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Abstract How to determine whether one distribution first-order dominates

another is a fundamental problem that has many applications in economics,

finance, probability theory, and statistics. Nevertheless, little is known about

how to efficiently check first-order dominance for finite multivariate distribu-

tions. Utilizing that this problem can be formulated as a transportation prob-

lem with a special structure, we provide a stronger characterization of multi-

variate first-order dominance and develop a linear time complexity checking

algorithm for the bivariate case. We illustrate the use of the checking algorithm

when numerically assessing first-order dominance among continuous bivariate

distributions.
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1 Introduction

The theory of stochastic dominance is a methodological cornerstone in eco-

nomics, finance, probability theory, and statistics, among other fields. In wel-

fare economics, dominance concepts are used to create partial rankings of pop-

ulation distributions according to either more social welfare or less inequality

(e.g., Atkinson and Bourguignon [3], Gravel and Moyes [13]); in decision the-

ory and finance, stochastic orderings are used to evaluate risky assets (e.g.,

Sriboonchita et al. [39]), and in statistics, appropriate order constraints can

support inferences (e.g., Silvapulle and Sen [38]). For comprehensive reviews

of the stochastic dominance theory we refer to Marshall and Olkin [24], Müller

and Stoyan [29], and Shaked and Shanthikumar [37].

The canonical stochastic dominance concept is that of first-order domi-

nance, also known simply as dominance or the usual (stochastic) order (e.g.,

Grant et al. [12], Levhari et al. [22], and Lehmann [21]).1 Intuitively, first-

order dominance means that one (dominant) distribution is superior to (i.e.,

provides unambiguously higher outcomes than) the other (dominated) dis-

tribution. For two multivariate finite probability mass functions, f and g, f

first-order dominates g if and only if one of the following three (equivalent)

conditions hold: (a) it is possible to obtain g from f by moving the probability

mass from better to worse outcomes, (b) the cumulative probability mass at

f is less than or equal to that at g for every lower comprehensive subset of

outcomes2, or (c) the expected utility of f is at least as high as that of g for

any non-decreasing utility function.3 Thus, first-order dominance is an ordi-

nal concept that does not rely on assumptions about the relative importance

1 Less restrictive dominance criteria for better distributions have been defined by imposing
stronger restrictions on the set of admissible utility functions. See, e.g., Levy and Paroush
[23], Harder and Russell [15], Huang et al. [16], Atkinson and Bourguignon [3], Mosler [27],
Russell and Seo [33], Scarsini [35], and Meyer and Strulovici [25].

2 A lower comprehensive subset has the defining property that if an outcome is in the
subset, all smaller outcomes are also included in that subset.

3 The equivalence between (b) and (c) was proven by Lehmann [21] and Levhari et al.
[22]. The equivalence between (a) and (b) can be obtained as a corollary of a theorem by
Strassen [40] (see, e.g., Kamae et al. [18]) or can be established through an application of the
max-flow min-cut theorem for flow networks (see, e.g., Preston [32]). Østerdal [41] provides
a direct proof for equivalence between (a) and (b) in the finite case.
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of dimensions or the complementarity/substitutability relationships between

dimensions (Arndt et al. [1]).4

For one-dimensional distributions, much research into the nature of first-

order dominance has been conducted (for example, the bibliography by Bawa

[4] contains more than 400 references), and the theory is now well-developed,

and with many applications. Perhaps surprisingly, little is known about how

to efficiently check first-order dominance in two or more dimensions. The naive

way of checking first-order dominance is to use definition (b) directly. Here,

one needs to check an inequality for each lower comprehensive subset of out-

comes. However, the number of inequalities to be tested grows dramatically in

the total number of outcomes; therefore it is not an efficient method.5 Mosler

and Scarsini [28] and Dyckerhoff and Mosler [10] describe a method based on

linear programming for checking first-order dominance in the general multi-

variate finite case, based on definition (a) above. Empirical implementations

of a method along these lines appear in Arndt et al. [1] and Arndt et al. [2].

An alternative approach would be to utilize a network flow formulation of

the problem, as outlined in Preston [32] or Hansel and Troallic [14], and then

check for dominance via computation of the maximum flow. We are not aware

of any implementations of such a method for checking multivariate first-order

dominance. Focusing on the bivariate case, we will argue below that none of

these methods are efficient.

It is not difficult to observe that the problem of checking first-order dom-

inance for finite multidimensional distributions can be formulated as a trans-

portation problem. In this paper, we argue that this transportation problem

has a special structure and allows a formulation that makes it possible to

identify an upper bound on the number of diminishing transfers necessary to

achieve one (dominated) distribution from another (dominant) distribution

under first-order dominance. Thus, we provide a stronger characterization of

first-order dominance. Furthermore, we utilize this insight to obtain a linear

time complexity algorithm for the bivariate case. To our knowledge, it is faster

4 In the multivariate context, the first-order dominance concept has been used with mean-
ings other than the one provided here. In particular, Atkinson and Bourguignon [3] and
others have used the term “first-order dominance” to denote a less restrictive and easier to
check dominance concept for better distributions (also known as an orthant stochastic order,
cf., e.g., Dyckerhoff and Mosler [10]) which is suitable under a substitutability relationship
between the dimensions.

5 Dykstra and Robertson [11] shows that for the bivariate case, with n1 elements in
the first dimension and n2 elements in the second dimension, the number of possible lower
comprehensive sets increases by

(n1+n2
n1

)
. In effect, the number increases exponentially when

both dimensions grow. Sampson and Whitaker [34] extends this to the multivariate case.
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than any other algorithm to determine bivariate first-order dominance that has

been identified in the literature. As a stepping stone to arrive at the O(n) al-

gorithm, we establish an intuitive and constructive O(n2) algorithm, for which

we prove that a certain predefined sequence of diminishing transfers will al-

ways exist if one distribution first-order dominates another. We observe that it

is necessary to obtain diminishing transfers between certain sets of outcomes,

not the explicit diminishing transfers between outcomes, to prove first-order

dominance. By exploiting this observation we derive the O(n) algorithm.

Østerdal [41] provides a constructive proof of the relation (a) and (b) and

as a result of the proof, introduces an algorithm for identifying whether one

distribution first-order dominates another distribution. The method provided

relies on having an initial set of transfers and then searches for potential cycles

in which non-diminishing transfers are present and can be exchanged with

diminishing cycles. Although it is argued that the method works, the time

complexity is not considered. Indeed, the search for cycles constitutes an O(n2)

algorithm in the verbal description of the method, and this search is executed

for each potential outcome yielding an O(n3) algorithm. The algorithms we

present in this paper for the bivariate case are significantly faster. Furthermore,

Østerdal [41] proves the existence of a finite sequence of diminishing transfers

without considering the number of such transfers necessary for proving first-

order dominance. In contrast, we use the transportation formulation to provide

an upper bound on the number of probability mass transfers necessary to

show first-order dominance. Thus, we strengthen the characterization of the

equivalence (a) and (b).

It is important to use efficient methods to check multivariate first-order

dominance. In applied work observations of discrete distributions with thou-

sands or millions of levels along each dimension can be available; in this case,

the efficiency of the test procedure becomes critical. When comparing con-

tinuous bivariate distributions, an approximate first-order dominance check

can be performed by checking first-order dominance between corresponding

discretized distributions. The more fine-grained this discretization, the better

the approximation. Clearly, more efficient methods allow for more fine-grained

discretizations, and thus more accurate dominance checks.6

6 Bootstrapping procedures have also been used to analyze the robustness of first-order
dominance relations with respect to sample variation in the original data set (e.g., [1], [2],
[17]). These procedures use random sampling with replacement requiring many first-order
dominance comparisons for any pair of original distributions.
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The paper is organized as follows. First, in section 2, the necessary notation

and basic definitions are introduced. Next, in section 3 we relate the problem

of checking (multivariate) first-order dominance to the classical transporta-

tion problem. Based upon this insight, we provide a new characterization of

first-order dominance for the general multivariate case. Then, we turn to the

bivariate case in section 4, where we provide the two algorithms for check-

ing dominance. We construct an example, in section 5, on how to apply the

O(n) algorithm to the numerical assessment of first-order dominance between

continuous bivariate distributions. Section 6 concludes. All proofs are in the

appendix.

