skewness in the distribution of Euro
area LIBOR-rates. We derive model-free estimates of the standard devia-
tion and skewness present in interest-rate caps and floors. We show that at
least two factors should be used to capture the dynamics of the volatility
and skewness, as there is a decoupling between short-term and long-term
skews.

Secondly, we explicitly formulate a Heath-Jarrow-Morton framework driven
by time-changed Lévy processes that can generate stochastic volatility and
skewness. We show that we can derive a semi-analytical expression for the
characteristic function of log Zero-Coupon Bond prices, which enables us
to show how to price interest-rate caps and floors. Finally, we relate the
characteristic function to the moments of the LIBOR distribution.

Thirdly, we calibrate our model to standard deviations and skewness mea-
sured from mid-2005 to end-2009. Our calibration also shows the decoupling
of short-term and long-term skewness and also shows that the jumps in our
model mainly affect short-term caps and floors. We also show that the ac-
tivity rates have natural interpretations with relation to the volatility and
skew in the caps and floors.

The structure of the paper is as follows. In section 1.2 we derive and describe
the stochastic volatility and skewness present in caps and floors. In section
1.3 we consider our modeling framework, and in section 1.4 we describe
the specific version of the model which we use for calibration. Section 1.5
presents the calibration method and section 1.6 shows the results from the
calibration. Finally, section 1.7 concludes the paper.

1.2 Evidence of stochastic skewness

In this section we provide evidence of stochastic skewness in interest-rate
markets. More precisely, we consider deriving variance and skewness mea-

2When only using Wiener processes, such as in Trolle and Schwartz (2010), the
correlations between the forward-rate innovations and the stochastic volatility determine
the skewness.

3For a Wiener process an activity rate is equivalent to a stochastic volatility factor.
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sures of LIBOR distributions implied by interest-rate caps and floors.

First, LIBOR is a discrete rate over the period [T0, T1]. The rate can be
written as

L(T0, T1) =
1

T1 − T0

(
1

p(T0, T1)
− 1

)

Similarly, a forward contract initiated at time t, but paying interest over
the period [T0, T1], gives us forward LIBOR

L(t, T0, T1) =
1

T1 − T0

(
p(t, T0)

p(t, T1)
− 1

)

where by construction L(T0, T0, T1) = L(T0, T1).

Consider an interest rate caplet, with cap rate K, fixing at time T0 and
payment at time T1. By standard arbitrage arguments we arrive at:

C(t, T0, T1, K) = p(t, T1)E
T1

t

[
(L(T0, T1)−K)+

]
Similarly, an interest rate floorlet is defined by:

F(t, T0, T1, K) = p(t, T1)E
T1

t

[
(K − L(T0, T1))

+]
Obviously, given that prices are expectations, they contain information on
the forward risk adjusted distribution. Furthermore, by construction of the
T1-forward measure, we have that ET1

t [L(T0, T1)] = L(t, T0, T1).

Following Bakshi and Madan (2000), Carr and Madan (2001) and Bakshi,
Kapadia, and Madan (2003), a twice differentiable function of L(T0, T1),
g(L(T0, T1)), can be written as

g(L(T0, T1)) =g(Z) + g′(Z)(L(T0, T1)− Z) +

∫ ∞

Z

g′′(K)(L(T0, T1)−K)+dK

+

∫ Z

0

g′′(K)(K − L(T0, T1))
+dK

for any suitable choice of Z. Taking expectations under the T1-forward
measure, and setting Z = L(t, T0, T1), yields the result

ET1

t [g(L(T0, T1))] =g(L(t, T0, T1)) +
1

p(t, T1)

∫ ∞

L(t,T0,T1)

g′′(K)C(t, T0, T1, K)dK

+
1

p(t, T1)

∫ L(t,T0,T1)

0

g′′(K)F(t, T0, T1, K)dK
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Thus, by setting g(K) = Kn we can obtain the n’th non-central moment.
For n = 1, 2, 3 the expression yields:

ET1

t [L(T0, T1)] =L(t, T0, T1)

ET1

t

[
L(T0, T1)

2
]
=L(t, T0, T1)

2 +
2

p(t, T1)

∫ ∞

L(t,T0,T1)

C(t, T0, T1, K)dK

+
2

p(t, T1)

∫ L(t,T0,T1)

0

F(t, T0, T1, K)dK

ET1

t

[
L(T0, T1)

3
]
=L(t, T0, T1)

3 +
6

p(t, T1)

∫ ∞

L(t,T0,T1)

KC(t, T0, T1, K)dK

+
6

p(t, T1)

∫ L(t,T0,T1)

0

KF(t, T0, T1, K)dK

Finally we can relate the non-central moments to mean, variance and skew-
ness by using the standard relations

μ =L(t, T0, T1)

σ2 =ET1

t

[
L(T0, T1)

2
]
− μ2

skewness =
ET1

t [L(T0, T1)
3]− 3μσ2 − μ3

σ3

Data

To extract the market implied variance and skewness we use cap and floor
data based on 6M EURIBOR. Our data consists of weekly flat volatility
surfaces (sampled on Wednesdays)4 and zero-coupon bonds (extracted from
LIBOR and swap rates by using bootstrapping), from the June 1st 2005 to
December 30th 2009.

The caps are annual caps, i.e. the 1 year cap consists of one caplet, the 2
year cap consists of three caplets, etc. Thus a cap is a portfolio of caplets:

Cap(t, TN , K) =
N∑
j=1

C(t, Tj−1, Tj , K)

Without any additional assumptions we cannot extract caplet prices (except
for the 1 year cap). To obtain an estimate, we use linear interpolation to get
implied volatility estimates for semi-annual maturities, i.e. a 1.5 year cap
which consists of two caplets, a 2.5 year cap which consists of four caplets.

4A flat volatility is one single volatility which is used to price all the caplets in a cap,
using Blacks formula.
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Figure 1.1: Zero-Coupon Bonds yields. The yields are extracted from
interest rate swaps and LIBOR rates by using bootstrapping. Source:
Bloomberg.

Thus using these interpolated volatilities we can get prices for each tenor
in the caps, i.e. we can obtain a caplet price as

C(t, Ts−1, Ts, K) = Cap(t, Ts, K)− Cap(t, Ts−1, K)

To obtain prices at cap-rates which are not quoted, but are required to ob-
tain the variance and skewness, we use linear interpolation between the flat
volatilities and then perform the interpolation in the maturity dimension
to obtain the caplet prices. Outside the range of available strikes we extend
the linear interpolation. We have considered keeping volatilities constant
outside the range of available strikes. Doing so, the derived variance and
skewness are slightly more noisy.

Figure 1.2 presents the derived standard deviations. First, as expected we
find that the distributions get wider as maturity increases. Furthermore,
there appears to be common patterns in the standard deviations. The
patterns are confirmed when performing a principal component analysis
(PCA) on standard deviations (normalized by the square root of time).5

The PCA shows that the first principal component (PC) explains close to 90

5Detailed results from the PCA are not reported here, but are available upon request.



25 ESSAY 1

2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3

3.5

St
an

da
rd

 d
ev

ia
tio

n,
 p

er
ce

nt

0.5 year maturity

1.5 year maturity

5.0 year maturity

9.5 year maturity

Figure 1.2: LIBOR distribution standard deviation for different
maturities. The standard deviations are derived from interest-rate cap
and floor prices using a model independent approach.
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Figure 1.3: LIBOR distribution skewness for different maturities.
The skewness measures are derived from interest-rate cap and floor prices
using a model independent approach.
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Figure 1.4: Left: Factor loadings for standard deviations Left: Factor
loading for skews

percent of the variation and the second PC explains close to 8 percent.6 The
left-hand panel in Figure 1.4 shows the factor loadings from the PCA. The
factor loadings are similar to the level and slope curvature factor loadings
from a PCA on the term structure of interest-rates, albeit with the difference
that the level factor shows a small drop for the short-term maturities.

Figure 1.3 presents the derived skewness measures. First, the skewness is
clearly time-varying. Secondly, short- and long-term skewness measures ap-
pear to differ in their dynamics. To further examine this, we perform a PCA
on the skewness measures. The PCA shows that the first PC explains 78
percent of the variation in data, whereas the second PC explain around 15
percent of the variation in data.7 The right-hand panel in Figure 1.4 shows
the factor loadings from the PCA. They are similar to the ones from the
PCA performed on the standard deviations, albeit with a more pronounced
drop in the level factor loading for short-term maturities. The lower expla-

6The PCA is performed on the levels of the standard deviations, rather than changes.
When using changes the amount of variation described by the first PC is around 53
percent, and for the second PC it is around 18 percent. The factor loadings remain
similar to the ones from the PCA performed on Levels. Factor loadings related to the
higher order PCs, are quite noisy, and do not show the usual patterns, i.e. level, slope
or curvature.

7Again, performing the PCA on changes leads to a lower explanation rate from the
PCs. The first PC explains 31 percent of the variation in data and the second PC
explains 14 percent of the variation in data. The interpretations of the factor loadings
remain the same, though they are more noisy. For higher order factor loadings, the factor
loadings are quite noisy. We believe that the lower explanation rates, and more noisy
factor loadings can be related to the fact than the skewness data is more noisy than the
standard deviation data.
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nation rates and the more pronounced drop in the factor loadings indicates
that at least a two factor model should be used in order to generate the
patterns in the data.

1.3 Modeling stochastic skewness

To model the stochastic skewness present in interest-rate options, we use a
Heath-Jarrow-Morton framework (see Heath, Jarrow, and Morton (1992))
in combination with time-changed Lévy processes (see Carr andWu (2004)).

In the following we consider a complete stochastic basis (Ω,F , {Ft}t≥0,Q).
We assume that all processes defined below are adapted to the filtration
{Ft}t≥0.

Time-changed Lévy processes provide a way to model time-inhomogeneous
activity rates for Lévy processes. In case of a Wiener process the time-
change is equivalent to modeling stochastic volatility and for a compound
Poisson process the time-change corresponds to a stochastic intensity.

To model stochastic skewness, consider a positively skewed Lévy process,
L+, and a negatively skewed Lévy process, L−. By having two different
time-changes, τ+ and τ−, both stochastic volatility and skewness can be
captured, as the activity rates of the positively and negatively skewed in-
novations can evolve independently, i.e. when dτ+(t) is higher relative to
dτ−(t) we see a higher tendency toward positively skewed distributions and
vice versa. This approach was first used by Carr and Wu (2007) to model
the dynamics of currency options.

In terms of a HJM framework we incorporate the stochastic skew compo-
nents directly in the forward-rate process

df(t, T ) = α(t, T )dt+ σ(t, T )
[
dY +(t) + dY −((t)

]
where Y •(t) = L•(τ •(t)) and the time-change is given as the integrated
activity rate

τ •(t) =

∫ t

0

v•(s)ds

Furthermore, we assume that σ(t, T ) is a deterministic integrable function
in R and α(t, T ) is an adapted integrable process in R. Additionally, we
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assume that each Lévy process has characteristic exponent given as8

ϕ•(u) = iua• − 1

2
(uσ•)2 +

∫
R0

(
eiux − 1

)
ν•(dx)

where a• is the drift of the process, σ• is the diffusion coefficient of the
process and ν•(dx) is the Lévy measure, which dictates the arrival rates of
jumps.9

One difference compared to Carr and Wu (2007) is that we do not com-
pensate the jump part of the Lévy process. In a HJM framework the com-
pensation would be superfluous, as it is incorporated into the drift term
α(t, T ).

As argued above, and given the results of Litterman and Scheinkman (1991),
multiple factors are needed to match the data. We therefore consider a
model consisting of J skewness factors:

df(t, T ) = α(t, T )dt+
J∑

j=1

σj(t, T )
[
dY +

j (t) + dY −(t)
]

Using this specification log zero-coupon bond prices have dynamics given
by (see Björk, Kabanov, and Runggaldier (1997))

d log p(t, T ) = (r(t) + A(t, T )) dt+
J∑

j=1

Sj(t, T )
[
dY +(t) + dY −(t)

]
where

A(t, T ) = −
∫ T

t

α(t, u)du and Sj(t, T ) = −
∫ T

t

σj(t, u)du

To complete the initial description of the model framework, we need to
derive a drift condition for A(t, T ), which so far is only defined to be an
integrable process in R.

By using Itô’s lemma we obtain the ZCB dynamics

dp(t, T )

p(t, T )
= (r(t) + A(t, T )) dt+

J∑
j=1

∑
p∈{+,−}

[
Sj(t, T )a

p
j +

1

2

(
Sj(t, T )σ

p
j

)2]
dτ pj (t)

+
J∑

j=1

∑
p∈{+,−}

[
Sj(t, T )dW

p
j (τ

p
j (t)) +

∫
R0

(
eSj(t,T )x − 1

)
μp
j(dx, dτ

t
j (t))

]
8We assume that the Lévy processes are 1-dimensional. An extension to multivariate

Lévy processes is straightforward, although the interpretation of positive and negative
skewness is harder for a multivariate process.

9Note that we are only considering finite variation jump processes. The results can
be extended to infinite variation processes by using the Lévy-Itô decomposition.
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Taking expectations yields

E
Q
t

[
dp(t, T )

p(t, T )

]
=

⎛
⎝r(t) + A(t, T ) +

J∑
j=1

∑
p∈{+,−}

[
Sj(t, T )a

p
j +

1

2

(
Sj(t, T )σ

p
j

)2]
vpj (t)

⎞
⎠ dt

+
J∑

j=1

∑
p∈{+,−}

∫
R0

(
eSj(t,T )x − 1

)
νpj (dx)v

p
j (t)dt

Standard no-arbitrage arguments imply that the expected drift of the ZCB
should be equal to the short rate, r(t). Recognizing the Lévy exponent
gives us the drift condition:

A(t, T ) = −
∑
j=1

[
v+j (t)ϕ

+
j (−iSj(t, T )) + v−j (t)ϕ

−
j (−iSj(t, T ))

]
The result above yields an extension to the results found in Eberlein and
Raible (1999). Furthermore, compared to the drift condition when we allow
σ(t, T ) to be stochastic, our expression is much simpler (see Raible (2000)
and Filipovic and Tappe (2008)).10

Deriving the characteristic function

Ultimately we are interested in calibrating our model to data. One im-
portant variable when using Lévy processes and models with stochastic
volatility is the characteristic function. The characteristic function allows
for calculation of the model implied distribution. This distribution can be
used to calculate option prices and moments in the LIBOR distributions.

Using the dynamics stated above we can express the ZCB price as

p(t, T ) = p(0, T ) exp

(∫ t

0

(r(s) + A(s, T )) ds

+
∑

p∈{+,−}

J∑
j=1

∫ t

0

Sj(s, T )dY
p
j (s)

)

10Both Raible (2000) and Filipovic and Tappe (2008) find that the drift condition is
given by

A(t, T, ω) = −ϕ(−iS(t, T, ω))

where ω ∈ Ω. Due to the non-linear form of the Lévy exponent, this approach will be
unlikely to be used in practice, except in a few special cases.
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which alternatively can be written as

p(t, T ) =
p(0, T )

p(0, t)
exp

(∫ t

0

(A(s, T )− A(s, t)) ds

+
∑

p∈{+,−}

J∑
j=1

∫ t

0

(Sj(s, T )− Sj(s, t)) dY
p
j (s)

)

Using this expression, we calculate the characteristic function

ψt(u, T0, T1, Tk) = ETk

t [exp (iu log p(T0, T1))]

As shown in Proposition 1 the expectation involved in calculating the char-
acteristic function can be simplified significantly, leaving us with a relatively
simple expression:

Proposition 1. Suppose ξj(t, u) is a continuous, bounded function for all
j = 1, . . . , J , and let ξj(s, u) ∈ ϑj for all s : t ≤ s ≤ T0 and fixed u, where ϑj

is the set of values where the characteristic exponents of the Lévy processes
L+
j and L−

j are finite.

Then the characteristic function of the log zero-coupon bond price under the
Tk-forward measure

ψt(u, T0, T1, Tk) = ETk

t [exp (iu log p(T0, T1))]

is given by the following expectation

ψt(u, T0, T1, Tk) =

(
p(t, T1)

p(t, T0)

)iu

Eξ
t

⎡
⎣exp

⎛
⎝ J∑

j=1

∑
p∈{+,−}

∫ T0

t

gpj (s, u)v
p
j (s)ds

⎞
⎠
⎤
⎦

where Eξ
t [•] denotes expectation with regards to the probability measure de-

fined by

dQξ

dQ

∣∣∣∣∣
Ft

= exp

⎛
⎝ J∑

j=1

∑
p∈{+,−}

∫ t

0

ξj(s, u)dY
p
j (s)−

∫ t

0

ϕp
j (−iξj(s, u)) vpj (s)ds

⎞
⎠

and

gpj (t, u) =iu[ϕ
p
j (−iSj(t, T0))− ϕp

j (−iSj(t, T1))]− ϕp
j (−iSj(t, Tk)) + ϕp

j (−iξj(t, u))
ξj(t, u) =iu[Sj(t, T1)− Sj(t, T0)] + Sj(t, Tk)

where ϕp
j(u) is the characteristic exponent of the Lévy process Lp

j under the
measure Q.



31 ESSAY 1

Proof. See Appendix 1.8.

The result above does not give an explicit expression for the characteristic
function, since we are yet to define the processes vpj . The result is encourag-
ing, since for many specifications the expectation will have a tractable so-
lution. The solution may not be analytical, but is typically semi-analytical,
i.e. up to solving a set of ordinary differential equations.

We next turn to two applications of the characteristic function. First, we
show how to price caplets using Fourier inversion and secondly, we show
how to use the characteristic function to get model-implied moments of the
LIBOR distribution.

Pricing interest-rate caplets

In this section we briefly describe the results on using Fourier inversion
for pricing derivative contracts. For more precise details we refer to Kluge
(2005) or Raible (2000).

As mentioned above an interest rate caplet is an option on LIBOR. It can
be shown that an interest rate caplet can be related to a put-option on a
ZCB:

C(t, T0, T1, K) =(1 + (T1 − T0)K)PZCB

(
t, T0, T1,

1

1 + (T1 − T0)K

)
where PZCB(t, T0, T1, K) is the time t price of a European put-option with
maturity T0 on a ZCB maturing at T0, where the option has exercise price
K. To price this option, thus getting semi-analytical prices for caps, we use
Fourier inversion.

In general, Raible (2000) shows that the price of a European option can be
obtained through Fourier inversion, by the knowledge of the characteristic
function of the (log-)underlying asset and the Fourier transformed contract
function. In the case of European call and put options, the transforms are
in functional form identical; however, they differ in the range of permitted
values for the integration strip of the Fourier integral.

The conclusion from Raible (2000) and Kluge (2005) is that the price can
be obtained by calculating the integral given in Proposition 2:

Proposition 2. Assume that there exists a β > 0 such that ψt(iβ, T0, T1, T0) <
∞. Then the price of a European put option with maturity T0 and strike K
on a zero coupon bond maturing at time T1 is given by

PZCB(t, T0, T1, K) =
p(t, T0)

π

∫ ∞

0

Λ(β + iu,K)ψt(iβ − u, T0, T1, T0)du
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where

Λ(v,K) =
e(1+v) logK

v(v + 1)

Moments of the LIBOR distribution

In this section we consider model-based moments of the distribution of
LIBOR. We show that the moments of the LIBOR distribution can be
obtained up to simple evaluations of the characteristic function.

The expression for LIBOR is

L(T0, T1) =
1

T1 − T0

(
1

p(T0, T1)
− 1

)
We consider the moments under the T1-forward measure. The first moment
follows by construction of the T1-forward measure

ET1

t [L(T0, T1)] =
1

T1 − T0

(
p(t, T0)

p(t, T1)
− 1

)
= L(t, T0, T1)

The second non-central moment is given by

ET1

t

[
L(T0, T1)

2
]
=

(
1

T1 − T0

)2
[
1 + ET1

t

[
e−2 log p(T0,T1)

]

− 2[1 + (T1 − T0)L(t, T0, T1)]

]

The third Non-Central moment is given by

ET1

t

[
L(T0, T1)

3
]
=

(
1

T1 − T0

)3
[
ET1

t

[
e−3 log p(T0,T1)

]
−

3ET1

t

[
e−2 log p(T0,T1)

]
+ 3[1 + (T1 − T0)L(t, T0, T1)]− 1

]

Finally, we can relate the non-central moments by using the standard rela-
tions

μ =L(t, T0, T1)

σ2 =ET1

t

[
L(T0, T1)

2
]
− μ2

skewness =
ET1

t [L(T0, T1)
3]− 3μσ2 − μ3

σ3
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Notice that all expectations of the form ET1

t

[
e−u log p(T0,T1)

]
are simply eval-

uations of the characteristic function given in Proposition 1, making it easy
to get model-based moments.

1.4 Specifying the Model

In this section we focus on specifying the model. We focus on the consid-
ered Lévy processes, activity rates and volatility loadings. Finally, we only
consider a model with two skewness factors, i.e. J = 2.

Specifying the Lévy process

We now turn to the specification of the Lévy process. We emphasize that
we only consider one specification; many different specifications are indeed
possible.

With respect to the specification of the Lévy process, Carr and Wu (2007)
find that a model based on a diffusion component and a compound Poisson
process with exponentially distributed jump sizes performs similar to more
advanced (infinite activity) models.

Inspired by these results we consider the Lévy processes

L+
j (t) =σjdW

+
j (t) +

N+

j (t)∑
n=1

Q+
j (t)

L−
j (t) =σjdW

−
j (t) +

N−

j (t)∑
n=1

Q−
j (t)

where N+
j and N−

j are Poisson-processes both with intensity λj, Q
+
j (t) are

positive jumps, such that Q+
j (t) follows an exponential distribution with

parameter 1/δj and Q−
j (t) are negative jumps, such that −Q−

j (t) follows
an exponential distribution with parameter 1/δj.

11 Finally, all Wiener pro-
cesses, Poisson processes and jumps are independent.

11By using this specification δj corresponds to the expected jump size.
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The characteristic exponents are then given by

ϕ+
j (u) = −1

2
(uσj)

2 + λj

[(
1/δj

1/δj − iu

)
− 1

]

ϕ−
j (u) = −1

2
(uσj)

2 + λj

[(
1/δj

1/δj + iu

)
− 1

]

Using these specifications time-varying skewness is solely captured by the
activity rate-processes vpj . For instance, if we only considered one activity
rate process, the innovation distribution would be symmetric.

Specifying the activity rates

We also need to specify the activity rates of the time-changes, i.e. the
stochastic processes which drive the stochastic volatility and skewness.

Here we consider square-root processes. More precisely, each Lévy process
Lp
j has its own activity rate vpj . The activity rate has dynamics given by

dvpj (t) =
(
θj − κjv

p
j (t)
)
+ ηpj

√
vpj (t)dZ

p
j (t)

where Zp
j is a Wiener process with [dW p

j (t), dZ
p
j (t)] = ρpjdt, but otherwise

independent of other Wiener processes in the model. For identification we
set ηpj equal to one.

Using this specification the characteristic function will be given as (see
for instance Duffie, Pan, and Singleton (2000) or Duffie, Filipovic, and
Schachermayer (2003) for a derivation):

ψt(u, T0, T1, Tk) = exp

(
A(t, T ) +

J∑
j=1

[
B+

j (t, T ) +B−
j (t, T )

])

where the functions A(t, T ), B+
j (t, T ) and B

−
j (t, T ) solve the ODEs

dA(t, T )

dt
=

J∑
j=1

θj
[
B+

j (t, T ) +B−
j (t, T )

]
dB+

j (t, T )

dt
=−
(
ρ+j σjξj(t, u)− κj

)
B+

j (t, T )−
1

2
B+

j (t, T )
2 − g+j (t, u)

dB−
j (t, T )

dt
=−
(
ρ−j σjξj(t, u)− κj

)
B−

j (t, T )−
1

2
B−

j (t, T )
2 − g−j (t, u)



35 ESSAY 1

where A(T, T ) = B+
j (T, T ) = B−

j (T, T ) = 0 for all j. One noticeable
element in the ODEs, are the first terms, ρ+j σjξj(t, u) and ρ−j σjξj(t, u).

These terms reflect the change of measure from Q to Qξ and correct for the
fact that the activity rate processes are correlated with the Lévy processes.

Specifying the volatility loadings

To complete the model, we need to specify the volatility loadings, σj(t, T ).
The volatility loadings need to be sufficiently flexible so that they can cap-
ture the volatility patterns shown in data. For instance Dai and Singleton
(2002) show that unconditional volatilities exhibit a hump-shape, and based
on time series estimations using both yields and interest-rate derivatives
Trolle and Schwartz (2009) show that a hump-shaped volatility loading is
preferable.

Following the results in Trolle and Schwartz (2009) we specify the volatility
loadings as

σj(t, T ) = (1 + βj(T − t)) e−γj(T−t)

This implies that the impact on the bond price Sj(t, T ) is given by

Sj(t, T ) =

(
e−γj(T−t) − 1

γj

)
− βj

(
1− e−γj(T−t)(1 + γj(T − t))

γ2j

)

This specific shape can generate flat volatility loadings when βj = 0 and
γj → 0, factor loadings as in a Vasicek-model when βj = 0, and when
all parameters are free we get a flexible hump-shaped volatility loading.
Finally, notice that we do not introduce a scaling of the volatility loading
as in Trolle and Schwartz (2009), as this scaling is already included into the
Lévy process.

1.5 Model calibration

To calibrate the model we use the derived standard deviations and skewness
measures directly. Alternatively we could estimate the model using the cap
and floor data directly. This latter approach is similar to Carr and Wu
(2007), but is computationally expensive compared to directly calibrating
to standard deviations and skewness measures. We acknowledge, that we
miss out on the finer information in caps and floors, e.g., fat tails, where
the advantage of a jump component would be further emphasized, but we
consider our calibration method to be sufficient to show the applicability of
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the modeling framework.12 Finally we use a Bayesian Markov Chain Monte
Carlo method to handle non-linearities and positivity constraints on the
activity rates.

We express the model in non-linear state-space form, i.e. we have the mea-
surement equation

Dt = f(vt|Θ) + εt

where Dt is our data, i.e. an n-vector, where the first half of the elements
are standard deviations and the last half of the elements are the skewness
measures.13 f(vt|Θ) is a function that relates the activity rates vt, given
the model parameters Θ, to standard deviations and skewness measures.
The entire collection of states {Dt}Tt=1 is denoted by D. εt is an n-vector
and is an error term, where the elements of error terms are independent.
The error terms are normally distributed with each element having its own
standard error:

[εt]j ∼ N
(
0, σ2

ε,j

)
Finally, to complete the model we must consider state dynamics and risk
premia. We consider the simplest possible risk premia, the completely affine
risk premia. We thus change the mean-reversion speed of the activity rates,
giving us the state dynamics (after using an Euler approximation)

vpj,t+1 = vpj,t +
(
θj − κ̂jv

p
j,t

)
Δt+

√
vpj,tΔtε

v
t

where εvt is standard normal. Finally, the entire collection of activity rates
(across j and p) are given by vt and the entire time series of activity rates,
{vt}Tt=1, are given by v.

With regard to parameters we denote 1) the parameters that only enter into
standard deviations and skewness measures by ΘQ = (σj, λj , δj, κj , γj, βj)

′,
2) parameters that enter into both state dynamics and observations as
ΘQP = (θj)

′ and 3) parameters that only enter into state dynamics as
ΘP = (κ̂j)

′.

12This calibration method could for instance also be used to get good initial param-
eters and states for an estimation based on caps and floors.

13We do not include yields in the calibration. It is possible (see Trolle and Schwartz
(2010)), but we prefer to focus on fitting stochastic volatilities and skews. By not using
yields, our approach is similar to Carr and Wu (2007) who do not include data on
exchange rates.



37 ESSAY 1

Estimation using MCMC

When estimating the model we are interested in sampling from the target
distribution of parameters and state variables, p (Θ, v|D). To sample from
this distribution the Hammersley-Clifford theorem (Hammersley and Clif-
ford (1974) and Besag (1974)) implies that this can be done by sampling
from the complete conditionals

p
(
ΘQ|Θ\Q, D, v

)
...

p (v|Θ, D)

Thus MCMC handles the sampling from the complicated target distribution
p (Θ, v|D), by sampling from the simpler conditional distributions. More
specifically, this is handled by sampling in cycles from the conditional dis-
tributions. If one can sample directly from the conditional distribution,
the resulting algorithm is called a Gibbs sampler (see Geman and Geman
(1984)). If it is not possible to sample from this distribution one can sam-
ple using the Metropolis-Hastings algorithm (see Metropolis, Rosenbluth,
Rosenbluth, Teller, and E. (1953)). In this paper we use a combination of
the two (a so-called hybrid MCMC algorithm) since not all the conditional
distributions are known. More precisely, we have the following MCMC
algorithm:

p (v|Θ, D) ∼ Random Block-Size Metropolis-Hastings

p
(
ΘQ|Θ\Q, v,D

)
∼ Metropolis-Hastings

p
(
ΘQP |Θ\QP , v,D

)
∼ Metropolis-Hastings

p
(
ΘP |Θ\P , v,D

)
∼ Metropolis-Hastings

p
(
σε|Θ\σε

, v,D
)
∼ Inverse Gamma

A more precise description of the algorithm and the conditional distribu-
tions is found in Appendix 1.9. Furthermore, when sampling activity rates
we use a random-block sampler, where the size of the random block is
Poisson distributed (with parameter 10). For each draw of the parameters
we perform 5 state draws. These two modifications significantly improve
the convergence of the Markov Chain compared to univariate single state
sampling. We also impose priors on the intensities λj, such that they are
assumed to be normal with mean 0.5 and variance 1.0 (draws below zero
are rejected).

The Markov chain is run for 10 million simulations, where the standard
errors of the Random Walk Metropolis-Hasting algorithms are calibrated
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γj βj σj λj

j = 1 0.3167 4.5209 0.0022 0.8486

( 0.1224 , 0.5161 ) ( 3.8086 , 5.3152 ) ( 0.0019 , 0.0024 ) ( 0.0096 , 2.4272 )

j = 2 5.2777 51.5802 0.013 0.8656

( 2.8368 , 8.1037 ) ( 36.9804 , 71.9038 ) ( 0.0095 , 0.0161 ) ( 0.0088 , 2.4518 )

δj θj κj κ̂j

j = 1 1.399 0.0082 0.1805 0.1958

( 0.0666 , 5.8175 ) ( 0.0002 , 0.0193 ) ( 0.1563 , 0.1966 ) ( 0.0071 , 0.5316 )

j = 2 4.8226 0.3244 55.5035 0.4027

( 0.1809 , 18.9201 ) ( 0.0586 , 0.6256 ) ( 55.4882 , 55.5247 ) ( 0.0327 , 0.8569 )

ρ+1 ρ−1 ρ+2 ρ−2

0.4188 -0.8877 0.3095 -0.0503

( 0.3432 , 0.5 ) ( -0.8996 , -0.8546 ) ( 0.0414 , 0.5679 ) ( -0.0946 , -0.0073 )

Table 1.1: Parameters Estimates. Parameter estimates are based on the
mean of the MCMC samples. 95 pct. confidence intervals based on MCMC
samples are reported in brackets. δ1 and δ2 are multiplied by 10,000 and
are thus reported in basis points

to yield acceptance probabilities between 10 and 40 pct. Finally we save
each 1000th draw and use an additional 2 million simulations of the chain,
leaving 2000 draws for inference.

1.6 Results

In this section we consider the results from the calibration of the model.

Table 1.1 shows the estimated parameters and Figure 1.5 shows root mean
squared errors (RMSEs) arising from our calibration procedure. Rather
than interpreting directly on the estimated parameters, we use model output
such as factor loadings and impact on yields in case of a jump.

Considering the RMSE we see that the RMSEs are highest for short term
maturities, indicating that an additional third skewness component that
captures these maturities might be beneficial. The RMSE for the skewness
is around 1.0, which compared to Figure 1.3 seems a bit large.

However, when considering Figure 1.6, which shows model- and market-
based standard deviations and skewness measures, the model captures the
overall pattern in the skewness, albeit with some deviations. These devia-
tions happen when the medium-term (1.5 year) skewness slightly decouples
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Figure 1.5: Left: Root Mean Squared Errors of fit to standard deviations.
Root Mean Squared Errors are reported in basis points. Dashed lines in-
dicate 95 percent confidence bands based on MCMC samples. Left: Root
Mean Squared Errors of fit to skewness measure. Dashed lines indicate 95
percent confidence bands based on MCMC samples.

from the short-term skewness (0.5 year). Again, this figure indicates that
an additional skewness factor could relieve some of this tension. With re-
gard to the standard deviations, we see a reasonable description of the
market-based standard deviations.

Next we consider the finer aspects of the model structure. The left-hand
panel in Figure 1.7 shows the factor loadings implied by the model. We
define the factor loadings as

FLj(T − t) = −Sj(t, T )

T − t

i.e. the impact of a yield with maturity T−t. We see that the factor loadings
are similar to the ones found in Figure 1.4, i.e. that the first factor loadings
show a level-component for long-term maturities, but drop for short-term
maturities. The second factor loading a has significant hump at short-term
maturities, which quickly dies out and does not affect long-term yields.

Another interesting issue is to relate the estimated jump sizes to effects on
the yield curve. The right-hand panel in Figure 1.7 shows the impact on
yields, with different maturities of a jump of size δj in the specific factor.
Jumps in the first factor appear to be fairly moderate with effects on long-
term rates of around 6 basis points. Jumps in the second factor are more
pronounced, with effects of around 17 basis points in short-term yields, but
due to the shape of the factor loading it has virtually no effect on long-term
yields.
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Figure 1.6: Top: Model and market standard deviation. Solid lines are
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Figure 1.9: Model implied LIBOR densities for different activity
rate values. Model implied LIBOR densities are derived from model-
based caplet prices of a 6-month caplet. The skewness of the positively
skewed distribution is 0.31 and -0.22 for the negatively skewed distribution.

In terms of interpreting the dynamics of the activity rates, the size of v+j
relative to v−j generates the stochastic skewness. Thus the difference, v+j −v−j
is a model based proxy of the skewness induced by skewness component
j. Similarly, since the Lévy processes are independent and variances are
additive, the sum, v+j + v−j , is a proxy for the volatility.

Figure 1.8 shows the sum of the activity rates, v+j + v−j , and the differ-
ence between the activity rates, v+j − v−j . The sum of the factors show
similar patters for the two stochastic skewness components, and they are
very similar to the volatilities in Figure 1.2. The fact that the two time
series are so similar, is also consistent with Figure 1.2 and the results in the
PCA. The differences in the activity rates are more interesting, and show
significantly different patters for the two skewness components. For the
first factor it corresponds (roughly) to the skewness derived from long-term
caplets. For the second factor the time series corresponds to short-term
skewness. The small values at the start of the data sample reflect that the
difference, v+1 − v−1 is high, and to compensate for this v+2 − v−2 is low 14.

Finally we consider the effect of different choices of activity rates on the
model-implied probability densities (PDFs). Figure 1.9 shows the model-
implied LIBOR PDFs for different activity rates. We construct the PDF as
follows; using Proposition 10 we calculate caplet prices for various strikes

14Recall that the factor loading for factor 1, is not zero for short term maturities
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and then use the results of Breeden and Litzenberger (1978) to obtain the
PDF via numerical differentiation. Furthermore, we assume a flat yield
curve at 4 percent and when constructing the positively skewed PDF we set
the ’positive’ activity rates equal to 3 and the ’negative’ activity rates equal
to 0. When constructing the negatively skewed PDF we do the opposite.

It is evident that the variation in the activity rates does, indeed, produce
different PDFs. The difference in skew is clearly visible, with a significantly
heavier left tail in the PDF with the negative skews. Such an asymmetric
heavy tail could a have significant impact on the pricing of out-of-the-money
floorlets relative to out-of-the-money caplets.

1.7 Conclusion

In this paper we have shown how to the model stochastic skewness present
in interest-rate options.

By using interest-rate caps and floors we have derived model-free estimates
of the volatility and skewness of LIBOR. We have shown that at least
two factors should be used to capture the dynamics of the volatility and
skewness, as there is a decoupling between short-term and long-term skews.

We explicitly model the skewness in Heath-Jarrow-Morton framework, where
innovations in the forward-rates are driven by time-changed Lévy processes.
By using Lévy processes we can easily obtain positively and negatively
skewed distributions, and the activity rates offer a simple interpretation as
the amount of negative and positive skew at each time-point.

Our calibration shows that the model is able to capture the stylized facts
in the data. There is still room for improvement for the skewness measures,
but overall our results are encouraging.

Since we only considered one specification of the model, potential future
research areas could be the more precise specification of the model along
with a more consistent time-series estimation using yields, caps and floors
directly.
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1.8 Appendix: Proof of proposition 1

Given the log-ZCB expression

log p(T0, T1) = log

(
p(t, T0)

p(t, T1)

)
+

J∑
j=1

∑
p∈{+,−}

∫ T0

t

[Sj(s, T1)− Sj(s, T0)] dY
p
j (s)

J∑
j=1

∑
p∈{+,−}

∫ T0

t

[
ϕp
j(−iSj(s, T0))− ϕp

j(−iSj(s, T1))
]
vpj (s)ds

we are interested in the expectation

ψt(u, T0, T1, Tk) = E
Tk

t

[
eiu log p(T0,T1)

]
To change the measure from the Tk-forward measure to the risk neutral
measure Q, consider the Radon-Nikodym derivative

dQTk

dQ

∣∣∣∣∣
Ft

=N(t) =
p(t, Tk)

β(t)

β(0)

p(0, Tk)

= exp

⎛
⎝ J∑

j=1

∑
p∈{+,−}

[∫ t

0

Sj(s, Tk)dY
p
j (s)−

∫ t

0

ϕp
j(−iSj(s, Tk))v

p
j (s)ds

]⎞⎠
then

ψt(u, T0, T1, Tk) =E
Tk

t

[
eiu log p(T0,T1)

]
= E

Q
t

[
eiu log p(T0,T1)

N(T0)

N(t)

]

=

(
p(t, T1)

p(t, T0)

)iu

E
Q
t

[
exp

⎛
⎝ J∑

j=1

∑
p∈{+,−}

hpj(u, s)v
p
j (s)ds

⎞
⎠

× exp

⎛
⎝ J∑

j=1

∑
p∈{+,−}

ξj(u, s)dY
p
j (s)

⎞
⎠]

where

hpj(u, s) =iu
[
ϕp
j(−iSj(s, T0))− ϕp

j(−iSj(s, T1))
]
+ ϕp

j(−iSj(s, Tk))

ξj(u, s) =iu [Sj(s, T1)− Sj(s, T0)] + Sj(s, Tk)
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Now define a new probability measure by

dQξ

dQ

∣∣∣∣∣
Ft

=exp

⎛
⎝ J∑

j=1

∑
p∈{+,−}

∫ t

0

ξj(u, s)dY
p
j (s)

⎞
⎠×

exp

⎛
⎝− J∑

j=1

∑
p∈{+,−}

∫ t

0

ϕp
j(−iξj(u, s))vpj (s)ds

⎞
⎠

Then the characteristic function will be given by

ψt(u, T0, T1, Tk) =

(
p(t, T1)

p(t, T0)

)iu

Eξ
t

⎡
⎣exp

⎛
⎝ J∑

j=1

∑
p∈{+,−}

∫ T0

t

gpj (s, u)v
p
j (s)ds

⎞
⎠
⎤
⎦

where

gpj (t, u) =iu[ϕ
p
j (−iSj(s, T0))− ϕp

j (−iSj(s, T1))]− ϕp
j (−iSj(s, Tk)) + ϕp

j (−iξj(s, u))

which completes the proof.

