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Preface

This thesis consists of four chapters, all of which are related to credit risk and particularly

modeling of default risk. The chapters can be read independently, and the intended audience

differs somewhat among them.

The first chapter is methodical; the intended audience consists of statisticians and practition-

ers who are end users of the software described in the chapter. In particular, the first chapter

is written for biostatisticians, statisticians, or practitioners with some prior experience with sur-

vival analysis. The chapter shows fast approximate methods to estimate a class hazard models

implemented in an open source R package.

The second chapter focuses on default risk models for a broad group of public and private firms.

These models are particularly interesting for regulators and banks that wants to evaluate the risk

of a corporate debt portfolio with varying exposure. The intended audience consists of academics,

particularly those working within finance with default models, as well as practitioners, either on

the regulatory or private side. The main question of the chapter is whether the typically observed

excess clustering of defaults is due to a misspecification of the dependence between observable

variables and the probability of entering into default. While we do find improvements on the firm-

level after relaxing standard assumptions, the improvements are substantially smaller than stated

previously in the literature. Moreover, we find limited evidence that the more general models fit

better on an aggregate scale. Thus, we show an easily implemented random effect model that

involves similar relaxations, achieves comparable firm-level performance, and performs better on

the aggregate scale.

The third chapter focuses on default models applied exclusively to public firms. Thus, the

intended audience is similar to the second chapter. We use a typical data set of U.S. public firms,

which has the advantage, compared with the second chapter, that all our firms have market data

available. Thus, well-known and powerful market-based predictors of default are available. Unlike

in the second chapter, we have substantially fewer firms and observed defaults, which limits the

degree to which we can make similar relaxation as in the second chapter. Nevertheless, we still

find significant nonlinear effects of some of the variables, some of which are closely related to the

Merton model. Moreover, we have substantially more time periods to work with, given that the

data set permits us to go down to a monthly instead of yearly scale and we have many more

years. The latter allows us to focus more on time-varying effects. We find a time-varying size

effect comparable to previous papers but with a model that can be directly used for forecasting.

We show that our suggested model performs better out-of-sample on the firm-level and on the

aggregate scale during the recent financial crisis.
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The last chapter covers details of the particle filtering and smoothing methods implemented

in the same package as in the first chapter. The chapter has a more broad intended audience of

statisticians and focuses less on the survival analysis applications. All the models and methods

are directly applicable to default risk. For example, the methods used in the third chapter are

described in full in the last chapter.

Benjamin Christoffersen
Copenhagen, August 2019
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Introduction and Summaries

Modeling the loss distribution of a corporate debt portfolio is an important task, particularly

for regulators and banks. Typically, the main focus is to model the tail of the distributions to

ensure the stability of the economy and survival of the bank. This is not an easy task, due

to potentially unobservable factors or time-varying associations with either observable macro

variables or firm-level variables, combined with often limited observed periods with data; while

there are many firms, there is typically substantially less data in the time dimension.

One bottom-up approach to modeling the loss distribution is to decompose the loss to each

firm into three components: the exposure at default, the loss given default, and the probability of

default. It is clear, though, that because the loss distribution is the sum of losses to each firm, in

order to model the loss distribution, one needs to account for, potentially omitted time-varying

factors or time-varying effects affecting groups of firms or all firms. More formally, the loss of a

debt portfolio in a period (t− 1, t] can be decomposed into

Lit =
∑
j∈Rit

EijtGijtYjt

where Lit is the loss of portfolio i in interval t, Rit ∈ {1, . . . , n} is the set of firms that portfolio i is

exposed to in interval t, Eijt ∈ (0,∞) is the exposure of portfolio i to firm j at time t, Gijt ∈ [0, 1]

is the loss given default of portfolio i to firm j at time t, and Yjt ∈ {0, 1} is one if firm i defaults

in interval t. Thus, the goal is an accurate model of the joint distribution of {Eijt, Gijt, Yjt}j∈Rit .
As with the majority of the literature, this thesis will focus only on the defaults. Nevertheless,

it is clear that to accurately model the loss distribution, Lit, and particularly the tail of the loss

distribution, one needs an accurate firm-level as well as a joint model of {Yjt}j∈Rit for fixed t.

There is a long history of default models, with noticeable early examples being Beaver (1966)

and Altman (1968), which have led to multiple well-documented accounting and market-based

predictors of default. However, the joint modeling of defaults is a more recent focus. Highly

influential work by Das et al. (2007), Duffie et al. (2009) provide evidence of a shared unobservable

effect and a model to account for such an effect. Many papers on more accurate joint models

have followed since these publication.

This thesis extends the present literature both with regard to the time-varying and unob-

servable effects. Moreover, empirical evidence is provided that some assumptions about the

association between observed firm-level variables and the probability of default may be violated

and that relaxation of these assumptions improves firm-level performance. In particular, the

second and third chapters show default models more general than those typically used in the
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literature. My coauthors and I show that improvements can be made to both the firm-level and

the joint distribution of defaults by relaxing typical assumptions such as linearity, additivity, and

time-invariant coefficients.

R Packages

The first chapter gives a detailed description of implementations of approximate estimation meth-

ods for a class of hazard models that can be used for corporate defaults. Further, the fourth

chapter describes the particle-based methods in the same package. This is one of six open source

R packages available at the comprehensive R archive network (CRAN) I have authored or coau-

thored during my studies. Five of the six packages are covered here because only one is described

in detail in the chapters of this thesis.

The pre package was created by Marjolein Fokkema, and I have subsequently made large

contributions to it. The main method in the package is used to derive prediction rule ensembles

as suggested by Friedman and Popescu (2008). These rule ensembles typically have the advantage

of being easy to interpret while often performing comparably to the best-performing methods.

Some of these rule ensembles are a gradient boosted tree model as in Chapter 2, with a subsequent

L1 penalized model that includes a term for each node (including nonleaf nodes) in all of the trees.

The L1 penalty shrinks many of the coefficients to zero, yielding a sparse solution, typically with

substantially fewer terms than used in the original model.

The DtD package has a fast C++ implementation to estimate the Merton model (Merton,

1974) from equity and accounting data. Both maximum likelihood estimation and the so-called

KMV method are implemented (see e.g., Vassalou and Xing, 2004). The package name is an

abbreviation of distance to default, which has been shown to be a powerful predictor of default

(see e.g., Duffie et al., 2009, 2007). The package is used to compute the distance to default in

Chapter 3.

The rollRegres package uses methods from the LINPACK library to perform fast rolling and

expanding window estimation of linear models. The implementation updates and potentially

downdates a QR decomposition, which is both faster and numerically more stable than many

other alternatives on CRAN. The idiosyncratic volatility estimates in Chapter 3 are computed

with the package.

The parglm package contains a parallel implementation of the iterative re-weighted least

squares method for generalized linear models. It is possible to use a method in which (a) the

inner product of the weighted design matrix is explicitly computed and (b) one where a QR

decomposition of the weighted design matrix is computed. The former is faster while the latter

is numerically more stable. The package is useful in the scenario where the user does not have

access to an optimized LAPACK library, BLAS library, or a similar linear algebra library. The

methods are very similar to those in the bam function from the mgcv package (Wood et al., 2015)

for generalized additive models and the estimation method is written in C++ and computation

in parallel is supported with the C++ thread library.

The mssm package contains similar functionality as one of the dynamichazard package’s

method to approximate the gradient and the method to approximate the observed information

matrix. However, the advantage of the mssm package is that it allows for more general models,
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it contains a dual k-d tree approximation like that used in Klaas et al. (2006), and it contains an

implementation of two types of antithetic variables like those suggested by Durbin and Koopman

(1997). The latter two features are important to obtain a low variance estimate quickly. All the

computation is done in C++ and allows for computation in parallel using the C++ thread library.

Summaries in English

dynamichazard: Dynamic Hazard Models using State Space Models

The first chapter describes an open source software package containing implementations of fast

approximate estimation methods for a class of state space models used in discrete survival analysis

that are applicable to corporate default; such applications to corporate default have been featured

recently in the literature. The approximation methods are very fast, scale well in both the time-

dimension and number of observations, and are easily implemented in parallel. The chapter is

intended for the end user of the software and shows how to use the package with a hard disk

failure data set.

The implemented approximations are versions of the extended Kalman filter and an unscented

Kalman filter. Both methods are widely used in engineering, and the former has connections to the

mode approximation technique shown in Durbin and Koopman (2012). The chapter starts with

a review of available software to estimate models with time-varying effects in survival analysis,

emphasizing whether the models can be used for extrapolation. The latter is important for default

models in which the main interest is in the future, where no observations are available for model

estimation.

Can Machine Learning Models Capture Correlations in Corporate Distresses?

The second chapter uses a data set of private and public Danish firms. Having a model for both

private and public firms is crucial in an economy like the Danish one, because private firms hold

a substantial part of the corporate debt. However, market data is not available for private firms,

which rules out powerful predictors of default. An advantage of including private firms in the set

is that it increases the sample size substantially, potentially allowing for more precise estimates

with more complex models.

In this chapter, coauthored with Rastin Matin and Pia Mølgaard, we exploit a large sample of

firms to question the typical assumptions of linearity and additivity. We show that adding both

nonlinear effects and interactions can provide improvements in the ranking of private and public

firms by their default risk. Relaxing the linearity and additivity assumptions also yields more

comparable results to those of a commonly used greedy function approximation method. Lastly,

none of the models we use that assume independence conditional only on observable covariates

yields accurate prediction intervals of the aggregate default rate. Thus, we provide a random

effect model that also relaxes the linearity and additivity assumptions. The random effect model

provides competitive out-of-sample performance during the most recent period in terms of ranking

firms by their default risk, has a significant random effect component, and has wider and more
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reliable prediction intervals for the industry-wide default rate.

Modeling Frailty Correlated Defaults with Multivariate Latent Factors

The third chapter uses a typical data set from the default literature of U.S. public firms. The

data set is long in the time dimension and admits a monthly frequency unlike the data set in the

second chapter which is shorter and on an annual frequency. Thus, we are able to potentially

pose more questions about the time-varying aspect of the default processes. Further, all firms

are public, which allows us to use powerful market-based default predictors. However, there are

substantially fewer firms, thus limiting the extent to which we can make similar relaxations as in

the second chapter.

In the chapter, joined with Rastin Matin, we show a model where we have relaxed assumptions

in previous papers in the literature. In particular, we relax the assumptions of additivity, linearity,

and that only the intercept should vary through time. We document evidence of nonlinear effects,

an interaction, and a time-varying effect of the relative firm size. An advantage of our model is

that it can be directly used for future forecasts. Our final model shows superior out-of-sample

ranking of firms by their default risk and an improved forecast of the aggregate default rate in

the recent financial crises.

Particle Methods in the dynamichazard Package

The last chapter shows the implemented particle-based methods in the open source software

package covered in the first chapter. These methods and the implementation are used in the

third chapter to estimate the random effect models. The fourth chapter gives a brief introduction

to particle filtering, which is a method to recursively approximate the joint density of an increasing

sequence of random variables. Then the implemented particle filters and smoothers are covered

along with a Monte Carlo EM-algorithm used to estimate the models and which uses one of the

particle smoothers. Finally, the implemented particle methods to approximate the gradient and

observed informations are shown.

Summaries in Danish

dynamichazard: Dynamic Hazard Models using State Space Models

Det første kapitel beskriver en open source softwarepakke. Softwarepakken indeholder imple-

menteringer af hurtige approksimations metoder til estimere en klasse state space modeller, som

bruges til diskret tids overlevelsesanalyse. Modellerne er direkte anvendelige i kreditrisiko og har

været brugt i flere nyere artikler. Approksimationerne er hurtige, skalerer godt i b̊ade antallet af

observationer og tid, og desuden er det nemt at lave en implementering, som laver udregningerne

parallelt. Kapitlet er tiltænkt slutbrugere af softwarepakken, og i kapitlet illustreres anvendelsen

af pakken med et harddisk datasæt.

De implementerede approksimationer er en version af et extended Kalman filter og et un-

scented Kalman filter. Begge metoder har bred anvendelse særlig blandt ingeniører, og den første
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har forbindelser til mode approksimationsmetoderne beskrevet i Durbin and Koopman (2012).