2 Notation and definitions

An outcome is a vector x = (x1, . . . , xm), in which each attribute xj is from

an attribute set Xj = {1, 2, ..., nj}, j = 1, . . . ,m, and m ≥ 2. The outcome

set is the product set X = X1 × . . .×Xm and has cardinality n = Πm
j=1nj . If

m = 2, we have a bivariate case. For any two elements, x,y ∈ X, we define

y ≤ x such that yj ≤ xj for all j, and y < x such that yj ≤ xj for all j and

y 6= x. A set Y ⊆ X is called lower comprehensive if x ∈ Y , y ∈ X, and y ≤ x

imply y ∈ Y . An illustration of a lower comprehensive set Y in the bivariate

case is provided in the right portion of Figure 1.

A probability mass function is a real-valued function f on X, such that

f(x) ≥ 0 for all x ∈ X and
∑

x∈X f(x) = 1. For x,y ∈ X where x 6= y, we say

that a probability mass function g can be obtained from a probability mass

function f by a transfer (of probability mass) if we have that g(z) = f(z) for

all z ∈ X \ {x,y}, g(y) = f(y) + β, and g(x) = f(x)− β for β ∈ [−1, 1]. Note

that if g and f are identical except for the values in x and y, we can obtain

g from f by transferring a suitable amount, β, of probability mass between x

and y.7 A diminishing transfer (of probability mass) is a shift of probability

mass from one outcome, x, to another, y, for y < x. A diminishing transfer

for the bivariate case is shown in the left portion of Figure 1.

7 If f(y) ≤ g(y) then f(x) ≥ g(x) and β = g(y)− f(y) = f(x)− g(x). Thus, the transfer
we consider increases f(y) by β and decreases f(x) by the same amount. The resulting
probability mass function will then be identical with g.
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Fig. 1 Left: The lower set L(x) is all elements below the dashed lines, the upper set U(y)
is all elements above the dotted lines, and the arrow is a diminishing transfer from x to y.
Right: A comprehensive set Y .

Let f and g denote two probability mass functions. A fundamental result

of the stochastic dominance theory states that the following three statements

are equivalent:8

(A) g can be obtained from f by a finite number of diminishing transfers.

(B)
∑

x∈Y g(x) ≥
∑

x∈Y f(x) for any lower comprehensive set Y ⊆ X.

(C)
∑

x∈X u(x)f(x) ≥
∑

x∈X u(x)g(x) for every non-decreasing function u.9

We say that f first-order dominates g if one of these three (equivalent) prop-

erties hold.

Example 1 Let X1 = {1, 2, 3} and X2 = {1, 2, 3} and f , g, h be bivariate

probability mass functions on X = X1 × X2 as given in Figure 2. We can

f 1 2 3
3 0.15 0.20 0.15
2 0.05 0.10 0.12
1 0.10 0.10 0.03

g 1 2 3
3 0.13 0.07 0.14
2 0.08 0.25 0.07
1 0.15 0.07 0.04

h 1 2 3
3 0.13 0.07 0.18
2 0.08 0.18 0.09
1 0.22 0.02 0.03

Fig. 2 Probability mass functions f , g, and h for Example 1.

observe that f first-order dominates g because we can obtain g from f by the

set of diminishing probability transfers provided in Table 1. In this table zpr

is the amount of probability mass transferred from p to r, and cp and ρr are

variables defined in section 3.2 and 4.1 used later in the paper by Algorithm 1.

Conversely, we can argue that f does not first-order dominate h, because the

8 See footnote 3 for references to the literature establishing these equivalences.
9 A real-valued function u on X is non-decreasing if x,y ∈ X and y ≤ x implies u(y) ≤

u(x).
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from (p) to (r) amount zpr cp ρr
1 (1, 3) (1, 2) 0.02 0 0.01
2 (2, 3) (1, 2) 0.01 0.12 0
3 (2, 3) (2, 2) 0.12 0 0.03
4 (2, 1) (1, 1) 0.03 0 0.02
5 (3, 3) (2, 2) 0.01 0 0.02
6 (3, 2) (2, 2) 0.02 0.03 0
7 (3, 2) (1, 1) 0.02 0.01 0
8 (3, 2) (3, 1) 0.01 0 0

Table 1 Sequence of diminishing transfers showing that f first-order dominates g in Ex-
ample 1.

lower comprehensive set Y = X \ {(3, 3)} has∑
x∈Y

h(x) = 0.82 < 0.85 =
∑
x∈Y

f(x);

therefore, we have a lower comprehensive set, violating property (B).

We add the following notation to ease the description of first-order dom-

inance. Given an outcome x ∈ X, let L(x) = {y ∈ X|y ≤ x} be the lower

orthant set relative to x and U(x) = {y ∈ X|x ≤ y} be the upper orthant set

relative to x. We will refer to these sets as the lower set and the upper set,

respectively. An example of both a lower set and an upper set is given in the

left portion of Figure 1. For two probability mass functions, f and g, we define

the real valued function s(x) := f(x) − g(x) for x ∈ X along with the sets

P = {x ∈ X|s(x) > 0} and R = {x ∈ X|s(x) < 0}. For the elements of R, the

probability mass must be added to f (to become equivalent to g); similarly, for

the elements of P , the probability mass must be subtracted from f (to become

equivalent to g). Thus, for f to first-order dominate g, the elements of P have

excess probability mass that must be transferred to one or more elements of

R by diminishing transfers. More precisely, for each element p ∈ P , we must

transfer s(p) probability mass to numerous elements in L(p) ∩ R. Similarly,

each element r ∈ R requires −s(r) probability mass to be transferred from

numerous elements in U(r)∩P for f to become equivalent to g by diminishing

transfers.

3 General characterizations

As mentioned in the introduction, when checking first-order dominance it is

inefficient to explicitly enumerate and check every lower comprehensive set.
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Instead, we turn to the identification of a finite number of diminishing proba-

bility mass transfers and relate this to the transportation problem.

3.1 Relation to the transportation problem

First, we must make the following observation. When using diminishing trans-

fers to obtain g from f it should be noted that we can omit all the elements

x ∈ X having s(x) = 0. The reason is that if we transfer some probability

mass from x to an element z of L(x) \ {x}, the same quantity of probabil-

ity mass must be transferred to x from an element of y ∈ U(x) \ {x}. By

the definition of U(x), we must have that L(x) ⊂ L(y), and the transfer to

and from x can therefore be replaced by a direct transfer from y to z. More

generally, if a sequence of diminishing transfers uses intermediate elements

of X, then, as previously described, it is always possible to replace one or

more of these diminishing transfers with a direct diminishing transfer. Conse-

quently, no outcome needs to both send and receive probability mass. We let

C = {(p, r) ∈ P × R|r ∈ L(p)} be the pairs of outcomes that correspond to

possible (direct) diminishing transfers.

With the definitions given in section 2 we can formulate the problem of

checking first-order dominance between two finite multivariate distributions as

a bipartite network problem.10 The problem is essentially one of transporta-

tion in which the “suppliers” from P must transport a required amount to the

“customers” from R. If it is possible to transport probability mass from p ∈ P
to r ∈ R, i.e., (p, r) ∈ C, we incur a unit cost of zero for transportation from

p to r, whereas, if it is impossible to transport probability mass from p to r, a

unit cost of one is incurred for transporting probability mass from p to r. Solv-

ing the resulting transportation problem either yields a zero-value objective, in

which case we have identified a finite set of diminishing transfers, or a strictly

positive objective showing that it is necessary to send mass from p ∈ P to a

10 Preston [32] formulates this as a maximum flow problem that can be solved in O(n3) by
using the method described by Orlin [31]. This can, however, be improved by setting up the
network in a slightly different manner. That is, instead of having an arc from x to all nodes
in L(x), we add arcs only from x to y ∈ L(x) having ‖x− y‖2 ≤ 1. Thus, arcs exist only
from (x1, . . . , xk, . . . , xm) to (x1, . . . , xk − 1, . . . , xm) for each k = 1, . . . ,m; in other words,
all nodes of the lower set that are adjacent to x, which yields a graph with n nodes and nm
arcs. For fixed dimension m, the number of arcs is then linearly bounded by the number of
nodes, and we can therefore solve the corresponding max-flow problem in O(n2/ logn) using
the method described by Orlin [31]. The linear programming based approaches described by
Mosler and Scarsini [28] and Dyckerhoff and Mosler [10] are typically solved using pseudo-
polynomial algorithms such as the Simplex algorithm; see Schrijver [36].
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r /∈ L(p) ∩R. Thus, if the objective is zero, we have by (A) that f first-order

dominates g, whereas if the objective is positive, f does not first-order domi-

nate g. If we let b = max{|P |, |R|} and d = min{|P |, |R|}, and k is the number

of feasible connections, this problem can be solved in O(b log b(k+d log d)) us-

ing the method described by Kleinschmidt and Schannath [19]. Furthermore,

there is a set-up cost of Θ(n) for identifying P and R from X and of O(|P ||R|)
for identifying which arcs are feasible. Note that |P ||R| = bd, which is part of

the algorithm’s complexity. Thus, using a transportation problem algorithm

directly yields a time complexity of O(n+ b log b(k + d log d)).