1.9 Appendix: MCMC details

Conditional distribution

The conditional p(D|v,Θ)

The conditional for the observations can be written as

p(D|v,Θ) =
T∏
t=1

p(Dt|vt,Θ)

where we can write p(Dt|vt,Θ) as

p(Dt|vt,Θ) ∝
n∏

j=1

σ
−1/2
ε,j exp

(
−1

2

(
[Dt − f(vt|Θ)]j

σε,j

)2
)

The conditional p(v|Θ)

Using an Euler scheme we can write the dynamics as

vt+1 = vt + [θ − κ̂vt] Δt+
√
vtΔtε

v
t
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where εvt ∼ N (0, I4).

The conditionals for the state transition can be written as

p(v|Θ) ∝
(

T∏
t=1

p(vt|vt−1,Θ)

)
p(v0) ∝

T∏
t=2

p(vt|vt−1,Θ)

where we have assumed independence with v0. The conditional p(vt|vt−1,Θ)
can be written as

p(vt+1|vt,Θ) =
1

det (Σ(vt))
exp

(
−1

2
h′tΣ(vt)

−1ht

)
where

ht =vt+1 − vt − [θ − κ̂vt] Δt

Σ(vt) =diag(vt)Δt

Sampling parameters and states

Sampling σε

To sample the elements of σε we use that

p(σε|D, v,Θ\σε
) ∝ p(D|v)

which implies that we can use Gibbs sampling:

σ2
ε,j = IG

(
T

2
+ 1,

1

2

t∑
t=1

([Dt − f(vt|Θ)]j)
2

)

Sampling ΘQ

To sample the risk neutral parameters we use a Random-Walk Metropolis-
Hastings sampler, i.e. we draw a new parameter value as

ΘQ∗ = ΘQ + ε

where ε is a zero mean normally distributed variable with a variance that
needs calibration.

We accept the draw with probability α

α = min

(
1,
p(D|v,Θ∗)p(Θ∗)

p(D|v,Θ)p(Θ)

)
In all cases, except for λj, we furthermore assume uninformative priors.
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Sampling ΘQP

To sample the parameters entering in both the risk-neutral moments and
the activity rate dynamics, we use a Random-Walk Metropolis-Hastings
sampler, i.e. we draw a new parameter value as

ΘQP∗ = ΘQP + ε

where ε is a zero mean normally distributed variable with a variance that
needs calibration.

We accept the draw with probability α

α = min

(
1,
p(D|v,Θ∗)p(v|Θ∗)

p(D|v,Θ)p(v|Θ)

)

Sampling ΘP

To sample the parameters only entering in activity rate dynamics, we use a
Random-Walk Metropolis-Hastings sampler, i.e. we draw a new parameter
value as

ΘP∗ = ΘP + ε

where ε is a zero mean normally distributed variable with a variance that
needs calibration.

We accept the draw with probability α

α = min

(
1,
p(v|Θ∗)

p(v|Θ)

)

Sampling v

To sample the activity rates we use a Random-Block size Metropolis-Hastings
sampler.

We sample the states as:

• First we sample the initial state v1, i.e. draw a new state

v∗1 = v1 + ε

and accept it with probability

α = min

(
p(D1|v∗1,Θ)p(v2|v∗1,Θ)

p(D1|v1,Θ)p(v2|v1,Θ)

)
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• While 1 < t < T − 1 then do

t̂ = t+ w, w ∼ Poisson(q)

Then sample new parameters

v∗t:t̂ = vt:t̂ + ε

and accept the draw with probability

α = min

(
p(Dt:t̂|v∗t:t̂,Θ)p(v∗

t:t̂+1
|vt−1,Θ)

p(Dt:t̂|vt:t̂,Θ)p(vt:t̂+1|vt−1,Θ)

)

• Finally sample the last state vT , i.e. draw a new state

v∗T = vT + ε

and accept it with probability

α = min

(
p(DT |v∗T ,Θ)p(v∗T |vT−1,Θ)

p(DT |vT ,Θ)p(vT |vT−1,Θ)

)
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Inflation derivatives modeling using time

changed Lévy processes

Abstract

We model inflation derivatives by using the time changed Lévy processes
of Carr and Wu (2004), in a Heath-Jarrow-Morton framework. We derive
drift conditions for nominal and real forward rates and zero-coupon bonds.
Similarly, a drift condition for the consumer price index is found. We show
how to price standard inflation derivatives by considering a complex (time
dependent) measure. By specifying the subordinator as an affine process,
the prices of the considered derivatives can be obtained up to ordinary dif-
ferential equations and possibly Fourier inversion. Finally, we calibrate our
model to market data. Our results show that even though Lévy processes
can improve the fit to data, an investigation in the exact specification of
the Lévy process and volatility loading is still needed.

Keywords: Inflation derivatives, HJM-framework, Lévy processes, Time
Change, Affine processes
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2.1 Introduction

Over the last two decades trading of inflation indexed products has seen a
large increase, both in terms of volume and the number of products traded.
More specifically, since the 1980s governments have issued inflation linked
bonds. Such bonds have their face value as well as their current coupon
payments linked to a reference consumer pricer index, henceforth shortened
CPI.

In the 1990s markets trading inflation linked derivatives began to develop.
The premier examples of such derivatives is inflation indexed swaps. To-
day, investment banks offer inflation linked derivatives linked to consumer
price indices in the United Kingdom, the United States, the Euro area and
Japan. Even though the inflation indexed markets are still young, standard
products, such as swap style products trade at a reasonable depth. For
example, quotes on Euro Area and United States CPI linked zero-coupon
inflation swaps have been available from Bloomberg since 2004, and quotes
for caps and floors on Euro area CPI have been available since mid-2007.

The rise of inflation indexed markets has, of course, sparked some academic
research activity. Among early papers is Jarrow and Yildirim (2003) who
consider a three factor HJM model, based on a foreign exchange analogy,
that can be calibrated to historical nominal rates and historical United
States Treasury Inflation Protected Securities (henceforth TIPS). Using
these parameters Jarrow and Yildirim (2003) calculate theoretical prices
of options on the United States CPI.2

Using an approach similar to that of the LIBOR-market model, Mercurio
(2005) considers modeling forward inflation rates. Using this framework
Mercurio (2005) derives prices for Year-on-Year swaps and inflation linked
caps and floors.

All of the above mentioned papers operate under the assumption of deter-
ministic volatilities and innovations driven by Wiener processes. Recently,
three papers have tried to go beyond these assumptions.

First, Mercurio and Moreni (2006) model forward inflation rates with stochas-
tic volatility in a framework, based on the LIBOR-market-style framework
found in Mercurio (2005). They manage to derive prices for Year-on-Year
swaps and inflation linked caps and floors, using transform techniques as
found in Duffie, Pan, and Singleton (2000).

2Another often referenced paper is Hughston (1998), who also considers modeling
real and nominal bonds in a HJM-framework. However, the derivations in Hughston
(1998) are not clear, and we prefer to use Jarrow and Yildirim (2003) as the central
reference.
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Figure 2.1: Developments in short term EURO area inflation swap rates and
implied volatilities from March 2008 to August 2009. Source: Bloomberg.

Secondly, Hinnerich (2008) considers a more general framework with stochas-
tic volatility and jumps, extending the HJM framework found in Björk, Ka-
banov, and Runggaldier (1997). Furthermore, Hinnerich (2008) shows that
the foreign exchange analogy and the real bank account are not needed
as a priory assumptions in order to derive no-arbitrage conditions; the
framework delivers the foreign exchange analogy as a by-product of the no-
arbitrage conditions. Even though Hinnerich (2008) considers no-arbitrage
conditions for jump processes, a model based on jump processes is only
considered for Year-on-Year inflation swaps.

Thirdly, Mercurio and Moreni (2009) describe a forward inflation frame-
work, where the stochastic volatility is given by SABR processes. Their
approach requires a SABR process for each maturity of the considered in-
flation caplets, i.e. for their 15 considered maturities, 45 parameters have to
be estimated. Finally, in order to price other derivatives than Year-on-Year
inflation caplets - for instance zero-coupon Inflation Caplets - they need to
resort to approximate dynamics.

In this paper we seek to close the two gaps left by the above mentioned
papers. More precisely, we consider a model based on the HJM framework
where the underlying source of uncertainty is driven by a time changed Lévy
process, as seen, e.g., in equity modeling in Carr and Wu (2004). We extend
this framework to allow for both stochastic volatility and jumps in inflation
and interest rates, similar to what was done in Jarrow and Yildirim (2003)
and Hinnerich (2008).
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Neither jumps nor stochastic volatility in nominal interest rates are novel
features. A number of papers have identified these effects (see Johannes
(2004) or Andersen, Benzoni, and Lund (2004) for examples). However, this
evidence is not the only reason to include jumps and stochastic volatility
in an inflation modeling setup. During the second part of 2008 a worsening
of the macroeconomic outlook made short term inflation swap rates drop
from around 2 percent to somewhere between 0 and 1 percent, as seen in
Figure 2.1. At the same time implied inflation cap and floor volatilities more
than doubled; for some maturities and degrees of moneyness, the implied
volatility even rose to more than four times its previous value. In many cases
the volatility smile steepened, pricing in more possible extreme inflation and
deflation events. Both facts show evidence of stochastic volatility and jump
risk in inflation markets.

The structure of the paper is as follows: In section 2.2 we briefly describe
standard inflation linked products and in section 2.3 we describe the Jarrow-
Yildirim model and the enhancements that we propose in this paper. Sec-
tion 2.4 describes time changed Lévy processes, and section 2.5 describes
the HJM framework, i.e. drift conditions, different model representations
and characteristic functions. In section 2.6 we consider the pricing of the
inflation linked derivatives considered in section 2.2. Section 2.7 describes
how the time change can be specified, and in section 2.8 we calibrate the
model to market data. Finally, section 2.9 concludes the paper.

2.2 Inflation linked products

In this section we describe the typical inflation linked products traded in
the market. A good description of inflation derivatives can also be found
in Barclays Capital (2008), which is more exhaustive than the description
given in this section. In this section we refer to the Consumer Price Index
(henceforth CPI), which is the price of a consumer basket measured in
Dollars or the representative local currency.

An Inflation Protected zero-coupon bond is a bond where the payoff at
maturity, T , is compounded by the CPI3

pIP (T, t0, T ) =
IT
It0

3Typically inflation protected bonds are linked to the CPI some months prior to
maturity, however we use this simpler specification to enhance the understanding of the
product.
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where IT is the value of the CPI at time T . The denominator I(t0) normalize
the dependence of the CPI, such that the inflation indexation is initiated
at the issuance of the bond. The price of an inflation protected bond will
be given by the expectation

pIP (t, t0, T ) = EQ
t

[
exp

(
−
∫ T

t

nsds

)
IT
It0

]
= pn(t, T )E

T
t

[
IT
It0

]
where nt is the nominal spot rate and pn(t, T ) is the nominal zero-coupon
bond with maturity T , observed at time t.

Based on the observed market price of an inflation protected ZCB, we define
the real ZCB as

pr(t, T ) =
pIP (t, t0, T )It0

It

such that pr(T, T ) = 1. Note that the relation above tells us that pr(t, T )
is measured in units of the CPI-basket, and the real bond will give the
investor one CPI-basket at time T . Also note that real bonds are derived
quantities and thus not directly traded. Finally differences between yields
from nominal and real ZCBs are termed Break Even Inflation Rates, as it
reflects the inflation compensation required by investors.

A zero-coupon Inflation Indexed Swap (ZCIIS) is a swap agreement where
one party pays the percentage change on the CPI over the period [t, T ] and
the other party pays a fixed amount K. The payoff, at maturity, for the
holder of the ZCIIS is then given by

ZCIIST (t, T,K) =

(
IT
It

− 1

)
−
(
(1 +K)T−t − 1

)
=
IT
It

− (1 +K)T−t

ZCIISs are initiated with a value of zero and are quoted in terms of the fixed
payment K, and thus ZCIIS quotes offer a term structure of the expected
(risk adjusted) future inflation, also known as Swap Break Even Inflation
Rates.

Although it may not appear so, the pricing of a ZCIIS is completely model
independent. This follows as the value of such a contract is given by

ZCIISt(t, T,K) =
pn(t, T )

It
ET

t [IT ]− pn(t, T ) (1 +K)T−t

=
pn(t, T )

It
ET

t

[
IT
pr(T, T )

pn(T, T )

]
− pn(t, T ) (1 +K)T−t
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Figure 2.2: Market quotes of Inflation Swap rates. Data is from August
10th 2009. Source: Bloomberg.

Since Itpr(t, T )/pn(t, T ) is a martingale under the nominal T -forward mea-
sure, we obtain

ZCIISt(t, T,K) =pr(t, T )− pn(t, T ) (1 +K)T−t

In terms of the fixed payment, K:

K =

(
pr(t, T )

pn(t, T )

)1/(T−t)

− 1

Furthermore, as noted in Hinnerich (2008), this result can also be obtained
via a replication argument. Finally quotes of ZCIIS rates and nominal
interest rates can be used to derive real yields - in this sense ZCIISs form
a central part of the inflation linked market.

A Year-on-Year Inflation Indexed swap (henceforth YYIIS) is a swap agree-
ment similar to the ZCIIS, however with the difference that the pay-off is
linked to forward inflation (i.e. over the period [Ti−1, Ti], t < Ti−1 < Ti).
At time Ti the YYIIS has pay-off given by

Y Y IISTi
(t, Ti−1, Ti, K) = Δi

[(
ITi

ITi−1

− 1

)
−
(
(1 +K)Ti−Ti−1 − 1

)]
where Δi = Ti − Ti−1. Note that for Ti−1 = t and Ti = T the YYIIS
collapses to a ZCIIS. Typically YYIIS agreements are traded as portfolios
of the single payment swap given above

Y Y IISt(t, n,K) =
n∑

j=1

Y Y IISt(t, Tj−1, Tj , K)
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Figure 2.3: Implied volatility surface derived from EURO area Inflation
Year-on-Year caps and floors. Data is from August 10th 2009. Source:
Bloomberg.

Unfortunately, the price of a YYIIS is not model independent, and therefore
the exact qoute K will depend on model choice.

Figure 2.2 shows market quotes of both ZCIIS and YYIIS rates. The dataset
is from August 10th 2009 and shows an upward sloping term structure. The
shape of the term structure reflects the state of the EURO area economy,
i.e. that a low rate of inflation is expected over the next periods. Over
longer horizons the inflation swap rates are around 2.4 percent.4

A zero-coupon Inflation Cap (ZCIC) is an option on inflation. More pre-
cisely (as the ZCIIS) it is linked to the inflation from t to T . Typically
the period considered, [t, T ], is set such that there exists a ZCIIS which is
linked to that same period, as this will ease hedging of the option. The
pay-off at time T is then given by:

ZCICT (t, T,K) =

((
IT
It

− 1

)
−
(
(1 +K)T−t − 1

))+

4Typically surveys on EURO area HICP have long term expected inflation rates
below but close to 2 percent. The difference in survey and swap rates reflect an inflation
risk premia.
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The pricing of an option on inflation will require a model for the CPI
evolution, as the price of the option crucially depends on the distribution
of the CPI.

Finally a Year-on-Year Inflation Caplet (YYIC) is an option on inflation,
which links to CPI in the same way as the YYIIS links to the CPI, i.e. to
forward inflation. Thus the YYIC pays the owner at time Ti

Y Y ICTi
(t, Ti−1, Ti, K) = Δi

[(
ITi

ITi−1

− 1

)
−
(
(1 +K)Ti−Ti−1 − 1

)]+
As with a ZCIC the price of a YYIC is highly model dependent, and a
model for the CPI evolution is needed in order to price the option.

Finally, as in the case of an interest rate cap, an inflation indexed cap
will be a portfolio of inflation indexed caplets. Inflation caps typically show
volatility smiles, as seen in Figure 2.3. This indicates that inflation markets
are pricing more extreme movements, than can be described by a log-normal
Black’s formula (i.e. that inflation rates are normally distributed).

2.3 The Jarrow-Yildirim model

In this section we briefly describe the Jarrow-Yildirim model, and describe
the enhancements to their model, which we propose in this paper.

The Jarrow-Yildirim model assumes that nominal forward rates, fn(t, T ),
real forward rates, fr(t, T ), and Consumer Price Index, It are driven by a
three dimensional Wiener process:

dfn(t, T ) =αn(t, T )dt+ σn(t, T )dW
n
t

dfr(t, T ) =αr(t, T )dt+ σr(t, T )dW
r
t

dIt
It

=αI(t)dt+ σI(t)dW
I
t

Jarrow and Yildirim (2003) then show that the drift conditions, αi(t, T )
and αI(t), have the following form:

αn(t, T ) =σn(t, T )

∫ T

t

σn(t, u)du

αr(t, T ) =σr(t, T )

(∫ T

t

σr(t, u)du− ρIrσI(t)

)
α(t) =nt − rt
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where nt is the nominal spot interest rate and rt is the real spot interest rate.
Furthermore the drift conditions preserve the intuition of the regular HJM-
framework, i.e. that the nominal drift condition is a variance correction to
the nominal forward rate drift, which ensures no-arbitrage. Similarly, the
real drift condition reflects that inflation protected bonds, rather than real
bonds, are traded in the market. Finally, the CPI drift condition tells us
that the Fisher equation holds under the risk neutral martingale measure.

In terms of analytical tractability the rates in the Jarrow-Yildirim model
are normally distributed, which implies that prices of standard inflation
derivatives have analytical solutions.

In this paper we propose two modifications to this framework. First we add
stochastic volatility to the model:

dfi(t, T ) =αi(t, T )dt+ σi(t, T )
√
vtdW

i
t , i = n, r

dIt
It

=αI(t)dt+ σI(t)
√
vtdW

I
t

Using the scaling properties of the Wiener process, this can also be ex-
pressed through a time change:

dfi(t, T ) =αi(t, T )dt+ σi(t, T )dW
i
τt , i = n, r

dIt
It

=αI(t)dt+ σI(t)dW
I
τt

The details of this time change are described in the following section.

The other modification, is to replace the Wiener process W with a Lévy
process L:

dfi(t, T ) =αi(t, T )dt+ σi(t, T )dL
i
τt , i = n, r

dIt
It

=αI(t)dt+ σI(t)dL
I
τt

These two modifications allow us to capture two important effects. First,
the time changes allows for stochastically varying volatility, including clus-
tering of volatility. Secondly, the use of Lévy processes allows for extreme
movements (i.e. jumps), which adds to the flexibility when modeling the
underlying distribution of interest rates and inflation5.

In the following section we will briefly describe the time changed Lévy
processes outlined above. That is their construction and relevant analytical
properties which are essential to our modeling of inflation derivatives.

5The Jarrow-Yildirim model with stochastic volatility can be recovered when letting
the Lévy process be a Wiener process (i.e. no jumps).
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2.4 Time changed Lévy processes

As mentioned above we alter the Jarrow-Yildirim model by introducing
time inhomogeneous effects, such as effects of stochastic volatility and non-
normal innovations, through a time changed Lévy process. More precisely,
we consider the approach taken in Carr and Wu (2004). We will describe
this framework and present the necessary modifications to the results in
Carr and Wu (2004) in order for us to be able to use these processes in
interest rate and inflation modeling.

We consider a complete stochastic basis (Ω,F , {Ft}t≥0,Q). On this basis
we define a d-dimensional Lévy process L with the characteristic function
given by

EQ [exp (iu′Lt)] = exp(ϕ(u)t)

ϕ(u) = iu′â− 1

2
u′Σu+

∫
Rd
0

(
eiu

′x − 1− iux1|x|<1

)
ν(dx)

A finite variation Lévy process can alternatively be expressed with the trun-
cation function incorporated into the drift â, thus yielding the characteristic
exponent

ϕ(u) = iu′a− 1

2
u′Σu+

∫
Rd
0

(
eiu

′x − 1
)
ν(dx)

We will use the latter specification of the characteristic exponent throughout
this paper6.

Lévy processes are time homogeneous processes, and although a wide vari-
ety of distributions can be obtained by using Lévy processes, this will only
allow us to fit data from shorter periods without having to revise param-
eter estimates very frequently. Furthermore, stylized facts from interest
rate markets indicate that interest rates exhibit stochastic volatility, i.e.
(stochastically) time varying quadratic variation. To introduce this vari-
ation Carr and Wu (2004) make use of the time change technique and
introduce a subordinated Lévy process L. The subordinator τ - being a
strictly increasing process - takes the general form

τt = αt +

∫
R
+

0

xμ(dx, dt)

6Even though we use this specification, our proofs hold for a more general Lévy
process. The proofs are easily extended using the Lévy-Itô decomposition of the Lévy
process.
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where αt represents the locally deterministic part of the process and the
last term is a jump process that only exhibits positive jumps.

As in Carr and Wu (2004) we restrict the subordinator to have only a locally
deterministic part; i.e. , we assume that τ can be represented as

τt =

∫ t

0

vs−ds

The process v is a positive semi-martingale, possibly correlated with the
Lévy process L.

The subordinated Lévy process Yt = Lτt will be the driving process in
our framework. As shown in Monroe (1978), any semi-martingale can be
reached through subordination of a Wiener process, thus in principle the
subordination method will give us a large degree of flexibility, when it comes
to modeling inflation dynamics.

Carr and Wu (2004) manage to derive the characteristic function of the
process Y by using a change of measure. This eliminates the need to derive
the joint characteristic function of Y and τ , when L and τ are correlated.
This methodology is similar to the by now well known change of numeraire
technique, originally introduced in Geman, Karoui, and Rochet (1995).

In an interest rate setting, real as well as nominal, the results in Carr
and Wu (2004) cannot be applied directly, because volatility coefficients
(volatility loadings) depend on time or time to maturity. Thus we would like
to derive the characteristic function of the process X which is a stochastic
integral with respect to a - possibly complex - deterministic time dependent
function, i.e.

X(t, T ) =

∫ T

t

ξ(s)′dYs

To simplify the intuition of obtaining the characteristic function of this
stochastic variable, we first consider the case where L and τ are indepen-
dent.

If we consider the stochastic integral on an n point partition of [t, T ] and
perform iterated expectations conditional on τ , then heuristically we ob-
tain the following result when appropriate convergence of the integrals is
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assumed:

EQ
t [exp (iuX(t, T ))] =EQ

t

[
exp

(∫ T

t

iuξ(s)′dYs

)]

=EQ
t

[
EQ

t

[
exp

(
lim
n→∞

n−1∑
l=0

iuξ(tl)
′(Lτtl+1

− Lτtl
)

)∣∣∣∣∣τ
]]

=EQ
t

[
exp

(∫ T

t

ϕ (uξ(s)) vs−ds

)]

This specific expectation is quite common in the interest rate literature, and
for tractable specifications of v the expectation above will yield solutions
given by the exponentially affine form

EQ
t [exp (iuX(t, T ))] = exp (A(t, T, u) +B(t, T, u)′vt)

When L and τ are no longer independent, then conditioning on τ will affect
the expectation of the Lévy process L. To overcome this issue, we consider,
as Carr and Wu (2004), a change of measure into a complex measure, where
we only need to calculate the characteristic function of the time change.
The following proposition gives us the solution to the problem of finding
the characteristic function.7

Proposition 3. Suppose that ξ : R+ 
→ Cd is a continuous, bounded func-
tion, and let ξ(s) ∈ ϑ for all s : t ≤ s ≤ T , where ϑ is the set of values
where the characteristic exponent of the Lévy process L is finite.

Then the transform given by

ψ(t, T ) = EQ
t

[
exp

(∫ T

t

ξ(s)′dYs

)]
can also be expressed as the following expectation

Eξ
t

[
exp

(∫ T

t

ϕ (−iξ(s)) vs−ds
)]

(2.1)

where ϕ(u) is the characteristic exponent of the Lévy process L under the
measure Q and Eξ

t [•] denotes expectation with regard to the probability mea-
sure defined by

dQξ

dQ

∣∣∣∣∣
Ft

=Mt = exp

(
−
∫ t

0

ϕ (−iξ(s)) vs−ds+
∫ t

0

ξ(s)′dYs

)
7Note that the term iu can be incorporated into the function ξ, thus leaving us with

a simpler expectation.
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Proof. See Appendix 2.10

The result in proposition 1 is a generalization of the result in Carr and
Wu (2004); however, it still allows us to obtain a semi-analytical solution
to the expectation given above, provided that the process v is sufficiently
tractable.

Also note that - as with a standard change of numeraire - we only need to
consider one stochastic variable under this transformed measure, instead of
two stochastic variables under the regular measure, although this measure
has an explicit dependence on the function ξ.

Furthermore, as mentioned in Carr and Wu (2004), when the subordinator τ
is independent of the Lévy process L, the new measure Qξ will coincide with
the measure Q. Intuitively, this is seen as the Radon-Nikodym derivative
only contains elements from the Lévy process. This is also consistent with
the heuristic calculations earlier in this section.

2.5 An inflation HJM framework based on

time changed Lévy processes

Obtaining a drift condition

One of the great advantages of the HJM framework, originally developed in
Heath, Jarrow, and Morton (1992), is that it fully describes how to specify
forward rates under a risk neutral martingale measure. In a framework
driven by Wiener processes, one only needs to specify volatility loadings,
and thus the drift of forwards rates - or, equivalently, zero-coupon bond
prices - are completely determined from the no-arbitrage principle. When
the driving process is a Lévy process, Eberlein and Raible (1999) show
that the drift condition is a composite of the volatility loading and the
characteristic exponent of the Lévy process.

In our specification of the HJM framework we assume that nominal and
real forward rates, respectively, are driven by the processes

dfn(t, T ) = αn(t, T )dt+ σn(t, T )
′dYt

dfr(t, T ) = αr(t, T )dt+ σr(t, T )
′dYt

Here we assume that σ•(t, T ) is a deterministic integrable function in Rd

and α•(t, T ) is an adapted integrable process in R.
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In a similar fashion we assume the the log consumer price index (henceforth
CPI) is given by

d log It = αI(t)dt+ σI(t)
′dYt

where σI(t) is a deterministic integrable function in Rd and αI(t) is an
adapted integrable process in R.

Applying the results from Björk, Kabanov, and Runggaldier (1997), nomi-
nal and real log zero-coupon bond prices have dynamics given by

d log pn(t, T ) = (nt + An(t, T )) dt+ Sn(t, T )
′dYt

d log pr(t, T ) = (rt + Ar(t, T )) dt+ Sr(t, T )
′dYt

where nt is the nominal short rate, rt the real short rate and

A•(t, T ) = −
∫ T

t

α•(t, u)du and S•(t, T ) = −
∫ T

t

σ•(t, u)du

This gives us the expression for nominal and real zero-coupon bond prices

pn(t, T ) =pn(0, T ) exp

(∫ t

0

(ns + An(s, T )) ds+

∫ t

0

Sn(s, T )
′dYs

)

pr(t, T ) =pr(0, T ) exp

(∫ t

0

(rs + Ar(s, T )) ds+

∫ t

0

Sr(s, T )
′dYs

)

The usual nominal bank account, βn, and the derived stochastic process βr,
termed the real bank account, are given by

βn
t = exp

(∫ t

0

nsds

)
, βr

t = exp

(∫ t

0

rsds

)

Using these expressions to solve for the two bank accounts, expressed in
terms of their respective zero-coupon bond prices, we obtain alternative
expressions for these two bank accounts:

βn
t =

1

pn(0, t)
exp

(
−
∫ t

0

An(s, t)ds−
∫ t

0

Sn(s, t)
′dYs

)

βr
t =

1

pr(0, t)
exp

(
−
∫ t

0

Ar(s, t)ds−
∫ t

0

Sr(s, t)
′dYs

)

The remaining part of this section is dedicated to finding the drift condi-
tions, i.e. the conditions on An(t, T ), Ar(t, T ) and αI(t) that ensure no
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arbitrage. To derive such conditions we use the fact that the following
processes must be martingales under the risk neutral martingale measure:

pn(t, T )

βn
t

,
pr(t, T )It

βn
t

The first is the condition for a nominal zero-coupon bond and the other is
the condition for an inflation protected zero-coupon bond.

As in Hinnerich (2008) we do not assume that the real bank account is a
traded asset; the drift conditions can be derived without this assumption.
The full derivation is given in Appendix 2.10; the result is given in the
proposition below:

Proposition 4. For every t and T , such that t ≤ T , An(t, T ), Ar(t, T ),
αI(t), Sn(t, T ), Sr(t, T ) and σI(t) must satisfy the following relationships:

An(t, T ) =− vt−ϕ (−iSn(t, T ))

αI(t) =nt − rt − vt−ϕ(−iσI(t))
Ar(t, T ) =− vt− [ϕ(−i (Sr(t, T ) + σI(t)))− ϕ(−iσI(t))]

where ϕ(u) is the characteristic exponent of the Lévy process L under the
measure Q.

Proof. See Appendix 2.10.

The first drift condition is equivalent to a purely nominal HJM model (see
Andersen (2011) for a verification of this). The second condition makes
sure that the instantaneous drift of the CPI is equal to It−(nt − rt)dt; this
is the Fisher relation, which was also found in Jarrow and Yildirim (2003)).
The last drift condition is also similar to the one found in Jarrow and
Yildirim (2003); i.e. that the real drift condition is a variance and covariance
correction of the real zero-coupon bond drift, which reflects that inflation
linked bonds, and not real bonds, are traded in the market.

Model dynamics and characteristic functions

Having found the drift conditions under Q we can now state the dynamics
for real and nominal zero-coupon bonds as well as inflation that is needed
to price derivatives. First, it follows by using the nominal bank account
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that the nominal zero-coupon bond can be expressed as

pn(t, T ) =
pn(0, T )

pn(0, t)
exp

(∫ t

0

(ϕ(−iSn(s, t))− ϕ(−iSn(s, T ))) vs−ds

)
×

exp

(∫ t

0

(Sn(s, T )− Sn(s, t))
′ dYs

)

In a similar fashion we can derive the real zero-coupon bonds

pr(t, T ) =
pr(0, T )

pr(0, t)
exp

(∫ t

0

(Sr(s, T )− Sr(s, t))
′ dYs

)
×

exp

(∫ t

0

(ϕ(−i (Sr(s, t) + σI(s)))− ϕ(−i (Sr(s, T ) + σI(s)))) vs−ds

)
Finally the CPI, can be described as

It = I0 exp

(∫ t

0

(
ns − rs − ϕ (−iσI(s)) vs−

)
ds+

∫ t

0

σI(s)
′dYs

)
which has the alternative representation, obtained by using the two bank
accounts

It =I0
pr(0, t)

pn(0, t)
exp

(∫ t

0

[ϕ (−iSn(s, t))− ϕ (−i (Sr(s, t) + σI(s)))] vs−ds

)
×

exp

(∫ t

0

(σI(s) + Sr(s, t)− Sn(s, t))
′ dYs

)

The term I0
pr(0,t)
pn(0,t)

is the forward CPI, similar to the forward price term,
p•(0,T )
p•(0,t)

, for real and nominal bonds. Furthermore, the term pr(0,t)
pn(0,t)

is observ-
able directly from inflation swap quotes, cf. section 2.2.

Next we consider several characteristic functions, that will be relevant, when
pricing different derivatives. To begin with, we consider the characteristic
function of the nominal log zero-coupon bond, log pn(T, Tk) under the nom-
inal Tl-forward measure. We then get

Proposition 5. Suppose ξ(t, u) is a continuous, bounded function, and let
ξ(s, u) ∈ ϑ for all s : t ≤ s ≤ T and fixed u, where ϑ is the set of values
where the characteristic exponent of the Lévy process L is finite.

Then the characteristic function of the nominal log zero-coupon bond price
under the nominal Tl-forward measure

ψn
t (u, T, Tk, Tl) = ETl

t [exp (iu log pn(T, Tk))]
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is given by the following expectation

ψn
t (u, T, Tk, Tl) =

(
pn(t, Tk)

pn(t, T )

)iu

Eξ
t

[
exp

(∫ T

t

g(s, u)vs−ds

)]

where Eξ
t [•] denotes expectation with regards to the probability measure de-

fined by

dQξ

dQ

∣∣∣∣∣
Ft

= exp

(
−
∫ t

0

ϕ (−iξ(s, u)) vs−ds+
∫ t

0

ξ(s, u)′dYs

)

and

g(t, u) =iu (ϕ (−iSn(t, T ))− ϕ (−iSn(t, Tk)))−
ϕ (−iSn(t, Tl)) + ϕ(−iξ(t, u))

ξ(t, u) =iu (Sn(t, Tk)− Sn(t, T )) + Sn(t, Tl)

where ϕ(u) is the characteristic exponent of the Lévy process L under the
measure Q.

Proof. See Appendix 2.10.

In a similar fashion we can derive the characteristic function of the real log
zero-coupon bond, log pr(T, Tk), under the nominal Tl-forward measure:

Proposition 6. Suppose ξ(t, u) is a continuous, bounded function, and let
ξ(s, u) ∈ ϑ for all s : t ≤ s ≤ T and fixed u, where ϑ is the set of values
where the characteristic exponent of the Lévy process L is finite.

Then the characteristic function of the real log zero-coupon bond price under
the nominal Tl-forward measure

ψr
t (u, T, Tk, Tl) = ETl

t [exp (iu log pr(T, Tk))]

is given by the following expectation

ψr
t (u, T, Tk, Tl) =

(
pr(t, Tk)

pr(t, T )

)iu

Eξ
t

[
exp

(∫ T

t

g(s, u)vs−ds

)]

where Eξ
t [•] denotes expectation with regards to the probability measure de-

fined by

dQξ

dQ

∣∣∣∣∣
Ft

= exp

(
−
∫ t

0

ϕ (−iξ(s, u)) vs−ds+
∫ t

0

ξ(s, u)′dYs

)



ESSAY 2 66

and

g(t, u) =iu [ϕ(−i (Sr(t, T ) + σI(t)))− ϕ(−i (Sr(t, Tk) + σI(t)))]−
ϕ (−iSn(t, Tl)) + ϕ(−iξ(t, u))

ξ(t, u) =iu (Sr(t, Tk)− Sr(t, T )) + Sn(t, Tl)

where ϕ(u) is the characteristic exponent of the Lévy process L under the
measure Q.

Proof. Similar to the proof of the nominal log zero-coupon bond. Replace
all nominal quantities with real quantities, except when changing from the
nominal Tl-forward measure to the regular nominal risk neutral forward
measure.

Finally, and very important, in order to price inflation derivatives we need
the characteristic function of inflation and the inflation prevailing between
two time points in the future. We start by considering the time t character-
istic function, of the log-change in the inflation index until time T , log IT/It.
The variable is considered under the nominal Tl-forward measure:

Proposition 7. Suppose ξ(t, u) is a continuous, bounded function, and let
ξ(s, u) ∈ ϑ for all s : t ≤ s ≤ T and fixed u, where ϑ is the set of values
where the characteristic exponent of the Lévy process L is finite.

Then the characteristic function of the change in the log inflation index,
under the nominal Tl-forward measure,

ψI
t (u, T, Tl) = ETl

t

[
exp

(
iu log

IT
It
)

)]

is given by the following expectation

ψI
t (u, T, Tl) =

(
pr(t, T )

pn(t, T )

)iu

Eξ
t

[
exp

(∫ T

t

g(s, u)vs−ds

)]

where Eξ
t [•] denotes expectation with regards to the probability measure de-

fined by

dQξ

dQ

∣∣∣∣∣
Ft

= exp

(
−
∫ t

0

ϕ (−iξ(s, u)) vs−ds+
∫ t

0

ξ(s, u)′dYs

)
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and

g(t, u) =iu [ϕ (−iSn(t, T ))− ϕ (−i (Sr(t, T ) + σI(t)))]−
ϕ(−iSn(t, Tl)) + ϕ(−iξ(t, u))

ξ(t, u) =iu (σI(t) + Sr(t, T )− Sn(t, T )) + Sn(t, Tl)

where ϕ(u) is the characteristic exponent of the Lévy process L under the
measure Q.

Proof. See Appendix 2.10.

In some applications, we are not interested in the inflation prevailing from
the present point in time t and until a time in the future T . Instead one
is more interested in the conditional distribution at time t of the inflation
prevailing between time Tj and Tj+1. Assuming that the solution to the
characteristic function in proposition 7 is exponentially affine, we can indeed
derive the characteristic function of such a quantity:

Proposition 8. Suppose ξ(t, u) is a continuous, bounded function, and let
ξ(s, u) ∈ ϑ for all s : t ≤ s ≤ Tk and fixed u, where ϑ is the set of values
where the characteristic exponent of the Lévy process L is finite.

Furthermore, assume that ψI
T (u, Tk, Tl) has an exponentially affine repre-

sentation:

ψI
T (u, Tk, Tl) =E

Tl

T

[
exp

(
iu log

ITk

IT
)

)]

=

(
pr(T, Tk)

pn(T, Tk)

)iu

exp
(
A(T, Tk) +B(T, Tk)vT−

)
Then the characteristic function of the change in the log inflation index,
between time T and Tk, under the nominal Tl-forward measure,

ψI
t (u, T, Tk, Tl) = ETl

t

[
exp

(
iu log

ITk

IT
)

)]

is given by the following expectation

ψI
t (u, T, Tk, Tl) =

(
pr(t, Tk)

pr(t, T )

pn(t, T )

pn(t, Tk)

)iu

×

Eξ
t

[
exp

(
A(T, Tk) +B(T, Tk)vT−

+

∫ T

t

g(s, u)vs−ds

)]
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where Eξ
t [•] denotes expectation with regards to the probability measure de-

fined by

dQξ

dQ

∣∣∣∣∣
Ft

= exp

(
−
∫ t

0

ϕ (−iξ(s, u)) vs−ds+
∫ t

0

ξ(s, u)′dYs

)

and

g(t, u) =iu

(
ϕ(−i (Sr(t, T ) + σI(t)))− ϕ(−iSn(t, T ))−

ϕ(−i (Sr(t, Tk) + σI(t))) + ϕ(−iSn(t, Tk))

)
−

ϕ(−Sn(t, Tl)) + ϕ(−iξ(t, u))

ξ(t, u) =iu

(
Sr(t, Tk)− Sn(t, Tk)− Sr(t, T ) + Sn(t, T )

)
+ Sn(t, Tl)

where ϕ(u) is the characteristic exponent of the Lévy process L under the
measure Q.

Proof. See Appendix 2.10.

2.6 Pricing inflation products

This section will describe how to price inflation dependent products. We
will consider the products given in section 2.2, which are model dependent;
that is the Year-on-Year Inflation linked Swap, the zero-coupon Inflation
Cap and the Year-on-Year Inflation Caplet.