Kapitlet starter med en gennemgang af eksisterende software til at estimere overlevelsesanalyse-

modeller med tidsvarierende effekter, med særlig fokus p̊a hvorvidt modellerne kan bruges til

fremtidig prognose. Det sidste er særligt vigtigt for modellering af kreditrisiko, da det primære

fokus ofte er p̊a fremtidige prognoser, hvor der ikke er nogle observationer tilgængelige, n̊ar mod-

ellen estimeres.

Can Machine Learning Models Capture Correlations in Corporate Distresses?

I det andet kapitel bruges et datasæt med private og børsnoteret danske virksomheder. Det er

vigtigt at have en model for b̊ade private og børsnoteret virksomheder i en økonomi som den

danske, da en stor del af virksomhedsgælden er til private virksomheder. Mens det ikke er muligt

for private virksomheder at bruge markedsbaserede variabler, som har vist sig at være brugbare

i fallit sandsynlighedsmodeller, s̊a er fordelen, at der er markant flere virksomheder, hvilket gør

det muligt at f̊a mere præcise estimater i komplekse modeller.

Kapitlet er skrevet i samarbejde med Rastin Matin og Pia Mølgaard. I kapitlet undersøger

vi betydningen af standardantagelser om linearitet og additivitet. Vi viser, at tilføjelsen af ikke-

lineære effekter og inkludering af interaktionseffekter giver en model, der bedre rangerer virk-

somheder efter deres sandsynlighed for at g̊a fallit i den følgende periode. Endvidere finder

vi, at modellen giver resultater der er tættere p̊a en greedy function approximation metode.

Dog kan ingen af modellerne, som antager uafhængighed betinget kun p̊a observerbare vari-

abler give tæt p̊a den nominelle dækningsgrad for prædiktionsintervaller for den aggregeret fallit-

sandsynlighedsrate. Derfor estimerer vi en random effekt-model som ogs̊a inkluderer nogle af de

ikke-lineære effekter og interaktionseffekter. Denne model giver sammenlignelige out-of-sample

resultater i den seneste periode i vores sample, den har en signifikant random effekt, og den har

bredere og tættere p̊a den nominelle dækningsgrad for prædiktionsintervaller for den aggregeret

fallit-sandsynlighedsrate .

Modeling Frailty Correlated Defaults with Multivariate Latent Factors

I det tredje kapitel bruger vi et typisk datasæt med amerikanske børsnoteret virksomheder.

Datasættet er markant større i tidsdimensionen end i det andet kapitel, da det er en m̊anedlig i

stedet for årlig frekvens, samt det indeholder flere år. Derfor kan vi nærmere undersøge tidsvari-

erende effekter, samt vi kan bruge markedsbaserede variabler, da alle virksomheder er børsnoteret.

Vi har dog substantielt færre virksomhed og observerede fallitter, hvorfor vi ikke kan inkludere

ikke-lineære effekter og interaktionseffekt i samme grad som i det andet kapitel.

Kapitel er skrevet i samarbejde med Rastin Matin. Vi viser resultater for en model, som

inkluderer færre antagelser end typiske modeller i litteraturen. Den sidste model, vi viser, har

ikke-lineære effekter, en interaktionseffekt samt mere end kun et tidsvarierende intercept. Særligt

viser vi, at der er tegn p̊a en tidsvarierende effekt for den relativ markedstørrelses. En fordel

ved modellen vi bruger er, at den kan bruges til prognoser. Vores endelige model er bedre til at

rangere virksomheder efter deres fallitsandsynlighed out-of-sample og har mere præcise out-of-
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sample prædiktioner for den aggregerede fallit-sandsynlighedsrate i den seneste finanskrise.

Particle Methods in the dynamichazard Package

Det sidste kapitel beskriver de implementerede, partikelbaserede metoder i den samme open

source softwarepakke som i det første kapitel. Disse metoder bruges til at estimere random effekt-

modellerne i det tredje kapitel. Kapitlet starter med en kort introduktion af partikelfiltrering, som

er en metode til at lave approksimationer af den simultane fordeling af en sekvens af stokastiske

variabler. Derefter bliver de implementerede partikelfiltre og partikel-smoother beskrevet efter-

fulgt af den brugte Monte Carlo EM-algoritme til at estimere modellerne. Denne algoritme bruger

resultatet af en af partikel-smootherne. Sidst gives en beskrivelse af de implementerede metoder

til at lave approksimationer af gradienten og den observerede informationsmatrix.
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Chapter 1

dynamichazard: Dynamic Hazard
Models using State Space Models

Benjamin Christoffersen

Abstract

The dynamichazard package implements state space models that can provide a computationally

efficient way to model time-varying parameters in survival analysis. I cover the models and some

of the estimation methods implemented in dynamichazard, apply them to a large data set, and

perform a simulation study to illustrate the methods’ computation time and performance. One

of the methods is compared with other models implemented in R which allow for left-truncation,

right-censoring, time-varying covariates, and time-varying parameters.

Keywords: survival analysis, time-varying parameters, extended Kalman filter, EM-algorithm,

unscented Kalman filter, parallel computing, R, Rcpp, RcppArmadillo
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The dynamichazard package is for survival analysis with time-varying parameters using state

space models. The contribution of this paper is to give an overview of computationally fast

nonlinear filtering methods for state space models in survival analysis that scale well in the

dimension of the observational equation and illustrate the interface in dynamichazard for the

methods.

I will start by motivating why one would consider time-varying parameters with the Cox

proportional hazards model (Cox, 1972) and give a short overview of available software to estimate

time-varying parameters in survival analysis. All mentioned packages or functions are in R (R

Core Team, 2018) unless stated otherwise. For simplicity, we start with n individuals where

each individual i = 1, . . . , n has a single fixed (not time-varying) covariate xi and a stop time

Ti. Later we look at time-varying multivariate covariate vectors, delayed-entry (also known as

left-truncation), and random right-censoring. All three can be handled by the methods in the

dynamichazard package. Denote the instantaneous hazard rate of an event for individual i at

time t by

λ ( t | xi ) = lim
h→0+

P (t ≤ T ≤ t+ h | T ≥ t, xi)
h

(1.1)

which can be interpreted as the rate of an event over an infinitesimal unit of time. The Cox

proportional hazard model is a commonly used model in survival analysis where the instantaneous

hazard rate is

λ ( t | xi ) = λ0(t) exp (βxi) (1.2)

where λ0(t) is a nonparametric baseline hazard and β is the single parameter in the model.

One advantage of the Cox proportional hazard model is the ease of interpreting the parameter:

exp(β) = λ ( t | xi = x′ + 1) /λ ( t | xi = x′ ) is the proportional change of the hazard of a unit

increase of the covariate regardless of time, t. However, the effect of a covariate may change

across time. For instance, suppose we look at the effect of a drug on the risk of a specific disease

and we use age as the time variable. Then different dose levels of a drug may not have the same

proportional effect for an adult as for a child.

One way to relax the proportional hazard assumption is to use an interaction between the

covariate and a deterministic function of time such that the instantaneous hazard rate is

λ ( t | xi ) = λ0(t) exp
(
β>g(t)xi

)
(1.3)

I will refer to the elements of β as coefficients and the dot product β>g(t) as a time-varying

parameter to avoid confusion. Thomas and Reyes (2014) show how to estimate the model in

Equation (1.3) in R using the coxph function in the survival package (Terry M. Therneau and

Patricia M. Grambsch, 2000, Therneau, 2015), and provide macros to do it in SAS™ (SAS Institute

Inc, 2017). It has become even easier with the coxph function after Thomas and Reyes’ article

was published because of the new tt argument of coxph. Similar functionality is available in Stata

(StataCorp, 2017) using the stcox command with the tvc and texp arguments. The model can

also be estimated in R with the cph function in the rms package (Harrell Jr, 2017) and the coxreg

function in the eha package (Broström, 2017).
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A downside is that the researcher has to specify the function g(t). A flexible choice is to

use a spline such that g(t) = (g1(t), g2(t), . . . , gk(t))
> where gis are basis functions. This is done

in the dynsurv package (Wang et al., 2017) with the splineCox function which ultimately uses

the coxph function in the survival package. However, models with several covariates with time-

varying effects have a lot of coefficients, and the researcher has to choose the number of knots,

and placement of the knots. An alternative for the Cox model is the nonparametric Cox model

in the timecox function in the timereg package (Martinussen and Scheike, 2006). The downside

of all the methods is that the researcher has to choose hyperparameters where only some of the

implementations provide an automated procedure to select the hyperparameters.

Another option is to use the Aalen’s additive regression model (Aalen, 1989) where the in-

stantaneous hazard rate is

λ ( t | xi ) = λ0(t) + β(t)xi (1.4)

where β(t) is estimated nonparametrically. The Aalen model can be estimated in R with the

aareg function in the survival package, and the aalen function in the timereg package. The

stlh command can be used Stata and the lifelines package (Davidson-Pilon, 2019) can be used in

Python (Rossum, 2017). An issue with the Aalen model is that the estimate of the instantaneous

hazard rate can become negative.

A drawback of the nonparametric and semiparametric methods is that they cannot be used

to make prediction outside the time range used in the estimation due to the nonparametric parts

of the hazard. This is an issue for instance when the objective is to make predictions about the

future and we use calendar time as the time scale. One solution is to use a fully parametric

function for the cumulative hazard denoted by

Λ ( t | xi ) =

∫ t

0
λ (z | xi ) dz (1.5)

In particular, we can model the log cumulative hazard function with a restricted cubic spline for

the intercept such that

Λ ( t | xi ) = exp
(
γ>k (log(t)) + β>g (log(t))xi

)
(1.6)

where γ is a coefficient vector, k(z) is a vector of basis functions, and g(z) is a vector of basis

functions to get a time-varying parameter like in Equation (1.3). This is implemented in the

rstpm2 package (Clements and Liu, 2016, Liu et al., 2016, 2017), the flexsurv package (Jackson,

2016), and the stpm2 command (Lambert and Royston, 2009) in Stata. All of the packages can

fit other models than generalization like in Equation (1.6) of the proportional hazard model (the

special case of Equation (1.6) when g (log(t)) is constant). Further, the rstpm2 package includes

penalized methods. This is useful as it allows for flexible splines with a large number of basis

functions that do not overfit. The hare function in the polspline package (Kooperberg, 2015) is

another alternative which uses linear splines instead of restricted cubic splines, and models the
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hazard function such that

λ ( t | xi ) = exp
(
γ>k(t) + β>g(t)xi

)
(1.7)

Another alternative is to consider discrete time hazard models. Let T be the event time and

Yt =

1 if T ∈ (t− 1, t]

0 otherwise
, t = 1, 2, . . . (1.8)

be an indicator for whether there is an event between time t − 1 and t. Then we model the

conditional probability of event given survival up to time t− 1 by

l (P (Yt = 1 | T > t− 1)) = γ>k (t) + β>g (t)xi (1.9)

where l is a link function and k(z) and g(z) are vectors of basis functions to get a time-varying

parameter as before (see Tutz and Schmid, 2016, chapter 5 for examples). Equation (1.9) is the

discrete hazard rate on the link scale. Software to penalize the coefficients when, potentially,

large dimensional k and g are used are available and well established. As mentioned with the

rstpm2 package, this is important to allow for high dimensional splines that do not overfit. A few

examples of packages are glmnet (Simon et al., 2011), glmpath (Park and Hastie, 2013), mgcv

(Wood, 2017), and penalized (Goeman, 2010). A discrete hazard model is an obvious choice if the

outcomes are only observed in discrete time intervals and may yield similar results to a continuous

time model if the discrete time periods are sufficiently narrow and the time of events is observed.

A nonparametric alternative is the temporal process regression in the tpr package (Fine et al.,

2004, Yan and Fine, 2004) which uses nonparametric time-varying effects in generalized linear

models.

While all of the parametric models allow for extrapolation beyond the observed time period,

the values of the prediction depend on the chosen type of splines. Some other survival analysis

options in R are the pch package (Frumento, 2016) and eha package. The pch package and the

phreg function in the eha package with argument dist = ’pch’ fit time-varying parameters by

dividing the time into periods (s0, s1], (s1, s2], . . . , (sd−1, sd] and using separate coefficients in each

interval for time-varying parameters. Thus, instantaneous hazards are piecewise constant. If all

parameters are time-varying then the instantaneous hazard rate is

λ ( t | xi ) = exp (γk + βkxi) , k : sk−1 < t ≤ sk (1.10)

Similar models are easily estimated with streg and stsplit commands in Stata or a bit of pre-

processing followed by the transreg procedure in SAS. The models have a lot of coefficients even

with a moderate amount of time periods, and can yield unstable coefficients with large jumps.

