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Abstract

Exploratory Factor Analysis (EFA) is a widely used statistical technique to discover the

structure of latent unobserved variables, called factors, from a set of observed variables.

EFA exploits the property of rotation invariance of the factor model to enhance factors’

interpretability by building a sparse loading matrix. In this paper, we propose an optimization-

based procedure to give meaning to the factors arising in EFA by means of an additional

set of variables, called explanatory variables, which may include in particular the set of

observed variables. A goodness-of-fit criterion is introduced which quantifies the quality of

the interpretation given this way. Our methodology also exploits the rotational invariance

of EFA to obtain the best orthogonal rotation of the factors, in terms of the goodness-of-fit,

but making them match to some of the explanatory variables, thus going beyond traditional

rotation methods. Therefore, our approach allows the analyst to interpret the factors not

only in terms of the observed variables, but in terms of a broader set of variables. Our

experimental results demonstrate how our approach enhances interpretability in EFA, first

in an empirical dataset, concerning volumes of reservoirs in California, and second in a

synthetic data example.

Keywords: Exploratory Factor Analysis, Interpretability, Factor rotation, Explanatory variables,

Mathematical Optimization



1 Introduction

Extracting knowledge from data, such as global underlying patterns or unusual behaviors,

has become a crucial task for analysts to build models and improve decision making in

many areas, such as Health Care, Bertsimas et al. (2016), Risk Management, Van Vlasselaer

et al. (2017), Data Mining, Carrizosa and Romero Morales (2013); Olafsson et al. (2008),

or Information Visualization, Carrizosa et al. (2018a,b); von Landesberger et al. (2017).

In this paper, we focus on latent variable models to uncover the hidden information

enclosed in raw data, Anderson (2003); Bartholomew et al. (2011); Blei (2014). Specifically,

we address the problem of interpreting latent variables arising in Exploratory Factor

Analysis (EFA) via a Mathematical Optimization perspective. EFA is a multivariate

statistical method that brings into light the effects of (a small number of) latent variables,

called factors, on a set of observed variables, Mulaik (2009); Spearman (1904); Thurstone

(1931). Given a set of p observed variables y ∈ Rp, the standard exploratory factor analysis

model postulates that y is a linear function of random vectors, f ∈ Rr, r << p, the factors,

and an error term ε ∈ Rp satisfying

y = Λf + ε, (1)

where Λ ∈ Rp×r is the so-called loading matrix. The components of f are assumed to be

standardized and f and ε uncorrelated vectors.

The analysts regularly have to deal with the non-straightforward task of providing
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meaningful explanations, based on their expertise, to what the factors define, namely, they

have to interpret the factors. Therefore, many domains, such as Medicine, Economics

or Social Sciences, would benefit from approaches, as the one presented in this work, that

provide new tools to improve on the interpretation of the factors. For the relevance of factor

interpretation, see Fabrigar et al. (1999); Mart́ınez et al. (1998); Taeb and Chandrasekaran

(2018); Yamamoto et al. (2017). In this paper, an empirical data set of water reservoirs

of California (see Taeb et al. (2017)) that requires factor interpretation will be used for

illustration of the methods we advocate.

It is well known that the factor model in (1) is not identifiable, Shapiro (1985). In

other words, model (1) also holds for Λ∗ = ΛM> and f∗ = Mf , where M ∈ Rr×r is

any orthogonal matrix, i.e. MM> = M>M = Ir, Ir being the r-dimensional identity

matrix, and thus f∗ is a rotation of f . This property is known as the rotational invariance

of the factor model, which turns out to be very useful for interpretation purposes, although

might fail in some situations, Browne (2001); Hattori et al. (2017); Kaiser (1958); Ročková

and George (2016).

The goal of classic rotation methods is to find a rotation matrix that produces an

interpretable factor loading matrix. Interpretability is explored through sparsity, which

is used as a proxy. A sparse loading matrix has few non-zero elements, and then, each

factor in f can be interpreted in terms of few of the components of y. Thus, rotation

matrices M that yield a sparse Λ∗ = ΛM> are sought. Nevertheless, the sparsity of a

loading matrix does not necessarily give interpretable factors, as discussed in Yamamoto
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et al. (2017). On top of that, different rotation criteria may yield different conclusions, in

terms of interpretability, on the very same data, see Sass and Schmitt (2010).