Year-on-Year Inflation Indexed swaps

In a (payer) Year-on-Year Inflation Indexed swap (henceforth YYIIS), cash
flows are exchanged at several time points. Let the Tn be the start time
of the swap, and the Tj = Tn+1, . . . , Tm be the payment dates of the swap.
For two time points Tj and Tj−1, we have that Tj − Tj−1 ≡ Δj. For every
Tj = Tn+1, . . . , Tm the holder of the payer YYIIS pays

ΔjK

At the same time, the holder receives

Δj

(
ITj

ITj−1

− 1

)
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The value of the fixed leg is found as the discounted value

VFixed(t, n,m) =
m∑

j=n+1

pn(t, Tj)ΔjK

The value of the inflation indexed leg can be found as

VII(t, n,m) =
m∑

j=n+1

ΔjE
Q
t

[
e−

∫ Tj
t nsds

(
ITj

ITj−1

− 1

)]

=
m∑

j=n+1

Δj

(
EQ

t

[
e−

∫ Tj−1

t nsdsEQ
Tj−1

[
e
−

∫ Tj
Tj−1

nsds ITj

ITj−1

]]
− pn(t, Tj)

)

=
m∑

j=n+1

Δj

(
pn(t, Tj−1)E

Tj−1

t [pr(Tj−1, Tj)]− pn(t, Tj)
)

Since

E
Tj−1

t [pr(Tj−1, Tj)] = E
Tj−1

t [exp (log pr(Tj−1, Tj))] = ψr
t (−i, Tj−1, Tj , Tj−1)

where ψr
t (−i, Tj−1, Tj , Tj−1) is given in proposition 6, the value of the infla-

tion indexed leg is given by

VII(t, n,m) =
m∑

j=n+1

Δj (pn(t, Tj−1)ψ
r
t (−i, Tj−1, Tj , Tj−1)− pn(t, Tj))

The value of the payer YYIIS will then be

Y Y IISt(n,m) =VII(t, n,m)− VFixed(t, n,m)

=
m∑

j=n+1

Δj (pn(t, Tj−1)ψ
r
t (−i, Tj−1, Tj, Tj−1)− (1 +K)pn(t, Tj))

Market qoutes are in terms of the fixed payments K, such that the value of
the swap is equal to zero. Thus the market quote will be

K =

∑m
j=n+1 Δj (pn(t, Tj−1)ψ

r
t (−i, Tj−1, Tj , Tj−1)− pn(t, Tj))∑m

j=n+1Δjpn(t, Tj)

=

(∑m
j=n+1Δjpn(t, Tj−1)ψ

r
t (−i, Tj−1, Tj , Tj−1)

)
− PV BPt(n,m)

PV BPt(n,m)

where PV BPt(n,m) is the present value of a basis point, also known from
the interest rate swap(tion) literature.
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zero-coupon Inflation Caps

We recall the definition from section 2.2, i.e. that a zero-coupon Inflation
Cap over the period [t, T ] pays at time T

ZCICT (t, T,K) =

((
IT
It

− 1

)
−
(
(1 +K)T−t − 1

))+

=

(
IT
It

− (1 +K)T−t

)+

The price of the option is given by the risk neutral expectation

ZCICT (t, T,K) = pn(t, T )E
T
t

[(
IT
It

− (1 +K)T−t

)+
]

The value of the option crucially depends on the distribution of the CPI.
Unfortunately, we do not know the distribution, but we know the charac-
teristic function.

The knowledge of the characteristic function is fortunate, since Raible
(2000) shows that the price of European options can be obtained through
Fourier inversion, by the knowledge of the characteristic function of the
(log-) underlying asset and the Fourier transformed contract function.

By use of proposition 7, we find the characteristic function of the log-
Inflation index (under the nominal T -forward measure) as

φI
t (u, t, T ) =E

T
t [exp (iu log IT/It)] = ψI

t (u, T, T )

where ψI
t (u, T, Tl) is given in proposition 7.

Finally the results from Raible (2000) or Kluge (2005) show us how to
translate from the characteristic function into actual Inflation zero-coupon
Cap prices:

Proposition 9. Assume that there exists a β < −1 such that φI
t (iβ, Tn) <

∞. Then the price of an zero-coupon Inflation Cap with maturity T and
strike K is given by

IZCCt(t, T,K) =
pn(t, T )

π

∫ ∞

0

Λ(β + iu, κ)φI
t (iβ − u, T )du

where

Λ(v, κ) =
e(1+v) log κ

v(v + 1)

κ =(1 +K)T−t
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In theory it would be most efficient to use a Fast Fourier Transform (FFT)
method, cf. Carr and Madan (1999). However, in our model, since the char-
acteristic function is the solution to a set of ordinary differential equations,
it is expensive to evaluate compared to a model with a closed form charac-
teristic function, making Gaussian quadrature a good alternative to FFT.
Depending on parameter choices, between 50 and 100 integration points
are needed to get a reasonable accuracy when using Gaussian quadrature,
whereas at least 512 points are needed to achieved the same accuracy when
using the FFT method.

Year-on-Year Inflation caplets

A Year-on-Year Inflation caplet is a call option on future inflation, as derived
from the CPI. At time Ti the caplet pays8

Y Y ICTi
(t, Ti−1, Ti, K) = Δi

[(
ITi

ITi−1

− 1

)
−
(
(1 +K)Ti−Ti−1 − 1

)]+
=Δi

[
ITi

ITi−1

− (1 +K)Ti−Ti−1

]+
Hence, it can be interpreted as an option on the inflation from time Ti−1 to
time Ti with strike inflation rate K.

For pricing purposes, we consider rewriting the pay off as

Δi

(
IT1

IT0

− κ

)+

where κ = (1 +K)Ti−Ti−1 . The time t price can be found as the risk neutral
expectation

Y Y ICt(t, Ti−1, Ti, K) = pn(t, Ti)ΔiE
Ti

t

[(
ITi

ITi−1

− κ

)+
]

As in the case with the zero-coupon Inflation Cap, we can price this option
by Fourier methods, if we know the time t conditional characteristic function
of log ITi

/ITi−1
. This can be found with the help of proposition 8, namely

8It is assumed that the option pay off is dependent on the inflation from time Ti−1

to time Ti. The characteristic functions derived in section 2.5 also allows for the case
where caplet dependent on the inflation between time Ti−1 and Ti, is payed at time Ti+1

(Ti−1 < Ti < Ti+1).
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using that

ETi

t

[
exp

(
iu log

ITi

ITi−1

)]
= ψI

t (u, Ti−1, Ti, Ti)

Obviously, this relies on the assumption that the characteristic function in
proposition 7 has an exponentially affine solution. However, as shown in
the next section, even with a very general specification of the time change,
the solution will indeed be exponentially affine.

As in the previous section, we can rely on the results from Raible (2000) or
Kluge (2005), to price the floorlet.

Proposition 10. Assume that there exists a β < −1 such that ψI
t (iβ, Ti−1, Ti, Ti)<∞.

Then the price of a Year-on-Year Inflation Caplet with maturity Ti and
strike K on the inflation between Ti−1 and Ti, is given by

Y Y ICt(t, Ti−1, Ti) =
pn(t, Ti)Δi

π

∫ ∞

0

Λ(β + iu, κ)ψI
t (iβ − u, Ti−1, Ti, Ti)du

where

Λ(v, κ) =
e(1+v) log κ

v(v + 1)

κ =(1 +K)Ti−Ti−1

2.7 Specification of the time-change

So far we have left the time-change unspecified, except for the fact that it
must a positive semi-martingale. As mentioned above, specifications of v
that allows for easy calculation of the expectation in proposition 3 are in-
deed preferable. We propose using the affine processes described in Duffie,
Filipovic, and Schachermayer (2003). These processes are generalizations of
the affine jump diffusion models in Duffie, Pan, and Singleton (2000). Fur-
thermore, as shown in Cheng and Scaillet (2007), the linear quadratic model
found in Lieppold and Wu (2002), e.g., can be fitted into an affine jump
diffusion framework. The affine processes described in Duffie, Filipovic,
and Schachermayer (2003) also includes non-Gaussian Ornstein-Uhlenbeck
processes (see Barndorff-Nielsen and Shephard (2001)) and CBI processes
(Conservative Continuous state Branching processes with Immigration, see
for instance Filipovic (2001)).

In the following we describe the affine process, which we assume drives the
time-change or activity in the economy. We will confine ourselves to the
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one-dimensional case, however a generalization to a multivariate process is
indeed possible (see Duffie, Filipovic, and Schachermayer (2003)).

We assume that the process v satisfies the stochastic differential equation
(subject to parameter constraints that ensures positivity)

dvt =
(
θ + κvt−

)
dt+
√
α + βvt−dZt +

∫
R
+

0

xμ(dx, dt, vt−)

where Z is a Wiener process and the last term denotes a jump process
possibly dependent of the activity state v. Both processes can be correlated
with the Lévy process L. Furthermore the generator of the process is given
by

Af(v) =
(
θ̂ + κ̂vt

)
f ′(v) +

1

2
(α + βvt) f

′′(v)

+

∫
R
+

0

(
f(v + x)− f(v)− xf ′(v)1|x|<1

)
(m(dx) + vm(dx))

where

θ̂ =θ + f ′(v)

∫
R
+

0

x1|x|<1m(dx)

κ̂ =κ+ f ′(v)

∫
R
+

0

x1|x|<1n(dx)

and the two measures n(dx) and m(dx) must satisfy the following condition∫
R
+

0

(1 ∧ x)m(dx) +

∫
R
+

0

(
1 ∧ x2

)
n(dx) <∞

This implies that the jumps dictated by the measure m(dx) must show
finite variation, where the jumps related to the measure n(dx) only have to
show finite quadratic variation. Thereby the affine jump diffusions found
in Duffie, Pan, and Singleton (2000) is a special case of this framework,
namely where both n(dx) and m(dx) show finite activity.

As shown in Duffie, Filipovic, and Schachermayer (2003), the expectation
needed to perform pricing has an exponential affine solution

Et

[
exp

(
r + qvT +

∫ T

t

f(s)vsds

)]
= exp (A(t, T ) +B(t, T )vt)
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where A(t, T ) and B(t, T ) solve the generalized Riccati equations

dA(t, T )

dt
=− θ̂B(t, T )− 1

2
αB(t, T )2

−
∫
R
+

0

(
eB(t,T )x − 1− xB(t, T )1|x|<1

)
m(dx)

dB(t, T )

dt
=− κ̂B(t, T )− 1

2
βB(t, T )2

−
∫
R
+

0

(
eB(t,T )x − 1− xB(t, T )1|x|<1

)
n(dx)− f(t)

subject to A(T, T ) = r and B(T, T ) = q.

This direct application of the result in Duffie, Filipovic, and Schachermayer
(2003) will, however, only be applicable when the activity rate process is
independent of the driving Lévy process. As shown above, when this is
no longer the case a change of measure is needed to preserve the analytical
tractability. However, in most cases this will only result in changing the pa-
rameters of the activity rate process with time dependent parameters - thus
the functional form of the solution remains the same. The specific change
of parameters is highly model dependent. This depends on the choice of
Lévy process, the choice of activity rate and the dependence between the
two.

With regard to the dependence between the activity rate process and the
driving Lévy process, recall that any purely continuous process is indepen-
dent from any pure jump process. Furthermore, any finite activity jump
process is also independent from any infinite activity jump process. Hence,
if dependence between the activity rate process and the driving Lévy pro-
cess is needed, then both must contain either a Wiener process, a finite
activity jump process or an infinite activity process. The processes could
possibly contain all three. However, as described in Geman, Madan, and
Yor (2001), an infinite activity jump process could replace both a Wiener
process and a finite activity jump process.

2.8 Calibration

In this section we consider the calibration of the model given in this paper.
We consider data on inflation swaps and caps/floors linked to the EURO
area HICP ex. tobacco. Furthermore, to identify parameters related to
the nominal term structure, we include At-The-Money caps (which are not
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Maturity 1 2 3 4 5
ZCIIS 0.91 % 1.45 % 1.69 % 1.84 % 1.97 %
YYIIS N/A N/A 1.65 % N/A 1.92 %
NomZCB 0.986 0.962 0.933 0.9 0.865
RealZCB 0.995 0.99 0.981 0.968 0.954
Maturity 6 7 8 9 10
ZCIIS 2.08 % 2.17 % 2.24 % 2.29 % 2.34 %
YYIIS N/A 2.12 % N/A N/A 2.25 %
NomZCB 0.83 0.794 0.759 0.725 0.691
RealZCB 0.939 0.923 0.906 0.888 0.871

Table 2.1: Inflation zero-coupon Inflation Indexed Swap rates, Year-on-Year
Inflation Indexed Swap rates, Nominal zero-coupon Bonds and Real zero-
coupon Bonds from Inflation zero-coupon Inflation. Indexed Swaps Inflation
swap rates are linked to EURO area HICP ex. Tobacco. Data is from August
10th 2009. Source: Bloomberg.

Type Floor Floor Floor Cap Cap Cap Cap
Mat. / Strike -1 % 0 % 1% 2% 3% 4% 5%
1 15 35 75 31 14 6 3
2 33 66 129 125 69 39 23
3 60 102 187 214 127 81 54
5 97 175 289 443 267 169 114
7 122 195 332 651 390 243 162
10 151 241 409 931 558 388 227

Table 2.2: Year-on-Year Inflation Cap and Floor prices (in basis points)
linked to EURO area HICP ex. Tobacco. Data is from August 10th 2009.
Source: Bloomberg.

reported here). Our data is obtained from Bloomberg and is from August
10th 2009.

First, Table 2.1 shows market qoutes of zero-coupon Inflation Indexed
Swaps and Year-on-Year Inflation Indexed Swap rates. The table shows
that due to expectations of low short term inflation rates, the term structure
of ZCIIS break even rates is upward sloping, reflecting a gradual recovery
of the EURO area economy.

Secondly, Table 2.2 shows market qoutes (mid-prices) of Year-on-Year In-
flation caps and floors. In the actual calibration a finer strike grid, than
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presented in Figure 2.2, has been used. Furthermore, we extract prices
for intermediate maturities by extracting flat volatilities from the caps and
floors by using Black’s formula (as for instance done in Mercurio and Moreni
(2009)); we then interpolate flat volatilities for different maturities (and
same strike rate) in order to get prices for all maturities. The observed
and interpolated flat volatilities are shown in Figure 2.3. Finally, by tak-
ing differences between cap prices, we can extract caplet prices and im-
plied volatilities. More precisely we minimize the squared percentage errors
measured by implied volatilities (nominal caps and inflation caplets) and
Year-on-Year swap rates.

Choice of volatility loading and driving process

To calibrate our model we need to make assumptions on the shape of the
volatility loading σi(t, T ), the driving Lévy process L and the time change
v.

We start by considering the volatility loadings. As a benchmark, we con-
sider the Jarrow-Yildirim model, hence we choose a Vasicek-style volatility
loading, i.e. :

σn(t, T ) =

⎛
⎝ σne

−αn(T−t)

0
0

⎞
⎠ , σr(t, T ) =

⎛
⎝ 0

σre
−αr(T−t)

0

⎞
⎠ , σI(t) =

⎛
⎝ 0

0
σI

⎞
⎠

In terms of the Lévy process, we consider a (correlated) Wiener process,
i.e. a process with characteristic exponent:

ϕ(u) = −1

2
u′Σu

where Σ is the correlation matrix9.

We also consider a Lévy process based on a Variance Gamma (VG) pro-
cess10. To include correlation between the elements in the Lévy process,
we consider the following specification of a multivariate Lévy process, as
introduced in Ballotta and Bonfiglioli (2010):⎛

⎝ L1,t

L2,t

L3,t

⎞
⎠ =

⎛
⎝ X1,t + a1XZ,t

X2,t + a2XZ,t

X3,t + a3XZ,t

⎞
⎠

9In the calibration routine, we fix the correlations to historical estimates obtained
from time series of nominal rates and inflation swaps.

10The VG process is obtained by subordinating an arithmetic Brownian motion with
a Gamma process. Appendix 2.11 provides a brief description of the VG process.
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where Xi is a VG process with parameters (βi, γi, νi). This process has a
characteristic exponent given by

ϕ(u) =− 1

νZ
log

⎡
⎣1− iβZνZ

(
3∑

j=1

ajuj

)
+
γ2Z
2
νZ

(
3∑

j=1

ajuj

)2
⎤
⎦

−
3∑

j=1

(
1

νi
log

[
1− iujajβjνj + u2j

a2jγ
2
j

2
νj

])

Finally, we consider the time change. For the Wiener process and Variance
Gamma based model we use a CIR-process, i.e. that the rate of the time
change v solves the SDE

dvt = κ(θ − vt)dt+ η
√
vtdZt

For identification purposes, and to preserve the intuition of v being a time
change, we fix θ to be equal to one. When we calibrate the Wiener process
based model, we assume a common correlation coefficient γ, between all
three Wiener processes in the driving process W .

Calibration results

With the above model specification, we calibrate four different models to
the market data; 1) a standard Jarrow-Yildirim model, 2) a Jarrow-Yildirim
model with time change, 3) a Variance Gamma based model without time
change and finally 4) a Variance Gamma model with time change. We
show the calibration results in Figure 2.4, where the different models are
compared to the extracted inflation caplet implied volatilities (3, 5 and 10
year maturities).

The first observation is that none of the models obtain a perfect fit to the
data. Worst is the Jarrow-Yildirim model; not surprisingly, the assump-
tion of a Gaussian model is too restrictive. In terms of adding stochastic
volatility (time change) to the Jarrow-Yildirim model, the main improve-
ment arises from fitting longer term data better, since the time change adds
a minor ’smile’ at longer maturities. In addition the time change seems to
help in fitting the overall level of volatilities, i.e. removing some of the
restrictions implied by the Vasicek-type volatility loading.

In terms of the Variance Gamma based models, we see that there is little
difference between including the time change or not. However, due to the
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Figure 2.4: Calibration of different models to market data (inflation
caplets). The upper graph is the 3 year inflation caplet, the middle graph
is the 5 year inflation caplet and the lower graph is the 10 year inflation
caplet.
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flexibility of the VG process, a time series study is probably needed in order
assess the importance of the time change.11

Interestingly, the Variance Gamma based models seem to capture the shape
of the volatility smile. However, volatility tends to be underestimated for
shorter maturities, but overestimated for longer maturities. Again, we be-
lieve that this can be attributed to the restrictive Vasicek volatility loading.

These findings indicate that further work has to be done in different areas.
First, the exact specification of the driving Lévy process and time change
could possibly lead to more flexible volatility smiles. For instance, in terms
of interest rate modeling, Trolle and Schwartz (2009) show that a three
factor model with stochastic volatility, as opposed to a one factor model in
this paper, is needed in order to capture the dynamics of nominal caps and
swaptions.

Secondly, easing the restriction on the volatility loading should also add
flexibility to the modeling. Trolle and Schwartz (2009) show that a hump
shaped volatility loading is indeed preferable compared to a Vasicek speci-
fication.

2.9 Conclusion

In this paper, we have proposed an inflation modeling framework based on
the Heath-Jarrow-Morton approach found in Jarrow and Yildirim (2003).
The novelty of our framework arises from the use of a time changed Lévy
process, which allows more realistic modeling of real and nominal forward
rate and inflation dynamics.

By using a Heath-Jarrow-Morton framework based on time changed Lévy
processes, we show that the drift conditions can be expressed as a compound
of the volatility loading, the characteristic exponent of the Lévy process and
the current state of the subordinator. As described in Hinnerich (2008),
we do not need to assume the foreign exchange analogy as in Jarrow and
Yildirim (2003). This comes as a by-product of the general derivations.

Due to the analytical tractability of the time changed Lévy processes, we
manage to derive a range of characteristic functions. Namely the charac-

11This could possibly be due to the fact, that a time change of a Lévy process corre-
sponds to a scaling of the Lévy measure, i.e. controlling how frequent jumps occur. For
the Variance Gamma model, the ν parameters also control how frequent jumps arrive,
which implies that the effect of the subordination using a CIR process would mostly be
beneficial in the time series dimension.
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teristic functions for nominal and real zero-coupon bond, and for inflation
and forward inflation.

These characteristic functions allow us to price standard inflation prod-
ucts, such as zero-coupon Inflation Indexed Swaps, Year-on-Year Inflation
Indexed swap and finally inflation indexed caplets and floorlets.

By assuming that the subordinator is driven by the generalized affine pro-
cesses (see Duffie, Filipovic, and Schachermayer (2003)), the prices of in-
flation indexed derivatives are known up to ordinary differential equations
and possibly a Fourier inversion.

Finally, we calibrate the model to market data. We find that a model
based on a Variance Gamma model captures the shape of the volatility
smile, whereas Gaussian models more seem to capture the overall level of
the volatility smile. We also find that the volatility loadings implied by the
original Jarrow-Yildirim model, may be too restrictive in order to fit the
volatility surface properly.
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2.10 Appendix: Proofs

Proof of proposition 3

Proof. We first prove that M is a Q-martingale. The dynamics of logM
are given by

d logMt =− ϕ (−iξ(s)) vt−dt+ ξ(t)′dYt

This implies the dynamics of M

dMt

Mt−

=ξ(t)′Σ1/2dWτt +

∫
Rd
0

(
eξ(t)

′x − 1
) (
μ(dx, dt, vt−)− ν(dx)vt−dt

)
Which is a martingale if the following condition is satisfied

EQ [|Mt|] = EQ

[
exp

(
−
∫ t

0

ϕ (−iξ(s)) vs−ds+
∫ t

0

ξ(s)′dYs

)]
<∞

The fact that M is a martingale implies

ψ(t, T ) =EQ
t

[
exp

(∫ T

t

ξ(s)′dYs

)]

=EQ
t

[
exp

(
±
∫ T

t

ϕ (−iξ(s)) vs−ds+
∫ T

t

ξ(s)′dYs

)]

=EQ
t

[
exp

(∫ T

t

ϕ (−iξ(s)) vs−ds
)
MT

Mt

]

=Eξ
t

[
exp

(∫ T

t

ϕ (−iξ(s)) vs−ds
)]

Where Eξ
t [•] denotes expectation with regard to the probability measure

defined by

dQξ

dQ

∣∣∣∣∣
Ft

=Mt = exp

(
−
∫ t

0

ϕ (−iξ(s)) vs−ds+
∫ t

0

ξ(s)′dYs

)
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Proof of proposition 4

We start by defining the discounted nominal bond and discounted inflation
protected bond:

Ft ≡
pn(t, T )

βn
t

, Ht ≡
pr(t, T )It

βn
t

We need to find conditions such that these two processes are martingales.
First for nominal bonds:

The dynamics of logFt follow easily

d logFt =
(
An(t, T ) + Sn(t, T )

′avt−
)
dt+ Sn(t, T )

′Σ1/2dWτt+∫
Rd
0

Sn(t, T )
′xμ(dx, dτt)

Which gives us the dynamics of Ft

dFt

Ft−

=
(
An(t, T ) + Sn(t, T )

′avt− + Sn(t, T )
′ΣSn(t, T )vt−

)
dt+∫

Rd
0

(
eSn(t,T )′x − 1

)
ν(dx)vt−dt+ Sn(t, T )

′Σ1/2dWτt∫
Rd
0

(
eSn(t,T )′x − 1

) (
μ(dx, dτt)− ν(dx)vt−dt

)
The last two terms are martingales, thus the nominal drift condition is

An(t, T ) = −vt−ϕ (−iSn(t, T ))

Finally we seek to derive a drift condition for the inflation protected zero-
coupon bonds. We consider the dynamics of logHt

d logHt =
(
rt + Ar(t, T ) + αI(t)− nt + (Sr(t, T ) + σI(t))

′ avt−
)
dt+

(Sr(t, T ) + σI(t))
′ Σ1/2dWτt +

∫
Rd
0

(Sr(t, T ) + σI(t))
′ xμ(dx, dτt)

The dynamics of Ht are then

dHt

Ht−

=
(
Ar(t, T ) + αI(t) + rt − nt + (Sr(t, T ) + σI(t))

′ avt−
)
dt+(

1

2
(Sr(t, T ) + σI(t))

′ Σ (Sr(t, T ) + σI(t)) vt−

)
dt+∫

Rd
0

(
e(Sr(t,T )+σI(t))

′x − 1
)
ν(dx)vt−dt+ (Sr(t, T ) + σI(t))

′ Σ1/2dWτt+∫
Rd
0

(
e(Sr(t,T )+σI(t))

′x − 1
) (
μ(dx, dτt)− ν(dx)vt−dt

)
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The last two terms are martingales, giving us the condition:

Ar(t, T ) + αI(t) + rt − nt +
(
(Sr(t, T ) + σI(t))

′ a
)
vt−+

1

2
(Sr(t, T ) + σI(t))

′ Σ (Sr(t, T ) + σI(t)) vt−+∫
Rd
0

(
e(Sr(t,T )+σI(t))

′x − 1
)
ν(dx)vt−dt = 0

Or equivalently

Ar(t, T ) + (ϕ(−i (Sr(t, T ) + σI(t)))− ϕ(−iσI(t))) vt− =

−αI(t) +
(
nt − rt − vt−ϕ(−iσI(t))

)
Since this must be satisfied for all t < T we must have

αI(t) =nt − rt − vt−ϕ(−iσI(t))
Ar(t, T ) =− vt− (ϕ(−i (Sr(t, T ) + σI(t)))− ϕ(−iσI(t)))

Which completes the proof.

Proof of proposition 5

We are interested in

ψn
t (u, T, Tk, Tl) =E

Tl

t [exp (iu log pn(T, Tk))]

=EQ
t

[
exp (iu log pn(T, Tk))

NT

Nt

]
Where

Nt =
dQTl

dQ

∣∣∣∣∣
Ft

=
pn(t, Tl)

βn
t

βn
0

pn(0, Tl)

= exp

(
−
∫ t

0

ϕ (−iSn(s, Tl)) vs−ds+

∫ t

0

Sn(s, Tl)
′dYs

)
Thus we are interested in the expectation

ψn
t (u, T, Tk, Tl) =

(
pn(t, Tk)

pn(t, T )

)iu

EQ
t

[
exp

(∫ T

t

h(s, u)vs−ds+

∫ T

t

ξ(s, u)′dYs

)]
where

h(s, u) =iu [ϕ (−iSn(s, T ))− ϕ (−iSn(s, Tk))]− ϕ (−iSn(s, Tl))

ξ(s, u) =iu (Sn(s, Tk)− Sn(s, T )) + Sn(s, Tl)

Using the result in proposition 3 gives us the result.
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Proof of proposition 7

We are interested in the expectation

ψI
t (u, T, Tl) =E

Tl

t [exp (iu (log IT − log It))]

=

(
pr(t, T )

pn(t, T )

)iu

ETl

t

[
exp

(∫ T

t

h(s, u)vs−ds+

∫ T

t

ξ(s, u)′dYs

)]
where

h(s, u) =iu [ϕ (−iSn(s, T ))− ϕ (−i (Sr(s, T ) + σI(s)))]

ξ(s, u) =iu (σI(s) + Sr(s, T )− Sn(s, T ))

Changing to the nominal risk neutral measure, yields

ψI
t (u, T, Tl) =

(
pr(t, T )

pn(t, T )

)iu

EQ
t

[
exp

(∫ T

t

ĥ(s, u)vs−ds+

∫ T

t

ξ̂(s, u)′dYs

)]
where

ĥ(s, u) =iu [ϕ (−iSn(s, T ))− ϕ (−i (Sr(s, T ) + σI(s)))]− ϕ(−iSn(s, Tl))

ξ̂(s, u) =iu (σI(s) + Sr(s, T )− Sn(s, T )) + Sn(s, Tl)

Using the result in proposition 3 gives us the result.

Proof of proposition 8

We start by considering

ψI
t (u, T, Tk, Tl) = ETl

t

[
exp

(
iu log

ITk

IT

)]
= ETl

t

[
ETl

T

[
exp

(
iu log

ITk

IT

)]]
Using the assumption of the exponentially affine solution, gives us

ψI
t (u, T, Tk, Tl) =E

Tl

t

[(
pr(T, Tk)

pn(T, Tk)

)iu

exp
(
A(T, Tk) +B(T, Tk)vT−

)]

=

(
pr(t, Tk)

pr(t, T )

pn(t, T )

pn(t, Tk)

)iu

×

ETl

t

[
exp

(∫ T

t

g(s, u)vs−ds+

∫ T

t

ξ(s, u)′dYs

)
×

exp
(
A(T, Tk) +B(T, Tk)vT−

) ]
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where

g(s, u) =iu

(
ϕ(−i (Sr(s, T ) + σI(s)))− ϕ(−iSn(s, T ))−

ϕ(−i (Sr(s, Tk) + σI(s))) + ϕ(−iSn(s, Tk))

)

ξ(s, u) =iu

(
Sr(s, Tk)− Sn(s, Tk)− Sr(s, T ) + Sn(s, T )

)

Changing to the nominal martingale measure Q gives us

ψI
t (u, T, Tk, Tl) =

(
pr(t, Tk)

pr(t, T )

pn(t, T )

pn(t, Tk)

)iu

×

ETl

t

[
exp

(∫ T

t

h(s, u)vs−ds+

∫ T

t

k(s, u)′dYs

)
×

exp
(
A(T, Tk) +B(T, Tk)vT−

) ]

where

h(s, u) =iu

(
ϕ(−i (Sr(s, T ) + σI(s)))− ϕ(−iSn(s, T ))−

ϕ(−i (Sr(s, Tk) + σI(s))) + ϕ(−iSn(s, Tk))

)
− ϕ(−iSn(s, Tl))

k(s, u) =iu

(
Sr(s, Tk)− Sn(s, Tk)− Sr(s, T ) + Sn(s, T )

)
+ Sn(s, Tl)

Applying proposition 3 gives us the result.

2.11 Appendix: The Variance Gamma

process

The Variance Gamma process (as introduced in Madan and Seneta (1990))
arises from subordinating an arithmetic Brownian motion with a Gamma
process.

More precisely consider the arithmetic Brownian Motion

Z(t) = βt+ γW (t)
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Next, the Variance Gamma process arises from subordinating this process
with a Gamma Process, G(t) ∼ Γ(a, b)

X(t) = Z(G(t)) = βG(t) + γW (G(t))

With respect to the Gamma process, Madan, Carr, and Chang (1998) show
that it is sufficient to consider a gamma process where a = b = 1/ν. In
this case the Gamma process reflects an unbiased clock (i.e. E[G(t)] = t).
Using this specification, we say the process X is V G(β, γ, ν).

The VG process is a Lévy process (with infinite activity and finite variation)
and has characteristic exponent given by

ϕ(u) = −1

ν
log

(
1− iuβν + u2

β2

2
ν

)

Finally the VG process has mean, variance, skewness and kurtosis given as

E [X(t)] =βt

Var (X(t)) =
(
γ2 + β2ν

)
t

Skew (X(t)) =
(3γ2 + 2β2ν)βν

(γ2 + β2ν)3/2
√
t

Kurt (X(t)) =
(3γ4 + 12γ2β2ν + 6β4ν2) ν

(γ2 + β2ν)2 t
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Inflation risk premia in the term structure of

interest rates: Evidence from Euro area
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Abstract

We estimate inflation risk premia in the Euro area using inflation swaps.
By proposing a no-arbitrage model for econometric analysis, and estimat-
ing it using Markov Chain Monte Carlo, we find estimates of inflation risk
premia, that on average show an upward sloping term structure, with 1
year risk premia of 18 bps and 10 year risk premia of 43 bps, however with
fluctuation in risk premia over time. Our estimates suggest that surveys
are important in identifying inflation expectations and thus inflation risk
premia. We relate estimates of inflation risk premia to agents beliefs, and
find that skews in short term inflation perceptions drive short term inflation
risk premia, where beliefs on GDP growth drive longer term risk premia.
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3.1 Introduction

The ability to correctly estimate inflation risks are vital to investors, as
well as central banks. One such measure is the Break Even Inflation Rate
(BEIR), which is the difference in yield between a nominal and real bond.

Another measure is provided by inflation swaps. More precisely zero-coupon
inflation indexed swaps, are swap agreements who at maturity pay the
change in the reference index (the Consumer Price Index) as the floating
leg and a pre-specified fixed payment as the fixed leg. The fixed leg is set,
so that the contract has a value of zero at initiation. Hence the quotes of
inflation swaps gives an additional measure of the BEIR. Typically inflation
swaps require less capital to hold, than inflation linked bonds, making these
contracts less prone to market distortions. In fact around the collapse of
Lehman Brothers (end-2008), the spread between inflation swap rates and
BEIRs from inflation indexed bonds, widened due to the financial crises and
liquidity effects (see for instance Campbell, Schiller, and Viceira (2009) for
an elaboration on this issue).

Recently a number of papers have tried to estimate inflation risk premia
using various methodologies. On US-data the analysis have mainly been
focused on using CPI data, surveys and/or US treasury inflation protected
securities (TIPS) to estimate the inflation risk premia (see Ang, Bekaert,
and Wei (2008), D’Amico, Kim, and Wei (2008), Chernov and Mueller
(2008) and Christensen, Lopez, and Rudebusch (2008)). The only paper to
use inflation swap data is Haubrich, Pennacchi, and Ritchken (2008), who
use US inflation swap data.

With regard to Euro Area data, we are aware of three papers, namely
Tristani and Hördahl (2007), Garcia and Werner (2010) and Tristani and
Hördahl (2010). All papers extract real yields from inflation indexed bonds,
and then estimate inflation expectations and inflation risk premia.

Overall only a few of these studies agree on the size of the inflation risk
premia. Some papers have inflation risk premia of up to 300 basis points
(Chernov and Mueller (2008)), where others show more moderate fluctu-
ations (-50 to 50 basis points, see for instance Christensen, Lopez, and
Rudebusch (2008)). These differences seem to arise from small differences
in data periods and the data included, e.g. for instance the inclusion of sur-
veys or not. Finally, only Tristani and Hördahl (2007) present confidence
bands on their of estimates inflation risk premia. They find that their es-
timate of inflation risk premia is statistically insignificant for most of the
considered maturities.

In this paper we focus on Euro area inflation risk premia. However, instead
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of using inflation indexed bonds to identify real yields, we use inflation
swaps. We choose to use inflation swaps, since inflation swaps linked to the
Euro area HICP have developed into a fairly liquid market.2 As mentioned
above, swaps require less capital to hold, and swap rates are less likely to be
distorted by market related issues compared to cash products. Furthermore
inflation swap rates have the advantage, that they can be included directly
into an estimation, making use of the data less prone to errors from inter-
polation. Finally, to our knowledge, we are the first to conduct an analysis
on inflation risk premia using inflation swaps.

Rather than trying to relate inflation risk premia to a large framework in-
cluding agents, GDP, etc., we use a reduced form approach. The choice of
a reduced form model is motivated by the large degree of disagreement on
the inflation risk premia. We rely on the existing literature on continuous
time term structure models (see Duffie and Kan (1996) and Dai and Single-
ton (2002)), extended with an inflation process similar to D’Amico, Kim,
and Wei (2008), although with slight differences. Thereby real zero-coupon
bonds (and inflation swaps) can be priced through no-arbitrage methods.

To more easily identify inflation risk premia we follow Garcia and Werner
(2010) and include the ECB survey of professional forecasters. Since we in
this paper use a fairly short time series (data from 1999), we are likely to
face a small-sample bias. The use of surveys may help to reduce such a
bias and help identify the model. Furthermore, to derive the inflation risk
premia, we want to model the inflation expectations of market participants.
With all likelihood one can construct a model, which fits realised inflation
better than surveys, however such a model may not be representative of the
actual inflation expectation, thus leading to wrong estimates of inflation risk
premia.

We estimate our model using a Bayesian approach, namely Markov Chain
Monte Carlo. This allows us to draw precise inference on derived variables
such as inflation expectations and risk premia. By using draws from the
Markov Chain Monte Carlo estimation, we examine the effect of includ-
ing surveys, and find that surveys improve the identification of inflation
expectations and thus inflation risk premia.

In terms of our estimate of inflation risk premia, we obtain estimates of
average inflation risk premia that are increasing in time to maturity, with 1
year risk premia of 18 basis points and 10 year risk premia of 43 basis points.
These show significant fluctuations with 1 year inflation risk premia being

2In terms of US inflation linked markets, TIPS are still by far the most actively traded
product, thus having a significant negative effect on the US inflation swap markets.
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between -146 and 68 basis points, with the lowest value being in the time
after the collapse of Lehman Brothers. Longer term inflation risk premia
(10 year) show less variation, with inflation risk premia between -30 and 81
basis points.

Finally we relate the estimated risk premia to agents beliefs on the outcome
of the economy. We find that short term inflation risk premia are mainly
driven by the skewness of the distribution of inflation as measured by the
ECB survey of professional forecasters, where longer term risk premia are
driven by GDP expectations.

The paper is structured as follows: Section 3.2 describes the data and pro-
vides an ad-hoc measure of inflation risk premia. Section 3.3 and 3.4 intro-
duce the no-arbitrage model which we use to estimate inflation risk premia,
and section 3.5 describes our estimation methodology. Section 3.6 describes
the empirical results and finally section 3.7 concludes the paper.

3.2 Data: Inflation swap rates and the

nominal term structure

Initial description

In this section we will describe the data on inflation swap rates, and its
connection to the nominal term structure. A zero-coupon inflation swap is
a swap agreement where the floating leg pays the percentage change on the
reference consumer price index over some reference period [t, T ], which for
the Euro area is the HICP ex. tobacco index:

ZCIIST (t, T,K) =

(
I(T )

I(t)
− 1

)
−
(
(1 +K)T−t − 1

)
Zero-coupon inflation swap rates are quoted in terms of the fixed rates K,
and the quotes will therefore reflect a market based inflation expectation
over the considered period. It can be shown that inflation swap rates can be
derived through nominal and real interest-rates. Here we term real interest-
rates, as the ex-ante real rates, as for instance can be derived from normal
inflation linked bonds. On the other hand, due to this relationship, real
rates can also be derived from inflation swaps and nominal interest-rates.3

3We ignore the fact that inflation swaps have an indexation lag, i.e. that the swaps
fix to the CPI released 3 month prior to the maturity of the swaps. This approximation
will mainly affect 1 year inflation risk premia.



91 ESSAY 3

2004 2005 2006 2007 2008 2009 2010

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Maturity (years)

Z
e

ro
 C

o
u

p
o

n
 I

n
fl
a

ti
o

n
 S

w
a

p
 R

a
te

 (
%

)

Figure 3.1: Time series of zero-coupon inflation swap rates. The data
sample is June 2004 to January 2010. Source: Bloomberg.

Next we turn to our data. From Bloomberg we collect weekly data on zero-
coupon inflation swaps on Euro area HICP ex. tobacco from June 2004 to
January 2010. Similarly we collect swap rates (also from Bloomberg) which
range from January 1999 to January 2010. Figure 3.1 shows time series of
inflation swap rates and Figure 3.2 shows the times series on nominal swap
rates.4

As seen from Figure 3.1, inflation swap rates saw large variability through
2008. First inflation swap rates rose in the first half of 2008 due to rising
commodity prices, and in the latter part of 2008 the fact that the financial
crisis spread to the real economy triggered strong downward revisions of
inflation swap rates.5 Apart from this period, inflation swap rates have
been fairly stable with long term rates around 2.5 percent and short term
rates being more affected by short term fluctuations in inflation.

4We perform weekly sampling of the data on Wednesdays to avoid weekday effects,
see Lund (1997).