Forecasting of future outcomes conditional on the covariate are predictions from an exponential

distribution for the most recent period, (sd−1, sd], which may be based on a sparse amount of data.

Moreover, the number of points where the coefficients jump, d, and the location of the jumps,

s1, s2, . . . , sd, have to be chosen. The bayesCox function in the dynsurv package alleviates these

4



issues in a Bayesian analysis where the number of jumps and location of the jumps is a random

variable over a fixed size grid of jump locations, the baseline hazard in each interval is gamma

distributed, and the coefficients for the covariates follow a first order random walk. Though, the

implemented MCMC method is very computationally expensive.

The dynamichazard package

The dynamichazard package adds to the existing literature by providing a simple and efficient

implementation of models covered by Fahrmeir (1992, 1994). In the two papers, Fahrmeir shows

how to model time-varying parameters by using discrete time state space models where the

parameters are assumed to be piecewise constant. One possible model in this framework is a

model with instantaneous hazard rate like in the piecewise constant hazard model shown in

Equation (1.10) given by

λ ( t | xi ) = exp (γk + βkxi) , k = dte

(γk, βk) ∼ f (γk−1, βk−1)
(1.11)

where f is a multivariate normal distribution with a mean depending on γk−1 and βk−1, dte is

the ceiling of t, and we use time periods with length 1. This is implemented in the dynamic-

hazard package. An advantage of the state space approach is that the issues with the number

of coefficients in the piecewise constant hazard model shown in Equation (1.10) are eased by the

dependence induced through f . Further, the state space model provides a parametric model for

the parameters that allows one to project future parameter values. Thus, it is easy to make future

forecasts, and all available data is used in the estimation. Moreover, the models can be estimated

approximately with fast methods with a linear computational cost relative to the number of ob-

served individuals, cubic computational cost relative to the number of parameters, and are easily

computed in parallel.

There is a lot of software options for fitting general state space models. Two reviews of

packages in R for linear Gaussian models from 2011 are Petris and Petrone (2011) and Tusell

(2011). They only briefly mention nonlinear methods. The KFAS package (Helske, 2017) is the

most closely related package to dynamichazard. KFAS can be used for survival analysis although

this is not the primary focus of the package. The researcher can also estimate the models in

dynamichazard with software like the pomp package (King et al., 2016, 2017) in R, Stan (Team,

2017), the SSM toolbox (Peng and Aston, 2011) in MATLAB, the Control System Toolbox™ in

MATLAB, the SsfPack library (Koopman et al., 2008) in C, the pyParticleEst library (Nordh, 2017)

in Python, the vSMC library (Zhou, 2015) in C++, and the SMCTC library (Johansen, 2009) in

C++ just to name a few. Because all of these are quite general, using them to set up models like

those in dynamichazard is cumbersome or computationally expensive. Some are computationally

expensive as they are intended for a few outcomes at each time point which is common in the

state space model literature. This is not the case for the model given in Equation (1.11) as the

number of observations at risk at each point in time may be large.

This package is motivated by Fahrmeir (1992, 1994). The current implementation uses the
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EM-algorithm from these papers. The reader may want further information on the filters covered

later, as this paper only introduces them briefly. Durbin and Koopman (2012, chapter 4) cover

the Kalman filter, which provides a basis for understanding all the filters in the package. Fahrmeir

(1992, 1994) covers the extended Kalman filter this package uses, whereas Durbin and Koopman

(2012, section 10.2) cover the more common form of the extended Kalman filter. Durbin and

Koopman (2012, section 10.3) and Wan and Merwe (2000) provide an introduction to the un-

scented Kalman filter. Another resource is Hartikainen et al. (2011) who introduce the Kalman

filter, extended Kalman filter, and unscented Kalman filter.

The hard disk data set example is mainly chosen because it is publicly available and moderately

large. It contains data on the hard disk failure times from the time of installation. The hard disks

are from Backblaze which a data storage provider. The hard disk survival time seem to differ

substantially between both manufacturers and hard disk versions motivating a different process

for each hard disk version.

The typical application of the implemented models are cases where we expect time-varying

effects, assume that a model like in Equation (1.11) is a good approximation of the hazard rates,

and we are interested in future forecasts. Examples are churn analysis where the rate at which

customers leave a company may have non-constant associations with observable variables due to

e.g., a competitor who launches a marketing campaign targeted towards a group of customers,

or firm default prediction where changes in banks lending behavior may effect the rate at which

firms with high debt default. The examples can be modeled with calendar time as the time scale

and using delayed entry for customers who join a company’s service at different points in time

or firms who incorporate at different points in time. Another example is mortality rates in life

insurance where the rates may be varying in calendar time.

In all cases, we may be interested in predicting future hazard rates and not present ones.

Thus, having a model for the relation between present parameter values and future parameter

values is useful. The hard disk data set presented later is similar in the sense that hard disk of

the same type are typically installed within a short time period. Thus, we do not have data for

a given type of hard disk in the range we are interested as they are all installed at roughly the

same time.

All methods are implemented in C++ with use of BLAS and LAPACK (Anderson et al.,

1999) either by direct calls to the methods or through the C++ library Armadillo (Sanderson

and Curtin, 2016). The implemented estimations methods are fast because the algorithms are

fast, the methods are implemented in C++, and most of them support computations in parallel.

The reported computational complexities in the rest of the paper are based on a single iteration

of the EM-algorithm.

The rest of this paper is organized as follows. Section 1.1 covers the discrete hazard model

implemented in the package. Section 1.2 shows the EM-algorithm on which all the methods are

based, followed by four different filters used in the E-step. A data set with hard disk failures

will be used throughout this section to illustrates how to use the methods. Section 1.3 covers the

two implemented models. Section 1.4 illustrate the methods’ performance and the computation

time of the methods on simulated data. One of the methods is compared with some of the above
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mentioned methods from other packages in Section 1.5. I conclude and discuss extensions in

Section 1.6.

1.1 Discrete Hazard Model

I will start by introducing the discrete time model for survival analysis. Outcomes in the model

are binary as for the model in Equation (1.9). Either an individual has an event or not within

each interval. I generalize in Section 1.3 to a continuous time model. We are observing individual

1, 2, . . . , n who each has an event at time T1, T2, . . . , Tn. Further, we separate the part of the

timeline we observe into d equidistant intervals. We define the left-truncation and right-censoring

indicators Di1, Di2, . . . , Did with Dit ∈ {0, 1}. The indicator is one if the individual is either

left-truncated or right-censored. By definition I set Dik = 1 for k > t if we observe an event for

individual i at time t. I define the following series of outcome indicators for each individual

Yit = 1{Ti∈(t−1,t]} =

{
1 if Ti ∈ (t− 1, t]

0 otherwise
(1.12)

yit denotes whether individual i experiences an event in interval (t − 1, t]. We observe covariate

vector xij for each individual i if Dij = 0 where the latter subscripts correspond to the interval

number. Next, the risk set in time interval t is given by

Rt = {i ∈ {1, . . . , n} : Dit = 0} (1.13)

I will refer to this as the discrete time risk set, as I will introduce a continuous time version later.

The risk of an event for a given individual i in interval t is given by

P (Yit = 1 | αt, Ti > t− 1) = h(α>t xit) (1.14)

αt is the state vector in interval t, and h is the inverse link function. The inverse logit function,

h(η) = exp(η)/(1 + exp(η)), is used by default. The model written in the state space form is

E (Yt | αt) = zt(αt)

αt+1 = Fαt + Rηt ηt ∼ N(0,Q)

α0 ∼ N(µ0,Q0)

, t = 1, . . . , d (1.15)

where Yt = (Yit)i∈Rt . Notice that the bold ‘R’ is a system matrix, whereas the italic ‘Rt’ is a

risk set. The equation for Yt is referred to as the observational equation. αt is the state vector

with the corresponding state equation. Further, I denote the observational equation’s conditional

covariance matrix by Ht(αt) = Var (Yt | αt). The mean zt(αt) and variance H(αt) are state

dependent with

zkt(αt) = E (Yiktt | αt) = h(α>t xiktt)

Hkk′t(αt) =

ziktt(αt)(1− ziktt(αt)) k = k′

0 otherwise

(1.16)
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where Rt = {i1t, . . . , intt}. The state equation is implemented with a first and second order

random walk. The first order random walk model has F = R = Im where m is the number

of time-varying parameters and Im is the identity matrix with dimension m. I let q denote the

dimension for the state vector. Thus, q = m for the first order random walk model. For the

second order random walk model, we have

F =

(
2Im −Im

Im 0m

)
, R =

(
Im

0m

)
(1.17)

where 0m is a m×m matrix with zeroes in all entries. That is, we have taken the difference twice.

To see this, let αt = (ξ>t , ξ
>
t−1)>. Then Equation (1.17) implies that ξt− 2ξt−1 + ξt−2 = εt which

states that second-order difference are independent normally distributed. We assume throughout

the rest of the paper that R has orthogonal columns (R>R = Im). Further, we replace the linear

predictor, α>t xiktt, in Equation (1.16) with

zkt(αt) = h(ξ>t xiktt) (1.18)

Notice that the dimension of the state vector is q = 2m, which affects the computational com-

plexity. The complete data likelihood of the model can be written as follows by an application of

the Markov property of the model

L(Q,Q0,µ0) = p (α0)
d∏
t=1

p (αt | αt−1)
∏
i∈Rt

p (yit | αt) (1.19)

where p denotes (conditional) density functions or probability mass functions. Thus, the log-

likelihood (. . . depends on an omitted normalization constant) is

logL (Q,Q0,µ0) =− 1

2
(α0 − µ0)>Q−1

0 (α0 − µ0)

− 1

2

d∑
t=1

(αt − Fαt−1)>RQ−1R> (αt − Fαt−1)

− 1

2
log |Q0| −

2

d
log |Q|

+

d∑
t=1

∑
i∈Rt

lit(αt) + . . .

(1.20)

lit(αt) = yit log h(x>itαt) + (1− yit) log
(

1− h(x>itαt)
)

(1.21)

This completes the introduction of the discrete time model. I continue with the methods used

to fit the model. In the rest of the paper, all comments about computational costs are assuming

that the number of observations, n, is much greater than the number of coefficients, q.
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1.2 Methods

I will focus on the ddhazard function throughout this article. All the methods that are available

with this function use the M-step and parts of the E-step of the EM-algorithm described in

Fahrmeir (1992, 1994). Moreover, the method is exactly as in the former mentioned papers when

the extended Kalman filter with one iteration (which I introduce later) is used. The EM-algorithm

is similar to the method in Shumway and Stoffer (1982) but with a nonlinear observational

equation. The unknown hyperparameters in Equation (1.15) are the covariance matrices Q and

Q0 and the initial state mean µ0. Q and µ0 will be estimated in the M-step of the EM-algorithm.

It is common practice with Kalman filters to set the diagonal elements of Q0 to large fixed

values such that one term is removed from Equation (1.20). I use the following notation for the

conditional mean and covariance matrix

a t|s = E (αt | y1, . . . ,ys) , V t|s = Var (αt | y1, . . . ,ys) (1.22)

Notice that the letter ‘a’ is used for the mean estimates, whereas ‘alpha’ is used for the unknown

states. The notation both covers filter estimates in the case where s ≤ t and smoothed estimates

when s > t. I suppress the dependence on the covariates, xit, to simplify the notation.

The EM-algorithm is shown in Algorithm 1. The matrices X1,X2, . . . ,Xd are the design

matrices given by the risk sets R1, R2, . . . , Rd and the covariate vectors. The only unspecified

part is the filter in line 4 of Algorithm 1. Notice that the other lines involve only products of

matrices and vectors of dimension equal to the state space vector’s dimension, q. Moreover, the

computational cost is independent of the size of the risk sets for the specified parts of Algorithm 1.