3.2 A stronger characterization

Below, we present an alternative linear programming model that is based on

the observation that we simply need to identify a feasible transportation prob-

lem solution with an objective value equal to zero. Let zpr ≥ 0 be the amount

of probability mass transferred from p to r, where (p, r) ∈ C. Furthermore,

let cp ≥ 0 for p ∈ P and dr ≥ 0 for r ∈ R be two sets of auxiliary variables.

For given values of the zpr variables, cp measures the amount of probability

mass that remains to be transferred out of p ∈ P to elements r ∈ L(p) ∩ R
(to achieve s(p)), where cp attains a value of zero when a sufficient amount

of probability mass is transferred out of p. Similarly, dr measures the excess

amount (compared to −s(r)) of probability mass transferred to element r ∈ R
from the elements in U(r)∩P where dr attains a value of zero when not more

than the required amount of probability mass has been transferred to r. Then,

the problem is to identify a feasible set of transfers such that the amount of

probability mass that cannot be transferred out of p ∈ P and the amount

of probability mass received beyond −s(r) for r ∈ R is minimized. Thus, we
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must solve the following linear program:

Z∗ = min
∑
p∈P

cp +
∑
r∈R

dr (1)

s.t.
∑

r∈L(p)∩R

zpr + cp ≥ s(p), p ∈ P (2)

∑
p∈U(r)∩P

zpr − dr ≤ −s(r), r ∈ R (3)

zpr ≥ 0, (p, r) ∈ C (4)

cp ≥ 0, p ∈ P (5)

dr ≥ 0, r ∈ R (6)

The objective (1) of this problem is to minimize both the untransferred proba-

bility mass from the elements of P and the excess probability mass transferred

to elements of R. The first constraint (2) states that each element p ∈ P ei-

ther must transfer to the elements in L(p)∩R or leave some of the probability

mass untransferred. The second constraint (3) states that an element of r can-

not receive more than −s(r) probability mass from the elements in U(r) ∩ P ;

however, if it does, the excess probability mass is added to dr.
11 Finally, the

constraints (4)-(6) simply state the non-negativity of the variables.

For the problem (1)-(6), a vector (z, c,d), where z = (zpr)(p,r)∈C , c =

(cp)p∈P and d = (dr)r∈R is denoted a solution. A solution is said to be feasible

if it satisfies all the constraints (2)-(6). Furthermore, a solution is said to be

optimal if it is feasible and minimizes objective (1). If a solution is optimal, it

is denoted (z∗, c∗,d∗). It can be shown that a feasible solution to (1)-(6) with∑
p∈P cp +

∑
r∈R dr = 0 has the characteristic that the inequality constraints

(2) and (3) must be binding.

Our application of formulation (1)-(6) is twofold. First, we use the formu-

lation to strengthen the characterization of first-order dominance. Specifically,

we can use the relation to the transportation problem to obtain an upper

bound on the number of diminishing transfers necessary to show finite (mul-

tivariate) first-order dominance. We will argue below that this upper bound

corresponds to |P | + |R| − 1. Second, in section 4, we use both this formu-

lation and the strengthened characterization to construct efficient algorithms

for checking first-order dominance in the bivariate case.

11 To be consistent we use the convention that a sum of no elements is zero, i.e., if L(p)∩
R = ∅, then

∑
r∈L(p)∩R zpr = 0, and if U(r) ∩ P = ∅, then

∑
p∈U(r)∩P zpr = 0.
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Clearly, if the optimal solution of problem (1)-(6) is zero, i.e., Z∗ = 0, we

have a feasible finite series of diminishing transfers, showing that f first-order

dominates g. However, a positive objective value corresponds to the case in

which no feasible series of diminishing transfers exists. In the latter case, we

conclude that f does not first-order dominate g.

Lemma 1 f first-order dominates g if and only if a vector z ∈ R|C| exists

with z ≥ 0 and ∑
r∈L(p)∩R

zpr =f(p)− g(p), ∀p ∈ P (7)

∑
p∈U(r)∩P

zpr = g(r)− f(r), ∀r ∈ R (8)

It can be observed that the equations (7) and (8), in conjunction with z ≥ 0,

describe a bounded polyhedron. Any vertex in this bounded polyhedron has

at most |P | + |R| − 1 non-zero elements, because (7) and (8) are linearly

dependent. This observation leads to the following result:

Theorem 1 f first-order dominates g if and only if g can be obtained from f

by at most |P |+ |R| − 1 diminishing probability mass transfers.

Theorem 1 provides a sharper characterization of first-order dominance

than part (A) of the equivalence. Although we can bound the necessary number

of transfers to show first-order dominance, it should be noted that there are

often alternative finite sequences of diminishing transfers that use more than

|P | + |R| − 1 diminishing transfers. However, the algorithms we provide in

this paper will search for sets of diminishing transfers that are no larger than

|P |+|R|−1. This search is performed by gradually, in each iteration, satisfying

the amount transferred out of elements of P or the amount transferred into

the elements of R.

To the develop algorithms in the following section, another important prop-

erty of the linear programming model (1)-(6) should be noted. That is, (1)-(6)

may have alternative solutions yielding the same objective value. We make the

following observation for a feasible solution.

Lemma 2 (Alternative solutions) Let (z, c,d) be a feasible solution for

(1)-(6). Let x,y ∈ P and v,w ∈ L(x) ∩ L(y) ∩R and put

β = min {zxv, zyw} . (9)
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If β > 0, then we can construct an alternative solution (z′, c′,d′) having c′ = c,

d′ = d, and all elements of z′ equal to the corresponding elements of z except

for

z′xv = zxv − β (10)

z′yw =zyw − β (11)

z′xw =zxw + β (12)

z′yv = zyv + β (13)

with the same objective value.

x

y

v

w

Fig. 3 Swap of probability mass transfer.

The observation from Lemma 2 is illustrated for the bivariate case in Fig-

ure 3. The full arrows are the transfers that are decreased, whereas the dashed

arrows are the transfers that are increased. Lemma 2 will be used to show that

given any solution to (1)-(6) with an objective value of zero we can construct

an alternative solution following a specific pattern. Consequently, it will be

necessary to search for this pattern only when checking first-order dominance

in the bivariate case.

4 Two algorithms for the bivariate case

In this section, first we introduce a constructive O(n2) algorithm to identify

a finite sequence of diminishing transfers. Then, we observe that it is not

necessary to construct the finite sequence of diminishing transfers directly to

show that such a sequence exists, and we use this observation as the basis for

an O(n) algorithm determining whether f first-order dominates g.
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For both algorithms the elements of X are traversed in a specific order.

Next, we introduce the direct algorithm, and finally we introduce the indirect

algorithm for checking first-order dominance.