5Part of this drop in inflation rates can also be related to liquidity reasons, although
inflation swaps have been less affected than inflation linked bonds, as a consequence of
the swap structure (vs. the cash structure of inflation linked bonds).
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Figure 3.2: Time series of nominal swap rates. The data sample is January
1999 to January 2010. Source: Bloomberg.

Linking the nominal term structure and inflation
swaps

As first shown in Litterman and Scheinkman (1991), the nominal term
structure can be described by a number of principal components, typically
three. From Figure 3.1 and 3.2 there is visual evidence that at least some
of the variation of inflation swap rates is captured by the nominal term
structure, and hence its principle components. Thus to capture the struc-
ture between the data, we find the principal components of the changes in
nominal swap rates, and perform a regression where changes in inflation
swap rates are explained by the principal components. The top panel in
Table 3.1 shows the result from the principal components analysis (PCA)
of the nominal interest-rate data.6

First of all, our PCA on the nominal term structure confirms the usual
findings, i.e. that three principal components are sufficient to describe the
nominal term structure. Also, our three principal components have the
usual interpretation of level, slope and curvature, although the first two
factors also could be described as flat and steep slope factors.

6A PCA performed on the swap rate levels gives a similar result, albeit significantly
higher R2’s are obtained when regressing the principal components on inflation swap
levels.
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Next we regress the change in each inflation swap rate on the principal
components to see how much of the variation in inflation swap rates is
explained by the nominal principal components. The bottom panel in Table
3.1 shows the results from these regressions. Our first observation is that
the R2’s from the different regressions are between 4 and 11 percent. This
is in contrast to the explanation percentage of about 99 percent in the PCA
on the nominal term structure. This implies that part of the variation in
inflation swap rates is not captured by the nominal term structure.

In practice this implies that we would model the nominal term structure
with three factors, but we would need (at least) one more factor to model
the inflation swap rates. To address this issue, we perform another PCA
on the residuals from the regressions mentioned above. We then repeat our
regressions from before, but we also include the first principal component
from the PCA on the residuals. The results are given in Table 3.2.

The inclusion of the additional principal component increases the R2’s in
all the regressions. Thus the additional principal component seems to cap-
ture fluctuations in shorter term inflation swap rates. Typically one would
expect these inflation swap rates to be more influenced by news on inflation
and macro economic fundamentals (since the pay off is directly linked to
the CPI), than short term interest-rates which to a larger extent are driven
by central bank policies.

Inferring inflation risk premia

Ultimately we would like to infer inflation risk premia. One ad-hoc way of
doing it, would be to take a measure of inflation expectations (i.e. a real
world expectation) and extract it from the inflation swap rates (i.e. a risk
neutral expectation). One such measure could be the European Central
Bank Survey of Professional Forecasters (ECB SPF).

In the SPF a number of financial and non-financial professionals submit
their point estimate for inflation and probabilities that inflation will fall
in prespecified intervals.7 More specifically they submit such a forecast of
the year-on-year inflation for a horizon of 1,2 and 5 years ahead (a 1 year
forecast, a 1 year forward forecast of the 1 year inflation and finally a 4 year
forward forecast of the 1 year inflation). 8

7The survey is also conducted for real GDP and unemployment, see Garcia (2003)
for further details.

8To be specific the survey is done for the present and following calender years, as
well as rolling horizons of 1 and 2 years, i.e. year-on-year forecast of a horizon of 1 and
2 year. The 5 year forecast is a forecast of the calender year 5 years ahead, hence it will
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Figure 3.3: The ECB Survey of professional forecasters (SPF). Source: ECB
Website.

However, using the ECB SPF has one problem. We only have the survey
expectation on a quarterly basis, and hence we are only able to extract the
inflation risk premia at these quarterly points. To get an ad-hoc measure
of inflation expectations, we use linear interpolation between each quarter.

Since the ECB SPF considers expectations as one-year annual inflation
rates (and forward inflation rates) and the inflation swap rates are average
inflation rates over a longer horizon, we need to convert ECB SPF expecta-
tions into an average expectation. We propose using simple compounding
of inflation rates (and thus ignoring ’Jensen/convexity’ terms):

Et[Π(t, t+ n)] =

[
t+n−1∏
k=t

(1 + Et[Π(k, k + 1)])

]1/n
− 1

When a specific expectation is not available (for instance the 3 year ex-
pectation) we use linear interpolation and for expectations with maturities
longer than 5 years we keep the expectation fixed at the 5 year level.

Figure 3.4 shows the estimated inflation risk premia. One obvious observa-
tion is the big drop in short term inflation risk premia in late-2008. This

be of varying horizon, i.e. between 4.5 and 5.5 years - for simplicity we implement this
as a constant maturity 5 year forecast. The very low variation of the 5 year forecast (see
Figure 3.3), implies that this approximation is of minor importance.
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Figure 3.4: Estimate of inflation risk premia obtained by using linear inter-
polation on survey data. The risk premia is given in basis points.

corresponds to the large drop in inflation swap rates. However cf. Figure
3.3 the drop in survey expectations was smaller in magnitude. Since these
results are based on rather ad-hoc means, we prefer estimating a more co-
herent model to data, which is done in the following sections.

3.3 Inflation risk premia: What theory

predicts

Before we describe our model, we consider identification of the risk premia in
a theoretical framework. To do so, we consider the no-arbitrage relationship
between nominal and real pricing kernels

MR(t) =MN(t)I(t)

This implies that

EP
t

[
MR(T )

MR(t)

]
= EP

t

[
MN(T )

MN(t)

]
EP

t

[
I(T )

I(t)

]
+ CovP

[
MN(T )

MN(t)
,
I(T )

I(t)

]
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Or equivalently in terms of ZCB prices

pr(t, T ) = pn(t, T )× EP
t

[
I(T )

I(t)

]
×

⎛
⎝1 + CovP

[
MN (T )
MN (t)

, I(T )
I(t)

]
EP

t

[
MN (T )
MN (t)

]
EP

t

[
I(T )
I(t)

]
⎞
⎠

In terms of yields this can be written as9

yn(t, T )− yr(t, T ) = EP
t [Π(t, T )] +RP (t, T )

where

EP
t [Π(t, T )] =

1

T − t
logEP

t

[
I(T )

I(t)

]

and

RP (t, T ) =
1

T − t
log

⎛
⎝1 + CovP

[
MN (T )
MN (t)

, I(T )
I(t)

]
EP

t

[
MN (T )
MN (t)

]
EP

t

[
I(T )
I(t)

]
⎞
⎠

Hence the BEIR can be decomposed into an inflation expectation and a risk
premia. The risk premia is related to the covariance between the nominal
stochastic discount factor and inflation. To gain some more intuition on
this result we recall that under suitable assumptions in a C-CAPM frame-
work (CRRA utility and log-normality), the inflation risk premia can be
described as a function of risk aversion and the covariance between con-
sumption growth and inflation:

RP (t, t+Δt) ≈ −γCovP
(
C(t+Δt)

C(t)
,Π(t, t+Δt)

)
All things being equal, a rise in inflation will decrease real consumption,
leading to a negative covariance term - thus we would expect inflation risk
premia to be postive. Obviously short term fluctuations can turn inflation
risk premia negative. Consider the case where the economy is in a recession,
here we would expect inflation to be low, or even negative. At the same time
due to the recession we could also see a negative growth in real consumption,
thus leading to a positive correlation and a negative inflation risk premia.
This also provides us with a simple sanity check - we should have somewhat
similar dynamics of GDP growth and inflation risk premia.

9As shown in section 3.6, the risk premia component, RP (t, T ), also includes a
convexity term.
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3.4 A no-arbitrage model of nominal and

inflation swap rates

As mentioned above we prefer a more robust method to derive the inflation
risk premia. Thus to estimate the inflation risk premia we consider a con-
tinuous time model. A variant similar to the one found here, can be found
in D’Amico, Kim, and Wei (2008). More precisely this relies on the affine
models proposed in Duffie and Kan (1996).

To begin with, we consider the no-arbitrage relationship between pricing
kernels

MR(t) =MN(t)I(t)

This implies, that in a no-arbitrage setting we can model nominal rates and
inflation, and then infer real rates. We thus model observable quantities,
and by using this approach we follow D’Amico, Kim, and Wei (2008). We
therefore assume that the model is driven by four latent factors, and satisfies
the following relationships:

n(t) =δ0 + δ′XX(t)

π(t) =γ0 + γ′XX(t) + γY Y (t)

dX(t) =−KXX(t)dt+ dWQ
X (t)

dY (t) =−KY Y (t)dt+ dWQ
Y (t)

dI(t)

I(t)
=π(t)dt+ ηdZQ(t)

where n(t) is the instantaneous nominal rate, π(t) is the instantaneous
expected inflation, X is a 3-vector of latent factors driving the yield curve
and inflation and Y is a scalar latent factor which only enters into inflation,
cf. the regressions above. Finally I is the CPI, which accumulates equal to
the expected inflation and a component which is independent of the yield
curve, the Wiener process Z. The latter noise term is motivated by the fact
that inflation is affected by factors not spanned by the nominal yield curve
(and possibly inflation swaps), as argued in Kim (2007). To satisfy the
identification constraints in Dai and Singleton (2002), KX has zeros above
the diagonal and δ0, δX and γY have to be positive.10

10We have also estimated a model where the CPI has explicit dependence on the
Wiener process W . Our results are not affected by not including this dependence.
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Nominal yields and inflation swap rates

As the model draws on the existing literature on affine term structure mod-
els, the nominal zero-coupon bond (henceforth nominal ZCB) price can be
found using results from Duffie and Kan (1996), i.e. that ZCB prices are an
exponentially affine function of the states:

pn(t, T ) = exp (An(t, T ) +Bn(t, T )
′X(t))

where An(t, T ) and Bn(t, T ) solve ordinary differential equations (hence-
forth ODEs).11

Swap rates can then by calculated by using the standard expression for an
interest swap rate:

Sn(t, T ) =
1− pn(t, T )∑T

Tk=t+1 Δipn(t, Tk)

where Δi is the tenor between two payment dates and is approximately
equal to one (depending on day count convention).

Here we use the methodology of Jarrow and Yildirim (2003) to derive the
price of a real ZCB in our model. The result is that the real ZCB also
is exponentially affine in the state variables (see Appendix 3.8 for the full
derivation):

pr(t, T ) = exp (Ar(t, T ) +Br(t, T )
′X(t) + Cr(t, T )Y (t))

where Ar(t, T ) and Br(t, T ) solve ODEs.

However, real bonds are not traded in the market, making a direct applica-
tion of the pricing formula impossible. One way around this problem is to
estimate the real curve using inflation protected bonds as in Ejsing, Gar-
cia, and Werner (2007). Here we use inflation swap rates. One advantage
is that inflation swap rates are quoted in the market, and no estimation
methodology has to be used to estimate the real yields. The application
of inflation swap rates, follows from Brigo and Mercurio (2006), who show
that the zero-coupon Inflation Indexed Swap rate (henceforth ZCIIS rate)
can be expressed through nominal and real bonds:

ZCIIS(t, t+ τ) =

(
pr(t, t+ τ)

pn(t, t+ τ)

)1/τ

− 1

=e([Ar(t,t+τ)−An(t,t+τ)]+[Br(t,t+τ)−Bn(t,t+τ)]′X(t)+Cr(t,t+τ)Y (t)) 1

τ − 1

11We have omitted the actual ODEs in the main text, they can however be found in
Appendix 3.8.



101 ESSAY 3

Risk premia: Including surveys

The ultimate purpose of this paper is to estimate inflation risk premia. To
identify the premia we need to establish a link between the risk neutral and
the real world probability measure. This is established by the (nominal)
stochastic discount factor:

dMN(t)

MN(t)
= −n(t)dt− ΛX(t)

′dW P
X (t)− ΛY (t)dW

P
Y (t)

The first two terms of the SDE are the same as in a regular nominal yields
models, however the last term relates to inflation risk premia. Obviously
the term does not affect the nominal term premia; however, it will affect
inflation indexed yields, thus inducing an inflation risk premia.12

Furthermore, the no-arbitrage relationship and the model dynamics imply
that the real stochastic discount factor evolves according to the SDE

dMR(t)

MN(t)
=− r(t)dt− ΛX(t)

′dW P
X (t)− ΛY (t)

′dW P
Y (t) + ηdZP (t)

where

r(t) = n(t)− π(t)

One thing is evident - we can identify the pure term premia ΛX(t) from
nominal yields, however the inflation risk premia, ΛY (t), requires inflation
linked products. Furthermore, to make the model applicable in practice,
we need to assume a form for the market price of risk processes, ΛX(t) and
ΛY (t) Here we apply the essentially affine risk premia proposed in Duffee
(2002). One obvious advantage is that the state variables stay affine under
both the real world measure P and the risk neutral measure Q. Thus the
risk premia will be given by

ΛX(t) =λ0X + λXXX(t) + λXY Y (t)

ΛY (t) =λ0Y + λ′Y XX(t) + λY Y Y (t)

where λ0X is a 3-vector, λXX is a 3× 3 matrix, λXY is a 3-vector, λ0Y is a
scalar, λY X is a 3-vector and λY Y is a scalar.

With this specification the factors evolve as

dX(t) = (λ0X + (λXX −KX)X(t) + λXY Y (t)) dt+ dW P
X (t)

dY (t) = (λ0Y + λ′Y XX(t) + (λY Y −KY )Y (t)) dt+ dW P
Y (t)

12We have tried to include an additional risk factor related to the last Wiener process
Z. The results do not change when using this specification, thus we prefer the more
parsimonious specification given above.
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To identify risk premia, we could just use time series of CPI and inflation
swaps, however this might lead to a weak identification of the dynamics.
As a consequence, a number of papers (see Ang, Bekaert, and Wei (2007),
Ang, Bekaert, and Wei (2008), D’Amico, Kim, and Wei (2008) and Garcia
and Werner (2010)) have identified that using surveys improves inflation
forecasts and model performance.

One advantage of maintaining the affine structure of the CPI under the real
world measure (as specified above), is that the expectation of the CPI is
exponentially affine (here τ = 0, 1, 4):

EP
t

[
I(t+ τ + 1)

I(t+ τ)

]
= exp (As(•) +Bs(•)′X(t) + Cs(•)′Y (t))

where As(•) = As(t, t + τ, t + τ + 1), Bs(•) = Bs(t, t + τ, t + τ + 1) and
Cs(•) = Cs(t, t+ τ, t+ τ + 1) solve ODEs.

Using this result, the time t survey expectation of the year-on-year inflation
with maturity τ can then be expressed as

S(t, t+ τ) =EP
t

[
I(t+ τ + 1)

I(t+ τ)

]
− 1

= exp (As(•) +Bs(•)′X(t) + Cs(•)′Y (t))− 1

Finally surveys may be biased estimators of inflation. We resolve this issue
by incorporating a constant in the measurement of each survey maturity:

S(t, t+ τ) =ατ + (exp (As(•) +Bs(•)′X(t) + Cs(•)′Y (t))− 1)

3.5 Model Estimation

In this paper we adopt a Bayesian approach. Admittedly Bayesian methods
are more computationally cumbersome than for instance Quasi Maximum
Likelihood methods, however an estimation based on Bayesian methods
allows for direct draws of the posterior distribution, which will indeed be
useful in terms of interpreting the inflation risk premia. In this section
we will describe the notation used in the estimation, the specification of
conditional distributions and the implemented hybrid MCMC algorithm
used. A survey article on MCMC is Johannes and Polson (2003), where
textbook treatments can be found in Gamerman and Lopes (2006) and
Robert and Casella (2004). Our approach is also inspired by Feldhütter
(2008).
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Notation

In this paper we observe nominal swap rates, inflation swap rates, surveys
and the CPI. Let us denote the observed nominal swap rates at time t by
Rn

t = (Rn
1,t, . . . , R

n
N,t)

′ and let the observed inflation swap rates at time t be
given by Rk

t = (Rk
1,t, . . . , R

k
K,t)

′. Similarly we denote the observed survey
forecast at time t by Y s

t = (Rs
1,t, . . . , R

s
S,t)

′. Finally the log-CPI at time t is
denoted by log It, and the change between two publications of the CPI at
time t−k and t is given by Δ log It. Since not all observations occur at each
time point we let TN be the set of times where nominal yields are observed,
we let TK be the set of times where inflation swap rates are observed, we
let TS be the set of times where surveys are observed and finally we let
TI be the set of times where the CPI is observed. The entire collection of
observations is denoted by R.

With regard to parameters, we denote the risk neutral parameters of the
nominal interest-rate model and the risk neutral factor dynamics (δ0, δX ,
KX , KY ) by ΘQ and the risk premia parameters (all λ’s) are denoted by ΘP .
The Risk neutral inflation process and the inflation variance parameters
(γ, γX , γX , η) are denoted by Θπ. Finally measurement bias and errors are
given by σn, σk, σs and α. The entire collection of parameters is given as
Θ = (ΘQ,ΘP , Θπ, σn, σk, σs, α)

′.

Estimation using MCMC

At time t ∈ TN we observe N nominal swap rates, which are stacked in the
N -Vector Rn

t . We assume that the yields are observed with measurement
errors:

Rn
t = Sn(t, T ) + εn,t

where Sn(t, T ) is the nominal swap rate. Furthermore, we assume that the
measurement errors are normally distributed with common variance

εn,t ∼ N
(
0, σ2

nIN
)

Similarly at time t ∈ TK we observe K inflation swap rates, which also are
stacked in a K-Vector. Again these observations are also observed with
errors:

Rk
t = e([Ar(t,t+τ)−An(t,t+τ)]+[Br(t,t+τ)−Bn(t,t+τ)]′Xt+Cr(t,t+τ)Yt)

1

τ − 1 + εk,t

As above we assume that the measurement errors are normally distributed
with common variance

εk,t ∼ N
(
0, σ2

kIK
)
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At times t ∈ TS we observe S survey expectations, which are stacked in
the S-vector Rs

t . The surveys are also observed with a measurement error
which have a common variance:

Rs
t =ατ +

(
eAs(t,t+τ,t+τ+1)+Bs(t,t+τ,t+τ+1)′Xt+Cs(t,t+τ,t+τ+1)′Yt − 1

)
+ εs,t

εs,t ∼N
(
0, σ2

sIS
)

Finally the CPI is observed as log-CPI and is assumed to be observed
without error.

When estimating the model we are interested in sampling from the target
distribution of parameters and state variables, p (Θ, X, Y |R). To sample
from this distribution the Hammersley-Clifford theorem (Hammersley and
Clifford (1974) and Besag (1974)) implies that this can be done by sampling
from the complete conditionals

p
(
ΘQ|Θ\Q, X, Y,R

)
...

p (X, Y |Θ, R)
Thus MCMC handles the sampling from the complicated target distribu-
tion p (Θ, X|Y ), by sampling from the simpler conditional distributions.
More specifically this is handled by sampling in cycles from the conditional
distributions. If one can sample directly from the conditional distribution,
the resulting algorithm is called a Gibbs sampler (see Geman and Geman
(1984)). If it is not possible to sample from this distribution one can sam-
ple using the Metropolis-Hastings algorithm (see Metropolis, Rosenbluth,
Rosenbluth, Teller, and E. (1953)). In this paper we use a combination of
the two (a so-called hybrid MCMC algorithm) since not all the conditional
distributions are known. More precisely we have the following MCMC al-
gorithm:

p (X, Y |Θ, R) ∼ Metropolis-Hastings

p
(
ΘQ|Θ\Q, X, Y,R

)
∼ Metropolis-Hastings

p
(
ΘP |Θ\P , X, Y,R

)
∼ Metropolis-Hastings

p
(
Θπ|Θ\π, X, Y,R

)
∼ Metropolis-Hastings

p
(
σn, σk, σs|Θ\σ, X, Y

)
∼ Inverse Gamma

p
(
α|Θ\α, X, Y

)
∼ Normal

It should be noted that nominal swap rates and inflation swaps depend on
Q-parameters and surveys depend on P -parameters. This makes the esti-
mation slightly harder, as both P and Q-parameters depend non-linearly on
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the states, through the pricing functions A,B and C. Thus the estimation
of P -parameters has to be done by Metropolis-Hastings sampling, rather
than Gibbs sampling, which would normally be the case when estimating
the P -parameters in a model of the nominal term structure.

A more precise description of the algorithm and the conditional distribu-
tions is found in Appendix 3.9. Furthermore, we block sample the entire
history of each state, and for each draw of parameters, we perform 10 state
draws. This improves the convergence of the Markov Chain compared to
univariate single state sampling.

The Markov chain is run for 10 million simulations13, where the standard
errors of the Random Walk Metropolis-Hasting algorithms are calibrated
to yield acceptance probabilities between 10 and 40 pct. We successively
remove insignificant parameters, such that the reported model is the mini-
mal model required to fit the data. Finally, we save each 1000th draw and
use an additional 1 million simulations of the chain, leaving 1000 draws for
inference.

3.6 Empirical results

Parameter estimates and model fit

In this section we consider the parameter estimates and model fit.

Table 3.3 shows the model fit, as measured by root mean squared errors
(RMSEs). We see that the fit to data is good - nominal yields have RMSEs
of around 2 basis points, and surveys and inflation swaps are around 5-9
basis points, with the 1 year inflation swap rate, however, having a RMSE
of 12 basis points. Given our data we find the model fit to be satisfactory
(e.g. the ECB SPF is reported with a precision of 0.1 percent).

Table 3.4 presents the parameter estimates from the MCMC estimation.
Parameter estimates are based on the mean of the MCMC samples, where
confidence bands present the 2.5 % and 97.5 % quantiles of the MCMC
samples. One interesting finding is that the vector λXY is significant, which
implies that the factor specific to inflation swaps can help in explaining the
dynamics of nominal yields.14

13The choice of 10 million simulations is somewhat arbitrary. It it sufficiently high to
ensure convergence of the Markov chain without having to run more simulations.

14This is also found in Christensen, Lopez, and Rudebusch (2008). It would be
interesting to explore if this additional factor can improve forecasts of nominal yields,
this however is outside the scope of this paper.
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Swap rates Inflation swaps Surveys

1 year 2.3726 12.3711 8.7507
( 2.2381 , 2.5162 ) ( 11.764 , 12.9555 ) ( 7.8122 , 9.8146 )

2 years 2.7567 6.4908 6.8518
( 2.6583 , 2.8582 ) ( 6.0717 , 6.9253 ) ( 6.2207 , 7.6378 )

3 years 1.8743 6.5815 -
( 1.774 , 1.9846 ) ( 6.2003 , 6.9597 )

5 years 2.2179 7.5487 4.9447
( 2.1306 , 2.3113 ) ( 7.2932 , 7.8174 ) ( 4.6308 , 5.716 )

7 years 2.0004 8.375 -
( 1.9112 , 2.0904 ) ( 8.18 , 8.5885 )

10 years 1.7131 9.0494 -
( 1.6191 , 1.8038 ) ( 8.8674 , 9.234 )

15 years 2.5488 8.4802 -
( 2.4427 , 2.657 ) ( 8.3158 , 8.6563 )

Table 3.3: Root Mean Squared Errors. The RMSEs are measured in
basis points and are based on the mean of the MCMC samples. 95 pct.
confidence intervals based on MCMC samples are reported in brackets.

Rather than directly interpreting on all the parameters, we consider the
estimated factor loadings and filtered factors. Factor loadings based on the
estimated parameters are given in Figure 3.5 and the filtered states are
given in Figure 3.6.

The factor loadings for the nominal yields imply that factor 2 and 3 can be
interpreted as steep and flat slope factors, respectively. The first factor has
the interpretation of a curvature factor. Overall this seems consistent with
the principal component analysis performed above.

Our inflation specific factor affects the slope of the real yield curve. The
first three factors preserve the same interpretation for real yields, although
with a smaller absolute effect for the slope factor. This also implies that
the curvature of the yield curve has little effect on the BEIRs.

We also plot factor loadings for inflation expectations and inflation swaps,
cf. Figure 3.5. The inflation expectation factor loadings are based on
the expected growth rate of the CPI index.15, and the factor loadings for
inflation swaps are based on a first order Taylor expansion of the inflation

15The Inflation growth rate is given by

1

τ
logEP

t

[
I(t+ τ)

I(t)

]
=

As(•)
τ

+
Bs(•)
τ

′

X(t) +
Cs(•)
τ

Y (t)
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k = 1 k = 2 k = 3

δ0 0.0568 - -
( 0.0564 , 0.0571 )

δX 0.0006 0.0369 0.0283
( 0.0000 , 0.0014 ) ( 0.0355 , 0.0381 ) ( 0.0277 , 0.0288 )

γ0 0.0234 - -
( 0.0233 , 0.0235 )

γX 0.0000 -0.0034 0.0000
- ( -0.0037 , -0.0032 ) -

γY 0.0125 - -
( 0.0113 , 0.0141 )

KX(1, k) 1.1391 - -
( 1.0833 , 1.1974 )

KX(2, k) 0.0903 0.0162 -
( 0.0716 , 0.1193 ) ( 0.0135 , 0.0189 )

KX(3, k) 0.4618 0.5463 0.3279
( 0.4218 , 0.5231 ) ( 0.5143 , 0.568 ) ( 0.3217 , 0.3349 )

KY 0.6609 - -
( 0.6297 , 0.6922 )

η 0.0014 - -
( 0.0013 , 0.0016 )

λ0X(k) 2.2328 0.0000 0.0000
( 1.5514 , 3.1729 ) - -

λ0Y 0.0000 - -
-

λXX(1, k) -1.9732 0.0000 0.5434
( -2.9321 , -1.2027 ) - ( -2.9321 , -1.2027 )

λXX(2, k) 0.0000 -0.9169 -0.462
- ( -1.4661 , -0.4603 ) ( -0.7109 , -0.2387 )

λXX(3, k) 0.0000 0.0000 0.0000
- - -

λXY (k) 1.2213 0.1296 0.727
( 0.2395 , 2.2709 ) ( 0.1296 , 0.1296 ) ( 0.1337 , 1.3399 )

λY X(k) -1.0454 3.9591 1.8344
( -1.5168 , -0.649 ) ( 3.1637 , 4.9191 ) ( 1.4377 , 2.2741 )

λY Y -3.4897 - -
( -4.3312 , -2.8321 )

σ(k) 0.0002 0.0009 0.0007
( 0.0002 , 0.0002 ) ( 0.0008 , 0.0009 ) ( 0.0006 , 0.0008 )

α(k) 0.0000 0.0000 0.0000
( -0.0002 , 0.0002 ) ( -0.0002 , 0.0002 ) ( -0.0002 , 0.0002 )

Table 3.4: Parameter Estimates in no-arbitrage model. Parameter
estimates are based on the means of the MCMC samples. 95 pct. confi-
dence intervals based on MCMC samples are reported in brackets. σ(1) is
the measurement error of nominal yields, σ(2) is the measurement error of
surveys and σ(3) is the measurement error of inflation swaps. Parameters
with no confidence intervals are fixed at the reported value.
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Figure 3.5: Upper left: Factor Loadings for nominal yields. Upper right:
Factor Loadings for real yields. Lower left: Factor Loadings for inflation
expectation. Lower right: Factor Loadings for inflation swaps.

swap quote16

One interesting finding when comparing the factor loadings for inflation
expectations and swaps, is that the factor loading related to the inflation
factor decay much faster for inflation expectations, than for inflation swaps.
This implies that shocks to the inflation factor have a greater effect on long
term inflation swaps than on long term inflation expectations. Thus this
factor is instrumental in modeling inflation risk premia. Another interesting
finding is that the slope factor has a constant effect on all inflation swaps,

16The Taylor expansion gives us

ZCIIS(t, t+ τ) ≈ Ar(•)−An(•)
τ

+
Br(•)−Bn(•)

τ

′

X(t) +
Cr(•)− Cn(•)

τ
Y (t)

which is equivalent to a continuous time Break Even Inflation Rate.
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Figure 3.6: Time series of filtered factors. The filtered estimate is
based on the mean of the MCMC samples.

where the long term effects of the slope factor on inflation expectations are
close to zero.

When considering the filtered factors (Figure 3.6), we see that when com-
paring the factors to Figure 3.2, the flat slope factor (factor 3) is the main
driver of the level of interest-rates, where the steep slope factor (factor 2)
drives slope of the yield curve. When considering the inflation specific fac-
tor it only shows minor variation in the period until 2008, but shows a spike
in the summer of 2008 and again a drop around end-2008. This pattern is
similar to Figure 3.1, and describes the rise in commodity prices during the
summer of 2008 and worries regarding the macro economy post the Lehman
Brothers collapse.

Decomposing nominal yields and inflation
compensation

In this section we consider the estimated inflation risk premia and how
nominal yields and inflation compensation can be decomposed into real
yields, inflation expectations, inflation risk premia and convexity terms.
Explaining the inflation risk premia as a function of macro economic and
financial factors is postponed until section 3.6.

First we show in Appendix 3.8, that the break even inflation rate (BEIR =
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Figure 3.7: Inflation risk premia. The solid line represents the 1 year in-
flation risk premia and the 10 year inflation risk premia. 95 pct. confidence
intervals based on MCMC samples are reported as dashed lines.

yn(t, T )− yr(t, T )) can be decomposed as

BEIR =
1

T − t

∫ T

t

(
γ0 + γX

′EP
t [X(s)]

)
ds︸ ︷︷ ︸

Inflation expectations

+
1

2

1

T − t

∫ T

t

(Br(s, T )
′Br(s, T )−Bn(s, T )

′Bn(s, T )) ds︸ ︷︷ ︸
Convexity correction

+
1

T − t

∫ T

t

[
(Bn(s, T )−Br(s, T ))

′
(
λ0 + λXE

P
t [X(s)]

)]
ds︸ ︷︷ ︸

Inflation risk premia

The expression for the inflation expectation is simply the average integrated
(spot-)inflation over the considered period, and the inflation risk premia can
be described as

IRP (t, T ) =
1

T − t

∫ T

t

[
(Bn(s, T )−Br(s, T ))

′︸ ︷︷ ︸
Amount of risk

(
λ0 + λXE

P
t [X(s)]

)︸ ︷︷ ︸
Market price of risk

]
ds

which implies that the risk premia is equal to the market price of risk taken
in a specific maturity segment times the amount of risk taken in the specific
maturity segment.

Figure 3.7 shows estimated inflation risk premia along with 95 percent con-
fidence bands based on MCMC samples. Considering the 1 year inflation
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risk premia, we see some degree of variation, with risk premia fluctuating
between -146 and 68 basis points. The smallest risk premia is in end-2008,
indicating that the market was pricing very severe scenarios.17 The highest
inflation risk premia is measured when commodity prices spiked, i.e. during
the summer of 2008. During the remainder of the period the risk premia
shows fluctuations between -5 and 65 basis points, with the 95 percent
confidence band being between 15 and 50 basis points wide.18

The 10 year inflation risk premia, also shows a higher level of inflation risk
premia until 2005. The risk premia in this period is between 5 and 81
basis points. After 2005 the risk premia show more fluctuation but is still
between -30 and 45 basis points. The higher risk premia until 2005 reflects
that the nominal term structure was steeper in this period, implying that
part of the nominal term premia was driven by inflation risk premia.

With regard to similarity to other studies our estimated risk premia is very
similar to, if slightly higher than, the ones found in Garcia and Werner
(2010). With respect to the 10 year inflation risk premium, our estimates
are similar to Tristani and Hördahl (2010). The slightly higher inflation risk
premia that we estimate can probably be related to the inflation linked data
used. We use inflation swaps where Garcia and Werner (2010) and Tristani
and Hördahl (2010) use inflation linked bonds. Inflation swaps provide an
easier hedge than inflation linked bonds given the simpler nature of the
swaps. This implies a convenience premia that could explain the slight
differences between our estimates and the ones found in Garcia and Werner
(2010) and Tristani and Hördahl (2010).

Figure 3.8 shows the decomposition of the nominal yield into real yield,
inflation expectation, inflation risk premia and convexity. It is evident that
the main components in the variation of nominal yields are variations in
real yields and inflation risk premia. Real yields account for the majority
of the varition. When considering inflation expectations we see that they
are fairly constant.

Table 3.5 reports average levels for the decomposition of nominal yields,
along with a variance decomposition. Table 3.6 shows a decomposition of
the inflation compensation.

Table 3.5 shows that on average there is an upward sloping term structure
in both nominal and real yields, as well as inflation expectations and risk

17Part of this drop could also be related to liquidity reasons, however as mentioned
in the introduction, inflation swaps were less affected than linkers in this period.

18When considering the period from 1999 to mid-2004, where inflation swaps are not
available the typical width of the confidence bands are 50 basis points, whereas from
mid-2004 and ahead the width is around 15 basis points.
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Figure 3.8: Decomposition of nominal yields. The figure decomposes
the 1 year nominal yield (left) and 10 year nominal yield (right) into real
yield, inflation expectation, inflation risk premia and convexity.
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Figure 3.9: Decomposition of inflation compensation (break even
inflation rate). The figure decomposes the 1 year inflation compensation
(left) and 10 year inflation compensation (right) into inflation expectation,
inflation risk premia and convexity.
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premia. The inflation expectation shows the least slope with a one year
inflation expectation of 1.72 percent and a 10 year expectation of 1.85 per-
cent. We find that average inflation risk premia are moderate - between
17 and 43 basis points, however the mean might not be representative of
the inflation risk premia in a normal scenario, due to a large drop in risk
premia in end-2008, cf. Figure 3.7 and 3.8.

To assess the drivers of the variation of nominal yields we consider the
unconditional variance decompositions used in for instance Ang, Bekaert,
and Wei (2008) and Garcia and Werner (2010). The variance decomposition
is given by19

1 =
Cov(Δyn,Δyr)

Var(Δyn)
+

Cov(Δyn,ΔIE)

Var(Δyn)
+

Cov(Δyn,ΔIRP )

Var(Δyn)

where Δyn is the change in the nominal yield, Δyr is the change in the
real yield, ΔIE is the change in the inflation expectation and ΔIRP is the
change in the inflation risk premia.

The variance decomposition of nominal yields shows that short term vari-
ation is mainly driven by variation in real yields (81 percent) and to a
lesser degree inflation expectations (20 percent). Changes in inflation risk
premia in the short run appear to be more or less uncorrelated to changes
in nominal yields. That changes in inflation risk premia are uncorrelated
with changes in nominal interest-rates, could be explained by the fact that
nominal swap markets and inflation swap markets are not fully integrated,
i.e. that inflation traders react to all news on inflation, where swap traders
do not. For nominal yields with a longer time to maturity (e.g. 10 years),
inflation expectations are very anchored and do not add to the variation of
nominal yields. Instead the variation is driven by real yields (74 percent)
and inflation risk premia (26 percent).

In terms of inflation risk premia and variance decompositions, we are not
only interested in nominal yields. Another interesting variable is the infla-
tion compensation, i.e. the sum of the inflation expectation and risk premia,
which is equivalent to a BEIR or an inflation swap rate. We see that the
main driver of variation of inflation compensation is the inflation risk pre-
mia. For short term inflation compensation (1 year) the variation in risk
premia corresponds to 66 percent, where for the long term inflation com-
pensation (10 years) it corresponds to almost all variation in the inflation
compensation (95 percent), again confirming an anchoring of inflation ex-
pectations in the Euro area.

19The decomposition for the inflation compensation is performed in an analogous
fashion.
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Comparing to Garcia and Werner (2010), who also report variance decom-
positions for Euro area inflation compensation, we see that the degree of
variation generated by inflation risk premia is higher in our analysis. We
consider two factors to be the main drivers. First, we include a longer sam-
ple period. The sample period in Garcia and Werner (2010) includes data
until end-2006, and the period from 2007 is especially volatile compared to
the period before 2007. Secondly, Garcia and Werner (2010) estimate their
model using real yields extracted from inflation linked bonds, whereas we
use inflation swap quotes directly, which could induce more noise in our
measure of inflation compensation.

Surveys and model output

Although a number of papers (see Ang, Bekaert, and Wei (2007), Ang,
Bekaert, and Wei (2008), D’Amico, Kim, and Wei (2008) and Garcia and
Werner (2010)) have identified that using surveys improves inflation fore-
casts and model performance, to our knowledge no papers have assessed
the effect on the identification of inflation risk premia.

To assess this issue, we re-estimate the model without using surveys. We
do not report parameter estimates, but as expected more parameters are
insignificant and overall the filtered states are similar to ones given in Figure
3.6.20

As our main purpose is to estimate inflation risk premia, the exclusion of
surveys could have a profound effect on the estimated risk premia. To see
this consider the inflation risk premia

IRP (t, T ) =
1

T − t

∫ T

t

[
(Bn(s, T )−Br(s, T ))

′︸ ︷︷ ︸
Amount of risk

(
λ0 + λXE

P
t [X(s)]

)︸ ︷︷ ︸
Market price of risk

]
ds

The first term (the amount of risk taken) is identified directly from nominal
swap rates and inflation swaps and is thus identified very precisely. The sec-
ond term (the market price of risk) is determined from the dynamics of the
factors, i.e. the P -dynamics. Since surveys are based on a P -expectation,
including surveys would improve the identification of the market price of
risk.

Figure 3.10 shows the estimated risk premia arising from the two estima-
tions. The left figure, shows the 1 year inflation risk premia. On average
the inflation risk premia is of the same size, albeit the confidence bands are

20Parameter estimates and derived variables are available upon request.
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Figure 3.10: Comparison of inflation risk premia from different es-
timations. The figures show the 1 year inflation risk premia (left) and the
10 year inflation risk premia (right) from an estimation with and without
surveys. 95 pct. confidence intervals based on MCMC samples are reported
as dashed lines.

wider in the estimation with out surveys. The difference in the width of
the confidence bands is around 25 basis points.

The right figure shows the estimated 10 year inflation risk premia. The in-
flation risk premia from the estimation without surveys is approximately at
the same level from 2005 and onwards (i.e. where inflation swaps are avail-
able). Before 2005 the inflation risk premia from the estimation without
surveys is approximately 20-30 basis points lower than in the estimation
including surveys. Most interesting is the difference in the width of the
confidence bands, which is around 35 basis points.

One conclusion from Figure 3.10 is that studies that report risk premia
should ideally report confidence bands as well. In the case of inflation risk
premia for the Euro area, the inclusion of surveys massively improve the
identification of long term risk premia.21

21For instance Tristani and Hördahl (2007) estimate their model without surveys and
report time series for inflation risk premia which do not look like the one found in our
study and the study by Garcia and Werner (2010). Furthermore, they conclude that
the inflation risk premia are insignificant. In a more recent estimation of their model,
Tristani and Hördahl (2010) include surveys and find inflation risk premia similar to our
paper.
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Explaining inflation risk premia

Although the size and dynamics of inflation risk premia is an interesting
issue on its own, relating the inflation risk premia to fundamentals or agents
beliefs are important for understanding the behavior of inflation risk premia.

Here we focus on the beliefs of the agents in the economy, as measured
by the ECB SPF. Beside asking the participants about the expected out-
come of inflation, GDP and unemployment, the ECB SPF also asks the
participants to put probabilities on given outcomes of inflation, GDP and
unemployment, thus giving more detailed information on the belief of the
participants.

