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Abstract

This article deals with stochastic differential equations with volatility induced

stationarity. We study of theoretical properties of such equations, as well as

numerical aspects, together with a detailed study of three examples.
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1. Introduction

This article deals with stochastic differential equations (SDE) with volatility induced

stationarity (vis). Although the vis effect is more or less well-known, misinterpretations
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in the literature are common. We clerify matters by giving a general definition of vis,

and explain why SDE with vis have a local martingale term that is not a martingale.

We investigate the relation between vis and stationary moments and mean reversion.

SDE with vis feature to model, for example, interest rates and eletricity prices. But,

such SDE can be difficult from a statistical point of view, so that basic estimation

procedures fail. Hence computer simulations to evaluate statistics are important. As

standard simulation schemes can fail for SDE with vis, we discuss alternative schemes.

We provide three examples of SDE with vis, that all are different in terms of their

vis effect, and that require different simulation procedures. The main example is the

CKLS model, which has been studied by many authors, but where we find some new

features. The others are a class of hyperbolic SDE, and a class of heavy-tailed SDE.

This article is organized as follows: After the preliminary Section 2, we define vis

in Section 3, and adress connections to boundaries for the diffusion and existence of

moments. Section 4 deals with theoretical aspects of computer simulation of SDE

with vis, together with properties of the local martingale term and mean reversion. In

Section 5-7 we study the three examples that have been mentioned, of SDE with vis.

2. Preliminaries

In this section we set some notation that is required in later sections.

Let {Wt}t≥0 be standard Brownian motion and I = (l, r), −∞ ≤ l < r ≤ ∞ an open

interval. For measurable functions b : I →R and σ : I → [0,∞), consider the SDE

dXt = b(Xt) dt + σ(Xt) dWt, X0 = ζ, (2.1)

where ζ is a random variable with values in I that is independent of W . The law of X

is denoted Pζ , while the probability distribution of Xt is denoted Pt(ζ, ·). Further, π

denotes the stationary distribution for X, when it exists.

A property holds locally on I if the property is true on all compact subsets of I.

Assumption 2.1. The drift b is continuous and the volatility σ is (strictly) positive

and locally Hölder continuous of order 1
2 .

Given an x0 ∈ I, the scale function S and speed measure m are given by

S(x) =

∫ x

x0

exp

{

−2

∫ y

x0

b(z)

σ(z)2
dz

}

dy and
dm(x)

dx
=

2

σ(x)2S′(x)
for x ∈ I.
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Feller’s test for non-explosion requires the following function v to go to infinity

v(x) =

∫ x

x0

S′(y)

(
∫ y

x0

dm(z)

)

dy =

∫ x

x0

(S(x) − S(y)) dm(y) for x ∈ I:

Assumption 2.2. We have v(l+) = limx↓l v(x) =∞ and v(r−) = limx↑r v(x) =∞.

Assumptions 2.1 and 2.2 are sufficient for the existence of a unique strong solution of

(2.1) that does not explode (see e.g., Karatzas and Shreve, 1991, Section 5.5).

Assumption 2.3. We have S(l+) = −∞, S(r−) = ∞ and m(I) < ∞.

If we strengthen Assumption 2.2 to Assumption 2.3, the stationary solution to (2.1),

with ζ
d
= π = m/m(I), is ergodic (see e.g., Rogers and Williams, 1987, p. 300), i.e.,

lim
t→∞

1

t

∫ t

0

f(Xs) ds =

∫

I

f(x) dm(x) for measurable f : I → R,

and β-mixing, so that the β-mixing coefficient

β(t) =

∫

I

‖dP x
t (y) − dπ(y)‖TV dπ(x)

satisfies limt→∞ β(t) = 0, where ‖ · ‖TV is the total variation norm (see e.g., Doukhan,

1994, Sections 2.4 and 2.5, and Rogers and Williams, 1987, p. 303).

The infinitesimal generator Lf = bf ′ + 1
2σ2f ′′ has a spectral gap if it has a strictly

negative second largest (to 0) eigenvalue λ. This is so if and only if the solution to

(2.1) is ρ-mixing, that is, the ρ-mixing coefficient

ρ(t) = sup

{‖Ptf‖L2(I,π)

‖f‖L2(I,π)
: f ∈ L2(I, π), 〈f, 1〉L2(I,π) = 1

}

satisfies limt→∞ ρ(t) = 0, where Ptf(x) =
∫

I
f(y) dP x

t (y), as ρ(t) = eλt, see Genon-

Catalot, Jeantheau and Larédo (2000), Section 2.4. See Hansen, Scheinkman and Touzi

(1998) and Genon-Catalot, Jeantheau and Larédo on more on spectral gaps.

3. Volatility induced stationarity

In this section we generalize the definition of vis, given by Conley, Hansen, Luttmer

and Scheinkman (1997) for the special case of the CKLS model [see (5.1) below].

Throughout this section, we assume that Assumptions 2.1 and 2.3 hold.

Usually when describing the dynamics of an SDE, we split it into an ordinary differen-

tial equation (ODE) for the drift, and a diffusion white noise perturbation of the ODE.
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We expect the ODE to have a non-exploding solution that converges to the stationary

mean of the SDE. This interpretation corresponds to an Euler approximation of the

SDE. But when adding more terms to the Itô-Taylor expansion of the SDE (see Kloeden

and Platen, 1995, Section 5.5), the picture changes, as this shows that the drift part

and diffusion part interact.

The simplified interpretation of the SDE is often fruitful, but is some times incorrect.

This lead Conley, Hansen, Luttmer and Scheinkman (1997) to define the concept of

vis for the CKLS model. Building on their ideas, we make a general definition of vis:

Definition 3.1. The stationary solution to the SDE (2.1) has vis at l [r], and we call

l [r] a vis boundary, if S′(l+) < ∞ [S′(r−) < ∞]. If S′(l+) > 0 [S′(r−) > 0] we call l

[r] a positive vis boundary − otherwise it is a null vis boundary.

One may make a more general definition using lim inf and lim sup instead of limits.

Because of Assumption 2.3, we can only have vis boundaries at ±∞. In addition, since

m(I) < ∞, to have vis at l [r] it is necessary that σ(l+) = ∞ [σ(r−) = ∞].

For vis the mean reversion associated with stationarity comes from high volatility

rather than from the drift. SDE with vis do not behave as white noise perturbed

ODE.

Example 3.1. A local martingale in natural scale (i.e., zero drift) has positive vis

boundaries at ±∞. A local martingale in natural scale with other boundaries than

±∞ cannot be stationary: An example of the latter is dXt = |Xt|dWt with Xt = 1,

for which m(I) = m((0,∞)) = ∞.

For a diffusion in natural scale with vis, large values of the process give a high volatility

and a small speed measure. Hence the diffusion moves away quickly from this area, in

a direction that is locally unbiased, so that the process is a local martingale. But if the

process moves towards an even higher value, then the volatility gets even larger and

the speed measure even smaller, so that the time spent at large values is short: If the

volatility gets large fast enough, it is possible to achieve stationarity. Still, the process

can take very large values, during very short period of time. In addition, the fact that

the process has a very high volatility for large values of the process, in the described

fashion, makes it likely that, within short, the process takes on a smaller value. This

will prevent the local martingale from being a martingale!