Thus, the computational complexity so far is O
(
q3d
)
, where d is the number of intervals. The

threshold for convergence is determined by the eps of the ddhazard_control functions which

is passed as the control argument to ddhazard (e.g., ddhazard_control(eps = 0.001, ...))

similar to the glm function. The EM-algorithm tends to converge slowly toward the end. The

filters implemented for line 4 of Algorithm 1 are an extended Kalman filter (EKF), an unscented

Kalman filter (UKF), a sequential mode approximation (SMA), and a global mode approximation

(GMA). I will cover these in their respective order. First, I will briefly cover the Kalman filter

and use the Kalman filter to illustrate why we need to use approximations in the filters. Then, I

will give a brief overview of all the methods before covering each method in more detail.

The Kalman filter can be applied in line 4 of Algorithm 1 when the observed outcomes, yt, in

Equation (1.15) are normally distributed conditional on the state vector and depend linearly on

the state vector. The Kalman filter is a two-step recursive algorithm. The first step in the Kalman

Filter is the prediction step where we estimate a t|t−1 and V t|t−1 based on a t−1|t−1 and V t−1|t−1.

Secondly, we carry out the correction step where we estimate a t|t and V t|t based on a t|t−1 and

V t|t−1 and the observations. We repeat the process until t = d. One advantage with Kalman

filter is that both steps can be solved analytically. However, there is no analytical solution for the

models covered in this paper. While the prediction step can be solved analytically as the state

model is linear and Gaussian, the correction step cannot because of the non-Gaussian distribution

of the outcomes given the state vector. Thus, an approximation is needed. The ddhazard function
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Algorithm 1 EM algorithm with unspecified filter. ‖·‖2 is the L2 norm.

Input:
Q,Q0,µ0,X1, . . . ,Xd,y1, . . . ,yd, R1, . . . , Rd
Convergence threshold ε

1: Set a
(0)
0|0 = µ0 and Q(0) = Q

2: for k = 1, 2, . . . do
3: procedure E-step

4: Apply filter with a
(k−1)
0|0 , Q(k−1) and Q0 to get

a1|0, a1|1, a2|1, . . . , ad|d−1, ad|d and
V1|0, V1|1, V2|1, . . . , Vd|d−1, Vd|d

Apply smoother by computing
5: for t = d, d− 1, . . . , 1 do

6: B
(k)
t = V t−1|t−1FV−1

t|t−1

7: a
(k)
t−1|d = a t−1|t−1 + B

(k)
t (a

(k)
t|d − a t|t−1)

8: V
(k)
t−1|d = V t−1|t−1 + B

(k)
t (V

(k)
t|d −V t|t−1)

(
B

(k)
t

)>
9: procedure M-step

Update the initial state and the covariance matrix by

10: a
(k)
0|0 = a

(k)
0|d

11:

Q(k) =
1

d

d∑
t=1

R>
((
a

(k)
t|d − Fa

(k)
t−1|d

)(
a

(k)
t|d − Fa

(k)
t−1|d

)>
+ V

(k)
t|d − FB

(k)
t V

(k)
t|d −

(
FB

(k)
t V

(k)
t|d

)>
+ FV

(k)
t−1|dF

>
)

R

Stop the if sum of relative norm of changes is below the threshold

12:
∑d

t=0

∥∥∥a(k)
t|d−a

(k−1)
t|d

∥∥∥
2∥∥∥a(k−1)

t|d

∥∥∥
2

< ε

provides four fast approximate filters which I will illustrate how to use with a hard disk failure

data set.

EKF (single iteration) UKF SMA GMA

Approximation in
correction step

Taylor UT Mode Mode

Parallel Yes No No Yes
Depends on ordering No No Yes No
Additional
hyperparameters

No Yes No No

Sensitive to Q0 No Yes No Yes

Table 1.1: Properties for the filter methods for line 4 of Algorithm 1. UT stands for unscented
transform. The parallel row indicates whether the current implementation supports parallel
computation. The “Depends on ordering” row indicates whether the method is sensitive to the
ordering of the data set. The ”additional hyperparameters” indicates whether there are additional
important hyperparameters with the method. The final row indicates whether the method often
perform poorly if Q0 has large entries in the diagonal elements.
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Table 1.1 shows the pros and cons of the methods. We make a Taylor expansion in the EKF

given the a t|t−1 estimate from the prediction step. The UKF uses the so-called unscented trans-

formation instead. This may yield a better approximation than the Taylor expansion. The SMA

approximates the mode of αt given a t|t−1 and V t|t−1 adding the information of each observed

outcome, yit, in terms. The GMA does the same but uses all the observed outcomes, yt, at the

same time. The UKF is currently not supporting parallel computation but could potentially. The

simulation examples in Section 1.4 suggest that the EKF with multiple iterations and the GMA

may be preferable. The methods will be covered in more detail in the following sections including

examples of how to use with the dynamichazard package.

Data set example

I will use time until failure for hard disks as an example throughout this paper. Predicting when

a hard disk will fail is important for any firm that manages large amounts of data stored locally

to replace the hard disks before they fail. Self-monitoring, analysis, and reporting technology

(SMART) is one tool used to predict future hard disk failures. The data set I will use is publicly

available from BackBlaze (2017), which is a data storage provider that currently manages more

than 65000 hard disks. Backblaze has a daily snapshot of the SMART attributes for all its hard

disks going back to April 2013. The final data set is included with the package and has the name

"hds". Some minor changes1 are made in this paper to the "hds" data set. The final data set I

use has 79668 unique hard disks. It has 522041 rows in start-stop format for survival analysis.

A hard disk is marked as a failure if “... the drive will not spin up or connect to the OS,

the drive will not sync, or stay synced, in a RAID Array ... [or] the Smart Stats we [Backblaze]

use show values above our [Backblaze’s] thresholds” (Klein, 2016). A hard drive with a failure is

removed. I will not use the SMART attributes that Backblaze uses as covariates because of the

third condition. These are SMART attributes 5, 187, 188, 197, and 198 (BackBlaze, 2014).

I will use the power-on hours (SMART attribute number 9) as the time variable in the model

I estimate. The hard disks run 24 hours a day unless they are shut down (e.g., for maintenance).

Thus, the power on hours reflects both the usage and age of the hard disk. The SMART attribute

I will use as a predictor is the power cycle count (SMART attribute number 12). This counts the

number of times a hard disk has undergone a full hard disk power on/off cycle. The power cycle

count may be a proxy of batch effects as hard disks are stored in storage pods with 45 or 60 hard

disks. An entire storage pod has to be shut down if a hard disk has to be replaced. Thus, the

power cycle count may be a proxy for batch effects if hard disks from the same batch are stored

in the same storage pods.

I will include a factor level for the hard disk version,2 as the differences in failure rates

between hard disk versions are large. In particular, one 3 terabyte (TB) Seagate hard disk version

(ST3000DM001) has a high failure rate (Klein, 2015). I remove the 3 TB Seagate hard disks as

only half of the hard disk that fails have a failure indicator set to one. I remove versions with

1I use last observation carried forward for the covariate, change the time scale to months, and I set time zero to
4 days of running.

2I write hard disk version instead of model to avoid confusion between a fitted statistical model and a hard disk
model.
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t ∈ (0, 20] t ∈ (20, 40] t ∈ (40, 60]

Hard disk version #D #F #D #F #D #F

ST4000DM000 36131 1036 12081 472 31 1
HMS5C4040BLE640 8511 34 3091 2 0
HMS5C4040ALE640 7155 78 7077 11 44
ST8000DM002 3927 13 0 0
HDS5C3030ALA630 3864 19 4625 47 4532 52
HDS5C4040ALE630 2717 40 2665 33 2364 3
ST6000DX000 1915 35 45 1 0
WD30EFRX 1284 126 876 22 129 1
ST500LM012 HN 800 24 147 2 0
HDS723030ALA640 792 6 1040 30 997 23
WD60EFRX 495 36 253 12 0
WD30EZRX 483 6 370 10 0
ST31500541AS 150 14 712 49 1986 235
HDS722020ALA330 134 7 4765 46 4658 138
ST31500341AS 114 16 345 23 669 114
WD10EADS 38 2 124 8 463 16

Table 1.2: Summary information for each of the hard disk versions. The hard disk version is
indicated by the first column. The number of disks is abbreviated as ‘#D’ and total failures is
abbreviated as ‘#F’. The t ∈ (x, y] indicates which time interval the figures apply to. Blank cells
indicate zeros.

fewer than 400 unique hard disks. These have either few cases or few observations. I winsorize

at the 0.995 quantile for the power cycle count (i.e., I set values above the 0.995 quantile to the

0.995 quantile).

Table 1.2 provides information about each of the hard disk versions. The table shows that

data is available only for some versions during parts of the 60-month period. Thus, some of the

curves shown later will partly be extrapolation.

1.2.1 Extended Kalman Filter

The EKF approximates nonlinear state space models by making a given order Taylor expansion

about the state vector, most commonly using the first order Taylor expansion. One of the EKF’s

advantages is that it results in formulas similar to the Kalman filter. The implemented algorithm

is due to Fahrmeir (1992, 1994). The largest computational cost is the Taylor approximation

which is O
(
q2nt + q3

)
where nt = |Rt| denotes the number of individuals at risk at time t.

However, the computation is “embarrassingly parallel” because the computation can easily be

separated into independent tasks that can be executed in parallel. This is exploited in the current

version of ddhazard using the thread library in C++. The C++ thread library is a portable and

standardised multithreading library.

Fahrmeir (1992) notes that the EKF is similar to a Newton-Raphson step, which can motivate

us to take further steps. This is supported with the ddhazard function. Moreover, the EKF may

have divergence problems. A learning rate (or step length) can be used in cases where divergence

is a problem. Further, ddhazard increases the variance in the denominator of the terms used
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in the algorithm (see the “ddhazard” vignette in the package). This reduces the effect of values

predicted near the boundaries of the outcome space. This is similar to the approach taken in

glmnet (Friedman et al., 2010) to deal with large absolute values of the linear predictor.

One option is to take extra correction steps (extra a Newton-Raphson steps) which is not done

by default. They will be taken if the NR_eps argument to ddhazard_control is set to the value

of convergence threshold in the Newton-Raphson method. The user sets the learning rate (or step

length) with the LR argument to ddhazard_control. By default, the current implementation tries

a decreasing series of learning rates, starting with LR value until the algorithm does not diverge.

The extra term in the denominators, as in the glmnet package, are set with the denom_term

argument to ddhazard_control. Values in the range [10−6, 10−4] tend to be sufficient in most

cases. My experience is that the user should focus on the learning rate. See the “ddhazard”

vignette in the package for the algorithm and further details.

I fit the model using the EKF with a single iteration in the correction step. I use a natural

cubic spline for the number of power cycles to capture potential nonlinear effects. The code is

shown below. First, I assign the formula using the ns function for a natural cubic spline:

R> library("splines")

R> library("dynamichazard")

R> frm <- Surv(tstart, tstop, fails) ~ -1 + model + ns(smart_12, knots = seq(3,

+ 53, 10), Boundary.knots = c(0, 115))

I remove the intercept to not get a reference level for the disk version with the -1. Then I fit the

model:

R> system.time(ddfit <- ddhazard(formula = frm, data = hd_dat, by = 1, max_T =

+ 60, id = hd_dat$serial_number, Q_0 = diag(1, 23), Q = diag(.1, 23),

+ control = ddhazard_control(method = "EKF", eps = .001)))

user system elapsed

54.84 5.55 15.86

system.time is used to show the computation time in seconds. Q is the initial value of the

covariance matrix Q and Q_0 is the covariance matrix Q0. The by argument in the call is used to

specify the length of each interval. Thus, by = 0.5 would give twice as many intervals, each with

half the length. The last period we observe when estimating ends at max_T. method = "EKF"

specifies that we want the EKF and eps is the convergence threshold used in the EM-algorithm.

I will focus on the first nine predicted parameters for the hard disk versions in this paper.

Figure 1.1 shows the predicted parameters of the versions’ factor levels. The plot shows the

conditional log odds of failing in month t given survival up to time t− 1 for a hard disk with zero

power cycles. It is interesting that some versions seem to have a decreasing parameter for the

factor in Figure 1.1, whereas the parameter increases for others. This can partly be explained by

the “bathtub curve” used in reliability engineering. The bathtub curve is a hypothetical hazard

curve which has a decreasing hazard rate to start with which is due to defective disks while

later having an increasing hazard curve due to wear out. The early failures due to defective

disks or later wear out may not be a factor for a particular version which can explain the curves
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Figure 1.1: Predicted parameters for factor levels for the hard disk version with EKF with a
single iteration in the correction step.

we see. Notice that some of the prediction intervals get wider or shorter in the start or at

the end because of extrapolation. I only have data for at most three years for each hard disk.