Using these probabilities for inflation and GDP, we construct the mean,
standard deviation and skewness of the distributions as perceived by the
participants of the survey. This approach is similar to Trolle and Schwartz
(2010), who relate moments of swap distributions to survey moments. By
using the survey moments, we restrict ourselves to quarterly observations,
giving 44 observations for the 1 year inflation risk premia, and 38 for the 5
year inflation risk premia.22

To account for other factors, which could potentially be important drivers
of inflation risk premia, we consider controls for overall market sentiment
and volatility as well as overall liquidity in the market.

As a proxy for market sentiment and volatility we use the VSTOXX volatil-
ity index, which gives a model free volatility estimate, based on options
written on the Eurostoxx 50 index.

To account for liquidity we use the spread between the 3 month Overnight
Index Swap (OIS) rate and the 3 month German Treasury (Bubill) yield.
Since OIS rate is an expected rate over the life of the contract, and is fully
collateralized, it is virtually free of counterparty risk.23 This makes the OIS-
Bubill spread a very good liquidity proxy, see also Krishnamurthy (2010).
Typically the spread is quite low, around 20 basis points, but around the
collapse of Lehman Brothers, it spiked to around 150 basis points.

Table 3.7 reports the regressions of the survey measures and controls on
the estimated inflation risk premia. For the sake of brevity, we do not
show regressions relating GDP standard deviation, GDP skew, inflation

22The difference in the number of observations is due to the fact, that the ECB SPF
did only ask participants for 5 year forecasts on an annual basis in the first two years of
the survey.

23The OIS contract is based on an unsecured overnight interest-rate, which implies
that the OIS rate still has a credit risk element. The credit element is however smaller
than in a 3 month LIBOR contract.
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1 year Inflation Risk Premia

Constant 4.486 -5.4823 19.4416 7.6386 14.2806 4.3771
( 0.3195 ) ( -0.2669 ) ( 3.6939 ) ( 0.8277 ) ( 1.4838 ) ( 0.2706 )

GDP Expectation 8.5782 8.0259 2.934 1.2789
( 1.1714 ) ( 0.95 ) ( 0.5581 ) ( 0.2124 )

Inflation Skewness 142.8496 152.6385 124.8086 146.2607
( 2.464 ) ( 2.7196 ) ( 2.735 ) ( 2.7253 )

VSTOXX 0.6009 0.6765 0.7058
( 1.7738 ) ( 2.2805 ) ( 2.2372 )

Liquidity -0.2868 -0.3547 -0.3403
( -1.7515 ) ( -3.8313 ) ( -3.1035 )

R2 0.1179 0.242 0.2405 0.4185 0.2505 0.42

# Observations 44 44 44 44 44 44

5 year Inflation Risk Premia

Constant -35.1787 -38.2436 7.1797 1.8175 -36.326 -42.2722
( -3.0597 ) ( -3.861 ) ( 4.6748 ) ( 0.5763 ) ( -2.957 ) ( -3.4237 )

GDP Expectation 19.0485 18.7042 19.2796 20.2611
( 3.5077 ) ( 5.0865 ) ( 3.5499 ) ( 4.3958 )

Inflation Skewness -33.2488 -30.4797 -34.6455 -37.8574
( -0.8941 ) ( -0.9013 ) ( -1.0074 ) ( -1.1608 )

VSTOXX 0.1327 0.2221 0.1124
( 0.9636 ) ( 1.5352 ) ( 0.9294 )

Liquidity 0.02 -0.024 0.0409
( 0.9722 ) ( -1.2357 ) ( 1.7158 )

R2 0.2773 0.3265 0.0778 0.1796 0.3617 0.4221

# Observations 38 38 38 38 38 38

Table 3.7: Regression of survey measures on inflation risk premia.
Each table reports an OLS regression of surveys measures (GDP expec-
tation and Inflation skewness) along with controls for investor sentiment
(VSTOXX) and overall market liquidity. Newey-West t-statistics are given
in brackets.

expectation and inflation standard deviation to inflation risk premia, since
these variables were all insignificant in our regressions.24

First we consider the 1 year inflation risk premia. Here we see very little
evidence that GDP expectations drive inflation risk premia. On the other
hand our inflation skewness measure is significant in our regressions, even
when controlling for overall market sentiment and liquidity (t = 2.72). Our
liquidity measure is also very significant (t = −3.83), and when included it
improves the R2 significantly. This implies that the changes in short term
inflation risk premia in end-2008 have a significant liquidity component.

24Results from these regressions are available upon request.
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That inflation skewness is significant is similar to Garcia and Werner (2010),
who use the skewness measure from Garcia and Manzanares (2007). Garcia
and Werner (2010) find that the inflation skewness from the 5 year survey
is significant when regressed on their estimate of the 5 year inflation risk
premia.25

Considering the 5 year inflation risk premia we see that the measure of
inflation skewness is insignificant. This is not consistent with the finding in
Garcia and Werner (2010). However, we believe that part of the explanation
could be due to the way the inflation skewness measure is constructed. We
use the survey data directly, whereas the measure constructed by Garcia
and Manzanares (2007) assume a skew-normal distribution for the inflation.
The GDP expectation on the other hand is very significant. In the joint
regression with inflation skewness and controls, the t-value is 4.40. For
this longer term inflation risk premia, both liquidity (t = 1.72) and the
VSTOXX index (t = 0.93) are still insignificant.

Overall these results indicate that agents form their decisions on inflation
risk premia based on both inflation skewness and GDP expectations. Short
term inflation risk premia are mostly based on the perceived inflation skew-
ness, as this is the most direct measure of inflation risk. In the short term,
fluctuations in GDP do not materialize into changes in salaries and prices.
Longer periods with high economic growth do on the other hand most likely
translate into price pressures, which would affect longer term inflation risk
premia.

3.7 Conclusion

In this paper we have estimated a joint model for nominal interest-rates,
inflation swaps and inflation expectations. The model is estimated using
Markov Chain Monte Carlo on Euro Area data, i.e. nominal swap rates,
inflation swap rates, Euro area HICP inflation and surveys.

In terms of our estimated inflation risk premia, we obtain estimates of
average inflation risk premia that are increasing in time to maturity, with
1 year risk premia of 18 basis points and 10 year risk premia of 43 basis
points. The risk premia show significant fluctuations with 1 year inflation
risk premia being between -156 and 68 basis points, with the lowest value
being in the time after the collapse of Lehman Brothers. Longer term

25Garcia and Werner (2010) do not include information on GDP forecasts and market
liquidity in their regressions. In terms of GDP information, they only include the current
output gap, i.e. no forward looking information.
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inflation risk premia (10 year) show less variation, with inflation risk premia
between -30 and 81 basis points.

By using draws from Markov Chain Monte Carlo we examined the effect of
including surveys, and found that it improves the identification of inflation
expectations and thus inflation risk premia. In fact inflation risk premia
are mostly statistically insignificant when surveys are excluded, where they
are statistically significant when surveys are included to enhance the iden-
tification of parameters.

Finally, we relate the estimated risk premia to agents beliefs on the outcome
of the economy. We found that short term inflation risk premia are mainly
driven by the skewness of the distribution of inflation (as measured by the
ECB survey of professional forecasters), where longer term risk premia are
driven by GDP expectations. This link between GDP and inflation risk
premia is interesting, as inflation swaps could possibly give better real time
information on GDP expectations - this is however outside the scope of this
paper.
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3.8 Appendix: Derivation of nominal ZCB

prices, real ZCB prices and Inflation

expectations

In this section we derive the different ODEs for pricing and inflation expec-
tation. For simplicity we assume that the both the nominal factors and the
inflation factor are collected in one factor X(t). The parameter restrictions
to obtain the model structure given in the main text are easily derived.

Furthermore the factor dynamics under Q and P can be written as

dX(t) =−KX(t)dt+ dWQ(t)

dX(t) = (λ0 + (λX −K)X(t)) dt+ dW P (t)

Nominal ZCB prices

The prices of nominal ZCB prices follow directly from Duffie and Kan
(1996), i.e. that ZCB prices are an exponentially affine function of the states:

pn(t, T ) = exp (An(t, T ) +Bn(t, T )
′X(t))

where An(t, T ) and Bn(t, T ) solve ordinary differential equations (hence-
forth ODEs)

dAn(t, T )

dt
=− 1

2
Bn(t, T )

′Bn(t, T ) + δ0

dBn(t, T )

dt
=K ′Bn(t, T ) + δX

where An(T, T ) = 0 and Bn(T, T ) = 0.

Finally the system of ODEs has an explicit solution, where Bn(t, T ) is given
by

Bn(t, T ) = (I − exp (−K ′(T − t))) (K ′)−1δX

and where An(t, T ) is a rather lengthy expression containing integrals of
matrix exponentials.

Real ZCB prices

To derive the real ZCB price we use that the expected rate of return from
an inflation protected ZCB will be the nominal risk free rate, when the asset
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is considered under the risk neutral martingale measure:

EQ
t [d (pr(t, T )I(t))] = n(t)dt

The dynamics of the inflation protected bond is

d (pr(t, T )I(t)) = I(t)dpr(t, T ) + pr(t, T )dI(t) + d[pr(t, T ), I(t)]

Assuming that the real ZCB price is exponentially affine:

pr(t, T ) = exp (Ar(t, T ) +Br(t, T )
′X(t))

Then

EQ
t

[
d (pr(t, T )I(t))

pr(t, T )I(t)

]
=

(
dAr(t, T )

dt
+
dBr(t, T )

dt
X(t)

)
dt−

Br(t, T )
′KX(t)dt+

1

2
Br(t, T )

′Br(t, T )dt+ π(t)dt = n(t)dt

Such that Ar(t, T ) and Br(t, T ) solve ODEs

dAr(t, T )

dt
=− 1

2
Br(t, T )

′Br(t, T ) + δ0 − γ0

dBr(t, T )

dt
=K ′Br(t, T ) + δX − γX

where Ar(T, T ) = 0 and Br(T, T ) = 0.

Again the explicit solution for Br(t, T ) is given by

Br(t, T ) = (I − exp (−K ′(T − t))) (K ′)−1(δX − γX)

Inflation dynamics

Assume that CPI can be described as

dI(t)

I(t)
= (γ0 + γ′XX(t)) dt+ ηΣ̃(t)dZP (t)

Thus the dynamics of log CPI is given by

d log I(t) =

(
γ0 + γ′XX(t)− 1

2
η2
)
dt+ ηdZ(t)
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Inflation Expectations

In this section we will derive the inflation expectation:

EP
t

[
I(T )

I(t)

]
=EP

t

[
exp

(∫ T

t

d log I(s)

)]

=EP
t

[
exp

(∫ T

t

(
γ0 + γ′XX(s)− 1

2
η2
)
ds

)]
EP

t

[
exp

(∫ T

t

ηdZ(s)

)]

=EP
t

[
exp

(∫ T

t

(γ0 + γ′XX(s)) ds

)]
Using the results from Duffie, Pan, and Singleton (2000) we obtain

Et

[
I(T )

I(t)

]
= exp (As(t, T ) +Bs(t, T )

′X(t))

where AI(t, T ) and BI(t, T ) solve ODEs

dAs(t, T )

dt
=− λ′0Bs(t, T )−

1

2
Bs(t, T )

′Bs(t, T )− γ0

dBs(t, T )

dt
=− (λX −K)′Bs(t, T )− γX

subject to As(T, T ) = 0 and Bs(T, T ) = 0.

The explicit solution for Bs(t, T ) is given by

Bs(t, T ) = (I − exp ((K − λX)
′(T − t))) ((K − λX)

′)−1γX

Forward Inflation Expectations

In this section we will derive the forward inflation expectation:

EP
t

[
I(T1)

I(T0)

]
=EP

t

[
ET0

[
I(T1)

I(T0)

]]
=EP

t [exp (As(T0, T1) +Bs(T0, T1)
′X(t))]

Using the results from Duffie, Pan, and Singleton (2000) we obtain

EP
t

[
I(T1)

I(T0)

]
= exp (As(t, T0, T1) +Bs(t, T0, T1)

′X(t))

where As(t, T0, T1) and Bs(t, T0, T1) solve ODEs

dAs(t, T0, T1)

dt
=− λ′0Bs(t, T0, T1)−

1

2
Bs(t, T0, T1)

′Bs(t, T0, T1)

dBs(t, T0, T1)

dt
=− (λX −K)′Bs(t, T )

subject to As(T0, T0, T1) = As(T0, T1) and Bs(T0, T0, T1) = Bs(T0, T1).
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Decomposition of the Break Even Inflation Rate

We now consider decomposing the Break Even Inflation Rate (BEIR) into
inflation expectations, inflation risk premia and convexity terms.

First the P dynamics of the log-ZCB price can be written as

d log pk(t, T ) =

[
dAk(t, T )

dt
+
dBk(t, T )

′

dt
X(t) +Bk(t, T )

′ (λ0 + (λX −K)X(t))

]
dt

+Bk(t, T )
′dW P (t), k = n, r

Since log(pk(T, T )) = log(pk(t, T )) +
∫ T
t
d log p(s, T ) and pk(T, T ) = 1, we

obtain a decomposition for the nominal yield

yn(t, T ) =
1

T − t

∫ T

t

(
δ0 + δ′XE

P
t [X(s)]

)
ds− 1

2

1

T − t

∫ T

t

Bn(s, T )
′Bn(s, T )ds

+
1

T − t

∫ T

t

Bn(s, T )
′
(
λ0 + λXE

P
t [X(s)]

)
ds

and similarly for the real yield

yr(t, T ) =
1

T − t

∫ T

t

(
(δ0 − γ0) + (δX − γX)

′EP
t [X(s)]

)
ds

− 1

2

1

T − t

∫ T

t

Br(s, T )
′Br(s, T )ds

+
1

T − t

∫ T

t

Br(s, T )
′
(
λ0 + λXE

P
t [X(s)]

)
ds

Thus the break even inflation rate can be written as BEIR = yn(t, T ) −
yr(t, T )

BEIR =
1

T − t

∫ T

t

(
γ0 + γX

′EP
t [X(s)]

)
ds︸ ︷︷ ︸

Inflation expectations

+
1

2

1

T − t

∫ T

t

(Br(s, T )
′Br(s, T )−Bn(s, T )

′Bn(s, T )) ds︸ ︷︷ ︸
Convexity correction

+
1

T − t

∫ T

t

[
(Bn(s, T )−Br(s, T ))

′
(
λ0 + λXE

P
t [X(s)]

)]
ds︸ ︷︷ ︸

Inflation risk premia

where

EP
t [X(T )] = exp (−(K − λX)(T − t))X(t)+

(I − exp (−(K − λX)(T − t))) (K − λX)
−1λ0
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3.9 Appendix: MCMC estimation of the

model

The conditionals p(R•
t |Θ, X, Y )

The conditional of the yield observations can be found to be

p(Rn|Θ, X, Y ) =
∏
t∈TN

p(Rn
t |Θ, X, Y )

∝
∏
t∈TN

(
σ2
n

)−N/2
exp

(
−1

2

1

σ2
n

(ent )
′ (ent )

)

∝
(
σ2
n

)−∑
t∈TN

N/2
exp

(
−1

2

1

σ2
n

∑
t∈TN

(ent )
′ (ent )

)

where

ent = Rn
t − Sn(t, T )

Similarly the conditional of the inflation swap rate observations can be
found to be

p(Rk|Θ, X, Y ) =
∏
t∈TK

p(Rk
t |Θ, X, Y )

∝
∏
t∈TK

(
σ2
k

)−K/2
exp

(
−1

2

1

σ2
k

(
ekt
)′ (

ekt
))

∝
(
σ2
k

)−∑
t∈TK

K/2
exp

(
−1

2

1

σ2
k

∑
t∈TK

(
ekt
)′ (

ekt
))

where

ekt = Rk
t −
(
e([Ar(t,t+τ)−An(t,t+τ)]+[Br(t,t+τ)−Bn(t,t+τ)]′Xt+Cr(t,t+τ)Yt)

1

τ − 1
)

Finally the conditional for the survey observations is given by

p(Rs|Θ, X, Y ) =
∏
t∈TS

p(Rs
t |Θ, X, Y )

∝
∏
t∈TS

(
σ2
s

)−S/2
exp

(
−1

2

1

σ2
s

(est)
′ (est)

)

∝
(
σ2
s

)−∑
t∈TS

S/2
exp

(
−1

2

1

σ2
s

∑
t∈TS

(est)
′ (est )

)



127 ESSAY 3

where

est = Rs
t − ατ −

(
eAs(t,t+τ,t+τ+1)+Bs(t,t+τ,t+τ+1)′Xt+Cs(t,t+τ,t+τ+1)Yt − 1

)

The conditional p(X, Y |Θ, R)
First we collect X and Y in one vector X̂ which has dynamics

dX̂(t) =
(
θP +KP X̂(t)

)
dt+ IdW P (t)

Which by an Euler approximation gives us

X̂t+Δ − X̂t =
(
θP +KP X̂t

)
Δ+

√
Δεt

where εt ∼ N (0, I). This implies

p(Xt, Yt|Θ) ∝ exp

(
−1

2

1

Δ
v′tvt

)

where vt = X̂t+1 − X̂t −
(
θP +KP X̂t

)
Δ.

The conditional for all the state observations are then given by:

p(X, Y |Θ) =
T−1∏
t=0

p(Xt, Yt|Θ)p(X0)p(Y0)

∝ exp

(
−1

2

1

Δ

T−1∑
t=0

v′tvt

)

where we have assumed independent prior for X0 and Y0.

The conditional p(log I|Y,X,Θ)

We assume that (log-) inflation is observed without error. To obtain the
density we use an Euler approximation

Δ log Itk =

tk∑
t=tk−h

(
γ0 + γ′XXt + γY Yt −

1

2
η2
)
Δ+

tk∑
t=tk−h

ηεt,π
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Which implies that

Δ log Itk ∼ N (Mt, Vt)

Mt =

tk∑
t=tk−h

(
γP0 + γP

′

X Xt + γPY Yt −
1

2

(
R′

XRX +R2
Y + η2

))
Δ+ [RX RY ]vt

Vt = Δ

tk∑
t=tk−h

η2

Thus the conditional density will be

p(Δ log I|X,Θ) =
∏
t∈TI

p(Δ log It|X,Θ)

∝
∏
t∈TI

p(Δ log It|X,Θ)

∝
∏
t∈TI

1√
Vt

exp

(
−1

2

1

Vt
(Δ log It −Mt)

2

)

Sampling σn, σk and σs

To sample the measurement errors we use Bayes theorem to obtain

p(σn|R,X, Y,Θ\σn
) ∝ p(R|Θ, X, Y )

Thus we can sample the measurement errors through Gibbs sampling and
obtain Inverse Gamma draws

σ2
n ∼IG

(∑
t∈TN

N

2
+ 1,

1

2

∑
t∈TN

(ent )
′ (ent )

)

σ2
k ∼IG

(∑
t∈TK

K

2
+ 1,

1

2

∑
t∈TK

(
ekt
)′ (

ekt
))

σ2
s ∼IG

(∑
t∈TS

S

2
+ 1,

1

2

∑
t∈TS

(est)
′ (est)

)

Sampling α

To sample the measurement bias we use Bayes theorem to obtain

p(ατ |R,X, Y,Θ\ατ
) ∝ p(Rs,τ |Θ, X, Y )
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Thus we can sample the measurement bias through Gibbs sampling and
obtain Normal draws

ατ ∼N
(
μα, σ

2
α

)
μα =

∑
t∈TS

Rs
t −
(
eAs(t,t+τ,t+τ+1)+Bs(t,t+τ,t+τ+1)′Xt+Cs(t,t+τ,t+τ+1)Yt − 1

)
N

σ2
α =

σ2
s

N

N =
∑
t∈TS

1

Sampling X and Y

To sample the latent states we use a Random-Walk Metropolis Hastings
(RW-MH) algorithm. In this case new states are sampled as

Xm+1 =Xm + εx,m+1

Y m+1 =Y m + εy,m+1

where ε•,m+1 is a zero mean random variable with a variance that needs to
be calibrated. The conditional for the states can be written as

p(X, Y |Θ, R) ∝p(R|X, YΘ)p(X, Y |Θ)

∝p(Rn|X, Y,Θ)p(Rk|X, YΘ)p(Rs|X, Y,Θ)p(Δ log I|X, Y,Θ)p(X, Y |Θ)

And the draw will be accepted with probability

α = max

(
p(R|Xm+1, Y m+1,Θ)p(Xm+1, Y m+1|Θ)

p(R|Xm, Y m,Θ)p(Xm, Y m|Θ)
, 1

)

Sampling ΘQ

To sample the risk neutral parameters in the nominal interest-rate process
and the latent factors, we use a RW-MH algorithm. The conditional is given
by

p(ΘQ|R,X, Y,Θ\Q) ∝p(R|X,TΘ)p(X, Y |Θ)

∝p(Rn|X, Y,Θ)p(Rk|X, Y,Θ)p(Rs|X, Y,Θ)p(X, Y |Θ)

Where the surveys and states enter since that P -parameters are the sum of
risk neutral parameters and risk premia, cf. above.

The draws will be accepted with probability

α = max

(
p(Rn|X, Y,Θm+1)p(Rk|X, Y,Θm+1)p(Rs|X, Y,Θm+1)p(X, Y |Θm+1)

p(Rn|X, Y,Θm)p(Rk|X, Y,Θm)p(Rs|X, Y,Θm)p(X, Y |Θm)
, 1

)
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Sampling ΘP

To sample the risk premia parameters we use a RW-MH algorithm. The
conditional is given by

p(ΘP |R,X, Y,Θ\P ) ∝ p(Rs|X, Y,Θ)p(Δ log I|X, Y,Θ)p(X, Y |Θ)

The draws will be accepted with probability

α = max

(
p(Rs|X, Y,Θm+1)p(Δ log I|X, Y,Θm+1)p(X, Y |Θm+1)

p(Rs|X, Y,Θm)p(Δ log I|X, Y,Θm)p(X, Y |Θm)
, 1

)

Sampling Θπ

To sample the risk premia parameters we use a RW-MH algorithm. The
conditional is given by

p(Θπ|R,X, Y,Θ\π) ∝ p(Rk|X, Y,Θ)p(Rs|X, Y,Θ)p(Δ log I|X, Y,Θ)p(X, Y |Θ)

The draws will be accepted with probability

α = max

(
p(Rk|X, Y,Θm+1)p(Rs|X, Y,Θm+1)p(Δ log I|X, Y,Θm+1)p(X, Y |Θm+1)

p(Rk|X, Y,Θm)p(Rs|X, Y,Θm)p(Δ log I|X, Y,Θm)p(X, Y |Θm)
, 1

)
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Abstract

In this paper we assess the ability of the Affine Nelson-Siegel model-class
with stochastic volatility to match observed distributions of Danish Gov-
ernment bond yields. Based on data from 1987 to 2010 and using a Markov
Chain Monte Carlo estimation approach we estimate 7 different model spec-
ifications and test their ability to forecast yields (both means and variances)
out of sample. We find that models with 3 CIR-factors perform the best
in short term predictions, while models with a combination of CIR and
Gaussian factors perform well on 1 and 5-year horizons. Overall our re-
sults indicate that no single model should be used for risk management,
but rather a suite of models.
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4.1 Introduction

The ability of a risk management model to match observed data is of great
importance. In this setting Value-at-Risk (VaR) is an often used tool to
measure the riskiness of a given portfolio. VaR measures portfolio losses at
a given quantile, e.g. at a 99 percent level. A risk measure used by debt
issuers is Cost-at-Risk (CaR), which measures the cost of issuing bonds at
a given quantile level, see Danmarks Nationalbank (2005).

In this paper we examine the ability of a class of interest-rate models to
capture the time varying distribution of Danish government bond yields,
here measured by means and variances.2 We consider both short-term fore-
casts, i.e. 1 month, and long-term forecasts, i.e. up to 5 years. The long
horizons are motivated by the desire to evaluate the considered models in
the setting of a debt issuer, where debt is issued over long horizons.

We consider the Affine Nelson-Siegel model-class with stochastic volatil-
ity, as introduced in Christensen, Lopez, and Rudebusch (2010).3 In these
models stochastic volatility can be generated by the level, slope or curva-
ture factors (or a combination of these). This could possibly imply very
different results for the predicted means and variances for each of these
models. In Christensen, Lopez, and Rudebusch (2010) the preferred model
is a model where all three factors, i.e. level, slope and curvature, drive
stochastic volatility. This model performs well in describing the monthly
volatility patterns of US treasuries, UK gilts and US swap rates.

On the issue of describing interest-rate volatility Collin-Dufresne, Goldstein,
and Jones (2008) argue that spanned yield curve factors cannot describe the
volatility of yield changes. Instead they argue that at least one additional
factor which does not describe yields should be included to model interest-
rate volatility, socalled Unspanned Stochastic Volatility. On the other hand
Jacobs and Karoui (2009) argue that the results from Collin-Dufresne, Gold-
stein, and Jones (2008) does to some extent depend on the considered data
and sampling period.

In the context of forecasting densities Egorov, Hong, and Li (2006) consider
density forecasts for affine term structure models. They consider a non-
parametric test of the realization of the entire yield curve. They find that
affine models outperform a random walk in describing the joint probability

2In an appendix we also consider density forecasts. The results are overall consistent
with the mean and variance forecasts.

3We also include a 2-factor Cox-Ingersoll-Ross model as this model has similarities
to the preferred affine Nelson-Siegel model, and has previously been used in risk man-
agement, see for instance Danmarks Nationalbank (2005).
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of yields, however they still fail in making satisfactory density forecasts
overall.

As mentioned above, we consider both mean and variance forecasts, as fore-
casting means and variances provide more simple and transparent inference
on model performance, compared to density forecasts such as in Egorov,
Hong, and Li (2006).

In terms of short term forecasts (one month), we find results similar to
Christensen, Lopez, and Rudebusch (2010), i.e. that a model only based on
CIR-factors performs well both in terms of forecasting means and variances.

For long-term forecasts we find a mixed picture, which is to some extent
driven by the considered time period, which shows a downward trend in
interest-rates; and for an extended period in the data sample, the yield curve
was inverted. The preferred model of Christensen, Lopez, and Rudebusch
(2010) tends to produce point forecasts that are too high and volatility fore-
casts that are too low, implying a limitation from only using CIR-factors.
The models based on a combination of CIR and Gaussian factors, and where
the level factor drives stochastic volatility, perform reasonably well in fore-
casting the mean of the distributions, but for very long-horizon forecasts (5
years), the distribution is wide compared to actual data.

The structure of the paper is as follows; section 4.2 describes our data,
section 4.3 describes affine term structure models in general and sections
4.4 and 4.5 descibe the multifactor CIR and affine Nelson-Siegel models.
Section 4.6 describes the model estimation, section 4.7 describes the in-
sample behavior of the models and section 4.8 describes the results on
forecasting out-of-sample. Finally, section 4.9 concludes the paper.

4.2 The Danish Government Bond Term

Structure

As mentioned above we are interested in assessing the performance of the
model candidates with a view towards a risk management setting (Value-
at-Risk). We focus on the Danish government bond term structure.

Our data consist of monthly zero-coupon yields, sampled at the first trading
day of the month. The yields are extracted from the government bonds
traded in the market, using an extended Nelson-Siegel approach. We have
yields for the 3 month, 2 year, 5 year, 10 year and 15 year maturity, and
time series of the yields are presented in Figure 4.1.4

4Recently, a 30 year bond has been issued. however, we do not use yields of this
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Figure 4.1: Time series of Danish government zero-coupon bond
yields. The data sample is January 1987 to May 2010. Yields are extracted
from Danish Government bonds using an extended Nelson-Siegel approach.

Typically the term structure is upward sloping, with a general downward
trend in the interest-rate level over the period. We also see significant
downward sloping term structures during the ERM crisis in 1992.

Table 4.1 provides descriptive statistics for the yield curve data. Again we
see that the average term structure is upward sloping, with an unconditional
standard deviation between 2.5 and 3.1 percent. With regard to monthly
changes in yields, we see that the standard deviation is between 28 and 57
basis points and that all changes in yields show excess kurtosis, with the 3
month yield being the most significant.

Researchers have typically found that three factors are sufficient to model
the term structure of interest-rates (see Litterman and Scheinkman (1991)).
The three factors are determined through use of a Principal Component
Analysis (henceforth PCA), which we also perform on our data. We perform
the PCA on both levels and changes in yields, to control for the fact that
yields typically are nearly-integrated processes.

The results from the PCA are found in Table 4.1 and Figure 4.2. We confirm
the typical pattern, i.e. that the first factor accounts for the majority of the
variation in the data. When the PCA is performed on the levels the first

maturity in our analysis due to a very short time series of 30 year yields.
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Figure 4.2: Left: Factor loadings on yields on the first three principal
components. Solid lines are factor loadings from the PCA performed on
levels and dashed lines are factor loadings from the PCA performed on
changes. Right: Time series of the first three principal components (levels).

factor accounts for almost 95 percent of the variation in data, where the
second and third factor account for a little less than 5 and 1 percent of the
variation. When the PCA is performed on changes in yields, the factors
account for 67, 19 and 10 percent, respectively, which emphasizes the value
of performing the PCA on both levels and changes. Regardless of whether
the PCA is performed on levels or changes, the factor loadings are also
similar to the typical pattern, i.e. the first factor can be interpreted as a
level factor, the second factor as a slope factor, and the third factor as a
curvature factor.

The right panel in Figure 4.2 shows the time series of the extracted principal
components. The first factor confirms the downward trend in the interest-
rate level. During the ERM crisis in 1992, the slope factor also shows a
significant spike, confirming the interpretation as a slope factor.

4.3 Affine Term Structure Models

In this section we consider the class of affine term structure models, i.e. we
consider the results of Duffie and Kan (1996).

Consider a complete stochastic basis (Ω,F , (Ft), Q) where Q is a risk neutral
martingale measure and the filtration (Ft) = {Ft, t ≥ 0} satisfies the usual
conditions (see Protter (2005)). The term structure is driven by a number of
factors, n, such that the short rate is defined as r(t) = δ0+δ

′
1X(t) (where δ0
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is a scalar and δ1 is an n-vector). The factors are adapted to the filtration,
Ft, and the factors are assumed to be a Markov process on Rn which solves
the following stochastic differential equation:

dX(t) = K (θ −X(t)) dt+ SD(X(t))dWQ(t)

where WQ is a standard Wiener process in Rn, θ is an n-vector and K is
an n× n-matrix and S is an n× n-matrix. Finally, the matrix D(X(t)) is
an n× n matrix taking the form:

D(X(t)) =

⎛
⎜⎝
√
α1 + β1X(t) 0 0

...
. . .

...

0 0
√
αk + βkX(t)

⎞
⎟⎠

where αj, j = 1, . . . , k are scalars and βj, j = 1, . . . , k are k-vectors 5.

Duffie and Kan (1996) show that zero-coupon bond prices are exponentially
affine functions of the states

p(t, T ) = EQ
t

[
exp

(
−
∫ T

t

r(s)ds

)]
= exp (A(t, T ) +B(t, T )′X(t))

where A(t, T ) and B(t, T ) are solutions to ordinary differential equations
(henceforth ODEs)

dA(t, T )

dt
=δ0 −B(t, T )′Kθ − 1

2

n∑
j=1

[S ′B(t, T )B(t, T )′S]jj αj

dB(t, T )

dt
=δ1 +K ′B(t, T )− 1

2

n∑
j=1

[S ′B(t, T )B(t, T )′S]jj β
′
j

subject to the initial conditions A(T, T ) = 0 and B(T, T ) = 0.

The implication of the above expression is that zero-coupon yields are affine
functions of the factors:

y(t, T ) = − 1

T − t
log p(t, T ) = −A(t, T )

T − t
− B(t, T )′

T − t
X(t)

To complete the model, we need to consider P -dynamics, i.e. risk premia.
Here there are three obvious choices; the completely affine considered by

5In this general specification of an affine term structure model, not all parameters are
identifiable. Dai and Singleton (2000) show when various specifications of the affine term
structure models are identifiable. These constraints hold in all the considered models.
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Dai and Singleton (2000), the essentially affine considered by Duffee (2002)
and the extended affine by Cheredito, Filipovic, and Kimmel (2007). These
three specifications have different flexibility, and for the extended affine
specification the Feller condition must also hold for the square root factor.6

For each model, we explicitly state the model dynamics and risk premia,
see Appendix 4.10 for further details.

4.4 Multi-factor Cox-Ingersoll-Ross models

In this section we consider the multi-factor Cox-Ingersoll-Ross (henceforth
CIR) models 7. The classical CIR model (see Cox, Ingersoll, and Ross
(1985)) is defined by the stochastic differential equation for the short rate,
r

dr(t) = (θ − κr(t)) dt+ σ
√
r(t)dWQ(t)

This model belongs to the affine class of interest-rate models, and therefore
zero-coupon bond prices are exponentially affine:

p(t, T ) = exp (A(t, T ) +B(t, T )r(t))

where A(t, T ) and B(t, T ) solve Ricatti ODEs, which in this case has ana-
lytical solutions given by

A(t, T ) =

(
θ

σ2

)[
2 log

(
2γ

(κ+ γ)(eγ(T−t) − 1) + 2γ

)
+ (κ+ γ)(T − t)

]

B(t, T ) =
2(1− eγ(T−t))

(κ+ γ)(eγ(T−t) − 1) + 2γ

γ =
√
κ2 + 2σ2

In the multi-factor CIR models, the short rate is defined to be the sum
of the factors r(t) =

∑n
k=1Xk(t). The factors are defined as independent

6The Feller condition ensures that a square root process does not reach its boundary
value, i.e. zero for a CIR-process. For the CIR process the Feller condition is θ > 1

2
σ2.

7For a risk management application of multi-factor CIR models see Danmarks Natio-
nalbank (2005).
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processes which evolve as the short rate in the classical CIR model:⎛
⎜⎝ dX1(t)

...
dXn(t)

⎞
⎟⎠ =

⎡
⎢⎣
⎛
⎜⎝ θ1

...
θn

⎞
⎟⎠−

⎛
⎜⎝ κ1 0 0

...
. . .

...
0 0 κn

⎞
⎟⎠
⎛
⎜⎝ X1(t)

...
XK(t)

⎞
⎟⎠
⎤
⎥⎦ dt+

⎛
⎜⎝ σ1 0 0

...
. . .

...
0 0 σn

⎞
⎟⎠

×

⎛
⎜⎝
√
X1(t) 0 0
...

. . .
...

0 0
√
Xn(t)

⎞
⎟⎠
⎛
⎜⎝ dWQ

1 (t)
...

dWQ
n (t)

⎞
⎟⎠

The independence of the factors in the multi-factor CIR model imply that
zero-coupon bond prices take the form:

p(t, T ) = exp

(
A(t, T ) +

n∑
k=1

Bk(t, T )Xk(t)

)

where

A(t, T ) =
n∑

k=1

(
θk
σ2
k

)[
2 log

(
2γk

(κk + γk)(eγk(T−t) − 1) + 2γk

)
+ (κk + γk)(T − t)

]

Bk(t, T ) =
2(1− eγk(T−t))

(κk + γk)(eγk(T−t) − 1) + 2γk

γk =
√
κ2k + 2σ2

k

To complete the model, we need to specify the risk premia. The market
price of risk is chosen as the Completely Affine specification, which implies
the P -dynamics.⎛
⎜⎝ dX1(t)

...
dXn(t)

⎞
⎟⎠ =

⎡
⎢⎣
⎛
⎜⎝ θ1

...
θn

⎞
⎟⎠−

⎛
⎜⎝ κP1 0 0

...
. . .

...
0 0 κPn

⎞
⎟⎠
⎛
⎜⎝ X1(t)

...
Xn(t)

⎞
⎟⎠
⎤
⎥⎦ dt+

⎛
⎜⎝ σ1 0 0

...
. . .

...
0 0 σn

⎞
⎟⎠

×

⎛
⎜⎝
√
X1(t) 0 0
...

. . .
...

0 0
√
Xn(t)

⎞
⎟⎠
⎛
⎜⎝ dW P

1 (t)
...

dW P
n (t)

⎞
⎟⎠

This implies that we have a single risk premium parameter for each factor.
The risk premia specification implies that both mean reversion speed and
level are different under the real world measure, compared to the risk neutral
measure.
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The factor loadings in a two-factor model typically look similar to level and
slope, as in the PCA above. However, since the factors are independent
and with the same structure, we cannot say in advance which factor will
act as level and which will act as slope. One solution to this problem is
to impose a structure on a general affine term-structure model, such that
level, slope and curvature are forced upon the factor loadings - the Affine
Nelson-Siegel Models of Christensen, Diebold, and Rudebusch (2011) offer
this kind of identification.

4.5 Affine Nelson-Siegel models

In this section we consider the affine Nelson-Siegel models introduced by
Christensen, Diebold, and Rudebusch (2011).

Recall the classical Nelson-Siegel model for fitting the cross section of yields:

y(t, t+ τ) = β0 + β1

(
1− e−λτ

λτ

)
+ β2

(
1− e−λτ

λτ
− e−λτ

)

where y(t, t+τ) is the time t zero-coupon yield with maturity τ and β0, β1, β2
and λ are parameters.

The Nelson-Siegel approach offers a static fit of the term structure, and pa-
rameters will vary to fit the term structure across different trading days. To
remedy this fact, Diebold and Li (2006) suggest allowing the β coefficients
to be interpreted as time varying level, slope and curvature, creating the
Dynamic Nelson-Siegel model :

y(t, t+ τ) = B1(t, t+ τ)L(t) +B2(t, t+ τ)S(t) +B3(t, t+ τ)C(t)

where

B1(t, t+ τ) =1

B2(t, t+ τ) =

(
1− e−λτ

λτ

)

B3(t, t+ τ) =

(
1− e−λτ

λτ
− e−λτ

)

Obviously the notion of level, slope and curvature is justified by the fac-
tor loadings, B•(t, T ), which resemble the level, slope and curvature factor
loadings from the PCA. Figure 4.3 shows the factor loadings with λ equal
to 0.5.
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Figure 4.3: Nelson-Siegel factor loadings. Factor loadings of yields on
the level, slope and curvature in the Nelson-Siegel specification. λ is equal
to 0.5.

As argued in Christensen, Diebold, and Rudebusch (2011), the Dynamic
Nelson-Siegel model is not arbitrage-free. By casting the model into the
affine term structure framework, Christensen, Diebold, and Rudebusch
(2011) are able to consider an arbitrage free version of the Dynamic Nelson-
Siegel model, coined the Affine Nelson-Siegel model. This model obviously
preserves the three factor loadings from the Dynamic Nelson-Siegel model.
It is obtained by assuming that the short rate is the sum of the level and
slope, r(t) = X1(t) +X2(t) and that the factors solve the stochastic differ-
ential equation:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =−

⎛
⎝ 0 0 0

0 λ −λ
0 0 λ

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠ dt+

⎛
⎝ σ11 0 0

σ21 σ22 0
σ31 σ32 σ33

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

where X1 is the level factor, X2 is the slope factor and X3 is the curvature
factor. Since the model is part of the affine term structure framework,
zero-coupon bond prices are exponentially affine:

p(t, T ) = exp (A(t, T ) +B1(t, T )X1(t) +B2(t, T )X2(t) +B3(t, T )X3(t))

where

B1(t, T ) =− (T − t)

B2(t, T ) =−
(
1− e−λ(T−t)

λ

)

B3(t, T ) =−
(
1− e−λ(T−t)

λ
− (T − t)e−λ(T−t)

)
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and where A(t, T ) is a convexity adjustment term due to Jensen’s inequality.
Furthermore A(t, T ) has an explicit solution. The factor loadings given
above yield an expression for zero-coupon yields that is consistent with the
classical Nelson-Siegel representation, except from the convexity adjustment
term which ensures that the model is indeed arbitrage free.