Proposition 3.1. Under Assumptions 2.1 and 2.3, if X is the solution to (2.1) with

fixed initial value ζ = x, then the local martingale Y = S(X) is a martingale if and

only if l and r are natural boundaries for X.

Proof. We have entrance [natural] boundary for X at l and [r], if and only if the local
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martingale Y = S(X), with natural scale SY (y) = y and speed measure dmY (y) =

2/(σ(y)S′(y))dy, has entrance [natural] boundary at −∞ [∞], if and only if

∞ > [∞ =]

∫ 0

−∞

|x| dmY (x)

[
∫ ∞

0

x dmY (x)

]

(see e.g., Karlin and Taylor 1981). By Arbib (1965), Theorem 3, X is a martin-

gale if l and r are natural boundaries for X, so that ±∞ are natural boundaries

for Y . Conversely, assume that e.g., ∞ is not a natural boundary for Y , so that
∫ ∞

0
x dmY (x) < ∞. Using Revuz and Yor (1999), p. 429, Exercise 3.18, considering

the additive functionals At =
∫ t

0
Y +

s ds and Ct = t of Y , we then have

lim
t→∞

Ey{At}/Ey{Ct} = lim
t→∞

1

t

∫ t

0

Ey{Y +
s } ds =

∫ ∞

0

x dmY (x) for y ∈ R. (3.1)

If Y is a martingale, then Y + is a submartingale, so that Ey{Y +
s } is non-decreasing,

and Ey{Y +
s } ≥ y. But this contradicts (3.1) if we select y >

∫ ∞

0
x dmY (x). 2

We have the following interesting easy consequence of Proposition 3.1 and (3.1):

Corollary 3.1. Under Assumptions 2.1 and 2.3, if X is the stationary solution to

(2.1) and l and r are natural boundaries, then the stationary local martingale Y = S(X)

has infinite mean and is thus not a matingale.

We have the following useful result:

Proposition 3.2. Under Assumptions 2.1 and 2.3, a positive vis boundary l [r] is an

entrance [a natural] boundary if and only if

∞ > [∞ =]

∫ x0

l

−x

σ(x)2
dx

[
∫ r

x0

x

σ(x)2
dx

]

. (3.2)

A null vis boundary l [r] is natural if the integral [integral] in (3.2) is infinite.

Proof. By definition, l [r] is an entrance [a natural] boundary if

∞ > [∞ =]

∫ x0

l

S(x0) − S(x)

σ(x)2S′(x)
dx

[
∫ r

x0

S(x) − S(x0)

σ(x)2S′(x)
dx

]

. (3.3)

If l [r] is a positive vis boundary, then the criteria (3.2) follows from the fact that
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−S(l+)x

2σ(x)2
≤ S(x0) − S(x)

σ(x)2S′(x)
≤ −2S(l+)x

σ(x)2

[

S(r+)x

2σ(x)2
≤ S(x) − S(x0)

σ(x)2S′(x)
≤ 2S(r+)x

σ(x)2

]

for x > l small enough [x < r large enough]. If l [r] is a null vis boundary, then we get

S(x0) − S(x)

σ(x)2S′(x)
≥ −S(l+)x

σ(x)2

[

S(x) − S(x0)

σ(x)2S′(x)
≥ S(r+)x

σ(x)2

]

for x > l small enough [x < r large enough], so that the integral [integral] in (3.3) is

infinite if the integral [integral] in (3.2) is infinite. 2

Example 3.2. Given a constant p>1, Assumptions 2.1 and 2.3 hold for the SDE

dXt = (1 + |Xt|p) dWt, X0 = ζ, (3.4)

and ±∞ are positive vis boundaries (cf. Example 3.1). By Proposition 3.2, ±∞ are

natural boundaries for 1 < p ≤ 2, and entrance boundaries for p > 2. Hence, solutions

to (3.4) with fixed initial values ζ = x are martingales for 1 < p ≤ 2, and local

martingales that are not martingales for p > 2, by Proposition 3.1.

A stationary local martingale with finite variance is either constant or not a martingale,

see Bibby and Sørensen (1997), Lemma 2.1. Thus the stationary solution X is never a

martingale. But it is uniformly integrable, by stationarity.

By Hansen, Scheinkman and Touzi (1998), Sections 4.1-4.2 and Example 4, we have a

spectral gap and ρ-mixing for p ≥ 2, but no spectral gap for p < 2.

For diffusions with drift the interpretation of vis is the same as for local martingales,

as by the definition of vis, the volatility will dominate the drift close to vis boundaries.

If there is vis only at one boundary point, then the local martingale term of the

solution to the SDE (2.1) will be biased, giving the solution a local martingale term

with a decreasing or increasing mean, taking it away from the vis boundary.

There can be statistical problem for SDE with vis. For example, functions in the

domain of the generator are important for statistical inference. But for SDE with vis,

the only polynomials in the domain are constants, as functions f in the domain satisfy

(f ′/S′)(r−) = (f ′/S′)(l+) = 0, see Hansen, Scheinkman and Touzi (1998), p. 10.
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4. Simulation of SDE with vis

In this section we discuss computer simulation of SDE with vis. Such simulations can

be difficult because standard requirements for convergence, such as Lipschitz conditions

and linear growth for the drift and volatility, are not satisfied.

Let ∆Wn = Wtn+1
−Wtn

for equidistant times 0 = t0 < t1 < . . . < tN = T with spac-

ing ∆ > 0. For θb, θσ ∈ [0, 1], a family of Euler schemes, starting at Y0, are given by

Yn+1 = Yn+
(

θbb̄(Yn+1) + (1 − θb)b̄(Yn)
)

∆+(θσσ(Yn+1) + (1 − θσ)σ(Yn)) ∆Wn (4.1)

for n < N : Here b̄ = b − θσσσ′ is a correction term to ensure convergence to an Itô

integral. For θb = θσ = 0 we get the Euler scheme, for θσ = 0 the stochastic theta

method, see Higham (2000), and for θb = θσ = 1 the fully implicit Euler scheme.

The backward Euler scheme (BE) is the theta method with θb = 1. The split step

backward Euler scheme (SSBE), studied by Mattingly, Stuart and Higham (2002), is

given by

Yn+1 = Yn + σ(Y ∗
n )∆Wn where Y ∗

n = Yn + b(Y ∗
n )∆ for n < N.

For I ( R we prefer the fully implicit Euler scheme to the SSBE scheme, as the latter

can move out of I. But the implicit Euler scheme has the drawback that the implicit

equation may not have a unique solution: We discuss this issue in Section 5.

Higham, Mao and Stuart (2002), Theorem 2.2, prove uniform strong convergence of

the Euler scheme, for locally Lipschitz drift and volatility, when the suprema of the

true solution and the Euler scheme, started at a fixed ζ = x, have moments of some

order p > 2. With the additional assumptions that the drift is one-sided Lipschitz,

(x − y)(b(x) − b(y)) ≤ C |x − y|2 for x, y ∈ I, for some constant C > 0,

and the volatility is globally Lipschitz, Higham, Mao and Stuart (2002) further show

existence of all moments of the solution and of the SSBE approximation. Finally they

examine convergence of implicit Euler schemes, which we will return to later.

Gyöngy (1998) shows uniform almost sure convergence of the Euler scheme assuming

that the (continuous) drift is one-sided Lipschitz and the volatility locally Lipschitz.

An important issue, besides convergence of the numerical scheme, is to have an ap-

proximation with the same boundary properties as the true solution. Normally the

Euler scheme will induce a recurrent Markov chain on R.