We use two specific complete orderings of the elements of X. These or-

derings are used when iterating through the elements of X. We say that an

element x = (x1, x2) ∈ X has a lower (1, 2)-order than y = (y1, y2) ∈ X if

x1 < y1 or if x1 = y1 and x2 > y2. In case x has a lower (1, 2)-order than

y, we write o12(x) < o12(y) and we say that y has a higher (1, 2)-order than

x. The left portion of Figure 4 shows the elements with a lower (1, 2)-order

than x as white and the elements with higher (1, 2)-order as gray. Analo-

gously, we say that an element x = (x1, x2) ∈ X has a lower (2, 1)-order than

y = (y1, y2) ∈ X if x2 < y2 or if x2 = y2 and x1 > y1. In case x has a lower

(2, 1)-order than y, we write o21(x) < o21(y) and we say that y has a higher

(2, 1)-order than x. The right portion of Figure 4 illustrates (2, 1)-ordering,

where the white elements have lower (2, 1)-order than x and the gray elements

have higher (2, 1)-ordering than x.

1
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x2

.

.

.

n2
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. . .

x1
. . .

n1

x

1

2

.

.

.

x2

.

.

.

n2

1 2
. . .

x1
. . .

n1

x

Fig. 4 Left: All gray elements have higher (1, 2)-order than x. Right: All gray elements
have a higher (2, 1)-order than x

Suppose that we have a subset of elements Y ⊆ X; given that we have

an ordering (a, b) either equal to (1, 2) or equal to (2, 1) then we say that an

element x ∈ Y has minimal (a, b)-order with respect to Y if no other element

y ∈ Y exists such that oab(y) < oab(x). Similarly we say that x ∈ Y has

maximal (a, b)-order with respect to Y if no other element y ∈ Y exists such

that oab(y) > oab(x).
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4.1 A direct approach

In the direct algorithm we explicitly identify the set of diminishing transfers by

using the orderings described above. The resulting algorithm can be solved in

O(n2) in the worst case. The algorithm identifies a set of diminishing transfers

that may yield a solution value Z∗ of zero. We prove (in Lemma 3) that if

a set of diminishing transfers yielding Z∗ = 0 exists for problem (1)-(6), the

algorithm will identify such a set.

The idea is that we begin with a feasible, but possibly not optimal, solution

to problem (1)-(6) and by carefully selecting the diminishing transfers, which

should have a positive value, we gradually decrease the objective value until it

is either zero, or we can show that it is not possible to obtain a value of zero.

We manipulate the variables of the formulation (1)-(6) in such a manner

that we retain dr = 0 for all r ∈ R while maintaining the constraint (2)

binding. Thus, we have that cp = s(p)−
∑

r∈L(p)∩R zpr for all p ∈ P , and we

put ρr = −s(r)−
∑

p∈U(r)∩P zpr. Clearly, ρr corresponds to the slack variable

of constraint (3) and must be non-negative. Implicitly, we initialize zpr = 0

for all pairs (p, r) ∈ P × R.12 Thus, increasing zpr will decrease both cp and

ρr, and the aim is to identify a sequence of increases of zpr such that both cp

and ρr become zero for all p and r. If the values of cp are zero, and because

we maintain the invariant of (2) as binding, the solution found will satisfy (7).

Similarly, if ρr is zero, and because we maintain dr at zero, (8) is satisfied.

Thus, the solution found satisfies Lemma 1 and, consequently, we have shown

that f first-order dominates g.

Algorithm 1 Direct transfer algorithm
Step 0: Initialize cp = s(p) for all p ∈ P and ρr = −s(r) for all r ∈ R.
Step 1: Let P+ = {p′ ∈ P |cp′ > 0}. Select p ∈ P+ with minimal (1, 2)-order,

o12(p), with respect to P+. If P+ = ∅, then terminate, continue otherwise.
Step 2: Let R+ = {r′ ∈ R|ρr′ > 0}. Select r ∈ L(p) ∩ R+ with maximal (2, 1)-

order, o21(r), with respect to R+. If L(p)∩R+ = ∅, then terminate, otherwise
continue.

Step 3: Update
zpr = min{cp, ρr}
cp = cp − zpr

ρr = ρr − zpr

(14)

Go to step 1.

12 It is not necessary to initialize zpr explicitly because we simply need to track which
pairs (p, r) have increased values of zpr.
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The direct approach is provided in Algorithm 1. The algorithm initializes

the variables and then repeats three steps, resulting either in a solution to

the problem (1)-(6) with a value zero (terminating in step 1) or a positive

objective value (terminating in step 2).

An example of the progression in the three steps is provided in the left

portion of Figure 5. The element with the lowest (1, 2)-order will be in the

upper left corner, whereas the element with the highest (1, 2)-order will be

in the lower right corner of X. The figure shows the sequence of selections

of elements of P and R. Elements of P are white nodes, whereas elements of

R are black nodes. The first element of P encountered is p1, and it transfers

probability mass to r6, r5, r4, and r3. Whereas r6, r5, and r4 are fully satu-

rated, r3 received only a fraction of −s(r3); therefore, it can receive more later

in the algorithm. The sequence of diminishing transfers of probability mass

away from p1 is illustrated by the full black arrows in the figure. The same

is then done for p2 and p3, where the gray arrows represent the sequence of

diminishing transfers from p2 and the dashed arrows show the sequence of

diminishing transfers from p3.
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Fig. 5 Left: The process of the O(n2) algorithm. Right: The basic sets for the O(n) algo-
rithm.

Although f clearly first-order dominates g when identifying a solution sat-

isfying Lemma 1, it is not clear that f does not first-order dominate g if

Algorithm 1 fails to identify a solution satisfying Lemma 1. We can, however,

show that if a set of diminishing transfers satisfying Lemma 1 exists, the se-

quence used in Algorithm 1 will also identify a solution satisfying Lemma 1.

This finding is summarized in Lemma 3 below.
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Lemma 3 If a solution z ≥ 0 exists such that (7) and (8) are both satisfied,

the sequence of diminishing transfers z′ ≥ 0 identified by Algorithm 1 will also

satisfy (7) and (8).

Lemma 3 uses Lemma 2 with c = d = 0 to transform any solution satisfy-

ing (7) and (8) into the solution obtained by Algorithm 1. Consequently, the

solution found by Algorithm 1 is always an alternative solution to any solution

satisfying (7) and (8). In addition, if a solution found by Algorithm 1 fails to

satisfy (7) and (8), no other solution will satisfy (7) and (8). Now we can state

the correctness and worst-case complexity of Algorithm 1:

Theorem 2 Algorithm 1 terminates in at most O(n2) iterations and either

terminates with a finite sequence of diminishing transfers or shows that no

such sequence exists.

A numerical example of Algorithm 1 is given in Table 1 for the two prob-

ability mass functions f and g in Figure 2. The sequence of the algorithm

corresponds to the sequence of the entries in the table and the values of zpr,

cp, and ρr corresponds to the values after updating in Step 3.

Algorithm 1 is an intuitive approach to checking first-order dominance.

However, we can improve on the worst-case complexity of O(n2) to a worst-

case complexity of O(n) by observing that we do not always need to identify

the individual diminishing transfers but only the diminishing transfers between

certain sets. We will observe that we can use the same sequence as in Algorithm

1 but without performing the explicit transfers.

4.2 An indirect approach

We now present a more efficient algorithm for checking first-order dominance.

Like Algorithm 1, this algorithm is based on iterating through the elements

of X in increasing (1, 2)-order; however, it records only how much probability

mass is transferred between specific aggregated subsets without specifying the

transfers directly.

To ease the notation, we expand the sets X1 and X2 to X1 = X1∪{0} and

X2 = X2∪{n2+1}. Now we use the simpler notation x = (i, j) for i ∈ X1 and

j ∈ X2. Furthermore, we let fij = f(x), gij = g(x), and sij = s(x). We let

f0j = g0j = s0j = 0 for all j ∈ X2, and fi,n2+1 = gi,n2+1 = si,n2+1 = 0 for all

i ∈ X1. We say that elements (i, ·) are the column of i, and the elements (·, j)
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are the row of j. Observe the right portion of Figure 5 for an illustration of the

setup, in which the dashed boxes correspond to the artificial elements added

and the hatched boxes correspond to the row and column elements in row j

and column i having a lower (2, 1)-order and a higher (1, 2)-order, respectively,

than the element (i, j).

Algorithm 2 Indirect transfer algorithm

Step 0: Let f0j = g0j = e0j = 0 for all j ∈ X2 and fi,n2+1 = gi,n2+1 = ui,n2+1 =

0 for all i ∈ X1.
Let i = 1, j = n2.