One implication of matching the factor loadings in the affine Nelson-Siegel
model is that yields are normally distributed with no time variation in
the volatility. This is not a desirable property of a model used for risk
management, where capturing volatility correctly is of great importance.8

One solution to this problem is offered by Christensen, Lopez, and Rude-
busch (2010), who let level, slope and/or curvature be the drivers of stochas-
tic volatility. By letting the risk-neutral mean-reversion matrix be equal (or
very similar) to the original affine Nelson-Siegel model, the model factors
keep their interpretation as level, slope and curvature (see also Figure 4.4
for our estimated factor loadings).

Christensen, Lopez, and Rudebusch (2010) derive 5 different specifications:

• AFNS1−L: A model where the volatility is driven by the level factor.

• AFNS1 −C: A model where the volatility is driven by the curvature
factor.

• AFNS2−LC: A model where the volatility is driven by the level and
curvature factors.

• AFNS2 − SC: A model where the volatility is driven by the slope
and curvature factors.

• AFNS3: A model where the volatility is driven by all three factors.

In Appendix 4.10 we describe all of the above mentioned models, along
with the risk premia specification considered by Christensen, Lopez, and
Rudebusch (2010) .

8Compare also to Table 4.1 which shows the non-normality of the data.
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For instance, the AFNS1 − L will, under the risk neutral measure, follow
the SDE:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θ

0
0

⎞
⎠−

⎛
⎝ ε 0 0

0 λ −λ
0 0 λ

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ σ11 0 0

σ21 1 0
σ31 σ32 1

⎞
⎠

×

⎛
⎝
√
X1(t) 0 0

0
√
α2 + β21X1(t) 0

0 0
√
α3 + β31X1(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

We notice that the level factor now is a square root process, therefore the
unit root behavior, is replaced by a near unit root behavior, since in the
first diagonal element, the zero is replaced by a small number ε. Further-
more, we see that in the volatility loading matrix, D(X(t)) there is now a
dependence on the level factor. This representation therefore offers a natu-
ral combination of the A1(3) of Dai and Singleton (2000) and the Gaussian
Affine Nelson-Siegel model. The other Affine Nelson-Siegel models with
stochastic volatility are defined in an analogous fashion.

For the AFNS3 we also estimate a version with a Completely Affine risk
premia specification. For the AFNS3 model, the Feller condition has to
hold for the slope and curvature factors, due to the extended affine risk
premia specification. The Feller condition is the reason to consider a dif-
ferent specification; our estimates show that the Feller condition is binding
for the slope factor, implying a higher mean-reversion level, than what oth-
erwise would have been estimated. To assess the implication of the Feller
condition in our analysis, we consider the completely affine specification.9

We label this model AFNS3 − CA.

4.6 Model Estimation

We adopt a Bayesian approach. Admittedly, Bayesian methods are more
computationally cumbersome than for instance Quasi Maximum Likelihood
methods, however Bayesian methods allow for more precise filtering of
volatility, compared to the Kalman filter or assuming that some yields are
observed without error.

Furthermore, a Bayesian estimation allows for precise inference of each es-
timation, i.e. that convergence is indeed obtained. Furthermore a Bayesian

9Feldhütter (2008) also finds that the Feller condition is limiting the behavior of
some affine term structure models. He solves the problem by considering the semi-affine
risk premia by Duarte (2004).
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method allows for easier implementation of the parameter restrictions im-
posed by various Feller conditions.

In this section we will describe the notation used in the estimation, the spec-
ification of conditional distributions and the implemented hybrid MCMC
algorithm used. A survey article on MCMC is Johannes and Polson (2003),
where text book treatments can be found in Gamerman and Lopes (2006)
and Robert and Casella (2004).

Notation

We observe N different zero-coupon yields each observation day. For each
observation date, t, the yields are collected in the vector Yt. The full col-
lection of yields are given by Y = {Yt}Tt=1. We assume that the yields are
observed with measurement errors:

Yt = −(A(t, t+ τ) +B(t, t+ τ)′Xt)

τ
+ εn,t

which are independent and normally distributed with common variance

εn,t ∼ N (0, σεIN)

With respect to parameters, we denote those that only enter in the risk
neutral (Q) drift by ΘQ and those related to the real-world (P ) drift ΘP .
Parameters entering both under the risk-neutral and real-world probabil-
ity measures, such as diffusion parameters, are denoted ΘD. The entire
collection of parameters, including the measurement error, are given by
Θ =
(
ΘQ,ΘP ,ΘD, σε

)′
.

Estimation using MCMC

When estimating the model we are interested in sampling from the target
distribution of parameters and state varibles, p (Θ, X|Y ). To sample from
this distribution, the Hammersley-Clifford theorem (Hammersley and Clif-
ford (1974) and Besag (1974)) implies that this can be done by sampling
from the complete conditionals

p
(
ΘQ|Θ\Q, X, Y

)
p
(
ΘP |Θ\P , X, Y

)
p
(
ΘD|Θ\D, X, Y

)
p (X|Θ, Y )

p
(
σε|Θ\σε

, X, Y
)
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Thus MCMC handles the sampling from the complicated target distribution
p (Θ, X|Y ) by sampling from the simpler conditional distributions. More
specifically this is handled by sampling in cycles from the conditional dis-
tributions. If one can sample directly from the conditional distribution,
the resulting algorithm is called a Gibbs sampler (see Geman and Geman
(1984)). If it is not possible to sample from this distribution one can sam-
ple using the Metropolis-Hastings algorithm (see Metropolis, Rosenbluth,
Rosenbluth, Teller, and E. (1953)). In this paper we use a combination of
the two (a so-called hybrid MCMC algorithm), since not all the conditional
distributions are known. More precisely, we have the following MCMC
algorithm:

p (X|Θ, Y ) ∼ Metropolis-Hastings

p
(
ΘQ|Θ\Q, X, Y

)
∼ Metropolis-Hastings

p
(
ΘP |Θ\P , X, Y

)
∼ Metropolis-Hastings

p
(
ΘD|Θ\D, X, Y

)
∼ Metropolis-Hastings

p
(
σε|Θ\σε

, X, Y
)
∼ Inverse Gamma

A more precise description of the algorithm and the conditional distribu-
tions are found in Appendix 4.11.

We first run the estimation on the full data sample, and run the Markov
chain until convergence - typically 2-3 million simulations - and we save the
last 1 million draws of the chain with a thin factor of 1000, leaving 1000
draws for inference. Secondly, since we are interested in out-of-sample per-
formance, we successively remove the most insignificant parameter, defined
by an absolute t statistic below 1.65.10

Approach for recursive model estimation

The main objective of this paper is to examine the out-of-sample perfor-
mance of the different Affine Nelson-Siegel term structure models. To assess
this issue we estimate each model on 10 year data samples. Thus we first
estimate a model on data from January 1987 to December 1997, then move
the estimation window one month forward, i.e. estimate the model from
February 1987 to January 1998. In total this gives us 162 estimations on
10 year samples.

For each model we start the MCMC estimation using the parameters and
states estimated on the full data sample. For each data sample we use a

10We define the t-statistic as the mean of the 1000 draws divided by the standard
deviation of the 1000 draws: t = E[Θi]/

√
Var[Θi]
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burn-in size of 1 million draws, and we run an additional 1 million draws
of the chain with a thin factor of 1000, leaving 1000 draws for inference.
Finally, for each data sample the reduced models are used, cf. above.

4.7 Empirical Results: In-Sample

This section discusses the in-sample results generated by the different mod-
els. This includes generated factor loadings and volatilities, and how the
models fit the data.

Tables 4.2 and 4.3 show the parameter estimates from the different models.
Parameter estimates are based on the full data sample, i.e. from 1987 to
2010. As mentioned above, the models are successively reduced until all
parameters are significant.11

One interesting finding is that the parameters in the 2 factor CIR model
are estimated close to the ones from the AFNS3 model. Even though κQ

is estimated freely, our estimates imply that κQ22 is close to zero, and κQ11
is estimated in the range of the λ’s from the Affine Nelson-Siegel models.
This has two consequences; first, the parameter restrictions in the Affine
Nelson-Siegel models are not unreasonable if we obtain similar estimates
when the parameters are estimated freely. Secondly, the two factor CIR
model can be interpreted as a Nelson-Siegel model reduced to only level
and slope.

The resemblance of the factor loadings can also be seen from Figure 4.4,
which shows the factor loadings generated by the different models. The
CIR − 2 model has level and slope loading which is in line with the level
and slope loadings generated by the affine Nelson-Siegel models. One other
interesting fact is that the AFNS3 and AFNS3−CA models have a slightly
different curvature factor loading compared to the other models; the hump
on the factor loading is placed on shorter maturities compared to the other
models. This is likely to be due to the positivity constraint of all three
factors.

Another interesting finding is that the Feller condition is binding for the
slope factor in the AFNS3 model, implying a limited flexibility for this
model class. The AFNS3 model with a completely affine risk premia spec-
ification implies a lower mean reversion level for the slope factor. As we
are interested in long-term forecasts, the Feller condition could impact the
results.

11Parameters that ensure stationarity and admissibility are included, even if they are
insignificant.
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CIR− 2 AFNS1 − L AFNS1 − C AFNS2 − LC AFNS2 − SC AFNS3 AFNS3 − CA

σ11 0.0976 0.0359 1.0000 0.0301 1.0000 0.0301 0.0480
( 0.0058 ) ( 0.0024 ) ( - ) ( 0.0017 ) ( - ) ( 0.0014 ) ( 0.0028 )

σ12 - - -0.2506 - -0.0150 - -
( - ) ( - ) ( 0.0332 ) ( - ) ( 0.0021 ) ( - ) ( - )

σ13 - - -0.0231 - -0.0155 - -
( - ) ( - ) ( 0.0042 ) ( - ) ( 0.0036 ) ( - ) ( - )

σ21 - -0.0286 - -0.0366 - - -
( - ) ( 0.0070 ) ( - ) ( 0.0060 ) ( - ) ( - ) ( - )

σ22 0.0358 1.0000 1.0000 1.0000 0.0628 0.0824 0.0896
( 0.0016 ) ( - ) ( - ) ( - ) ( 0.0036 ) ( 0.0033 ) ( 0.0047 )

σ23 - - 0.0000 -0.0149 - - -
( - ) ( - ) ( - ) ( 0.0041 ) ( - ) ( - ) ( - )

σ31 - -0.0421 - - - - -
( - ) ( 0.0147 ) ( - ) ( - ) ( - ) ( - ) ( - )

σ32 - -0.7979 - - - - -
( - ) ( 0.1473 ) ( - ) ( - ) ( - ) ( - ) ( - )

σ33 - 1.0000 0.1546 0.0822 0.1289 0.1482 0.1409
( - ) ( - ) ( 0.0144 ) ( 0.0065 ) ( 0.0111 ) ( 0.0099 ) ( 0.0111 )

α1 - - 0.0001 - 0.0000 - -
( - ) ( - ) ( 0.0000 ) ( - ) ( 0.0000 ) ( - ) ( - )

α2 - 0.0000 0.0003 0.0000 - - -
( - ) ( - ) ( 0.0000 ) ( - ) ( - ) ( - ) ( - )

α3 - 0.0000 - - - - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

β11 - - - - - - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

β12 - - - - 0.0000 - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

β13 - - 0.0000 - 0.0000 - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

β21 - 0.0047 - 0.0041 - - -
( - ) ( 0.0005 ) ( - ) ( 0.0004 ) ( - ) ( - ) ( - )

β22 - - - - - - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

β23 - - 0.0000 0.0000 - - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

β31 - 0.0139 - - - - -
( - ) ( 0.0018 ) ( - ) ( - ) ( - ) ( - ) ( - )

β32 - - - - - - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

β33 - - - - - - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

Table 4.2: Parameter Estimates (1): Estimates of the diffusion param-
eters in the 2 factor CIR and Affine Nelson-Siegel models. Standard errors
based on MCMC draws are reported in brackets. Estimates are based on
the full data sample. Parameters without standard errors are fixed at the
reported value.
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CIR− 2 AFNS1 − L AFNS1 − C AFNS2 − LC AFNS2 − SC AFNS3 AFNS3 − CA

λ - 0.4569 0.3756 0.5108 0.3969 0.6312 0.6260
( - ) ( 0.0230 ) ( 0.0118 ) ( 0.0231 ) ( 0.0138 ) ( 0.0307 ) ( 0.0399 )

κQ
11

0.5622 - - - - - -
( 0.0250 ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

κQ
22

0.0001 - - - - - -
( 0.0001 ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

θ/θ1 0.0140 0.0017 0.0454 0.0014 0.0031 0.0015 0.0019
( 0.0007 ) ( 0.0001 ) ( 0.0018 ) ( 0.0001 ) ( 0.0010 ) ( 0.0001 ) ( 0.0002 )

θ2 0.0022 - - 0.0748 0.0398 0.0036 0.0005
( 0.0001 ) ( - ) ( - ) ( 0.0040 ) ( 0.0017 ) ( 0.0003 ) ( 0.0004 )

θ3 - - - - - 0.0171 0.0186
( - ) ( - ) ( - ) ( - ) ( - ) ( 0.0010 ) ( 0.0011 )

θP
1

- - -0.0441 - -0.0359 - -
( - ) ( - ) ( 0.0100 ) ( - ) ( 0.0061 ) ( - ) ( - )

θP
2

- 0.0000 0.0000 -0.1086 0.0241 0.0045 -
( - ) ( - ) ( - ) ( 0.0269 ) ( 0.0107 ) ( 0.001 ) ( - )

θP
3

- 0.0000 0.1202 0.1314 0.0720 0.0152 -
( - ) ( - ) ( 0.0348 ) ( 0.0402 ) ( 0.021 ) ( 0.0032 ) ( - )

κP
11

0.5729 0.0894 0.0634 0.0743 0.0548 0.1814 0.1923
( 0.1311 ) ( 0.0272 ) ( 0.0425 ) ( 0.0254 ) ( 0.0397 ) ( 0.0365 ) ( 0.0590 )

κP
12

- - 0.0000 - 0.0000 - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

κP
13

- - -0.5128 - -0.4477 - -
( - ) ( - ) ( 0.1017 ) ( - ) ( 0.0847 ) ( - ) ( - )

κP
21

- 0.0000 0.0000 0.0000 - 0.0000 0.0000
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

κP
22

0.1995 0.3531 0.1575 0.4070 0.2920 0.1888 0.1046
( 0.0431 ) ( 0.1536 ) ( 0.0958 ) ( 0.1629 ) ( 0.1346 ) ( 0.0991 ) ( 0.0747 )

κP
23

- -0.6171 0.0000 -0.7673 0.0000 0.0000 0.0000
( - ) ( 0.1668 ) ( - ) ( 0.1911 ) ( - ) ( - ) ( - )

κP
31

- - - 0.0000 - 0.0000 0.0000
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

κP
32

- - - - 0.0000 0.0000 0.0000
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

κP
33

- 0.8009 1.5029 0.984 1.0614 0.9027 0.9216
( - ) ( 0.3124 ) ( 0.4352 ) ( 0.3033 ) ( 0.3193 ) ( 0.2825 ) ( 0.2130 )

σε 0.0032 0.0020 0.0021 0.0020 0.0021 0.0025 0.0027
( 0.0001 ) ( 0.0001 ) ( 0.0001 ) ( 0.0000 ) ( 0.0001 ) ( 0.0001 ) ( 0.0001 )

Table 4.3: Parameter Estimates (2): Estimates of the drift parameters
and the measurement error standard deviation in the 2 factor CIR and
Affine Nelson-Siegel models. Standard errors based on MCMC draws are
reported in brackets. Estimates are based on the full data sample. Param-
eters without standard errors are fixed at the reported value.



149 ESSAY 4

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Yield Maturity

F
a
ct

o
r 

L
o
a
d
in

g

CIR−2

AFNS
1
−L

AFNS
1
−C

AFNS
2
−LC

AFNS
2
−SC

AFNS
3

AFNS
3
−CA

Figure 4.4: Factor loadings generated by the different models.

3M 2Y 5Y 10Y 15Y
CIR− 2 34.49 32.15 29.90 23.15 38.07
AFNS1 − L 20.33 20.77 17.33 16.36 22.29
AFNS1 − C 23.49 22.41 17.68 17.09 22.93
AFNS2 − LC 20.58 20.20 17.77 16.05 22.88
AFNS2 − SC 23.48 23.16 17.80 17.80 23.75
AFNS3 26.36 22.86 23.47 19.95 32.28
AFNS3 − CA 27.45 22.89 24.32 20.10 35.10

Table 4.4: In-sample Root Mean Squared Errors (RMSE) based on
the different models. RMSEs are reported in basis points.



ESSAY 4 150

1990 1995 2000 2005 2010
0

50

100

150

200

250

O
ne

−m
on

th
 V

ol
at

ilit
y 

in
 b

as
is

po
in

ts
3 Month Yield

2 Year Yield

5 Year Yield

10 Year Yield

15 Year Yield

Figure 4.5: E-GARCH estimates of one-month volatilities. Volatili-
ties are measured in basis points

Table 4.4 shows Root Mean Squared Errors (RMSEs) for the considered
models. Obviously, since these figures are in-sample figures, the model
with the least number of factors (the 2 factor CIR) performs the worst.
Interestingly, the AFNS3 models perform the worst after the CIR model.
One explanation could be that the positivity of the factors limit the in-
sample flexibility of the model. Finally, the models where the level enters
in the volatility matrix, perform the best.

Next we examine the model’s ability to generate the correct volatility pat-
tern. To assess this issue we estimate an E-GARCH model to yield changes,
for each maturity (h):

xht ≡Y (t+ 1, t+ 1 + h)− Y (t, t+ h) = εt, εt ∼ N
(
0, σ2

t,h

)
log σ2

t,h =ω + θzt−1 + γ
(
|zt| −

√
2/π
)
+ β log σ2

t−1,h

where zt = εt/σt−1,h is the standardized innovation.

Figure 4.5 shows the estimated volatilities. It is evident that the short
term (especially the 3-month yield) shows the highest degree of variation.
Especially, the ERM-crisis shows up in the data, as well as the impact
of the financial crisis in 2008. This downward trend in volatility, as a
function of maturity, is consistent with the findings in Christensen, Lopez,
and Rudebusch (2010) and Jacobs and Karoui (2009).

Figure 4.6 shows the E-GARCH volatilities along with model generated
volatilities. Table 4.5 shows the correlations between E-GARCH volatilities
and the correlations between changes in E-GARCH volatilities and changes
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Levels 3M 2Y 5Y 10Y 15Y
CIR− 2 0.5168 0.4322 0.6728 0.8378 0.7706
AFNS1 − L 0.301 0.5527 0.7555 0.8683 0.7524
AFNS1 − C -0.4556 -0.0968 -0.2408 -0.2079 0.0004
AFNS2 − LC 0.2813 0.5556 0.7189 0.8707 0.7828
AFNS2 − SC 0.4406 0.1405 -0.2258 -0.216 -0.0079
AFNS3 0.5118 0.4575 0.5404 0.7965 0.7879
AFNS3 − CA 0.5568 0.5793 0.7 0.851 0.7728
Changes 3M 2Y 5Y 10Y 15Y
CIR− 2 0.1678 0.0726 0.0965 0.0909 0.0011
AFNS1 − L 0.0589 -0.0765 0.0379 0.087 -0.0278
AFNS1 − C -0.0273 -0.103 -0.0085 -0.0751 -0.0782
AFNS2 − LC 0.0489 -0.1202 0.0122 0.016 -0.0831
AFNS2 − SC 0.1131 0.107 0.0401 -0.046 -0.0599
AFNS3 0.1699 0.0588 0.0899 0.0522 0.0021
AFNS3 − CA 0.1654 0.0555 0.082 0.0625 -0.043

Table 4.5: Correlations between model volatilities and E-GARCH
estimates for the different maturities.

in model volatilities.12 In Christensen, Lopez, and Rudebusch (2010) the
preferred model is the AFNS3 model. This model, together with the CIR−
2 and the AFNS3−CA models, also performs well in our data sample, both
by visually inspecting Figure 4.6 and by showing the highest correlations
both for levels and changes. The correlations for changes are moderate.
However, compared to the results from Collin-Dufresne, Goldstein, and
Jones (2008), where the three factor affine model with spanned stochastic
volatility shows negative correlations with GARCH estimates, our results
are slightly better. The fact that the 2 factor CIR model also performs well,
should not come as a great surprise as it is very similar to the AFNS3 and
AFNS3 − CA models.

Another model that performs well is the AFNS1 − L. It cannot generate
the volatility of the 3-month yield, but performs similar to the AFNS3 and
CIR− 2 models for longer maturities. Finally, the remaining models show
little, or even negative correlations with the E-GARCH estimate. Finally,

12The model generated volatility is calculated as:

Volt(y(t+ 1, t+ h+ 1)) =

√
1

h2
B(h)′SD(Xt)D(Xt)S′B(h)Δ
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Figure 4.6: Top: Comparison of model volatility to E-GARCH volatility
for the 3 Month maturity. Middle: Comparison of model volatility to E-
GARCH volatility for the 5 Year maturity. Bottom: Comparison of model
volatility to E-GARCH volatility for the 10 Year maturity.
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when considering changes in the volatility related to the 15-year yield, the
results show little correlation with the E-GARCH estimate.

Overall, these findings are indications that the level factor offers a good
description of the overall level of volatility. However, to capture the changes
in interest-rate volatility, unspanned stochastic volatility might be needed.

4.8 Empirical Results: Out-of-Sample

This section considers the performance of each model with regard to out-of-
sample testing. We first consider the evaluation of point forecasts, and then
turn to evaluating forecasts of volatilities. For the sake of brevity tables are
placed at the end of the paper.

Point Forecasts

Tables 4.6 to 4.8 present mean errors for the yield forecast 1 month, 1 year
and 5 years ahead.

For forecasts 1 month ahead, most models perform well, as measured by
the mean errors. The exception is the AFNS2−SC-model which has mean
errors significantly different from zero for all maturities except for the 3
month yield. Another observation is that for the 15 year yield, the models
which have all factors in the variance matrix, i.e. CIR − 2, AFNS3 and
AFNS3 − CA, are also biased, implying that the limitations in structure
induced by these models limit the forecast of long-term yields.

The same pattern is visible for the 1-year forecast. The AFNS2−SC-model
has a highly significant bias for all yields, and the CIR − 2, AFNS3 and
AFNS3 −CA models show a bias for the 15-year yield. For the AFNS2 −
SC-model the errors are over 100 basis points, indicating a very bad model.
The level of the term structure has mostly been downward trending, cf.
Figure 4.2, and in the AFNS2−SC-model the level factor is mostly negative
due to the positivity restrictions on slope and curvature. All in all this
implies that the level factor mean-reverts to a negative value, giving yield
curves with negative yields! For the CIR − 2, AFNS3 and AFNS3 − CA
models, errors are more moderate and in the range of 20-40 basis points,
indicating that the positivity constraint of the factors, in combination with
the downward trending interest-rate level, may induce forecasts that are
too high.

For the 5-year forecasts we see the same pattern as above. The CIR − 2,
AFNS3 and AFNS3−CAmodels show a bias of around 80-150 basis points
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on the 5-year forecast horizon, with all but the 3-month yield being signifi-
cantly different from zero. Again this seems consistent with the downward
trending term structure and the model restrictions. On the other hand, the
models that performed well for the shorter maturities, still has mean errors
that are not statistically different from zero. However, mean errors are now
around 10-50 basis points.

So far we have only considered mean errors. This measure only gives infor-
mation on the overall mean errors, not the variation and size at each point
in time. Therefore, we also consider absolute errors.13

Tables 4.9 to 4.11 show mean absolute errors for each maturity and model,
along with pairwise comparisons of the models using the Diebold and Mar-
iano (1995) test. This test allows more precise evidence on the model dif-
ferences, than just comparing the mean absolute errors.

For the one-month forecasts the mean absolute errors are for all the consi-
dered models between 15 and 30 basis points. Still the AFNS2 − SC
model is significantly outperformed by most of the other models, and the
AFNS3 and AFNS3 − CA models are outperformed for long-term yields.
Furthermore, the CIR − 2 model is outperformed for all but the 3-month
yield.

For the one-year forecasts the mean absolute errors are very similar for all
models, except the AFNS2 − SC model. The mean absolute errors are
between 170 and 280 basis points for the AFNS2 − SC model, whereas
for the other models the mean absolute errors are between 55 and 105
basis points. In terms of statistically significant out-performance only the
AFNS2 − SC model is outperformed.

In terms of the 5-year forecast, the AFNS2 − SC model again performs
very poorly, as the absolute mean errors are around 700 basis points. For
the other models the AFNS1 − L and AFNS2 − LC model perform the
best, with absolute mean errors between 50 and 130 basis points. For the
CIR− 2, AFNS3 and AFNS3 − CA models the mean absolute errors are
between 105 and 150, although with a slightly higher mean absolute error
for the CIR− 2 model. In terms of statistical significance, the AFNS1−L
and AFNS2 − LC models outperform the other models. For the shorter
maturities, the AFNS3 and AFNS3 − CA models perform comparable to
these two models.

All in all, based on point forecasts we would rank the AFNS1 − L and
AFNS2−LC models as the best, followed by the AFNS3 and AFNS3−CA

13The results presented below are robust to other choices of forecast errors, such as
Root Mean Squared Errors.
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models. CIR− 2 and AFNS1−C are joint third and finally AFNS2−SC
is the worst model.

Variance forecasts

We also consider how the models forecast variances or rather volatilities
over 1 month, 1 year and 5 year time horizons.14

The existing literature on variance forecasting for affine models is mainly
focused on short-term forecasts, i.e. one week or one month (see Collin-
Dufresne, Goldstein, and Jones (2008), Jacobs and Karoui (2009) and Chris-
tensen, Lopez, and Rudebusch (2010)). Here, in addition to one month
forecasts, we also perform 1 year and 5 year forecasts.

To construct a measure of realized volatility, we consider taking the square
root of squared (de-meaned) yield changes:15

RV (t, τ, n) =

√√√√ t+n∑
tj=t

(Δy(tj, tj + τ)− μy)
2

where t is the point in time, τ is the maturity of the yield, n is the number of
months in the forecast horizon and μy is the mean of the yield changes (see
Table 4.1). We construct the realized volatility for each forecast horizon
(i.e. n = 1, n = 12 and n = 60) and each yield.

To generate the model-implied volatilities, we use an Euler approximation of
the state dynamics, with each month being split into 25 steps. We generate
25,000 samples and use the standard deviation of the 25,000 samples as our
volatility estimate. We construct the errors as the difference between the
realized volatilities and the model based volatility:

ε̂t = RV (t, τ, n)−MV (t, τ, n)

where MV is the model based volatility.

Figure 4.7 shows the realized volatility along with the model based volatili-
ties. In general, there is some indication that the model capture the level of

14In Appendix 4.12 we also describe density and quantile forecasts for all the consid-
ered models. We have chosen to place these results in an appendix as they are slightly
harder to interpret compared to mean and variance forecasts. The results in Appendix
4.12 are consistent with the results from the mean and variance forecasts.

15We have also considered an E-GARCH measure. The results are consistent with the
results in this section, albeit with a slightly better performance for the AFNS1−L-model
in the 1-month forecasts.
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Figure 4.7: Left: Realized volatility and model volatility for the 1-year
forecast of the 10-year yield. Left: Realized volatility and model volatility
for the 5-year forecast of the 10-year yield.

volatilities rather than the dynamics. However, for 1 and 5-year forecasts,
it is highly unlikely that most models would generate the correct volatility
dynamics.

Tables 4.12 to 4.14 present mean errors from the volatility forecasting for
each forecast horizon. Here, positive mean errors correspond to underesti-
mating volatility and vice versa.

For the 1-month forecasts the mean errors are quite small, between 1 and 4
basis points. The exceptions are mainly found in the 15-year yield volatility,
where the CIR− 2, AFNS3 and AFNS3 − CA models underestimate the
volatility. As with the mean forecasts, the AFNS2 − SC model performs
badly.

In terms of the 1-year forecast it is only the AFNS1 − L which can show
unbiased forecasts. Though the forecasts are unbiased, the volatilities are on
average overestimated by around 10 basis points. For some maturities the
AFNS2−LC model can also perform unbiased forecasts. The bias for this
model is between 6 and 18 basis points The CIR-based models (CIR − 2,
AFNS3 and AFNS3 − CA) typically underestimate the volatility. The
bias is between 10 and 30 basis points. The AFNS2 − SC overestimates
volatilities by 7 to 29 basis points.

The AFNS1 − L model also performs the best for the 5-year volatility
forecast. Forecasts are statistically unbiased, with mean errors between 6
and 21 basis points. Similar to the other forecast-horizons, the AFNS1−L
also perform well. The CIR based models typically underestimate volatility
by 60 to 120 basis points, with the CIR − 2 model performing the best.
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Again the AFNS2 − SC model is the worst, with an overestimation of
volatility of about 200 basis points!

To directly compare the performance of the model, we perform Diebold and
Mariano (1995) tests on mean absolute errors. Tables 4.15 to 4.17 present
the results from the tests, along with mean absolute errors for the different
models. The mean absolute errors show the same pattern as Tables 4.12 to
4.14, with small modifications for the 1-month forecasts (see below).

In terms of the 1-month forecast the models that perform the best are the
AFNS3 and AFNS3−CA models. They show the smallest mean absolute
errors, and for most maturities outperform the other models. With respect
to the remaining model they are mostly at par; however, with a large mean
absolute error in the 3 month yield for the CIR− 2 model.

Considering the 1-year forecast we see that the AFNS1−L model performs
the best, although it does not statistically outperform the CIR-based models
and the AFNS1 − LC models, except for a few maturities. As previously
the AFNS2 − SC performs the worst.

The differences in the models are very visible when considering the 5-year
forecast. The AFNS1 − L and AFNS2 − LC models perform the best,
generally outperform all the other models, except each other. The CIR−2
model performs the third-best, followed by the AFNS3 and AFNS3 −CA
models. Interestingly, the AFNS3−CA outperform the AFNS3 indicating
that the Feller condition is limiting the model. The AFNS2 − SC again
shows a very bad performance with mean absolute errors over 200 basis
points!

To shed some more light on the differences between the models, we plot the
densities of the 10-year yield, when forecasting 1 month, 1 year and 5 years
ahead. The states and parameters are based on the last data in our sample,
i.e. May 2005.

It is evident that the CIR-based models perform alike; however, with more
probability toward higher yields in the CIR−2 model. The AFNS1−L and
AFNS2−SC model show densities that are closer to normal distributions,
although with significant skew in the 5-year forecast distribution.

In general for the 1-month forecast the densities look fairly similar, with a
slightly wider distribution for the AFNS1 − L model. With respect to the
AFNS2−SC model we re-confirm that both mean and variance are biased,
which is even more pronounced for the 1 and 5-year forecasts.

In terms of the 1 and 5-year forecasts we see that the CIR-based model
could be limited by the fact that the factors need to be positive. The
lowest possible value for the yield appears to be the same for the 1 and
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Figure 4.8: Top: 1-month forecast of the 10-year yield performed in May
2010. Middle: 1-year forecast of the 10-year yield performed in May 2010.
Bottom: 5-year forecast of the 10-year yield performed in May 2010.
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5-year forecast, whereas there is more flexibility with respect to the upper
tail. The AFNS1 − L model on the other hand shows more flexibility in
both tails of the distribution, and significantly wider distributions.

Overall Figure 4.8 re-confirms the results form the volatility forecasts, i.e.
that the AFNS1 − L slightly overestimates the volatility, where the CIR-
based model underestimates the volatility. Results based on probability
density forecasts, given in Appendix 4.12, also indicate that the CIR-based
models have troubles capturing the lower tails of the distributions, where
the AFNS1 − L has a tendency to overestimate the risks in the tails of
the distribution. These results emphasize that rather than using a single
model, a suite of models is more appropriate. For instance the AFNS1−L
could be used as a slightly pessimistic risk estimate in VaR-calculations.

4.9 Conclusion

In this paper we have examined the stochastic volatility Affine Nelson-Siegel
models of Christensen, Lopez, and Rudebusch (2010), and their ability to
forecast interest-rates and quantiles of the distribution of interest-rates on
Danish government bond term structure data.

We have found that the tested models cannot capture all the desired features
of an interest-rate model.

In terms of forecasting the realized interest-rates (i.e. point estimates), mod-
els with a combination of CIR-factors and Gaussian factors perform well,
especially if the level-factor generates the stochastic volatility.

Models based on CIR-factors (AFNS3 and CIR− 2) perform well in fore-
casting the mean and variance in the short-term, i.e. one month forecasts.
These results are in line with the results in Christensen, Lopez, and Rude-
busch (2010).

For longer forecasts we find a mixed picture, which is to some extent driven
by the considered data. The preferred model of Christensen, Lopez, and
Rudebusch (2010) tends to produce forecasts that are too high and variances
that are too low, implying a bias in model quantiles. The one- and two-
factor models, where the level factor drives stochastic volatility, perform
reasonably well in forecasting the mean and variances of the distributions,
but for very long horizon forecasts, 5 years, the distributions tend to be
wide compared to actual data. Overall, this indicates that a suite of models,
rather than a single model, is preferable.

For future research it would be interesting to assess the long-term forecast-
ing properties of models with unspanned stochastic volatility, as this type
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of models might provide a better description of the volatility over the longer
horizons.
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4.10 Appendix: Affine Nelson-Siegel

models with stochastic volatility

Models with one stochastic volatility factor

AFSN1 − L

The first affine Nelson-Siegel model, has the level factor, X1, as the driving
factor of the interest-rate volatility. The model evolves according to the
following system of stochastic differential equations under the risk neutral
martingale measure Q:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θ

0
0

⎞
⎠−

⎛
⎝ ε 0 0

0 λ −λ
0 0 λ

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ σ11 0 0

σ21 1 0
σ31 σ32 1

⎞
⎠

×

⎛
⎝
√
X1(t) 0 0

0
√
α2 + β21X1(t) 0

0 0
√
α3 + β31X1(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

X1 acts as the level factor, and in this model class, it also drives the stochas-
tic volatility. β21 and β31 measure the volatility sensitivity of the slope and
curvature factors. Finally ε = 10−6 to approximate the unit root behaviour
in the Gaussian affine Nelson-Siegel model.

In this model class the factor loadings on slope and curvature are given by

B2(t, T ) =−
(
1− e−λ(T−t)

λ

)

B3(t, T ) =(T − t)e−λ(T−t) −
(
1− e−λ(T−t)

λ

)
and the factor loading on the level factor solves the ODE

dB1(t, T )

dt
= 1 + εB1(t, T )−

1

2

[
H2

1 +H2
2β21 +H2

3β31
]

where

H1 =σ11B1(t, T ) + σ21B2(t, T ) + σ31B3(t, T )

H2 =B2(t, T ) + σ32B3(t, T )

H3 =B3(t, T )

The yield adjustment term, A(t, T ) solves the ODE

dA(t, T )

dt
= −B1(t, T )θ −

1

2

[
H2

2α2 +H2
3α3

]
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Finally to complete the model, we need to specify the risk premia. For
this model class we consider the essentially affine risk premia introduced by
Duffee (2002).16 The P dynamics are then given by⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θ

θP2
θP3

⎞
⎠−

⎛
⎝ κP11 0 0

κP21 κP22 κP23
κP31 κP32 κP33

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ σ11 0 0

σ21 1 0
σ31 σ32 1

⎞
⎠

×

⎛
⎝
√
X1(t) 0 0

0
√
α2 + β21X1(t) 0

0 0
√
α3 + β31X1(t)

⎞
⎠
⎛
⎝ dW P

1 (t)
dW P

2 (t)
dW P

3 (t)

⎞
⎠

AFSN1 − C

The second affine Nelson-Siegel model, has the curvature factor, X3, as the
driving factor of the interest-rate volatility.17 The model evolves according
to the following system of stochastic differential equations under the risk
neutral martingale measure Q:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ 0

−θ
θ

⎞
⎠−

⎛
⎝ 0 0 0

0 λ −λ
0 0 λ

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ 1 σ12 σ13

0 1 σ23
0 0 σ33

⎞
⎠

×

⎛
⎝
√
α1 + β13X3(t) 0 0

0
√
α2 + β23X3(t) 0

0 0
√
X3(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

X3 acts as the curvature factor, and in this model class, it also drives the
stochastic volatility. β13 and β23 measure the volatility sensitivity of the
level and slope factors.

In this model class the factor loadings on level and slope are given by

B1(t, T ) =− (T − t)

B2(t, T ) =−
(
1− e−λ(T−t)

λ

)
and the factor loading on the level factor solves the ODE

dB3(t, T )

dt
= λ [B3(t, T )−B2(t, T )]−

1

2

[
H2

1β13 +H2
2β23 +H2

3

]
16Following Christensen, Lopez, and Rudebusch (2010) we do not consider the ex-

tended affine specification for the AFSN1−L model class, as we cannot expect the feller
condition to hold under the risk neutral measure.

17The slope factor cannot drive stochastic volatility in the models with one stochas-
tic volatility factor due to model admissibility, see Christensen, Lopez, and Rudebusch
(2010) for further details.
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where

H1 =B1(t, T )

H2 =σ12B1(t, T ) +B2(t, T )

H3 =σ13B1(t, T ) + σ23B2(t, T ) + σ33B3(t, T )

The yield adjustment term, A(t, T ) solves the ODE

dA(t, T )

dt
= θ [B2(t, T )−B3(t, T )]−

1

2

[
H2

1α1 +H2
2α2

]
Finally we specify risk premia as an extended affine risk premia. This
implies the P dynamics⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θP1

θP2
θP3

⎞
⎠−

⎛
⎝ κP11 κP12 κP13

κP21 κP22 κP23
0 0 κP33

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ 1 σ12 σ13

0 1 σ23
0 0 σ33

⎞
⎠

×

⎛
⎝
√
α1 + β13X3(t) 0 0

0
√
α2 + β23X3(t) 0

0 0
√
X3(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

For the Feller condition to hold, the following conditions must hold

θ >
1

2
σ2
33, θP3 >

1

2
σ2
33

Models with two stochastic volatility factors

AFSN2 − LC

The third Nelson-Siegel model has two stochastic volatility factors, namely
that volatility is driven by level and curvature. The model class follows the
stochastic differential equation under the risk neutral measure Q:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θ1

−θ2
θ2

⎞
⎠−

⎛
⎝ ε 0 0

0 λ −λ
0 0 λ

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ σ11 0 0

σ21 1 σ23
0 0 σ33

⎞
⎠

×

⎛
⎝
√
X1(t) 0 0

0
√
α2 + β21X1(t) + β23X3(t) 0

0 0
√
X3(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

In this model class volatility is driven by level and curvature, and β21 and
β23 measure the effect of these two factors on the volatility of the slope
factor.
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In this model class the factor loading on the slope is given by

B2(t, T ) =−
(
1− e−λ(T−t)

λ

)
and the loadings on level and curvature solve the ODEs

dB1(t, T )

dt
=1 + εB1(t, T )−

1

2

[
H2

1 +H2
2β21
]

dB3(t, T )

dt
=λ [B3(t, T )−B2(t, T )]−

1

2

[
H2

2β23 +H2
3

]
where

H1 =σ11B1(t, T ) + σ21B2(t, T )

H2 =B2(t, T )

H3 =σ23B2(t, T ) + σ33B3(t, T )

The yield adjustment term, A(t, T ), solves the ODE

dA(t, T )

dt
= −θ1B1(t, T ) + θ2 [B2(t, T )−B3(t, T )]−

1

2
H2

2α2

Finally the risk premia is a combination of an essentially and extended
affine risk premia specification. Thus we have the following P -dynamics.⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θ1

θP2
θP3

⎞
⎠−

⎛
⎝ κP11 0 0

κP21 κP22 κP23
κP31 0 κP33

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ σ11 0 0

σ21 1 σ23
0 0 σ33

⎞
⎠

×

⎛
⎝
√
X1(t) 0 0

0
√
α2 + β21X1(t) + β23X3(t) 0

0 0
√
X3(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

where the Feller condition must hold for X3, i.e.