However, for many SDE the probability to end up outside I is negligible already for

moderately small ∆. Stability of simulation schemes has been studied by Higham
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(2000), Mattingly, Stuart and Higham (2002) and Talay (2002). The next results show

that, for many diffusions with vis boundaries at infinity, the Euler scheme can be

transient.

Proposition 4.1. Let {Yn}n≥0 be the Euler approximation of the SDE with (2.1) with

σ strictly poitive. If there exist constants p > 0 and φ > 0 such that

lim
x→±∞

|x|p |b(x)|
|σ(x)| = 0 and lim inf

x→±∞

|b(x)|
|x| ≥ φ, (4.2)

then

P

{

⋂

n≥0

{|Yn+1| ≥ (1 + φ̃)|Yn|}
}

> 0 for φ̃ ∈ (0, φ).

Proof. Given constants c > 0 and y0 > 0, let

an = c sup
|x|≥(1+φ)ny0

|b(x)|
|σ(x)| for n ≥ 0. (4.3)

By (4.2) there exist constants c1 > 0 and k > 0 such that

sup
|x|≥c1

|x|p |b(x)|
|σ(x)| < k.

Taking y0 ≥ c1, this gives

∞
∑

n=0

an =

∞
∑

n=0

sup
|x|≥(1+φ)ny0

|x|p |b(x)|
|σ(x)| |x|−p ≤

∞
∑

n=0

sup
|x|≥(1+φ)ny0

k |x|−p
= k

∞
∑

n=0

(1+φ)−npy0

is finite. From this it is an elementary exercise to see that

P

{

⋂

n≥0

{|∆Wn| ≥ an}
}

> 0. (4.4)

And so it is enough to show that

|Yn+1| ≥ (1 + φ̃) |Yn| on
⋂

n≥0

{|∆Wn| ≥ an}. (4.5)

We now specify the choice of c and y0 in (4.3): Pick φ̃ ∈ (0, φ) and put c = 1+∆+2/φ̃.

As σ > 0, the Euler scheme will hit any interval with positive probability. Therefore,

we can without loss assume that the Euler scheme start at some Y0 = y0. Now choose

y0 ≥ c1 such that |b(x)| / |x| ≥ φ̃ for |x| ≥ y0 [cf. (4.2)].

First assume that Yn+1/Yn ≥ 1, so that (4.5) reduces to Yn+1/Yn − 1 ≥ φ̃. Since
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|∆Wn| ≥ an ≥ (1 + ∆ +
2

φ̃
)
|b(Yn)|
|σ(Yn)| ,

(4.5) follows from the following calculation:

Yn+1

Yn
− 1 =

|σ(Yn)|
|Yn|

∣

∣

∣

∣

b(Yn)

σ(Yn)
∆ + ∆Wn

∣

∣

∣

∣

≥ |σ(Yn)|
|Yn|

|b(Yn)|
|σ(Yn)| ≥ 2 + φ̃ ≥ φ̃.

For Yn+1/Yn < 1 we have

∣

∣

∣

∣

Yn+1

Yn
−1

∣

∣

∣

∣

=

∣

∣

∣

∣

b(Yn)

Yn
∆+

σ(Yn)

Yn
∆Wn

∣

∣

∣

∣

≥
∣

∣

∣

∣

σ(Yn)

Yn

∣

∣

∣

∣

(

1+
2

φ̃

)∣

∣

∣

∣

b(Yn)

σ(Yn)

∣

∣

∣

∣

=

∣

∣

∣

∣

b(Yn)

Yn

∣

∣

∣

∣

(

1+
2

φ̃

)

≥ 2+ φ̃,

so that Yn+1/Yn < −1, since Yn+1/Yn < 1. From this in turn, we get (4.5) again:

|Yn+1|
|Yn|

− 1 =

∣

∣

∣

∣

2 +
b(Yn)

Yn
∆ +

σ(Yn)

Yn
∆Wn

∣

∣

∣

∣

≥ φ̃. 2

Many processes with vis are stationary local martingales. The following result shows

that for these processes the Euler scheme can usually be transient.

Proposition 4.2. Let {Yn}n≥0 be the Euler approximation of the SDE (2.1) with zero

drift b = 0 and σ > 0. If

lim
x→±∞

|x|p /σ(x) = 0 for some p > 1, (4.6)

then

P

{

⋂

n≥0

{|Yn+1| ≥ (1 + φ)Yn}
}

> 0 for φ > 0.

Proof. Pick a φ > 0. As in the proof of Proposition 4.1 we may assume that the

Euler scheme starts at some suitable y0 > 0. Define

an = (2 + φ) sup
|x|≥(1+φ)ny0

|x|
σ(x)

for n ≥ 0.

From (4.6) it follows that
∑

n≥0 an < ∞, so that (4.4) holds. And so the proposition

follows from the methodology used for the proof of Proposition 4.1. 2
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For the SDE in Propositions 4.1 and 4.2, instability starts when the Euler scheme is

numerical large, making it oscillate between large positive and negative values.

For stationary diffusions in natural scale that are not too heavy tailed, the Euler scheme

can be transient, as we have the following easy corollary to Proposition 4.2:

Corollary 4.1. The Euler scheme is transient with positive probability, for a local

martingale X given by (2.1), that admits a stationary distribution π such that

∫ ∞

−∞

|x|p dπ(x) < ∞ for some p > 1.

By the results of Gyöngy (1998), the Euler scheme converges almost surely as ∆ ↓ 0.

But for many SDE with vis, for any specific ∆, the Euler scheme may diverge.

Some times one can make a bijective transformation of X to another process with

constant volatility and a drift that is one-sided Lipschitz: If Assumption 2.1 holds

and the volatility in (2.1) has an absolutely continuous derivative, then the function

f(z) =
∫ z

1/σ(x) dx is strictly increasing and Zt = f(Xt) satisfies the SDE

dZt =

(

b(f−1(Zt))

σ(f−1(Zt))
− 1

2
σ′(f−1(Zt))

)

dt + dWt, Z0 = f(ζ). (4.7)

If the drift in (4.7) is one-sided Lipschitz, then the BE and SSBE schemes will usually

work well, see Mattingly, Stuart and Higham (2002).

5. The CKLS model

In Sections 5-7 we study three examples of SDE with various degrees of vis, and different

sample path properties with different simulation and modelling problems.

For simulations we use the pseudo random number generator ran2 from Flannery, Press,

Teukolsky and Vetterling (1995). All simulations use the same underlying Brownian

motion, so that they are started with the same seed d = −1. Even though we supply

just a few figures, our numerical experience build on many more simulations.

Extending the CIR model of Feller (1951) and Cox, Ingersoll and Ross (1985), given

constants α, β ∈ R and σ, γ > 0, Chan, Koralyi, Longstaff and Sanders (1992) studied

the CKLS model

dXt = (α + βXt) dt + σXγ
t dWt, X0 = ζ > 0. (5.1)

We first find boundaries, moments and the stationary distribution of the process. Then

we study simulation problems. The CKLS model has a medium degree of vis.
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5.1. Boundaries, ergodicity, moments and stationarity

We will consider the parameter values for which the SDE (5.1) has vis, which are

{ 1
2 <γ<1, α>0, β=0}∪{γ=1, α>0, 0≤β< 1

2σ2}∪{γ>1, α>0}∪{γ>1, α=0, β>0}.