Furthermore, I only have data for some versions in parts of the 60-month period because of

Backblaze’s purchasing patterns. Thus, we see increasing or decreasing width of the prediction

intervals for some parameters of factor levels in certain periods.

Figure 1.2 shows how the effect of the number of power cycles evolves over time for three

specific choices of the power cycle count. It may seem odd that we do not have a monotone

effect as we may expect the batch effect mentioned previously in which case we should see a

monotonically increasing effect. However, some of the curves are not based on much data in some

parts of the plot. E.g., it is not likely that a hard disk has had many power cycles in the start of

the first few months.
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Figure 1.2: Plots of predicted terms on the linear predictor scale for different values of power
cycle counts.

Examples with more iterations with the EKF

Next, I fit a model with more iterations in the correction step:

R> system.time(

+ ddfit_xtr <- ddhazard(formula = frm, data = hd_dat, by = 1, max_T = 60,

+ id = hd_dat$serial_number, Q_0 = diag(1, 23), Q = diag(.1, 23),

+ control = ddhazard_control(method = "EKF", eps = .001, NR_eps = .00001)))

user system elapsed

189.1 21.3 44.6

NR_eps is the tolerance for the extra iterations in correction step. The default is NULL which

yields only a single iteration. It takes longer due the additional correction steps. I plot the first

nine factor levels with the following call:

R> for(i in 1:9){

+ plot(ddfit, cov_index = i)

+ plot(ddfit_xtr, cov_index = i, add = TRUE, col = "darkblue")

+ add_hist(i)

+ }

Figure 1.3 shows the plots. The add_hist is a function for the specific data set that adds the bars

which heights reflect the relative number of individuals at risk in each interval for a given hard
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Figure 1.3: Predicted parameters with and without extra iterations in the correction step with
the EKF. The blue curves are the estimate with extra iterations. Grey transparent bars indicate
the number of individuals at risk for the specific hard disk version. Heights are only comparable
within each frame.

disk version. For some of the parameters, the two plots differ noticeably, particularly the factors

levels with a sparse amount of data (observations and/or failures) in some periods (cf., Table 1.2).

A disadvantage of the EKF is that it may provide a poor approximation of the nonlinearities;

This is what motivates the unscented Kalman filter in the next section.

1.2.2 Unscented Kalman Filter

The UKF is introduced by Julier and Uhlmann (1997). The idea is to select a fixed set of vectors

and weights such that the mean and covariance matrix match those of the filtered state vector

distribution at the prediction step. The points are then transformed in the correction step and an

approximation of the mean and covariance matrix of the filtered state vector distribution of the

next time step is then easily computed. The vectors and weights with the UKF are respectively
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known as sigma points and sigma weights. The UKF potentially provides a better approximation

of the nonlinear dynamics than does the linear approximation used in the EKF. Further, the UKF

does not require computation of the Jacobian. The latter advantage is not as important since

deriving and computing the Jacobian is not complicated for the models in this paper.

The unscented transform performs the correction step by evaluating the conditional mean and

covariance matrix of yt at 2q + 1 weighted points, the so-called sigma points, given by:

â0 = a t|t−1

âj = a t|t−1 +
√
q + λ

(
V

1/2
t|t−1

)
j

âj+q = a t|t−1 −
√
q + λ

(
V

1/2
t|t−1

)
j

, j = 1, 2, . . . , q (1.23)

with associated sigma weights:

W
[m]
0 =

λ

q + λ
(1.24)

W
[c]
0 =

λ

q + λ
+ 1− α2 (1.25)

W
[m]
j = W

[c]
j =

1

2(q + λ)
, j = 1, . . . , 2q (1.26)

where λ = α2(q + κ) − q, κ and α are hyperparameters, W
[m]
j are weights used to compute the

conditional mean of yt, and W
[c]
0 are weights used to compute the conditional covariance matrix

of yt. V
1/2
t|t−1 denotes the “square root” matrix of V t|t−1 and

(
V

1/2
t|t−1

)
j

denotes the jth column of

the “square root” matrix. We can then evaluate an approximate conditional mean and covariance

matrix of yt by

E (yt | y1, . . . ,yt−1) ≈ y =

2q∑
j=0

W
[m]
j zt (âj) (1.27)

Var (yt | y1, . . . ,yt−1) ≈
2q∑
j=0

W
[c]
j (ŷj − y)(ŷj − y)> +

2q∑
j=0

W
[c]
j Ht(âj) (1.28)

ddhazard uses the Cholesky decomposition for the V
1/2
t|t−1 decomposition. The hyperparame-

ters on which the sigma points and sigma weights depend on can have values 0 < α ≤ 1, κ ∈ R
under the restriction that q + λ = α2(q + κ) > 0. The following example will provide an idea of

the effect of the hyperparameters. Suppose that at time t in the correction step of the filter with

a two dimensional state equation, q = 2, we have

a t|t−1 =

(
0

0

)
, V t|t−1 =

(
2 1

1 1

)
, V

1/2
t|t−1 =

(
1.41 0.707

0 0.707

)
(1.29)
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Figure 1.4: Illustration of sigma points in the example from Equation (1.29). The dashed lines
are the contours of the density given by a t|t−1 and V t|t−1. The full lines are the direction given by
the columns of the Cholesky decomposition. The filled circles are sigma points with (α, κ) = (1, 1)
and the open circles are the sigma points with (α, κ) = (1/

√
3, 1). The point at (0, 0) is a sigma

point for both sets for hyperparameters.

Then the following hyperparameters yield to the following weights

(α, κ) = (1, 1) ⇒
(
W

[m]
0 ,W

[m]
1 , . . . ,W

[m]
2q

)
= (1/3, 1/6, . . . , 1/6)

(α, κ) = (1/
√

3, 1) ⇒
(
W

[m]
0 ,W

[m]
1 , . . . ,W

[m]
2q

)
= (−1, 1/2, . . . , 1/2)

(1.30)

Decreasing α increases the absolute size of the weights of the last 2q sigma points and can

lead to a negative weight on the zero sigma point, â0, as it does here. α also controls the spread

of the sigma points through a α
√
q + κ factor in Equation (1.23). Decreasing α decreases the

spread of the sigma points, as Figure 1.4 illustrates. The filled circles are the sigma points with

(α, κ) = (1, 1), and the open circles are the sigma points with (α, κ) = (1/
√

3, 1).

A negative weight on the zero-th sigma point, W
[m]
0 < 0, can cause computational issues,

as Menegaz (2016) points out, since the conditional covariance matrix in Equation (1.28) can

fail to be positive definite. Thus, we may select a specific value of W
[m]
0 > 0 by setting κ =

q(1 + α2(W
[m]
0 − 1))/(α2(1 −W [m]

0 )) for a given value of α. The UKF can be tuned more than

the EKF to any given data set while it may be hard to make estimation in an automatic fashion

with the UKF.

ddhazard uses the three hyperparameter UKF given by Wan and Merwe (2000). There is an

additional parameter denoted by β which is not included here for the sake of brevity. Many differ-

ent UKFs have been suggested with different hyperparameters, algorithms, and sigma points (see

Menegaz 2016 for a comparison of different forms of UKFs in the literature). Evaluating Equa-

tion (1.28) as in Wan and Merwe (2000) yields an O
(
n3
t

)
computational complexity algorithm.

It is reduced to O (nt) with an application the Woodbury matrix identity. See the “ddhazard”

vignette for further details.

Computation in parallel is not supported in the current version of ddhazard with the UKF.

An identity matrix times a scalar is added to Equation (1.28) to reduce the effect of observation
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predicted near the boundary of the outcome space as done with the EKF. The scalar can be set

with denom_term argument to ddhazard_control. I will end this section on the UKF with an

example.

Examples with the UKF

One problem with the UKF compared with the EKF is its greater sensitivity to the choice of Q0

because it is used to form the sigma points at time zero. I will illustrate this in the following

paragraphs. I fit the model below and plot the predicted parameters. I set Q0 to a diagonal matrix

but with larger entries than before. I specify that I want the UKF by setting the argument method

= "UKF" in the ddhazard_control call. eps is increased such that the methods is deemed to have

converged within the default amount of maximum EM iterations.

R> system.time(ddfit_ukf <- ddhazard(formula = frm, data = hd_dat, by = 1,

+ max_T = 60, id = hd_dat$serial_number, Q_0 = diag(10, 23), Q = diag(.1,

+ 23), control = ddhazard_control(method = "UKF", eps = .01)))

user system elapsed

59.704 0.384 59.334

Figure 1.5 shows the result. Figure 1.6 shows the same model but with Q0’s diagonal entries

equal to 0.1. The latter figure is comparable to what we have seen previously. A similar comment

applies to the starting value of Q. My experience is that we need to select a matrix that has large

but not too large elements in the diagonal. See Xiong et al. (2006) for the covariance matrix role

in a slightly different class of models. In contrast to the UKF, the EKF with one iteration in the

correction step can have large entries in the diagonal of Q0.

1.2.3 Sequential Approximation of the Posterior Modes

Another idea is to replace the means in the filters with the modes in each correction step. That

is, we are still looking for a method to perform the filtering in Algorithm 1. We perform the

same prediction step as with the EKF and UKF, and we change the correction step from finding

the mean to finding the mode. In making this replacement, we must find the minimum of

Equation (1.31), followed by an update of the covariance matrix.

a t|t = arg min
α

(
− log P

(
α
∣∣ a t|t−1,V t|t−1

)
−
∑
i∈Rt

log P (yit | α)

)
(1.31)

One way of finding an approximate minimum is to replace Equation (1.31) with nt = |Rt| rank-

one updates of the form in Equation (1.32) and an update of the covariance matrix. I use a

superscript to indicate the previous result from the rank-one update.

a
(k)
t|t = arg min

α

(
− log P

(
α
∣∣∣ a(k−1)

t|t ,V
(k−1)
t|t

)
− log P (yiktt | α)

)
(1.32)

I will refer to this method as the SMA. There are two implemented versions: one which makes

the updates of the covariance matrix using the Woodbury matrix identity and one which updates
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Figure 1.5: Predicted parameters with the UKF used on the hard disk failure dataset where Q0

has large entries in the diagonal.

a Cholesky decomposition of the concentration matrix instead. The latter guarantees that the

covariance matrix is positive semi-definite but is slower. See the “ddhazard” vignette for further

details.

The SMA can have large entries in the diagonal of Q0 like the EKF with one iteration. A

disadvantage of SMA is that it is sequential and all matrix and vector products are in dimension

q × q and q. Thus, although one could do the matrix operations in parallel then this is only

advantageous if q is large. Moreover, the result depends on the order of the risk set. For this

reason, the risk sets are permuted once before running the algorithm. This can be avoided by

setting passing permu = FALSE in the ddhazard_control call.

20



0 10 20 30 40 50 60

−
10

−
9

−
8

−
7

Time

P
ar

am
. H

M
S

5C
40

40
A

LE
64

0

0 10 20 30 40 50 60

−
11

−
10

−
9

−
8

−
7

Time

P
ar

am
. H

M
S

5C
40

40
B

LE
64

0

0 10 20 30 40 50 60

−
9

−
8

−
7

−
6

−
5

−
4

−
3

Time

P
ar

am
. H

D
S

5C
30

30
A

LA
63

0

0 10 20 30 40 50 60

−
8.

5
−

7.
5

−
6.

5
−

5.
5

Time

P
ar

am
. H

D
S

5C
40

40
A

LE
63

0

0 10 20 30 40 50 60

−
8.

0
−

7.
0

−
6.

0
−

5.
0

Time

P
ar

am
. H

D
S

72
20

20
A

LA
33

0

0 10 20 30 40 50 60

−
8

−
7

−
6

−
5

−
4

Time

P
ar

am
. H

D
S

72
30

30
A

LA
64

0

0 10 20 30 40 50 60

−
5

−
4

−
3

−
2

−
1

Time

P
ar

am
. S

T
31

50
03

41
A

S

0 10 20 30 40 50 60

−
5.

5
−

5.
0

−
4.

5

Time

P
ar

am
. S

T
31

50
05

41
A

S

0 10 20 30 40 50 60

−
7.

0
−

6.
0

−
5.

0

Time

P
ar

am
. S

T
40

00
D

M
00

0

Figure 1.6: Similar plot to Figure 1.5 but where the diagonal entries of Q0 are 0.1. The black
curve is the estimates from the EKF with one iteration in the correction step. Grey transparent
bars indicate the number of individuals at risk for the specific hard disk version. Heights are only
comparable within each frame.

1.2.4 Global Mode Approximation

We can also minimize the right-hand side of Equation (1.31) directly. This will be called the

GMA method. It is equivalent to an L2 penalized generalized linear model (GLM) in every

iteration. It can be shown that the EKF with more iterations solves an equivalent problem as a

Newton-Raphson to minimize the right-hand side of Equation (1.31). Thus, details on the GMA

is omitted here and can be found in the “ddhazard” vignette.

The GMA is sensitive to the choice of Q0 which works as an inverse penalty. To give an extreme

example, suppose we have no events in the first interval and only an intercept. Setting Q0 to

a diagonal matrix with large entries (in this case Q0 is a scalar) implies almost no restrictions

on the intercept. Thus, selecting an intercept tending towards minus infinity is optimal. The

computation with the GMA is done in parallel with OpenMP (Board, 2013).
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The global mode approximation and the EKF with more iterations in the correction step are

somewhat similar to the method in Durbin and Koopman (2012, Section 10.6). The major dif-

ference is that Durbin and Koopman (2012) make the Taylor expansion before running the filter

about the current estimate of α0,α1, . . . ,αd yielding so called pseudo-observations of an approx-

imating Gaussian model. In contrast, the GMA method makes the expansion at each correction

step within the filter about the current estimate of a t|t−1. The KFAS package implements the

method in Durbin and Koopman (2012, Section 10.6). Further, KFAS uses the sequential method

described in Koopman and Durbin (2000). The sequential method in KFAS is somewhat like the

SMA. Again, the difference is at what point the Taylor expansion is made.

Examples with the SMA and GMA

I will use the hard disk failures data set to compare the SMA and GMA methods with the EKF

with a single iteration in the correction step. Below, I estimate the model with the SMA method,

and the GMA method. I use the correction step with the Cholesky decomposition with the SMA

by setting the argument posterior_version = "cholesky" in the the ddhazard_control call.

R> system.time(ddfit_SMA <- ddhazard(formula = frm, data = hd_dat, by = 1,

+ max_T = 60, id = hd_dat$serial_number, Q_0 = diag(1, 23), Q = diag(.1,

+ 23), control = ddhazard_control(eps = .001, method = "SMA",

+ posterior_version = "cholesky")))

user system elapsed

443 0 442

R> system.time(ddfit_GMA <- ddhazard(formula = frm, data = hd_dat, by = 1,

+ max_T = 60, id = hd_dat$serial_number, Q_0 = diag(1, 23), Q = diag(.1,

+ 23), control = ddhazard_control(eps = .001, method = "GMA")))

user system elapsed

213.5 0.0 38.2

Figure 1.7 shows the three sets of predicted parameters. The parameters in Figure 1.7 appear

similar. It is clear from the above that the SMA method using the Cholesky decompositions is

much slower than the GMA. Further, the GMA has a computation time which is close to the

EKF with more iterations shown earlier as expected.

1.2.5 Constant Effects

In some applications, constant (time-invariant) parameters may be relevant. A common way of

estimating fixed parameters in filtering (e.g., see Harvey and Phillips, 1979) is to set the entries

of the rows and columns of Q for the fixed parameters to zero and the corresponding diagonal

entries of Q0 to large values. This approach is also used by Fahrmeir (1992) with the EKF. An

alternative method to estimate the effects in the M-step is also included in the package but it is

omitted here for brevity.
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Figure 1.7: Predicted parameters using the EKF with a single iteration in the correction step,
the GMA, and the SMA for the hard disk failure data set. The gray lines are the parameters
from the SMA, blue lines are parameters from the GMA, and the black lines are the parameters
from the EKF. Grey transparent bars indicate the number of individuals at risk for the specific
hard disk version. Heights are only comparable within each frame.

1.2.6 Second Order Random Walk

I will end this part of the paper by estimating fixed parameters in the E-step as mentioned in

the previous section. Further, I will illustrate the use of the second order random walk model.

I estimate the model below where the factor levels for the hard disk version follow a second

order random walk, and the spline for the SMART 12 attribute is fixed. I specify that I want

a second order random walk for the factor levels by setting the argument order = 2. I specify

which terms are fixed by wrapping the terms in the formula in the ddFixed function. The

fixed effect estimation method is selected by setting fixed_terms_method = "E_step" in the

ddhazard_control call. To avoid divergence, I decrease the learning rate by setting the LR

argument the ddhazard_control call. Notice that Q_0’s dimension is twice that of Q. Lastly, I
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increase the maximum number of EM-iterations with the n_max = 250 argument.

R> frm_fixed <- Surv(tstart, tstop, fails) ~ -1 + model + ddFixed(ns(smart_12,

+ knots = seq(3, 53, 10), Boundary.knots = c(0, 115)))

R> system.time(ddfit_fixed_E <- ddhazard(formula = frm_fixed, data = hd_dat,

+ by = 1, max_T = 60, order = 2, id = hd_dat$serial_number, Q_0 = diag(1,

+ 32), Q = diag(.1, 16), control = ddhazard_control(method = "GMA", n_max =

+ 250, NR_eps = .00001, eps = .001, LR = .1, fixed_terms_method =

+ "E_step")))

user system elapsed

3626.355 0.614 609.564

Figure 1.8 shows the predicted factor levels for the hard disk version, and Figure 1.9 shows the

spline estimate. The curves are more smooth compared to the first order random walk model

as expected. The spline estimate shows a close to monotone increasing effect of the number of

power cycle as we may have expected.

1.3 Discrete Versus Continuous Time

The dynamic discrete time model is where we use the log-likelihood terms, lit(αt), as shown in

Equation (1.21) where h is the inverse logit function, h(x) = exp(x)/(1 + exp(x)). This model

is suited for situations where the events are observed in intervals and the covariates change at

discrete times. However, this is not the case for the hard disk data set. The hard disk data is not

reported on monthly precision but on hourly precision. I print the first 10 rows here to illustrate

this:

R> hd_dat[1:10, c("serial_number", "model", "tstart", "tstop", "smart_12")]

serial_number model tstart tstop smart_12

505 5XW004AJ ST31500541AS 30.001 40.010 0

506 5XW004AJ ST31500541AS 40.010 43.172 24

507 5XW004AJ ST31500541AS 43.172 56.917 25

508 5XW004Q0 ST31500541AS 40.618 50.962 0

509 5XW004Q0 ST31500541AS 50.962 53.729 54

510 5XW004Q0 ST31500541AS 53.729 54.122 56

511 5XW004Q0 ST31500541AS 54.122 54.424 57

512 5XW004Q0 ST31500541AS 54.424 54.457 58

513 5XW004Q0 ST31500541AS 54.457 54.690 59

514 5XW004Q0 ST31500541AS 54.690 57.193 61

I will explain how the ddhazard implementation discretizes continuous event times in the

following paragraphs. I redefine xij as the covariate vector for individual i in the period (ti,j−1, tij ].

Next, I redefine the discrete time risk set, Rt, as

Rt = {(i, j) : ti,j−1 ≤ t− 1 < ti,j ∧Dij = 0} (1.33)
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Figure 1.8: Predicted parameters for some of the factor levels with the second order random
walk model. The blue lines are parameters with the second order random walk model with a fixed
effect for the power cycle count and the black lines are parameters with the first order random
walk model where all parameters are time-varying. Grey transparent bars indicate the number
of individuals at risk for the specific hard disk version. Heights are only comparable within each
frame.

Further, I redefine

yijt = 1{Ti∈(max(ti,j−1,t−1),min(tij ,t)]∧ t−1<tij≤t} (1.34)

lijt(αt) = yijt log h(x>ijαt) + (1− yijt) log
(

1− h(x>ijαt)
)

(1.35)

yijt is a generalization of Equation (1.12) that indicates whether individual i experiences an event

with the jth covariate vector in interval t. The following example will illustrate the impact of

discrete time risk sets in Equation (1.33). Suppose we look at interval d− 1 and d (the last two

intervals) in a model with time-varying covariates. Further, let both the event times and the

point at which we observe new covariates happen at continuous points in time.
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Figure 1.9: Fixed effects estimates for the SMART 12 attribute on the linear predictor scale.

Figure 1.10 illustrates such a situation. Each horizontal line represents an individual. A cross

represents when the covariate values jump for the individual, and a filled circle represents an

event that has happened for the individual. Lines that end with an open circle are right censored.

The vertical dashed lines in the figure represent the time interval borders. The first vertical line

from the left is the start of interval d − 1, the second vertical line is when interval d − 1 ends,

and interval d starts, and the third vertical line is when interval d ends. I will use observation a

in Figure 1.10 to illustrate the risk set in Equation (1.33). The covariate vector used in interval

d− 1 is xa1 as ta0 < d− 2 < ta1. By similar arguments, the covariate vector in interval d is xa2.

Because we use the risk set in Equation (1.33), we use covariates from 1 for individuals a, c, d,

and f for the entire period of interval d−1, even though the covariates change at 2. Furthermore,

g is not in either interval, as we only know that it survives parts of interval d − 1. Lastly, we

never include b as we do not know its covariate vector at the start of interval d.

1.3.1 Continuous Time Model

The continuous time model implemented in ddhazard is the model shown in Equation (1.11) in

the introduction. The assumptions of the model are that

• the instantaneous hazards are given by exp(xi(t)
>α(t)).

• parameters jump at the end of time intervals, i.e., α(t) = αdte where dte gives the ceiling

of t. This is illustrated in Figure 1.10 where the parameters jump at the vertical lines.

• the individuals’ covariates jump, i.e., xi(t) = xij where j = {k : ti,k−1 < t ≤ ti,k}. In

Figure 1.10, the covariates jump at the crosses.

The instantaneous hazard jumps when either the individual’s covariates jump or the parame-

ters jump. Thus, an individual’s event time is piecewise exponentially distributed given the state

vectors. The log-likelihood of individual i having an event at time ti is

log (L ( ti | α0, . . . ,αd )) = xi(ti)
>α(ti)−

∫ ti

0
exp

(
xi(u)>α(u)

)
du (1.36)
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Figure 1.10: Illustration of a data set with 7 individuals with time-varying covariates. Each
horizontal line represents an individual. Each number indicates a start time and stop time in
the initial data. A cross indicates that new covariates are observed while a filled circle indicates
that the individual has an event. An open circle indicates that the individual is right censored.
Vertical dashed lines are time interval borders. The symbols for the covariate vectors and stop
times are shown for observation a.

where L (·) denotes the likelihood. Because of our assumptions, the complete data log-likelihood

in Equation (1.20) simplifies to

L (Q,Q0,µ0) =− 1

2
(α0 − µ0)>Q−1

0 (α0 − µ0)

− 1

2

d∑
t=1

(αt − Fαt−1)>RQ−1R> (αt − Fαt−1)

− 1

2
log |Q0| −

d

2
log |Q|

+
d∑
t=1

∑
(i,j)∈Rt

lijt(αt) + . . .

(1.37)

where

lijt(αt) = yijtx
>
ijαt − exp

(
x>ijαt

)
(min{t, tij} −max{t− 1, ti,j−1}) (1.38)

The lijt terms are a simplification of Equation (1.36), where I use the assumption that both the

covariates, xi(t), and parameters, α(t), are piecewise constant. Further, Rt is the continuous

time risk set given by

Rt = {(i, j) : ti,j−1 < t ∧ tij ≥ t− 1 ∧Dij = 0} (1.39)
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The two conditions in Rt are that the observation must start before the interval ends (ti,j−1 < t),

and end after the interval starts (tij ≥ t−1). I will use observation a in Figure 1.10 as an example.

Observation a has two covariate vectors in interval d − 1. The first is xa1 as ta0 < d − 1 and

ta1 > d− 2. Similar arguments apply for the covariate vector xa2.

Example with the continuous model

As mentioned in Section 1.3, the start and stop times in the hard disk failure data set are in

fractions of months on a hourly precision. Thus, I can use the continuous model. I fit the model

with the EKF with more iterations in the correction step and get the continuous model by setting

model = "exponential":

R> system.time(ddfit_cont <- ddhazard(formula = frm, data = hd_dat, by = 1,

+ max_T = 60, model = "exponential", id = hd_dat$serial_number, Q_0 = diag(

+ 1, 23), Q = diag(.1, 23), control = ddhazard_control(NR_eps = .0001, eps =

+ .001, LR = .5, method = "EKF")))

user system elapsed

117.6 12.2 26.0

Figure 1.11 shows the first estimated factor levels’ parameters. The results are comparable to

what we have seen previously (e.g., see Figure 1.3 where I also used the EKF with more iterations

in the correction step but with the discrete time model).

1.4 Simulations

In this section, I will simulate data using the first order random walk model and illustrate the

computation time, and mean square error (MSE) of the predicted parameters as the number of

individuals increases. I use a first order random walk for the parameters with 21 parameters. The

intercept starts at -3.5, and the other parameters start at points drawn from the standard normal

distribution. I set the intercept to a low value to decrease the baseline likelihood of an event in

every interval. I let covariance matrix Q be a diagonal matrix which has 0.12 in the first entry

(the intercept) and 0.332 for rest of the diagonal entries. The standard deviation is chosen lower

for the intercept to ensure that the intercept does not change “too much” with high probability.

Figure 1.12 provides an example of a draw of parameters.

I simulate a different number of individuals with n = 210, 211, . . . , 218 in each trial. Each

individual is right censored at time 30, and I set the interval lengths to 1. Further, I simulate

random delayed entry. We randomly start to observe each individual at time 0, 1, . . . , 29 with a

50% chance of 0 and uniform chance on the other points. This mimics a situation like corporate

default prediction where we use calendar time as the time scale. A firm may first be incorporated

a while into the study, in which case the firm is subject to delayed entry.

Each individual has time-varying covariates that change after five periods. Thus, if an in-

dividual starts at time 2, his covariate vector changes at time 7, 12, . . . , 27. The covariates are

drawn from an iid standard normal distribution. For each value of n, I make 11 simulation trials.

28



0 10 20 30 40 50 60

−
10

−
9

−
8

−
7

−
6

Time

P
ar

am
. H

M
S

5C
40

40
A

LE
64

0

0 10 20 30 40 50 60

−
12

−
10

−
8

−
7

−
6

Time

P
ar

am
. H

M
S

5C
40

40
B

LE
64

0

0 10 20 30 40 50 60

−
9

−
8

−
7

−
6

−
5

−
4

−
3

Time

P
ar

am
. H

D
S

5C
30

30
A

LA
63

0

0 10 20 30 40 50 60

−
9.

0
−

8.
0

−
7.

0
−

6.
0

Time

P
ar

am
. H

D
S

5C
40

40
A

LE
63

0

0 10 20 30 40 50 60

−
8.

0
−

7.
0

−
6.

0
−

5.
0

Time

P
ar

am
. H

D
S

72
20

20
A

LA
33

0

0 10 20 30 40 50 60

−
7

−
6

−
5

Time

P
ar

am
. H

D
S

72
30

30
A

LA
64

0

0 10 20 30 40 50 60

−
5

−
4

−
3

−
2

Time

P
ar

am
. S

T
31

50
03

41
A

S

0 10 20 30 40 50 60

−
5.

5
−

5.
0

−
4.

5
−

4.
0

Time

P
ar

am
. S

T
31

50
05

41
A

S

0 10 20 30 40 50 60

−
7.

0
−

6.
5

−
6.

0
−

5.
5

Time

P
ar

am
. S

T
40

00
D

M
00

0

Figure 1.11: Predicted factor levels parameters with the continuous time model.
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Figure 1.12: Example of parameters in the simulation experiment. The black curve is the
intercept and the gray curves are the parameters for the covariates.
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EKF EKF with extra iterations UKF SMA GMA

Run time 2.324 4.763 15.839 10.550 5.196
Log-log slope 0.760 0.812 1.042 0.778 0.805

Table 1.3: Summary information of the computation time in the simulation study. The first row
shows the median runtime for largest number of individuals. The UKF is only up to n = 32768.
The second row shows the slope of the log computation time regressed on the log number of
individuals for n ≥ 16384.

I estimate the UKF model only up to n = 215 because of the computation time. Further, I set

the UKF hyperparameters to (α, β, κ) = (1, 0, 0.004), which yields W
[m]
0 = 0.0001. Q0 for the

EKF with extra iterations, and the GMA is a diagonal matrix with entries 1. The UKF has

0.01 as the diagonal entries. The EKF without extra iterations and the SMA have 10000 in the

diagonal entries of Q0. All the filters have the starting value of Q as a diagonal matrix with 0.01

in the diagonal elements. All the methods take at most 25 iterations of the EM-algorithm if the

convergence criteria is not previously met.

The simulations are run on a laptop with Ubuntu 18.04 with an Intel® core™ i7-8750H @

2.20GHz and 16GB ram. Figure 1.13 shows the medians and means of the computation time.

Table 1.3 displays the median computation time for the largest value of n along with the regression

slope of the log computation time regressed on the log number of individuals. All methods have

a slope close to or below 1, reflecting the O (nt) computational complexity. In fact, the slope is

less than 1 for all but the UKF method. This can be explained by the overhead of the parallel

computation. Further, the methods tend to use less EM iterations when more data is available.

The latter can be seen from Figure 1.15, which shows the median number of iterations of the

EM-algorithm. All the computation times include the time required to set up the model matrix

and fit a weighted GLM to get a starting values for α0. The setup time is equal for all methods.

Figure 1.14 shows a plot of the MSE for the parameters. The EKF with one iteration in the

correction step does not improve much as n increases. Hence, more iterations seem preferable

in this example. Some points are worth stressing. First, the computation time of the UKF can

be reduced by using a multithreaded BLAS library or reimplementing the code. I have seen a

reduction up to factor 2 for larger data sets on the setup used in the simulation when OpenBLAS

(Xianyi et al., 2012) is used. Further, one can do more tuning (especially with the UKF) for each

data set, which is not done in the present case.

The simulation here is “extreme” in that the linear predictor can take large absolute values in

the last intervals with a nonnegligible probability. Thus, I perform a second simulation experiment

where I draw the covariates from a normal distribution with zero mean and variance 0.332.

Figure 1.16 shows MSEs. The difference between the filters is small in terms of mean square

error. The computation times are similar to before in terms of the relative differences. Still, it

seems that the EKF with extra iterations, and the GMA are preferred.
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Figure 1.13: Median computation times of the simulations for each method for different values
of n. The gray symbols to the right are the means. The filled squares are the EKF, the crosses are
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squares are the GMA. The scales are logarithmic so a linear trend indicates that computation
time is a power of n.
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Figure 1.14: Median mean square error of predicted parameters of the simulations for each
method for different values of n. The gray symbols to the right are the means. The filled squares
are the EKF, the crosses are the EKF with extra iteration, the circles are the UKF, the triangles
are the SMA, and the open squares are the GMA. The axis are on the logarithmic scale.

1.5 Comparison with Other Packages

I will end by comparing the implemented methods with other packages in R mentioned in the

start of the article. Specifically, I will discretize the time line and use the gam function in the

mgcv package to get a time-varying parameter by adding a spline over time for the intercept on

the log odds scale as described in Tutz and Schmid (2016, chapter 5). Further, I use the phreg

function from the eha package with argument dist = "pch" to get a piecewise constant intercept

in an exponentially distributed arrival time model. We set each time interval to have length 1. I

will also estimate a Cox model with the coxph function from the Survival package. Lastly, I use

the discrete model with logit link function from ddhazard to get comparable results to the gam

function. We use interval widths 0.5 for both ddhazard and gam.
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Figure 1.16: Similar plot to Figure 1.14 but where each element of the covariate vectors is
drawn from N

(
0, 0.332

)
.

For simplicity, we focus on the ST4000DM000 hard disk version. Further, we take the hard

disk information up to month 35. We do not have data for most of the hard disks beyond this

time point. We only estimate a linear effect on the link scale in each model for the power cycle

count with a time constant parameter.

The left plot of Figure 1.17 shows the discrete hazard rates with the power cycle count equal to

zero. It shows that the result from gam and ddhazard are similar. The estimate from phreg is less

smooth as there is a separate coefficient for each time interval of length 1 without any penalties.

We use a natural cubic spline for the intercept in the gam fit. Thus, the log odds are linear in

time beyond month 35 as these splines are linear beyond the boundary knots. This results in

an almost linear increasing discrete hazard as the inverse logit function is almost linear for small

inputs. Moreover, the prediction intervals are wider for the gam fit than for the ddhazard fit. The

width of the prediction intervals with ddhazard fit mainly depends on the estimate of Q which

is estimated to fit the whole curve.
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Figure 1.17: The left plot shows the discrete hazard rate when the power cycle count is
equal to zero. The black line is the rate from mgcv::gam, the blue line is the rate from
dynamichazard::ddhazard, and the orange line is the rate from eha::phreg. The dashed
lines are 95% back-transformed prediction intervals (confidence bounds are not provided by
eha::phreg). The right plot shows the estimated survival curve with the power cycle count
equal to zero. The dark gray line is the curve from survival::coxph with 95% prediction inter-
vals and the blue curve is from dynamichazard::ddhazard.

The right plot of Figure 1.17 shows the estimated survival curve from the Cox model from

the coxph call and dynamic discrete hazard model from the ddhazard call both with the power

cycle count equal to zero. The former is computed with the survfit function while the latter is

computed with the ddsurvcurve function. The two generally agree but only the dynamic discrete

hazard model allows for extrapolation beyond time 35 as the baseline hazard is nonparametric

in the Cox model. The curve from ddsurvcurve is illustrated as a step function as the model

provides discrete hazard rates.

1.6 Conclusion

I have covered the EM-algorithm used in the ddhazard function in dynamichazard and the four

different filters available with the ddhazard function, highlighting the pros and cons of the different

filters. Further, I have covered the dynamic discrete time model and the dynamic continuous time

model. The simulation study shows that the filters scale well with the number of observations

and are fast. Further, the simulation study shows how the mean square error of the predicted

parameters behaves with different numbers of observations. The extended Kalman filter has been

compared with other methods in R.

I have not covered all the S3 methods provided in the dynamichazard package. These include

plot, predict, hatvalues, and residuals. It is possible to include weights for the observations

with all the filters. The details hereof are in the“ddhazard”vignette of this package. Furthermore,

the ddhazard_boot function can be used to perform a nonparametric bootstrap. Weights are

used in ddhazard_boot with case resampling, which reduces the computation time. Vignettes

are provided with the dynamichazard package which illustrate the use of the mentioned functions.
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A demo of the models is available by running ddhazard_app. Particle filter and smoothers are

provided with the package but are not covered in this paper. I will end by looking at potential

further developments.

1.6.1 Further Developments

I will summarize some potential future developments of the dynamichazard in this section. First,

we can replace the random walk model with another type of multivariate autoregressive model.

This will require additional parameter to be estimated which can be done in the M-step of the

EM-algorithm. See the constrained EM-algorithm in the MARSS package (Holmes, 2013) for

update formulas.

Other models can be implemented in survival analysis, such as recurrent events and competing

risk (see Fahrmeir and Wagenpfeil, 1996). Furthermore, the methods can also be used outside

survival analysis. For instance, with panel data with real valued outcomes, multinomial outcomes,

or ordinal outcomes for each individual in each interval. The underlying time can depend on the

context (e.g., it could be calender time or time since enrollment).

The logistic link function in the discrete model can be changed to other link functions without

much work as both the C++ and R code is implemented like the glm function in R.

The current implementation of parallel computation is based on shared memory. However,

we can extend the implementation to a distributed network. Rigatos (2017, chapter 3) covers

different ways of performing the computation on a distributed network. Two approaches are

either to distribute the work in each step of the filter or to run separate filters and aggregate the

filters at the end.

An alternative to the filters in the E-step is to use the linearisation method described in Durbin

and Koopman (2012, Section 10.6) mentioned in Section 1.2.4. It would be interesting to imple-

ment this approach in the package as well. Fahrmeir and Kaufmann (1991) describe an idea similar

to the linearisation method in Durbin and Koopman (2012, Section 10.6), using a Gauss-Newton

and Fisher scoring method.

The methods discussed in this paper can be used as the initial input to the importance sampler

with use of antithetic variables and control variables, as suggested by Durbin and Koopman

(2000). This approach is implemented in the KFAS package (Helske, 2017). This can be used

for approximate likelihood evaluation to perform maximum likelihood estimation as in the KFAS

package instead of the EM-algorithm.

All the models covered in this paper can be estimated with a suitable generalized linear mixed

model with correlated random terms. Thus, we can perform approximate maximum likelihood

estimation with e.g., the pseudo-likelihood method used in the GLIMMIX procedure in SAS, or the

Laplace approximation used in the GLIMMIX procedure and the lme4 package (Bates et al., 2015)

in R. Alternatively, the implemented particle filters in the dynamichazard package can be used

for approximate likelihood evaluations and parameter estimation.
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Chapter 2

Can Machine Learning Models
Capture Correlations in Corporate
Distresses?

Benjamin Christoffersen, Rastin Matin, and Pia Mølgaard

Abstract

A number of papers document that recent machine learning models outperform traditional corpo-

rate distress models in terms of accurately ranking firms by their riskiness. However, it remains

unanswered whether advanced machine learning models can capture correlations in distresses

sufficiently well to be used for joint modeling, which traditional distress models often struggle

with. We implement a regularly top-performing machine learning model and find that prediction

accuracy of individual distress probabilities improves while there is almost no difference in the

predicted aggregate distress rate relative to traditional distress models. Thus, our findings sug-

gest that complex machine learning models do not eliminate the excess clustering in distresses.

Instead, we propose a frailty model, which allows for correlations in distresses, augmented with

regression splines. This model demonstrates competitive performance in terms of ranking firms

by their riskiness, while providing accurate aggregate risk measures.

Keywords: corporate distress prediction, discrete hazard models, frailty models, gradient boosting

JEL classification: C49, C53, G17, G33

We are grateful to Mads Stenbo Nielsen (discussant), David Lando, Søren Feodor Nielsen,

and seminar participants at Copenhagen Business School and Danmarks Nationalbank for helpful

comments.
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2.1 Introduction

Estimating accurate corporate distress probabilities is of particular interest to central banks in

the European Union the coming years. Following the regulation on the collection of credit risk

data of the European Central Bank (ECB), members of the euro area are obliged to establish

central credit registers and to participate in a joint analytical credit database (“AnaCredit”). The

database will contain detailed information on lending by commercial banks to corporate borrowers

and, consequently, central banks can closely study the credit risk of a particular bank’s corporate

loan portfolio. For that purpose, it is essential to model the probability of default of a group of

individual borrowers jointly accurate in order to estimate portfolio risk measures.

In this paper, we investigate whether complex statistical models, via their sophisticated depen-

dency structures, can capture correlations in corporate distresses sufficiently well using firm-level

data alone. This is motivated by two strands of literature. The first focuses on the application

of machine learning models, i.e., complex models with highly nonlinear dependency structures

between the covariates and the outcome, to predict corporate bankruptcies (see e.g., Jones et al.,

2017, Min and Lee, 2005, Zi ↪eba et al., 2016). These papers show applications of one or more com-

plex statistical models which are commonly benchmarked against a logistic regression. Model

performance is then evaluated by rank- or binary-based performance metrics that compare the

models’ ability to classify or predict the distress of a firm. However, the models’ ability to accu-

rately estimate the aggregated percentage of firms that will default in the next period remains

uninvestigated as well as their ability to provide accurate portfolio risk measures. The second

strand of literature, pioneered by Duffie et al. (2009), shows that traditional hazard models (e.g.,

logistic regression) yield too narrow prediction intervals of the aggregated default rate due to

the model assumption that observations are conditionally independent. Duffie et al. (2009) then

advocate the need for unobservable temporal effects – or frailty – in the models, which add corre-

lations in defaults after conditioning on covariates, thereby relaxing the conditional independence

assumption. The conditional independence assumption is also implicitly made in most complex

statistical models. The focus of this paper is to elucidate if this affects such models’ ability to

accurately estimate the distress rate as well as the risk of a loan portfolio (i.e., not have issues

with excess clustering of default).

The complex statistical method we employ is a gradient boosted tree model, which has dis-

played superior performance in both bankruptcy prediction and other fields.1 Our hypothesis is

that previous models in literature are misspecified due to a linearity and additivity assumption.

Violations of these assumptions combined with, e.g., time-varying covariate distributions can yield

evidence of excess default clustering. An illustrative example is provided in Appendix 2.D. We

do not expect the conditional independence assumption to be satisfied in the gradient boosting

model, but our hypothesis is that the effect is sufficiently weak to be practically unimportant.

We find that the gradient boosted tree model is as unable to capture the yearly heterogeneity

in distress rates as traditional distress models and, furthermore, it is also unable to provide

appropriate estimates for the default risk in a loan portfolio. Comparing results of the gradient

1See Caruana and Niculescu-Mizil (2006) for a comparison in many other fields and Jones et al. (2017), Zi ↪eba
et al. (2016) who apply gradient tree boosting to firm distress or bankruptcy prediction with success.
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boosted tree model to results of a model with frailty, which has closer to nominal coverage of

prediction intervals and provides accurate risk measures, we show that loan portfolios of, in

particular, large banks can be viewed as too safe in the eyes of the regulator and/or risk manager,

if he or she relies on a gradient boosted tree model.

Our sample consists of annual financial accounts published between 2003 and 2016 of all non-

financial Danish firms both traded and non-traded. While most of the default literature focuses

on public firms where strong market-based predictors are available, private firms are important

for the application we have in mind. Private firms have a much larger part of the debt market in

Denmark than public firms, as only 14% of the bank debt on the financial statements are held by

public firms in our sample at the end of 2016.2 Moreover, we only have 147 public firms in 2016,

which is unrealistic to perform modeling on due to the small number of observed defaults. Thus,

we will consider both traded and non-traded firms as this yields a large sample that allows us to

include many covariates and add nonlinear effects. The work in the main body of the paper is

based solely on micro level data, but in a robustness test we show that models including macro

level data perform better in some periods. However, estimating a model that generalizes well may

be hard with the limited number of cross-sections. Lastly, the unobserved temporal effect is still

economically and statistically significant after the inclusion of the macro variable.

We start the analysis by benchmarking the gradient boosted tree model against a multiperiod

logit model as in Shumway (2001) and a generalized additive model, which allows for a nonlinear

relationship between the covariates and the probability of entering into a distress on the logit

scale. Like others before us, we observe improvements in out-of-sample ranking of firms by their

distress probability as we use more complex models, going from an average out-of-sample area

under the receiver operating characteristic curve (AUC) of 0.798 to 0.822. Thus, we find that

the more complex model is 2.4 percentage points more likely to have a higher distress probability

for a random distressed firm than for a random non-distressed firm in each year on average.

However, the gains we find of complex modeling are more than 4 times smaller than what recent

papers find.3 Thus, one may prefer the simpler models if interpretability is desired with only a

minor loss of accuracy. Our finding suggests that earlier papers have used poor baseline models

when evaluating the gains of applying complex machine learning models. Further, the difference

between the firm-level performance of our generalized additive model and gradient boosted tree

model is small. This result suggests that higher order interactions may not be needed for corporate

default models, as our generalized additive model only allows for two-way interactions.

Next, we address the models’ ability to predict the percentage of firms that will enter into a

distress in the following period. We find that all models fail to capture the temporal fluctuations

in distress rates and provide too narrow prediction intervals. In particular, only very few of

the 90% prediction intervals contain the realized percentage of firms entering into distress in

the 10 years that we can backtest. We formally test the models’ ability to provide accurate

prediction intervals by backtesting estimated value-at-risk like figures of the distress rates for

different portfolios that mimic bank exposures. All three models fail the test at a 1% significance

2The figures is computed by taking the bank debt provided by Bisnode and subtracting the bond debt which is
included in these figures.

3See Zi ↪eba et al. (2016) and Jones et al. (2017).
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level with a null hypothesis that the quantiles have the correct coverage. Thus, none of the models

have wide enough prediction intervals or provide accurate risk measures.

Too narrow prediction bounds have several implications. First, they may result in a downward

bias in risk measures for a portfolio with exposures to different firms. Secondly, they suggest that

the assumption of conditional independence given the covariates is not satisfied. Violation of

the conditional independence assumption suggests that there may exist an unobservable macro

effect that needs to be accounted for to capture the excess distress events. That is, the gradient

boosted tree model is not sufficiently able to capture correlations in distresses from firm-level data

alone despite fitting better to each individual firm. The fact that the conditional independence

assumption is violated may not be surprising, but the violation is sufficiently large that it cannot

be disregarded.

To relax the conditional independence assumption we estimate a generalized linear mixed

model (a frailty model) with a random intercept which allows for correlations in distresses beyond

the correlation introduced by the covariates. We contribute to the current literature on frailty

models by adding nonlinear effects between the covariates and the outcome variable. Inclusion of

nonlinear effects yields a better firm-level model and we thus get a frailty model which provides

out-of-sample rankings that are almost as good as the gradient boosted tree model. Moreover,

we show that the random intercept in the frailty model is both statistically and economically

significant.

2.2 Related Literature

This paper combines two strands of literature in the field of predicting corporate defaults. The

first focuses on frailty (and/or contagion) or time-varying effects (e.g., see Azizpour et al., 2018,

Chen and Wu, 2014, Duffie et al., 2009, Koopman et al., 2011, Kwon and Lee, 2018, Lando

et al., 2013, Qi et al., 2014). These papers generally show that models with a simple relationship

between observable covariates and distress fail to capture the yearly fluctuations in default rates,

i.e., a violation of the conditional independence assumption. Various forms of unobservable effects

are then introduced which account for the temporal fluctuations. Our contribution to this line

of work is a frailty model, where nonlinear dependencies are introduced between some covariates

and the outcome variable on the log odds scale. Furthermore, we compare the frailty model to

a statistical model that allows for complex dependencies between covariates and the outcome

variable and find that the frailty model shows almost as good ranking and better coverage of the

prediction intervals. Moreover, we provide evidence that the excess clustering of defaults is not

because of a too simple dependency structure with a large sample of private and public firms.

The second strand of literature that we relate to applies complex statistical models to improve

probability of default estimates (e.g., see Jones et al., 2017, Kim and Kang, 2010, Min and Lee,

2005, Zi ↪eba et al., 2016). These papers often use considerably more covariates in their models and

use methods which allow for more complex relationships compared to typical frailty models. The

main focus of these papers is on ranking or binary classification of firms and not on whether the

models capture the temporal fluctuations in the default rate. The complex models are typically
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benchmarked against a logistic regression (among other models) with automated model selection

and little focus on model diagnostics. In our paper we use a logistic model as a benchmark as

well, but we carefully set up the model using both statistical and economic sense. We add to

this literature by evaluating the ability of the complex model to capture the yearly fluctuation in

default rates. We show that the improvements in the forecasts for each firm do not outweigh the

strict conditional independence assumption when one is interested in portfolio risk.

2.3 Statistical Models for Predicting Corporate Distress

In this section we go through the four discrete hazard models used in this paper to predict

corporate distress. The discrete hazard models we use are estimated using a panel data set where

each observation contains a set of covariates (financial ratios, age, sector etc.) and an indicator

of whether the firm has a distress event or not in the given year. We will cover the distress event

definition and discrete hazard models further in Section 2.4.1.

First, we briefly describe the well known multiperiod logit model. The notation introduced

in this section will serve as the basis for the more general models. Secondly, we describe the

generalized additive model which allows for a nonlinear dependence between the covariates and

the probability of distress on the logit scale. Thirdly, we describe the gradient boosted tree method

we use. Finally, we introduce the generalized linear mixed model which relaxes the conditional

independence assumption.

2.3.1 Generalized Linear Models

We will use so-called multiperiod logit models, where we employ a logistic regression in the discrete

hazard model described in Section 2.4.1. Let Rt ⊆ {1, · · · , n} denote the active firms at time t,

yit denote whether firm i has an event in year t, d denote the number of years, and xit denote the

covariates for firm i in year t. Then the maximum likelihood estimates of the coefficients, β, are

arg max
β

d∑
t=1

∑
i∈Rt

yitβ
>xit − log

(
1 + exp

(
β>xit

))
(2.1)

where xit includes a constant 1 for the intercept, industry covariates, and potentially macro

covariates. Furthermore, we will refer to Rt as the risk set and let Xt denote the matrix with

rows equal to the covariate vectors xit with i ∈ Rt. