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Introduction

This thesis is on credit risk, and more speci�cally on credit derivatives. Credit

risk is the risk that an obligor does not honour his payment obligations, while a

credit derivative could be de�ned as a security whose payo¤ is a¤ected by credit

risk. A credit derivative is primarily used to transfer, hedge or manage credit

risk.

For modelling credit risk, two classes of models exist: structural models and

reduced-form models. Structural models date back to the papers of Black & Sc-

holes (1973) and Merton (1974). These papers demonstrated how option pricing

formulas can be applied to the valuation of equity and corporate bonds. In these

models equity, debt and other claims issued by a �rm are viewed as contingent

claims on the value of the �rm�s underlying assets. While the original models

of Black & Scholes (1973) and Merton (1974) relied on a number of simplify-

ing assumptions, there has been a large literature of extensions to the original

framework, such as the inclusion of taxes, bankruptcy costs and a continuous

default boundary. These features have made the models more realistic, and have

e.g. made it possible to describe the �rm�s optimal capital structure. Default

is modelled as the assets of the �rm falling short of a default boundary and the

probability of this occurring is determined by the amount of debt in the �rm and

the volatility of its assets. Structural models are extremely important for building

intuition and for understanding how changes in a �rm�s capital structure or it�s

business risk a¤ects the �rm�s cost of capital. Furthermore, the models are useful

if one wants to understand the co-movement between debt and equity of the same

�rm, which is why the models are also used for relative value trading between

credit and equity markets. The practical implementation of structural models is

often done by calibrating the chosen model to the equity market, which makes it

possible to estimate �rm speci�c default probabilities. This type of calibration is
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widely used in industry models such as Creditgrades, and also forms the basis of

Moody�s Expected Default Frequency measure (EDF).

The second type of approach to the modelling of credit risk is the so-called

reduced form (or intensity) models. In these models a �rm�s default time is

unpredictable and driven by a default intensity, which is a function of a number

of either latent or observed state variables. The focus in these models is more

on consistent pricing across debt instruments, and the reason for default is not

modelled. Thus, a reduced form model does not give any fundamental reason for

the arrival of defaults, but instead a consistent description of the market implied

distribution of default arrival times. These models can thus be used for relative

value trading across debt instruments and credit derivatives. Lando (2004) and

also Schönbucher (2003) contain a treatment of both types of models.

This thesis consists of three self-contained essays, which can be read indepen-

dently. However, they are interrelated through their use of structural credit risk

models. Chapter 1 estimates the impact of accounting transparency on the term

structure of Credit Default Swap spreads (CDS spreads) for a large cross-section

of �rms. Using a newly developed measure of accounting transparency in Berger,

Chen & Li (2006), we �nd a downward-sloping term structure of transparency

spreads, which is in accordance with the theory in Du¢ e & Lando (2001). Chap-

ter 2 analyzes the use of CDS�s in a convergence-type trading strategy popular

among hedge funds and proprietary trading desks. This strategy, termed capital

structure arbitrage, takes advantage of a lack of synchronicity between equity and

credit markets and is related to recent studies on the lead-lag relationship between

bond, equity and CDS markets. Chapter 3 estimates the time-series behavior of

credit risk premia in the market for Credit Default Swaps. The risk premium

peaks in the third quarter of 2002, but the subsequent drop in the risk premium

is not as dramatic, when expected losses are based on implied volatility instead

of a historical volatility measure. The credit risk premium tends to be counter-

cyclical when expected losses are based on implied volatility and the results of

the paper also suggest that structural models should contain a time-varying risk

premium.

Finally, English and Danish summaries of the three essays are provided at the

back.

x



Chapter1
Accounting Transparency and the Term

Structure of Credit Default Swap

Spreads
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Coauthored with Peter Tind Larsen, School of Economics and Management,

University of Aarhus

Abstract1

This paper estimates the impact of accounting transparency on the term struc-

ture of CDS spreads for a large cross-section of �rms. Using a newly developed

measure of accounting transparency in Berger et al. (2006), we �nd a downward-

sloping term structure of transparency spreads. Estimating the gap between the

high and low transparency credit curves at the 1, 3, 5, 7 and 10-year matu-

rity, the transparency spread is insigni�cant in the long end but highly signi�cant

and robust at 20 bps at the 1-year maturity. Furthermore, the e¤ect of account-

ing transparency on the term structure of CDS spreads is largest for the most

risky �rms. These results are strongly supportive of the model by Du¢ e & Lando

(2001), and add an explanation to the underprediction of short-term credit spreads

by traditional structural credit risk models.

1We thank Lombard Risk for access to the credit default swap data. We thank Christian
Riis Flor, Peter Løchte Jørgensen, David Lando, Mads Stenbo Nielsen, Thomas Plenborg and
participants at the Danish Doctoral School of Finance Workshop 2007 for valuable comments
and insights. Any remaining errors are our own.
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1.1 Introduction

Traditional structural credit risk models originating with Black & Scholes (1973)

and Merton (1974) de�ne default as the �rst passage of a perfectly measured asset

value to a default barrier. While later extensions that allow for endogenous default

and debt renegotiations have increased predicted spread levels, it is well-known

in the empirical literature that structural models underpredict corporate bond

credit spreads, particularly in the short end.2 Reasons for the poor performance

may lie in shortcomings in the models as well as factors other than default risk

in the corporate bond credit spread.

As noted in Du¢ e & Lando (2001), it is typically di¢ cult for investors in

the secondary credit markets to observe a �rm�s assets directly, either because

of noisy or delayed accounting reports or other barriers to monitoring. Instead,

investors must draw inference from the available accounting data and other pub-

licly available information. As a consequence they build a model where credit

investors are not kept fully informed on the status of the �rm, but receive noisy

unbiased estimates of the asset value at selected times. This intuitively simple

framework has a signi�cant implication for the term structure of credit spreads.

In particular, for �rms with perfectly measured assets credit spreads are rel-

atively small at short maturities and zero at zero maturity, regardless of the

riskiness of the �rm. However, if �rm assets periodically are observed with noise,

credit spreads are strictly positive under the same limit because investors are

uncertain about the distance of current assets to the default barrier.

This paper contributes to the existing literature by estimating the component

of the term structure of credit spreads associated with a lack of accounting trans-

parency.3 To this end, credit default swap (CDS) spreads at the 1, 3, 5, 7 and

10-year maturity for a large cross-section of �rms are used together with a newly

developed measure of accounting transparency by Berger et al. (2006). We relate

this transparency measure to CDS spreads in two ways.

First, it is used to estimate a gap between the high and low transparency credit

curves. This gap interpreted as a transparency spread is estimated at 20 bps at

2See e.g. Jones, Mason & Rosenfeld (1984), Ogden (1987), Huang & Huang (2003) and
Eom, Helwege & Huang (2004).

3Consistent with the literature, we use the terms "accounting noise" and "accounting trans-
parency" interchangeably. If the noise in the reported asset value is low, the accounting trans-
parency is high.
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the 1-year maturity and narrows to 14, 8, 7 and 5 bps at the 3, 5, 7 and 10-year

maturity, respectively. The downward-sloping term structure of transparency

spreads is highly signi�cant in the short end but most often insigni�cant above

the 5-year maturity. Furthermore, the e¤ect of accounting transparency is largest

for the most risky �rms. These results are robust across alternative econometric

speci�cations controlling for within cluster correlations and a large set of control

variables.

Second, we analyze each maturity class in isolation using the raw transparency

measure and a rank transformation. In this speci�cation, the equal maturities

across �rms �xed through time in the CDS data allow the control variables to

impact spreads di¤erently across maturity classes. Since insights from above are

preserved, the results are supportive of hypotheses derived from Du¢ e & Lando

(2001) and add an explanation to the underprediction of short-term credit spreads

by traditional structural models.

However, the explanatory power of accounting transparency and a typical set

of control variables is small for less risky �rms. This observation is supportive of

the problems in earlier studies, when explaining the credit spreads of low-yield

�rms using structural models. This paper suggests that variables other than

accounting transparency are needed, also in the short end.

The results contradict an earlier study by Yu (2005), who analyzes corporate

bond credit spreads in 1991 to 1996 using the AIMR analyst ranking of corporate

disclosure. He attributes a u-shaped transparency spread with the largest a¤ect

at longer maturities to a discretionary disclosure hypothesis, where �rms hide

information that would adversely a¤ect their long-term outlook. While Du¢ e

& Lando (2001) assume an exogenous unbiased accounting noise, the theory of

discretionary disclosure starting with Verrecchia (1983) suggests that withheld

information may signal hidden bad news about a company. Consistent with the

term structure implications in Du¢ e & Lando (2001), our study shows that the

transparency spread is downward-sloping in the CDS market.

Although a close relation exists between corporate bond and CDS spreads

(Du¢ e (1999)), the latter are preferable from several perspectives when analyzing

the determinants of the shape of the credit curve. First, the �xed maturities in

CDS contracts make term structures directly comparable across �rms and time.

There is no maturity shortening as there would be with corporate bonds, and we

are not forced to interpolate maturities to compare spreads in the cross-section.
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Second, quotes at di¤erent maturities should be compared on the same curve,

and a study of multiple maturity observations for a given �rm at a given date is

in e¤ect only possible in the CDS market. Third, a use of CDS spreads avoids

any noise arising from a misspeci�ed risk-free yield curve (Houweling & Vorst

(2003)). Fourth, as shown in Lando & Mortensen (2005) and Agrawal & Bohn

(2005), the shape of the corporate bond credit curve depends on deviations from

par under the realistic recovery of face value assumption. As Yu (2005) focuses

on secondary market yields this technical e¤ect may in�uence his results. The

same e¤ect is not present in the CDS market as CDS spreads are closely related

to par bond spreads.

Fifth, CDS contracts are less likely to be a¤ected by di¤erences in contrac-

tual arrangements such as embedded options, guarantees, covenants and coupon

e¤ects. Although bonds with e.g. call features may be deliverable in default, this

e¤ect is likely to be present across the term structure of CDS spreads.

Sixth, several recent studies �nd that CDS spreads are a purer measure of

credit risk and represent more timely information than corporate bonds. Non-

default components stemming from asymmetric taxation and illiquidity have been

compared across corporate bond and CDS markets.4 However, the component

due to imprecisely observed assets, let alone the term structure implications, is

much less understood.

A reason for the lack of evidence on the impact of accounting transparency is

the di¢ culty in constructing an empirical measure of a �rm�s overall information

quality. The accounting literature explaining e.g. the cost of capital has relied

on the AIMR analyst ranking of corporate disclosure. Analyzing the cost of

debt, Sengupta (1998) �nds a negative relationship between the AIMR measure

and o¤ering yields. This measure is also adopted by Yu (2005), with a resulting

sample almost entirely made up of investment grade �rms. As the measure ends

in 1996, it cannot be related to CDS curves.

However, a newly developed measure of accounting transparency by Berger

4Blanco, Brennan & Marsh (2005) �nd that the CDS market leads the corporate bond
market. Longsta¤, Mithal & Neis (2005) �nd a signi�cant non-default related component in
the corporate bond credit spread correlated with illiquidity proxies. Ericsson, Reneby & Wang
(2006) �nd this not to be present in CDSs. Elton, Gruber, Agrawal & Mann (2001) document a
tax premium of 29 to 73 percent of the corporate bond credit spread, depending on the rating.
Related studies on corporate bonds include Delianedis & Geske (2001) and Huang & Huang
(2003).
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et al. (2006) can be readily calculated for a large sample of �rms. This allows

us to study a large set of credit curves across rating categories. The idea be-

hind the measure is that given the idiosyncratic cash �ow volatility, the better

a �rm�s information quality the higher its �rm-speci�c equity return volatility.

Berger et al. (2006) conduct several tests to assess their measure, and �nd results

in accordance with intuition. Our application in the credit derivatives market

provides additional evidence to the validity of the measure.

This paper is related to Sarga &Warga (1989), Fons (1994), Helwege & Turner

(1999), Lando & Mortensen (2005) and Agrawal & Bohn (2005) who analyze the

slope of the credit curve as a function of credit quality. Ignoring noisy asset

reports, standard theory predicts an upward-sloping credit curve for high quality

�rms and a humped shaped or mostly downward-sloping credit curve for low

quality �rms. However, these papers are silent on decomposing the curve and the

e¤ect of accounting transparency.

Early studies mainly analyze the 5-year maturity, which is considered the

most liquid point on the curve. This paper contributes to an increasing litera-

ture analyzing the entire term structure of CDS spreads. In addition to Lando

& Mortensen (2005) and Agrawal & Bohn (2005) this includes Huang & Zhou

(2007), who conduct a consistent speci�cation analysis of traditional structural

models. Although the 5-year maturity dominates our data, a signi�cant number

of observations are found at the 1, 3, 7 and 10-year maturity.

Finally, the paper is related to studies on the determinants of credit spreads

such as Collin-Dufresne, Goldstein & Martin (2001), Campbell & Taksler (2003),

Ericsson, Jacobs & Oviedo (2005), Cremers, Driessen, Maenhout & Weinbaum

(2006) and Cao, Yu & Zhong (2006). These papers analyze the explanatory

power of traditional structural variables such as leverage, asset volatility and

risk-free interest rates, but are silent on di¤erent maturity classes and accounting

transparency. Finally, Güntay & Hackbarth (2007) study the relation between

corporate bond credit spreads and the dispersion of equity analysts� earnings

forecasts.

The outline of the paper is as follows. Section 1.2 reviews the Du¢ e & Lando

(2001) model and motivates the hypotheses. This section also shows a formula

for the CDS spread that avoids a double integral and is easily comparable with

the case of perfect information. Section 1.3 outlines the accounting transparency

measure developed in Berger et al. (2006), while section 1.4 presents the data.

6



The descriptive statistics are presented in section 1.5, while section 1.6 and 1.7

contain the empirical results and a robustness analysis. Section 1.8 concludes.

Appendix A and B give details behind the Du¢ e & Lando (2001) model and the

transparency measure, respectively.

1.2 Hypotheses

In traditional structural credit risk models, default is de�ned as the �rst hit-

ting time of a perfectly observed di¤usion process on a default barrier. This

default barrier can be exogenously determined as in e.g. Black & Cox (1976) and

Longsta¤ & Schwartz (1995) or endogenously derived as in e.g. Leland (1994)

and Leland & Toft (1996).

As shown in Leland (2004), these models do a reasonable job in predicting

longer horizon default rates while the prediction of short-term default rates is

far to low. The problem is that conditional on the �rm value being above the

barrier, the probability that it will cross the barrier in the next �t is o(�t) and

the conditional default probability converges to zero as time goes to zero.

Du¢ e & Lando (2001) argue that it is typically di¢ cult for investors in the

secondary credit markets to perfectly observe the �rm�s assets and introduce ac-

counting noise into a Leland (1994)-type model. More speci�cally, the value of

the �rm�s assets is assumed to follow a geometric Brownian motion unobserv-

able to the credit investors. Instead, the �rm periodically issues noisy unbiased

accounting reports, which makes investors uncertain about the distance of the

assets to the default barrier.

Conditional on the accounting reports and the fact that the �rm has not

defaulted investors are able to compute a distribution of the value of assets. This

conditional distribution of assets is reproduced in Figure 1.1 for various degrees

of accounting noise a and a set of base case parameters. The crucial parameter

a measures the standard deviation of the normal noise-term added to the true

asset value. A lower a thus represents a higher degree of accounting transparency

and less uncertainty about the true asset value. When a approaches zero the

distribution will eventually collapse around the latest reported asset value.

7



According to Du¢ e & Lando (2001) this simple mechanism of uncertainty

surrounding the true asset value is enough to produce a default probability within

the next �t that is of the same order as �t. In fact, they show that the default

stopping time � has an intensity. The Du¢ e & Lando (2001) model is further

described in appendix A.

Figure 1.1: Conditional Asset Density
The �gure illustrates the conditional asset density for varying accounting precisions,
reproducing the base case in Du¢ e & Lando (2001). The tax rate � = 0:35, volatility
� = 0:05, risk-free rate r = 0:06, drift m = 0:01, payout ratio � = 0:05 and default cost
� = 0:3. The coupon rate C = 8:00 and the default barrier V B(C) = 78. A noise-free
asset report V (t� 1) = V̂ (t� 1) = 86:3 is assumed together with a current noisy asset
report V̂ (t) = 86:3. The standard deviation a is assumed at 0:05, 0:1 and 0:25 and
measures the degree of accounting noise.

8



The payments in a CDS �t nicely into a continuous-time framework since the

accrued premium must also be paid if a credit event occurs between two payment

dates. In appendix A we show that with continuous payments the CDS spread

with maturity T can be written as

c(0; T ) = r(1�R)
R1
�
G(x; T )g(x)dx

1� e�rT
R1
�
(1� � (T; x� �)) g (x) dx�

R1
�
G(x; T )g(x)dx

;

(1.1)

where r is the risk-free interest rate and R is the recovery rate.5 � (T; x� �)
denotes the probability of �rst passage time of a Brownian motion with constant

drift and volatility parameter from an initial condition (x� �) > 0 to a level

below zero at time T , where x and � denote the logarithm of the asset value and

default barrier, respectively. The formulas for � (T; x� �) and G(x; T ) are given
in closed form in the appendix together with the conditional density function of

the logarithm of assets g (x) at the time of issuance of the CDS.

In the case of perfect information the integral and the density function g (x)

simply disappears, leading to a closed form solution for the CDS spread known

from traditional structural credit risk models.

In Figure 1.2, the term structure of CDS spreads in equation (1.1) is shown

for the associated conditional distribution of assets in Figure 1.1 and the various

degrees of accounting noise a. Also depicted is the traditional case of perfect

information a = 0, where the spread approaches zero as maturity goes to zero.

However, this is not the case when noisy reports are introduced. As a becomes

larger, the probability that the asset value is, in fact, close to the default barrier

and may cross in a short period of time increases, resulting in higher short-term

spreads. The di¤erence in spreads due to a lack of accounting transparency is

less pronounced at longer maturities.

Figure 1.3 and 1.4 depict the case of a lower leverage and a lower asset volatil-

ity, respectively. This captures the e¤ect of accounting transparency on CDS

spreads for less risky �rms than the base case. The spreads are compressed com-

pared to Figure 1.2, indicating that we should expect a lower absolute e¤ect of

accounting transparency for less risky �rms.

5The formula in Du¢ e & Lando (2001) is based on semiannually payments and a double
integral over time and the asset density. The assumption of continuous payments implies that
it is only necessary to calculate a single integral numerically to evaluate the CDS spread.
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Figure 1.2: CDS Spreads for Varying Accounting Precisions
The �gure illustrates the CDS spreads associated with the conditional asset densities
for varying accounting precisions, reproducing the base case in Du¢ e & Lando (2001).
The tax rate � = 0:35, volatility � = 0:05, risk-free rate r = 0:06, drift m = 0:01,
payout ratio � = 0:05, default cost � = 0:3 and recovery rate R = 0:5. The coupon rate
C = 8:00 and the default barrier V B(C) = 78. A noise-free asset report V (t � 1) =
V̂ (t � 1) = 86:3 is assumed together with a current noisy asset report V̂ (t) = 86:3.
The standard deviation a is assumed at 0:05, 0:1 and 0:25 and measures the degree of
accounting noise.
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Figure 1.3: CDS Spreads For a Low Leverage Firm
The �gure illustrates the CDS spreads for varying accounting precisions in Du¢ e &
Lando (2001). A higher current and lagged asset report are assumed, capturing a lower
leverage ratio. The tax rate � = 0:35, volatility � = 0:05, risk-free rate r = 0:06, drift
m = 0:01, payout ratio � = 0:05, default cost � = 0:3 and recovery rate R = 0:5.
The coupon rate C = 8:00 and the default barrier V B(C) = 78. A noise-free asset
report V (t�1) = V̂ (t�1) = 90:0 is assumed together with a current noisy asset report
V̂ (t) = 90:0. The standard deviation a is assumed at 0:05, 0:1 and 0:25 and measures
the degree of accounting noise.
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Figure 1.4: CDS Spreads For a Low Volatility Firm
The �gure illustrates the CDS spreads for varying accounting precisions in Du¢ e &
Lando (2001) for a �rm with low volatility. The tax rate � = 0:35, volatility � = 0:04,
risk-free rate r = 0:06, drift m = 0:01, payout ratio � = 0:05, default cost � = 0:3 and
recovery rate R = 0:5. The coupon rate C = 8:00 and the default barrier V B(C) = 78.
A noise-free asset report V (t� 1) = V̂ (t� 1) = 86:3 is assumed together with a current
noisy asset report V̂ (t) = 86:3. The standard deviation a is assumed at 0:05, 0:1 and
0:25 and measures the degree of accounting noise.
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Finally, an adverse e¤ect of the exogenous and unbiased accounting noise in

the Du¢ e & Lando (2001) model, which is also addressed in Yu (2005), is depicted

in Figure 1.5. In this case, the current report shows a substantially lower asset

value than the lagged report, which leads to the counterintuitive result that a

higher transparency is associated with higher spreads for most parts of the term

structure. With perfect information the lagged report is irrelevant, but as a

increases and transparency is reduced the current report becomes less reliable

and more weight is put on the lagged report suggesting a higher asset value.6

Hence, more mass of the conditional asset distribution is shifted towards higher

asset values implying lower credit spreads. This example illustrates the need

for structural models to incorporate accounting transparency as an endogenous

choice. With discretionary disclosure this situation would not arise since the

�rm would choose not to reveal the bad news in the �rst place. The theory of

discretionary disclosure starting with Verrecchia (1983) suggests that withheld

information may signal hidden bad news about a company. As a result, a lower

transparency is associated with higher credit spreads. The above intuition leads

to the following hypotheses for the qualitative e¤ect of accounting transparency

on CDS spreads.

H1. Firms with a lower level of accounting transparency have higher CDS

spreads.

H2. The e¤ect of accounting transparency is more pronounced at shorter

maturities, leading to a term structure e¤ect.

H3. A stronger e¤ect of accounting transparency is expected for more risky

�rms.

The level e¤ect in the �rst hypothesis is due to the theory of discretionary

disclosure, while the second and third hypotheses are due to Du¢ e & Lando

(2001). At reasonable parameter values, Du¢ e & Lando (2001) do not predict a

signi�cant spread due to noisy reports above the 5-year maturity.

The term structure e¤ect of discretionary disclosure is less obvious and de-

pends on the nature of information that a �rm tries to conceal. A temporary

shock to the �rm value a¤ects short-term spreads, while a permanent shock such

as a negative outlook on earnings growth a¤ects long-term spreads. Yu (2005)

notes that the positive net-worth requirement e¤ectively present in short-term

6Under perfect information, the term structure of CDS spreads in Figure 1.2 and 1.5 are
identical.
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debt implies that �rms have little incentive to conceal information that they are

soon forced to reveal anyway.7 Hence, he argues that discretionary disclosure is

most likely to concern permanent shocks and long-term spreads.

Figure 1.5: CDS Spreads For a Higher Initial Firm Level
The �gure illustrates the CDS spreads for varying accounting precisions in Du¢ e &
Lando (2001). The current asset report is at it�s base case level, while the lagged asset
report is higher. The tax rate � = 0:35, volatility � = 0:05, risk-free rate r = 0:06,
drift m = 0:01, payout ratio � = 0:05, default cost � = 0:3 and recovery rate R = 0:5.
The coupon rate C = 8:00 and the default barrier V B(C) = 78. A noise-free asset
report V (t�1) = V̂ (t�1) = 90:0 is assumed together with a current noisy asset report
V̂ (t) = 86:3. The standard deviation a is assumed at 0:05, 0:1 and 0:25 and measures
the degree of accounting noise.

7See Leland (1994) for the relationship between short-term debt and positive net-worth
requirements.
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1.3 Measuring Accounting Transparency

To assess accounting transparency, we construct a newly developed measure by

Berger et al. (2006) that can be readily calculated for a large sample �rms. The

idea behind the measure is that when pricing equity, investors use a weighted

average of reported earnings and industry earnings. Investors put more weight

on the �rm�s reported earnings when the accounting transparency is high. It

turns out that the measure of accounting transparency is the ratio of idiosyn-

cratic equity return volatility to the idiosyncratic volatility in earnings growth.

Appendix B establishes the theoretical link between the measure and accounting

transparency. The current section implements it as prescribed in Berger et al.

(2006).

In particular, to measure transparency empirically in year t two regressions

are performed for each �rm. The �rst uses monthly data from year t� 5 to t� 1
to calculate the idiosyncratic volatility in equity returns

rjt = a
r
j + b

r;M
j rMt + b

r;I
j r

I
t + "

r;j
t ; (1.2)

where rjt is �rm j
0smonthly equity return, rMt is the CRSP value-weighted market

return and rIt is a value-weighted industry return using the 48 industries in Fama

& French (1997).8 To ensure the accuracy at least 50 valid monthly returns are

required for each �rm. The annualized idiosyncratic volatility of returns IV OLrt;j
is then calculated as

p
12 � std("r;j).

The second regression uses quarterly data from year t� 5 to t� 1 to calculate
the idiosyncratic volatility in earnings growth

EGjt = a
EG
j + bEG;Mj EGMt + b

EG;I
j EGIt + "

EG;j
t ; (1.3)

where EGjt is the annual growth rate in �rm j0s quarterly operating earnings

calculated as operating earningst
operating earningst�4

�1.9 The growth rate is measured between identical
quarters to avoid complications that arise from seasonality. If the lagged earnings

are negative the growth rate is not meaningful and that particular growth rate is

8Market capitalization is used as weights when calculating the market and industry returns.
All �rms in the CRSP database enter the return and later earnings growth calculations.

9The quarterly operating earnings is data item number 8 in the Compustat database.
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dropped.10 To ensure the accuracy, we require at least 15 quarters of data. EGMt
is the earnings-weighted average market growth rate and EGIt is the earnings-

weighted average growth rate in the Fama & French (1997) industries.

The idiosyncratic volatility in earnings growth IV OLEGt;j is std("
EG;j), and the

measure is �nally constructed as the ratio of the idiosyncratic volatility in equity

returns to the idiosyncratic volatility in earnings growth

�t;j =
IV OLrt;j
IV OLEGt;j

: (1.4)

Hence, the idiosyncratic volatility in equity returns is driven by the idio-

syncratic volatility in earnings growth and the �rm�s information quality. The

measure is theoretically constrained to the unit interval, and a higher score cor-

responds to a higher accounting transparency.

Berger et al. (2006) calculate the measure for 41,615 �rm-years in 1980 to 2004

and �nd empirical evidence in accordance with intuition and theory. In particular,

they assess the validity of the measure by relating it to di¤erent measures of

disclosure quality and the cost of equity. First, the measure increased after two

new regulations that increased mandatory disclosures in the pension and oil and

gas sectors. Second, the measure is strongly correlated with the investor relations

component of the AIMR measure and weakly correlated with the total AIMR

measure. Third, �rms with a higher measure are followed by more analysts and

have a lower forecast dispersion of earnings per share. Finally, the measure is

negatively related to three estimates of the cost of equity.

In the end, we necessarily test the joint hypotheses of the validity of the

accounting transparency measure developed in Berger et al. (2006), and the term

structure e¤ects suggested in Du¢ e & Lando (2001). Our application in the credit

derivatives market provides additional evidence to the validity of the measure.

1.4 Data

Data on CDS spreads is provided by the ValuSpread database from Lombard

Risk Systems, dating back to July 1999. The number of entities and frequency

of quotes increase signi�cantly through time, re�ecting the growth and improved

10Since operating income and not net income is used the loss of observations is small.
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liquidity in the market. This data is also used by Lando & Mortensen (2005) and

Berndt, Jarrow & Kang (2006). The data consists of mid-market CDS quotes

on both sovereigns and corporates with varying maturity, restructuring clause,

seniority and currency. For a given date, reference entity and contract speci�ca-

tion, the database reports a composite CDS quote together with an intra-daily

standard deviation of the collected quotes. The composite quote is calculated

as a mid-market quote by obtaining quotes from up to 25 leading market mak-

ers. This o¤ers a more reliable measure of the market spread than using a single

source, and the standard deviation measures how representative the mid-market

quote is for the overall market.