After obtaining the rotated loading matrix Λ∗, the user has to analyze it, and interpret

the rotated factors f∗ matching them with the variables y involved in the factor model

(1) based on his/her expertise. We refer the reader to the work of Browne (2001),

and references therein, for an overview of rotation methods in EFA. Other approaches in

the literature seeking sparsity in Λ, but at the expense of a poorer fitting of the model

to the observed data, involve, for instance, regularization techniques, (Choi et al., 2010;

Trendafilov et al., 2017; Witten et al., 2016; Yamamoto et al., 2017), Bayesian frameworks,

(Kaufmann and Schumacher, 2017; Zhao et al., 2016), clustering approaches, (Adachi and

Trendafilov, 2018; Uno et al., 2016) or regression models, (Carvalho et al., 2008).

Instead of using sparsity as a proxy of interpretability, alternative approaches have

recently been proposed in the literature, e.g. Fan et al. (2016); Li and Jung (2017); Taeb

et al. (2017); Taeb and Chandrasekaran (2018). Such methods make use of an additional

set of observed variables, called explanatory variables, assumed to be meaningful to the

user and related to the latent and unobserved phenomena hidden in the dataset under

study. Either one can identify many of these explanatory variables in the hope of some of

them being related to the factors (exploratory approach), or the user has high expertise

in the data and knows what explanatory variables to use (confirmatory approach). For

instance, in economic applications there is usually available data about social, geographical

or political indicators that may explain the factors and do not necessarily take part in the
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construction of the factors.

The methodologies proposed in Fan et al. (2016); Li and Jung (2017); Taeb et al.

(2017); Taeb and Chandrasekaran (2018) fit a model in which the explanatory variables

are integrated together with the factors. Thus, the variability in y is split into what can

be explained (interpreted) through the explanatory variables; the latent phenomena which

remain unexplained after adding those additional variables; and an error term. Therefore,

the user has more difficulties in monitoring the interpretation procedure, since there might

be latent phenomena which still remain unexplained after incorporating the exaplanatory

variables in the model.

In order to overcome the difficulties of existing methodologies, in our approach we

give more freedom to the users to seek an assignment of the explanatory variables to the

factors. We propose an optimization-based approach to obtain a one-to-one correspondence

between the factors and the explanatory variables, which thus allows an straightforward

interpretation of the factors arising in model (1). Our aim is to optimally match (groups

of) the explanatory variables to an orthogonal rotation of the factors. This way the

interpretability of the factors is enhanced: the user knows the meaning of the explanatory

variables involved and to which factors they are matched. In order to obtain this rotation

matrix and assess the quality of the matching, the correlations between the rotated factors

and the explanatory variables are maximized, ensuring that the weakest explanation (the

smaller correlation) is the strongest possible (maximum). In our empirical example, we

show how the factors that affect the volumes of major water reservoirs in California are

4



matched, and thus interpreted, with physical and economic explanatory variables, as done

in Taeb et al. (2017) for a graphical model.

Therefore, the methodology proposed in this paper is not a purely rotation method but

a one-step approach to interpret the factors arising in a factor model using simultaneously

a rotation and a matching with a set of explanatory variables giving meaning to them. In

fact, it differs from the traditional rotation methods: whereas traditional rotation methods

aim to find a simple structure in the loading matrix to interpret the factors by means of

the variables used to extract them, our methodology seeks a rotation that makes them

match with an additional set of variables. Our approach does not take care of the loading

matrix structure, neither the relation with the variables used to obtain the factors, unless

they are considered as explanatory as well.

The remainder of the paper is structured as follows. In Section 2, we introduce the key

ingredients of our approach. Section 3 presents our model, in which the rotation and the

matching are optimized. Section 4 illustrates with both empirical and synthetic data the

methodology proposed. Finally, Section 5 concludes the paper with some comments and

future research lines.