θ >
1

2
σ2
33, θP3 >

1

2
σ2
33

and for model admissibility we must have that κP31 ≤ 0.

AFSN2 − SC

The third Nelson-Siegel model has two stochastic volatility factors, namely
that volatility is driven by slope and curvature. The model class follows the
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stochastic differential equation under the risk neutral measure Q:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ 0

θ1
θ2

⎞
⎠−

⎛
⎝ 0 0 0

0 λ −λ
0 0 λ

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ 1 σ12 σ13

0 σ22 0
0 0 σ33

⎞
⎠

×

⎛
⎝
√
α1 + β12X2(t) + β13X3(t) 0 0

0
√
X2(t) 0

0 0
√
X3(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

In this model class volatility is driven by level and curvature, and β12 and
β13 measure the effect of these two factors on the volatility of the level
factor.

In this model class the factor loading on the slope is given by

B1(t, T ) =− (T − t)

and the loadings on level and curvature solve the ODEs

dB2(t, T )

dt
=1 + λB2(t, T )−

1

2

[
H2

1β12 +H2
2

]
dB3(t, T )

dt
=λ [B3(t, T )−B2(t, T )]−

1

2

[
H2

1β13 +H2
3

]
where

H1 =B1(t, T )

H2 =σ12B1(t, T ) + σ22B2(t, T )

H3 =σ13B2(t, T ) + σ33B3(t, T )

The yield adjustment term, A(t, T ), solve the ODE

dA(t, T )

dt
= −θ1B2(t, T )− θ2B3(t, T )−

1

2
H2

1α1

Finally we use an extended risk premia specification, giving us the P dy-
namics:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θP1

θP2
θP3

⎞
⎠−

⎛
⎝ κP11 κP12 κP13

0 κP22 κP23
0 κP32 κP33

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ 1 σ12 σ13

0 σ22 0
0 0 σ33

⎞
⎠

×

⎛
⎝
√
α1 + β12X2(t) + β13X3(t) 0 0

0
√
X2(t) 0

0 0
√
X3(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠
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For the Feller condition to hold, the following conditions must be satisfied

θ1 >
1

2
σ2
22, θ2 >

1

2
σ2
33, θP2 >

1

2
σ2
22, θP3 >

1

2
σ2
33

For admissibility the following conditions must hold

κP23 ≤ 0, κP32 ≤ 0

Models with three stochastic volatility factors

In the fifth Nelson-Siegel model the volatility is driven by all three factors.
The model class follows the stochastic differential equation under the risk
neutral measure Q:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θ1

θ2
θ3

⎞
⎠−

⎛
⎝ ε 0 0

0 λ −λ
0 0 λ

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ σ11 0 0

0 σ22 0
0 0 σ33

⎞
⎠

×

⎛
⎝
√
X1(t) 0 0

0
√
X2(t) 0

0 0
√
X3(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠

In this model class the factor loadings are given as solutions to the ODEs

dB1(t, T )

dt
=1 + εB1(t, T )−

1

2
σ2
11B1(t, T )

dB2(t, T )

dt
=1 + λB2(t, T )−

1

2
σ2
22B2(t, T )

dB3(t, T )

dt
=λ [B3(t, T )− B2(t, T )]−

1

2
σ2
33B3(t, T )

and the yield adjustment term is given as the solution to the ODE

dA(t, T )

dt
=− θ1B1(t, T )− θ2B2(t, T )− θ3B3(t, T )

Finally the risk premia is a combination of an essentially and extended
affine risk premia. This implies the P dynamics:⎛
⎝ dX1(t)

dX2(t)
dX3(t)

⎞
⎠ =

⎡
⎣
⎛
⎝ θ1

θP2
θP3

⎞
⎠−

⎛
⎝ κP11 0 0

κP21 κP22 κP23
κP31 κP32 κP33

⎞
⎠
⎛
⎝ X1(t)

X2(t)
X3(t)

⎞
⎠
⎤
⎦ dt+

⎛
⎝ σ11 0 0

0 σ22 0
0 0 σ33

⎞
⎠

×

⎛
⎝
√
X1(t) 0 0

0
√
X2(t) 0

0 0
√
X3(t)

⎞
⎠
⎛
⎝ dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

⎞
⎠
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The Feller condition holds when

θ2 >
1

2
σ2
2, θ3 >

1

2
σ2
3, θP2 >

1

2
σ2
2, θP3 >

1

2
σ2
3

and for admissibility we must have that κP23 ≤ 0 and κP32 ≤ 0.

For the AFNS3 we also estimate a version with a Completely Affine risk
premia specification. This implies that θQi = θPi for all i. Furthermore, the
Feller condition does not apply any more, as it is not needed to rule out
arbitrage opportunities.

4.11 Appendix: MCMC details

Conditional distributions

The conditional p(Y |X,Θ)

The conditional for the yield observations can be decomposed as

p(Y |X,Θ) =
T∏
t=1

p(Yt|Xt,Θ)

where we can write p(Yt, Xt,Θ) as

p(Yt|Xt,Θ) ∝
(
σ2
ε

)−K/2
exp

(
−1

2

1

σ2
ε

(et)
′(et)

)
where

et = Yt +
(A(t, t+ τ) +B(t, t+ τ)′Xt)

τ

Thus we have that

p(Y |X,Θ) ∝
(
σ2
ε

)−TK/2
exp

(
−1

2

1

σ2
ε

T∑
t=1

(et)
′(et)

)

The conditional p(X|Θ)

Using an Euler scheme we can write the dynamics as

Xt+Δ = Xt +
[
ΘP − κPXt

]
Δ+ SD(Xt)

√
Δut

where ut ∼ N (0, I3).
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The conditional for the state transitions can be decomposed as

p(X|Θ) =

(
T∏
t=1

p(Xt|Xt−1,Θ)

)
p(X0) ∝

T∏
t=1

p(Xt|Xt−1,Θ)

where the last ’proportional to’ follows from independent priors. The con-
ditional p(Xt|Xt−1,Θ) can be written as

p(Xt|Xt−1,Θ) ∝ 1

det(Σ(Xt))
exp

(
−1

2
v′tΣ(Xt)

−1vt

)
where

Σ(Xt) =ΔSD(Xt)D(Xt)S
′

vt =Xt+Δ −Xt −
[
ΘP − κPXt

]
Δ

Sampling parameters and states

Sampling σε

To sample σε we use that

p(σε|Θ\σε
, X, Y ) ∝ p(Y |Θ, X)p(σε) ∝ p(Y |Θ, X)

where the last proportional to follows from independent priors.

We can then use Gibbs sampling, to sample σε

σ2
ε ∼ IG

(
TK

2
+ 1,

1

2

T∑
t=1

(et)
′(et)

)

Sampling ΘQ

To sample ΘQ we use a random walk Metropolis-Hastings algorithm. Hence
we propose a new value as

ΘQ∗ = ΘQ + ε

where ε is a zero mean Normally distributed variable with a variance that
needs calibration.

The acceptance probability follows from

p(ΘQ|Θ\Q, X, Y ) ∝ p(Y |Θ, X)p(ΘQ) ∝ p(Y |Θ, X)

which gives us the acceptance probability

α = min

(
p(Y |Θ∗, X)

p(Y |Θ, X)
, 1

)
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Sampling ΘP

To sample ΘP we use a random walk Metropolis-Hastings algorithm. Hence
we propose a new value as

ΘP∗ = ΘP + ε

where ε is a zero mean Normally distributed variable with a variance that
needs calibration.

The acceptance probability follows from

p(ΘP |Θ\P , X, Y ) ∝ p(X|Θ)p(ΘQ) ∝ p(X|Θ)

which gives us the acceptance probability

α = min

(
p(X|Θ∗)

p(X|Θ)
, 1

)

Sampling ΘD

To sample ΘD we use a random walk Metropolis-Hastings algorithm. Hence
we propose a new value as

ΘD∗ = ΘD + ε

where ε is a zero mean Normally distributed variable with a variance that
needs calibration.

The acceptance probability follows from

p(ΘD|Θ\D, X, Y ) ∝ p(Y |Θ, X)p(X|Θ)p(ΘQ) ∝ p(Y |Θ, X)p(X|Θ)

which gives us the acceptance probability

α = min

(
p(Y |Θ∗, X)p(X|Θ∗)

p(Y |Θ, X)p(X|Θ)
, 1

)

Sampling X

To sample X we use a random walk Metropolis-Hastings algorithm. Hence
we propose a new value as

X∗ = X + ε

where ε is a zero mean Normally distributed variable with a variance that
needs calibration.



ESSAY 4 170

The acceptance probability follows from

p(X|Θ, Y ) ∝ p(Y |Θ, X)p(X|Θ)

which gives us the acceptance probability

α = min

(
p(Y |Θ, X∗)p(X∗|Θ)

p(Y |Θ, X)p(X|Θ)
, 1

)

Efficient calculation of Inverses and Determinants

In the affine Nelson-Siegel models the variance of the transition equation is
given by

Vart(Xt+Δ) ≡ Σ(Xt) = ΔSD(Xt)D(Xt)S
′

Then the inverse will be given by

Σ(Xt)
−1 =

1

Δ
[SD(Xt)D(Xt)S

′]
−1

=
1

Δ
[D(Xt)S

′]
−1

[SD(Xt)]
−1

=
1

Δ
(S ′)−1D(Xt)

−1D(Xt)
−1S−1

Next in the conditional for X we need to calculate

v′tΣ(Xt)
−1vt =

1

Δ

[
v′t(S

′)−1D(Xt)
−1
] [
D(Xt)

−1S−1vt
]

=
3∑

j=1

[S−1vt]
2
j

[D(Xt)]2jjΔ

Since (S ′)−1 = (S−1)′ and D(Xt) is diagonal. In terms of implementation
this is far more efficient than calculating the entire quadratic form. Fur-
thermore typically S has a simple form, such that the inverse is simple as
well, speeding up the computation.

We also need to calculate the determinant:

det(Σ(Xt)) =Δdet(S) det(D(Xt)) det(D(Xt)) det(S
′)

=Δdet(S)2 det(D(Xt))
2

where we have used that det(S) = det(S ′). Since D(Xt) is diagonal, we get
that

det(D(Xt)) det(D(Xt)) =
3∏

j=1

[D(Xt)]
2
jj
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Again the determinant of S depends on the structure of S. As with the
inverse, S has a simple structure which implies a simple determinant as
well.

The following subsection presents the inverses and determinant for the
model with one and two stochastic volatility factors. For the two factor
CIR and the model with three stochastic volatility factors, these are not
presented as they are trivial.

AFNS1 − L

In the AFNS1 − L the inverse of S is given by

S−1 =

⎛
⎝ 1

σ11
0 0

−σ21

σ11
1 0

σ21σ32−σ31

σ11
−σ32 1

⎞
⎠

and the determinant is given by

det(S) = σ11

AFNS1 − C

In the AFNS1 − C the inverse of S is given by

S−1 =

⎛
⎝ 1 −σ12 σ12σ23−σ13

σ33

0 1 −σ23

σ11

0 0 1
σ33

⎞
⎠

and the determinant is given by

det(S) = σ33

AFNS2 − L,C

In the AFNS2 − L,C the inverse of S is given by

S−1 =

⎛
⎝ 1

σ11
0 0

−σ21

σ11
1 −σ23

σ33

0 0 1
σ33

⎞
⎠

and the determinant is given by

det(S) = σ11σ33
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AFNS2 − S,C

In the AFNS2 − S,C the inverse of S is given by

S−1 =

⎛
⎝ 1 −σ12

σ22
−σ13

σ33

0 1
σ22

0

0 0 1
σ33

⎞
⎠

and the determinant is given by

det(S) = σ22σ33

4.12 Appendix: Density Forecasts

In this appendix we focus on forecasting densities in affine models, rather
than just means and variances.

Here, we consider the discrete form of an affine model with observations at
time t = 1, 2, . . . , T . Using the state-space form of the model implies that

p(yt+n(T + n)|Ωt) =p(Xt+1|Xt)× . . .× p(Xt+n|Xt+n−1)×
p(yt+n(T + n)|Xt+n)

It is evident that if one-step-ahead state predictions, p(Xt+1|Xt), are cor-
rectly specified, then the model will perform well in forecasting yields over
the long horizon.

To generate the densities we use an Euler approximation of the state dy-
namics, with each month being split into 25 steps. We generate 25,000
samples and use a kernel estimator to smooth the simulated density.

Evaluating density forecasts 1 month ahead

Since we want to evaluate the ability of the models in forecasting 1 month-
ahead predictions of densities, we need a formal test. We consider the
Probability Integral Transform (henceforth PIT), as suggested by Diebold,
Gunther, and Tay (1998).

Consider a yield, yt, with density f(yt|Ωt−s), i.e. the density of the yield at
time t, conditional on the information at time t− s. Define the probability
integral transform, ut, as

ut =

∫ y(t,T )

−∞

f(y|Ωt−s)dy
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where y(t, T ) is the observed yield, with maturity T − t.

Using the probability integral transform, we obtain the realized quantiles
in the conditional distribution. Consider a sequence of probability integral
transforms, {ut}Tt=1, then two conditions must hold for the model to be well
specified.

First, the probability integral transforms must follow a Uniform distribution
over the unit interval, [0, 1]. Second, the sequence must be independent -
the past values of the sequence cannot be used to forecast the next value.

To conduct a formal test, we consider the method of Berkowitz (2001).
Consider the sequence {zt}Tt=1, where

zt = Φ−1(ut)

and Φ−1(u) is the inverse of the standard normal distribution function.
If {ut}Tt=1 form a uniform and independent sequence, then {zt}Tt=1 form a
standard Normal and independent sequence.

Next step in the test of Berkowitz (2001) is to consider the AR(1) model:18

zt+1 − μ = ρ (zt − μ) + εt+1, εt+1 ∼ N (0, σ2)

so that under the hypothesis of independent and standard Normal data, we
have that μ = 0, ρ = 0 and σ = 1. The Likelihood-ratio test size is given
by

LRPIT = −2 (l(z|0, 0, 1)− l(z|μ, ρ, σ))

where (ignoring constant terms)

l(z|μ, ρ, σ) = −1

2

[
log

σ2

1− ρ2
+

(z1 − μ/(1− ρ))2

σ2/(1− ρ2)
+

(T − 1) log(σ2) +
T∑
t=2

(zt − (1− μ)ρ− ρZt−1)
2

σ2

]

Likelihood ratio tests for independence only (ρ = 0) and for standard Nor-
mality only (μ = 0 and σ = 1) can be defined in an analogous fashion.

18More lags and possibly time variation could be included in this specification. We
however, choose this simple specification as it is intuitive and should be sufficient to test
against a standard normal distribution.
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Results from Probability Integral Transform tests

Tables 4.18 to 4.22 present the results from the PIT-tests.

First, the tables show the likelihood ratio-test for zero mean, unit variance
and no autocorrelation. It is evident that most of the models fail this test;
in fact it is only for the 3-month maturity and for the AFNS2−LC-model
that the hypothesis of zero mean, unit variance and no autocorrelation is
not rejected.

Second to assess to which extent, the results are driven by autocorrelation in
the PITs, we consider the test, where the autocorrelation can be estimated
freely, but still with zero mean and unit variance.

Interestingly, the AFNS3 and AFNS3 − CA, perform quite well for most
maturities, when ignoring autocorrelation in the PIT time series. This im-
plies that, when just considering matching the distribution, i.e. mainly mean
and variance, the AFNS3 and AFNS3 − CA perform well in short term
forecasts. Recall that for most models, the one-month forecasts are unbi-
ased, as measured by the t-statistics, and coupled with the high correlations
with the E-GARCH volatility, these results are not a big surprise.

Evaluating density forecasts 1 and 5 years ahead

When considering density forecasts 1 and 5 years ahead, we consider fore-
casting quantiles, rather than the PIT-test above.

Consider a quantile on level α, and let y(t, t + τ) be the yield at time t
with maturity τ , and let Q(α|Ωt−s) be the yield at the quantile level α
conditional on the information up to time t − s, in one of the considered
models. Then define a hit function as

I(t, τ, α) =

{
1 if y(t, t+ τ) ≤ Q(α|Ωt−s)
0 if y(t, t+ τ) > Q(α|Ωt−s)

in this manner the hit function forms a sequence of zeros and ones, e.g.
(0, 0, 1, 0, . . . , 1), which gives a history of whether the quantile has been
exceeded or not. Christoffersen (1998) points out that the problem of de-
termining the accuracy of a VaR model (or in this case quantiles), is to test
if the sequence {I(t, τ, α)}Tt=1 satisfies two properties.

First, the Unconditional Coverage Property, which implies that the proba-
bility of exceeding Q(α|Ωt−s) should be equal to α, or more in the previous
notation Pr (I(t, τ, α) = 1) = α. Obviously if this is not the case, the model
would under- or overestimate the actual risk.
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Second, the Independence Property, implies that there is a restriction on how
often violations can occur. For instance I(t1, τ, α) must be independent of
I(t2, τ, α), such that I(t1, τ, α) cannot be used for forecasting I(t2, τ, α) (for
t1 < t2). If a model cannot adopt to changing market conditions, then the
model could suffer from violations for multiple periods in a row, making it
less useful for risk management.

In the present setting with a downward trend in the interest-rate level, we do
not expect the independence property to hold. This is also indicated by the
PIT-tests, where all model fail the full test, which includes autocorrelation.
Visual inspection of our time series also confirms that the independence
property does not hold. Instead we only consider the unconditional coverage
property.

Results from the quantile forecasts

Table 4.23 to 4.32 present the results from the quantile forecasts. For each
model, the tables show the estimated frequency of quantile exceedences
(here termed quantile prediction probabilities (QPD)):

QPD ≡ α̂ =
1

T

T∑
t=1

I(t, τ, α)

where I(t, τ, α) is the hit function defined above, and T is the sample size.

Each table presents the QPDs, along with t-statistics based standard er-
rors from the estimation of the QPDs. Standard errors are calculated as
SD =

√
α̂(1− α̂)/T , where α̂ is the estimated QPD. Thus we do not take

autocorrelation in the exceedences into account, however the results in this
section are quite clear so the biased standard deviations are not likely to
affect the results greatly.

For the one year forecasts (Tables 4.23 to 4.27) it is mainly the AFNS1−L
and AFNS1 − C-models that perform well, by matching the quantiles for
the majority of the yields. On the other hand, the AFNS2 − SC model
performs the worst, forecasting quantiles that are far too low, compared to
the data. For the CIR-based models, CIR− 2, AFNS3 and AFNS3−CA,
the results are quite interesting. For the lower quantiles, the models forecast
quantiles that are too high compared to the data, i.e. putting to little risk in
the lower tail of the distribution. For the higher quantiles the picture is a bit
mixed; for the shorter maturities, the Nelson-Siegel-based models forecast
quantiles that are too low, i.e. understating the upward risk to interest-rate
changes. For longer-term interest-rates all the CIR-based models forecast
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the upper quantiles quite well, i.e. there is no statistical difference between
the observed and model-based quantiles.

For the five-year forecast (Tables 4.28 to 4.32), there is an interesting finding
for the non-CIR-based models (AFNS1 and AFNS2-models). They all
(expect for the 3-month yield) forecast lower quantiles that are far too
low. For instance for the 10 year yield, there are no realized observations
below the 10 percent quantile. In terms of the upper quantiles, the picture
is almost the same, there are no or only a few observations above the 90
percent quantile. All in all, this implies that these models may provide a
good forecast of the mean, but distributions are generally too wide.

In terms of the CIR-based models (the CIR−2, AFNS3 and AFNS3−CA),
they do not perform very well either. In term of the lower quantiles, the
models typically have a large portion of the observed yields below the 5
percent quantile (i.e. around 40-70 percent). In terms of the upper quantiles
these models perform slightly worse than the non-CIR-based models. We
believe the poor performance of the CIR-based models to be an artifact of
the downward trend in the level of the interest-rates, coupled with a model
structure that ensures strict positivity of interest-rates. This is especially a
weakness when one is mostly exposed to risk of falling interest-rates.
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4.13 Appendix: Tables with out-of-sample

forecast results

3M 2Y 5Y 10Y 15Y

CIR− 2 -0.87 -4.51 0.64 -3.84 -21.6

( -0.1279 ) ( -0.6379 ) ( 0.1189 ) ( -0.7915 ) ( -2.928 )

AFNS1 − L 0.94 -2.26 -0.57 1.07 -2.65

( 0.2681 ) ( -0.7225 ) ( -0.2398 ) ( 0.5529 ) ( -1.0008 )

AFNS1 − C -3.62 3.06 -1.42 -5.47 -0.32

( -1.2035 ) ( 1.0062 ) ( -0.9715 ) ( -2.4147 ) ( -0.1242 )

AFNS2 − LC 0.99 1.17 1.72 2.12 -1.65

( 0.2853 ) ( 0.3447 ) ( 0.6691 ) ( 1.049 ) ( -0.6 )

AFNS2 − SC 3.16 31.49 27.74 14.23 14.93

( 1.2152 ) ( 6.784 ) ( 14.227 ) ( 5.4185 ) ( 5.1105 )

AFNS3 -2.46 -1.02 -0.01 -3.33 -12.99

( -0.6899 ) ( -0.2491 ) ( -0.0046 ) ( -1.0534 ) ( -2.4615 )

AFNS3 − CA -2.37 -0.23 2.3 -3.09 -16.13

( -0.6538 ) ( -0.0557 ) ( 0.7961 ) ( -0.9874 ) ( -2.9508 )

Table 4.6: Mean errors for 1-month point forecasts measured in
basis points. t-statistics for zero mean errors are reported in brackets.
t-statistics are based on Newey and West (1987) standard errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 -28.87 -29.12 -24.06 -30.87 -49.75

( -0.83 ) ( -1.0409 ) ( -1.2122 ) ( -1.8414 ) ( -2.7214 )

AFNS1 − L 3.28 -5.29 -3.56 -0.82 -4.23

( 0.0812 ) ( -0.1645 ) ( -0.1536 ) ( -0.043 ) ( -0.2191 )

AFNS1 − C -14.66 3.34 -1.3 -11.38 -9.09

( -0.3929 ) ( 0.1157 ) ( -0.0685 ) ( -0.7252 ) ( -0.5434 )

AFNS2 − LC 7.98 15.06 13.7 9.48 3.43

( 0.2005 ) ( 0.4632 ) ( 0.5756 ) ( 0.4745 ) ( 0.1703 )

AFNS2 − SC 143.44 271.6 279.93 222.21 194.04

( 3.9084 ) ( 8.8893 ) ( 12.5794 ) ( 10.8869 ) ( 9.1715 )

AFNS3 -24.27 -22.84 -24.73 -30.91 -41.28

( -0.6472 ) ( -0.7699 ) ( -1.1962 ) ( -1.7502 ) ( -2.1872 )

AFNS3 − CA -25.94 -20.25 -20.28 -29.54 -44.07

( -0.6945 ) ( -0.6743 ) ( -0.9469 ) ( -1.5999 ) ( -2.2393 )

Table 4.7: Mean errors for 1-year point forecasts measured in ba-
sis points. t-statistics for zero mean errors are reported in brackets. t-
statistics are based on Newey and West (1987) standard errors.

3M 2Y 5Y 10Y 15Y

CIR− 2 -134.86 -128.96 -115.21 -119.96 -142.21

( -2.0061 ) ( -2.8772 ) ( -4.4861 ) ( -6.3831 ) ( -6.9637 )

AFNS1 − L 57.72 25.75 20.5 20.28 11.72

( 0.8941 ) ( 0.5462 ) ( 0.6497 ) ( 0.7685 ) ( 0.4297 )

AFNS1 − C 33.53 46.07 33.44 14.38 11.75

( 0.4312 ) ( 0.7388 ) ( 0.7156 ) ( 0.3764 ) ( 0.3253 )

AFNS2 − LC 55.79 49.59 39.46 28.35 15.91

( 1.0067 ) ( 1.3041 ) ( 1.7359 ) ( 1.5804 ) ( 0.8399 )

AFNS2 − SC 722.57 838.56 829.8 763.45 734.6

( 12.546 ) ( 16.0571 ) ( 17.4618 ) ( 14.5777 ) ( 12.7829 )

AFNS3 -75.26 -93.43 -102.15 -109.96 -123.24

( -1.3116 ) ( -2.3579 ) ( -4.3854 ) ( -6.4404 ) ( -6.6778 )

AFNS3 − CA -87.42 -100.16 -107.89 -119.99 -137.54

( -1.5287 ) ( -2.5662 ) ( -4.8115 ) ( -7.3512 ) ( -7.6402 )

Table 4.8: Mean errors for 5-year point forecasts measured in ba-
sis points. t-statistics for zero mean errors are reported in brackets. t-
statistics are based on Newey and West (1987) standard errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 23.17 25.78 23.42 22.24 30.59

AFNS1 − L 18.9 19.69 18.5 15.67 16.39

AFNS1 − C 18.36 19.18 18.24 16.94 16.5

AFNS2 − LC 19.05 19.61 18.34 15.75 16.34

AFNS2 − SC 18.15 33.69 29.8 19.72 20.71

AFNS3 18.58 20.73 19.56 18.44 23.02

AFNS3 − CA 18.89 20.58 19.36 18.57 24.27

3M 2Y 5Y 10Y 15Y

CIR− 2 vs. AFNS1 − L 1.685 4.2635 2.567 2.7433 3.1385

CIR− 2 vs. AFNS1 − C 1.6644 4.498 2.1909 2.0006 3.1673

CIR− 2 vs. AFNS2 − LC 1.6003 4.314 2.8971 2.7139 3.134

CIR− 2 vs. AFNS2 − SC 2.0004 -1.8768 -2.8497 0.7577 1.7759

CIR− 2 vs. AFNS3 1.5742 2.8889 2.2936 2.1369 2.6163

CIR− 2 vs. AFNS3 − CA 1.4351 3.1321 2.6369 2.5295 2.0726

AFNS1 − L vs. AFNS1 − C 0.9689 0.9366 0.5128 -1.1807 -0.3881

AFNS1 − L vs. AFNS2 − LC -0.7973 0.1977 0.5121 -0.5027 0.2569

AFNS1 − L vs. AFNS2 − SC 1.3896 -3.3667 -6.9106 -2.9107 -1.898

AFNS1 − L vs. AFNS3 0.5051 -1.5248 -2.2122 -2.0464 -2.674

AFNS1 − L vs. AFNS3 − CA 0.0191 -1.3851 -1.3001 -2.1394 -2.8574

AFNS1 − C vs. AFNS2 − LC -1.112 -3.7136 -0.1302 1.0217 0.4785

AFNS1 − C vs. AFNS2 − SC 0.2535 -3.7658 -5.43 -1.2263 -1.9692

AFNS1 − C vs. AFNS3 -0.474 -1.689 -1.6519 -1.1731 -2.5276

AFNS1 − C vs. AFNS3 − CA -1.0286 -1.6187 -1.0486 -1.1269 -2.7335

AFNS2 − LC vs. AFNS2 − SC 1.3459 -3.6354 -8.2253 -2.9473 -2.0198

AFNS2 − LC vs. AFNS3 0.6593 -1.2768 -3.0961 -1.9299 -2.6085

AFNS2 − LC vs. AFNS3 − CA 0.2085 -1.1975 -2.4129 -2.0235 -2.7891

AFNS2 − SC vs. AFNS3 -0.4419 2.8948 6.16 0.4866 -0.5232

AFNS2 − SC vs. AFNS3 − CA -0.7529 2.9653 7.364 0.4446 -0.7452

AFNS3 vs. AFNS3 − CA -1.8102 1.4119 0.5083 -0.3649 -2.0927

Table 4.9: Top Panel: Mean absolute errors for 1-month point forecasts.
Bottom Panel: Pairwise comparison of 1-month point forecasts using the
Diebold and Mariano (1995) test. The table reports t-tests for differences
between models. t-statistics are based on Newey and West (1987) standard
errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 93.84 80.31 65.03 54.43 62.38

AFNS1 − L 105.29 79.58 66.21 57.98 56.36

AFNS1 − C 103.22 83.24 67.73 59.48 59.01

AFNS2 − LC 104.8 80.58 67.54 59.67 57.54

AFNS2 − SC 168.28 271.64 279.93 222.21 194.04

AFNS3 100.32 80.08 66.55 55.5 57.07

AFNS3 − CA 101.35 80.92 66.21 56.87 58.83

3M 2Y 5Y 10Y 15Y

CIR− 2 vs. AFNS1 − L -1.1945 0.0786 -0.1567 -0.4634 0.6365

CIR− 2 vs. AFNS1 − C -1.404 -0.3995 -0.3784 -0.8251 0.424

CIR− 2 vs. AFNS2 − LC -1.0808 -0.0209 -0.2275 -0.539 0.4436

CIR− 2 vs. AFNS2 − SC -2.4958 -5.3415 -9.0112 -5.9977 -4.0191

CIR− 2 vs. AFNS3 -0.7496 0.0331 -0.678 -0.4212 1.2258

CIR− 2 vs. AFNS3 − CA -0.8615 -0.0943 -0.3489 -0.7462 0.8458

AFNS1 − L vs. AFNS1 − C 0.2791 -0.6019 -0.3082 -0.2363 -0.428

AFNS1 − L vs. AFNS2 − LC 0.2173 -0.1833 -0.2917 -0.5328 -0.4609

AFNS1 − L vs. AFNS2 − SC -2.3782 -5.4216 -10.7485 -7.2183 -5.0933

AFNS1 − L vs. AFNS3 0.54 -0.0827 -0.0518 0.3146 -0.0884

AFNS1 − L vs. AFNS3 − CA 0.4078 -0.2445 0.0002 0.1543 -0.266

AFNS1 − C vs. AFNS2 − LC -0.1795 0.4036 0.0341 -0.0247 0.2058

AFNS1 − C vs. AFNS2 − SC -2.387 -6.1462 -11.8557 -6.926 -5.145

AFNS1 − C vs. AFNS3 0.4354 0.394 0.179 0.5185 0.2128

AFNS1 − C vs. AFNS3 − CA 0.2859 0.3556 0.3096 0.352 0.0188

AFNS2 − LC vs. AFNS2 − SC -2.4903 -5.9434 -13.2706 -7.8794 -5.3009

AFNS2 − LC vs. AFNS3 0.4412 0.048 0.0955 0.402 0.0465

AFNS2 − LC vs. AFNS3 − CA 0.3257 -0.0349 0.1497 0.2899 -0.1165

AFNS2 − SC vs. AFNS3 2.1517 5.3065 8.9411 5.7529 4.0876

AFNS2 − SC vs. AFNS3 − CA 2.1286 5.4251 9.3616 5.7002 3.9135

AFNS3 vs. AFNS3 − CA -1.2831 -0.5823 0.1637 -0.7016 -1.2269

Table 4.10: Top Panel: Mean absolute errors for 1-year point forecasts.
Bottom Panel: Pairwise comparison of 1-year point forecasts using the
Diebold and Mariano (1995) test. The table reports t-tests for differences
between models. t-statistics are based on Newey and West (1987) standard
errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 184.13 146.45 118.48 119.96 142.21

AFNS1 − L 132.86 93.87 63.87 55.94 59.61

AFNS1 − C 160.13 138.04 111.71 94.51 89.08

AFNS2 − LC 120.81 83.07 61.44 50.29 46.74

AFNS2 − SC 722.57 838.56 829.8 763.45 734.6

AFNS3 142.83 116.54 105.09 109.96 123.24

AFNS3 − CA 147.17 120.25 109.82 119.99 137.54

3M 2Y 5Y 10Y 15Y

CIR− 2 vs. AFNS1 − L 0.8124 1.0908 1.6418 2.3192 3.0589

CIR− 2 vs. AFNS1 − C 0.4422 0.1584 0.1881 0.9441 1.8479

CIR− 2 vs. AFNS2 − LC 1.065 1.1808 1.7737 3.0022 3.9496

CIR− 2 vs. AFNS2 − SC -7.6147 -10.9371 -15.6876 -13.9772 -11.4666

CIR− 2 vs. AFNS3 1.4283 1.7701 1.3742 1.8582 3.8886

CIR− 2 vs. AFNS3 − CA 1.367 1.7071 0.9911 -0.0064 0.9711

AFNS1 − L vs. AFNS1 − C -2.3985 -3.7605 -4.3816 -6.4203 -8.7866

AFNS1 − L vs. AFNS2 − LC 1.7462 0.9935 0.3033 0.6774 1.8278

AFNS1 − L vs. AFNS2 − SC -10.6331 -15.0459 -14.0469 -11.7654 -10.5389

AFNS1 − L vs. AFNS3 -0.2028 -0.5501 -1.3959 -2.1464 -2.5987

AFNS1 − L vs. AFNS3 − CA -0.2665 -0.611 -1.5525 -2.5987 -3.2188

AFNS1 − C vs. AFNS2 − LC 3.2288 5.0872 4.5721 4.8703 4.6388

AFNS1 − C vs. AFNS2 − SC -10.7758 -12.8706 -12.7885 -11.2831 -10.0628

AFNS1 − C vs. AFNS3 0.398 0.441 0.1899 -0.6195 -1.2952

AFNS1 − C vs. AFNS3 − CA 0.271 0.3523 0.0544 -1.0508 -1.8616

AFNS2 − LC vs. AFNS2 − SC -11.042 -14.5229 -14.5737 -12.9612 -11.7523

AFNS2 − LC vs. AFNS3 -0.4725 -0.697 -1.4743 -2.7439 -3.392

AFNS2 − LC vs. AFNS3 − CA -0.5173 -0.7473 -1.6387 -3.3244 -4.106

AFNS2 − SC vs. AFNS3 8.7173 11.9422 15.8371 13.1773 10.9435

AFNS2 − SC vs. AFNS3 − CA 8.3437 11.6454 15.6421 13.0456 10.7617

AFNS3 vs. AFNS3 − CA -0.9146 -1.5049 -3.1973 -7.6749 -11.1326

Table 4.11: Top Panel: Mean absolute errors for 5-year point forecasts.
Bottom Panel: Pairwise comparison of 5-year point forecasts using the
Diebold and Mariano (1995) test. The table reports t-tests for differences
between models. t-statistics are based on Newey and West (1987) standard
errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 -0.87 -4.51 0.64 -3.84 -21.6

( -0.1279 ) ( -0.6379 ) ( 0.1189 ) ( -0.7915 ) ( -2.928 )

AFNS1 − L 0.94 -2.26 -0.57 1.07 -2.65

( 0.2681 ) ( -0.7225 ) ( -0.2398 ) ( 0.5529 ) ( -1.0008 )

AFNS1 − C -3.62 3.06 -1.42 -5.47 -0.32

( -1.2035 ) ( 1.0062 ) ( -0.9715 ) ( -2.4147 ) ( -0.1242 )

AFNS2 − LC 0.99 1.17 1.72 2.12 -1.65

( 0.2853 ) ( 0.3447 ) ( 0.6691 ) ( 1.049 ) ( -0.6 )

AFNS2 − SC 3.16 31.49 27.74 14.23 14.93

( 1.2152 ) ( 6.784 ) ( 14.227 ) ( 5.4185 ) ( 5.1105 )

AFNS3 -2.46 -1.02 -0.01 -3.33 -12.99

( -0.6899 ) ( -0.2491 ) ( -0.0046 ) ( -1.0534 ) ( -2.4615 )

AFNS3 − CA -2.37 -0.23 2.3 -3.09 -16.13

( -0.6538 ) ( -0.0557 ) ( 0.7961 ) ( -0.9874 ) ( -2.9508 )

Table 4.12: Mean errors for 1-month volatility forecasts measured
in basis points. t-statistics for zero mean errors are reported in brackets.
t-statistics are based on Newey and West (1987) standard errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 -49.33 -13.48 12.81 20.65 24.56

( -2.9917 ) ( -2.2343 ) ( 2.4998 ) ( 5.2513 ) ( 5.538 )

AFNS1 − L 6.34 -11.16 -10.76 -9.93 -8.36

( 0.3651 ) ( -1.3397 ) ( -1.4366 ) ( -1.7233 ) ( -1.2653 )

AFNS1 − C -1.73 -29.38 -35.52 -30.27 -25.85

( -0.0877 ) ( -2.2549 ) ( -2.8621 ) ( -2.9855 ) ( -2.5267 )

AFNS2 − LC 6.89 -18.38 -16.49 -12.64 -10.01

( 0.3934 ) ( -2.0908 ) ( -2.1388 ) ( -2.1425 ) ( -1.4892 )

AFNS2 − SC -7.98 -20.97 -24.69 -28.78 -29.01

( -0.4317 ) ( -2.0598 ) ( -2.5982 ) ( -3.6915 ) ( -3.5362 )

AFNS3 51.66 20.6 21.61 27.54 31.7

( 3.9029 ) ( 3.281 ) ( 4.2437 ) ( 8.4627 ) ( 9.728 )

AFNS3 − CA 41.85 11.55 13.79 20.61 25.43

( 3.3766 ) ( 1.7963 ) ( 2.4998 ) ( 5.6274 ) ( 7.3623 )

Table 4.13: Mean errors for 1-year volatility forecasts measured in
basis points. t-statistics for zero mean errors are reported in brackets.
t-statistics are based on Newey and West (1987) standard errors.