Step 1: Calculate
sij = fij − gij
tij = ui,j+1 − ei−1,j + sij
uij = max {0, tij}
eij = max {0,−tij}

Step 2: Choose one of the following
– If j > 1, then put j = j − 1 and go to step 1.
– If j = 1, i < n1, and ui1 = 0, then put i = i+ 1, j = n2 and goto step 1.
– If j = 1 and ui1 > 0, then return FALSE.
– If j = 1, i = n1, and ui1 = 0, then return TRUE.

Algorithm 2 is an indirect method for determining whether f first-order

dominates g without constructing a finite number of diminishing transfers.

That is, in contrast to Algorithm 1, it does not construct a vector z ≥ 0

that explicitly satisfies Lemma 1. Instead Algorithm 2 identifies how much

probability mass must be transferred from Sij = {(h, k) ∈ X|h = i, k ≥ j} to

elements of Tij = {(h, k) ∈ X|h ≤ i, k = j}. In the following we will describe

the elements of Algorithm 2.

The algorithm iterates throughX in increasing (1, 2)-order, i.e., it processes

the columns in increasing order and within the columns the rows are processed

in decreasing order. Consequently, at the time of processing column i, all

columns h < i have previously been processed. The reason for processing the

rows within the columns in decreasing order is to transfer as much as possible

to the top rows as early as possible so that it does not block transfers in

later iterations. When processing row j within column i the algorithm has

previously transferred as much as possible from elements in column i with

larger row indices than j to rows having larger row indices than row j. The

amount, which cannot be transferred when iterating through X in (1, 2)-order,

is denoted uij .
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At the time of reaching element (i, j) the amount ui,j+1 remains to be

transferred from some elements (i, h) with h ≥ j + 1 to other elements of

L(i, j). Furthermore, if sij > 0, this also must be transferred to L(i, j). Again

we are interested in transferring as much as possible to rows with row indices

that are as large as possible. In this case it is row j, i.e., transferring as much

of ui,j+1 + sij to elements in row j with column indices k < i. Elements (k, j)

with k < i have previously been processed and we do not block additional

transfers by doing this. We let ei−1,j be the amount that can be transferred to

these row elements. Thus, if sij > 0 then we transfer min{ui,j+1 + sij ; ei−1,j}
from the elements Sij to elements of Ti−1,j . In the case of sij < 0, then, by an

analogous argument we transfer min{ui,j+1; ei−1,j − sij} from Si,j+1 to Tij .

We put tij = ui,j+1 − ei−1,j + sij and show, in the proof of Lemma 4, that

uij = min{0; tij} and eij = min{0;−tij}.

Example 2 (Example 1 continued) Figure 6 shows the results of applying Al-

gorithm 2 to verify that f first-order dominates g. Similarly, in Figure 7 we

s 1 2 3
3 0.02 0.13 0.01
2 -0.03 -0.15 0.05
1 -0.05 0.03 -0.01

u 1 2 3
3 0.02 0.13 0.01
2 0.00 0.00 0.03
1 0.00 0.00 0.00

e 1 2 3
3 0.00 0.00 0.00
2 0.01 0.03 0.00
1 0.05 0.02 0.00

Fig. 6 Algorithm 2 testing whether f first-order dominates g of Example 1.

see the results of applying Algorithm 2 to show that f does not first-order

dominate h. This result can be observed by u31 = 0.03 > 0.

s 1 2 3
3 0.02 0.13 -0.03
2 -0.03 -0.08 0.03
1 -0.12 0.08 0.00

u 1 2 3
3 0.02 0.13 0.00
2 0.00 0.04 0.03
1 0.00 0.00 0.03

e 1 2 3
3 0.00 0.00 0.03
2 0.01 0.00 0.00
1 0.12 0.00 0.00

Fig. 7 Algorithm 2 testing whether f first-order dominates h of Example 1.

It is worth noting that the algorithm determines only how much is trans-

ferred between sets of elements. This determination does not determine the

transfers between specific elements; therefore, the solution found by the al-

gorithm represents a continuum of possible transfers, not a single possible

solution.

Lemma 4 describes the case in which the algorithm returns that f first-

order dominates g, whereas Lemma 5 describes the case in which the algorithm
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returns that f does not first-order dominate g. Finally, Theorem 3 states the

correctness and time complexity of the indirect algorithm.

Lemma 4 If Algorithm 2 terminates with un11 = 0, a finite sequence of di-

minishing transfers exists such that g can be obtained from f .

Algorithm 2 iterates through the elements in increasing (1, 2)-order such that it

starts in the top left corner and finishes in the bottom right corner. Thus, when

it reaches element (n1, 1), the algorithm has reached the bottom right corner.

If it is reached with no untransferred probability mass, we have succeeded in

transferring all excess probability mass out of the elements of P , which is what

Lemma 4 states.

Lemma 5 If Algorithm 2 terminates with ui1 > 0, a lower comprehensive set

Y ⊆ X exists such that
∑

x∈Y g(x) <
∑

x∈Y f(x).

If, for i, we reach the bottom and have not transferred all the required prob-

ability mass from the elements of L(i, n2) then ui1 will be non-zero. Lemma

5 argues that if this occurs, we can always identify a lower comprehensive set

that violates (B) in the fundamental equivalences of first-order dominance.

Because Algorithm 2 either terminates in the situation of Lemma 4 or in

the situation of Lemma 5 we can directly obtain Theorem 3.

Theorem 3 Algorithm 2 terminates in O(n) iterations either stating that f

first-order dominates g or that f does not first-order dominate g.

It is possible to achieve the sequence of diminishing transfers without in-

creasing the worst-case time complexity by augmenting Algorithm 2. The proof

of Lemma 4 inserts elements into lists. These lists and the corresponding inser-

tions could be added to an augmented version of Algorithm 2. The insertions

and deletions of elements from the lists are performed only at the end of the

lists; therefore, we can do this in O(1) time complexity. Throughout the al-

gorithm, at most |P | + |R| elements are inserted into the lists because any

element is inserted into one of the lists only once. Thus, the number of inser-

tions and deletions are bounded by |P |+ |R| and this augmentation will have

a complexity of O(n).

Furthermore, it is also possible to derive a violating lower comprehensive set

without increasing the worst-case time complexity by applying the constructive

method in the proof of Lemma 5. The method uses no more than max{|P |, |R|}
iterations of complexity O(1); therefore, Algorithm 2 can be augmented with

this construction and continue to have a worst-case time complexity of O(n).
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5 Application to numerical assessment of first-order dominance

between continuous bivariate distributions

To provide an indication of the speed and application of the indirect algorithm

we have constructed a small computational example where we discretize two

continuous bivariate distributions and check whether one first-order dominates

the other.

We illustrate the importance of fine-grained discretization when numeri-

cally establishing whether one bivariate probability mass function dominates

another. We use two truncated normalized bivariate normal distributions as an

example. These distributions are depicted in Figure 8. These distributions have
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Fig. 8 Truncated normalized bivariate normal distributions, where g is given to the left
and f is given to the right.

been constructed as follows: the distribution f has mean (500, 500), whereas

g has mean (450, 450).These distributions have covariance matrices of

Covf =

[
15000 8000

8000 10000

]
Covg =

[
9000 5000

5000 8000

]
.

Using X1 = {1, . . . , 1024} and X2 = {1, . . . , 1024} we construct a discretiza-

tion of each distribution by numerical integration of each discrete entry corre-

sponding to the unit box (x1, x2) to (x1 +1, x2 +1).13 We truncate the value if

13 We have used the R package mvtnorm to obtain the probability mass in each unit box.
This package uses numerical integration.
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it is less than 10e−7. To obtain a valid distribution we normalize the outcomes

by the sum of all entries. The level curves are illustrated in Figure 8.

To test the effect of the granularity of the discretization we have intervals

of length 1024/2k where k = 1, . . . , 10 yielding 22k outcomes. Thus, for a unit

increase in k, the number of outcomes is quadrupled. Thus, with a linear time

complexity algorithm, we would anticipate a quadrupled time consumption.