2 Preliminaries

In this work, it is assumed that the researcher has already fitted the model (1) and the

factor scores have been computed using any of the many procedures in the literature, e.g.
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DiStefano et al. (2009); Gorsuch (1983); Grice (2001). Let F ∈ Rn×r be a matrix of factor

scores, where n is the number of cases and r the number of factors. Thus, the j-th column

of F , referred as Fj , contains the scores of j-th factor for each individual in the sample,

j ∈ J = {1, . . . , r}.

Establishing a one-to-one correspondence between factors and explanatory variables

might be unnatural from the practical point of view, since it is unlikely that unobserved

phenomena (factors) are similar to observed events (explanatory variables). Therefore,

in order to be able to interpret the factors by collections of phenomena, we assume that

explanatory variables are grouped according to, for instance, their subject or nature. For

instance, in the empirical example in Section 4 concerning the volumes of water reservoirs

in California, Taeb et al. (2017) considered groups of both physical and economic variables,

which involve measurements of specific variables within each group, temperatures or snow

melting in the first case and a consumer price index or number of agricultural workers.

Thus, each factor could be interpreted (matched) either as a combination of physical or

economic variables. Without loss of generality, these groups of variables could be made

up of just one explanatory variable as well. For instance, each factor in the reservoirs

example could be interpreted as temperatures or a consumer index as singletons. Thus,

let Ci be a group of |Ci| explanatory variables, where | · | denotes the cardinality (number

of elements) of a set, and |Ci| ≥ 1, i ∈ I = {1, . . . , q}, namely each group contains at least

one explanatory variable. These variables have been measured over the same cases used in

EFA to obtain the factors’ scores. Therefore, we consider that there are q data matrices
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available Xi ∈ Rn×|Ci|. We will refer to Ci, i ∈ I, as the interpretability clusters, which are

thus defined as groups of the so-called explanatory variables.

We seek a matching between the interpretability clusters and the rotated factors through

an orthogonal matrix M , i.e. F ∗ = MF , where MM> = M>M = Ir, Ir being the

r-dimensional identity matrix, optimizing a goodness of fit criterion based on the coefficient

of determination. See Guadagnoli and Velicer (1991) and Kaufman and Rousseeuw (1990)

for alternative criteria. Let us now introduce some notation, including the one for the

matching matrix which will give us the recipe to interpret the factors.

Let H be a 0–1 matrix of size q × r representing the matching, which is composed by

elements hij , i ∈ I, j ∈ J , such that

hij =


1 if the interpretability cluster Ci is matched with the rotated factor F ∗j

0 otherwise.

In other words, when hij = 1, the j-th rotated factor is interpreted as the i-th interpretability

cluster. For instance, if Ci is made up of meteorological conditions and hij = 1, then the

rotated factor F ∗j is interpreted (or named) as meteorological conditions.

It is assumed that there is at least one match in H, this is hij = 1 for at least one

i ∈ I and j ∈ J . Thus, the space of possible matchings between rotated factors and

interpretability clusters, H, is defined as the set of all 0–1 non-zero matrices of size q × r.

Moreover, we need to define a measure to assess the quality of the matching of the

interpretability cluster Ci with the rotated factor F ∗j . In this paper, we use the coefficient of

determination. LetR2
ij(M) denote the coefficient of determination between the interpretability
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cluster Ci and the rotated factor F ∗j . Observe that R2
ij(M) depends on the rotation matrix

M used to rotate the factors, thus for different M the value of R2
ij(M) changes. In the

best case scenario, this is a perfect linear relationship between the j-th rotated factor and

the i-th interpretability cluster, R2
ij(M) = 1 for all hij = 1, and thus we would like to have

R2
ij(M) as large as possible for those i and j with hij = 1. This is achieved by making large

the minimum of those R2
ij(M), this is maximizing the minimum coefficient of determination

between the matched interpretablity clusters and the rotated factors. Therefore, we define

the goodness of fit criterion S(M ,H), which measures the quality of the interpretation as

S(M ,H) = min
hij=1
i∈I,j∈J

R2
ij(M). (2)

Clearly, S(M ,H) ∈ [0, 1], and the case S(M ,H) = 1 corresponds to the best case

scenario, namely a perfect interpretation of the factors according to this criterion. Observe

that, in this case, all the matched factors and interpretability clusters (those for which

hij = 1, i ∈ I, j ∈ J) are strongly related (R2
ij(M) = 1, for all i ∈ I, j ∈ J such that

hij = 1). However, if there is a i ∈ I and j ∈ J such that hij = 1 and R2
ij(M) < 1,

then S(M ,H) < 1 and the quality of the interpretation would be, in general, poorer. The

bounds in S defining good or bad interpretations depend on the empirical application, and

therefore cannot be defined in advance.