3M 2Y 5Y 10Y 15Y

CIR− 2 -36.69 31.92 66.82 62.77 63.45

( -1.0176 ) ( 2.5187 ) ( 7.8245 ) ( 8.2337 ) ( 7.1063 )

AFNS1 − L 21.17 11.77 8.14 -6.42 -8.33

( 0.9248 ) ( 1.3716 ) ( 1.0616 ) ( -1.0238 ) ( -1.1227 )

AFNS1 − C -76.63 -101.32 -110.53 -121.05 -122.04

( -2.6755 ) ( -7.3619 ) ( -7.5727 ) ( -8.0712 ) ( -7.3627 )

AFNS2 − LC 18.59 0.32 -1.4 -12.9 -14.16

( 0.8811 ) ( 0.0351 ) ( -0.1781 ) ( -2.0432 ) ( -2.1166 )

AFNS2 − SC -199.96 -204.57 -211.85 -233.06 -239.72

( -5.4566 ) ( -9.5532 ) ( -9.6411 ) ( -10.3565 ) ( -9.9328 )

AFNS3 120.92 77.13 80.19 81.29 83.78

( 5.3999 ) ( 8.3685 ) ( 12.3702 ) ( 19.3075 ) ( 13.8682 )

AFNS3 − CA 96.88 63.27 65.32 63.72 66.83

( 4.32 ) ( 7.367 ) ( 8.184 ) ( 10.1167 ) ( 9.1737 )

Table 4.14: Mean errors for 5-year volatility forecasts measured in
basis points. t-statistics for zero mean errors are reported in brackets.
t-statistics are based on Newey and West (1987) standard errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 32.13 15.97 11.83 9.79 9.72

AFNS1 − L 16.58 15.17 14.97 12.6 12.5

AFNS1 − C 16.74 15.76 17.35 13.12 12.79

AFNS2 − LC 16.66 17.84 16.94 13.49 13.02

AFNS2 − SC 15.94 15.17 16.64 13.05 12.63

AFNS3 12.59 11.94 12.03 9.31 8.87

AFNS3 − CA 13.12 13.33 13.2 9.71 9.18

3M 2Y 5Y 10Y 15Y

CIR− 2 vs. AFNS1 − L 4.0665 0.5943 -3.2091 -3.9874 -3.2214

CIR− 2 vs. AFNS1 − C 4.1781 0.1846 -3.4143 -3.8747 -3.1792

CIR− 2 vs. AFNS2 − LC 4.0408 -1.5194 -4.7053 -5.1325 -3.8466

CIR− 2 vs. AFNS2 − SC 4.3657 0.8523 -3.9321 -4.4958 -3.3305

CIR− 2 vs. AFNS3 4.5985 4.0707 -0.7097 1.023 1.5551

CIR− 2 vs. AFNS3 − CA 4.8291 2.7861 -3.4276 0.283 1.5573

AFNS1 − L vs. AFNS1 − C -0.1962 -0.5588 -1.954 -0.7133 -0.4144

AFNS1 − L vs. AFNS2 − LC -0.9356 -5.1479 -7.4712 -11.3452 -9.3946

AFNS1 − L vs. AFNS2 − SC 0.8368 0.0065 -1.7313 -0.6341 -0.1806

AFNS1 − L vs. AFNS3 3.0971 2.9776 2.7257 3.6382 3.0744

AFNS1 − L vs. AFNS3 − CA 3.7276 2.0566 1.9461 3.4028 3.0683

AFNS1 − C vs. AFNS2 − LC 0.0867 -2.6831 0.3715 -0.5055 -0.3173

AFNS1 − C vs. AFNS2 − SC 2.0983 1.8715 1.6669 0.3663 1.2069

AFNS1 − C vs. AFNS3 3.431 2.8813 3.1057 3.1476 2.7091

AFNS1 − C vs. AFNS3 − CA 5.3936 2.2072 2.8053 3.077 2.7876

AFNS2 − LC vs. AFNS2 − SC 0.9574 3.8397 0.357 0.6143 0.5397

AFNS2 − LC vs. AFNS3 3.2775 4.6524 4.1105 4.5248 3.5609

AFNS2 − LC vs. AFNS3 − CA 3.9263 4.3823 3.6655 4.3609 3.579

AFNS2 − SC vs. AFNS3 3.9003 3.0314 3.451 3.3774 2.7516

AFNS2 − SC vs. AFNS3 − CA 8.5896 2.1535 3.0598 3.3768 2.8532

AFNS3 vs. AFNS3 − CA -0.9161 -3.2542 -2.7995 -1.5879 -1.4881

Table 4.15: Top Panel: Mean absolute errors for 1-month volatility fore-
casts. Bottom Panel: Pairwise comparison of 1-month volatility forecasts
using the Diebold and Mariano (1995) test. The table reports t-tests for dif-
ferences between models. t-statistics are based on Newey and West (1987)
standard errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 64.4 21.66 20.38 24.61 27.87

AFNS1 − L 34.73 22.77 22.95 17.75 19.2

AFNS1 − C 38.24 41.24 43.49 35.21 32.7

AFNS2 − LC 34.47 28.58 26.06 19.1 19.71

AFNS2 − SC 40.98 32.98 34.24 33.29 33.78

AFNS3 52.48 25.79 25.57 28.41 32.01

AFNS3 − CA 45.38 23.68 24.23 24.11 27.12

3M 2Y 5Y 10Y 15Y

CIR− 2 vs. AFNS1 − L 2.0112 -0.2429 -0.4941 1.7744 1.5944

CIR− 2 vs. AFNS1 − C 1.741 -3.7517 -2.5862 -1.3619 -0.5679

CIR− 2 vs. AFNS2 − LC 1.9874 -1.9139 -1.066 1.348 1.3985

CIR− 2 vs. AFNS2 − SC 1.7567 -3.7972 -2.5431 -1.6959 -0.8121

CIR− 2 vs. AFNS3 0.793 -0.6214 -1.7632 -1.4905 -1.6016

CIR− 2 vs. AFNS3 − CA 1.3871 -0.4764 -1.6376 0.4531 0.5093

AFNS1 − L vs. AFNS1 − C -0.8994 -2.6361 -2.9884 -3.0377 -2.489

AFNS1 − L vs. AFNS2 − LC 0.5774 -3.7835 -2.1288 -1.7948 -0.8203

AFNS1 − L vs. AFNS2 − SC -2.2944 -3.7053 -4.5132 -4.8371 -4.335

AFNS1 − L vs. AFNS3 -2.3169 -0.5003 -0.4329 -2.3546 -2.3455

AFNS1 − L vs. AFNS3 − CA -1.4405 -0.2201 -0.281 -1.4633 -1.5171

AFNS1 − C vs. AFNS2 − LC 0.9106 1.9526 2.4222 2.6249 2.2832

AFNS1 − C vs. AFNS2 − SC -0.8579 1.7044 1.8094 0.5253 -0.3456

AFNS1 − C vs. AFNS3 -1.7682 1.544 1.7384 0.8263 0.0845

AFNS1 − C vs. AFNS3 − CA -0.9266 2.1744 2.2887 1.4398 0.6874

AFNS2 − LC vs. AFNS2 − SC -2.0964 -1.8671 -3.3142 -4.1284 -3.9

AFNS2 − LC vs. AFNS3 -2.3536 0.4625 0.0789 -1.8681 -2.08

AFNS2 − LC vs. AFNS3 − CA -1.4603 1.3422 0.405 -1.077 -1.3123

AFNS2 − SC vs. AFNS3 -1.3979 1.1247 1.3427 0.8029 0.2451

AFNS2 − SC vs. AFNS3 − CA -0.5883 2.3146 2.2973 1.7598 0.9813

AFNS3 vs. AFNS3 − CA 3.0646 0.6986 0.5446 2.004 2.455

Table 4.16: Top Panel: Mean absolute errors for 1-year volatility forecasts.
Bottom Panel: Pairwise comparison of 1-year volatility forecasts using the
Diebold and Mariano (1995) test. The table reports t-tests for differences
between models. t-statistics are based on Newey and West (1987) standard
errors.
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3M 2Y 5Y 10Y 15Y

CIR− 2 80.82 36.07 66.82 62.77 63.45

AFNS1 − L 44.3 21.46 19.18 17.72 19.05

AFNS1 − C 102.02 103.76 111.93 121.61 122.74

AFNS2 − LC 42.77 19.94 18.85 19.74 20.56

AFNS2 − SC 202.79 204.57 211.85 233.06 239.72

AFNS3 120.92 77.13 80.19 81.29 83.78

AFNS3 − CA 96.88 63.28 65.37 63.72 66.83

3M 2Y 5Y 10Y 15Y

CIR− 2 vs. AFNS1 − L 2.2802 1.3761 5.2256 0.0045 5.0882

CIR− 2 vs. AFNS1 − C -1.4412 -3.2208 -2.0978 -0.0059 -2.3946

CIR− 2 vs. AFNS2 − LC 2.4066 1.675 5.3097 0.0043 4.5126

CIR− 2 vs. AFNS2 − SC -3.1699 -5.4425 -5.0027 -0.017 -5.455

CIR− 2 vs. AFNS3 -1.9924 -3.5793 -1.6747 -0.0019 -6.3537

CIR− 2 vs. AFNS3 − CA -0.8184 -2.8777 0.285 -0.0001 -1.4049

AFNS1 − L vs. AFNS1 − C -2.7069 -5.7338 -6.0203 -6.5377 -5.9846

AFNS1 − L vs. AFNS2 − LC 0.5108 0.3376 0.0849 -0.6247 -0.4988

AFNS1 − L vs. AFNS2 − SC -3.3074 -7.8362 -8.1353 -9.0825 -8.7645

AFNS1 − L vs. AFNS3 -6.4115 -9.4228 -13.0863 -16.1611 -10.1323

AFNS1 − L vs. AFNS3 − CA -4.6646 -6.6731 -5.9603 -8.0308 -6.9329

AFNS1 − C vs. AFNS2 − LC 2.9888 6.6 6.6818 6.3298 5.9367

AFNS1 − C vs. AFNS2 − SC -3.5245 -8.3813 -8.1859 -9.3567 -9.9273

AFNS1 − C vs. AFNS3 -0.6478 1.4735 1.8851 2.2589 1.7947

AFNS1 − C vs. AFNS3 − CA 0.1774 2.2026 2.3882 2.8751 2.4281

AFNS2 − LC vs. AFNS2 − SC -3.4835 -8.3355 -8.5493 -8.7841 -8.6153

AFNS2 − LC vs. AFNS3 -5.8932 -5.9519 -8.8425 -10.5259 -8.4354

AFNS2 − LC vs. AFNS3 − CA -4.198 -4.8453 -5.2455 -6.2874 -5.787

AFNS2 − SC vs. AFNS3 5.3172 4.5908 5.2843 6.0118 5.3172

AFNS2 − SC vs. AFNS3 − CA 5.7217 5.2012 5.5662 6.3276 5.7217

AFNS3 vs. AFNS3 − CA 12.8575 2.9561 3.2687 5.6332 7.7661

Table 4.17: Top Panel: Mean absolute errors for 5-year volatility forecasts.
Bottom Panel: Pairwise comparison of 5-year volatility forecasts using the
Diebold and Mariano (1995) test. The table reports t-tests for differences
between models. t-statistics are based on Newey and West (1987) standard
errors.
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μ ρ σ Pr(H1 = H0) ρ2 Pr(H2 = H0)

CIR− 2 -0.0331 0.6292 0.6404 0.0000 0.6238 0.0000

( -0.2654 ) ( 17.6246 ) ( -5.9048 ) ( 6.6221 )

AFNS1 − L -0.0503 0.2272 1.4972 0.0000 0.2288 0.0000

( -0.3311 ) ( 2.7242 ) ( 6.4993 ) ( 4.4775 )

AFNS1 − C -0.1315 0.129 1.0783 4.7490 0.1421 13.4383

( -1.3501 ) ( 2.1464 ) ( 1.0038 ) ( 1.9791 )

AFNS2 − LC 0.0329 0.1706 1.0616 7.6944 0.1715 51.7550

( 0.3274 ) ( 2.8818 ) ( 0.7959 ) ( 2.3525 )

AFNS2 − SC 0.1118 0.1522 1.0942 2.5141 0.1604 12.1432

( 1.1026 ) ( 2.4951 ) ( 1.2108 ) ( 2.2623 )

AFNS3 -0.1686 0.214 1.2514 0.0000 0.2288 0.0019

( -1.3499 ) ( 3.0703 ) ( 3.2777 ) ( 3.7632 )

AFNS3 − CA -0.1497 0.2117 1.1369 0.0230 0.2260 1.8315

( -1.3224 ) ( 3.3391 ) ( 1.7826 ) ( 3.3731 )

Table 4.18: Probability Integral transform tests for the 3-month
yield, 1 month ahead. The test is based on Berkowitz (2001). In hy-
pothesis H0 all parameters are estimated freely. In the hypothesis H1,
μ = ρ = 0 and σ = 1. In the hypothesis H2, ρ is estimated freely, and
μ = 0 and σ = 1. Probabilities from the Likelihoodratio-tests (in percent)
and Parameter estimates under H0 and H2 along with t-statistics are re-
ported. The t-statistics are based on tests against H1. t-statistics are based
on Newey and West (1987) standard errors.
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μ ρ σ Pr(H1 = H0) ρ2 Pr(H2 = H0)

CIR− 2 -0.2099 0.6791 0.6095 0.0000 0.6837 0.0000

( -1.6023 ) ( 19.9735 ) ( -6.6866 ) ( 7.2657 )

AFNS1 − L -0.0707 0.347 0.7366 0.0000 0.3489 0.0003

( -0.8043 ) ( 8.4634 ) ( -3.5643 ) ( 3.4995 )

AFNS1 − C 0.0584 0.3274 0.8112 0.0011 0.3305 0.1862

( 0.6206 ) ( 7.2434 ) ( -2.5342 ) ( 3.6199 )

AFNS2 − LC 0.0228 0.3597 0.6871 0.0000 0.3584 0.0000

( 0.2731 ) ( 9.3916 ) ( -4.2514 ) ( 3.3684 )

AFNS2 − SC 0.9467 0.3145 0.7946 0.0000 0.7072 0.0000

( 10.4262 ) ( 7.0993 ) ( -2.8176 ) ( 11.5745 )

AFNS3 -0.0644 0.4472 0.9908 0.0000 0.4478 88.6506

( -0.466 ) ( 8.1014 ) ( -0.1301 ) ( 6.2805 )

AFNS3 − CA -0.0051 0.4497 0.8773 0.0000 0.4488 7.9479

( -0.0415 ) ( 9.1963 ) ( -1.7355 ) ( 5.5821 )

Table 4.19: Probability Integral transform tests for the 2-year yield,
1 month ahead. The test is based on Berkowitz (2001). In hypothesis
H0 all parameters are estimated freely. In the hypothesis H1, μ = ρ = 0
and σ = 1. In the hypothesis H2, ρ is estimated freely, and μ = 0 and σ =
1. Probabilities from the Likelihoodratio-tests (in percent) and Parameter
estimates under H0 and H2 along with t-statistics are reported. The t-
statistics are based on tests against H1. t-statistics are based on Newey
and West (1987) standard errors.
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μ ρ σ Pr(H1 = H0) ρ2 Pr(H2 = H0)

CIR− 2 -0.0314 0.6181 0.7053 0.0000 0.6141 0.0000

( -0.2336 ) ( 15.7277 ) ( -4.7763 ) ( 7.0749 )

AFNS1 − L -0.0120 0.2675 0.7528 0.0003 0.2663 0.0020

( -0.1491 ) ( 6.3842 ) ( -3.2484 ) ( 2.6419 )

AFNS1 − C -0.0327 0.2019 0.7339 0.0002 0.2023 0.0003

( -0.4529 ) ( 4.9364 ) ( -3.4424 ) ( 1.9285 )

AFNS2 − LC 0.0532 0.2771 0.7038 0.0000 0.2798 0.0000

( 0.6982 ) ( 7.0689 ) ( -3.9025 ) ( 2.6125 )

AFNS2 − SC 0.8712 0.2379 0.7399 0.0000 0.6718 0.0000

( 11.4331 ) ( 5.7743 ) ( -3.4634 ) ( 10.0119 )

AFNS3 0.0044 0.3555 0.9822 0.0049 0.3555 94.9428

( 0.0371 ) ( 6.4991 ) ( -0.2418 ) ( 4.7463 )

AFNS3 − CA 0.0983 0.3856 0.8898 0.0004 0.3925 9.6955

( 0.8746 ) ( 7.7742 ) ( -1.5158 ) ( 4.8457 )

Table 4.20: Probability Integral transform tests for the 5-year yield,
1 month ahead. The test is based on Berkowitz (2001). In hypothesis
H0 all parameters are estimated freely. In the hypothesis H1, μ = ρ = 0
and σ = 1. In the hypothesis H2, ρ is estimated freely, and μ = 0 and σ =
1. Probabilities from the Likelihoodratio-tests (in percent) and Parameter
estimates under H0 and H2 along with t-statistics are reported. The t-
statistics are based on tests against H1. t-statistics are based on Newey
and West (1987) standard errors.
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μ ρ σ Pr(H1 = H0) ρ2 Pr(H2 = H0)

CIR− 2 -0.0641 0.6611 0.7075 0.0000 0.6617 0.0000

( -0.4334 ) ( 16.7792 ) ( -4.9576 ) ( 8.119 )

AFNS1 − L 0.0578 0.1253 0.7592 0.0051 0.1297 0.0029

( 0.8463 ) ( 2.9622 ) ( -3.0793 ) ( 1.2654 )

AFNS1 − C -0.1638 0.1373 0.7495 0.0003 0.1759 0.0003

( -2.3982 ) ( 3.2847 ) ( -3.2157 ) ( 1.733 )

AFNS2 − LC 0.0917 0.1368 0.7240 0.0001 0.1495 0.0001

( 1.3915 ) ( 3.3945 ) ( -3.5339 ) ( 1.4024 )

AFNS2 − SC 0.5635 0.257 0.7741 0.0000 0.5032 0.0000

( 6.9056 ) ( 5.9629 ) ( -2.996 ) ( 6.3058 )

AFNS3 -0.1637 0.4614 1.0454 0.0000 0.4741 38.0497

( -1.0965 ) ( 7.9142 ) ( 0.6532 ) ( 7.2052 )

AFNS3 − CA -0.1335 0.5165 0.9249 0.0000 0.5256 27.6644

( -0.9182 ) ( 10.0291 ) ( -1.1209 ) ( 7.3305 )

Table 4.21: Probability Integral transform tests for the 10-year
yield, 1 month ahead. The test is based on Berkowitz (2001). In hy-
pothesis H0 all parameters are estimated freely. In the hypothesis H1,
μ = ρ = 0 and σ = 1. In the hypothesis H2, ρ is estimated freely, and
μ = 0 and σ = 1. Probabilities from the Likelihoodratio-tests (in percent)
and Parameter estimates under H0 and H2 along with t-statistics are re-
ported. The t-statistics are based on tests against H1. t-statistics are based
on Newey and West (1987) standard errors.
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μ ρ σ Pr(H1 = H0) ρ2 Pr(H2 = H0)

CIR− 2 -0.3742 0.7580 0.7271 0.0000 0.8151 0.0001

( -1.6955 ) ( 18.716 ) ( -4.6412 ) ( 13.6992 )

AFNS1 − L -0.0658 0.1750 0.8024 0.0569 0.1790 0.0900

( -0.8613 ) ( 3.9150 ) ( -2.5398 ) ( 1.8530 )

AFNS1 − C 0.0134 0.2032 0.7995 0.0365 0.2029 0.0916

( 0.1703 ) ( 4.5663 ) ( -2.5871 ) ( 2.0982 )

AFNS2 − LC -0.0271 0.1962 0.778 0.0093 0.1960 0.0170

( -0.3566 ) ( 4.5312 ) ( -2.8645 ) ( 1.9718 )

AFNS2 − SC 0.5992 0.3139 0.8148 0.0000 0.5436 0.0000

( 6.4569 ) ( 6.9141 ) ( -2.5027 ) ( 7.3065 )

AFNS3 -0.5441 0.6262 1.0869 0.0000 0.6920 1.3538

( -2.5425 ) ( 10.3333 ) ( 1.4364 ) ( 13.5686 )

AFNS3 − CA -0.5966 0.6653 0.9633 0.0000 0.7486 4.8292

( -2.8329 ) ( 12.3892 ) ( -0.6295 ) ( 14.3136 )

Table 4.22: Probability Integral transform tests for the 15-year
yield, 1 month ahead. The test is based on Berkowitz (2001). In hy-
pothesis H0 all parameters are estimated freely. In the hypothesis H1,
μ = ρ = 0 and σ = 1. In the hypothesis H2, ρ is estimated freely, and
μ = 0 and σ = 1. Probabilities from the Likelihoodratio-tests (in percent)
and Parameter estimates under H0 and H2 along with t-statistics are re-
ported. The t-statistics are based on tests against H1. t-statistics are based
on Newey and West (1987) standard errors.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.0933 0.1 0.2 0.5733 0.7933 0.94 0.9867

( 1.8244 ) ( 0 ) ( -1.5309 ) ( 1.8159 ) ( 1.3107 ) ( 2.0628 ) ( 0.0094 )

AFNS1 − L 0.1533 0.1667 0.32 0.4 0.6067 0.78 0.82

( 3.5125 ) ( 2.1909 ) ( 1.8379 ) ( -2.5 ) ( -3.5937 ) ( -3.5479 ) ( -4.1442 )

AFNS1 − C 0.1333 0.2 0.3533 0.46 0.6733 0.82 0.8867

( 3.0024 ) ( 3.0619 ) ( 2.6476 ) ( -0.9829 ) ( -2.0021 ) ( -2.5503 ) ( -2.4469 )

AFNS2 − LC 0.1267 0.16 0.3133 0.4067 0.5933 0.7467 0.8

( 2.8231 ) ( 2.0045 ) ( 1.6723 ) ( -2.3271 ) ( -3.9062 ) ( -4.3179 ) ( -4.5928 )

AFNS2 − SC 0.06 0.0667 0.0733 0.1067 0.1933 0.3267 0.4733

( 0.5157 ) ( -1.6366 ) ( -8.3002 ) ( -15.6058 ) ( -17.264 ) ( -14.9722 ) ( -11.6925 )

AFNS3 0.38 0.4067 0.44 0.5133 0.6 0.7133 0.7533

( 8.3267 ) ( 7.6462 ) ( 4.6879 ) ( 0.3267 ) ( -3.75 ) ( -5.0557 ) ( -5.5876 )

AFNS3 − CA 0.3467 0.38 0.4467 0.5267 0.6333 0.76 0.7933

( 7.6347 ) ( 7.0651 ) ( 4.845 ) ( 0.6541 ) ( -2.9651 ) ( -4.0148 ) ( -4.7387 )

Table 4.23: Quantile prediction probabilities for the 3-month yield
1 year ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.1267 0.1867 0.36 0.6267 0.78 0.9267 0.9867

( 2.8231 ) ( 2.7241 ) ( 2.8067 ) ( 3.2073 ) ( 0.887 ) ( 1.2529 ) ( 3.9153 )

AFNS1 − L 0.0933 0.1333 0.2267 0.5067 0.72 0.8133 0.9

( 1.8244 ) ( 1.201 ) ( -0.6826 ) ( 0.1633 ) ( -0.8183 ) ( -2.7241 ) ( -2.0412 )

AFNS1 − C 0.08 0.1 0.2133 0.4867 0.7467 0.88 0.9267

( 1.3543 ) ( 0 ) ( -1.0962 ) ( -0.3267 ) ( -0.0939 ) ( -0.7538 ) ( -1.0963 )

AFNS2 − LC 0.0667 0.1 0.1667 0.44 0.6933 0.7933 0.88

( 0.8183 ) ( 0 ) ( -2.7386 ) ( -1.4804 ) ( -1.5051 ) ( -3.2263 ) ( -2.6382 )

AFNS2 − SC 0 0 0 0.0067 0.0267 0.06 0.1267

( - ) ( - ) ( - ) ( -74.2479 ) ( -54.9881 ) ( -43.3197 ) ( -30.318 )

AFNS3 0.24 0.2933 0.4333 0.5667 0.72 0.7933 0.82

( 5.4486 ) ( 5.2007 ) ( 4.5312 ) ( 1.6477 ) ( -0.8183 ) ( -3.2263 ) ( -4.1442 )

AFNS3 − CA 0.2 0.24 0.4067 0.56 0.7333 0.8067 0.8333

( 4.5928 ) ( 4.0148 ) ( 3.9062 ) ( 1.4804 ) ( -0.4616 ) ( -2.8946 ) ( -3.8341 )

Table 4.24: Quantile prediction probabilities for the 2-year yield
1 year ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.12 0.2533 0.42 0.6067 0.7533 0.9267 0.96

( 2.6382 ) ( 4.3179 ) ( 4.2185 ) ( 2.6744 ) ( 0.0947 ) ( 1.2529 ) ( 0.625 )

AFNS1 − L 0.06 0.0867 0.26 0.5133 0.72 0.8533 0.9467

( 0.5157 ) ( -0.5804 ) ( 0.2792 ) ( 0.3267 ) ( -0.8183 ) ( -1.6156 ) ( -0.1817 )

AFNS1 − C 0.04 0.06 0.22 0.48 0.8 0.9467 0.98

( -0.625 ) ( -2.0628 ) ( -0.887 ) ( -0.4903 ) ( 1.5309 ) ( 2.5436 ) ( 2.6245 )

AFNS2 − LC 0.02 0.06 0.1733 0.4533 0.7 0.8333 0.9267

( -2.6245 ) ( -2.0628 ) ( -2.4805 ) ( -1.1481 ) ( -1.3363 ) ( -2.1909 ) ( -1.0963 )

AFNS2 − SC 0 0 0 0 0 0.02 0.1067

( - ) ( - ) ( - ) ( - ) ( - ) ( -76.984 ) ( -33.4598 )

AFNS3 0.2333 0.3333 0.48 0.6133 0.72 0.8533 0.9

( 5.3088 ) ( 6.0622 ) ( 5.6383 ) ( 2.8503 ) ( -0.8183 ) ( -1.6156 ) ( -2.0412 )

AFNS3 − CA 0.2 0.2733 0.4067 0.6 0.7333 0.84 0.8733

( 4.5928 ) ( 4.7634 ) ( 3.9062 ) ( 2.5 ) ( -0.4616 ) ( -2.0045 ) ( -2.8231 )

Table 4.25: Quantile prediction probabilities for the 5-year yield
1 year ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.2267 0.26 0.4067 0.6467 0.8267 0.9467 0.9733

( 5.168 ) ( 4.4675 ) ( 3.9062 ) ( 3.7579 ) ( 2.4805 ) ( 2.5436 ) ( 1.7738 )

AFNS1 − L 0.0067 0.0733 0.2267 0.4533 0.7267 0.88 0.9667

( -6.5218 ) ( -1.2529 ) ( -0.6826 ) ( -1.1481 ) ( -0.6412 ) ( -0.7538 ) ( 1.1371 )

AFNS1 − C 0 0.0667 0.2533 0.5333 0.8133 0.9667 1

( - ) ( -1.6366 ) ( 0.0939 ) ( 0.8183 ) ( 1.9907 ) ( 4.5486 ) ( - )

AFNS2 − LC 0 0.0133 0.2067 0.4333 0.7067 0.86 0.9467

( - ) ( -9.2543 ) ( -1.3107 ) ( -1.6477 ) ( -1.1657 ) ( -1.4119 ) ( -0.1817 )

AFNS2 − SC 0 0 0 0 0.0267 0.1733 0.26

( - ) ( - ) ( - ) ( - ) ( -54.9881 ) ( -23.5112 ) ( -19.266 )

AFNS3 0.2867 0.36 0.4333 0.6533 0.7867 0.9133 0.9533

( 6.4098 ) ( 6.634 ) ( 4.5312 ) ( 3.946 ) ( 1.0962 ) ( 0.5804 ) ( 0.1936 )

AFNS3 − CA 0.24 0.3 0.4267 0.6067 0.76 0.92 0.9467

( 5.4486 ) ( 5.3452 ) ( 4.3747 ) ( 2.6744 ) ( 0.2868 ) ( 0.9029 ) ( -0.1817 )

Table 4.26: Quantile prediction probabilities for the 10-year yield
1 year ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.2267 0.26 0.4067 0.6467 0.8267 0.9467 0.9733

( 5.168 ) ( 4.4675 ) ( 3.9062 ) ( 3.7579 ) ( 2.4805 ) ( 2.5436 ) ( 1.7738 )

AFNS1 − L 0.0067 0.0733 0.2267 0.4533 0.7267 0.88 0.9667

( -6.5218 ) ( -1.2529 ) ( -0.6826 ) ( -1.1481 ) ( -0.6412 ) ( -0.7538 ) ( 1.1371 )

AFNS1 − C 0 0.0667 0.2533 0.5333 0.8133 0.9667 1

( - ) ( -1.6366 ) ( 0.0939 ) ( 0.8183 ) ( 1.9907 ) ( 4.5486 ) ( - )

AFNS2 − LC 0 0.0133 0.2067 0.4333 0.7067 0.86 0.9467

( - ) ( -9.2543 ) ( -1.3107 ) ( -1.6477 ) ( -1.1657 ) ( -1.4119 ) ( -0.1817 )

AFNS2 − SC 0 0 0 0 0.0267 0.1733 0.26

( - ) ( - ) ( - ) ( - ) ( -54.9881 ) ( -23.5112 ) ( -19.266 )

AFNS3 0.2867 0.36 0.4333 0.6533 0.7867 0.9133 0.9533

( 6.4098 ) ( 6.634 ) ( 4.5312 ) ( 3.946 ) ( 1.0962 ) ( 0.5804 ) ( 0.1936 )

AFNS3 − CA 0.24 0.3 0.4267 0.6067 0.76 0.92 0.9467

( 5.4486 ) ( 5.3452 ) ( 4.3747 ) ( 2.6744 ) ( 0.2868 ) ( 0.9029 ) ( -0.1817 )

Table 4.27: Quantile prediction probabilities for the 15-year yield
1 year ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.0784 0.1863 0.6176 0.7255 0.8431 0.9608 0.9902

( 1.068 ) ( 2.238 ) ( 7.6406 ) ( 5.1031 ) ( 2.5865 ) ( 3.1626 ) ( 4.1202 )

AFNS1 − L 0.0294 0.049 0.1569 0.3824 0.5686 0.8333 0.9118

( -1.2307 ) ( -2.3847 ) ( -2.5865 ) ( -2.445 ) ( -3.6985 ) ( -1.8067 ) ( -1.3615 )

AFNS1 − C 0 0.0294 0.1765 0.5294 0.7255 0.8922 0.9412

( - ) ( -4.2194 ) ( -1.948 ) ( 0.5951 ) ( -0.5547 ) ( -0.2554 ) ( -0.3787 )

AFNS2 − LC 0.0098 0.0294 0.1275 0.3725 0.6078 0.8824 0.9706

( -4.1202 ) ( -4.2194 ) ( -3.7114 ) ( -2.6623 ) ( -2.9406 ) ( -0.5532 ) ( 1.2307 )

AFNS2 − SC 0 0 0 0 0.0098 0.049 0.1569

( - ) ( - ) ( - ) ( - ) ( -75.8728 ) ( -39.806 ) ( -22.0262 )

AFNS3 0.5196 0.5686 0.6078 0.6373 0.6961 0.8333 0.8922

( 9.4929 ) ( 9.5563 ) ( 7.4023 ) ( 2.8832 ) ( -1.184 ) ( -1.8067 ) ( -1.8834 )

AFNS3 − CA 0.5098 0.5392 0.598 0.6373 0.7451 0.8922 0.9216

( 9.2894 ) ( 8.8991 ) ( 7.1692 ) ( 2.8832 ) ( -0.1136 ) ( -0.2554 ) ( -1.068 )

Table 4.28: Quantile prediction probabilities for the 3-month yield
5 years ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.3627 0.5196 0.6471 0.8039 0.9412 0.9902 1

( 6.5695 ) ( 8.4822 ) ( 8.3914 ) ( 7.7311 ) ( 8.2058 ) ( 9.2454 ) ( - )

AFNS1 − L 0 0.0294 0.0784 0.4118 0.7255 0.951 0.9804

( - ) ( -4.2194 ) ( -6.4451 ) ( -1.8107 ) ( -0.5547 ) ( 2.3847 ) ( 2.2138 )

AFNS1 − C 0 0 0.0686 0.4608 0.7255 0.9608 0.9902

( - ) ( - ) ( -7.2454 ) ( -0.7946 ) ( -0.5547 ) ( 3.1626 ) ( 4.1202 )

AFNS2 − LC 0 0 0.0392 0.2549 0.6765 0.9804 1

( - ) ( - ) ( -10.9672 ) ( -5.68 ) ( -1.5874 ) ( 5.856 ) ( - )

AFNS2 − SC 0 0 0 0 0 0 0.0294

( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( -55.0285 )

AFNS3 0.5392 0.5784 0.6373 0.6961 0.9216 0.9706 1

( 9.9122 ) ( 9.785 ) ( 8.1347 ) ( 4.3055 ) ( 6.4451 ) ( 4.2194 ) ( - )

AFNS3 − CA 0.4608 0.5392 0.6373 0.6863 0.9314 0.9902 1

( 8.3231 ) ( 8.8991 ) ( 8.1347 ) ( 4.0544 ) ( 7.2454 ) ( 9.2454 ) ( - )

Table 4.29: Quantile prediction probabilities for the 2-year yield 5
years ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.4216 0.5196 0.7647 0.9216 0.9804 1 1

( 7.5994 ) ( 8.4822 ) ( 12.2548 ) ( 15.8365 ) ( 16.7824 ) ( - ) ( - )

AFNS1 − L 0 0 0.049 0.2843 0.7843 0.9804 1

( - ) ( - ) ( -9.4012 ) ( -4.8291 ) ( 0.8426 ) ( 5.856 ) ( - )

AFNS1 − C 0 0 0.0686 0.4314 0.8235 0.9902 1

( - ) ( - ) ( -7.2454 ) ( -1.3995 ) ( 1.948 ) ( 9.2454 ) ( - )

AFNS2 − LC 0 0 0.0098 0.1765 0.8431 1 1

( - ) ( - ) ( -24.621 ) ( -8.5711 ) ( 2.5865 ) ( - ) ( - )

AFNS2 − SC 0 0 0 0 0 0 0

( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

AFNS3 0.549 0.6373 0.7549 0.8922 0.9804 1 1

( 10.1285 ) ( 11.2856 ) ( 11.8547 ) ( 12.7686 ) ( 16.7824 ) ( - ) ( - )

AFNS3 − CA 0.4804 0.5784 0.7353 0.8824 0.9902 1 1

( 8.7002 ) ( 9.785 ) ( 11.1095 ) ( 11.9854 ) ( 24.621 ) ( - ) ( - )

Table 4.30: Quantile prediction probabilities for the 5-year yield 5
years ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.5588 0.6961 0.9412 0.9902 1 1 1

( 10.3496 ) ( 13.0886 ) ( 29.6673 ) ( 50.2469 ) ( - ) ( - ) ( - )

AFNS1 − L 0 0 0.0196 0.2451 0.7843 1 1

( - ) ( - ) ( -16.7824 ) ( -5.9849 ) ( 0.8426 ) ( - ) ( - )

AFNS1 − C 0 0 0.0784 0.5098 0.8824 1 1

( - ) ( - ) ( -6.4451 ) ( 0.1981 ) ( 4.1488 ) ( - ) ( - )

AFNS2 − LC 0 0 0 0.2059 0.8824 1 1

( - ) ( - ) ( - ) ( -7.3463 ) ( 4.1488 ) ( - ) ( - )

AFNS2 − SC 0 0 0 0 0 0 0

( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

AFNS3 0.7059 0.7941 0.9412 0.9902 1 1 1

( 14.5378 ) ( 17.3373 ) ( 29.6673 ) ( 50.2469 ) ( - ) ( - ) ( - )

AFNS3 − CA 0.6569 0.7745 0.9314 0.9902 1 1 1

( 12.9098 ) ( 16.3009 ) ( 27.2191 ) ( 50.2469 ) ( - ) ( - ) ( - )

Table 4.31: Quantile prediction probabilities for the 10-year yield
5 years ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.
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Quantile 0.05 0.1 0.25 0.5 0.75 0.9 0.95

CIR− 2 0.8431 0.9412 0.9706 1 1 1 1

( 22.0262 ) ( 36.1057 ) ( 43.0734 ) ( - ) ( - ) ( - ) ( - )

AFNS1 − L 0 0 0.098 0.5098 0.902 1 1

( - ) ( - ) ( -5.161 ) ( 0.1981 ) ( 5.161 ) ( - ) ( - )

AFNS1 − C 0 0 0.0686 0.5392 0.8824 1 1

( - ) ( - ) ( -7.2454 ) ( 0.7946 ) ( 4.1488 ) ( - ) ( - )

AFNS2 − LC 0 0 0.0098 0.2647 0.8922 1 1

( - ) ( - ) ( -24.621 ) ( -5.3864 ) ( 4.6286 ) ( - ) ( - )

AFNS2 − SC 0 0 0 0 0 0 0.0196

( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( -67.7722 )

AFNS3 0.8922 0.951 0.9804 1 1 1 1

( 27.4206 ) ( 39.806 ) ( 53.2036 ) ( - ) ( - ) ( - ) ( - )

AFNS3 − CA 0.8824 0.951 0.9902 1 1 1 1

( 26.0913 ) ( 39.806 ) ( 75.8728 ) ( - ) ( - ) ( - ) ( - )

Table 4.32: Quantile prediction probabilities for the 15-year yield
5 years ahead. t-statistics in brackets. t-statistics are based on standard
errors estimated as SD =

√
α̂(1− α̂)/T , where α̂ is the estimated quantile

prediction probability and T is the sample size.





Conclusion

In this thesis we have considered the modeling of risks in interest-rate and
inflation markets. Motivated by the size and importance of these two mar-
kets, both to investors, policy makers and individuals, we have discussed
both interest-rates and inflation from an empirical as well as a modeling
perspective.

In the first essay we considered the modeling of the stochastic skewness
implicit in interest-rate options. We showed evidence of stochastic skewness
in caps and floors linked to Euro area LIBOR. By using a Heath-Jarrow-
Morton framework based on time-changed Lévy processes we showed how to
capture the stochastic skewness. Our calibration to time-series of volatilities
and skewness measures suggests that the model provides a reasonable fit
to the skewness data and that the jump components in the time-changed
Lévy processes mainly affect short-term maturities.

Inspired by the rise of inflation derivatives and more liquid markets, es-
say 2 presented a framework for modeling inflation derivatives based on
the forward rate approach of Jarrow and Yildirim (2003). By using time-
changed Lévy processes, we were able to capture both stochastic volatility
and jumps in real and nominal rates as well as inflation. We calibrated our
model to market data. Our results showed that even though Lévy processes
can improve the fit to data, an investigation into the exact specification of
the Lévy process and volatility loading is still needed.

In the third essay, inspired by the demands of for instance central banks,
we derived inflation risk premia from inflation swaps, nominal interest-rate
swaps, CPI data and surveys. By using a reduced-form no-arbitrage term
structure model, we estimated the inflation risk premia using a Markov
Chain Monte Carlo estimation methodology. Our estimates of inflation risk
premia on average showed an upward sloping term structure, with 1 year
risk premia of 18 bps and 10 year risk premia of 43 bps, however with
fluctuation in risk premia over time. Furthermore, our estimates suggested
that surveys are important in identifying inflation expectations and thus
inflation risk premia. Finally, we related estimates of inflation risk premia
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to agents beliefs, and found that skews in short term inflation perceptions
drive short term inflation risk premia, where beliefs on GDP growth drive
longer term risk premia.

In the fourth and final essay, we assessed the performance of a class of term
structure models, namely the Affine Nelson-Siegel models with stochastic
volatility. We assessed both short- and long-term forecasting ability of the
models. More precisely, we forecasted both means and variances of the
considered yields. We found that models with 3 CIR-factors perform the
best in short term predictions, while models with a combination of CIR
and Gaussian factors perform well on 1 and 5-year horizons. Overall, our
results indicated that no single model should be used for risk management,
but rather a suite of models.
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