To test the e¤ect of accounting transparency on the term structure of CDS

spreads, contracts with a maturity of 1, 3, 5, 7 and 10 years are analyzed. We

furthermore con�ne ourselves to composite CDS quotes on senior unsecured debt

for North American corporate obligors with currencies denominated in US dol-

lars. Regarding the speci�cation of the credit event, we follow large parts of the

literature in using contracts with a modi�ed restructuring clause.

To generate a proper subsample, several �lters are applied to the data. First,

the CDS data is merged with quarterly balance sheet data from Compustat and

daily stock market data from CRSP. The quarterly balance sheet data is lagged

one month from the end of the quarter to avoid the look-ahead bias in using data

not yet available in the market. Second, �rms from the �nancial and utility sector

are excluded as their capital structure is hard to interpret.

Third, the composite quote at a given maturity must have a certain quality.

Therefore, we de�ne the relative quote dispersion as the intra-daily standard

deviation of collected quotes divided by the mid-market quote. We follow Lando

& Mortensen (2005) and delete all daily mid-market quotes with an intra-daily

quote dispersion of zero or above 20 percent. Fourth, 1, 3, 5, 7 and 10-year

constant maturity treasury yields are obtained from the Federal Reserve Bank of

St. Louis.

Fifth, we restrict the sample to end-of-month dates. This selection criteria is

also applied by Lando & Mortensen (2005), as these dates have the highest num-

ber of quotes. This leaves us with 31,525 month-end consensus quotes distributed

across 8,309 curves and 432 �rms. Finally, for each year t the month-end curves

are merged with the annual transparency measure calculated for each �rm in

section 1.3. The result is 25,599 quotes, 6,756 month-end curves and 890 annual
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transparency scores distributed across 368 �rms from May 2002 to September

2004.11

1.5 Descriptive Statistics

Table 1.1 illustrates the distribution of the annual accounting transparency mea-

sure. Panel A represents statistics based on the pooled measure across �rms and

years, while statistics in Panel B are calculated after averaging the measure for

each �rm in the time-series. The pooled mean and median are 0.50 and 0.29,

respectively. A few high transparency scores drive up the average, and about 10

percent of the sample �rm-years have scores larger than the theoretical upper

bound of 1. A similar result based on a larger set of �rms is found in Berger et al.

(2006), who attribute it to possible time-varying expected returns.

Table 1.1: Summary Statistics of Accounting Transparency
This table reports summary statistics for the accounting transparency measure devel-
oped in Berger, Chen & Li (2006) and calculated in section 1.3. Panel A represents
statistics when pooling the measure across �rms and years, while panel B displays
statistics after averaging the measure in the time-series for each �rm. In panel A, N
denotes the number of �rm-years with su¢ cient data to calculate the accounting trans-
parency measure and with associated CDS data. In panel B, N denotes the number of
unique �rms.

N Mean Std.dev. Min 25% 50% 75% 99% Max
Panel A. Statistics on the pooled transparency measure

890 0.50 0.61 0.00 0.16 0.29 0.60 3.23 5.65
Panel B. Statistics on the time-series average transparency measure
368 0.50 0.57 0.01 0.16 0.30 0.62 2.84 4.44

11One �rm is excluded, Colgate Palmolive, as the transparency measure is calculated at 10.23,
11.56 and 11.89 in year 2002-2004. This persistently large score far above the remaining �rms
might indicate a data problem speci�c to the �rm.
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The standard deviation is 0.61 and the inter-quartile range is 0.44. The same

variation is observed in Panel B after averaging the measure in the time-series,

indicating a large variation in accounting transparency across the �rms. The data

allow for a maximum of 3 consecutive annual transparency scores with associated

CDS data for each �rm. An untabulated mean and median annual absolute

change of 0.17 and 0.04, respectively, indicate a somewhat persistent transparency

measure in the time-series.

Table 1.2 presents summary statistics of key variables across the senior unse-

cured credit rating from Standard & Poor�s. The variables presented are averages

across time and across �rms. Consistent with the predictions of structural credit

risk models, a lower rating is associated with a higher credit spread level repre-

sented by the 5-year CDS spread, a higher equity volatility and a higher leverage.

The equity volatility is calculated using 250 days of equity returns, and lever-

age is total liabilities divided by the sum of total liabilities and equity market

capitalization.

Table 1.2: Summary Statistics of Major Variables
This table reports averages of key variables across �rms and time. The statistics are
presented across the senior unsecured credit rating from Standard & Poor�s. The 5-year
spread represents the overall spread level and is averaged over �rms and end-of month
observations. The volatility is calculated at month-end using 250-days of historical
equity returns. The associated leverage is total liabilities divided by the sum of total
liabilities and equity market capitalization. The accounting transparency measure is
developed in Berger, Chen & Li (2006) and calculated in section 1.3. NR means not
rated.

5yr spread Volatility Leverage Transparency
AAA 23 0.29 0.28 0.92
AA 26 0.28 0.21 0.88
A 48 0.33 0.34 0.60
BBB 128 0.36 0.49 0.40
BB 392 0.49 0.61 0.39
B 658 0.74 0.76 0.20
NR 137 0.33 0.31 0.66
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A better credit rating is associated with a higher accounting transparency.

This observation and a correlation of 0.16 in Table 1.3 provide additional evi-

dence to the validity of the transparency measure as documented empirically in

Berger et al. (2006). As noted in Sengupta (1998) and Yu (2005), credit agen-

cies claim to have incorporated the quality of information disclosure in the credit

ratings. Hence, we follow Sengupta (1998) and Yu (2005) and use credit rat-

ings with caution when controlling for the cross-sectional determinants of credit

spreads other than accounting transparency. We use an alternative set of con-

trol variables from studies on the determinants of credit spreads such as equity

volatility, leverage, liquidity and the risk-free yield curve. However, we also an-

alyze whether credit ratings absorb the e¤ect of accounting transparency on the

term structure of CDS spreads.

As a �nal remark, the correlation between the accounting transparency mea-

sure and leverage and volatility, respectively, is estimated at -0.16 and -0.08. This

is of similar sign and magnitude as the correlations found in Yu (2005) based on

the AIMR measure in 1991 to 1996.

Table 1.3: Average Correlations Among Major Variables
This table reports the Spearman rank correlation coe¢ cients between the major vari-
ables. The correlations are calculated each month, and the resulting average correla-
tions are reported. The volatility is calculated at month-end using 250-days of historical
equity returns. The associated leverage is total liabilities divided by the sum of total
liabilities and equity market capitalization. The accounting transparency measure is
developed in Berger, Chen & Li (2006) and calculated in section 1.3. The senior un-
secured credit ratings from Standard & Poor�s are transformed to a numerical scale,
where �rms rated AAA are assigned the highest number, AA the next highest and so
forth.

5yr spread Volatility Leverage Transp
Volatility 0.57
Leverage 0.62 0.25
Transp. -0.11 -0.08 -0.16
Rating -0.76 -0.41 -0.55 0.16
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The distribution of the CDS spreads across credit ratings and maturities is

illustrated in Table 1.4 Panel A. The mean consensus quote across time and �rms

is found in the �rst row, while the number of observations and the mean relative

quote dispersion are found in the second and third row, respectively. Panel B con-

tains the statistics for full month-end curves with observations at all maturities at

month-end for a given �rm. By considering full curves, the mean consensus quotes

within a given rating class are comparable across maturities, since all averages

are calculated from the same set of dates and �rms. As expected, the mean con-

sensus quotes increase monotonically with maturity for high credit quality �rms

and decrease monotonically with maturity for the lowest credit quality �rms.12

The 5-year maturity accounts for the highest number of observations, but

even the least observed 1-year maturity accounts for almost 15 percent of the

observations. Across ratings the lower end of the investment grade segment has

the highest number of observations. However, we are able to study a signi�cant

proportion of sample spreads across maturities in the low credit quality segment.

For BB-rated �rms the sample consists of 449 to 757 month-end quotes for each

maturity and 342 full curves, while the number of quotes for B-rated �rms ranges

from 66 to 87 with 50 full curves.13

Lando & Mortensen (2005) interpret the relative quote dispersion as a proxy

for liquidity. The more agreement about a quote, the higher the liquidity for that

particular credit. Adopting this liquidity proxy, we see a liquidity smile for a �xed

rating across maturities. This is consistent with the fact that the 5-year maturity

is considered the most liquid point on the curve. However, the di¤erence in the

mean relative quote dispersion across maturities is small.

12Theory predicts an upward-sloping credit curve for high quality �rms and a humped shaped
or mostly downward-sloping credit curve for low quality �rms. While the �rst is well-established
in the empirical literature, the latter is more controversial. See Sarga & Warga (1989), Fons
(1994), Helwege & Turner (1999), Lando & Mortensen (2005) and Agrawal & Bohn (2005).
13For comparison, Yu (2005) studies 0 speculative grade bonds in 1991-1994, 4 in 1995 and

15 in 1996.
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Table 1.4: Summary Statistics by Credit Rating and Maturity
This table illustrates the distribution of month-end CDS quotes across credit ratings
and maturities. The mean consensus quote across time and �rms is found in the �rst row
for each rating category, while the number of observations and the mean relative quote
dispersion are found in the second and third row, respectively. The latter is calculated
as the standard deviation of collected quotes divided by the consensus quote. Panel
A reports the statistics for unrestricted curves, while Panel B reports statistics for full
curves with an observation at a maturity of 1, 3, 5, 7 and 10 years.

1yr 3yr 5yr 7yr 10yr Total
Panel A. Unrestricted curves

AAA 24 25 25 33 38 29
34 59 92 66 45 296
0.13 0.13 0.13 0.13 0.13 0.13

AA 24 24 26 29 35 28
146 264 351 297 226 1,284
0.14 0.14 0.12 0.12 0.13 0.13

A 45 44 48 52 59 50
1,177 1,930 2,136 1,856 1,658 8,757
0.14 0.12 0.09 0.11 0.12 0.11

BBB 131 126 128 127 131 128
1,732 2,568 2,736 2,365 2,234 11,635
0.13 0.11 0.08 0.09 0.11 0.10

BB 419 407 392 390 368 395
449 702 757 559 567 3,034
0.11 0.10 0.09 0.09 0.10 0.10

B 761 712 658 613 615 672
66 82 87 76 70 381
0.12 0.11 0.08 0.09 0.10 0.10

NR 142 137 137 184 183 154
31 53 55 35 38 212
0.10 0.11 0.09 0.09 0.07 0.09

Total 141 136 133 129 139
3,635 5,658 6,214 5,254 4,838
0.13 0.12 0.09 0.10 0.11

22



Table 1.4: Summary Statistics by Credit Rating and Maturity (cont.)

This table illustrates the distribution of month-end CDS quotes across credit ratings
and maturities. The mean consensus quote across time and �rms is found in the �rst row
for each rating category, while the number of observations and the mean relative quote
dispersion are found in the second and third row, respectively. The latter is calculated
as the standard deviation of collected quotes divided by the consensus quote. Panel
A reports the statistics for unrestricted curves, while Panel B reports statistics for full
curves with an observation at a maturity of 1, 3, 5, 7 and 10 years.

1yr 3yr 5yr 7yr 10yr Total
Panel B. Full curves

AAA 33 44 54 56 61 49
18 18 18 18 18 90
0.14 0.12 0.09 0.11 0.12 0.12

AA 28 35 39 41 46 38
94 94 94 94 94 470
0.14 0.13 0.10 0.11 0.12 0.12

A 48 55 60 63 69 59
893 893 893 893 893 4,465
0.14 0.12 0.09 0.11 0.12 0.12

BBB 133 140 143 144 146 142
1,428 1,428 1,428 1,428 1,428 7,140
0.13 0.11 0.07 0.09 0.11 0.10

BB 428 425 413 403 390 412
342 342 342 342 342 1,710
0.11 0.10 0.08 0.08 0.10 0.10

B 690 690 668 642 626 663
50 50 50 50 50 250
0.12 0.10 0.08 0.09 0.10 0.10

NR 210 219 219 231 222 220
12 12 12 12 12 60
0.10 0.10 0.08 0.08 0.08 0.09

Total 148 154 155 155 157
2,837 2,837 2,837 2,837 2,837
0.13 0.11 0.08 0.10 0.11
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In the end, the measure developed in Berger et al. (2006) allows us to re-

late accounting transparency to CDS curves for a large cross-section of �rms.

Importantly, the distribution of CDS spread observations across credit quality

and maturity is desirable in our attempt to understand the impact of accounting

transparency on the term structure of CDS spreads. The accounting transparency

varies considerably in the large cross-section but less in our relatively short time-

series. Furthermore, some evidence indicates that credit spread changes in the

time-series are mostly driven by market factors that tend to overwhelm the ef-

fect of �rm-level characteristics.14 Hence, cross-sectional regressions form our

benchmark approach. This makes the results comparable to Yu (2005), as cross-

sectional regressions constitute the only regression framework in his study. Later,

various econometric speci�cations are introduced to ensure that the results are

not driven by spurious correlations.

1.6 Empirical Results

First, we estimate a gap between the high and low transparency credit curves.

This allows us to directly estimate the term structure of transparency spreads.

We then study a restricted set of full curves and estimate the transparency spread

term structure for high and low risk �rms.

1.6.1 The Term Structure of Transparency Spreads

Du¢ e & Lando (2001) predict accounting transparency to be an important vari-

able in explaining credit spreads in the short end. At reasonable parameter values,

the model does not predict a signi�cant impact of accounting transparency above

the 5-year maturity. However, discretionary disclosure may still imply an e¤ect

in the long end.

The corporate bond data used in Yu (2005) consists of bonds with unequal

and shortening maturities and durations. This forces him to construct a piecewise

linear function of bond maturity across the �rms at each month-end. He then es-

timates the level of the credit spread at the constructed and arti�cial knot points.

14The results in Collin-Dufresne et al. (2001) suggest that the time-series variation in corpo-
rate bond credit spreads is mainly determined by local supply and demand shocks independent
of credit risk factors and liquidity proxies. Huang & Zhou (2007) �nd that �ve popular struc-
tural models cannot capture the time-series behavior of CDS spreads.
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As a starting point, we adopt a comparable speci�cation and estimate the gap

between the high and low transparency credit curves. However, we estimate the

gap between the two curves at the equal, �xed and therefore directly comparable

maturities in the CDS data, and interpret the gap as a transparency spread term

structure.

In particular, de�ne d as a dummy variable that equals 1 if a �rm�s trans-

parency measure calculated in equation (1.4) in a given year ranks above the

median score. Furthermore, de�ne mT as a dummy variable that attains a value

of 1 if the CDS spread has a maturity of T and zero otherwise. Hence, in the

linear combination �1m1 + �2m3 + �3m5 + �4m7 + �5m10 the coe¢ cient �i rep-

resents the level of the term structure at maturities 1, 3, 5, 7 and 10 years. Now,

de�ne dmT as the product of the transparency dummy d and mT . The regression

coe¢ cient in front of this term can be directly interpreted as the transparency

spread, i.e. the gap between the high and low transparency credit curves at the

given maturity.

Hence, we run monthly cross-sectional regressions of CDS spreads on the

transparency variables, volatility (vol), leverage (lev) and relative quote disper-

sion (Qdisp)15

SpreaditT = �1m1it + �2m3it + �3m5it + �4m7it + �5m10it (1.5)

+�6dm1it + �7dm3it + �8dm5it + �9dm7it + �10dm10it

+�11V olit + �12Levit + �13QdispitT + "itT :

The coe¢ cient estimates are averaged in the time-series and standard errors

are calculated following Fama & MacBeth (1973). Table 1.5 displays the results.

Focusing on the �rst column, the transparency spread is highly signi�cant and

estimated at 23 bps at the 1-year maturity and 20, 13, 13 and 11 bps at the

remaining maturities. Particularly the transparency spread in the short end rep-

resents a considerable part of the average CDS spread level of 130 to 140 bps

across maturities as reported in Table 1.4.

15To facilitate interpretation the regression equation does not include an intercept term.
Hence, the R2 is not reported under this empirical speci�cation.
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Table 1.5: Estimation of the Term Structure of Transparency Spreads
This table reports the results of monthly cross-sectional regressions when estimating the
gap between high and low transparency CDS spread curves. The coe¢ cient estimates
are averaged in the time-series. T-statistics are reported in parentheses and are based on
the standard error in Fama & MacBeth (1973). d is a dummy variable equal to 1 if the
transparency measure developed in Berger, Chen & Li (2006) and calculated in section
1.3 in a given year ranks above the median score. mT is a dummy that attains a value of
1 if the CDS maturity equals T . The regression coe¢ cient in front of the product dmT

can be directly interpreted as the transparency spread. The volatility is calculated using
250 days of historical equity returns, and leverage is total liabilities divided by the sum
of total liabilities and equity market capitalization. Quote dispersion is the standard
deviation of collected quotes divided by the consensus quote. Full curves are a restricted
set of curves with an observation at a maturity of 1, 3, 5, 7 and 10 years. The monthly
regressions are SpreaditT = �1m1it + �2m3it + �3m5it + �4m7it + �5m10it + �6dm1it +

�7dm3it + �8dm5it + �9dm7it + �10dm10it + �11V olit + �12Levit + �13QdispitT + "itT :

*, ** and *** denote signi�cance at 10, 5 and 1 percent, respectively.
(1) (2) (3) (4)

Unrestr. Unrestr. Full curves Full curves
m1 -293.64*** -299.10*** -315.01*** -333.24***

(-11.21) (-12.78) (-11.48) (-13.84)
m3 -292.11*** -297.06*** -312.26*** -328.17***

(-11.17) (-12.66) (-10.78) (-12.54)
m5 -293.64*** -297.26*** -316.80*** -328.18***

(-10.87) (-11.94) (-10.82) (-12.00)
m7 -296.34*** -300.50*** -315.20*** -328.85***

(-10.74) (-11.87) (-10.36) (-11.74)
m10 -295.43*** -300.12*** -311.45*** -327.26***

(-10.37) (-11.55) (-9.90) (-11.44)
dm1 -22.66*** -22.35*** -23.56*** -24.31***

(-4.22) (-4.11) (-3.91) (-4.29)
dm3 -20.04*** -19.98*** -20.52*** -20.94***

(-6.58) (-6.44) (-3.57) (-3.67)
dm5 -13.15*** -13.24*** -17.61*** -18.18***

(-5.56) (-5.54) (-3.11) (-3.21)
dm7 -12.88*** -13.05*** -14.67** -15.78***

(-5.98) (-5.75) (-2.71) (-2.82)
dm10 -10.94*** -10.82*** -13.08** -14.06**

(-5.26) (-5.21) (-2.47) (-2.59)
Volatility 805.44*** 805.59*** 873.06*** 874.86***

(16.50) (16.53) (12.92) (12.99)
Leverage 317.20*** 318.99*** 315.71*** 321.00***

(12.98) (13.14) (11.80) (12.29)
Qdisp -33.37 -122.68**

(-1.07) (-2.37)
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As expected, the volatility and leverage are highly signi�cant in explaining

credit spreads. However, the relative quote dispersion varies in signi�cance and

has a negative coe¢ cient estimate. If proxying for liquidity, the coe¢ cient is

expected to be positive. Hence, although the variable allows for reasonable in-

terpretations on average as liquidity in Table 1.4, it is questionable whether the

relative quote dispersion captures di¤erences in liquidity as suggested in Lando

& Mortensen (2005). As the control variable only has a minor impact on the

remaining coe¢ cient estimates and signi�cance, we keep it in our future regres-

sions16.

Firms usually have corporate bonds outstanding with just a few (or one)

maturities. Hence, studying multiple maturity observations for a given �rm at a

given date is in e¤ect only possible in the CDS market, and therefore not pursued

in Yu (2005). Table 1.5 also contains the regression results for a restricted set

of full month-end curves with observations at all maturities at month-end for a

given �rm. This makes CDS spreads directly comparable across maturities as

all observations are from the same set of dates and �rms. As noted in Helwege

& Turner (1999) �rms with heterogenous credit quality are known to populate

di¤erent ends of the corporate bond credit curve. This maturity bias is avoided

when studying full curves in the CDS market.

A highly signi�cant downward-sloping term structure of transparency spreads

also emerges from a study of full curves. From a transparency spread of 24 bps

at the 1-year maturity it decreases to 13 bps at the longest maturity.

The results in Table 1.5 to some extend support the �ndings in Yu (2005).

While agreeing on the statistically and economically signi�cant transparency

spread in the short end, Yu (2005) �nds a widening transparency spread at

longer maturities. In fact, he �nds the transparency spread larger in the long

end than short end. He attributes this observation to the discretionary disclo-

sure hypothesis where �rms hide information that would adversely a¤ect their

long-term outlook.17 In alternative econometric speci�cations building on the

16Unreported results show that the presence or omission of relative quote dispersion has no
impact on any results reported in the paper.
17Although Yu (2005) has only few observations in the longest end, he calculates a trans-

parency spread at the 30-year knot point coinciding with the maximum corporate bond matu-
rity. Hence, this estimate is likely to be less reliable. However, while our transparency spread
term-structure remains downward-sloping, his exhibits a u-shape already at the 10-year knot
point. More precisely, he estimates a transparency spread of 11, 3, 9 and 13 bps at the 0, 5, 10
and 30-year knot points.
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interpretation of dmT as a transparency spread, we later show that the term

structure of transparency spreads is not only strictly downward-sloping but most

often insigni�cant in the long end.

As argued in section 1.2, a stronger e¤ect of accounting transparency is ex-

pected for more risky �rms. Therefore, each month the �rms are separated into

high and low leverage and volatility groups by the respective medians. The re-

gression in (1.5) is then presented for each group in Table 1.6.18

For the low leverage and low volatility groups, the e¤ect of accounting trans-

parency on credit spreads is small and of varying signi�cance. While the trans-

parency spread term structure is insigni�cant for low leverage �rms, it is most

often signi�cant for the low volatility �rms. However, the transparency spread

is estimated at around 3 to 7 bps, which constitutes a small part of the average

CDS spread level for low volatility �rms of 69 to 84 bps across maturities.

In contrast, the e¤ect of accounting transparency is large for the high leverage

and high volatility groups. For the high leverage group the term structure of

transparency spreads is highly signi�cant and estimated at 29, 34, 23, 22 and 14

bps across maturities. For the high volatility group it is estimated at 33, 26, 14,

12 and 7 bps. The transparency spread is highly signi�cant in the short end but

insigni�cant at longer maturities.

Finally, for �rms with both a high leverage and a high volatility, the term

structure of transparency spreads is very steep and estimated at 51, 40, 23, 22

and 15 bps. Again, the transparency spread is highly signi�cant in the short

end while weakly signi�cant at the longest maturity. Compared to an average

spread of 180 to 220 bps across maturities in both groups, the transparency spread

constitutes a relatively larger component of the CDS spread level for risky �rms.

Unreported results on full curves support these insights.

18As noted in Table 1.3, the correlation between the transparency measure and leverage and
volatility, respectively, is -0.16 and -0.08. As an extreme example, all �rms with below median
leverage or volatility could have above median accounting transparency. In such a case, the
regression would not be able to identify a relation between transparency and CDS spreads.
However, the summary statistics on accounting transparency for each high and low leverage or
volatility group are not far from those reported in Table 1.1.
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Table 1.6: Estimation of the Term Structure of Transparency Spreads
for High and Low Risk Firms
This table reports the results of monthly cross-sectional regressions when estimating the
gap between high and low transparency CDS spread curves. The coe¢ cient estimates
are averaged in the time-series. T-statistics are reported in parentheses and are based on
the standard error in Fama & MacBeth (1973). d is a dummy variable equal to 1 if the
transparency measure developed in Berger, Chen & Li (2006) and calculated in section
1.3 in a given year ranks above the median score. mT is a dummy that attains a value of
1 if the CDS maturity equals T . The regression coe¢ cient in front of the product dmT

can be directly interpreted as the transparency spread. The volatility is calculated using
250 days of historical equity returns, and leverage is total liabilities divided by the sum
of total liabilities and equity market capitalization. Quote dispersion is the standard
deviation of collected quotes divided by the consensus quote. Full curves are a restricted
set of curves with an observation at a maturity of 1, 3, 5, 7 and 10 years. The monthly
regressions are SpreaditT = �1m1it + �2m3it + �3m5it + �4m7it + �5m10it + �6dm1it +

�7dm3it + �8dm5it + �9dm7it + �10dm10it + �11V olit + �12Levit + �13QdispitT + "itT :

Each month, the �rms are separated into high and low leverage and volatility groups
by the respective medians. The regression is then performed for each group. *, ** and
*** denote signi�cance at 10, 5 and 1 percent, respectively.

(1) (2) (3) (4) (5) (6)
High Lev. Low Lev. High Vol. Low Vol. High-High Low-Low

m1-m10 supp. supp. supp. supp. supp. supp.
dm1 -28.52*** -13.31* -33.45*** -2.91 -50.91*** -9.32***

(-3.38) (-1.96) (-3.11) (-1.21) (-3.88) (-2.81)
dm3 -34.21*** -2.01 -25.56*** -7.57*** -40.21*** -5.95***

(-5.90) (-1.26) (-4.24) (-4.38) (-4.02) (-3.30)
dm5 -22.69*** -1.44 -14.06*** -7.07*** -23.05*** -4.71**

(-5.64) (-0.78) (-2.77) (-3.92) (-2.97) (-2.69)
dm7 -21.51*** -3.75* -11.70* -5.15*** -22.35** -5.72***

(-4.29) (-1.98) (-1.85) (-4.10) (-2.52) (-3.13)
dm10 -14.44*** -5.97** -7.22 -5.47*** -14.61* -6.18***

(-3.22) (-2.40) (-1.32) (-3.73) (-1.73) (-2.88)
Volatility 979.19*** 338.10*** 1045.61*** 242.07*** 1150.61*** 200.79***

(14.08) (11.95) (12.61) (8.72) (10.75) (12.86)
Leverage 473.62*** 171.83*** 423.95*** 122.31*** 582.42*** 109.80***

(8.15) (11.15) (11.78) (10.64) (7.98) (13.54)
Qdisp -78.90 -177.14*** -22.81 -235.41*** 11.49 -145.59***

(-1.47) (-7.29) (-0.47) (-12.22) (0.18) (-9.34)
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To summarize at this point, we �nd a highly signi�cant downward-sloping

term structure of transparency spreads. Furthermore, the e¤ect of accounting

transparency on the term structure of CDS spreads is largest for the most risky

�rms. We now show that the term structure of transparency spreads remains

downward-sloping under alternative econometric speci�cations. Furthermore,

while highly signi�cant in the short end, it is often insigni�cant at maturities

exceeding 5 years. Hence, the �ndings are strongly supportive of hypotheses H2

and H3 from Du¢ e & Lando (2001). The �ndings only weakly support the overall

level e¤ect due to discretionary disclosure in hypothesis H1

1.7 Robustness Analysis

This section conducts various robustness tests, e.g. controlling for a residual de-

pendence across a given credit curve. In a �nal speci�cation, we allow the control

variables to impact CDS spreads di¤erently across maturities, which is possible

since the CDS data consists of equal maturities across �rms and time. This

exercise is based on the raw transparency measure and a rank transformation.

1.7.1 Alternative Econometric Speci�cations

Table 1.7 presents the results of estimating the gap between the high and low

transparency credit curves under di¤erent econometric speci�cations. The bench-

mark regression (1) is a pooled OLS regression with White standard errors. As

standard errors in the remaining regressions are robust to heteroscedasticity, dif-

ferences in standard errors across columns (1) to (8) are due to within cluster

correlations - including the Fama & MacBeth (1973) standard errors in (7) and

(8).19

Clustered standard errors (also called Rogers standard errors) account for a

residual dependence created by a �rm e¤ect, time e¤ect or similar. The correla-

tion can be of any form as no parametric structure is assumed. Regression (2)

controls for a possible correlation in residuals across maturities for a given �rm

and month, by allowing for within cluster correlation at the curve level. The clus-

tered standard errors in regression (3) control for a possible time e¤ect, where the

residuals of a given month may be correlated across di¤erent �rms and maturities.

19See the survey of panel data methods used in �nance by Petersen (2007).

30



Regression (4) to (6) extend these speci�cations and control for a constant

time e¤ect. We do that by addressing the latter parametrically using monthly

dummies. Clustering by month while including monthly dummies allows one to

separate the time e¤ect into a constant and non-constant part. A non-constant

time e¤ect is present, if a shock in a given month has a di¤erent e¤ect on di¤erent

�rms.

The cross-sectional Fama & MacBeth (1973) regression from Table 1.5 is re-

peated in regression (7). This regression also accounts for a cross-correlation in

residuals stemming from a time e¤ect, and it assumes that the monthly coe¢ cient

estimates are independent of each other. However, when estimating the standard

error of their mean the annual accounting transparency measure may imply a

serial correlation in the monthly coe¢ cient estimates. We adopt the method in

Abarbanell & Bernard (2000) and present the adjusted standard errors in regres-

sion (8). This adjustment is designed to correct for a �rm e¤ect arising from

persistent �rm characteristics.2021

The conclusion from Table 1.7 Panel A is that the transparency spread is very

robust in the short end and estimated around 20 bps at the 1-year maturity. At

longer maturities the transparency spread narrows and is estimated around 14,

8, 7 and 5 bps at the 3, 5, 7 and 10-year maturity, respectively. While highly

signi�cant in the short end across all speci�cations, the transparency spread is

most often insigni�cant after the 7-year maturity. The same conclusion results

from Panel B, where the di¤erent econometric speci�cations are applied on full

curves22.

20To be conservative, the adjustment is not applied when the estimated serial correlation is
less than zero.
21We do not report standard errors after clustering at the �rm level or introducing �rm

dummies for a number of reasons. First, the short time-series implies that we only have 1 year
of data for a signi�cant number of �rms (as noted in Table 1.1 the data consists of 368 �rms
and 890 �rm-years in 2002 to 2004). This makes an identi�cation of a �rm e¤ect separate
from accounting transparency impossible. Second, as shown in Petersen (2007) the bias from
a �rm e¤ect is increasing in the number of periods. Third, the inclusion of �rm �xed e¤ects
would force an identi�cation of the transparency spread from time-series changes in accounting
transparency, which is unreasonable.
22Other unreported speci�cations such as purely cross-sectional regressions and annual cross-

sectional regressions based on the time-series average CDS spreads and control variables support
these �ndings.
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Table 1.8 repeats the speci�cations in Table 1.7, but includes the senior un-

secured credit rating from Standard & Poor�s as an additional control variable

in equation (1.5). As noted in Sengupta (1998) and Yu (2005), credit agencies

claim to have incorporated the quality of information disclosure in the credit rat-

ings. The results show that credit ratings do not absorb the e¤ect of accounting

transparency on the term structure of credit spreads. After accounting for the

information content in credit ratings, the transparency spread continues to be

highly signi�cant at the 1-year maturity and downward-sloping. However, now

the gap between the high and low transparency credit curves is insigni�cant after

the 5-year maturity. As expected, the credit rating is highly signi�cant and a

one notch increase in rating lowers the CDS spread by approximately 50 bps.

Unreported results based on full curves support these �ndings.

Consistent with empirical �ndings in Du¤ee (1998), structural models such as

Longsta¤& Schwartz (1995) predict an inverse relationship between the risk-free

rate and credit spreads. An increase in the risk-free rate increases the risk-neutral

drift of the asset value process and reduces the risk-neutral default probability. If

an increase in the slope of the risk-free yield curve increases the expected future

short rate, then by the same argument as above it implies a decrease in credit

spreads. From a di¤erent perspective, as noted in Collin-Dufresne et al. (2001), a

decrease in the slope of the risk-free yield curve may imply a weakening economy

with decreasing expected recovery rates and higher default rates. Once again,

a negative relationship between the slope of the risk-free yield curve and credit

spreads is expected. The risk-free term structure variables are constant across

all �rms in a given month. Hence, they cannot be included in the empirical

speci�cations from Table 1.7 based on Fama &MacBeth (1973) or when including

monthly dummies. Table 1.9 presents the results from including the slope of the

yield curve in addition to credit ratings in equation (1.5). The slope is de�ned

as the di¤erence between the 10 and 1-year constant maturity treasury yields.23

The slope of the risk-free yield curve is highly signi�cant and estimated with a

negative coe¢ cient. However, the transparency spread continues to be highly

signi�cant in the short end, downward-sloping and insigni�cant after the 5-year

maturity.

23The level of the risk-free yield curve is discussed in section 1.7.2, where individual maturity
classes are studied.
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Table 1.9: The Term Structure of Transparency Spreads and the Yield
Curve
This table estimates the gap between the high and low transparency CDS curves under
various econometric speci�cations. (1) is a pooled OLS regression with White errors,
while (2) and (3) control for residual dependence by estimating cluster-robust errors
by curves and time, respectively. T-statistics are reported in parantheses. The senior
unsecured credit ratings from Standard & Poor�s are transformed to a numerical scale,
where �rms rated AAA are assigned a score of 10, AA a score of 9 and so forth. The
slope of the yield curve is the di¤erence between the 10 and 1-year constant maturity
treasury rates. Panel A displays the results for unrestricted curves, while Panel B
displays results for full curves with an observation at a maturity of 1, 3, 5, 7 and 10
years. The regressions are SpreaditT = �1m1it+ �2m3it+ �3m5it+ �4m7it+ �5m10it+

�6dm1it+�7dm3it+�8dm5it+�9dm7it+�10dm10it+�11V olit+�12Levit+�13QdispitT+

�14Ratingit+�15Slopet+"itT : *, ** and *** denote signi�cance at 10, 5 and 1 percent,
respectively.

Panel A. Unrestricted curves Panel B. Full curves
(1) (2) (3) (1) (2) (3)
White Cluster Cluster White Cluster Cluster

m1-m10 supp. supp. supp. supp. supp. supp.
dm1 -15.48*** -15.48*** -15.48*** -13.93** -13.93** -13.93***

(-2.70) (-2.75) (-2.77) (-2.30) (-2.35) (-3.16)
dm3 -11.60*** -11.60*** -11.60*** -9.02* -9.02* -9.02**

(-3.05) (-3.23) (-3.20) (-1.72) (-1.78) (-2.13)
dm5 -6.27** -6.27** -6.27** -6.22 -6.22 -6.22*

(-2.05) (-2.14) (-2.37) (-1.33) (-1.38) (-1.72)
dm7 -4.68 -4.68 -4.68** -3.76 -3.76 -3.76

(-1.43) (-1.49) (-2.05) (-0.84) (-0.87) (-1.10)
dm10 -2.89 -2.89 -2.89 -1.50 -1.50 -1.50

(-0.91) (-0.95) (-1.23) (-0.36) (-0.37) (-0.42)
Volatility 649.90*** 649.90*** 649.90*** 682.60*** 682.60*** 682.60***

(32.52) (19.57) (9.56) (35.31) (17.12) (7.99)
Leverage 263.51*** 263.51*** 263.51*** 270.80*** 270.80*** 270.80***

(43.31) (22.04) (10.83) (34.71) (15.91) (10.58)
Qdisp 94.90*** 94.90*** 94.90** 75.96** 75.96 75.96

(4.18) (3.09) (2.29) (2.25) (1.54) (1.13)
Rating -49.38*** -49.38*** -49.38*** -57.97*** -57.97*** -57.97***

(-37.37) (-20.74) (-13.66) (-35.79) (-16.72) (-13.58)
Slope -0.51*** -0.51*** -0.51*** -0.65*** -0.65*** -0.65***

(-22.26) (-11.09) (-3.19) (-18.99) (-8.89) (-2.82)
Cluster - Curve Month - Curve Month
Dummy - - - - - -
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1.7.2 Individual Maturity Classes

When included in equation (1.5), the control variables are only allowed to induce

a parallel shift in the term structure of CDS spreads. As a �nal exercise, we allow

the control variables to impact CDS spreads di¤erently across maturities. For that

purpose, we analyze each maturity class in isolation using the raw transparency

measure calculated in equation (1.4) and a rank transformation. This is possible

since the data consists of CDS spreads with equal and �xed maturities.

For each maturity class T , Table 1.10 Panel A presents the results of monthly

cross-sectional regressions of CDS spreads on the transparency measure, volatility,

leverage and relative quote dispersion

Spreadit = �0 + �1Transpit + �2V olit + �3Levit + �4Qdispit + "it: (1.6)

The coe¢ cient estimates are averaged in the time-series and standard errors

are calculated following Fama &MacBeth (1973). The average adjustedR2 ranges

from 0.58 to 0.60 and accounting transparency is signi�cant or highly signi�cant at

all maturities. From a coe¢ cient of -13.45 at the 1-year maturity, the coe¢ cient

on accounting transparency decreases to -6.75 and -6.68 at the 3 and 5-year

maturity, respectively. After this point a u-shape kicks in with coe¢ cients of

-8.49 and -9.56 at the 7 and 10-year maturity, respectively. The variation in

accounting transparency in each maturity class is similar to the variation reported

in Table 1.1 for the entire sample. Hence, a one standard deviation increase in

transparency reduces the spread by approximately 8, 4, 4, 5 and 6 bps across the

curve.

Table 1.10 Panel B contains the regression results for the restricted set of full

curves with observations at all maturities at month-end for a given �rm. The

resulting coe¢ cients on accounting transparency are all highly signi�cant and

larger at -22.28, -21.32, -19.75, -12.15 and -17.90 at maturities of 1, 3, 5, 7 and

10 years, respectively. A one standard deviation increase in transparency reduces

the spread by approximately 14, 13, 12, 7 and 11 bps across the curve, and main

insights from the unrestricted curves in Panel A are preserved. Under alternative

econometric speci�cations and a broader set of control variables, the impact of

accounting transparency is later shown to strictly decrease with maturity.
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A concern is that the accounting transparency measure is a noisy estimate of

"true" accounting transparency, where an interpretation of the distance between

two scores in a cardinal manner is unreasonable. Hence, we transform the annual

accounting transparency measure to evenly spaced observations on the unit in-

terval [0,1], and only interpret the annual ranking ordinally. A transformed score

of 1(0) in a given year is assigned to the �rm with highest(lowest) transparency.

Table 1.11 Panel A presents highly signi�cant coe¢ cient estimates of -36.69,

-27.73, -20.11, -26.93 and -26.89 across the curve. If a �rm is able to improve its

accounting transparency from the lowest to a median ranking, say, the result is

a reduction in CDS spreads of 18, 14, 10, 13 and 13 bps at maturities of 1, 3, 5,

7 and 10 years, respectively. A similar conclusion is reached from full curves in

Panel B.

Table 1.12 analyzes the impact of accounting transparency for high and low

risk �rms using the annual transparency ranks. Consistent with the results in the

previous section, the e¤ect of accounting transparency is small and most often

insigni�cant when based on �rms with a low leverage and a low volatility in Panel

B. However, for the most risky �rms with a high leverage and a high volatility

in Panel A, the coe¢ cient estimates are -99.02, -83.78, -68.09, -70.84 and -66.29

and highly signi�cant. Hence, if a risky �rm is able to improve its accounting

transparency from the lowest to a median ranking, say, the result is a reduction

in CDS spreads of 50, 42, 34, 35 and 33 bps at maturities of 1, 3, 5, 7 and 10

years, respectively.

Note the large R2 of 0.59 to 0.63 for the risky �rms and the much smaller R2 of

0.14 to 0.20 for the �rms with low leverage and low volatility. This observation is

supportive of the problems in earlier studies when explaining the credit spreads of

low-yield �rms using structural models. This paper suggests that variables other

than accounting transparency are needed - also in the short end.
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Finally, we allow the broader set of control variables to impact spreads dif-

ferently across the curve under the alternative econometric speci�cations intro-

duced earlier.24 The conclusion is a downward-sloping impact of accounting

transparency across maturities that is highly robust in the short end. Across

all speci�cations, a move from the lowest to a median transparency ranking, say,

reduces the 1-year spread by approximately 15 bps.

In particular, Table 1.13 presents the results from including the credit rating

as a control variable. In the cross-sectional regressions in Panel A and B, the

coe¢ cients on accounting transparency are insigni�cant or only weakly signi�cant

after the 5-year maturity. The remaining speci�cations in Panel C to F support

a highly signi�cant e¤ect of accounting transparency at the 1-year maturity and

a declining coe¢ cient with varying signi�cance at longer maturities. The credit

rating is highly signi�cant in all speci�cations, and R2 increases to 0.68 compared

to an R2 around 0.60 without credit ratings in the Fama & MacBeth (1973)

regressions in Table 1.10.

Table 1.14 presents the results from including the slope of the yield curve in

addition to credit ratings.25 As before, this variable can only be included in a

subset of the empirical speci�cations. While estimated with a highly signi�cant

negative coe¢ cient, the slope of the yield curve only increases R2 marginally.

Accounting transparency continues to be highly signi�cant in the short end, and

the impact continues to decline as maturity increases.

24As each maturity class is analyzed in isolation, the various econometric speci�cations do
not include standard errors robust to within cluster correlation at the curve level.
25Including the maturity-matched constant maturity treasury yield in addition to the slope

implies that both are estimated insigni�cantly. However, coe¢ cients and signi�cance of the
transparency gap are unchanged.
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1.8 Conclusion

Motivated by the theoretical contribution in Du¢ e & Lando (2001), this paper

relates a newly developed empirical measure of accounting transparency by Berger

et al. (2006) to the term structure of CDS spreads for a large cross-section of �rms.

We �nd a highly signi�cant e¤ect of accounting transparency at the 1-year

maturity, and a declining impact at longer maturities. Estimating the gap be-

tween the high and low transparency credit curves, the transparency spread is

estimated around 20 bps at the 1-year maturity. At longer maturities, the trans-

parency spread narrows and is estimated at 14, 8, 7 and 5 bps at the 3, 5, 7

and 10-year maturity, respectively. While highly signi�cant in the short end and

robust across alternative econometric speci�cations and control variables, the

impact of accounting transparency is not robust and most often insigni�cant for

maturities exceeding 5 years. Finally, the e¤ect of accounting transparency on

the term structure of CDS spreads is largest for the most risky �rms.

Thus, the results are strongly supportive of hypotheses H2 and H3 derived

from Du¢ e & Lando (2001), and add an explanation to the underprediction of

short-term credit spreads by traditional structural credit risk models. Only weak

evidence supports the presence of an overall level e¤ect as suggested in hypothesis

H1.

The results contrast an earlier study by Yu (2005), who analyzes corporate

bond credit spreads using the AIMR analyst ranking of corporate disclosure in

1991 to 1996. He attributes a strongly u-shaped transparency spread with the

largest e¤ect at longer maturities to the theory of discretionary disclosure, where

�rms hide information that would adversely a¤ect their long-term outlook.

Liquid CDS contracts are highly desirable when studying the determinants

of the shape of the credit curve. As opposed to corporate bonds, this allows

us to study multiple maturity observations for a given �rm at a given day, and

maturities are equal across �rms and �xed through time. Furthermore, technical

e¤ects are known to impact the slope of the credit curve for corporate bonds

trading o¤ par. Hence, �ndings based on CDS spreads are likely to be more

reliable than studies based on corporate bonds. Our study shows that the term

structure of transparency spreads is downward-sloping in the CDS market across

alternative econometric speci�cations.
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A Du¢ e & Lando (2001)

The setup and results on optimal capital structure and default are close to Leland

(1994) and Leland & Toft (1996). The �rm�s assets V are modeled as a geometric

Brownian motion, which is de�ned on a �xed probability space (
;F ; Q) : More
speci�cally, V (t) = exp(Z(t)) where

Zt = Z0 +mt+ �Wt; (1.7)

for a standard Brownian motion W , a volatility parameter � and a parameter m

that determines the expected asset growth rate

� =
log[E (Vt=V0)]

t
= m+ �2=2: (1.8)

The �rm generates cash �ow at the rate �Vt at time t and issues debt to take

advantage of the tax shields o¤ered for interest expense at the tax rate �. The

debt is modeled as a consol bond with a constant coupon rate C. Hence, the

tax bene�ts are �C until default, where � 2 [0; 1] of the asset value is lost as a
frictional cost. All agents in the model are risk-neutral and discount cash �ows

at a constant market interest rate r.

The �rm is operated by its equity owners, who are completely informed at all

times on the value of the assets V and choose when to liquidate the �rm.26 The

default time is chosen endogenously by the equity owners to maximize the value

of equity, and is given as the �rst time �(VB) = infft : Vt � VBg the asset value
falls to the default barrier

VB (C) =
(1� �)C
 (r � �)

r(1 + 
)�
; (1.9)

where


 =
m+

p
m2 + 2r�2

�2
: (1.10)

26This means that the equity owners have the information �ltration (Ft) generated by V;
where Ft is the �-algebra generated by fVs : 0 � s � tg:
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The resulting equity value is

S(V;C) =
�V

r � � �
VB (C) �

r � �

�
V

VB (C)

��

+ (� � 1) C

r

"
1�

�
V

VB (C)

��
#
;

(1.11)

while the value of the consol bond is

d (V;C) =
(1� �)VB (C) �

r � �

�
V

VB (C)

��

+
C

r

"
1�

�
V

VB (C)

��
#
: (1.12)

Finally, the optimal coupon is chosen such that the initial total value of the

�rm S(V;C) + d (V;C) is maximized.

After issuance, bond and CDS investors are not kept fully informed on the

status of the �rm. They do understand that equity owners will force liquidation

when the asset value falls to VB, but they cannot observe the asset process V

directly. Instead, they receive an accounting report at selected times t1; t2:::; ti < t

in terms of a noisy estimate of the asset value given by bVt, where log bVt and log Vt
are joint normal. Speci�cally,

Y (t) = log bVt = Z(t) + U (t) ; (1.13)

where U (t) is independent of Z(t) and normally distributed with mean u =

�a2

2
= E (Ut) and variance a2 = V ar(Ut): Hence, the standard deviation a of Ut

measures the degree of accounting noise. Also observed at each t is whether the

�rm has defaulted or not. For simplicity, it is assumed that equity is not traded

in the public market and equity owners are precluded from trading in the credit

market.27

Based on the information available, it is possible for the investors to calculate

the conditional distribution of assets Vt. With the simple case of having observed

only a single noisy asset report at time t = t1, the density g (� j Yt; z0; t) of Zt can
be computed conditional on the noisy observation Yt, a lagged noise-free report

z0 and � > t. With ey = y� �� u, ex = x� � and ez = z0 � �, where log(VB) = �,
27Hence, the information �ltration in the credit market is de�ned as Ht =

�
��
Y (t1) ; ::::; Y (tn) ; 1f�(VB)�sg : 0 � s � t

	�
for the largest n such that tn � t:
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the density is shown to be

g (x j y; z0; t) =

q
�0
�
exp (�J (ey; ex; ez0)) �1� exp ��2exez0�2t

��
exp

�
�21
4�0
� �3

�
�

�
�1p
2�0

�
� exp

�
�22
4�0
� �3

�
�

�
� �2p

2�0

� ;
(1.14)

where

J (ey; ex; ez0) = (ey � ex)2
2a2

+
(ez0 +mt� ex)2

2�2t
; (1.15)

�0 =
a2 + �2t

2a2�2t
; (1.16)

�1 =
ey
a2
+
ez0 +mt
�2t

; (1.17)

�2 = ��1 + 2
ez0
�2t
; (1.18)

�3 =
1

2

 ey
a2
+
(ez0 +mt)2

�2t

!
(1.19)

and � is the standard normal distribution function. Conditional on survival up to

time t, this density gives us the conditional distribution of assets as g(V )=V , de-

picted in Figure 1.1. The conditional survival probability q(t; s) = Q (� > s j Ht)

to some future time s > t is

q(t; s) =

Z 1

�

(1� � (s� t; x� �)) g (x j Yt; z0; t) dx: (1.20)

� (s� t; x� �) at time t denotes the probability of the �rst passage of a
Brownian motion with driftm and volatility parameter � from an initial condition

(x� �) > 0 to a level below zero at time s. This probability is known as

1� � (s� t; x� �) (1.21)

= �

 
(x� �) +m (s� t)

�
p
(s� t)

!
� exp

�
�2m (x� �)

�2

�
�

 
� (x� �) +m (s� t)

�
p
(s� t)

!
:

A.1 Pricing the CDS

A CDS is an insurance contract against credit events such as the default on a

corporate bond (the reference obligation) by a speci�c issuer (reference entity).
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In case of a credit event, the seller of insurance is obligated to buy the reference

obligation from the protection buyer at par. For this protection, the buyer pays

a periodic premium to the protection seller until the maturity of the contract or

the credit event, whichever comes �rst. Since the accrued premium must also be

paid if a credit event occurs between two payment dates, the payments �t nicely

into a continuous-time framework. The present value of the premium payments

can be calculated as

EQ
�
c

Z T

0

exp

�
�
Z s

0

rudu

�
1f�>sgds

�
, (1.22)

where c denotes the annual premium known as the CDS spread, T the maturity

of the contract, r the risk-free interest rate, � the default time of the obligor and

EQ denotes the expectation under the risk-neutral pricing measure. Assuming

independence between the default time and the risk-free interest rate, this can be

written as

c

Z T

0

P (0; s)q(0; s)ds, (1.23)

where P (0; s) is the price of a default-free zero-coupon bond with maturity s, and

q(0; s) is the risk-neutral survival probability until time s at the time of issuance,

derived in equation (1.20). The present value of the credit protection is equal to

EQ
�
(1�R) exp

�
�
Z �

0

rudu

�
1f�<Tg

�
, (1.24)

where R is the recovery of bond market value measured as a percentage of par in

the event of default. Maintaining the assumption of independence between the

default time and the risk-free interest rate and assuming a constant R, this can

be written as

�(1�R)
Z T

0

P (0; s)q0(0; s)ds, (1.25)

where � q0(0; t) = �dq(0; t)=dt is the probability density function of the default
time. The CDS spread is determined such that the value of the contract is zero

at initiation

0 = c

Z T

0

P (0; s)q(0; s)ds+ (1�R)
Z T

0

P (0; s)q0(0; s)ds, (1.26)
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and hence

c(0; T ) = �
(1�R)

R T
0
P (0; s)q0(0; s)dsR T

0
P (0; s)q(0; s)ds

. (1.27)

As mentioned, the model assumes a constant interest rate r, implying that

c(0; T ) = �
(1�R)

R T
0
e�rsq0(0; s)dsR T

0
e�rsq(0; s)ds

: (1.28)

Integrating the denominator by parts yields

c(0; T ) = �r(1�R)
R T
0
e�rsq0(0; s)ds

1� e�rT q(0; T ) +
R T
0
e�rsq0(0; s)ds

: (1.29)

We �nd q0(0; s) by di¤erentiating equation (1.20) inside the integral. To ease

notation, we denote b = x� �, g (x) = g (x j Yt; z0; t) and t = 0, implying that a
noise-free report is received one period before. Since g (x) does not depend on s,

we only need to di¤erentiate 1� � (s; b) with respect to s yielding

@(1� � (s; b))
@s

=
�b

�
p
2�s3

exp

 
�1
2

�
(b+ms)

�
p
s

�2!
= �f(x; s); (1.30)

where f(x; s) is the �rst hitting time density of a Brownian motion with drift m

and volatility parameter �. Therefore,

q0(0; s) = �
Z 1

�

f (x; s) g(x)dx; (1.31)

and hence Z T

0

e�rsq0(0; s)ds = �
Z T

0

e�rs
Z 1

�

f (x; s) g(x)dxds (1.32)

= �
Z 1

�

g(x)

Z T

0

e�rsf (x; s) dsdx;

again since g (x) does not depend on s: The inner integral
R T
0
e�rsf (x; s) ds is the

integral of a discounted �rst hitting time density known from Reiner & Rubinstein
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(1991) and Leland & Toft (1996) in closed form as

G(x; T ) =

Z T

0

e�rsf (x; s) ds (1.33)

= exp ((�c+ z) b) � (h1 (T )) + exp ((�c� z) b) � (h2 (T )) ;

where

h1 (T ) =
(�b� z�2T )

�
p
T

; (1.34)

h2 (T ) =
(�b+ z�2T )

�
p
T

; (1.35)

c =
m

�2
; (1.36)

and

z =
(m2 + 2r�2)

1
2

�2
: (1.37)

In the end, to calculate the CDS spread we only need to evaluate a single

integral numerically

c(0; T ) = r(1�R)
R1
�
G(x; T )g(x)dx

1� e�rT q(0; T )�
R1
�
G(x; T )g(x)dx

(1.38)

= r(1�R)
R1
�
G(x; T )g(x)dx

1� e�rT
R1
�
(1� � (T; x� �)) g (x) dx�

R1
�
G(x; T )g(x)dx

:

B The Accounting Transparency Measure

The basic idea in Berger et al. (2006) is that when pricing equity, investors per-

ceive a �rm�s permanent earnings as a geometrically weighted average of reported

earnings and industry average earnings. Investors put more weight on the �rm�s

reported earnings when the accounting transparency is high.

Denote eEj;t as investors�perception of �rm j0s permanent earnings in year

t, Ej;t as the �rm�s reported earnings and EI;t as the industry average earnings.

Scaling the earnings by �rm asset Aj;t and industry assets AI;t, the permanent

earnings perceived by investors is formally written as

eEj;t
Aj;t�1

=

�
Ej;t
Aj;t�1

�� �
EI;t
AI;t�1

�1��
; (1.39)
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where � 2 [0; 1] is the weight put on �rm-speci�c information. Taking logarithms
and �rst-order di¤erences yields

eej;t = �ej;t + (1� �) eI;t + (1� �)�ln�Aj;t�1
AI;t�1

�
� ln

�
Aj;t�2
AI;t�2

��
: (1.40)

Lower case letters denote the log-growth rate of the variable eej;t = ln� eEj;teEj;t�1
�
,

ej;t = ln
�

Ej;t
Ej;t�1

�
, eI;t = ln

�
EI;t
EI;t�1

�
and Aj;t

AI;t
represents the �rm�s share of the

industry assets. Assuming this share does not change much from year t � 2 to
t� 1, we approximately have

eej;t = �ej;t + (1� �) eI;t: (1.41)

The equity price Pj;t is determined by investors� perception of permanent

earnings, and with the assumption of a constant cost of capital �j and a constant

expected growth rate gj, we have

Pj;t =
eEj;t

�j � gj
: (1.42)

Hence, a �rm�s equity return equals its permanent earnings growth rate rj;t =eej;t, implying that the idiosyncratic variance of the return must equal the idio-
syncratic variance of the perceived permanent earnings. Idiosyncratic is de�ned

relative to the industry, and the following relations between �rm and industry

returns and between �rm and industry earnings, respectively, are assumed

rj;t = eej;t = �r + �rI;t + "rj;t (1.43)

ej;t = a
e + beI;t + "

e
j;t: (1.44)

Finally, using equations (1.41), (1.43) and (1.44), the idiosyncratic variance of

the perceived earnings growth equals �2 times the idiosyncratic variance of the

reported earnings growth

var("rj) = �
2var("ej); (1.45)

and the measure of accounting transparency � is calculated as the idiosyncratic

volatility of equity returns divided by the idiosyncratic volatility in earnings
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growth

� =
vol("rj)

vol("ej)
: (1.46)
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Chapter2
Capital Structure Arbitrage: Model

Choice and Volatility Calibration
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Coauthored with Peter Tind Larsen, School of Economics and Management,

University of Aarhus

Abstract1

When identifying relative value opportunities across credit and equity mar-

kets, the arbitrageur faces two major problems, namely positions based on model

misspeci�cation and mismeasured inputs. Using credit default swap data, this pa-

per addresses both concerns in a convergence-type trading strategy. In spite of

di¤erences in assumptions governing default and calibration, we �nd the exact

structural model linking the markets second to timely key inputs. Studying an

equally-weighted portfolio of all relative value positions, the excess returns are in-

signi�cant when based on a historical volatility. However, relying on an implied

volatility from equity options results in highly signi�cant excess returns. The gain

is largest in the speculative grade segment, and cannot be explained from system-

atic market risk factors. Although the strategy may seem attractive at an aggregate

level, positions on individual obligors can be very risky.

1We thank Lombard Risk for access to the credit default swap data. We are grateful to
Peter Løchte Jørgensen, David Lando, Hayne Leland, Svein-Arne Persson, Stephen Schaefer,
Ilya Strebulaev, Carsten Sørensen, participants at the C.R.E.D.I.T. 2006 Doctoral Tutorial in
Venice, the Danish Doctoral School of Finance Workshop 2007, a Credit Risk Workshop at
Aarhus School of Business, the Nordic Finance Network Workshop 2007 in Helsinki, the Euro-
pean Financial Management Association�s 2007 meeting in Vienna and seminar participants at
University of Aarhus and Aarhus School of Business for useful discussions and comments. Any
remaining errors are our own.
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2.1 Introduction

Capital structure arbitrage refers to trading strategies that take advantage of the

relative mispricing across di¤erent security classes traded on the same capital

structure. As the exponential growth in the credit default swap (CDS) market

has made credit much more tradable and traditional hedge fund strategies have

su¤ered declining returns (Skorecki (2004)), important questions arise for hedge

funds and proprietary trading desks. In particular, do credit and equity markets

ever diverge in opinion on the quality of an obligor? What is the risk and re-

turn of exploiting divergent views in relative value strategies? Although trading

strategies founded in a lack of synchronicity between equity and credit markets

have gained huge popularity in recent years (Currie & Morris (2002) and Zuck-

erman (2005)), the academic literature addressing capital structure arbitrage is

very sparse.

This paper conducts a comprehensive analysis of the risk and return of capi-

tal structure arbitrage using CDS data on 221 North American obligors in 2002

to 2004. When looking at one security in order to signal the sale or purchase

of another, the resulting link and initiation of a trade depends on the chosen

model relating the markets. We address two major problems facing the arbi-

trageur, namely relative value opportunities driven by model misspeci�cation or

mismeasured inputs.

Duarte, Longsta¤ & Yu (2005) analyze traditional �xed income arbitrage

strategies such as the swap spread arbitrage, but also brie�y address capital struc-

ture arbitrage. Yu (2006) cites a complete lack of evidence in favor of or against

strategies trading equity instruments against CDSs. Hence, he conducts the �rst

analysis of the strategy by implementing the industry benchmark CreditGrades

using a historical volatility, which is a popular choice among professionals.2

We show that the more comprehensive model by Leland & Toft (1996) only

adds an excess return of secondary order. However, when exploiting a wider array

of inputs and securities in model calibration and identi�cation of relative value

opportunities, the result is a substantial improvement in strategy execution and

returns.

2That CreditGrades is the preferred framework among professionals is argued in Currie &
Morris (2002) and Yu (2006), while the CreditGrades Technical Document by Finger (2002)
advocates for the 1000-day historical volatility.
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When searching for relative value opportunities, the arbitrageur uses a struc-

tural model to gauge the richness and cheapness of the 5-year CDS spread. Using

the market value of equity, an associated volatility measure and the liability

structure of the obligor, he compares the spread implied from the model with the

market spread. When the market spread is substantially larger(smaller) than the

theoretical counterpart, he sells(buys) a CDS and sells(buys) equity. If the mar-

ket and equity-implied spread from the model subsequently converge, he pro�ts.

Hence, a model that links �rm fundamentals with di¤erent security classes helps

to identify credits that either o¤er a discount against equities or trade at a very

high level.

In fact, the chosen underlying model relating equity with credit plays a central

role in all parts of the strategy. First, it is used to calculate equity-implied CDS

spreads governing entry and exit decisions in equity and credit markets. Second,

to calculate daily returns on an open position, it is necessary to keep track on the

total value of an outstanding CDS position. This is done from the model-based

term structure of survival probabilities. Third, the model is used to calculate the

equity hedge by a numerical di¤erentiation of the value of the CDS position wrt.

the equity price.

CreditGrades loosely builds on Black & Cox (1976), with default de�ned as

the �rst passage time of �rm assets to an unobserved default barrier. This model,

like other structural models, is based on a set of restrictive assumptions regarding

the default mechanism and capital structure characteristics.

Although allowing for a random recovery, CreditGrades belongs to the class of

models with an exogenous default barrier. However, Leland (1994) subsequently

extended in Leland & Toft (1996) has pioneered models with endogenous default.

In these models, the default barrier is chosen by managers as the asset value where

it is no longer optimal for the equityholders to meet the promised debt service

payments. Hence, the default barrier and survival probability are determined not

only by debt principal but a number of structural variables.

As a result of model variations, di¤erences in model calibration exist. For

structural models, this is particularly relevant as many key inputs are di¢ cult to

measure. Bypassing strict de�nitions CreditGrades is developed for immediate

application, while the calibration of Leland & Toft (1996) is more extensive.

Hence, the number and characteristics of parameters to be estimated, as well as

the method to infer the underlying asset value process and default barrier, di¤er
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across models.

Duarte et al. (2005) and Yu (2006) solely rely on CreditGrades calibrated with

a 1000-day historical volatility. When based on a large divergence between mar-

kets, both �nd that capital structure arbitrage is pro�table on average. At the

aggregate level, the strategy appears to o¤er attractive Sharpe ratios and a posi-

tive average return with positive skewness. Yet, individual positions can be very

risky and most losses occur when the arbitrageur shorts CDSs but subsequently

�nd the market spread rapidly increasing and the equity hedge ine¤ective.

Due to the substantial di¤erences in model assumptions and calibration, the

key observed gap between the market and model spread fueling the arbitrageur

may be driven by model misspeci�cation. Furthermore, key inputs may be mis-

measured sending the arbitrageur a false signal of relative mispricing. Hence,

there is a need to understand how the risk and return vary with model choice

and calibration. These caveats are unexplored in Duarte et al. (2005) and Yu

(2006).

We address these two problems facing the arbitrageur, and study how the

characteristics of capital structure arbitrage vary with model choice and asset

volatility calibration. For this purpose, we apply the CreditGrades model and

Leland & Toft (1996). As the volatility measure is a key input to the pricing

of credit, we identify relative value opportunities from a traditional 250-day his-

torical volatility used extensively in the bond pricing literature and a volatility

measure implied from equity options.

Based on anecdotal evidence using CreditGrades, Finger & Stamicar (2005a)

and Finger & Stamicar (2005b) show how model spreads based on historical

volatilities lag the market when spreads increase, while overpredicting the market

as spreads recover. However, the more responsive option-implied volatility sub-

stantially improves the pricing performance. Cremers et al. (2006) and Cao et al.

(2006) analyze the information content of equity options for corporate bond and

CDS pricing. They �nd the forward-looking option-implied volatility to dominate

the historical measure in explaining credit spreads, and the gain is particularly

pronounced among �rms with lower credit ratings. Only analyzing the determi-

nants of credit spreads, they are silent on the risk and return of capital structure

arbitrage.

As the arbitrageur feeds on large variations in credit and equity markets, these

insights suggest the implied volatility to lead to superior entry and exit decisions
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and trading returns. Furthermore, the gain from a more timely credit signal is

expected to be largest for the obligors of most interest to the arbitrageur, namely

those in the speculative grade segment.

Hence, we implement the strategy on 221 North American industrial obligors

in 2002 to 2004. Case studies illustrate that while model choice certainly mat-

ters in identifying relative value opportunities, the volatility input is of primary

importance. The historical volatility may severely lag the market, sending the

arbitrageur a false signal of relatively cheap protection in the aftermath of a cri-

sis. The result is large losses for the arbitrageur as market spreads continue to

tighten. Indeed, the implied volatility may result in the exact opposite positions,

with obvious consequences for the arbitrageur.

When studying the risk and return at an aggregate level, we focus on holding

period returns and a capital structure arbitrage index of monthly excess returns.

Both models generally result in insigni�cant excess returns, when calibrated with

a traditional volatility from historical equity returns. However, the gain from

identifying relative value opportunities from option-implied volatilities is sub-

stantial.

In a variant of the strategy based on CreditGrades, the mean holding period

return for speculative grade obligors increases from 2.64 percent to 4.61 percent

when implemented with option-implied volatilities. The similar numbers based

on Leland & Toft (1996) are 3.14 versus 5.47 percent. However, the incremental

return is much smaller for investment grade obligors.

Additionally, the corresponding excess returns are highly signi�cant when

option-implied volatilities are used to identify opportunities. Based on Credit-

Grades, the mean excess return is 0.44 percent on investment grade and 1.33

percent on speculative grade obligors, both highly signi�cant. The similar num-

bers when Leland & Toft (1996) is used to identify relative value opportunities

are 0.27 and 2.39 percent, both highly signi�cant. At a low threshold for strategy

initiation, the excess return may turn negative and signi�cant based on the his-

torical measure, while it continues to be positive and signi�cant based on implied

volatilities. Finally, we do not �nd the excess returns to represent compensation

for exposure to systematic market factors.

However, irrespective of model choice and volatility calibration, the strategy is

very risky at the level of individual obligors. Convergence may never happen and

the equity hedge may be ine¤ective. This may force the arbitrageur to liquidate
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positions early and su¤er large losses.

We conclude that while model choice matters for the arbitrageur, it is second

to properly measured key inputs in the calibration. Hence, if the arbitrageur relies

on the dynamics of option prices when identifying relative value opportunities

across equity and credit markets, the result is a substantial aggregate gain in

trading returns above the benchmark application of capital structure arbitrage in

Duarte et al. (2005) and Yu (2006).

This paper is based on the premise that structural models price CDSs reason-

ably well. Ericsson et al. (2006) �nd that Leland (1994), Leland & Toft (1996) and

Fan & Sundaresan (2000) underestimate bond spreads consistent with previous

studies. However, the models perform much better in predicting CDS spreads,

particularly Leland & Toft (1996). The resulting residual CDS spreads are found

to be uncorrelated with default proxies as well as non-default proxies. Further-

more, this paper is related to Schaefer & Strebulaev (2004), who show that struc-

tural models produce hedge ratios of equity to debt that cannot be rejected in

empirical tests.

Since the rationale for the strategy is to exploit a lack of integration between

various markets, capital structure arbitrage is also related to studies on the lead-

lag relationship among bond, equity and CDS markets like Hull, Predescu &

White (2004), Norden & Weber (2004), Longsta¤ et al. (2005) and Blanco et al.

(2005). While the CDS is found to lead the bond market, no de�nitive lead-lag

relationship exists between equity and CDS markets. Finally, Hogan, Jarrow,

Teo & Warachka (2004) study statistical arbitrages, while Mitchell & Pulvino

(2001) and Mitchell, Pulvino & Sta¤ord (2002) are important studies on merger

and equity arbitrage.

The outline of the paper is as follows. Section 2.2 outlines the trading strategy,

while the data is presented in section 2.3. Section 2.4 presents the underlying

models and calibration, and section 2.5 illustrates some case studies. Section 2.6

presents the aggregate results of the strategy, and section 2.7 concludes.

2.2 Trading Strategy

This section describes the trading strategy underlying capital structure arbitrage.

The implementation closely follows Duarte et al. (2005) and Yu (2006), to whom
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we refer for a more elaborate description. Since a time-series of predicted CDS

spreads forms the basis of the strategy, we start with a short description of how

to price a CDS.

2.2.1 CDS Pricing

A CDS is an insurance contract against credit events such as the default on a

corporate bond (the reference obligation) by a speci�c issuer (reference entity).

In case of a credit event, the seller of insurance is obligated to buy the reference

obligation from the protection buyer at par.3 For this protection, the buyer pays a

periodic premium to the protection seller until the maturity of the contract or the

credit event, whichever comes �rst. There is no requirement that the protection

buyer actually owns the reference obligation, in which case the CDS is used more

for speculation rather than protection. Since the accrued premium must also be

paid if a credit event occurs between two payment dates, the payments �t nicely

into a continuous-time framework.

First, the present value of the premium payments from a contract initated at

time 0 with maturity date T can be calculated as

EQ
�
c(0; T )

Z T

0

exp

�
�
Z s

0

rudu

�
1f�>sgds

�
, (2.1)

where c(0; T ) denotes the annual premium known as the CDS spread, r the risk-

free interest rate, and � the default time of the obligor. EQ denotes the expec-

tation under the risk-neutral pricing measure. Assuming independence between

the default time and the risk-free interest rate, this can be written as

c(0; T )

Z T

0

P (0; s)q0(s)ds, (2.2)

where P (0; s) is the price of a default-free zero-coupon bond with maturity s, and

q0(s) is the risk-neutral survival probability of the obligor, P (� > s), at t = 04.

3In practice, there may be cash settlement or physical settlement, as well as a possible
cheapest-to-deliver option embedded in the spread. However, we refrain from this complication.
Credit events can include bankruptcy, failure to pay or restructuring.

4Later, we focus on constant risk-free interest rates. This assumption allows us to concentrate
on the relationship between the equity price and the CDS spread. This is exactly the relationship
exploited in the relative value strategy.
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Second, the present value of the credit protection is equal to

EQ
�
(1�R) exp

�
�
Z �

0

rudu

�
1f�<Tg

�
, (2.3)

where R is the recovery of bond market value measured as a percentage of par in

the event of default. Maintaining the assumption of independence between the

default time and the risk-free interest rate and assuming a constant R, this can

be written as

�(1�R)
Z T

0

P (0; s)q00(s)ds, (2.4)

where � q00(t) = �dq0(t)=dt is the probability density function of the default time.
The CDS spread is determined such that the value of the credit default swap is

zero at initiation

0 = c(0; T )

Z T

0

P (0; s)q0(s)ds+ (1�R)
Z T

0

P (0; s)q00(s)ds, (2.5)

and hence

c(0; T ) = �
(1�R)

R T
0
P (0; s)q00(s)dsR T

0
P (0; s)q0(s)ds

. (2.6)

The preceding is the CDS spread on a newly minted contract. To calculate

daily returns to the arbitrageur on open trades, the relevant issue is the value of

the contract as market conditions change and the contract is subsequently held.

To someone who holds a long position from time 0 to t, this is equal to

�(t; T ) = (c(t; T )� c(0; T ))
Z T

t

P (t; s)qt(s)ds, (2.7)

where c(t; T ) is the CDS spread on a contract initiated at t with maturity date

T . The value of the open CDS position �(t; T ) can be interpreted as a survival-

contingent annuity maturing at date T , which depends on the term-structure

of survival probabilities qt(s) through s at time t. The survival probability qt(s)

depends on the market value of equity St through the underlying structural model,

and we follow Yu (2006) in de�ning the hedge ratio �t as

�t = N �
@�(t; T )

@St
, (2.8)
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where N is the number of shares outstanding.5 Hence, �t is de�ned as the dollar-

amount of shares bought per dollar notional in the CDS. The choice of underlying

model-framework and calibration is discussed in section 2.4.

2.2.2 Implementation of the Strategy

Using the market value of equity, an associated volatility measure and the liability

structure of the obligor, the arbitrageur uses a structural model to gauge the

richness and cheapness of the CDS spread. Comparing the daily spread observed

in the market with the equity-implied spread from the model, the model helps

identify credits that either o¤er a discount against equities or trade at a very high

level.

If e.g. the market spread at a point in time has grown substantially larger

than the model spread, the arbitrageur sees an opportunity. It might be that

the credit market is gripped by fear and the equity market is more objective.

Alternatively, he might think that the equity market is slow to react and the

CDS spread is priced fairly. If the �rst view is correct, he should sell protection

and if the second view is correct, he should sell equity. Either way, the arbitrageur

is counting on the normal relationship between the two markets to return. He

therefore takes on both short positions and pro�ts if the spreads converge. In the

opposite case with a larger model spread, the arbitrageur buys protection and

equity.

This relative value strategy is supposed to be less risky than a naked position

in either market, but is of course far from a textbook de�nition of arbitrage.

Two important caveats to the strategy are positions initiated based on model

misspeci�cation or mismeasured inputs. Such potential false signals of relative

mispricing are exactly what this paper addresses.

We conduct a simulated trading exercise based on this idea across all obligors.

Letting � be the trading trigger, c0t the CDS spread observed in the market at

date t and ct short-hand notation for the equity-implied model spread, we initiate

5This calculation deviates slightly from the one in Yu (2006), since we formulate all models
on a total value basis and not per share. Equation (2.8) follows from a simple application of
the chain rule.
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a trade each day if one of the following conditions are satis�ed

c0t > (1 + �) ct or ct > (1 + �) c
0
t: (2.9)

In the �rst case, a CDS with a notional of $1 and shares worth $ � �t � 1 are
shorted.6 In the second case, the arbitrageur buys a CDS with a notional of $1

and buys shares worth $� �t � 1 as a hedge.
Since Yu (2006) �nds his results insensitive to daily rebalancing of the equity

position, we follow his base case and adopt a static hedging scheme. The hedge

ratio in equation (2.8) is therefore �xed throughout the trade and based on the

model CDS spread ct when entering the position.

Knowing when to enter positions, the arbitrageur must also decide when to

liquidate. We assume that exit occurs when the spreads converge de�ned as

ct = c
0
t or by the end of a pre-speci�ed holding period, which ever comes �rst. In

principle, the obligor can also default or be acquired by another company during

the holding period. Yu (2006) notes that in most cases the CDS market will

re�ect these events long before the actual occurrences, and the arbitrageur will

have ample time to make exit decisions.7 Speci�cally, it is reasonable to assume

that the arbitrageur will be forced to close his positions once the liquidity dries

up in the underlying obligor. Such incidents are bound to impose losses on the

arbitrageur.

2.2.3 Trading returns

The calculation of trading returns is fundamental to analyze how the risk and

return di¤er across model assumptions and calibration methods. Since the CDS

position has a zero market value at initiation, trading returns must be calcu-

lated by assuming that the arbitrageur has a certain level of initial capital. This

assumption allows us to hold �xed the e¤ects of leverage on the analysis. The

initial capital is used to �nance the equity hedge, and is credited or deducted as

a result of intermediate payments such as dividends or CDS premia. Each trade

6�t is, of course, negative.
7This argument seems to be supported in Arora, Bohn & Zhu (2005), who study the surprise

e¤ect of distress announcements. Conditional on market information, they �nd only 11 percent
of the distressed �rms�equities and 18 percent of the distressed bonds to respond signi�cantly.
The vast majority of prices are found to re�ect the credit deterioration well before the distress
announcement.
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is equipped with this initial capital and a limited liability assumption to ensure

well-de�ned returns. Hence, each trade can be thought of as an individual hedge

fund subject to a forced liquidation when the total value of the portfolio becomes

zero.8

Through the holding period the value of the equity position is straightforward,

but the value of the CDS position has to be calculated using equation (2.7) and

market CDS spreads c0(t; T ) and c0(0; T ). Since secondary market trading is very

limited in the CDS market and not covered by our dataset, we adopt the same

simplifying assumption as Yu (2006), and approximate c0 (t; T ) with c0 (t; t+ T ).

That is, we approximate a CDS contract maturing in four years and ten months,

say, with a freshly issued 5-year spread. This should not pose a problem since

the di¤erence between to points on the curve is likely to be much smaller than

the time-variation in spreads.

Yu (2006) �nds his results insensitive to the exact size of transaction costs for

trading CDSs. We adopt his base case, and assume a 5 percent proportional bid-

ask spread on the CDS spread. The CDS market is likely to be the largest single

source of transaction costs for the arbitrageur. We therefore ignore transaction

costs on equities, which is reasonable under the static hedging scheme.

2.3 Data

Data on CDS spreads is provided by the ValuSpread database from Lombard

Risk Systems, dating back to July 1999. This data is also used by Lando &

Mortensen (2005) and Berndt, Jarrow & Kang (2006). The data consists of mid-

market CDS quotes on both sovereigns and corporates, with varying maturity,

restructuring clause, seniority and currency. For a given date, reference entity

and contract speci�cation, the database reports a composite CDS quote together

with an intra-daily standard deviation of collected quotes. The composite quote

is calculated as a mid-market quote by obtaining quotes from up to 25 leading

market makers. This o¤ers a more reliable measure of the market spread than

using a single source, and the standard deviation measures how representative

the mid-market quote is for the overall market.

8This is reminiscent of potential large losses when marked to market, triggering margin calls
and forcing an early liquidation of positions.
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We con�ne ourselves to 5-year composite CDS quotes on senior unsecured debt

for North American corporate obligors with currencies denominated in US dollars.

Indeed, the 5-year maturity is the most liquid point on the credit curve (see e.g.

Blanco et al. (2005)). Regarding the speci�cation of the credit event, we follow

Yu (2006) and large parts of the literature in using contracts with a modi�ed

restructuring clause. The frequency of data on CDS quotes increases signi�cantly

through time, re�ecting the growth and improved liquidity in the market. To

generate a subsample of the data suitable for capital structure arbitrage, we

apply several �lters.

First, we merge the CDS data with quarterly balance sheet data from Compu-

stat and daily stock market data from CRSP. The quarterly balance sheet data

is lagged one month from the end of the quarter to avoid the look-ahead bias

in using data not yet available in the market. We then exclude �rms from the

�nancial and utility sector.

Second, for each obligor in the sample, daily data on the 30-day at-the-money

put-implied volatility is obtained from OptionMetrics. OptionMetrics is a com-

prehensive database of daily information on exchange-listed equity options in the

U.S. since 1996. OptionMetrics generates the 30-day at-the-money put-implied

volatility by interpolation.

Third, in order to conduct the simulated trading exercise, a reasonably con-

tinuous time-series of CDS quotes must be available. In addition, the composite

quote must have a certain quality. Therefore, we de�ne the relative quote dis-

persion as the intra-daily standard deviation of collected quotes divided by the

mid-market quote. All daily mid-market quotes with an intra-daily quote dis-

persion of zero or above 40 percent are then deleted.9 For each obligor, we next

search for the longest string of more than 100 daily quotes no more than 14 cal-

ender days apart, which have all information available on balance sheet variables,

equity market and equity options data.10 As noted in Yu (2006), this should also

yield the most liquid part of coverage for the obligor, forcing the arbitrageur to

9One could argue for a cut-o¤ point at a lower relative dispersion, but on the other hand
a trader is likely to take advantage of high uncertainty in the market. The vast majority of
quotes have a relative dispersion below 20 percent.
10As discussed below, this may give rise to a survivorship issue. However, we try to minimize

this by requiring a string of only 100 spreads, far less than Yu (2006). In any case, this should
not pose a problem, since the focus of the paper is on relative risk and return across models
and calibration methods, and not absolute measures.
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close his positions once the liquidity vanishes.

Finally, the 5-year constant maturity treasury rate and the 3-month treasury

bill rate are obtained from the Federal Reserve Bank of St. Louis. The 5-year

interest rate is used to calculate the equity-implied 5-year CDS spread, while

the 3-month interest rate is chosen when calculating daily excess returns from

the trading strategy11. Applying this �ltration to the merged dataset results in

221 obligors with 65,476 daily composite quotes, dating back to July 2002 and

onwards to the end of September 2004.

Table 2.1 presents summary statistics for the obligors across the senior un-

secured credit rating from Standard & Poor�s when entering the sample. The

variables presented are averages over time and then �rms. The majority of �rms

are BBB rated, and 16 �rms are in the speculative grade segment, including

one non-rated obligor. A lower spread is associated with a lower leverage and

volatility, which is in line with predictions of structural credit risk models.

We implement the trading strategy using the implied volatility from equity

options (IV), and a 250-day volatility from a historical time-series of equity values

(HV). On average these volatilities are similar, but it turns out that the dynamics

of option prices provide the arbitrageur with superior information. The average

correlation between changes in the spread and the equity value is negative as

expected from a structural viewpoint, but fairly low. This is consistent with Yu

(2006) and correlations ranging from minus 5 to minus 15 percent quoted by

traders in Currie & Morris (2002). This indicates that the two markets may drift

apart and hold divergent views on obligors, which fuels the arbitrageur ex ante.

Ex post, it suggests that the equity hedge may be ine¤ective.

11This choice of short-term interest rate is consistent with Yu (2006). Changes in shorter
maturity rates are to a larger extend driven by idiosyncratic variation (see Dufee (1996)).
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Table 2.1: Sample Characteristics
This table reports sample characteristics for the 221 obligors. First, the average charac-
teristics are calculated for each obligor over time, then averaged across �rms. The sta-
tistics are presented across the senior unsecured credit rating from Standard & Poor�s.
N is the number of obligors and spread is the 5-year composite CDS quote. While the
historical equity volatility HV is calculated from a 250-day rolling window of equity
returns, the implied equity volatility IV is inferred from 30-day at-the-money put op-
tions. The leverage ratio lev is total liabilities divided by the sum of total liabilities and
equity market capitalization, and size is the sum of total liabilities and equity market
capitalization in millions of dollars. Finally, corr is the correlation between changes in
the CDS spread and the equity value, averaged across ratings.

Rating N Spread HV IV Lev. Size Corr.
AAA 4 16 0.284 0.227 0.197 142,619 -0.107
AA 11 23 0.267 0.257 0.216 95,237 -0.050
A 80 40 0.305 0.293 0.354 40,274 -0.089
BBB 109 103 0.346 0.337 0.502 25,431 -0.124
BB 15 270 0.386 0.377 0.524 13,667 -0.056
B 1 355 0.554 0.555 0.564 34,173 -0.261
NR 1 172 0.229 0.219 0.450 11,766 -0.129

2.4 Model Choice and Volatility Calibration

Having the trading strategy and data explained, next we introduce the two un-

derlying models and the associated calibration. The formulas for each model

including the risk-neutral survival probability qt(s), the CDS spread c(0; T ), the

contract value �(t; T ) and the equity delta �(t; T ) are described in the appendix.

Further details on the models can be found in Finger (2002) and Leland & Toft

(1996).

2.4.1 CreditGrades

The CreditGrades model is jointly developed by RiskMetrics, JP Morgan, Gold-

man Sachs and Deutsche Bank with the purpose to establish a simple framework

linking credit and equity markets. As noted by Currie & Morris (2002) and Yu

(2006), this model has become an industry benchmark widely used by traders,

preferably calibrated with a rolling 1000-day historical volatility as advocated in
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Finger (2002). It loosely builds on Black & Cox (1976), with default de�ned as

the �rst passage time of �rm assets to an unobserved default barrier. Hence,

deviating from traditional structural models, it assumes that the default barrier

is an unknown constant drawn from a known distribution. This element of uncer-

tain recovery increases short-term spreads, but cannot do so consistently through

time.12

Originally, the model is built on a per-share basis taking into account preferred

shares and the di¤erences between short-term versus long-term and �nancial ver-

sus non-�nancial obligations, when calculating debt per share. Like Yu (2006),

we only work with total liabilities and common shares outstanding. Therefore,

we formulate the model based on total liabilities and market value of equity.

Under the risk-neutral measure, the �rm assets V are assumed to follow

dVt = �V VtdWt, (2.10)

where �V is the asset volatility and Wt is a standard Brownian motion. The zero

drift is consistent with the observation of stationary leverage ratios in Collin-

Dufresne & Goldstein (2001). The default barrier is LD, where L is a random

recovery rate given default, and D denotes total liabilities. The recovery rate

L follows a lognormal distribution with mean �L, interpreted as the mean global

recovery rate on all liabilities, and standard deviation �. Then, R in equation

(2.6) is the recovery rate on the speci�c debt issue underlying the CDS.

Instead of working with a full formula for the value of equity S; CreditGrades

uses the linear approximation

V = S + �LD, (2.11)

which also gives a relation between asset volatility �V and equity volatility �S

�V = �S
S

S + �LD
: (2.12)

The model is easy to implement in practice. In particular, D is the total

liabilities from quarterly balance sheet data, S is the market value of equity

calculated as the number of shares outstanding multiplied by the closing price,

12A theoretically more appealing approach is given by Du¢ e & Lando (2001).
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and r is the 5-year constant maturity treasury yield. Furthermore, the bond-

speci�c recovery rate R is assumed to be 0:5 and the standard deviation of the

global recovery rate � is 0:3. All parameters are motivated in Finger (2002) and

Yu (2006).

The volatility measure is a key input to the pricing of credit. Instead of

using a rolling 1000-day volatility �S from historical equity values as Yu (2006),

we implement the strategy using a 250-day historical volatility and the implied

volatility from equity options. According to Cremers et al. (2006) and Cao et al.

(2006), the implied volatility contains important and timely information about

credit risk di¤erent from the historical measure. This may potentially lead the

arbitrageur to superior entry and exit decisions and trading returns. We expect

the gain to be mostly pronounced for the speculative grade sample, where obligors

typically experience large variations in spreads. Here, historical volatilities may

lag true market levels and send a false signal of mispricing to the arbitrageur.

Finally, we follow Yu (2006) in using the mean global recovery rate �L to align

the model with the credit market before conducting the trading exercise. In

particular, we infer �L by minimizing the sum of squared pricing errors using the

�rst 10 CDS spreads in the sample for each �rm. Now, all parameters are in place

to calculate the time-series of CDS spreads underlying the analysis, together with

hedge ratios and values of open CDS positions.

2.4.2 Leland & Toft (1996)

This model assumes that the decision to default is made by a manager, who acts

to maximize the value of equity. At each moment, the manager must address

the question if meeting promised debt service payments is optimal for the eq-

uityholders, thereby keeping their call option alive. If the asset value exceeds

the endogenously derived default barrier VB, the �rm will optimally continue to

service the debt - even if the asset value is below the principal value or if cash

�ow available for payout is insu¢ cient to �nance the net debt service, requiring

additional equity contributions.

In particular, �rm assets V are assumed to follow a geometric Brownian mo-

tion under the risk-neutral measure

dVt = (r � �)Vtdt+ �V VtdWt, (2.13)

73



where r is the constant risk-free interest rate, � is the fraction of asset value paid

out to security holders, �V is the asset volatility and Wt is a standard Brown-

ian motion. Debt of constant maturity � is continuously rolled over, implying

that at any time s the total outstanding debt principal P will have a uniform

distribution over maturities in the interval (s; s+�). Each debt contract in the

multi-layered structure is serviced by a continuous coupon. The resulting total

coupon payments C are tax deductible at a rate � , and the realized costs of �nan-

cial distress amount to a fraction � of the value of assets in default VB. Rolling

over �nite maturity debt in the way prescribed implies a stationary capital struc-

ture, where the total outstanding principal P , total coupon C, average maturity
�
2
and default barrier VB remain constant through time.

To determine the total value of the levered �rm v(Vt), the model follows Leland

(1994) in valuing bankruptcy costs BC(Vt) and tax bene�ts resulting from debt

issuance TB(Vt) as time-independent securities. It follows, that

�(Vt) = Vt + TB(Vt)�BC(Vt) (2.14)

= S(Vt) +D(Vt),

where S(Vt) is the market value of equity and D(Vt) the market value of total

debt.

To implement the model, we follow Ericsson et al. (2006) in setting the realized

bankruptcy cost fraction � = 0:15, the tax rate � = 0:20 and the average debt

maturity �
2
= 3:38.13 Furthermore, as above, P is the total liabilities from

quarterly balance sheet data, S is the market value of equity and r is the 5-year

constant maturity treasury yield. We also follow Ericsson et al. (2006) in assuming

that the average coupon paid out to all debtholders equals the risk-free interest

rate, C = rP .14 The asset payout rate � is calculated as a time-series mean of

the weighted average historical dividend yield and relative interest expense from

13The choice of 15 percent bankruptcy costs lies well within the range estimated by Andrade
& Kaplan (1998). 20 percent as an e¤ective tax rate is below the corporate tax rate to re�ect
the personal tax rate advantage of equity returns. Stohs & Mauer (1996) �nd an average debt
maturity of 3.38 years using a panel of 328 industrial �rms with detailed debt information in
Moody�s Industrial Manuals in 1980-1989.
14A �rm�s debt consists of more than market bonds, and usually a substantial fraction of total

debt is non-interest bearing such as accrued taxes and supplier credits. Furthermore, corporate
bonds may be issued below par, which also opens up for this approximation.
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balance sheet data

� =

�
Interest expenses

Total liabilities

�
� L + (Dividend yield)� (1� L) (2.15)

L =
Total liabilities

Total liabilities+Market equity
.

Contrary to CreditGrades, the default barrier VB is endogenously determined

and varies with fundamental characteristics of the �rm such as leverage, asset

volatility, debt maturity and asset payout rates. Due to the full-blown relation-

ship between equity and assets, the estimation of the asset value V and asset

volatility �V is a more troublesome exercise in Leland & Toft (1996). Hence,

when analyzing the trading strategy with a 250-day historical volatility, we use

the iterative algorithm of Moody�s KMV outlined in Crosbie & Bohn (2003) and

Vassalou & Xing (2004) to infer the unobserved time-series of asset values and

asset volatility. This iterative algorithm is preferable over an instantaneous re-

lationship between asset volatility �V and equity volatility �S, governed by Ito�s

lemma. The latter underlies the implementation of CreditGrades in equation

(2.12), and is used in Jones et al. (1984). As noted in Lando (2004), the iterative

algorithm is particularly preferable when changes in leverage are signi�cant over

the estimation period.

In short, the iterative scheme goes as follows. The value of equity St is a func-

tion of the asset value Vt, asset volatility �V and a set of parameters � in equation

(2.31), i.e. St = f(Vt; �V ; �). We use a 250-day window of historical equity values

to obtain an estimate of the equity volatility �S, by viewing the value of equity as

a geometric Brownian motion. Given this initial estimate of the asset volatility

�V and quarterly balance sheet data, we calculate the value of the default barrier.

Using the daily market values of equity and the equity pricing formula we then

back out an implied time-series of asset values Vt(�V ) = f�1(St; �V ; �). Next, the

daily asset values allow us to obtain an improved estimate of the asset volatility

�V , which is used in the next iteration. This procedure is repeated until the

values of �V converge.

When analyzing the trading exercise based on implied volatilities from equity

options, we do not face the problem of changing leverage in a historical estimation
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window. Therefore, we solve the instantaneous relationship given by

St = f(Vt; �V ; �) (2.16)

�S =
@St
@Vt

�V
Vt
St

(2.17)

numerically for the unknown asset value Vt and asset volatility �V .

Before conducting the trading exercise, we now use the bond-speci�c recovery

rate R to align the model with the market spreads. This is possible since the

default barrier is endogenously determined. For this purpose, again we use the

�rst 10 CDS spreads in the sample for each �rm. As noted in Yu (2006), the

bond-speci�c recovery rate is also the free parameter used in practice by traders

to �t the level of market spreads.

2.4.3 Model Calibration and Implied Parameters

Table 2.2 presents the summary statistics of implied parameters from Credit-

Grades and Leland & Toft (1996) using a rolling 250-day historical volatility

(HV) and implied volatility (IV). The table also shows average calibration tar-

gets from the equity and equity options market together with asset payout rates.

In CreditGrades implemented with a historical volatility in Panel A, the average

market value of assets V is $20,592 million with a median of $14,839 million,

while the average and median expected default barrier �LD are $8,556 million and

$3,846 million, respectively. The mean asset volatility �V is 22.8 percent with a

median of 21.3 percent. Finally, the average and median mean global recovery

rate �L are 0.799 and 0.573, respectively. Similar implied parameters result on

aggregate when implemented with the implied volatility in Panel B.

When implementing Leland & Toft (1996) in Panel C and D, several di¤er-

ences from CreditGrades are apparent. First, the asset values appear larger and

asset volatilities lower. This is due to the observation that the relatively high

endogenous default barrier VB increases the theoretical equity volatility, ceteris

paribus. Hence, the model implies a higher asset value and/or lower asset volatil-

ity in order to match the theoretical and observed equity volatility.

Second, the variation in implied bond recovery R across the two volatility

measures is large. Based on the historical volatility, both the average and median

implied bond recovery are highly negative, indicating that the model underesti-
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mates the level of market spreads in the beginning of the sample period.15 Implied

recoveries are more plausible when inferred from option-implied volatilities. Al-

though the mean continues to be negative, the median is now 0.233. This is

indicative of an implied volatility that varies stronger with changes in the CDS

spread. Indeed, calculating the mean correlation between changes in CDS spreads

and changes in volatility measures, the correlation is 1.8 and 9.9 percent based

on historical and implied volatilities, respectively.

The variation in implied mean global recovery �L in CreditGrades is much

smaller across volatility measures. This is a manifestation of the di¤erence in

information used at various stages, when calibrating the two models. In Cred-

itGrades the expected default barrier is exogenous, while it is endogenously de-

termined in Leland & Toft (1996). As a result of the linear approximation in

equation (2.11), asset values, the asset volatility and the expected default barrier

are not nailed down and determined in CreditGrades until the mean global re-

covery rate is inferred from the initial CDS spreads. Subsequent to nailing down

this key parameter, there is a one-to-one relationship between changes in equity

and assets, @S
@V
= 1.

The default mechanism in Leland & Toft (1996) implies a di¤erent use of mar-

ket data. Here, the asset value and asset volatility are solely determined from

the equity and equity options market. Together with the endogenous default bar-

rier, this gives far less �exibility when �tting the �nal bond recovery from initial

CDS spreads. The result is more extreme values for this parameter.16 However,

the subsequent relationship and wedge between equity and assets vary with the

distance to default. When close to default, @S
@V
is very steep and below one. Al-

though delta may go above one as the credit quality improves, the relationship

approaches one-to-one when far from default. Hence, the variation in asset dy-

namics across the two models may be substantial for speculative grade obligors,

with direct consequences for the arbitrageur.

15This should not be a problem for the current trading strategy, since subsequent movements
in relative prices across equity and credit markets drive the arbitrageur, not absolute levels.
The most extreme bond recovery of -1,858 results from an underestimation of only 50 bps. In
this case, the market spread is close to 50 bps, while the model spread with a reasonable bond
recovery is close to zero.
16If CreditGrades is implemented with a mean global recovery of 0.5 as suggested in Finger

(2002), we qualitatively get the same results for the implied bond recovery as in Leland & Toft
(1996).
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Table 2.2: Descriptive Statistics of Implied Parameters
This table reports the central implied parameters from CreditGrades and Leland &
Toft (1996), calibrated with a historical volatility HV and option-implied volatility
IV . While the �rst measure is calculated from a 250-day rolling window of equity
returns, the latter is implied from 30-day at-the-money put options. The descriptive
statistics for the payout rate, global recovery and bond recovery are calculated across
obligors. The remaining variables are �rst averaged over time, before the statistics
are calculated across obligors. The equity value, asset value and default barrier are
measured in millions of dollars. The upper three rows report the summary statistics
of calibration targets from the equity and equity options market. The global recovery
rate is the mean global recovery on all liabilities of the �rm, while the bond recovery
is the recovery rate on the speci�c debt issue underlying the CDS. Finally, the payout
rate is calculated from historical dividend yields and relative interest expenses.

Variable Mean Median Std. dev. Min Max
Equity value 20,592 9,479 33,425 919 238,995
HV 0.329 0.313 0.106 0.175 0.989
IV 0.318 0.302 0.090 0.135 0.717

Panel A. CreditGrades HV
Asset value 29,895 14,839 46,655 1,360 337,381
Asset vol. 0.228 0.213 0.085 0.084 0.583
Default barrier 8,556 3,846 15,892 59 154,585
Global rec. 0.799 0.573 0.772 0.009 6.025

Panel B. CreditGrades IV
Asset value 26,189 12,914 40,418 1111 294,685
Asset vol. 0.232 0.227 0.079 0.0843 0.552
Default barrier 4,901 2,199 9,071 14 93,838
Global rec. 0.549 0.285 0.719 0.0097 5.715

Panel C. Leland & Toft HV
Asset value 34,837 18,100 53,727 2,008 417,807
Asset vol. 0.179 0.167 0.073 0.0382 0.446
Default barrier 12,445 5,939 32,871 591 374,849
Bond rec. -17.410 -0.443 129.611 -1,858 0.919
Payout rate 0.020 0.020 0.011 0 0.059

Panel D. Leland & Toft IV
Asset value 34,502 17,897 52,035 1972 373,672
Asset vol. 0.167 0.156 0.069 0.0077 0.413
Default barrier 12,762 6,105 33,360 593 364,376
Bond rec. -3.554 0.233 18.256 -222.69 0.835
Payout rate 0.020 0.020 0.011 0 0.059
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From the discussion in section 2.2, the chosen structural model plays a central

role in all parts of capital structure arbitrage. In particular, the model underlies

the term-structure of survival probabilities, equity-implied CDS spreads, hedge

ratios, the valuation of open CDS positions and trading returns. As shown above,

assumptions behind CreditGrades and Leland & Toft (1996), as well as practi-

cal implementation, vary substantially. How these di¤erences in model choice

and calibration manifest in pro�tability and strategy execution is analyzed next.

Before turning to the general results across all obligors, some case studies are

analyzed.

2.5 Case Studies

In this section, the two models calibrated with historical and option-implied

volatilities are used to identify divergent views in equity and credit markets.

The case studies illustrate that while model choice certainly matters in identify-

ing relative value opportunities, the volatility input is of primary importance. In

fact, the two volatility measures may result in opposite positions, with obvious

consequences for the arbitrageur. The �nal study illustrates that the strategy is

very risky at the level of individual obligors.

2.5.1 Sears, Roebuck and Company

Figure 2.1 illustrates the fundamentals of capital structure arbitrage for the large

retailer Sears, Roebuck and Company rated A by S&P and Baa1 by Moody�s.

Panel A and B depict the equity-implied model spreads and CDS spreads observed

in the market from September 2002 to June 2004 (excluding the initial 10 spreads

reserved for calibration), while Panel C and D depict equity volatilities and the

market value of equity, respectively.
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Figure 2.1: Sears, Roebuck and Company
This �gure illustrates the fundamentals behind capial structure arbitrage. In panel A,
we depict market CDS spreads together with model spreads in Leland & Toft (1996)
LT inferred from historical HV and option-implied volatilities IV . In panel B, the
corresponding spreads are depicted based on CreditGrades CG. Panel C depicts the
historical and option-implied volatility, where the �rst is calculated from a rolling
250-day window of equity returns and the latter is inferred from 30-day at-the-money
puts. Finally, panel D illustrates the total market value of equity in millions of dollars.
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The uncertainty in the markets increases substantially in the beginning of the

period. Moody�s changes their rating outlook to negative on October 18, 2002 due

to increasing uncertainty in the credit card business and management changes.

In this period equity prices tumble and CDS spreads reach 379 bps on October

24, 2002, a doubling in 2 weeks. While the markets begin to recover shortly

thereafter, model spreads based on the sticky historical volatility continue far

into 2003 to suggest the arbitrageur to buy protection and buy equity as a hedge.

However, with only few exceptions the market spreads tighten in the succeeding

period, and the market and model spreads never converge. Depending on the

size of the trading trigger and the chosen model, many losing CDS positions are

initiated although partially o¤set by an increasing equity price.

Panel C illustrates how the historical volatility severely lags the more timely

implied volatility, sending the arbitrageur a false signal of relatively cheap pro-

tection in the aftermath of the crisis. In fact, spreads inferred from implied

volatilities quickly tighten and may initiate the exact opposite strategy. Using

this volatility, spreads in Leland & Toft (1996) indicate that protection is trading

too expensive relative to equity from the end of 2002. Indeed, selling protec-

tion and selling equity as hedge result in trading returns of 5 to 15 percent on

each daily position due to tightening market spreads and convergence on June

5, 2003. Subsequent to convergence, implied volatilities suggest the equity and

credit markets to move in tandem and hold similar views on the credit outlooks.

As a �nal observation, model spreads in CreditGrades react stronger to changes

in volatility than Leland & Toft (1996), widening to over 1,000 bps as the im-

plied volatility from equity options peaks. This may be due to the endogenous

default barrier in the latter model. Indeed, increasing the asset volatility causes

equityholders to optimally default later in Leland & Toft (1996). This mitigates

the e¤ect on the spread.
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2.5.2 Time Warner and Motorola

Simulating the trading strategy on Time Warner and Motorola supports the for-

mer insights. Figure 2.2 depicts the fundamentals behind Time Warner, rated

BBB by S&P and Baa1 by Moody�s. In August 2002 just prior to the beginning

of the sample, Moody�s changes their outlook to negative as the SEC investigates

the accounting practices and internal controls. As markets recover in late 2002,

CreditGrades with historical volatility indicates that protection is cheap relative

to equity, while spreads in Leland & Toft (1996) are more neutral. Although eq-

uity prices increase throughout 2003, many losing trades are initiated as market

spreads are more than cut by half within few months and Moody�s changes their

outlook back to stable.

Again, the historical volatility lags the market following the episode, while

the implied volatility is more responsive. In October and November 2002, where

market spreads have already tightened substantially, model spreads inferred from

implied volatilities suggest that protection is expensive relative to equity and

should tighten further. Selling protection at 339 bps and equity at $14.75 on

October 31, 2002 result in convergence and 15 percent returns on December

12, where the CDS and equity are trading at 259 bps and $13.56, respectively.

However, spreads inferred from implied volatilities are volatile, resulting in rather

noisy estimates of credit outlooks and a frequent liquidation of positions as market

spreads tighten. Operating with a very low trigger may reverse positions several

times during this period, while a trigger of 0.5 results in only few positions.

In Figure 2.3, the key variables for Motorola rated BBB by S&P are depicted.

Building on historical volatilities the arbitrageur initiates many trades and su¤ers

losses, while implied volatilities suggest the two markets to move in tandem and

hold similar views on the obligor. In the latter case, only few relative value

opportunities are apparent.
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Figure 2.2: Time Warner
This �gure illustrates the fundamentals behind capial structure arbitrage. In panel A,
we depict market CDS spreads together with model spreads in Leland & Toft (1996)
LT inferred from historical HV and option-implied volatilities IV . In panel B, the
corresponding spreads are depicted based on CreditGrades CG. Panel C depicts the
historical and option-implied volatility, where the �rst is calculated from a rolling 250-
day window of equity returns and the latter is inferred from 30-day at-the-money puts.
Finally, panel D illustrates the total market value of equity in millions of dollars.
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Figure 2.3: Motorola
This �gure illustrates the fundamentals behind capial structure arbitrage. In panel A,
we depict market CDS spreads together with model spreads in Leland & Toft (1996)
LT inferred from historical HV and option-implied volatilities IV . In panel B, the
corresponding spreads are depicted based on CreditGrades CG. Panel C depicts the
historical and option-implied volatility, where the �rst is calculated from a rolling 250-
day window of equity returns and the latter is inferred from 30-day at-the-money puts.
Finally, panel D illustrates the total market value of equity in millions of dollars.
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2.5.3 Mandalay Resort Group

Capital structure arbitrage is very risky when based on individual obligors, and

the arbitrageur may end up in severe problems irrespective of model choice and

calibration. Figure 2.4 presents the fundamental variables behind Mandalay Re-

sort Group, rated BB by S&P. Throughout the coverage, spreads in Leland & Toft

(1996) based on historical volatilities diverge from market spreads in a smooth

manner, while spreads in CreditGrades diverge more slowly. In both cases the

arbitrageur sells protection and equity as hedge, but su¤ers losses as positions

are liquidated after the maximum holding period.

Based on implied volatilities, May and June 2004 are particularly painful as

model spreads plunge and stay tight throughout the coverage. On June 4, 2004

the competitor MGMMirage announces a bid to acquire Mandalay Resort Group

for $68 per share plus assumption of Mandalay�s existing debt. Moody�s places

the rating on review for a possible downgrade due to a high level of uncertainty

regarding the level of debt employed to �nance the takeover. As a result, the

equity price increases from $54 to $69 over a short period, the implied volatility

plunges and the CDS spread widens from 188 bps to 227 bps.17 On June 15, 2004

a revised o¤er of $71 per share is approved, and the transaction is completed on

April 26, 2005.

This opposite reaction in equity and credit gives the arbitrageur short in both

markets a painful one-two punch similar to the one experienced by hedge funds

in May 2005, where General Motors is downgraded while the equity price soars.18

Luckily, not many trades are open during the takeover bid as model and market

spreads recently converged. However, the short positions initiated in May 2004,

where credit seems expensive relative to equity, su¤er large losses on both legs.

17Implied volatilities from at-the-money calls plunge as well.
18This case study is discussed in Duarte et al. (2005).
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Figure 2.4: Mandalay Resort Group
This �gure illustrates the fundamentals behind capial structure arbitrage. In panel A,
we depict market CDS spreads together with model spreads in Leland & Toft (1996)
LT inferred from historical HV and option-implied volatilities IV . In panel B, the
corresponding spreads are depicted based on CreditGrades CG. Panel C depicts the
historical and option-implied volatility, where the �rst is calculated from a rolling 250-
day window of equity returns and the latter is inferred from 30-day at-the-money puts.
Finally, panel D illustrates the total market value of equity in millions of dollars.
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2.6 General Results

In this section, we simulate the trading strategy for all 221 obligors. Following

Yu (2006), we assume an initial capital of $0.5 for each trade and $1 notional in

the CDS. The strategy is implemented for trading triggers � of 0.5 and 2, and

maximum holding periods of 30 and 180 days.

Naturally, absolute trading returns will vary with the above characteristics, as

well as the particular period studied and how to account for vanishing liquidity.

However, these characteristics are all �xed when studying the relative risk and

return across models and calibration methods. Therefore, a scaling of returns with

the amount of initial capital is unlikely to in�uence our conclusions.19 Indeed,

although based on a di¤erent dataset, the benchmark results for CreditGrades

with a historical volatility are similar to the �ndings in Yu (2006).

Table 2.3 and 2.4 present the summary statistics of holding period returns

based on CreditGrades and Leland & Toft (1996), respectively. A longer maxi-

mum holding period leads to more converging trades, fewer trades with negative

returns and higher average returns. This fundamental result underlies both mod-

els and volatility measures. Consistent with Yu (2006), although the distribution

of returns becomes less dispersed, a higher trading trigger does not necessarily

lead to higher mean returns.

When identifying relative value opportunities from implied not historical volatil-

ities, the number of initiated trades rises for investment grade obligors and falls

for speculative grade obligors. This results from both models, although the ab-

solute number of trades is larger in Leland & Toft (1996). This is consistent with

�ndings in Finger & Stamicar (2005a) and Cao et al. (2006), where the advantage

of implied volatility in tracking market spreads with CreditGrades is concentrated

among speculative grade obligors. We �nd this measure to identify fewer relative

value opportunities on obligors with larger variations in spreads.

The results clearly show a di¤erence in risk and return across models and

volatility input. Identifying relative value opportunities on speculative grade

19Yu (2006) also conducts his analysis with an initial capital of $0.1. The resulting returns
are scaled up accordingly. Unreported results with this initial capital and other trading triggers
leave our conclusions unchanged.
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obligors in CreditGrades with a historical volatility, a maximum holding period

of 180 days and a trading trigger of 2 yields a mean holding period return of 2.64

percent. However, simulating the trading strategy with option-implied volatilities

increases the return to 4.61 percent.20 The corresponding numbers based on

Leland & Toft (1996) are 3.14 and 5.47 percent. The gain from implied volatilities

across trading triggers and maximum holding periods is also apparent from the

number of trades ending in convergence and the fraction of trades with negative

returns. However, the incremental return is much smaller for investment grade

obligors.

On top of this, the mean holding period return and dispersion are both higher

on speculative grade obligors compared to the investment grade sample. This

supports the similar result in Yu (2006) and happens irrespective of model choice

and volatility measure. Although more likely to su¤er from vanishing liquidity

and default, this supports his observation that the aggregate success of the strat-

egy depends on the availability of large variations in spreads. For such obligors,

the more timely implied volatility results in incremental trading returns from

superior entry and exit decisions.

The holding period returns are more favorable when Leland & Toft (1996) is

used to identify relative value opportunities. However, in practice it is hard to

discern exactly where the di¤erence arises, as the models di¤er in many respects

and enter in all parts of the strategy. While model choice does matter, it seems

second to properly measured key inputs.

20While the average pro�tability increases when identifying relative value opportunities from
implied volatilities, so does the volatility of returns. As the mean holding period return consists
of many overlapping holding periods, the statistical signi�cance of trading returns is analyzed
from a return index below.
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2.6.1 Capital Structure Arbitrage Index Returns

As illustrated in the previous sections, capital structure arbitrage is very risky at

the level of individual trades. The hedge may be ine¤ective and the markets may

continue to diverge, resulting in losses and potential early liquidations. However,

when initiated on the cross-section of obligors, the strategy may be pro�table

on average depending on the particular implementation. Having established this

�nding, the next step is to understand the sources of the pro�ts, i.e. whether the

returns are correlated with priced systematic risk factors. Hence, we construct a

monthly capital structure arbitrage excess return index from all individual trades,

following Duarte et al. (2005) and Yu (2006).

Speci�cally, we compute daily excess returns for all individual trades over

the entire holding period. On a given day, thousands of trades may be open. By

essentially assuming that the arbitrageur is always invested in an equally-weighted

portfolio of hedge funds, where each fund consists of one trade, we calculate an

equally-weighted average of the excess returns on a daily basis. These average

daily excess returns are then compounded into a monthly frequency.

Table 2.5 presents the summary statistics of monthly excess returns based

on a maximum holding period of 180 days, covering 24 months in 2002-2004.

However, some strategies result in months with no trades. In this case, a zero

excess return is assumed.

Again, although also present in the investment grade segment, the bene�t of

option-implied volatilities is concentrated among speculative grade obligors. Ad-

ditionally, timely inputs are relatively more important than the exact structural

model underlying the strategy. In particular, when based on CreditGrades with

option-implied volatilities and a trading trigger of 2, the mean excess return is

0.44 percent on investment grade and 1.33 percent on speculative grade obligors.

These numbers are highly signi�cant after correcting for serial correlation. The

corresponding numbers when Leland & Toft (1996) is used to identify relative

value opportunities are 0.27 and 2.39 percent, respectively, both highly signi�-

cant.

The excess returns resulting from a historical volatility are much smaller and

most often insigni�cant. Indeed, the mean excess return from this measure may

turn negative and signi�cant at a lower trading trigger of 0.5, while it continues

to be positive and signi�cant based on implied volatilities.
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Addressing whether �xed income arbitrage is comparable to picking up nickels

in front of a steamroller, Duarte et al. (2005) �nd that most of the strategies

result in monthly excess returns that are positively skewed. While our results

are mixed when relative value positions are identi�ed from historical volatilities,

the skewness is always positive when based on the implied measure. Thus, while

producing large negative returns from time to time, this strategy tends to generate

even larger o¤setting positive returns.

As a �nal exercise, in Table 2.6, we explore whether the excess returns rep-

resent compensation for exposure to systematic market factors.21 In particular,

we use the excess return on the S&P Industrial Index (S&PINDS) to proxy for

equity market risk. To proxy for investment grade and speculative grade bond

market risk, the excess returns on the Lehman Brothers Baa and Ba Intermediate

Index (LHIBAAI) and (LHHYBBI) are used. These variables are obtained from

Datastream. As argued by Duarte et al. (2005), such market factors are also

likely to be sensitive to major �nancial events such as a sudden �ight-to-quality

or �ight-to-liquidity. As this risk would be compensated in the excess returns

from these portfolios, we may be able to control for the component of returns

that is compensation for bearing the risk of major, but not yet realized, �nancial

events.

As the CDS market was rather illiquid before mid-2002, the regressions consist

of no more than 24 monthly excess returns. Hence, the results must be interpreted

with caution. Yu (2006) �nds no relationship between capital structure arbitrage

monthly excess returns and any of the factors, and the factors cannot bid away

the alphas (regression intercepts) of the strategy. Our R2 ranges from 8 to 35

percent, but the market factors are either insigni�cant or only weakly signi�cant.

Surprisingly, the occasional weak signi�cance is not related to the size and sig-

ni�cance of excess returns, nor rating category. Hence, the evidence does not

indicate that the excess returns represent compensation for exposure to factors

proxying equity and bond market risk.

As we only have 24 monthly excess returns, there is little chance of detecting

signi�cant alphas after controlling for the market risk. However, the structure

of excess returns after a risk-adjustment is similar to the structure of raw excess

returns in Table 2.5. Indeed, the largest di¤erence in alphas across the historical

21For brevity, only regressions with a trading trigger of 2 are reported. Similar results are
obtained at a lower threshold of 0.5.
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and option-implied volatility is in the speculative grade segment. While three of

four intercepts are negative based on the investment grade obligors, it is always

positive on speculative grade obligors.

Table 2.6: Regression Results
This table reports the results from regressing capital structure arbitrage monthly per-
centage excess returns on the excess returns of equity and bond market portfolios. The
models underlying the strategy are CreditGrades CG and Leland & Toft (1996) LT ,
calibrated with a historical HV and option-implied volatility IV . The strategy is im-
plemented separately on investment grade and speculative grade obligors. S&PINDS
is the excess return on the S&P Industrial Index. LHIBAAI and LHHY BBI are the
excess returns on the Lehman Brothers Baa and Ba Intermediate Index, respectively.
The coverage is 24 months beginning October 2002 and ending September 2004. Stan-
dard errors are shown in parantheses, and ***, ** and * denote signi�cance at 1, 5 and
10 percent, respectively.

Strategy Intercept S&PINDS LHIBAAI LHHYBBI R2

CG HV Inv -0.57* 0.09 7.29 -14.40* 0.21
(0.28) (2.27) (7.06) (7.80)

CG HV Spec 1.96 -2.61 -53.73 77.25* 0.17
(1.48) (12.02) (37.30) (41.19)

CG IV Inv -0.15 6.13 -26.18** 12.77 0.35
(0.49) (3.96) (12.29) (13.58)

CG IV Spec 3.76 9.11 -45.06 81.11 0.16
(2.21) (18.00) (55.87) (61.70)

LT HV Inv -0.59** 1.51 -1.86 -8.44 0.32
(0.21) (1.74) (5.41) (5.98)

LT HV Spec 1.76 33.36 39.03 -40.44 0.08
(3.18) (25.91) (80.41) (88.80)

LT IV Inv 0.27 2.34 -13.22* 12.13* 0.32
(0.24) (1.98) (6.78) (6.14)

LT IV Spec 7.04*** -22.35 -21.91 121.69* 0.30
(2.22) (18.04) (55.98) (61.82)
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2.7 Conclusion

This paper conducts a comprehensive analysis of the risk and return of capital

structure arbitrage using alternative structural credit risk models and volatility

measures. Studying 221 North American industrial obligors in 2002 to 2004,

a divergence between equity and credit markets initiates a convergence-based

market-neutral trading strategy. However, an observed di¤erence in market and

equity-implied model CDS spread may be driven by model misspeci�cation and

key inputs may be mismeasured, sending a false signal of mispricing in the market.

These caveats constitute the focal point in the study.

As the arbitrageur feeds on large variations in equity and credit markets and

the asset volatility is a key input to the pricing of credit, a timely volatility

measure is desirable. In such markets, the historical volatility may severely lag

the market, suggesting the arbitrageur to enter into unfortunate positions and

face large losses.

Using an option-implied volatility results in superior strategy execution and

may initiate the opposite positions of the historical measure. The result is more

positions ending in convergence, more positions with positive holding-period re-

turns and highly signi�cant excess returns. The gain in returns is largest for the

speculative grade obligors, and cannot be explained by well-known equity and

bond market factors. At a low threshold for strategy initiation, the excess re-

turn may turn negative and signi�cant based on the historical measure, while it

continues to be positive and signi�cant based on implied volatilities.

Duarte et al. (2005) and Yu (2006) conduct the �rst analysis of the strategy by

implementing the industry benchmark CreditGrades with a historical volatility, as

reputed used by most professionals. CreditGrades and the Leland & Toft (1996)

model di¤er extensively in assumptions governing default and calibration method.

However, while model choice certainly matters, the exact model underlying the

strategy is of secondary importance.

While pro�table on an aggregate level, individual trades can be very risky.

Irrespective of model choice and volatility measure, the market and equity-implied

model spread may continue to drift apart, and the equity hedge may be ine¤ective.

This may force the arbitrageur to liquidate individual positions early, and su¤er

large losses.
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A structural model allows for numerous implementations of capital structure

arbitrage, as it links �rm fundamentals with equities, equity options, corporate

bonds and credit derivatives. As we often �nd the hedge in cash equities ine¤ec-

tive, a further improvement may lie in o¤setting positions in equity options such

as out-of-the-money puts. This non-linear product may also reduce the gamma

risk of the strategy, which can cause losses in a fast moving market. As CDS

data continues to expand, future research will shed light on many unexplored

properties of relative value trading across equity and credit markets.
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A Appendix

The appendix contains formulas for the risk-neutral survival probability qt(s),

the CDS spread c(0; T ), the contract value �(t; T ) and the equity delta �t. Both

models assume constant default-free interest rates, which allow us to concentrate

on the relationship between the equity price and CDS spread, also exploited in

the relative value strategy.

A.1 CreditGrades

The default barrier is given by

LD = �LDe�Z��
2=2, (2.18)

where L is the random recovery rate given default, �L = E (L), Z is a standard

normal random variable and �2 = V ar (lnL). Finger (2002) provides an approx-

imate solution to the survival probability using a time-shifted Brownian motion,

which yields the following result22

q(t) = �

�
�At
2
+
ln d

At

�
� d � �

�
�At
2
� ln d
At

�
, (2.19)

where � (�) is the cumulative normal distribution function and

d =
V0
�LD
e�

2

, (2.20)

A2t = �2V t+ �
2. (2.21)

The CDS Spread and Hedge Ratio

Assuming constant interest rates, the CDS spread for maturity T is found by

inserting the survival probability (2.19) in equation (2.6), yielding

c(0; T ) = r(1�R) 1� q (0) +H(T )
q (0)� q (T ) e�rT �H (T ) , (2.22)

22In essence, the uncertainty in the default barrier is shifted to the starting value of the
Brownian motion. In particular, the approximation assumes that Wt starts at an earlier time
than t = 0: As a result, the default probability is non-zero for even very small t, including t = 0.
In other models such as Leland & Toft (1996), the survival probability q (0) = 1.
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where

H (T ) = er� (G (T + �)�G (�)) , (2.23)

G (T ) = dz+1=2�

�
� ln d

�V
p
T
� z�V

p
T

�
+d�z+1=2�

�
ln d

�V
p
T
+ z�V

p
T

�
, (2.24)

� =
�2

�2V
, (2.25)

z =

s
1

4
+
2r

�2V
, (2.26)

and G(T ) is given in Reiner & Rubinstein (1991).

When determining the hedge ratio, we follow Yu (2006) and approximate the

contract value in equation (2.7) by

�(0; T ) = (c (0; T )� c)
Z T

0

e�rsq (s) ds (2.27)

=
c (0; T )� c

r

�
q (0)� q (T ) e�rT �H (T )

�
,

where c (0; T ) is a function of the value of equity S in equation (2.22), and c is

the CDS spread at initiation.23

Using equation (2.8) and the product rule, the hedge ratio is found as

�0 = N �
d� (0; T )

dS
=
N

r

@c (0; T )

@S

�
q (0)� q (T ) e�rT �H (T )

�
, (2.28)

where N denotes the number of shares outstanding. The second term in the

product rule is zero, since by de�nition c is numerically equal to c (0; T ), evaluated

at the equity value S. Finally, @c(0;T )
@S

is found numerically.

23Yu (2006) interprets this equation in his appendix. Equation (2.27) represents the value of
a contract entered into one instant ago at spread c, that now has a quoted spread of c (0; T )
due to a change in the value of equity.
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A.2 Leland & Toft (1996)

Equation (2.14) may be written as

�(Vt) = Vt + �
C

r

 
1�

�
Vt
VB

��x!
� �VB

�
Vt
VB

��x
, (2.29)

with the value of debt D(Vt)

D(Vt) =
C

r
+

�
P � C

r

��
1� er�
r�

� I (�)
�
+

�
(1� �)VB �

C

r

�
J (�) , (2.30)

and equity S(Vt)

S(Vt) = Vt + �
C

r
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��x
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(2.31)

�
�
(1� �)VB �

C

r

�
J (�) ,

and default barrier VB

VB =
C
r

�
A
r�
�B

�
� AP

r�
� �Cx

r

1 + �x� (1� �)B . (2.32)

The components of the above formulae are

A = 2ae�r��
�
a�V

p
�
�
� 2z�

�
z�V

p
�
�

(2.33)
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�
a�V

p
�
�
+ (z � a) ,

B = �
�
2z +

2

z�2V�

�
�
�
z�V

p
�
�

(2.34)

� 2

�V
p
�
�
�
z�V

p
�
�
+ (z � a) + 1

z�2V�
,

I (�) =
1

r�

�
K (�)� e�r�F (�)

�
, (2.35)

K (�) =

�
V

VB

��a+z
� (j1 (�)) +

�
V

VB

��a�z
� (j2 (�)) , (2.36)
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F (�) = � (h1 (�)) +

�
V

VB

��2a
� (h2 (�)) , (2.37)

J (�) =
1

z�V
p
�

 
�
�
V

VB

��a+z
� (j1 (�)) j1 (�)

+

�
V

VB

��a�z
� (j2 (�)) j2 (�)

!
, (2.38)

j1 (�) =
(�b� z�2V�)
�V
p
�

; j2 (�) =
(�b+ z�2V�)
�V
p
�

, (2.39)

h1 (�) =
(�b� a�2V�)
�V
p
�

; h2 (�) =
(�b+ a�2V�)
�V
p
�

, (2.40)

a =
(r � �� (�2V =2))

�2V
, (2.41)

b = ln

�
Vt
VB

�
, (2.42)

z =

r�
(a�2V )

2
+ 2r�2V

�
�2V

, (2.43)

x = a+ z: (2.44)

� (�) and � (�) denote the density of the standard normal distribution and the
cumulative distribution function, respectively.

The CDS Spread and Hedge Ratio

Using equation (2.37), the risk-neutral survival probability at horizon t is

q (t) = 1� F (t) (2.45)

= 1�
 
� (h1 (t)) +

�
V

VB

��2a
� (h2 (t))

!
:

Assuming constant interest rates, the CDS spread for maturity T is found by

inserting the survival probability (2.45) in equation (2.6), yielding

0 = c(0; T )

Z T

0

e�rsq(s)ds+ (1�R)
Z T

0

e�rsq0(s)ds: (2.46)

100



Integrating the �rst term by parts, yields

0 =
c(0; T )

r

�
1� e�rT q(T ) +

Z T

0

e�rsq0(s)ds

�
+ (1�R)

Z T

0

e�rsq0(s)ds, (2.47)

where the integral �
R T
0
e�rsq0(s)ds is given by K(T ) in equation (2.36), following

Reiner & Rubinstein (1991). Then,

0 =
c(0; T )

r

�
1� e�rT q(T )

�
�
�
c(0; T )

r
+ (1�R)

�
K(T ), (2.48)

which allows us to obtain a closed-form solution for the CDS spread

c(0; T ) = r (1�R) K(T )

(1� e�rT q(T )�K (T )) : (2.49)

When determining the hedge ratio, we again follow Yu (2006) and approximate

the contract value in equation (2.7) by

�(0; T ) = (c (0; T )� c)
Z T

0

e�rsq (s) ds: (2.50)

=
c (0; T )� c

r

�
1� e�rT q(T )�K (T )

�
,

where c (0; T ) is a function of the value of equity S, and c is the CDS spread at

initiation.

Similar to CreditGrades, the hedge ratio is found using equation (2.8)

�0 =
N

r

@c (0; T )

@S

�
1� e�rT q(T )�K (T )

�
. (2.51)

However, in Leland & Toft (1996) the CDS spread is not an explicit function

of the equity value. Therefore, @c(0;T )
@S

is found numerically using

@c (0; T )

@S
=
@c (0; T )

@V

@V

@S
=
@c (0; T )

@V

1
@S
@V

: (2.52)
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Chapter3
Credit Risk Premia in the Market for

Credit Default Swaps
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Abstract1

This paper estimates the time-series behavior of credit risk premia in the mar-

ket for Credit Default Swaps for the period 2001 to 2006. A structural model is

used to back out objective default probabilities. The results indicate that risk pre-

mia might be incorrectly estimated, when expected losses are based on a historical

equity volatility measure as opposed to implied volatility. This e¤ect is largest

following the peak in credit spreads and risk premia in the second half of 2002.

Secondly, when default probabilities are based on implied volatility, the risk premia

tend to be countercyclical in the sense that the risk premium is high when expected

losses are high. Finally, using linear regressions, I �nd that augmenting the set

of variables predicted by structural models with equity-implied credit risk premia

signi�cantly increases the explanatory power. This echoes the results found in

Elkamhi & Ericsson (2007) and suggests the need for time varying risk premia in

structural models.

1I thank MarkIt for access to credit default swap data. I am grateful to David Lando and
Jesper Rangvid for useful comments. All remaining errors are my own.
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3.1 Introduction

This paper estimates the time-series behavior of credit risk premia in the mar-

ket for Credit Default Swaps (CDS) for the period 2001 until the end of 2006.

More speci�cally the structural model by Leland & Toft (1996) is used to back

out objective default probabilities from the equity market, and the market CDS

spread is then decomposed into an expected loss component and a risk premium

component.

Not much empirical work has been done on the time variation of risk premia in

credit markets. Berndt, Douglas, Du¢ e, Ferguson & Schranz (2005) and Berndt,

Lookman & Obreja (2006) use expected default frequencies (EDF) from Moody�s

KMV together with CDS spreads to extract historical and risk neutral default

intensities respectively. The ratio of these is interpreted as a measure of the

default risk premium observed in the marketplace. They document substantial

time-series variation in risk premia for the period from 2000-2004 with a peak in

the third quarter of 2002 and a subsequent dramatic drop. Elkamhi & Ericsson

(2007) develop a methodology to study the linkages between equity and corporate

bond risk premia and apply it to a panel of corporate bond transactions data for

the period 1995 - 2005. They �nd a time-series behavior and degree of time

variation in credit risk premia similar to Berndt et al. (2005), although their

study is based on di¤erent data, a di¤erent �nancial instrument and a di¤erent

methodology.

An obvious problem when estimating credit risk premia is the measurement

of objective default probabilities and expected losses. Elkamhi & Ericsson (2007)

base the default probabilities on a historical volatility measure, while Berndt

et al. (2005) and Berndt, Lookman & Obreja (2006) use the EDF measure, and

their estimated default probabilities are thus essentially also based on historical

volatility2. I contribute to the existing literature by applying the methodology

developed in Elkamhi & Ericsson (2007) to a large panel of CDS quotes, but

contrary to them I also back out the default probabilities using option implied

volatility. This should give a better view of the uncertainty in the market, espe-

cially when the uncertainty changes rapidly. According to Cremers et al. (2006)

and Cao et al. (2006), the implied volatility contains important and timely in-

2See Crosbie & Bohn (2003) and Berndt et al. (2005) for a discussion of the EDF measure.
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formation about credit risk di¤erent from the historical measure, while Finger &

Stamicar (2005a) and Finger & Stamicar (2005b) show how model spreads based

on historical volatilities lag the market when spreads increase, while overpredict-

ing the market as spreads recover.

The computation of objective default probabilities is done as in Elkamhi &

Ericsson (2007) by estimating �rm speci�c equity risk premia using the Fama &

MacBeth (1973) approach, and then the equity risk premia are "delevered" into

asset value risk premia. The measure of the credit risk premium is then the part

of the CDS spread in excess of the expected loss component.

Although a close relation exists between corporate bonds and CDS spreads

(Du¢ e (1999)), the latter are preferable from several perspectives. The use of

CDS spreads avoids any noise arising from a misspeci�ed risk-free yield curve

(Houweling & Vorst (2003)) and several recent studies �nd that CDS spreads

are a purer measure of credit risk compared to corporate bond credit spreads3.

Furthermore, while the corporate bonds used in Elkamhi & Ericsson (2007) are of

di¤erent maturity and coupon, all of the CDS spreads in this paper have a 5-year

maturity and are e¤ectively new par-coupon credit spreads on the underlying

�rm. The results are also expected to be more robust compared to Elkamhi &

Ericsson (2007) since the data in this paper are larger in the cross section, and

the same �rms are followed over time.

I �nd that the estimated credit risk premia appear more volatile when default

probabilities and expected losses are based on the historical volatility measure

compared to implied volatility. Similar to earlier results I �nd that the risk premia

peak in the third quarter of 2002, but the subsequent drop in risk premia is not as

dramatic, when expected losses are based on implied volatility. Furthermore there

is a high degree of uncertainty in the option market in the second half of 2002

as measured by the implied volatility. This result is consistent across industries

and ratings (investment grade and speculative grade), and suggests that it may

be inappropriate to base expected losses on a historical volatility measure, when

estimating credit risk premia.

Secondly, when expected losses are based on implied volatility, the credit risk

premium is high in times of high default probabilities and low in times of low

default probabilities. This suggests that the credit risk premium is countercycli-

3See e.g. Longsta¤ et al. (2005).
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cal. Furthermore the expected loss ratio and the risk premium ratio behave quite

di¤erently from one another over time. Interestingly, when based on implied

volatility, the expected loss ratio peaks in late 2002, when credit spreads soared

and the credit risk premium peaked. The expected loss ratio is actually higher

than 50% at certain points in this period. On the other hand the risk premium

ratio tends to be high in times of low credit spreads and low default probabilities.

Thirdly I show that there is a close relation between VIX and expected losses,

when the asset volatilities are based on implied volatility. Earlier papers such as

Collin-Dufresne et al. (2001) and Schaefer & Strebulaev (2004) have showed that

VIX is an important explanatory variable for changes in credit spreads, although

they do not pin down an explanation for the role of VIX, while Berndt et al.

(2005) �nd that VIX is related to the credit risk premium. The results of this

paper suggest that VIX is indeed a measure of systematic volatility.

Finally I carry out a regression analysis similar to Ericsson et al. (2005), Collin-

Dufresne et al. (2001) and Campbell & Taksler (2003). A benchmark regression

is performed including standard variables implied from structural models. Aug-

menting the regressions with an equity implied measure of the credit risk premium

improves the explanatory power for the levels of the credit spread, while the co-

e¢ cient on this purely model implied risk premium is highly signi�cant. With

the historical volatility as part of the variables in the regressions the R-square

is 49:4%, and it increases by 3% to 52:4%, when the risk premium is included,

while the R-square increases by 5:5% from 57:4% to 62:9%, when the regressions

are performed with implied volatility. The increase in the explanatory power is

substantially higher, when the risk premium is included for the investment grade

segment compared to the speculative grade segment. This suggests that invest-
ment grade �rms have proportionally higher risk premia and that risk premia

are more important for investment grade �rms than for speculative grade �rms.

Similar results are found in Huang & Huang (2003) and Berndt et al. (2005).

The regression results echo results in Elkamhi & Ericsson (2007), and com-

bined with the other results of the paper, it suggests that structural models should

contain a time varying and countercyclical risk premium. The results also sug-

gest a link between equity risk premia and credit spreads, when the equity risk

premium is properly translated to the credit risk premium through a structural

model. This is in line with Elton et al. (2001), who show that there is a nontrivial

component of credit spreads, interpreted as a risk premium, which is correlated
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with factors explaining equity risk premia. Elkamhi & Ericsson (2007) also �nd

that risk premia in the credit and equity markets are related. On the other hand

Berndt, Lookman & Obreja (2006) extract a factor representing the part of de-

fault swap returns, implied by a reduced form credit risk model, that does not

compensate for interest rate risk or expected default losses. They �nd that this

factor is priced in the corporate bond market but that they cannot establish with

the same con�dence that it is a factor for equity returns. However, the expected

losses in Berndt, Lookman & Obreja (2006) are based on the EDF measure.

The results of the paper suggest that much more research is needed is this

area, to understand the link between risk premia in the two markets. Some work

in this direction have recently been done by Chen, Collin-Dufresne & Goldstein

(2006), Bhamra, Kuehn & Strebulaev (2007) and Chen (2007).

Furthermore the R-squares of the regressions are substantially higher when

the implied volatility is included in the regressions, and the explanatory power is

especially high for speculative grade spreads. This supports results in Cao et al.

(2006), who also �nd the strongest link between option-implied volatilities and

CDS spreads among �rms with the lowest rating.

The paper is also related to Leland (2004), who looks at default probabilities in

structural models, Saita (2006), who studies the risk and return of corporate bond

portfolios, and Driessen (2005), who decomposes corporate bond yield spreads

into tax, liquidity and default risk premia.

Section 3.2 describes how the credit risk premium can be measured, and also

how the premium is measured in this paper. In section 3.3 the data are pre-

sented, while section 3.4 describes the empirical implementation. The results are

presented in section 3.5, and �nally section 3.6 concludes.

3.2 Measuring Credit Risk Premia (RPI) from

Yield Spreads

We describe the basic intuition behind the credit risk premium and how it can

be measured, and then the approach chosen in this paper is presented.
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3.2.1 Yield Spread Components

There is a distinction between the credit risk premium and the yield spread.

In order to make this distinction a simple numerical example from Elkamhi &

Ericsson (2007) is used. We consider a unit zero discount bond with zero recovery

in default issued by a �rm that can only default at time T: The value of such a

bond is

Bt = e
�r(t;T )�TEQ

�
1(�>T )

�
= e�r(t;T )�TQt(� > T );

where EQ [�] is the risk neutral expectation, Qt(� > T ) the risk neutral survival
probability and � the default stopping time. The value of the bond is thus the

present value of the risk adjusted survival probability. For now assume that

default risk is not priced and that Pt (� > T ) = Qt(� > T ) = 80%; where Pt
denotes the objective survival probability. Further assume that r(t; T ) = 10%

and T = 10: The price of the bond is then Bt = e�0:1�10 � 0:8 = 0:2943 and its
continuously compounded yield is 12:23%: The bond thus pays a spread of 223

basis point, even though a risk premium is not present. In this case the spread

is merely an actuarial fair compensation for expected losses.

We now assume that default risk is priced, which implies that Pt (� > T ) >

Qt(� > T ): With the same parameters as above and now assuming that Qt(� >

T ) = 70% and Pt (� > T ) = 80% the bond price will be lower at Bt = e�0:1�10 �
0:7 = 0:2575 and the yield will be 0:1357: The spread has thus increased to 357

basis points. This increase in the spread of 134 basis points, denoted �; re�ects

the risk premium for bearing default risk. We can thus express the price of the

bond in three di¤erent ways

Bt = e
�r(t;T )�TEQ

�
1(�>T )

�
= e�(r(t;T )+�)�TEP

�
1(�>T )

�
= e�(r(t;T )+�+
)�T � 1;

where EP [�] is the objective expectation and 
 is a component which adjusts
for the expected loss (in this case 223 basis points). The �rst is the standard

valuation method, using the risk neutral expectation discounted at the risk-free

rate. The second is the present value at the risk adjusted rate of the expected

payment at maturity EP [�]. The third is the present value of the full face value
discounted at the risk adjusted rate rate augmented by a component 
; which

adjusts for the expected loss.
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3.2.2 Measuring the Risk Premium from CDS Spreads

We now proceed to describe the methodology used to measure the risk premium

� from CDS spreads. This is done by decomposing the CDS spread as Elkamhi &

Ericsson (2007) do for corporate bond spreads. Since the accrued premium must

also be paid if a credit event occurs between two payments dates, the payments

in a CDS �t nicely into a continous-time framework. Given knowledge of the

term structure of objective survival probabilities of the obligor, fPt(� > s); s 2
(t;1)g one can obtain an estimate of the CDS spread that would prevail in a
market without a risk premium (assuming a constant risk-free interest rate r and

a constant recovery rate R)

cno risk(0; T ) = �
(1�R)

R T
0
e�rsP

0
0(s)dsR T

0
e�rsP0(s)ds

, (3.1)

where P0(s) is the objective survival probability of the obligor at t = 0 and

P
0
0(t) = dP0(t)=dt

4: The spread in (3:1) only takes expected losses into account

and the credit risk premium (RPIt) is then measured as the di¤erence between

the CDS spread observed in the market cmarket and cno riskt

RPIt = c
market
t � cno riskt : (3.2)

The CDS spread when a risk premium is present can be priced as in equation

(3.1)

crisk(0; T ) = �
(1�R)

R T
0
e�rsQ00(s)dsR T

0
e�rsQ0(s)ds

; (3.3)

where Q0(s) is the risk neutral survival probability of the obligor at t = 0 and

Q
0
0(t) = dQ(t)=dt: A purely model-implied measure of the credit risk premium is

then de�ned as5

RPIequityt = criskt � cno riskt : (3.4)

To obtain an estimate of the CDS spreads in equation (3.1) and (3.3) we need

the recovery rate and survival probabilities for di¤erent horizons. The recovery

rate R is set equal to 40%; roughly consistent with the average observed recovery

4�dP0(t)=dt is then the �rst hitting time density.
5This purly model implied measure of the risk premium is denoted RPIequityt since it will

be based on the risk premium in the equity market.
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rate between 1982-20066. The recovery rate is kept constant through out the

period, and it is assumed that there is no risk premium associated with the

recovery rate. The size and possible time-series behavior of the expected recovery

rate could be of importance though. We will get back to this in section 3.5.

To get the term structures of survival probabilities, the structural model by

Leland & Toft (1996) is calibrated to the equity market using information from

each �rm�s balance sheet. Together with estimates of the asset value risk premium

it is then possible to also obtain objective survival probabilities. This is similar

to Leland (2004) and Huang & Huang (2003), but the focus in this paper is on

the time-series behavior of the risk premium, and thus it is not assumed, that

current conditional default probabilities are equal to historical average default

probabilities by credit rating.

A di¤erent structural could have been used, but Leland (2004) shows that

the model by Leland & Toft (1996) does a reasonable job of predicting observed

default rates, although short term default rates tend to be underestimated, while

Ericsson et al. (2006) �nd that the model performs very well when predicting

CDS spreads7. The empirical implementation is further described in section 3.4

and the model by Leland & Toft (1996) is described in appendix A, which also

presents the model-implied survival probabilities and CDS spreads in closed form.

The risk premia described above is based on the contingent claims approach,

while other empirical studies such as Driessen (2005), Berndt et al. (2005) and

Berndt, Lookman & Obreja (2006) rely on intensity based models. A discussion

of risk premia in these models can be found in Lando (2004).

6According to Moody�s (Hamilton, OU, Kim & Cantor (2007)) the average recovery rate on
senior unsecured bonds for the period 1982-2006 was 38:4% : The choice of recovery rate is also
in accordance with Elkamhi & Ericsson (2007).

7The model by Leland & Toft (1996) is also the one used in Elkamhi & Ericsson (2007).
Secondly Huang & Huang (2003) shows that di¤erent structural models predict fairly similar
credit spreads under empirically reasonable parameters.
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3.3 Data

5-year credit default swap spreads with modi�ed restructuring (MR) for U.S.-

dollar denominated senior unsecured debt are used8. The credit default swap

data is provided by MarkIt, who receives data from more than 50 global banks.

These data are aggregated into composite numbers after �ltering out outliers and

stale data, and a price is only published if at least three contributors provide

data9. Several �lters are then applied to obtain the �nal dataset.

First, the CDS data are merged with quarterly balance sheet data from Com-

pustat and daily stock market data from CRSP. The quarterly balance sheet data

are lagged one month from the end of the quarter to avoid any look-ahead bias in

using data not yet available to the market. Firms from the �nancial and utility

sector are then excluded since their capital structure is very di¤erent from other

corporates.

Secondly, the dataset is merged with daily data on the 30-day at-the-money

put-implied volatility obtained from OptionMetrics. OptionMetrics is a compre-

hensive database of daily information on exchange-listed equity options in the

U.S. dating back to 1996. OptionMetrics generates the 30-day at-the-money put-

implied volatility by interpolation.

Thirdly, 1250 days of equity returns10 are needed prior to each CDS quote to

estimate daily equity risk premia (see section 3.4 for details).

Finally to minimize market microstructure e¤ects, I only use weekly (Wednes-

day) observations on the CDS quotes, and to ensure that the analysis is based on

reasonably liquid CDS�s I exclude �rms which have less than 150 weekly quotes.

The �nal dataset consists of 33401 weekly quotes distributed across 142 unique

�rms, dating back to May 2001 and onwards to the end of October 2006.

8The 5-year maturity is the most liquid point on the credit curve (see e.g. Blanco et al.
(2005)).

9MarkIt data is also used in e.g. Berndt, Lookman & Obreja (2006) and Huang & Zhou
(2007).
10Corresponding to 5 years.
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In Figure 3.1 the average market CDS spread is plotted over time. The average

market spread varies considerably through the sample period, peaking during the

credit crunch in the second half of 2002 and beginning of 2003. Following the

peak in 2002 the average credit spread falls until the end of 2006. The time-series

behavior of the average spread is very similar to the behavior of the median spread

in Berndt, Lookman & Obreja (2006).

In Table 3.1 summary statistics are shown across the senior unsecured credit

rating from Standard & Poors. The presented variables are averages across the

number of quotes in each rating category. The majority of the quotes are A or

BBB rated, and the vast majority of the quotes are also within the investment

grade segment. A better rating is associated with a lower spread and lower

leverage and volatility. This is in line with the predictions of structural models.

A better rating is also associated with a larger �rm size.

Figure 3.1: Average Market CDS Spread over Time
The �gure illustrates the average market CDS spread over time. The mean is calculated
as averages over the cross section of weekly spreads.
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Table 3.1: Sample Characteristics
This table reports sample characteristics for the 142 obligors. The sample character-
istics are averages over the number of quotes. The statistics are presented across the
senior unsecured credit rating from Standard & Poor�s. N is the number of quotes and
spread is the avererage 5-year CDS quote. While the historical equity volatility HV is
calculated from a 250-day rolling window of equity returns, the implied equity volatility
IV is inferred from 30-day at-the-money put options. The leverage ratio Lev is total
liabilities divided by the sum of total liabilities and equity market capitalization, and
size is the sum of total liabilities and equity market capitalization in billions of dollars.
Equity prem: is the estimated equity premium.

Rating N Spread HV IV Lev. Size Equity prem.
AAA 956 21 0.284 0.261 0.274 375.086 0.067
AA 2580 26 0.289 0.273 0.211 98.894 0.074
A 11671 49 0.315 0.302 0.346 44.080 0.075
BBB 15505 120 0.349 0.331 0.508 29.403 0.076
BB 2069 321 0.454 0.422 0.559 19.094 0.100
B 620 522 0.629 0.507 0.706 25.701 0.106

3.4 Empirical Implementation

The structural model by Leland & Toft (1996) is used to obtain risk neutral

and objective survival probabilities. In Leland & Toft (1996), �rm assets V are

assumed to follow a geometric Brownian motion under the risk-neutral measure

dVt = (r � �)Vtdt+ �V VtdWt, (3.5)

with

dVt = uV Vtdt+ �V VtdWt (3.6)

under the objective measure11. r is the risk free interest rate, � is the payout

ratio and �V is the asset volatility. The �rm defaults when the asset value hits

the endogenously derived default barrier VB. To obtain the survival probabilities

the unobserved asset value Vt; and asset volatility �V are needed, and to get the

objective survival probabilities estimates of the expected asset return uV is needed

as well. In the next two sections I describe how these unobserved parameters are

11In this case �V includes the payout ratio �.
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inferred. A more detailed description of the model by Leland & Toft (1996) is

given in appendix A.

3.4.1 Calibrating the Leland & Toft (1996)-Model

To infer the unobserved asset value Vt; and asset volatility �V the model is cal-

ibrated to equity market data in two ways. Firstly using a 250-day historical

volatility and secondly using an implied volatility from equity options. Accord-

ing to Cremers et al. (2006) and Cao et al. (2006), the implied volatility contains

important and timely information about credit risk di¤erent from the historical

measure.

To implement the model, we follow Ericsson et al. (2006) in setting the realized

bankruptcy cost fraction � = 0:15, the tax rate � = 0:20 and the average debt

maturity �
2
= 3:38.12 Furthermore P is the total liabilities from quarterly balance

sheet data, S is the market value of equity and r is the 5-year constant maturity

treasury yield. We also follow Ericsson et al. (2006) in assuming that the average

coupon paid out to all debtholders equals the risk-free interest rate, C = rP .13

The asset payout rate � is calculated as a time-series mean of the weighted average

historical dividend yield and relative interest expense from balance sheet data

� =

�
Interest expenses

Total liabilities

�
� L + (Dividend yield)� (1� L) (3.7)

L =
Total liabilities

Total liabilities+Market equity
.

The iterative algorithm of Moody�s KMV outlined in Crosbie & Bohn (2003)

and Vassalou & Xing (2004) is used to infer the unobserved time-series of asset

values and asset volatility. This iterative scheme goes as follows. The value of

equity St is a function of the asset value Vt, asset volatility �V and a set of

parameters � (see equation (3.17) in appendix A), i.e. St = f(Vt; �V ; �). A 250-

12The choice of 15 percent bankruptcy costs lies well within the range estimated by Andrade
& Kaplan (1998). 20 percent as an e¤ective tax rate is below the corporate tax rate to re�ect
the personal tax rate advantage of equity returns. Stohs & Mauer (1996) �nd an average debt
maturity of 3.38 years using a panel of 328 industrial �rms with detailed debt information in
Moody�s Industrial Manuals in 1980-1989.
13A �rm�s debt consists of more than market bonds, and usually a substantial fraction of total

debt is non-interest bearing such as accrued taxes and supplier credits. Furthermore, corporate
bonds may be issued below par, which also opens up for this approximation.
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day window of historical equity values is used to obtain an estimate of the equity

volatility �S, by viewing the value of equity as a geometric Brownian motion.

Given this initial estimate of the asset volatility �V and quarterly balance sheet

data, the value of the default barrier can be calculated. Using the daily market

values of equity and the equity pricing formula we then back out an implied time-

series of asset values Vt(�V ) = f�1(St; �V ; �). Next, since the daily asset values

follow a geometric Brownian motion we obtain an improved estimate of the asset

volatility �V , which is used in the next iteration. This procedure is repeated until

the values of �V converge.

When using implied volatilities from equity options, the instantaneous rela-

tionship given by

St = f(Vt; �V ; �) (3.8)

�S =
@St
@Vt

�V
Vt
St

(3.9)

is solved numerically for the unknown asset value Vt and asset volatility �V , where

(3.9) follows from Ito�s lemma on St.

Table 3.2 gives summary statistics for the calibrated parameters. For each

rating category the average calibrated parameters look reasonably similar across

the two calibration methods, but as we will see later, they will behave di¤erently

over time. At �rst sight it may seem surprising that the average calibrated asset

volatilities are smallest for the lower ratings, which is consistent for both calibra-

tion methods. The reason is that these �rms have very large leverage ratios as

seen in Table 3.1. So even though these �rms have higher equity volatilities they

end up with lower calibrated asset volatilities due to the high leverage. If we look

at the average distance to default measure DD, calculated as V�VB
�V V

; we also see

that the better rated �rms have a larger distance to default, and thus a smaller

risk of defaulting.

As described in the introduction the di¤erence in calibration method could

give rise to di¤erent implied credit risk premia, and less volatile risk premia are

expected, when the survival probabilities and expected losses are based on the

model implemented with the option implied volatility. Suppose e.g. that the

uncertainty in the market suddenly increases. This implies both a higher option

implied volatility and a higher realized equity volatility. The di¤erence is that a

change in uncertainty is immediately captured in the implied volatility but only
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slowly in the historical volatility. This leads to di¤erences in the calibrated asset

volatility �V ; and thus in expected losses. Since a change in uncertainty is also

immediately captured in the market CDS spread cmarkett , the use of default proba-

bilities based on historical volatility, when calculating cno risk(0; T ) from equation

(3.1) might give rise to credit risk premia that are mismeasured. Expected losses

in both Berndt et al. (2005), Berndt, Lookman & Obreja (2006) and Elkamhi &

Ericsson (2007) are based on historical volatilities. I will therefore check if the use

of implied volatility when calculating expected losses leads to better measured

and less volatile risk premia.

Table 3.2: Descriptive Statistics of Implied Parameters
This table reports the central implied parameters from Leland & Toft (1996), calibrated
with a historical volatility HV in panel A and option-implied volatility IV in panel B.
While the �rst measure is calculated from a 250-day rolling window of equity returns,
the latter is implied from 30-day at-the-money put options. The descriptive statistics
are averaged over the number of quotes. The asset value and default barrier (barrier)
are measured in billions of dollars. Asset vol: is the implied asset volatility and DD is
the measure of distance to default calculated as (V � VB)=(�V V ).

Variable Asset value Asset vol. Barrier DD
Panel A. Leland & Toft HV

AAA 357.000 0.209 121.274 4.064
AA 95.754 0.234 15.304 4.021
A 41.933 0.209 12.604 3.924
BBB 27.857 0.171 15.282 3.753
BB 17.981 0.189 8.112 3.203
B 24.002 0.171 15.350 2.562

Panel B. Leland & Toft IV
AAA 354.573 0.190 124.643 4.431
AA 95.627 0.218 15.579 4.197
A 41.789 0.200 12.844 3.961
BBB 27.962 0.161 15.929 3.854
BB 18.018 0.179 8.247 3.272
B 24.366 0.146 16.359 2.858
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Having found the asset value V and asset volatility �V we can calculate risk

neutral survival probabilities. We now go on to estimate the expected return

on assets uV in equation (3.6) to be able to calculate objective probabilities and

price the CDS in a market without risk premia cno risk(0; T ).

3.4.2 Estimating the Asset Value Risk Premia

The expected asset return uV is found as in Elkamhi & Ericsson (2007). More

speci�cally we link the risk premium on assets to the risk premium on equity14

uV � r = (RV (t)� r) = �S (RS(t)� r) ; (3.10)

where (RS(t)� r) is the estimated equity risk premium,

RS(t)dt = E
P [
dSt(Vt)

St(Vt)
]:

RV (t)dt = E
P [
dVt
Vt
]

is the expected asset return uV ; and

�S =

 
@St(Vt)
@Vt

Vt

St(V )

!�1
(3.11)

is found numerically using the structural model by Leland & Toft (1996) and

depending on, whether the model parameters (V & �v) are calibrated with the

historical volatility or option implied volatility.

The equity premium (RS(t)� r) is estimated for each CDS quote in the
dataset. The approach by Fama & MacBeth (1973) is used together with the

Fama & French (1993) market factor15. Using a history of 1250 daily stock re-

turns betas are estimated for each CDS quote. A cross sectional regression of the

individual stock returns on the betas is then run each day, which yields a daily

market risk premium. A moving average over 1250 days is then used as the factor

risk premium on the given day16.

14The proof of equation (3:10) can be found in Campello, Chen & Zhang (2008).
15This factor can be found on Kenneth French�s website.
16Running monthly cross sectional regressions instead, followed by averages over 60 month
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For each stock on each day the equity premium is then found as the beta

multiplied by the market risk premium, and the expected asset return uV is then

found using equation (3.10).

In the last column of Table 3.1 the average equity premia are given across

rating and the average equity premium over time is given in Figure 3.2. The

average risk premium across all observations is 7:76% and we see from Table 3.1

that better rated �rms have a lower average risk premium. This is similar to the

average equity risk premia across ratings in Huang & Huang (2003), although the

average estimated risk premia in this paper generally are a bit higher.

Figure 3.2: Equity Risk Premium
The �gure illustrates the average equity risk premium over time calculated as averages
over the cross section of weekly risk premia. The risk premia are measured using the
Fama & MacBeth (1973) methodology.

does not change the estimated risk premia signi�cantly. Nor did the risk premia change signi�-
cantly, when all three Fama & French (1993) factors where used, but the factor risk premia on
the SMB and HML where insigni�cant in a large part of the cross sectional regressions.
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3.5 Empirical Results

With all estimated parameters in place we are able to calculate both objective

and risk neutral default probabilities. Furthermore CDS spreads can be cal-

culated both with and without the risk premium included, which allows us to

decompose the spread. Before we decompose the CDS spreads and calculate the

credit risk premium, a comparison of the estimated objective default probabilities

with actual default rates is in place. We thus start out by comparing the objec-

tive default probabilities across rating categories and horizon with the historical

default rates from Moody�s (Hamilton et al. (2007)). Although the sample peri-

ods are di¤erent it will give us an indication of whether the estimated objective

default probabilities are reasonable.

Table 3.3 shows the estimated objective default probabilities together with the

average Moody�s default rates for the period 1920-200617. The historical default

rates are generally higher than the model implied default probabilities and the

model implied default probabilities based on implied volatility are generally lower

than the default probabilities based on historical volatility. If we look at the �ve

year horizon, which is the maturity of the CDS spreads in the sample, the implied

default probabilities match the historical default rates quite well, although the

default rates are underestimated for the speculative grade segment. Looking at

the A and BBB ratings, which constitutes the majority of the quotes in the

sample, the default rates are also not that dissimilar.

Earlier work by Berndt et al. (2005) and Berndt, Lookman & Obreja (2006)

have relied on KMV expected default frequencies (EDF) as measures of objective

default probabilities. KMV also uses a structural model to estimate a distance

to default measure, which is then mapped into the EDF measure using historical

default rates18. Since the applied methodology in this paper is the same as

in Elkamhi & Ericsson (2007) and given the reasonable size of the estimated

objective default probabilities it is expected that the results of this paper can be

compared to the three mentioned papers.

17The Moody�s ratings are transferred to the S&P ratings with Aaa = AAA; Aa = AA and
so forth.
18See Crosbie & Bohn (2003).
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Table 3.3: Historical and Model Implied Default Probabilities
This table reports the historical and model implied default probabilities by rating cat-
egory and horizon. HV is based on the historical volatility while IV is based on
option-implied volatility. The model implied default probabilities are averaged over
the number of quotes, while the historical default probabilities (Actual) represents
Moody�s cumulative default rates for the period 1920-2006.

Rating/Horizon 1 3 5 7 10 15 20
AAA (Actual) 0.00 0.02 0.16 0.37 0.89 1.44 1.82
AAA (HV) 0.00 0.08 0.33 0.73 1.50 2.96 4.42
AAA (IV) 0.00 0.07 0.29 0.59 1.15 2.14 3.11
AA (Actual) 0.06 0.29 0.72 1.34 2.31 4.29 5.3
AA (HV) 0.00 0.08 0.34 0.75 1.48 2.77 3.96
AA (IV) 0.00 0.05 0.25 0.55 1.13 2.19 3.21
A (Actual) 0.07 0.51 1.13 1.80 2.9 4.91 6.39
A (HV) 0.05 0.59 1.41 2.32 3.63 5.53 7.06
A (IV) 0.01 0.24 0.79 1.49 2.58 4.24 5.61
BBB (Actual) 0.3 1.61 3.26 4.85 7.29 10.87 13.45
BBB (HV) 0.24 1.66 3.26 4.72 6.57 8.88 10.53
BBB (IV) 0.06 0.70 1.68 2.72 4.13 6.00 7.39
BB (Actual) 1.38 5.47 9.83 13.64 18.79 25.81 30.81
BB (HV) 0.58 3.41 5.98 8.03 10.36 13.00 14.75
BB (IV) 0.27 2.22 4.20 5.87 7.82 10.06 11.55
B (Actual) 4.32 14.23 22.45 28.58 34.86 42.11 46.09
B (HV) 2.42 8.51 12.75 15.76 18.91 22.18 24.20
B (IV) 0.56 3.52 6.28 8.45 10.84 13.42 15.05
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One of the main drivers of the default probabilities and expected losses is the

volatility of the �rm�s assets �v. To understand what drives the di¤erences in the

time-series behavior of the estimated credit risk premia later on, we also take a

look at the average time-series behavior of the calibrated asset volatilities from

section 3.4.

In Figure 3.3 the average calibrated asset volatilities are shown over time,

when based on historical and implied volatility respectively. It is clear, that the

calibrated volatilities do not move together and that the asset volatility based on

historical volatility is much smoother than the one based on implied volatility.

In the second half of 2002 the asset volatility based on implied volatility rises

substantially, while this rise in uncertainty is only partly captured by the asset

volatility based on historical volatility. Subsequently the asset volatility based on

implied equity volatility falls faster than the more rigid asset volatility based on

historical equity volatility.

Figure 3.3: Asset Volatilities
The �gure illustrates the average calibrated asset volatilities over time based on his-
torical and option implied equity volatilities respectively. The means are calculated as
averages over the cross section of weekly volatilities.
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As we will see in the next section this di¤erent behavior of the calibrated

asset volatilities has implications for the way the expected loss component be-

haves over time and thus for the time-series behavior of the estimated credit risk

premium. From the beginning of 2004 we see that the two calibrated volatilities

move together. We now go on to decompose the CDS spread into an expected

loss component and a risk premium component.

3.5.1 Decomposing the Credit Spread

To decompose the CDS spread and examine the time-series behavior of the credit

risk premium an estimate of the expected loss component is needed.

In Figure 3.4 the average expected loss component cno riskt calculated in equa-

tion (3.1) is plotted over time together with the average market CDS spread

cmarkett from Figure 3.1. In panel A of Figure 3.4 the expected loss component

is calculated with asset volatilities based on historical equity volatility, while the

expected loss component is calculated with asset volatilities based on implied

equity volatility in panel B.

Similar to the market spreads, the expected loss components vary consider-

ably through the sample period, and when based on implied equity volatility the

component peaks around the same time as the market spread, although there is

a tendency for the peaks in the expected loss component to appear a little earlier

than in the spread. The expected loss component peaks somewhat later, when

based on historical equity volatility. When the spreads start to fall the expected

loss component based on implied volatility falls as well, while this happens with

a lag for the expected loss component based on historical volatility. From a com-

parison with Figure 3.3 we see that the di¤erent behavior of the asset volatilities

in Figure 3.3 to a large degree is re�ected in the movement of the respective

expected losses in Figure 3.4.
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Figure 3.4: Average Market Spread and Expected Loss Component
The �gure illustrates the average market CDS spread and the expected loss component
over time. The means are calculated as averages over the cross section of weekly spreads.
In Panel A the expected loss component is based on historical volatility and in Panel
B it is based on implied volatility.
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The credit risk premium RPIt is the di¤erence between the market CDS

spread cmarkett and the expected loss component cno riskt as calculated in equation

(3.2). Figure 3.5 plots the resulting cross sectional averages of the credit risk

premia over time. To illustrate the di¤erence, Figure 3.5 includes both the av-

erage risk premium based on the historical equity volatility and the average risk

premium based on implied equity volatility. The level of the average risk premia

are very similar to the level found in Elkamhi & Ericsson (2007) and the risk

premia also peak in the second half of 2002 as found in earlier studies, but we

see a clear di¤erence in the time-series behavior of the two estimated risk premia.

This di¤erence is especially pronounced in the second half of 2002 and until the

beginning of 2004.

After the peak in late 2002 the risk premia starts to fall, and they basically

keep falling until the end of 2006. The initial fall is much more dramatic though,

when the risk premia are based on historical volatility, compared to the fall in risk

premia, when they are based on implied volatility. The reason for this di¤erent

behavior is of course to be found in the fact, that the rise in uncertainty towards

the end of 2002 stays in the historical equity volatility for some time following

the events.

As we saw in Figure 3.3 and Figure 3.4 this leads to asset volatilities and

expected losses that are too high compared to the expected losses based on im-

plied volatility, which immediately falls when the uncertainty disappears from the

market. From the beginning of 2004 and onwards the two estimated risk premia

move together, just as the asset volatilities in Figure 3.3.

When the expected losses are based on implied volatility there seems to be a

high degree of variation in the risk premia around the peak in late 2002. This is

because the expected loss component and the market CDS spreads do not peak

at the exact same time as seen in Figure 3.4. It is interesting to note that Cao

et al. (2006) �nd that the options market tend to lead the CDS market. From

Figure 3.4 we see that this could be the case, and thus the reason for this high

variation in risk premia, since the expected loss component based on implied

volatility peaks earlier than the CDS spread.
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Figure 3.5: Average Credit Risk Premium
The �gure illustrates the average credit risk premia over time based on historical volatil-
ity and implied volatility respectively. The means are calculated as averages over the
cross section of weekly spreads.

To show that the di¤erent behavior of the credit risk premia in Figure 3.5 is

consistent across ratings and industries we split up the sample into investment

grade �rms and speculative grade �rms, and also into �ve di¤erent industries.

In Figure 3.6 the average estimated risk premia are plotted for the investment

grade segment in panel A and for the speculative segment in panel B. The same

pattern as in Figure 3.5 emerges. Following the events in 2002 the fall in risk

premia are much more dramatic, when expected losses are based on historical

volatility.

The largest di¤erence in the behavior is seen for the investment grade segment

in panel A. The behavior is very similar to the behavior in Figure 3.5, which is

because the main part of the sample is investment grade �rms. The di¤erence is

not as pronounced for the speculative grade segment in panel B.

In Figure 3.7 the �rms in the sample have been split up into the �ve Fama &

French industries: Consumer, Manufacturing, Hitec, Health and Other19. Again

the same pattern appears. Looking e.g. at the behavior of the average risk

premium in the Health sector in panel D the e¤ect of using default probabilities

based on implied volatility is clear. We see a much smoother risk premium,

while the risk premium based on historical volatility takes a sharp fall in 2003.

Subsequently the estimated risk premia move together from the beginning of

2004.
19See the website of Kenneth French.
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Figure 3.6: Credit Risk Premia for Investment and Speculative Grade
The �gure illustrates credit risk premia over time for the investment grade segment
and the speculative grade segment. In panel A the average risk premium is depicted
for the investment grade segment, while the average risk premium for the speculative
grade segment is depicted in panel B. The means are calculated as averages over the
cross section of weekly spreads.
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Figure 3.7: Credit Risk Premia Across Industries
The �gure illustrates the credit risk premia over time for the �ve Fama & French
industries, Consumer in panel A,Manufacturing in panel B,Hitec in panel C,Health
in panel D and Other in panel E. The means are calculated as averages over the cross
section of weekly spreads
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The decomposition of the CDS spread into a risk premium component and

an expected loss component allows us to study the relative importance of these

components for the CDS spread over time.

Figure 3.8 plots the respective percentage of the total market spread explained

by risk premia ( RPIt
cmarkett

) and expected losses ( c
no risk
t

cmarkett
). In Panel A the ratios are

plotted, with expected losses based on historical volatility. More interestingly

panel B studies the behavior of the two ratios when expected losses are based on

implied volatility. We see that the expected loss ratio is largest in the second half

of 2002, the period when spreads soared and the credit risk premium peaks. The

expected loss ratio is actually higher than 50% at certain points in this period. In

periods of tight credit spreads and low risk premia, we see that the risk premium

component dominates.

It is natural to combine this result with the results on expected losses and the

credit risk premium, when based on implied volatility in Figure 3.4 and Figure

3.5. What we see is that in times of high default probabilities and high expected

losses the credit risk premium is high and in times of low default probabilities

the credit risk premium is low. On the other hand the relative importance of

the credit risk premium is highest in times of low default probabilities and low

spreads. This suggests a countercyclical risk premium, something we look more

into in section 3.5.2.

Unreported results show that the pattern is the same for the speculative grade

and investment grade segment, although the expected loss ratio seems to play a

larger part for the speculative grade segment. I will also get back to this in section

3.5.2. In panel A of Figure 3.8, where expected losses are based on historical

volatility the lagging behavior shows up clearly again, and the expected loss ratio

seems to be of most importance during 2003, with a peak in the middle of 2003.
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Figure 3.8: Expected Loss and Risk Premium Ratios
The �gure illustrates the expected loss ratio and the risk premium ratio over time. In
Panel A the expected loss component is based on historical volatility and in Panel B it
is based on implied volatility.
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Berndt et al. (2005) o¤er possible explanations for the time variation in the

risk premia, which I will relate to the �ndings in this paper. One explanation

is that the variation in risk premia is partly caused by sluggish movement in

risk capital across sectors. Berndt et al. (2005) argue that variations of the

supply and demand for risk bearing are exacerbated by limited mobility of capital

across di¤erent classes of asset markets, implying that risk premia would tend to

adjust so as to match the demand for capital with the supply of capital that

is available to the sector. Proxying for market volatility they �nd that VIX20

adds signi�cantly to the explanation of CDS spreads after the EDF measure has

been accounted for, and they suggest that credit risk premia strongly depend on

market volatility/VIX. If the market volatility goes up, a given level of capital

available to bear risk represents less and less capital per unit of risk to be borne.

If replacement capital does not move into the corporate debt sector immediately,

the supply and demand for risk capital will match at a higher price per unit of

risk.

In Figure 3.9 the average calibrated asset volatilities from Figure 3.3 are plot-

ted together with VIX. In panel A the average calibrated asset volatilities are

based on the historical volatility, while panel B plots the average asset volatilities

based on the implied volatility together with VIX. Looking at panel A we see that

VIX is much more volatile than the asset volatility based on historical volatility,

and VIX also spikes in late 2002 just as the market CDS spreads in Figure 3.1. It

is a di¤erent story in panel B. We see that the average calibrated asset volatilities

based on implied volatility and the VIX move very closely together throughout

the entire period, suggesting that the asset volatilities and expected losses based

on implied volatility and VIX are related. In theory the average calibrated asset

volatilities should contain both systematic volatility and idiosyncratic volatility,

and the systematic volatility should explain part of the expected losses but also

the credit risk premia21. What the results of Figure 3.9 suggest is that VIX is

indeed a measure of systematic volatility and also an important driver of expected

losses, when these are measured with implied volatility2223. This also suggests

20VIX is an index of option implied volatility on the S&P 500.
21Elkamhi & Ericsson (2007) also includes a discussion of this topic, and relate their results

to Campbell & Taksler (2003).
22Unreported results also show that VIX adds explanatory power to the credit spreads when

both leverage and volatility have been accounted for.
23In panel B the asset volatilities are "delevered", while the VIX volatility is not, and the
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that the EDF measure and expected losses based on historical volatility do not

adequately capture the probability of default implied by the market. Earlier

papers such as Collin-Dufresne et al. (2001) and Schaefer & Strebulaev (2004)

have shown that VIX is an important explanatory variable for changes in credit

spreads, although they did not pin down an explanation for the role of VIX.

Figure 3.9: Asset Volatilities and VIX Volatility
The �gure illustrates the average asset volatilities and the VIX volatility over time.
In panel A the VIX volatility is depicted together with the asset volatility based on
historical equity volatility, and in Panel B the VIX volatility is depicted together with
the asset volatility based on implied volatility.

VIX volatility is thus higher than the average asset volatilities during the main part of the
sample period. Interestingly, the average asset volatilities are higher than VIX towards the end
of 2005 and the beginning of 2006, suggesting a lot of idiosyncratic volatility in this period.
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We have not yet discussed the assumption of a constant expected recovery

rate R of 40%. In Figure 3.10, where the average model spread and the average

market spread are plotted, we see that the structural model underestimates the

market spreads during large parts of the sample period24. This suggests that

the assumed recovery rate could be too large. Lowering the recovery rate would

raise the spreads, but from equation (3.1) we see that loss given default (LGD)

is multiplied onto the part of the calculated spread that is determined by the

default probabilities. A lower recovery rate would thus have a small e¤ect on the

size of the calculated spreads in times of low default probabilities, and it is in

exactly these periods that the model underestimates the spreads. Consequently,

as long as the recovery rate is within a reasonable range the results of the paper

would not change25.

As discussed in Berndt et al. (2005), there could also be correlation be-

tween loss given default/recovery rates and the probability of default and in fact

Moody�s (Hamilton et al. (2007) ) estimate a negative correlation between annual

corporate default rates and recovery rates. The possibility of a negative corre-

lation between default probabilities and the expected recovery rate could lower

the time variation in the estimated risk premia, when the default probabilities

are based on implied volatility. If we look at Figure 3.4 and 3.5 again, a nega-

tive correlation between the recovery rate and the default probabilities based on

implied volatility would increase the expected loss component in late 2002, and

make it even smaller in 2003 leading to less variation in the resulting average risk

premium. But this would also imply a larger underestimation by the structural

model of the average market spread in times of low spreads as seen in Figure

3.1026.

Based on the above discussion and decomposition of the CDS spreads I con-

clude that the risk premia estimated in earlier papers such as Berndt et al. (2005)

and Elkamhi & Ericsson (2007) might be inappropriate since these risk premia

are based on historical volatility, and one should be careful when drawing conclu-

sions on risk premia based on expected losses estimated with a historical volatility.

24Elkamhi & Ericsson (2007) �nd similar results for the same period.
25If anything, a lower recovery rate would enhance the di¤erence in the estimated risk premia

based on historical and implied volatility, since a lower recovery rate would raise the expected
loss component in times of high default probabilities.
26Assuming that the correlation is of similar size under P and Q. Introducing a time varying

recovery rate would also imply a risk premium on the recovery rate.
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This is especially important in times of high uncertainty. More speci�cally the

expected losses based on historical volatility tend to be to smooth and there tends

to be an overprediction of expected losses in 2003 following the period of high

uncertainty in late 2002. Actually Bohn, Arora & Korablev (2005) report that

the EDF�s predicted too many defaults in 2003 consistent with the results in this

paper. In the next section this conclusion is supported by a regression analysis

showing that option implied equity volatility does a better job in explaining CDS

spreads compared to the 250-day historical equity volatility. We will also discuss

the possibility of adding a time varying risk premium to structural models.

Figure 3.10: Market Spreads and Model Spreads
The �gure illustrates the average market spread and model spread over time. In panel
A the model is calibrated with the historical volatility, and in Panel B the model is
calibrated with implied volatility. The means are calculated as averages over the cross
section of weekly spreads.
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3.5.2 Modeling CDS Spreads

The typical structural model predicts, that the level of credit spreads mainly

depends on asset volatilities and leverage, while most models are silent on risk

premia. Notable exceptions are Chen et al. (2006), Bhamra et al. (2007) and Chen

(2007). Chen et al. (2006) e.g. consider whether existing asset pricing models

that have proven successful in explaining equity returns can explain the level and

volatilities of credit spreads. They have some success with models that exhibit

time varying risk premia. Leland (2004) and Huang & Huang (2003) have also

studied risk premia in the context of structural models, but they do not consider

their dynamics.

Figure 3.11 plots the average model implied credit risk premia (RPI equity)

over time calculated in equation (3.4). These model implied risk premia stem

from the equity market through the translation of the equity risk premium via

the structural model. The �gure shows the risk premia when the structural model

is calibrated with the historical volatility and the implied volatility respectively.

The two risk premia do not move in exactly the same way, which follows from

the di¤erences in the calibration of the structural model, but there are large

similarities.

Figure 3.11: Model Implied Risk Premia
The �gure illustrates the average model implied credit risk premia over time, when the
structural model is calibrated with the historical and implied equity volatility respec-
tively. The means are calculated as averages over the cross section of weekly spreads.
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A simple comparison of the two average estimated risk premia in Figure 3.11

with the average market CDS spread from Figure 3.1 suggest a link between the

CDS spreads and these model implied risk premia. To see if a time varying risk

premium can help structural models to explain credit spreads I follow Elkamhi

& Ericsson (2007) and consider the following panel regression for the level of the

CDS spreads27

CDSit = �+�1Levi;t+�2Evoli;t+�3Ereti;t+�4Slopet+�5rt+�6RPI
equity
i;t +"i;t;

(3.12)

where Lev denotes the �rm�s leverage, Evol is either the �rm�s 250 day historical

volatility or it�s 30-day option implied volatility, Eret is the daily equity return of

the �rm, Slope is the di¤erence between the 10- and 2-year constant maturity rate

and r is the 5-year constant maturity rate corresponding to the maturity of the

CDS spreads. RPI equity is the equity implied measure of the credit risk premium

calculated in equation (3.4), and it is thus purely based on the equity market and

the structural model. The regression in (3:12) is run both with and without the

model implied risk premium in order to gauge the gain in explanatory power by

including this variable. The results are shown in Table 3.4, when the regressions

are run on the full sample28. Panel A of Table 3.4 tabulates the results with

the historical volatility included in the regression, while the results with implied

equity volatility are reported in panel B.

We see that including the equity implied risk premium increases the explana-

tory power of the regressions and the coe¢ cients on the risk premium are all

strongly signi�cant29. When the risk premium is included in the regression with

the historical volatility the R-square increases by 3% from 49:4% to 52:4%; while

the R-square increases by 5:5% from 57:4% to 62:9% when the regressions are

run with the implied volatility.

27The regresion in Elkamhi & Ericsson (2007) is performed on corporate bond spreads.
28The same variables are included in all of the regressions, although some of the variables

may be insigni�cant at times.
29This is consistent both when the standard errors are clustered by time and by �rm. The

OLS standard errors on the risk premium coe¢ cients are very similar to the standard errors
when clustering by time, while standard errors are substantially larger when clustering by �rm.
This indicates a �rm e¤ect in the data (see Petersen (2007)). The results are also robust if a
weekly time dummy is included, while clustering by �rm. In this case the slope and the interest
rate are left out of the regression since they capture a time e¤ect.
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The results are in line with Elton et al. (2001), who show that there is a

nontrivial component of credit spreads, interpreted as a risk premium, which is

correlated with factors explaining equity risk premia. Elkamhi & Ericsson (2007)

also �nd that risk premia in credit and equity market are closely related, and

emphasizes that the nonlinear relationship implied by the structural model plays

an important role in establishing the link between the equity premium, the model

implied credit risk premium and the credit spread.

On the other hand Berndt, Lookman & Obreja (2006) extract a factor rep-

resenting the part of default swap returns, implied by a reduced form credit risk

model, that does not compensate for interest rate risk or expected default losses.

They �nd that this factor is priced in the corporate bond market but that they

cannot establish with the same con�dence that it is a factor for equity returns.

Their estimate of credit risk premia is based on EDF�s though, which we have

seen might give rise to mismeasured credit risk premia.

In Table 3.5 the regressions are run for the investment grade segment. Again

the coe¢ cients are highly signi�cant on the risk premium and now the R-square

increases by 5:3% from 44:4% to 59:7% with the historical volatility included,

while the R-square increases by 8:2% from 52:6% to 60:8% when the regressions

are run with the implied volatility.

In Table 3.6 the regressions are run for the speculative grade segment. Now

there is only a marginal increase in the R-square, which increases by 2:5% from

53:8% to 56:3% with the historical volatility included, while there is no increase

in the R-square, which stays at 74:7%; when the regressions are run with the im-

plied volatility. Furthermore the coe¢ cient on the risk premium is insigni�cant

when implied volatility is included. Combined with the regression results for the

investment grade segment, this suggest that the risk premium is more important

for investment grade �rms than for speculative grade �rms, and also that invest-

ment grade �rms have proportionally higher risk premia. This supports results

found in e.g. Elkamhi & Ericsson (2007), Berndt et al. (2005) and Huang &

Huang (2003).
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In all of the regressions performed in Tables 3.4, 3.5 and 3.6 the R-squares

are higher when implied volatility is included instead of the historical volatility

and this is especially striking for the speculative grade segment, where the R-

squares without the risk premium included are 53:8% and 74:7% respectively.

This con�rms that option implied volatility has a higher explanatory power for

credit spreads, and suggest that when measuring the time variation in the risk

premia one should use the information contained in option implied volatilities to

back out default probabilities. Furthermore the results are also in line with Cao

et al. (2006), who �nd the strongest link between option-implied volatilities and

CDS spreads among �rms with the lowest rating.

3.6 Conclusion

To estimate the time-series behavior of credit risk premia objective default prob-

abilities and expected losses need to be measured correctly. Motivated by recent

�ndings in Cao et al. (2006) this paper backs out default probabilities using option

implied volatility through the structural model by Leland & Toft (1996).

Similar to earlier results I �nd that the risk premium peaks in the third quarter

of 2002, but the subsequent drop in the risk premium is not as dramatic when

expected losses are based on implied volatility instead of a historical volatility

measure. The risk premia appear less volatile when based on implied volatility

and this result is consistent across industries and ratings (investment grade and

speculative grade), and suggests that it may be inappropriate to base expected

losses on a historical volatility measure, when estimating risk premia.

Secondly, the credit risk premium tends to be countercyclical when expected

losses are based on implied volatility. More speci�cally, the credit risk premium

is high in times of high default probabilities and high expected losses and low in

times of low default probabilities. Furthermore, the expected loss ratio and the

risk premium ratio behave quite di¤erently from one another over time. When

based on implied volatility the expected loss ratio peaked in late 2002, when

credit spreads soared and the credit risk premium peaked.

Finally, I carried out a panel regression analysis of the CDS market spreads.

Augmenting the regressions with an equity implied measure of the credit risk

premium improved the explanatory power for the levels of the credit spread, while
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the coe¢ cient on this model implied risk premium was highly signi�cant. These

regression results echo results in Elkamhi & Ericsson (2007), and in combination

with the other results of the paper, they suggest that structural models should

contain a time varying and countercyclical risk premium.

The results also suggest a link between equity risk premia and credit spreads,

when the equity risk premium is properly delevered through a structural model.

Elton et al. (2001) show that there is a nontrivial component of credit spreads,

interpreted as a risk premium, which is correlated with factors explaining equity

risk premia and Elkamhi & Ericsson (2007) also �nd that risk premia in credit and

equity market are closely related. On the other hand Berndt, Lookman & Obreja

(2006) extract a factor representing the part of default swap returns, implied by a

reduced form credit risk model, that does not compensate for interest rate risk or

expected default losses. They �nd that this factor is priced in the corporate bond

market but that they cannot establish with the same con�dence that it is a factor

for equity returns. However, the expected losses in Berndt, Lookman & Obreja

(2006) are based on the EDF measure, and thus the estimation of the credit risk

premium might be inappropriate. It is clear from the di¤erent results though

that much more research is needed on the time variation of credit risk premia

in credit markets, and also on the relation between the equity risk premium and

credit risk premium. Interesting work in this direction has recently been done in

Chen (2007) and Bhamra et al. (2007).
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A Leland & Toft (1996)

The model by Leland & Toft (1996) assumes that the decision to default is made

by a manager, who acts to maximize the value of equity. At each moment, the

manager must address the question if meeting promised debt service payments is

optimal for the equityholders, thereby keeping their call option alive. If the asset

value exceeds the endogenously derived default barrier VB, the �rm will optimally

continue to service the debt - even if the asset value is below the principal value

or if cash �ow available for payout is insu¢ cient to �nance the net debt service,

requiring additional equity contributions.

In particular, �rm assets V are assumed to follow a geometric Brownian mo-

tion under the risk-neutral measure

dVt = (r � �)Vtdt+ �V VtdWt, (3.13)

where r is the constant risk-free interest rate, � is the fraction of asset value paid

out to security holders, �V is the asset volatility and Wt is a standard Brown-

ian motion. Debt of constant maturity � is continuously rolled over, implying

that at any time s the total outstanding debt principal P will have a uniform

distribution over maturities in the interval (s; s+�). Each debt contract in the

multi-layered structure is serviced by a continuous coupon. The resulting total

coupon payments C are tax deductible at a rate � , and the realized costs of �nan-

cial distress amount to a fraction � of the value of assets in default VB. Rolling

over �nite maturity debt in the way prescribed implies a stationary capital struc-

ture, where the total outstanding principal P , total coupon C, average maturity
�
2
and default barrier VB remain constant through time.

To determine the total value of the levered �rm v(Vt), the model follows Leland

(1994) in valuing bankruptcy costs BC(Vt) and tax bene�ts resulting from debt

issuance TB(Vt) as time-independent securities. It follows, that

�(Vt) = Vt + TB(Vt)�BC(Vt) (3.14)

= S(Vt) +D(Vt),

where S(Vt) is the market value of equity and D(Vt) the market value of total
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debt. Equation (3.14) may be written as

�(Vt) = Vt + �
C

r

 
1�

�
Vt
VB

��x!
� �VB

�
Vt
VB

��x
, (3.15)

with the value of debt

D(Vt) =
C

r
+

�
P � C

r

��
1� er�
r�

� I (�)
�
+

�
(1� �)VB �

C

r

�
J (�) , (3.16)

equity S(Vt) = �(Vt)�D(Vt)

S(Vt) = Vt + �
C

r
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�
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��x!
� �VB

�
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��x
� C
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�
�
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��
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�
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�
�
(1� �)VB �

C

r

�
J (�) ,

and default barrier VB

VB =
C
r

�
A
r�
�B

�
� AP

r�
� �Cx

r

1 + �x� (1� �)B . (3.18)

The components of the above formulae are

A = 2ae�r��
�
a�V

p
�
�
� 2z�

�
z�V

p
�
�

(3.19)

� 2

�V
p
�
�
�
z�V

p
�
�
+
2e�r�

�V
p
�
�
�
a�V

p
�
�
+ (z � a) ,

B = �
�
2z +

2

z�2V�

�
�
�
z�V

p
�
�

(3.20)

� 2

�V
p
�
�
�
z�V

p
�
�
+ (z � a) + 1

z�2V�
,

I (�) =
1

r�

�
K (�)� e�r�F (�)

�
, (3.21)

K (�) =

�
V

VB

��a+z
� (j1 (�)) +

�
V

VB

��a�z
� (j2 (�)) , (3.22)
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F (�) = � (h1 (�)) +

�
V

VB

��2a
� (h2 (�)) , (3.23)

J (�) =
1

z�V
p
�

 
�
�
V

VB

��a+z
� (j1 (�)) j1 (�)

+

�
V

VB

��a�z
� (j2 (�)) j2 (�)

!
, (3.24)

j1 (�) =
(�b� z�2V�)
�V
p
�

; j2 (�) =
(�b+ z�2V�)
�V
p
�

, (3.25)

h1 (�) =
(�b� a�2V�)
�V
p
�

; h2 (�) =
(�b+ a�2V�)
�V
p
�

, (3.26)

a =
(r � �� (�2V =2))

�2V
, (3.27)

b = ln

�
Vt
VB

�
, (3.28)

z =

r�
(a�2V )

2
+ 2r�2V

�
�2V

, (3.29)

x = a+ z: (3.30)

� (�) and � (�) denote the density of the standard normal distribution and the
cumulative distribution function, respectively.

A.1 Survival Probabilities

The risk-neutral survival probability in the model at horizon t is given as

Q (t) = 1� F (t) (3.31)

= 1�
 
� (h1 (t)) +

�
V

VB

��2a
� (h2 (t))

!
;

where h1 (t) and h2 (t) are given above. The objective survival probability is given

as

P (t) = 1�
 
� (d1 (t)) +

�
V

VB

��2c
� (d2 (t))

!
; (3.32)
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where

c =
(uV � (�2V =2))

�2V

d1 (t) =
(�b� c�2V t)
�V
p
t

; d2 (t) =
(�b+ c�2V t)
�V
p
t

and �V is the realized mean of the time series of Vt from equation (3.6) The term

structure of default probabilities is needed to price the credit default swap.

A.2 Pricing the Credit Default Swap without a Risk Pre-

mium

The CDS can be priced both with and without a risk premium in the Leland &

Toft (1996) model, when the default probabilities are known. The CDS price of a

contract initiated at time 0 with maturity date T , when there is no risk premium,

is given as

cno risk(0; T ) = �
(1�R)

R T
0
e�rsP

0
0(s)dsR T

0
e�rsP0(s)ds

,

where r is the constant risk-free interest rate, R is the recovery rate, P0(s) is the

objective survival probability of the obligor at t = 0 and �P 0
0(t) = �dP0(t)=dt is

the �rst hitting time density. Rearranging we get

0 = cno risk(0; T )

Z T

0

e�rsP (s)ds+ (1�R)
Z T

0

e�rsP 0(s)ds; (3.33)

and Integrating the �rst term by parts, yields

0 =
cno risk(0; T )

r

�
1� e�rTP (T ) +

Z T

0

e�rsP 0(s)ds

�
+ (1�R)

Z T

0

e�rsP 0(s)ds.

(3.34)

following Reiner & Rubinstein (1991) the integral �
R T
0
e�rsP 0(s)ds is given as

G(T ) =

�
V

VB

��c+y
� (g1 (T )) +

�
V

VB

��c�y
� (g2 (T )) ; (3.35)

where

c =
(uV � (�2V =2))

�2V
;
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y =

r�
(c�2V )

2
+ 2r�2V

�
�2V

and

g1 (t) =
(�b� y�2V t)
�V
p
t

; g2 (t) =
(�b+ y�2V t)
�V
p
t

:

Then,

0 =
cno risk(0; T )

r

�
1� e�rTP (T )

�
�
�
cno risk(0; T )

r
+ (1�R)

�
G(T ), (3.36)

which allows us to obtain a closed-form solution for the CDS spread, when there

is no risk premium

cno risk(0; T ) = r (1�R) G(T )

(1� e�rTP (T )�G (T )) (3.37)

where G(T ) is given above and

A.3 Pricing the Credit Default Swap with a Risk Pre-

mium Included

The formula for the CDS spread when there is a risk premium present is analogous

to the price without a risk premium

crisk(0; T ) = r (1�R) K(T )

(1� e�rTQ(T )�K (T )) ; (3.38)

where

K (T ) =

�
V

VB

��a+z
� (j1 (T )) +

�
V

VB

��a�z
� (j2 (T ))
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,
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�
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,

147



j1 (T ) =
(�b� z�2V T )
�V
p
T

; j2 (T ) =
(�b+ z�2V T )
�V
p
T

and Q(T ) is given is equation (3:31) :
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Summary

English summary

Chapter 1: AccountingTransparency and the TermStruc-
ture of Credit Default Swap Spreads

This chapter is the �rst contribution in the literature to estimate the com-

ponent of the term structure of CDS spreads associated with accounting trans-

parency. To this end, CDS spreads at the 1, 3, 5, 7 and 10-year maturity for a

large cross-section of �rms are used together with a newly developed measure of

accounting transparency by Berger et al. (2006). Estimating the gap between the

high and low transparency credit curves, the transparency spread is estimated

around 20 bps at the 1-year maturity. At longer maturities, the transparency

spread narrows and is estimated at 14, 8, 7 and 5 bps at the 3, 5, 7 and 10-year

maturity, respectively. While highly signi�cant in the short end, the impact of

accounting transparency is not robust and most often insigni�cantly estimated

for maturities exceeding 5 years. Finally, the e¤ect of accounting transparency

on the term structure of CDS spreads is largest for the most risky �rms. These

results are strongly supportive of the model by Du¢ e & Lando (2001), and add

an explanation to the underprediction of short-term credit spreads by traditional

structural credit risk models.
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Chapter 2: Capital Structure Arbitrage: Model Choice
and Volatility Calibration

This chapter analyzes the use of CDSs in a convergence-type trading strat-

egy popular among hedge funds and proprietary trading desks. This strategy,

termed capital structure arbitrage, takes advantage of a lack of synchronicity be-

tween equity and credit markets and is related to recent studies on the lead-lag

relationship between bond, equity and CDS markets. In particular, a structural

model that links fundamentals with di¤erent security classes is used to identify

CDSs that either o¤er a discount against equities or trade at a very high level.

If a relative value opportunity is identi�ed, the arbitrageur takes an appropri-

ate market-neutral position and hopes for market convergence. However, the

arbitrageur faces two major problems, namely positions based on model misspec-

i�cation and mismeasured inputs. The chapter contributes with an analysis of

the risk and return of capital structure arbitrage addressing both of these con-

cerns. In particular, we implement the industry benchmark model CreditGrades

and Leland & Toft (1996). The models are calibrated with a traditional 250-day

volatility from historical equity returns and an implied volatility from equity op-

tions. In spite of di¤erences in assumptions governing default and calibration,

we �nd the exact structural model linking the markets second to timely key in-

puts. Studying an equally-weighted portfolio of all relative value positions, the

excess returns are insigni�cant when based on the historical volatility. However,

as the arbitrageur feeds on large variations in equity and credit markets and the

asset volatility is a key input to the pricing of credit, a timely volatility measure

is desirable. Indeed, using an option-implied volatility results in superior strat-

egy execution and may initiate the opposite positions of the historical measure.

The result is more positions ending in convergence, more positions with positive

holding-period returns and highly signi�cant excess returns. The gain is largest in

the speculative grade segment and cannot be explained from systematic market

risk factors. Although the strategy may seem attractive at an aggregate level,

positions on individual obligors can be very risky.
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Chapter 3: Credit Risk Premia in the Market for Credit
Default Swaps

This chapter estimates the time-series behavior of credit risk premia in the

market for Credit Default Swaps for the period 2001 to 2006. The structural

model by Leland & Toft (1996) is used to back out objective default probabili-

ties. To estimate the time-series behavior of credit risk premia objective default

probabilities and expected losses need to be measured correctly. Motivated by

recent �ndings in Cao et al. (2006) this paper backs out the default probabilities

using option implied volatility through the structural model.

Similar to earlier results I �nd that the risk premium peaks in the third quarter

of 2002, but the subsequent drop in the risk premium is not as dramatic, when

expected losses are based on implied volatility instead of a historical volatility

measure. The risk premia appear less volatile when based on implied volatility

and this result is consistent across industries and ratings (investment grade and

speculative grade), and suggests that it may be inappropriate to base expected

losses on a historical volatility measure, when estimating risk premia.

Secondly, the credit risk premium tends to be countercyclical when expected

losses are based on implied volatility. More speci�cally the credit risk premium

is high in times of high default probabilities and high expected losses and low in

times of low default probabilities. Furthermore the expected loss ratio and the

risk premium ratio behave quite di¤erently from one another over time. When

based on implied volatility the expected loss ratio peaked in late 2002, when

credit spreads soared and the credit risk premium peaked.

Finally I carried out a panel regression analysis of the CDS market spreads.

Augmenting the regressions with an equity implied measure of the credit risk

premium improved the explanatory power for the levels of the credit spread,

while the coe¢ cient on this model implied risk premium was highly signi�cant.

These regression results echo results in Elkamhi & Ericsson (2007), and suggest

that structural models should contain a time varying risk premium. Together

with the other results of the paper a risk premium that is countercyclical seems

to be desirable. The results also suggests a link between equity risk premia and

credit spreads, when the equity risk premium is properly delevered through a

structural model.
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Dansk resumé

Kapitel 1: Regnskabstransparens og strukturen af CDS
kurven

Dettte kapitel er det første bidrag i litteraturen, som estimerer komponenten i

kurven af CDS spænd, som skyldes støjfyldte observationer af værdien af aktiver.

Til dette formål anvendes CDS spænd med løbetider på 1, 3, 5, 7 og 10 år for

et bredt tværsnit af virksomheder, sammen med et nyudviklet mål for regnsk-

abstransparens af Berger et al. (2006). Ved en estimation af spændet mellem

kreditspændskurverne for virksomheder med høj og lav transparens, estimeres

transparensspændet til 20 bps ved en løbetid på 1 år. Dette transparensspænd

indsnævres ved længere løbetider, og estimeres til 14, 8, 7 og 5 bps ved en lø-

betid på henholdsvis 3, 5, 7 og 10 år. Transparensspændet er stærkt signi�kant

i den korte ende, men ej robust og ofte insigni�kant ved løbetider over 5 år. En-

delig �ndes e¤ekten af regnskabstransparens på kurven af CDS spænd at være

størst for de mest risikable virksomheder. Disse resultater støtter klart modellen

af Du¢ e & Lando (2001), og tilføjer en forklaring til undervurderingen af korte

kreditspænd af traditionelle strukturelle kreditrisikomodeller.

Kapitel 2: Kapitalstruktur arbitrage: Modelvalg og valg
af volatilitet

Kapitel to analyserer anvendelsen af CDS�er i en konvergensbaseret han-

delsstrategi, som er populær i hedge fonde og kvantitative handelsafdelinger.

Denne strategi, kaldet kapitalstruktur arbitrage, udnytter en begrænset synkro-

nicitet mellem aktie- og kreditmarkeder, og er relateret til nyere studier om

hastigheden, hvormed ny information indregnes i forskellige markeder. En struk-

turel model som relaterer virksomhedens fundamentale variable til prisen på

forskellige aktivklasser anvendes til at identi�cere CDS�er, som handles for dyrt

eller billigt relativt til aktien. Hvis en relativ prismulighed kan identi�ceres,

tager arbitragøren en passende markedsneutral position, og håber på konvergens

mellem markederne. Arbitragøren står dog overfor to væsentlige problemer, nem-

lig positioner initieret af en misspeci�ceret model eller fejlbedømte inputs. Dette

kapitel bidrager med en analyse af risiko og afkast ved kapitalstruktur arbitrage,
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og adresserer begge ovenstående bekymringer. I særdeleshed implementeres den

i praksis ofte benyttede CreditGrades model samt modellen af Leland & Toft

(1996). Modellerne kalibreres med en traditionel 250-dages volatilitet fra his-

toriske aktieafkast samt en implicit volatilitet fra aktieoptioner. På trods af

forskelle i antagelser bag fallit og kalibrering �nder vi, at den præcise model

som relaterer markederne, er mindre væsentlig end rettidige inputs. Studeres en

ligevægtet portefølje af alle relative positioner, er merafkastet insigni�kant baseret

på den historisk volatilitet. Men da arbitragøren igangsættes af store variationer

i aktie- og kreditmarkeder, og aktivvolatiliteten er en nøglevariabel i prisfastsæt-

telsen af kredit, er et rettidigt volatilitetsmål ønskværdigt. Anvendelsen af en

implicit volatilitet fra aktieoptioner resulterer i en bedre afvikling af strategien,

og kan initiere de modsatte positioner af det historiske mål. Resultatet er �ere

positioner, som ender i konvergens, �ere positioner med positivt afkast samt et

stærkt signi�kant merafkast. Gevinsten er størst blandt virksomheder med lavere

kreditvurdering, og kan ikke forklares af systematiske markedsfaktorer. Selvom

strategien synes attraktiv på aggregeret niveau, kan relative positioner på indi-

viduelle virksomheder være meget risikable.

Kapitel 3: Kredit risikopræmier i CDS markedet

Kapitel 3 undersøger, hvorledes risikopræmierne i markedet for Credit De-

fault Swaps (CDS) opførte sig i perioden fra 2001 til 2006. Den strukturelle

kreditrisiko model af Leland & Toft (1996) kalibreres til aktiemarkedet, hvorved

både risikoneutrale -og objektive fallitsandsynligheder kan estimeres, og motiveret

af resultater i Cao et al. (2006) bliver implicit volatilitet fra aktieoptioner brugt

til at kalibrere modellen. Resultaterne viser, at risikopræmierne toppede i slut-

ningen af 2002, hvilket også er fundet i tidligere studier. Det efterfølgende fald i

risikopræmierne er dog ikke så dramatisk, når de objektive fallitsandsynligheder

er baseret på volatilitet fra optionsmarkedet. Risikopræmierne synes således at

være mindre volatile, når de objektive fallitsandsynligheder er baseret på implicit

volatilitet. Dette resultat er konsistent, både på tværs af ratings og på tværs af in-

dustrier, og indikerer at risikopræmier, som er estimeret på baggrund af historisk

volatilitet måske ikke er valide.

Derudover er risikopræmierne mod-cykliske, når de objektive fallitsandsyn-

ligheder er baseret på implicit volatilitet. Det vil sige, at der er en tendens til at
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risikopræmierne er høje når fallitsandsynlighederne er høje.

Til sidst blev der foretaget en regressionsanalyse, hvor risikopræmier im-

pliceret fra den strukturelle model blev inkluderet i regressionen sammen med

standard variable, som forklarer CDS spændene. Tilføjelsen af risikopræmien

fra modellen øgede forklaringsgraden, og koe¢ cienten på risikopræmien var sig-

ni�kant. Resultaterne indikerer at en tidsvariende og mod-cyklisk risikopræmie

bør tilstræbes i strukturelle modeller for kreditrisiko.
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