In order to illustrate the criterion S(M ,H) in (2) and how it depends on the choice of

the rotation matrixM and the matchingH, its value is analyzed for all the combinations of
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Figure 1: Different rotation and matching matrices for a simulated example with r = 2

factors and q = 4 interpretability clusters.

three different rotations and four matchings through a simulated example. Let us consider

r = 2 factors F = (F1,F2), arising from model (1), and q = 4 interpretability clusters

C1, . . . , C4, which contain one interpretability variable each. Let us assume that the space

of possible solutions to obtain the best S(M ,H) is made up of the three rotation matrices

M1, M2, M3 and the four matchings H1,H2,H3,H4, namely H = {H1,H2,H3,H4},

shown in Figure 1. Observe that the matching matrix H1 would interpret the first rotated

factor as the three interpretability clusters C1, C2 and C4 and the second rotated factor as

C3; matching H2 would interpret the first rotated factor as C4 and the second as C3; in

H3 second factor remains unexplained while the first rotated factor is interpreted with C4;

finally, in H4 the first rotated factor is interpreted as the two interpretability clusters C1

and C2 and the second rotated factor as C1 and C3.
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The value of S in (2) is obtained for the twelve combinations of rotation matrices and

matchings in Figure 1. Different rotations induce different coefficients of determination

between the factors and the interpretability clusters. For visualization purposes these

coefficients are depicted as heatmaps. The darker the color is, the larger the coefficient.

Figure 2 contains the the heatmaps representing R2
ij(Mk), k = 1, 2, 3 for the rotations

considered in our example. Observe that each column in Figure 2 reports the same heatmap

(same rotation matrix) for the four different matchings. Ideally, all pairs with hij = 1

should have a dark entry in the heatmap. A one sign (1) is added to those cells in the

heatmaps with hij = 1. The star sign (∗) indicates in which of those cells the minimum

coefficient of determination is achieved, yielding the value of S. This cell is expected to have

darkest color. Moreover, the values of S in (2) for the three rotations and four matchings

are reported in Figure 2. We observe the effects on changing rotations and matchings. The

value of S is close to 0 for rotation M1 and matchings H1, H2 and H4, and rotation M2

and matchings H1 and H4 (Figure 2 (a), (b), (d), (j) and (k)), increases to 0.20, 0.38 0.41

and 0.67 for M1 and matching H3, and M3 and matchings H4, H1, and H2, respectively

(Figures 2 (g), (l), (c) and (f)). Finally, S achieves 0.80 for rotation M2 and matchings H2

and H3 (Figure 2 (e) and (h)) and 0.90 for M3 and H3 (Figure 2 (i)). Therefore, according

to (2), the best interpretation of factors F1 and F2 by means of the four interpretability

clusters considered in this example is given by the rotation matrix M2 and the matching

in H2 (Figure 2 (e)), as pointed out in the previous paragraph, since the largest value of

S is achieved for that combination of rotation and matching among the different choices
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available. Therefore, the best meaning to F1 would be provided by interpretability cluster

C4, and for F2 by C3. However, if just factor F1 is to be interpreted, namely matching H3

is considered, a better value of S is obtained, 0.90, using the rotation M3 instead (Figure

2 (i)).

The example described above illustrates the strong effect that the choice of the rotation

matrix M and matching H have in the criterion S(M ,H). In what follows we propose

an optimization-based methodology that automatically obtains the best M and H for the

interpretability clusters at hand.

3 The model

If the matching H ∈ H that makes the interpretation of the factors in terms of the

interpretability clusters were given, i.e. known in advance, our aim would be to obtain

the orthogonal rotation of the factors, M , such that (2) is maximized. In other words, if

the user is able to match the interpetability clusters with the factors because of his/her

expertise, our aim would be to obtain the best rotation of the factors which maximizes the

minimum coefficient of determination between the matched rotated factors and clusters.

This yields the nonlinear continuous optimization problem (InRot) :

max
M

S(M ,H)

s.t. M ·M> = Ir. (InRot)
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Obtaining the globally optimal solution to problem (InRot) is challenging due to its

nonlinearities and non-convex constraints, Wen and Yin (2013). Nevertheless, even locally

optimal solutions to this problem might outperform the traditional rotation techniques in

EFA, e.g. the rotation methods described in Browne (2001) and Hattori et al. (2017), in

the sense that it has indeed the benefit of providing a straightforward interpretation to the

factors through the matching H with (groups of) explanatory variables.

However, the approach stated above requires to guess the matching between the interpretability

clusters and the factors. In practice, assuming H to be known is unrealistic, although

some structural properties may by available. Some examples of this structure consist of

constraining the total number of factors which are interpreted; the maximum number of

interpretability clusters than can be used to interpret a factor or the maximum number of

factors than can be interpreted with each of the interpretability clusters. Such information

can be incorporated into the search of the best H by considering a subset H̃ of the set

of all possible matchings H, namely H̃ ⊂ H. Thus, the matching H ∈ H̃ is, in general,

unknown and should be decided together with the rotation matrix M . Therefore, the

mixed 0–1 nonlinear optimization problem (InRotMat), which together decides the best

rotation matrix M and the best matching H ∈ H̃, is stated as:

max
M ,H

S(M ,H)

12
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(c) S(M3,H1) = 0.41
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(e) S(M2,H2) = 0.80
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(f) S(M3,H2) = 0.67
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(i) S(M3,H3) = 0.90
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(l) S(M3,H3) = 0.38

Figure 2: Illustration of S in (2) for different rotations and matchings.
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s.t. M ·M> = Ir,

H ∈ H̃. (InRotMat)

Depending on the structure for the matching impose in H̃, the value of S can be affected.

For instance, if it is required to interpret just one of the factors, then the optimal value of

S will be the largest coefficient of determination between the interpretability clusters and

the rotated factors. In general, when the number of factors to be interpreted increases, the

optimal value of S decreases, since its value is such that the worst of those coefficients is

maximized. Based on this decrease, the user can decide by looking at the optimal objective

function when to stop, i.e., how many factors to interpret in order to prevent serious erosion

of the solution to the point where it might affect substantive interpretation of the solution.

To solve the mixed 0–1 nonlinear optimization problem (InRotMat), we first rewrite

it as

max
M ,H,z

z

s.t. z ≤ R2
ij(M)hij + (1− hij) i ∈ I, j ∈ J,

M ·M> = Ir, (3)

H ∈ H̃.

To optimally solve problem (3) is difficult due to its combinatorial structure and its

non-convex constraints. Unfortunately, the software available to handle mixed integer
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nonlinear optimization problems are much less powerful than the linear integer or nonlinear

continuous counterparts. Therefore, we propose an alternating algorithm to obtain good

solutions to problem (3) which consists of, in turn, fixing the rotation matrix M to a

certain value and find the best possible matching H for that M by solving the resulting

mixed integer linear problem from (3) in which M is data and H is a decision variable;

then, H is fixed to the so-obtained value and the best possible rotation M for that H is

found by solving now the nonlinear continuous optimization problem from (3) in which H

is data and M is a decision variable. Observe that this second step corresponds to solving

problem (InRot). These two alternating steps are repeated until a stopping criterion is

satisfied. In order to avoid getting stuck in bad local optima, a multistart strategy is used,

i.e., the process above is repeated for several randomly selected initial solutions.

4 Simulation and empirical results

In order to illustrate the usefulness of the methodology described in Section 3, we show

how factors can be interpreted in terms of the explanatory variables (measured through

the goodness of fit criterion stated in (2)) using both an empirical dataset as well as a

synthetic one.

4.1 Implementation
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The computational experiments have been carried out using R, R Development Core Team

(2008), on a PC IntelR© Core
TM

i7-7700, 16GB of RAM. First, the scores for r factors have

been generated using the fa function from package ‘psych’ on the observed variables

Y ∈ Rn×p. Therefore, the so-obtained matrix F ∈ Rn×r contains (columnwise) the r

standardized and uncorrelated factors. In order to give meaning to these factors, q ≥ r

interpretability clusters, C1, . . . , Cq, are used. Each of these clusters is made up of a single

explanatory variable, namely C1 = {X1}, . . . , Cq = {Xq} and, therefore, |Ci| = 1, for i =

1, . . . , q. Second, problem (InRotMat) is solved to obtain the best rotation and matching

matrices, M and H respectively, that maximize the goodness of fit criterion stated in

(2), S(M ,H). The set H̃ in which the matching is sought requires that the r factors

are interpreted, namely there must be at least one 1 in each column of H; each factor

is interpreted with at most one interpretability cluster, namely there is at most one 1 in

each column of H; and finally, each interpretability cluster is used to interpret at most one

factor, namely there is at most one 1 in each row. As described at the end of Section 3, an

alternating strategy has been performed setting as a stopping criterion a maximum number

of iterations equal to 5. The nloptr optimization routine, included in the R package with

the same name, Johnson (2008), and solver GLPK in the ‘ROI’ package, Theußl et al.

(2017), have been used to solve the optimization problems. This procedure is embedded

into a multistart routine with 10 different starting solutions, namely rotation and matching

matrices to start the alternating algorithm. Finally, the goodness of our methodology is

illustrated using same heatmaps as in Section 2 and the value of S(M ,H) for the best
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rotation M and matching H obtained.

For the sake of completeness, we show in the Appendix the loading matrix Λ obtained

from estimating model (1) in our empirical and synthetic datasets, and its orthogonal

rotated counterparts Λ∗ using some of the methodologies in the fa function in R, namely

varimax, quartimax, bentlerT, equamax, varimin and geominT. Besides these matrices,

we include the rotated loading matrix obtained using the rotation matrix obtained with

our methodology. We point out that our methodology does not seek a simple structure in

the loading matrix as the other methodologies do.

4.2 An empirical dataset

Our methodology is illustrated in the empirical dataset called reservoir in Taeb et al.

(2017) concerning volumes of major reservoirs in California. We point out that our

approach is different from the one by Taeb et al. (2017), since they develop a latent

graphical model reservoir dataset. The data has been downloaded from https://

github.com/armeentaeb/WRR-Reservoir. There are p = 55 observed variables Y , each

of them corresponding to a reservoir. Two factors (r = 2) are extracted, F = (F1,F2),

and interpreted, using q = 7 physical and economic explanatory variables, namely Palmer

Drought Severity Index (X1), Colorado river discharge (X2), state-wide consumer

price index (X3), hydroelectric power (X4), state-wide number of agricultural

workers (X5), Sierra Nevada snow pack (X6) and temperature (X7). As mentioned in

Section 4.1, the interpretability clusters are defined as these explanatory variables, namely
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Ci = {Xi}, i = 1, . . . , 7. The data has been cleaned following the guidelines in Taeb

et al. (2017), yielding n = 118 observations. Each observation corresponds to monthly

measurements from January 2004 to October 2013.

Following the same terminology as the example stated in Section 2, Figure 3 depicts

the heatmap of the solution obtained by our methodology and the value of S(M ,H) for

the best rotation M and matching H obtained. Recall that this heatmap contains the

coefficients of determination between the explanatory variables and the rotated factors

according to the best rotation obtained in which a one (1) is added to those cells in the

heatmaps with hij = 1, and a star sign (*) indicates in which of those cells the minimum

coefficient of determination is achieved.

Our methodology is able to provide the major water reservoirs in California latent

factors with an interpretation: the first one is interpreted as the hydroelectric power

and the second as the temperature. The quality of the interpretation is supported

by a goodness of fit criterion S equal to 0.649. Note that although the coefficient of

determination between the second rotated factor and explanatory variable Sierra Nevada

snow pack is rather high (dark cell), the best interpretation of the second rotated factor

is given by explanatory variable temperature, i.e., the one in which the coefficient of

determination between the rotated factor and the explanatory variable is the highest.
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Figure 3: Heatmap for reservoir dataset in Taeb et al. (2017) where S(M ,H) = 0.649.

4.3 A synthetic dataset

In this section, using a synthetic dataset, we illustrate how the quality of the interpretation

decreases when the relationship between the explanatory variables and the factors weakens.

In what follows, we describe how the data have been generated and detail the experiments

which have been carried out.

Regarding the data generation, the scores for three factors (r = 3) have been generated

for a sample of n = 100 using the fa function from package ‘psych’ in R on p = 15

multivariate normally distributed random variables Y . Therefore, the so-obtained matrix

of factor scores F ∈ R100×3 contains (columnwise) three standardized and uncorrelated
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factors. In order to give meaning to these factors, q = 30 explanatory variables, namely

X1, . . . ,X30, have been randomly generated. As mentioned in Section 4.1, the interpretability

clusters are defined as these explanatory variables, namely Ci = {Xi}, i = 1, . . . , 30.

Whereas Xi, i = 4, . . . , 30 are multivariate normally distributed random variables with

zero mean and a randomly generated covariance matrix, X1, X2 and X3 are produced as

Xi = FM+σε, i = 1, . . . , 3, whereM is a random 3-dimensional orthonormal matrix and

ε ∼ N (0, 1). Varying σ from 0 to 1, with a step of 0.25, 5 cases of explanatory variables

are obtained. For σ = 0, the first three explanatory variables have been generated to be

the rotation of the factors according to matrixM. Our methodology is able to successfully

detect this interpretation (except for a permutation of the factors), as it is shown below.

For the remaining cases of σ, the relationship between the explanatory variables and the

factors weakens, and therefore, the interpretation of the factors in terms of these variables

gets worse, yielding smaller values of the goodness of fit criterion S(M ,H), as shown

below.

Figure 4 depicts, for each value of σ, the heatmap of the solution obtained by our

methodology, namely the solution of (InRotMat), and the value of S(M ,H) for the

best rotation M and matching H obtained. Recall that the largest plus sign indicates

the cell where the minimum is achieved. Observe that, in general, the larger σ is, the

smaller S(M ,H) (the lighter the pixels where hij = 1). The first purpose of the synthetic

experiment was to find the perfect fit between the rotated factors and the explanatory

variables for σ = 0. This is shown in Figure 4 (a), in which S(M ,H) = 1, since the
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rotated factors are exactly the first three explanatory variables. The second purpose of the

experiment was to illustrate how the quality of the interpretation worsen when σ grows.

We can see that the value of the goodness of fit criterion S(M ,H) decreases from 0.939 in

Figure 4 (b) to 0.460 in Figure 4 (e) whilst σ increases up to 1. This fact agrees with the

way in which data was generated and illustrates the influence of the (non)existence of a

relationship between the factors and the explanatory variables for interpretation purposes.

In summary, our results show that the rotated factors are matched with the explanatory

variables X1, X2 and X3, which are indeed the ones that most resemble the factors, and

therefore, the ones that are the most useful to interpret them.

The previous experiment has been repeated for 100 instances in which σ varies in a

range from 0 to 5 with a step of 0.25, yielding 21 cases. Table 1 contains a statistical

summary of the results obtained for each value of σ. The first column in Table 1 contains

the values of σ, the second reports the averages S(M ,H) and the last one the standard

deviations. Observe that, as expected, the larger σ is, the smaller S(M ,H). This makes

sense due to the way the explanatory variables have been generated: for small values of σ

there are three explanatory variables which are practically equal to a rotation of the factors

to be interpreted. Figure 5 illustrates graphically the results presented in Table 1, in which

the black line represents the average value and the red band represents the maximum and

minimum optimal values of S(M ,H) in the 100 instances for each σ.
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σ Mean Std

0 1.000 0.000

0.25 0.935 0.007

0.5 0.780 0.026

0.75 0.608 0.036

1 0.451 0.049

1.25 0.352 0.051

1.5 0.272 0.048

1.75 0.212 0.048

2 0.168 0.038

2.25 0.149 0.030

2.5 0.125 0.025

2.75 0.115 0.021

3 0.105 0.024

3.25 0.096 0.019

3.5 0.095 0.021

3.75 0.089 0.020

4 0.085 0.018

4.25 0.082 0.016

4.5 0.077 0.012

4.75 0.076 0.012

5 0.075 0.010

Table 1: Statistical summary of the performance of the model (optimal value of S(M ,H))

obtained in the 100 instances generated for each value of σ.
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Figure 5: Minimum and maximum optimal values of S(M ,H) in the 100 instances (red)

and the mean (black) for different values of σ.

5 Conclusions

In this paper we presented an optimization-based approach to interpret factors arising

from Exploratory Factor Analysis (EFA). Besides the factors, we assume that a set of

explanatory variables has been measured over the same cases. Contrary to classic methods,

which interpret the factors in terms of the variables involved in EFA, our approach allows
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the analyst to interpret the factors by means of the so-called set of explanatory variables,

which might contain the observed ones as well. Our proposal is to match these variables

to the factors in order to give meaning to them. A quality criterion which assesses the

goodness of the matching according to an orthogonal rotation of the factors has been

introduced. Our methodology has been shown to work successfully on both an empirical

dataset and a synthetic one.

A potential virtue of our approach with respect to other alternatives is the possibility of

modulating the criterion for rotation, i.e. the capacity to specify sets of variables associated

(defining) the final factors. This may be of interest, for instance, in the case of large surveys,

where there are many variables that can be used to interpret factors, but we do not want

to involve all of them in the actual factor model analysis of equation (1). In addition, it is

worth noting the flexibility of our approach to guide the interpretation of the factors with

additional available information trough the structure of the matching matrix.

There are several extensions to the methodology proposed in this paper yielding interesting

lines of future research. First, we can easily accommodate other goodness of fit criteria

by changing the expression of S in (2), replacing either the min operator or the coefficient

of determination, R2, by different rules, Guadagnoli and Velicer (1991); Kaufman and

Rousseeuw (1990). This is particularly necessary if categorical explanatory variables are

to be used. Second, it is worth noting that, although we have used orthogonal rotations,

our methodology extends to oblique rotations. However, uncorrelatedness of the factors

would be lost and the optimization problems to solve would be more cumbersome. Third,
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the extension to Dynamic Factor Models is a non-trivial challenge which deserves further

analysis, Geweke (1977); Stock and Watson (2011). Fourth, developing a methodology

which does not require the estimation of the factor scores would be interesting and desirable.

It is well known that estimating factor scores is a controversial in factor analysis, known

as factor score indeterminacy in the literature, Gorsuch (1983). However, this perspective

requires new ideas which are out of the scope of this work. Finally, the idea of enhancing

interpretability through auxiliary explanatory variables can be applied to other Data

Science contexts, such as Principal Components, Correspondence or Canonical Correlation

Analysis.
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Appendix

This Appendix contains the loading matrix Λ obtained from estimating model (1) for

the empirical and synthetic datasets studied in Section 4, first column of Tables 2 and 3

respectively. Columns 2-7 show examples of rotated loading matrices for both datasets

using different methods available in the fa function in R: varimax (Λ∗varimax), quartimax

(Λ∗quratimax), bentlerT (Λ∗bentlerT), equamax (Λ∗equamax), varimin (Λ∗varimin) and geominT
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(Λ∗geomin). Besides the outputs of these rotation methods, we include the rotated loading

matrix obtained using the rotation matrix obtained with our methodology (InRotMat)

(Λ∗(InRotMat)) for the empirical dataset in last column of Table 2. Finally, the rotated

loading matrices using our methodology for the synthetic dataset (Λ∗(InRotMat)σ=0
, Λ∗(InRotMat)σ=0.25

,

Λ∗(InRotMat)σ=0.5
, Λ∗(InRotMat)σ=0.75

and Λ∗(InRotMat)σ=1
) are depicted in Table 4.
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