For these parameters, Assumptions 2.1 and 2.3 hold, and we have ρ-mixing, see Hansen,

Scheinkman and Touzi (1998). The boundary 0 is an entrance boundary for α > 0 and

natural for α = 0. The vis boundary ∞ is null for γ = 1 and positive otherwise. By

Proposition 3.2, ∞ is an entrance boundary for γ > 1 and natural for γ ≤ 1.

One way to explain the vis for the CKLS model is to consider the transformed process

Zt = f(Xt), where f(x) = x1−γ γ ≥ 1
2 , γ 6= 1. By Itô’s lemma we have

dZt = ϕ(Zt) dt + (1 − γ)σ dWt, (5.2)

where

ϕ(z) = α(1 − γ)zγ/(γ−1) + (1 − γ)βz +
1

2
γ(γ − 1)σ2z−1. (5.3)

Except for a constant, this is the transformation in (4.7). For γ > 1, close to zero, the

term z−1 in the drift pushes the process away from zero. For large values, the process

is pushed down towards zero, by the term zγ/(γ−1) for α > 0, and by the term z for

α = 0. For 1
2 < γ < 1, close to zero, the term zγ/(γ−1) pushes the process away from

zero, but there is no strong downforce from high levels.

We find a formula for moments of the CKLS model below, as well as the stationary

distribution, which can be used to check the fit of the CKLS model to data.

The stationary mean is infinite for γ ≤ 1: Moments of order p < 2γ − 1 exist for

{ 1
2 < γ < 1, α > 0, β = 0}, and of order p < 1−2β/σ2 for {γ = 1, α > 0, 0≤ β < 1

2σ2}.

Proposition 5.1. The local martingale part of the stationary solution is not a mar-

tingale.

Proof. For γ > 1, we get this from that
∫ t

0
Xγ

s dWs has a decreasing mean over time,

by Corollary 5.1 below. For γ ≤ 1, if σ
∫ t

0
Xγ

s dWs were a martingale, we would have

Eπ

{

Xt − X0 −
∫ t

0

βXs ds

}

= αt + Eπ

{
∫ t

0

σXγ
s dWs

}

= αt. (5.4)

For β = 0, this contradicts stationarity, exactly as in Section 6.2 below. For β 6= 0,

(5.4) with t = 1 and Fubini’s theorem give Eπ{X1 − X0 − βXt0} < ∞ for almost

all t0 ∈ (0, 1). Subtracting this from (5.4), and using Fubini’s theorem again, we get

Eπ{Xs − Xt0} < ∞ for almost all s ∈ (0, 1). If some mean Eπ{Xs − Xt0} 6= 0 we
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would get a linear behavior like (7.3), by recursion, which we reject, as in Section 6.2.

And so, for almost all s ∈ (0, 1),

αs = Eπ

{

Xs−Xt0 −
∫ s

0

β(Xr −Xt0) dr+(1−βs)Xt0 −X0

}

= Eπ{(1−βs)Xt0 −X0}.

But considering two distinct values of s, we get the contradiction Eπ{Xt0} < ∞. 2

Writing Γ(·) [Γ(·, ·)] for the gamma function [incomplete gamma function], denote

M(p) =
∞
∑

k=0

1

k!

[ −β

σ2(γ−1)

(

σ2(2γ−1)

2α

)(2γ−2)/(2γ−1)]k

Γ

(

k
2γ−2

2γ−1
+1− p

2γ−1

)

,

M(p, x) =

∞
∑

k=0

1

k!

[ −β

σ2(γ−1)

(

σ2(2γ−1)

2α

)(2γ−2)/(2γ−1)]k

Γ

(

k
2γ−2

2γ−1
+1− p

2γ−1
, x

)

.

Proposition 5.2. Let γ > 1. For p < 2γ − 1 we have

Eπ{Xp
t } =



















(

σ2(2γ−1)

2α

)−p/(2γ−1)
M(p)

M(0)
if α>0 and β∈R,

(

σ2(γ−1)

β

)−p/(2γ−2)

Γ

(

2γ−1−p

2γ−2

)/

Γ

(

2γ−1

2γ−2

)

if α=0 and β>0,

(5.5)

while Eπ{Xt} = ∞ for p ≥ 2γ − 1. The stationary distribution is given by

Pπ{Xt >x} =















1

M(0)
M

(

0,
2α

σ2(2γ−1)
x1−2γ

)

if α>0 and β∈R,

Γ

(

2γ−1

2γ−2
,

β

σ2(γ−1)
x2−2γ

)/

Γ

(

2γ−1

2γ−2

)

if α=0 and β>0.

Proof. A non-normalized stationary density function is given by the speed measure

dm(x)

dx
= 2x−2γ exp

{

2α

σ2(1 − 2γ)
x1−2γ − β

σ2(γ − 1)
x2−2γ

}

,

so that
∫ ∞

0
xp dm(x) = ∞ for p ≥ 2γ − 1. We readily get the upper case in (5.5) from

∫ ∞

0

xp dm(x)

=

∫ ∞

0

2xp−2γ exp

{

2α

σ2(1−2γ)
x1−2γ − β

σ2(γ−1)
x2−2γ

}

dx

=
2

2γ−1

∫ ∞

0

yp/(1−2γ) exp

{

2α

σ2(1−2γ)
y

} ∞
∑

k=0

1

k!

( −β

σ2(γ−1)
y(2−2γ)/(1−2γ)

)k

dy,
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and along the same lines, the lower case from

∫ ∞

0

xp dm(x) =

∫ ∞

0

2xp−2γ exp

{ −β

σ2(γ−1)
x2−2γ

}

dx.

In the same fashion we calculate the stationary distribution function. 2

Proposition 5.3. Let γ > 1. We have

Eπ{Xt} ∈ (0,−α/β) for β < 0. (5.6)

Further, for α > 0 and β ∈ R we have

lim
γ↓1

Eπ{Xt} =

{

−α/β if β<0

∞ if β≥0
and lim

γ→∞
Eπ{Xt} =

{

−α/β if β<−α

1 if β≥−α
, (5.7)

while for α = 0 and β > 0

lim
γ↓1

Eπ{Xt} =

{

∞ if σ2 < 2β e

0 if σ2 ≥ 2β e
and lim

γ→∞
Eπ{Xt} = 1. (5.8)

Proof. By routine calculations, we have

M(1) =

∞
∑

k=0

1

k!

[ −β

σ2(γ−1)

(

σ2(2γ−1)

2α

)(2γ−2)/(2γ−1)]k

Γ

(

(k + 1)
2γ−2

2γ−1

)

,

M(0) = 1 +

∞
∑

k=1

1

(k−1)!

[ −β

σ2(γ−1)

(

σ2(2γ−1)

2α

)(2γ−2)/(2γ−1)]k(
2γ−2

2γ−1

)

Γ

(

k
2γ−2

2γ−1

)

.

(5.9)

From this in turn, we readily obtain

M(0) = 1 − β

α

(

σ2(2γ − 1)

2α

)−1/(2γ−1)

M(1).

Combining this with (5.5), we readily get (5.6) from

Eπ{Xt} = 1

/[(

σ2(2γ − 1)

2α

)1/(2γ−1)
1

M(1)
− β

α

]

. (5.10)

To prove (5.7) for β < 0 and γ ↓ 1, by (5.10), it is enough to show that limγ↓1 M(1) =

∞. This in turn follows by inspection of the following version of (5.9):

M(1) =
∞
∑

k=0

1

(k+1)!

[ −β

σ2(γ−1)

(

σ2(2γ−1)

2α

)(2γ−2)/(2γ−1)]k(
2γ−1

2γ−2

)

Γ

(

(k+1)
2γ−2

2γ−1
+1

)

.
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To prove (5.7) for α > 0, β < −α and γ → ∞, by (5.10), it is enough to show that

limγ→∞ M(1) = ∞. This in turn follows from the fact that, by routine calculations,

term number k in the sum for M(1) in (5.9) converges to (−β/α)k as γ → ∞.

To prove (5.7) for α > 0, β ≥ 0 and γ ↓ 1, notice that Eπ{Xt} is an non-decreasing func-

tion of α and β, by inspection of (4.7). And so it is enough to show limγ↓1 Eπ{Xt} = ∞
for β = 0. This in turn we get observing, by (5.5),

Eπ{Xt} =

(

σ2(2γ − 1)

2α

)−1/(2γ−1)

Γ

(

2γ − 2

2γ − 1

)

for α > 0 and β = 0.

To prove (5.7) for α > 0, −α ≤ β < α and γ → ∞, it is enough to consider −α < β < α,

by the monotonicity noted in the previous paragraph. This in turn we get from (5.10)

and that term number k in the sum M(1) goes to (−β/α)k as γ → ∞.

The fact that (5.7) holds for α > 0, β ≥ α and γ → ∞ follows from (5.8): This is so

because when we start with limγ→∞ Eπ{Xt} = 1 for α = 0 and β > 0, and succesively

increase α, by the noted monotonicity property together with (5.7) for α > 0, β < α

and γ → ∞, we must have limγ→∞ Eπ{Xt} = 1 for all intermediate α ∈ [0, β].

It remains to prove (5.8). Here the limit when γ → ∞ is immediate from (5.5), while

the limit when γ ↓ 1 follows from (5.5) together with Stirling’s formula. 2

As Eπ{Xt} < −α/β for α > 0, β < 0 and γ > 1, Chan, Koralyi, Longstaff and Sanders

(1992), Equation 2, misspecified the first moment conditions for their generalized

method of moments approach: The reason is that they overlooked the vis.

Corollary 5.1. Let γ > 1. We have

Eπ

{

σ

∫ t

0

Xγ
s dWs

}

= −
(

α + β

∫ ∞

0

x dπ(x)

)

t ≡ −d(α, β, σ, γ)t, (5.11)

where d(α, β, σ, γ) > 0. Further, for α > 0 and β ∈ R we have

lim
γ↓1

d(α, β, σ, γ) =

{

0 if β<0

∞ if β≥0
and lim

γ→∞
d(α, β, σ, γ) =

{

0 if β<−α

α+β if β≥−α
,

while for α = 0 and β > 0

lim
γ↓1

d(α, β, σ, γ) =

{

∞ if σ2 < 2β e

0 if σ2 ≥ 2β e
and lim

γ→∞
d(α, β, σ, γ) = β.

Conley, Hansen, Luttmer and Scheinkman (1997), p. 529, claim that a diffusion with

a (positive) vis at infinity behaves, for large values, as a Brownian motion. But,
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for the CKLS model the scale function diminishes all the obtained large values when

transforming back from the naturale scaled version, so that the process is different

from the Brownian motion. And even if the local martingale is unbiased towards the

direction, the speed of the clock will introduce a mean reverting bias. Thus, Conley,

Hansen, Luttmer and Scheinkman (1997) give a misleading interpretation of vis.

Since we have an entrance vis boundary at infinity, the local martingale σ
∫ t

0
Xγ

s dWs

will induce mean reversion for large values of the process, but display martingale

behavior for smaller values, giving it a decreasing mean. For β < 0 the mean reversion

comes from both vis and the drift. This is the reason that the stationary mean is

always less than −α/β. The value d(α, β, σ, γ) of the drift of the local martingale in

(5.11) measures the size of the vis.

5.2. Strong approximations and simulations of the CKLS model

For γ ≤ 1, the arguments of Propositon 7.1 below give strong uniform convergence

of the Euler scheme. For γ > 1, the Euler scheme breaks down with positive proba-

bility, by Proposition 4.1. For example, for γ = 50, the scheme breaks down almost

immediately with ∆ = 10−9.

Broze, Scaillet and Zaköıan (1995), pp. 220-221, prove that P{Y 2
n → ∞} > 0 for γ > 1.

We think their proof contains an error: As a first step, they show that

P{Y 2
n+1 ≥ (φ + 1)Y 2

n | Y 2
n } ≥ 1 − d > 0 for |Yn| > M, (5.12)

for some constants M,φ, d > 0. To finish the proof, they claim that (5.12) and

Petruccelli and Woolford (1984), p. 274, give P{limn→∞ Y 2
n = ∞|Y0} > 0.

Working through the details in Petruccelli and Woolford (1984), p. 274, the inequality

P{Y 2
n+1 ≥ (φ + 1)Y 2

n | Y 2
n } ≥ 1 − c/Y 2

n = 1 − dn > 0 for |Yn| > M, (5.13)

for some constant c > 0 (for a different model), is used to get the claimed convergence.

However, the requirement in (5.13) is stronger than the requirement in (5.12)!

We now examine implicit Euler schemes for the CKLS model, see (4.1). As the non-

Lipschitz part of the CKLS model is the volatility (not the drift), we need an implicit

scheme (θσ > 0). The explicit part of the implicit scheme for the CKLS model is

xỸn = xYn + (1 − θb)(α + βxYn − θσγσ2
xY 2γ−1

n )∆ + (1 − θσ)σxY γ
n ∆Wn,

and the non-linear equation to be solved for the implicit part is f(xYn+1) = xỸn, where

f(y) = y − θb(α + βy − θσγσ2y2γ−1)∆ − θσσyγ∆Wn
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(with x referring to the initial value). The issue whether f(Yn+1) = Ỹn has a unique

solution Yn+1 depends on the size of ∆Wn: The derivative f ′ has global minimum at

ȳ =

[

∆Wn

2θbσ(2γ − 1)∆

]1/(γ−1)

with f ′(ȳ) = 1 − θbβ∆ − θσγ

4θb(2γ − 1)

(∆W )2

∆
.

The two roots r±, r− < r+, are given by

r± =

[

∆Wn ±
√

d

2θbσ(2γ − 1)∆

]1/(γ−1)

where d = (∆Wn)2 − 4(1 − θbβ∆)
θb(2γ − 1)

θσγ
∆.

(5.14)

If θbβ∆ < 1 and the discriminant is positive, then the roots r± are both positive

[negative] if ∆Wn > 0 [∆Wn < 0].

The asymptotic probability that f is not monotone is P{N(0, 1) > 2
√

θb(2γ − 1)/(θσγ)}
as ∆ ↓ 0. With θb = θσ = 1 and γ close to one, that probability is 2.3%, decreasing to

0.23% for large values of γ. For f not monotone, there are several options.

We suggest the following: If f is not monotone, then for Yn ∈ [f(r+), f(r−)] the solution

f(Yn+1) = Yn is not unique. To have the continuity Ỹn+1 → Yn+1 as Ỹn → Yn, we

must select the smallest of the possible solutions. One option is to use the full implicit

scheme for Yn < f(r+), where the solution is unique. Another option is to use the

full implicit scheme for Yn < f(r−), and in cases of more than one solution choose the

smallest one. The motivation is that the solution of an SDE in the interval [tn, tn+1]

should depend only on the Brownian motion in the interval, together with the drift

and volatility at Xtn
, so that this information should suffice to determine Xtn+1

.

The question remains what to do if Yn > f(r+) [Yn > f(r−)]. We suggest that θb and

θσ are adjusted so that f(Yn+1) = Yn gets a unique solution. The simplest choice is to

take an explicit step (θb = θσ = 0).

In our test examples, the explicit step is applied very seldom, and only if ∆Wn > 0 is

large, at the same time as Yn > f(r±). In practice we get a stable numerical scheme,

even for very large values of γ.

We now describe yet another and fruitful approach to simulate the CKLS model, which

is to simulate the transformed process (5.2). With a constant volatility the implicit

schemes of interest reduce to the theta method; and for θb = 1 the BE scheme,

zỸn = zYn + (1 − θb)ϕ(zYn)∆ + σ(1 − γ)∆Wn,

where ϕ is defined in equation (5.3). The non-linear equation to be solved is g(zYn+1) =

zỸn where g(z) = z − θbϕ(z)∆. As g : (0,∞) → (−∞,∞) invertible, the BE scheme

defines a solution which can attain any positive value, exactly like the true solution.
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The full implicit scheme is promising as the function ϕ in (5.3) is C1 and one-sided

Lipschitz. Since b has a polynomial behaviour at infinity, Mattingly, Stuart and Higham

(2002), Theorem 5.3, shows that for the true solution and the continuous-time extension

of the BE approximation, all moments of order p > 2 are uniformly bounded, and the

approximation converges uniformly in L2 with order 1
2 . By transforming back with the

inverse function f−1(zYn), f−1(y) = y1/(1−γ) which is decreasing and convex, we get

our benchmark for the true solution sample path of the CKLS model.

We will now consider some numerical examples of CKLS models.

In Figure 1 in Appendix A, the left panel shows the stationary mean as a function

of γ > 1, in part illustrating the limit behavior from Proposition 5.3, while the right

panel shows the stationary density for two sets of parameter values.

We illustrate the results from Corollary 5.1 in Figure 2.

Another way to measure the reversion back to the stationary level is by the spectral

gap. Genon-Catalot, Jeantheau and Larédo (2000) give the upper bound 1/(8Cm((0,

∞))2) for that gap, where C is the median of π. With the same parameters as in

Figure 1, we display this bound in Figure 3.

Even though the gap estimate may be crude, it shows strong exponential mean reversion

for large values of γ. The reversion grows with β. As the stationary density moves to

the right when β increases, this suggests that excursions from the mean become higher

and shorter, like peaks.

Sample paths are different for the cases γ < 1 and γ > 1: For γ > 1 the process escapes

the mean during short explosive peaks, while for γ < 1, the clock is slower.

Simulation of the CKLS model using the transformation (5.2). We now give

two numerical examples of the CKLS model with γ = 50, giving an extremely high vis.

The other parameters are α = 1, β = ±1 and σ = 2, to illustrate the difference between

pure vis (β = 1) and a diffusion with stationarity from both vis and drift (β = −1).

In Figure 4 the left panels show two sample paths of the CKLS model using the full

implicit Euler scheme (zYn), with X0 = 1 and ∆ = 10−9, and transformed back to

the CKLS model, see (5.2). Note that for β = 1 the process has a lot of peaks. Both

processes are reverting extremely fast back to the stationary level. The transformed

processes (5.2) are plotted in the right panels, and they behave wildly!

The peaks for the processes in Figure 4 are very narrow. To see the behavior at peaks,

we display two windows with volatile periods in Figure 5. Note that the excursions

from the mean are very short. Also, the process in the right panel (β = −1) has a

longer excursion than the one in the left panel (β = 1). This is the general picture,

and is also confirmed by estimates for the spectral gap in Figure 3.
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Albeit the simulation scheme converges as ∆ ↓ 0, the CKLS model is hard to simulate

for large γ. In contrast to the explicit scheme, which overestimates the peaks and ends

up transient, the implicit scheme underestimates peaks, giving a downward bias. For

example, the peaks close to 1.15 in Figure 5 reduce to 1.07 for the step size 10−5.

Simulation of the CKLS model using modified implicit schemes. Consider

the difference between a modified full implicit scheme (xYn) and the transformed

scheme f−1(zYn). The full implicit scheme for the transformed process converges by

Higham, Mao and Stuart (2002).

We trust the Euler approximation (zYn) and define the relative error for a modified

implicit Euler scheme, (xYn), as the relative difference between the two implicit Euler

schemes

εn = 2
f−1(zYn) − xYn

f−1(zYn) + xYn
, n = 0, 1, . . . , f−1(z) = z

1
1−γ .

Note that ε0 = 0 and that εn > 0 when a modified full implicit Euler scheme xYn

underestimates the true value. In most cases, the two schemes attain their extremes

at the same times, but in rare cases there are differences.

We used the modified full implicit scheme with the left root. And so, for xYn ≤ f(r−)

we use the full implicit Euler scheme, while otherwise we take an explicit step.

The right panel of Figure 6 shows the relative error εn for β = −1. Remarkably, we did

not take any explicit steps. Large errors arise around high peaks, when the transformed

process (zYn) is close to zero. Otherwise, the error is of magnitude 10−6.

The left panel in Figure 6 shows β = 1. The bracketed numbers indicate the numbers

of explicit steps applied around peaks. Except for at peaks, the relative error εn is

about 10−6, just as for β = −1. To illustrate this, we have in Figure 7 divided [0, 1]

into 1000 equally long subintervals, and evaluated the εn only at the largest value of

the process in each subinterval. The figure is very similar to Figure 6.

To give a better picture of the problem around the peaks we have plotted the error

process (εn) in Figure 8 with the same window as in Figure 5.

We may instead take explicit steps whenever xYn is larger than f(r+), using f(r+) as

the boundary for where to take implicit and explicit steps. This will not improve this

significantly. The error using the root r+ is plotted in the left panel of Figure 9.

Instead of full explicit steps, we could take θb = 1 and θσ < 1, still using f(r+) as the

boundary for where to stop with implicit steps. For a “troubled” increments ∆Wn, we

choose a θσ such that the discriminant is negative, see (5.14). Specifically, we take

θb = 1 and θσ =
2(1 − θbβ∆)θb(2γ − 1)∆

γ(∆Wn)2
.
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For this θσ, the discriminant in (5.14) is zero for d = 2θσ, while positive for θσ = 1.

Hence θσ ∈ (0, 1). The right panel of Figure 9 shows the relative error for the scheme.

All schemes seems to differ at the peaks, because at peaks the clock is so fast that,

even with step size 10−9, the process can change value up to 0.03 for a single step.

The case of Chan, Koralyi, Longstaff and Sanders (1992). As a last example

we use the parameters from the paper by Chan, Koralyi, Longstaff and Sanders (1992),

α = 0.0408, β = −0.5921, σ2 = 1.6704, γ = 1.4999. (5.15)

The data set in Chan, Koralyi, Longstaff and Sanders (1992) is the monthly yields

of U.S. one-month Treasury Bills, 1964-89 (CRSP). They view the data as discretely

observed data from the CKLS model, hence ∆ = 1
12 . The stationary mean is 0.06886

and −α/β = 0.06891, so the true mean is in this case only slightly smaller than if no

vis was present. Still this SDE displays different behavior than for the case 1
2 ≤ γ < 1.

In Figure 10 we have plotted the CKLS model (5.15) for 25 years (left panel) and 1000

years (right panel), with the latter showing the high peak characteristics of vis.

We decompose the process X into its drift part X0+
∫ t

0
(α+βXs) ds and local martingale

part σ
∫ t

0
Xγ

s dWs. We start by simulating Xt as in Figure 10. Next we simulate the

drift part and the local martingale part as

∫ tn+1

tn

(α + βXs) ds ≈ α∆ +
β

2
(Xtn+1

+ Xtn
)∆, (5.16)

σ

∫ tn+1

tn

Xγ
s dWs ≈ Xtn+1

− Xtn
− α∆ − β

2
(Xtn+1

+ Xtn
)∆. (5.17)

If no vis effect were present, the local martingale part should have had zero mean, so

that (5.16) and (5.17) were zero mean processes, under the stationary measure.

Figure 11 shows the drift and local martingale parts of the SDE started at 0.06886 (left

panel), and the drift and the local martingal parts together with the solution started

at 4, but moved different constant steps in the y direction to facilitate viewing (right

panel). Note that the negative drift of the local martingale is recognizable only when

the process is much larger than the stationary mean.

As long as the process is close to the stationary mean there is no recognizable drift

effect (left panel of Figure 11) and hence, close to the mean, the reversion is controlled

by the drift. In other words, the vis effect is only present for large values. As discussed

earlier this is the case when β is dominating, β < −α, which is the case here.
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Endnotes for the CKLS example. To show that our numerical schemes capture

the drift in the local martingale (5.17), we have included the new parameter set α = 1,

β = 1, σ = 2, and γ = 3
2 , with stationary mean 3.13 and vis effect d(α, β, σ, γ) = 4.13.

Figure 12 displays the process with its local martingale and drift components. Since

β > 0 there is no reversion from the drift. The stationary local martingale has mean

−4.13t. For Figure 11 we argued that there is a close connection between peaks of the

local martingale and of the process: Figure 12 shows an almost perfect match!

6. A hyperbolic diffusion with vis

Our second example is within the hyperbolic class of diffusions, see Bibby and Sørensen

(2003). The actual SDE we study is taken from Bibby and Sørensen (1997):

dXt = σ exp
{1

2

(

α
√

δ2 + (Xt − µ)2 − β(Xt − µ)
)}

dWt, X0 = ζ.

To satisfy Assumptions 2.1 and 2.3 the parameters must satisfy α > |β| ≥ 0, δ, σ > 0

and µ ∈ R. Then the diffusion is also ρ-mixing, as ±∞ are entrance boundaries, see

Hansen, Scheinkman and Touzi (1998), Section 4. There is a high degree of vis

The stationary solution has all moments, some of which are calculated by Bibby and

Sørensen (2003). The stationary density is maximal at µ+ δβ/
√

α2−β2.

As in Example 3.2, the stationary local martingale is uniformly integrable but not a

martingale.

Denoting the spectral gap λ, ergodicity and ρ-mixing gives Ex{
∫ t

0
σ(Xs) dWs} = O(eλt)

as t → ∞ for x ∈ R, while Eπ{
∫ t

0
σ(Xs) dWs} = 0. Hence mean reversion is not due

to bias of the local martingale, but that the clock is very quick at large values.

6.1. Time-changed simulation

By Corollary 4.1, the Euler scheme is transient with positive probability. This should

then apply also to higher order explicit schemes, and from numerical tests we have

seen that the Milstein and strong 1.5 schemes start to oscillate between large positive

and negative values. However, Bibby and Sørensen (1997) report that the strong 1.5

scheme works for them!

The implicit scheme is problematic because the equation to be solved will not have

a unique solution. The transformation method that was used for the CKLS model is

not an option here, as the function f in (4.7) and its inverse have to be evaluated by

time-consuming numerical methods, and the drift in (4.7) is not one-sided Lipschitz.
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We will describe an alternative way to simulate a local martingale as a time-changed

Brownian motion, which will be refered to as time-changed simulation. First we set up

some notation (see e.g., Revuz and Yor, 1999, Chapter 5):

Let [X]t =
∫ t

0
σ2(Xs) ds be the quadratic variation process. If Tt solves [X]Tt

= t, then

Bt = XTt
− X0 is a Brownian motion: The idea is to simulate B and get X from

Tt =

∫ t

0

du

σ2(X0 + Bu)
and XTt

= X0 + Bt.

Consider a grid 0 = t0 < t1 < . . . < tN = T with spacing ∆. Given Ttn
, we have

XTtn+1
= X0 + Btn+1

where Ttn+1
− Ttn

=

∫ tn+1

tn

du

σ2(X0 + Bu)
. (6.1)

For B close to the boundaries the speed measure gets small, so that Ttn+1
−Ttn

is very

small, which makes computations slow. We will now explain how to deal with this:

Pick intervals (a1, b1) ( (a2, b2) and numbers ε1 > ε2 > 0 such that σ2(x) is strictly

monotone outside (a1, b1) with 1/σ2(a1) = 1/σ2(b1) = ε1 and 1/σ2(a2) = 1/σ2(b2) =

ε2. As long as Btn
∈ (a2 −X0, b2 −X0) we calculate XTtn+1

by (6.1). If B reaches the

bound a2 − X0 [b2 − X0] at the time τ = ti, then we stop the scheme (6.1) and start

it again at the first time ρ = tj at which B returns to the bound a1 − X0 [b1 − X0].

To approximate the integrals in (6.1), we use a trapezoid rule for regular steps from

tn to tn+1, and for jumps with ρ− τ ≤ 1. For larger jumps we use a grid with spacing

∆̃ = 0.1. As we know the values of the Brownian motion at the endpoints, we simulate

intermediate values according to a (time-scaled) Brownian bridge.

By the strong vis, the hyperbolic diffusion spends very little time at numerically large

values, so that the excursions in (Tτ , Tρ) should not influence “overall properties” of the

solution significantly. Still, in some applications, these excursions could be important.

6.2. A numerical example

The parameter found by Bibby and Sørensen (1997) for stock price dynamics were

α = 4.4875, β = −3.8412, δ = 1.1949, µ = 7.2915, σ = σ0 = 0.0047.

This gives a stationary distribution with mean 4.1705 and variance 3.8943, which is

plotted in the left panel of Figure 13 in Appendix A.

Simulations by the time-change scheme, with ∆ = 10−5, T = 1000, ε1 = 0.1, ε2 =

0.01 and X0 = 4.1705 (the stationary mean) are displayed to the right in Figure 13.

There we also considered σ = σ1 = 0.047, meaning that the clock runs 100 times faster.
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7. A family of heavy tailed SDE

Given a constant a < 1
3 , our third SDE is given by

dXt = 3Xa
t dt + 3X

2/3
t dWt, X0 = ζ > 0. (7.1)

This SDE satisfies Assumptions 2.1 and 2.3, with speed measure given by

m(x)

dx
=

2

9
x−4/3 exp

{

2

3a − 1
xa−1/3

}

for x > 0. (7.2)

The boundary 0 is natural and ∞ a positive vis natural boundary. There is no spectral

gap, see Hansen, Scheinkman and Touzi (1998), Section 4: The lack of ρ-mixing indic-

ates that the process can in relatively long periods stay away from the stationary level.

Stationary moments of order p < 1
3 exist, and are easily calulated from (7.2). The local

martingale part
∫ t

0
3X

2/3
s dWs of the stationary solution to (7.1) is not a martingale,

because this would contradict stationarity in the following way:

Eπ{Xt − X0} = Eπ

{
∫ t

0

3Xa
s ds +

∫ t

0

3X2/3
s dWs

}

= 3t

∫ ∞

0

xa dπ(x) < ∞. (7.3)

The stationary density attains its maximum at x = 23/(3a−1). Notice that the process

is pushed towards zero as a increases. Obviously, accurate simulations of (7.1) is an

issue of both stability at infinity, and control of the boundary at zero.

7.1. Simulation techniques

Itô-Taylor scemes are strong uniformly convergent under linear growth and Lipschitz

drift and volatility, see Kloeden and Platen (1995), Section 10.6. For a ≥ 0, we can

have an Itô- Taylor scheme that is uniformly closer than δ to the true solution, with

probability 1 − δ, for any δ ∈ (0, 1), by using the modified SDE of the proof below,

picking ∆, ε > 0 small enough.

Proposition 7.1. For a ≥ 0 the Euler scheme is strong uniformly convergent.

Proof. By Higham, Mao and Stuart (2002), Theorem 2.2, it is enough to show

bounded moments of some order p > 2 for suprema of the true solution and the Euler

scheme, started at a fixed initial value ζ = x. Replace (7.1) with an SDE with Lipschitz

drift and volatility that coincide with the original ones on (ε,∞), where ε ∈ (0, x).



Volatility Induced Stationarity 23

Denoting the solution to the new SDE X̃, and τε = inf{t > 0 : Xt = ε}, we have

Ex
{

sup
t∈[0,T ]

X(t)p
}

≤ Ex
{

sup
t∈[0,τε]

X̃(t)p1{τε<T}

}

+ Ex
{

sup
t∈[0,T ]

X(t)p
}

Px{τε <T} + Ex
{

sup
t∈[0,T ]

X̃(t)p1{τε≥T}

}

≤ Ex
{

sup
t∈[0,T ]

X̃(t)p
}

+ Ex
{

sup
t∈[0,T ]

X(t)p
}

Px{τε <T}.

Since P{τε < T} < 1, we get the moment bound on X from a bound on X̃. But such

a bound, for any p ≥ 2, is given e.g., in Kloeden and Platen (1995), Exercise 4.5.5.

For the Euler scheme, we can extend the drift and volatility to (−∞, 0], in any way

that does not violate linear growth, to get an Euler scheme Yn that satisfies

Y 2
n+1 ≤ Y 2

n + C1

(

1 + Y 2
n

) (

∆ + ∆Wn + ∆W 2
n

)

for ∆ ≤ 1 and n < N,

for some constant C1 > 0. And so the submartingale Z2
n, given by

Z2
n+1 = Z2

n + C1

(

1 + Z2
n

) (

∆ + ∆Wn + ∆W 2
n

)

for n < N, Z2
0 = x2,

satisfies Z2
n ≥ Y 2

n . As we have, for some constant C2 > C1,

Z4
n+1 ≤ Z4

n + C2

(

1 + Z4
n

) (

∆ + ∆Wn + ∆W 2
n + |∆Wn|3 + ∆W 4

n

)

for ∆ ≤ 1 and n < N , we get, for some constant C3 > C2,

E{Z4
n+1} ≤ E{Z4

n} + C3

(

1 + E{Z4
n}

)

∆ for ∆ ≤ 1 and n < N.

Hence, by iteration, E{Z4
n} ≤ (1+x4)(1+C3∆)n−1. Now Doob’s maximal inequality

gives

sup
∆>0

E
{

sup
n≤N

Y 4
n

}

≤ sup
∆>0

E
{

sup
n≤N

Z4
n

}

≤
(4

3

)4

sup
∆>0

E{Z4
N} ≤

(4

3

)4

sup
∆>0

(1 + x4)(1 + C3∆)n < ∞. 2

For a < 0 explicit schemes are unstable, as values close to zero jump to high values

from which there is little reversion. For example, for a=−10, we have noted instability

for ∆=10−9!
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As for the CKLS model, we can use the transformation (4.7), with f(x) = x1/3 and

ϕ(z) = z3a−2 − z−1 one-sided Lipschitz, so that Zt = f(Xt) satisfies

dZt = ϕ(Zt) dt + dWt, Z0 = f(ζ) > 0. (7.4)

With the notation of the CKLS example, the partial explicit step for (7.4) is

zỸn = zYn + (1 − θb)ϕ(zYn)∆ + ∆Wn.

The non-linear equation to be solved is g(zYn+1) = zỸn, where g(z) = z − θbϕ(z)∆.

Then we transform back with f−1(z) = z3, and the approximation of Xtn
is xYn =

f−1(zYn). By Higham, Mao and Stuart (2002), this transformation scheme converges

to the true solution.

7.2. A numerical example

The left panel in Figure 14 in Appendix A, shows the SDE (7.1) simulated in the

interval [0, 10] for a = −10, using the BE scheme (θb = 1) with ∆ = 10−6 and

X0 = 0.935 − the maximum of the speed density. Notice the ability to escape from the

value 0.935 during long periods. On the other hand, the right panel displays the process

in the interval [8, 10], and shows that it also stays close to 0.935 for long periods.

In Figure 15, everything is as in Figure 14, except that a = 1
10 and the maximum of

the speed density is at X0 = 0.05127. Note that the behaviour of the process for large

values (the left panel), is virtually identical to that when a = −10, illustrating that we

have vis. On the other hand, the process spends much less time close to the maximum

of the speed density, than when a = −10 (right panel).

8. Conclusion

We have studied a class of stationary and ergodic SDE, for which stationarity is ensured

by a high volatility - vis. SDE with vis escape from the stationary level often, but in

short periods if the vis is strong. Between these excursions, the process is very steady.

As SDE with stationarity from mean reversion by the drift do not behave in this

manner, SDE with vis are important additions to more conventional models.

The vis appears at the boundaries of the SDE. Either we have a local martingale

part of the solutions that is not a martingale, with a mean reverting drift, or we have

a martingale or non-martingale local martingale part that is mean reverting, simply

because the clock runs quicker nere boundaries. We conclude that interpretations and

statistical methods for SDE with vis in the literature have to be revised (see below).
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To work with SDE with vis it is important to have simulation methods. We considered

simulated of strong solutions. As virtually all traditional simulation schemes may fail

for SDE with vis, we considered alternative methods.

We gave three examples of SDE with a different degree of vis: The CKLS model has a

medium degree of vis, where some but not all moments exist, and is or is not ρ-mixing.

We simulated CKLS by transformation of the SDE and by modified implicit schemes.

An SDE with a stationary distribution in the hyperbolic class is ρ-mixing with a high

degree of vis, and all moments exist. These SDE were simulated by change of time.

The class of heavy tailed SDE were not ρ-mixing, and had a weak vis with an infinite

stationary mean. They were simulated by transformation of the SDE.

There are mistakes in the literature on inference for SDE with vis.
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Appendix A. Figures
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density
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