We have implemented Algorithm 2 in C++ and compiled it using the

MinGW TDM64 5.1.0 compiler. The experiment was conducted on a single

core of a computer using Microsoft Windows 7 equipped with an Intel(R)

Xeon(R) CPU E5-2630 v4 @ 2.20GHz and 32Gb RAM. To measure the run

time (particularly for the tests where k is small) we have repeated the algo-

rithm 1,000,000 times.

k I |X| |P | |R| |C| Time(s) f dominates g
1 512 4 3 1 3 0.016 true
2 256 16 4 4 16 0.047 true
3 128 64 12 9 95 0.140 true
4 64 256 40 23 755 0.562 true
5 32 1,024 120 83 8,007 0.750 false
6 16 4,096 435 313 110,577 2.702 false
7 8 16,384 1,644 1,214 1,618,773 9.802 false
8 4 65,536 6,389 4,768 24,717,389 45.129 false
9 2 262,144 25,154 18,926 386,544,433 168.675 false

10 1 1,048,576 99,859 75,408 6,117,591,336 636.902 false

Table 2 Test of aggregated normalized bivariate truncated normal distribution

The results of the experiment are provided in Table 2. The first column

provides the value of k determining the interval length, as described above,

and the interval length is provided in the next column, I. The resulting number

of outcomes, |X|, is provided in the next column. The following columns |P |,
|R|, and |C| indicate the size of the sets of outcomes having mass to send,

mass to receive, and the number of feasible send-receive pairs for diminishing

transfers. Furthermore, the column Time(s) indicates how many seconds it

took to execute Algorithm 2 1,000,000 times. Finally, the result of the first-

order dominance test is shown in the last column.

It is interesting to observe that different levels of aggregation yields differ-

ent conclusions on whether f first-order dominates g. For the coarse-grained

levels (k = 1, . . . , 4) f first-order dominates g; however, at the more fine-

grained levels (k = 5, . . . , 10), the conclusion is the opposite. This finding
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demonstrates that for the numerical evaluation of continuous bivariate distri-

butions, it is necessary to have a sufficiently high level of discretization.

The sizes |P | and |R| provide the number of constraints of problem (1)-

(6) and |C| corresponds to the number of zpr variables in the problem. In

particular the number of variables will be prohibitive if one must solve the

linear program directly for more fine-grained discretizations.

The time it takes to check first-order dominance is, as anticipated, ap-

proximately quadrupled when making unit increases in k. However, there is

one exception from k = 4 to k = 5 reflecting that for k = 5, the algorithm

terminates as soon as it observes that f does not first-order dominate g.

The computational time for a single instance of the finely grained dis-

cretization in which k = 10 is on average 0.000637 seconds, i.e., a fraction of

a millisecond. We consider this behavior to be fast.

If we extrapolate based on the above observation and consider the case

k = 4, in which we found dominance, and multiply the average time per in-

stance 0.562/106 by 212 (corresponding to the increase in number of outcomes),

we would have, on average, 0.002302 seconds per instance, i.e., slightly more

than two milliseconds. Indeed, if we could further subdivide each of the 1024

intervals into 16 intervals and still expect a running time less than a second,

i.e., we would have a discretization 16384 × 16384, corresponding to k = 14,

and expect to use approximately 0.562 · 22(k−4)/106 = 0.5892 seconds.

6 Final remarks

In this paper we have obtained a strengthening of first-order dominance for

the general multivariate case. Furthermore, we have described two algorithms

for checking first-order dominance in the bivariate case, one of which has linear

time worst-case complexity and is easy to implement.14 It should be noted that

when considering the setup times, it is not possible to obtain an algorithm that

has sub linear worst-case run time complexity. Thus, the indirect algorithm

presented in this paper is fast.

For numerical evaluations of continuous bivariate distributions the contin-

uous distribution can be discretized into a finite set of outcomes, as illustrated

in Section 5. By checking first-order dominance of these constructed finite

bivariate distributions we can obtain an approximate check on whether one

14 An implementation of Algorithm 2 in C++ is available from the authors. For practi-
tioners, it also easy to create a spreadsheet applying Algorithm 2.
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first-order dominates the other. Clearly, the more fine-grained this discretiza-

tion, the better the approximation. Thus, it is important for empirical appli-

cations to have efficient methods for checking very fine-grained discretizations

of continuous bivariate distributions.

The algorithms provided can easily be extended to the case of non-rectangular

finite subsets of R2. This process is accomplished by extending the set of

outcomes to the smallest rectangular envelopment of the given set and then

putting f(x) = g(x) = 0 for any element not contained in the original set.

It remains an open question whether it is possible to identify equally effi-

cient (i.e., linear time worst-case complexity) algorithms in the general multi-

variate case. That is, algorithms that are more efficient than establishing the

corresponding transportation problem or max-flow problem and solving it as

such.

One might speculate that the approach suggested in this paper can be used

in stochastic optimization problems with stochastic dominance constraints (see

for instance Noyan and Ruszczyński [30] and Dentcheva and Ruszczyński [8]).

Optimization problems containing constraints on multivariate first-order dom-

inance may use the suggested approach. For example, Noyan and Ruszczyński

[30] suggests using an integer formulation for a problem with one-dimensional

first-order dominance constraints. We could augment such an approach to

multivariate first-order dominance using constraints stating that if first-order

dominance exists, a binary indicator should be equal to one. It would be pos-

sible to add our formulation (1)-(6) as a part of the problem and then use

a big-M constraint to set the variable. Another approach would be to apply

Benders’ combinatorial cuts, see Codato and Fischetti [5], in which a feasi-

bility problem (in our case problem (1)-(6) or Algorithm 2 if the problem is

bivariate) is solved and if it is infeasible, a cut separating the solution is added

to remove the current solution. This process may also augment the two-stage

stochastic program suggested by Drapkin and Schultz [9].

A relation between first-order dominance and chance constraints exists

where a target distribution must be satisfied. Dentcheva [6] provides an ex-

ample in which a multiple number of chance constraints must be satisfied,

yielding a target distribution. This example is equivalent to first-order domi-

nance, and it can be augmented into a multivariate setting. Viewing the chance

constraints in a first-order dominance context may improve the methods of,

e.g., Dentcheva et al. [7] and Kogan and Lejeune [20] in which cuts can be

separated using the Benders decomposition, as hinted above. However, this
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approach is beyond the scope of this paper; thus, we have left it for future

research.

Acknowledgements

We are grateful to Bettina Klinz, the two anonymous referees, and the asso-

ciate editor for valuable comments and suggestions. Furthermore, we wish to

thank the participants of the 12th International Conference on Computational

Management Science, 2015, in Prague and the participants of the Conference

on Economic Design 2015, Istanbul, July 2015, for their helpful discussions.

A Proofs

In this appendix, the proofs of the lemmas and theorems of the paper are provided. In

addition, two auxiliary lemmas, Lemma A1 and Lemma A2, are provided. The proofs are

arranged in the order their respective lemmas and theorems appear in the paper except for

Lemma A1 and Lemma A2 which are placed immediately prior to their use.

Lemma A1 Let (z, c,d) be a feasible solution to problem (1)-(6). If
∑

p∈P cp+
∑

r∈R dr =

0, then

1. cp = 0 for all p ∈ P ,

2. dr = 0 for all r ∈ R,

3. constraints (2) and (3) will be binding.

Proof of Lemma A1. Let (z, c,d) be a feasible solution to problem (1)-(6) with
∑

p∈P cp+∑
r∈R dr = 0. As

∑
p∈P cp +

∑
r∈R dr = 0, and both c ≥ 0 and d ≥ 0, we must have that

cp = 0 for all p ∈ P and dr = 0 for all r ∈ R showing parts 1 and 2 of the lemma. Part 3

of the lemma can be realized as follows: For each pair (p, r) ∈ C the variable zpr is present

in exactly one of the constraints (2), and the corresponding coefficient is equal to one. The

same holds for constraint (3). Thus, we have the relation∑
p∈P

∑
r∈L(p)∩R

zpr =
∑
r∈R

∑
p∈U(r)∩P

zpr (15)

Thus, summarizing constraint (2) yields the following∑
p∈P

(s(p)− cp) ≤
∑
p∈P

∑
r∈L(p)∩R

zpr

=
∑
r∈R

∑
p∈U(r)∩P

zpr

≤
∑
r∈R

(−s(r) + dr) .

Note that, as
∑

x∈X s(x) =
∑

x∈X f(x) −
∑

x∈X g(x) = 0, we have that
∑

p∈P s(p) =∑
r∈R−s(r). Consequently, the above must hold with equality when cp = 0 and dr = 0.
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When cp = 0 we have that
∑

p∈P s(p) =
∑

p∈P
∑

r∈L(p)∩R zpr. Now suppose that for an

element p′ ∈ P we have that s(p′) <
∑

r∈L(p′)∩R zp′r. Then, another p′′ ∈ P must exist

with s(p′′) >
∑

r∈L(p′′)∩R zp′′r, i.e., requiring that cp′′ > 0, which forces the objective to be

positive. Thus, for the objective to have a zero value, we must have s(p) =
∑

r∈L(p)∩R zpr

for all p ∈ P . Therefore, constraint (2) must be binding for an optimal solution to have a

zero value. An analogous argument can be made for (3); consequently, both constraints (2)

and (3) must be binding.

Proof of Lemma 1. If f first-order dominates g, a finite sequence of diminishing transfers

exists. Consequently, a feasible set of transfers between elements of C exists, yielding a

solution value of zero for problem (1)-(6). Then directly by Lemma A1 we have that (7) and

(8) hold. Conversely, if z ≥ 0 exists such that (7) and (8) hold, we have a feasible solution for

problem (1)-(6) with c = 0 and d = 0. The values of zpr then constitute a finite sequence

of diminishing transfers.

Proof of Theorem 1. Clearly if we can obtain f from g by at most |P |+ |R| diminishing

transfers, we have a finite number of diminishing transfers; consequently, we have that f

first-order dominates g.

Now assume that f first-order dominates g. From Lemma 1, we have that the set of

feasible diminishing transfers is

Z =


z ∈ R|C|

∣∣∣∣∣∣∣∣∣∣∣

∑
r∈L(p)∩R

zpr = f(p)− g(p), ∀p ∈ P,∑
p∈U(r)∩P

zpr = g(r)− f(r), ∀r ∈ R

z ≥ 0


(16)

and as f first-order dominates g we have that Z 6= ∅. The set of feasible diminishing prob-

ability transfers Z is a convex polytope because it is the intersection of a finite number of

close half spaces. Furthermore, Z is bounded because variables can have only non-negative

values and each variable is included in at least one constraint with only positive coefficients

and a positive right-hand side. If the constraint has only this variable, the variable is fixed.

If the constraints have more than one variable, if we increase one variable it is necessary to

decrease another variable; this can be continued only until the other variable becomes zero.

Thus, Z is a bounded convex polytope.

Any element of Z corresponds to a finite number of diminishing transfers. Because Z is

a bounded polytope we know, see, e.g., Minoux [26], that each extreme point corresponds

to at least one basis dividing the variables into basic variables, which can attain positive

variables, and non-basic variables, which are fixed at their lower bound of zero. The number

of basic variables is equal to the number of constraints, i.e., at most |P |+ |R| variables can

be positive. Thus, at least one element of Z uses at most |P |+ |R| positive variable values

corresponding to at most |P |+ |R| diminishing transfers.

Finally, because of (15) we have that the constraints are linear dependent; consequently,

the basic solutions will be degenerate and have at most |P |+ |R|−1 positive variable values.

Therefore at most |P |+ |R| − 1 diminishing transfers are necessary.

Proof of Lemma 2. If the two solutions have c′ = c and d′ = d, they have the same

objective value. Thus, we must show that altering z to z′ maintains c′ = c and d′ = d.

For both x and y, we have added and subtracted β in constraint (2), thus not changing

the values cx and cy. Furthermore, for both v and w, we have added and subtracted β in
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the constraint (3) thus not changing dv or dw either. Consequently, because solution z was

feasible, z′ will also be, and they will have the same objective value.

Lemma A2 Let X = X1 ×X2. Given four elements x,y,v,w ∈ X having w ∈ L(x) and

v ∈ L(y), then if x1 ≤ y1 and v2 ≥ w2, then w ∈ L(y).

Proof of Lemma A2. This result can be realized as follows: Because w ∈ L(x) then

w1 ≤ x1; by assumption, we have that x1 ≤ y1. Furthermore, we have that v ∈ L(y), then

v2 ≤ y2; by assumption, we have that w2 ≤ v2. Thus, w ∈ L(y).

Proof of Lemma 3. We show that if a z ≥ 0 exists satisfying (7) and (8) of Lemma 1, it

can always be transformed into the solution found by Algorithm 1 while violating none of

the constraints (7) and (8). Consequently, if the Algorithm 1 terminates without identifying

a feasible sequence of diminishing transfers, no such sequence exists.

Note that Lemma 2 provides the possibility of shifting between alternative solutions, all

satisfying the sets of equations (7) and (8). Thus, we will use this lemma for the transfor-

mation.

Because the update in step 3 the algorithm will never transfer more probability mass

away from p ∈ P than s(p) and, similarly, it will never transfer more probability mass to

r ∈ R than −s(r). Furthermore, because of the selection of pairs (p, r) in steps 1 and 2, we

guarantee that
∑

r∈L(p)∩R zpr ≤ s(p) for all p ∈ P and
∑

p∈U(r)∩P zpr ≤ −s(r) for all

r ∈ R at any point in Algorithm 1.

Let z0 ≥ 0 satisfy equations (7) and (8) and suppose that it is different from the

transfers performed by Algorithm 1. Now elements p ∈ P are selected in increasing (1, 2)-

order and corresponding elements r ∈ R ∩ L(p) in decreasing (2, 1)-order, according to

step 1 and step 2, respectively. Then, because z0 is different from the transfers made by

Algorithm 1, a first pair of elements (p0, r0) exists such that z0
(p0,r0)

is different from what

is transferred by the algorithm. Recall that Algorithm 1 is greedy and therefore transfers

as much probability mass as possible as soon as possible. Thus, z0
(p0,r0)

is strictly less than

the amount transferred by the algorithm. Otherwise, the algorithm would have transferred

more from p0 to r0. Because the algorithm can transfer more than z0
(p0,r0)

, we know that

z0
(p0,r0)

< s(p0) and z0
(p0,r0)

< −s(r0). However, because z0 satisfy both equations (7)

and (8) we must have that at least one p′ with o12(p′) > o12(p0) must exist transferring

z0
p′r0

> 0 from p′ to r0. In the following, we let p′ 6= p0 be the minimal (1, 2)-order element

of P , where z0
p′r0

> 0. Similarly, an r′ with o21(r′) < o21(r0) must exist transferring

z0
p0r′

> 0 from p0 to r′. We let r′ 6= r0 be the maximal (2, 1)-order element having z0
p0r′

> 0.

Now observe that as o12(p0) < o12(p′), we have that p01 ≤ p′1. Furthermore, as o21(r0) >

o21(r′), we have that r02 ≥ r′2. Therefore, by Lemma A2 we have that r0, r′ ∈ L(p0)∩L(p′)∩
R. By Lemma 2, we can put

β = min{z0
p′r0 , z

0
p0r′} (17)

and construct the new vector z1 ≥ 0 having all elements equal to z0 except for

z1
p′r0

= z0
p′r0

−β
z1
p0r′

= z0
p0r′

−β
z0
p0r0

= z1
p0r0

+β

z0
p′r′ = z1

p′r′ +β
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which satisfy (7) and (8). Consequently, z1 continues to constitutes a finite number of

diminishing transfers.

By putting z0 = z1 and repeating the argument above we will gradually obtain the

transfers corresponding to those identified by Algorithm 1. Thus, if z ≥ 0 exists satisfying

(7) and (8), it is possible to transform the vector z into the vector obtained by Algorithm

1 without violating (7) and (8).

Proof of Theorem 2. If Algorithm 1 terminates in step 1, a sequence of diminishing

transfers has been found that satisfies all the constraints (2) and (3). This process has been

conducted such that all cp values have been decreased to zero while maintaining the dr

values at zero. Thus, a finite sequence of diminishing transfers exists.

We need to show that if Algorithm 1 terminates in step 2, no feasible sequence of

diminishing transfers exists. From Lemma 3 we know that if a feasible set of diminishing

transfers exists, Algorithm 1 will obtain a feasible set of diminishing transfers. Thus, if

f first-order dominates g, it is always possible to obtain a finite number of diminishing

transfers by Algorithm 1; therefore, if Algorithm 1 fails to identify such a finite number of

diminishing transfers, no such finite number of diminishing transfers exists.

Algorithm 1 has a time complexity of O(n2) because for each element p ∈ P , we must

search through the elements of L(p) to identify a suitable element r ∈ L(p) ∩R.

Proof of Lemma 4. We prove this lemma by showing that the sequence of diminishing

transfers obtained by Algorithm 1 can be obtained by Algorithm 2 as well. Algorithm 2

traverses the elements in increasing (1, 2)-order and therefore encounters elements of P in

the same order as Algorithm 1. We need to track the actual transfers. Therefore, we use two

sets of ordered lists which are updated during step 1 for element (i, j) in Algorithm 2.

For i ∈ X1 we let Θi = (p1, . . . ,pk) be the elements of {p ∈ Sij ∩ P |cp > 0} ordered

such that o12(pa) < o12(pa+1) for a = 1, . . . , k − 1. Thus, the (1, 2)-minimal element of Θi

is the first element. All elements of (x1, x2) ∈ Θi have lower (1, 2)-order than any element

of (y1, y2) ∈ Θi+1 because x1 = i < i+ 1 = y1.

For j ∈ X2, we let ∆j = {r1, . . . , rh} be the elements of {r ∈ Tij ∩ R|ρr > 0} ordered

such that o21(ra) > o21(ra+1) for a = 1, . . . , h − 1. Thus, the first element of ∆j is the

(2, 1)-maximal element of ∆j . Any element of (x1, x2) ∈ ∆j has lower (2, 1)-order than any

element of (y1, y2) ∈ ∆j+1 because x2 = j < j + 1 = y2. Thus, decreasing j + 1 to j yields

lower (2, 1)-order elements.

Step 1 of algorithm is now augmented to encompass the update of the two lists. First,

if sij > 0 then (i, j) is added to the end of Θi, as (i, j) ∈ P with c(i,j) > 0 and it has

higher (1, 2)-order than the other elements of Θi. Conversely, if sij < 0 the (i, j) is added

to the end of ∆j as it has lower (2, 1)-order than the other elements of ∆j and (i, j) ∈ R
with ρ(i,j) > 0. For simplicity we let τij be the amount transferred from Sij to Tij and we

initialize τij = 0. Then, the following is repeated until either Θi is empty or ∆j is empty:

1. Let p be the first element of Θi and r be the first element of ∆j .

2. Put
zpr = min{cp, ρr}
cp = cp − zpr

ρr = ρr − zpr

τij = τij + zpr

3. If cp = 0 then remove p from Θi and if ρr = 0 then remove r from ∆j .
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The sequence in which the pairs (p, r) are selected is equivalent to the sequence in Algorithm

1. This finding is caused by selecting p as the first of the elements in Θi and thereby

selecting them in increasing (1, 2)-order. Furthermore, selecting r as the first element of ∆j

corresponds to selecting the (2, 1)-maximal element within L(i, j) ∩ R. We also update the

diminishing transfer values, zpr, in the exact same sequence as for Algorithm 1.

Finally, we must address the correspondence between the amount transferred and the

values uij and eij . We have two cases. The first case is when sij ≥ 0. Next, the transferred

amount τij = min{ui,j+1 + sij ; ei−1,j}. If τij = ei−1,j then eij = 0 and the corresponding

list ∆j is empty, and uij = ui,j+1+sij−ei−1,j . Conversely, if τij = ui,j+1+sij then uij = 0

and the corresponding list Θi is empty, and eij = ei−1,j − ui,j+1 − sij . In the second case

we have that sij < 0, and the amount transferred is τij = min{ui,j+1; ei−1,j − sij}. If

τij = ui,j+1 then uij = 0, with Θi being empty, and eij = ei−1,j − sij − uu,j+1. If

τij = ei−1,j − sij then eij = 0 and uij = ui,j+1 − ei−1,j + sij . Each of the two cases

corresponds to putting

uij = max{0;ui,j+1 − ei−1,j + sij} = max{0; tij}
eij = max{0; ei−1,j − ui,j+1 − sij} = max{0;−tij}

which is exactly the values calculated in step 1 of Algorithm 2. Thus τij provides the

connection between zpr and the two values uij and eij .

Note that when uij = 0 then the list Θi is empty, i.e., all elements of p ∈ Sij ∩ P have

sent s(p) probability mass to elements of L(p)∩R. Consequently, if Algorithm 2 terminates

with un1,1 = 0, all lists Θi, for i ∈ X1, are empty, corresponding to the case in which all

elements p ∈ P have sent s(p) probability mass to elements of L(p) ∩R. Therefore a finite

sequence of diminishing transfers exists showing that g can be obtained from f .

Proof of Lemma 5. We can explicitly identify a lower comprehensive set that violates

(B) if the value of ui1 > 0 for some i ∈ X1. First, note that

uij − eij = max{0, tij} −max{0,−tij} = tij = ui,j+1 − ei−1,j + sij

and suppose that we are given a lower comprehensive set Υ . Then, we have∑
(i,j)∈Υ

(uij − eij) =
∑

(i,j)∈Υ
(ui,j+1 − ei−1,j) +

∑
(i,j)∈Υ

sij (18)

Now let
H = { i ∈ X1 | (i, 1) ∈ Υ}
I = { j ∈ X2 | (1, j) ∈ Υ}
J = { (i, j) ∈ Υ | (i+ 1, j) /∈ Υ }
K = { (i, j) /∈ Υ | (i, j − 1) ∈ Υ }

The sets J and K are illustrated in Figure 9, where Υ is the gray area (including both shades

of gray). The union of the hatched boxes corresponds to J , whereas the union of the dark

gray boxes is the set K. Furthermore, the dashed box is the elements (i, 1) ∈ Υ with i ∈ H,

and the dotted box is the elements (1, j) with j ∈ I. We can then rearrange (18) as∑
(i,j)∈Υ

sij =
∑
j∈I

e0j −
∑

(i,j)∈J
eij +

∑
h∈H

uh1 −
∑

(i,j)∈K
uij (19)
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where
∑
j∈I e0j = 0 by the definition of e0j . Showing that the lower comprehensive set Υ

violates condition (B) corresponds to showing that
∑

(i,j)∈Υ sij > 0, which is equivalent to

showing that
∑
h∈H uh1 >

∑
(i,j)∈J eij +

∑
(i,j)∈K uij .

Υ

0 1
. . .

i
. . .

n1

Fig. 9 A violated lower comprehensive set.

Suppose that Algorithm 2 terminates with ui1 > 0. Then, we know that uh1 = 0

for h = 1, . . . , i − 1 and therefore
∑
h∈H uh1 = ui1. Thus, if we can construct the lower

comprehensive set Y such that
∑

(h,j)∈J ehj +
∑

(h,j)∈K uhj = 0, we have the violation

we are seeking. We construct Y implicitly by constructing J and K explicitly. Each time

an element (h, j) is added to J , all elements (a, j) with a ≤ h are added to Y . Begin with

(h, j) = (i, 1). Because ui1 > 0, we have that ei1 = 0. Therefore add (i, 1) to J . Repeat

the following until h = 0. If uh,j+1 = 0, add (h, j + 1) to K and put h = h − 1, otherwise

uh,j+1 > 0. Consequently, eh,j+1 = 0; thus, add (h, j + 1) to J and put j = j + 1. When

terminating, we have only added elements to J having ehj = 0 and elements to K having

elements uhj = 0, thus having
∑

(i,j)∈J eij +
∑

(i,j)∈K uij = 0 < ui1 showing that (B) is

violated by Y.

Proof of Theorem 3. If the algorithm terminates with un11 = 0, we have by Lemma

4 and property (A) that f first-order dominates g. Conversely, if the algorithm terminates

with ui1 > 0 for i ∈ X1, then by Lemma 5 a violated lower comprehensive set exists.

Consequently, by property (B) f does not first-order dominate g. Finally, because each

element of X is traversed maximally once and the number of operations for each element is

constant, the algorithm terminates in O(n) iterations.
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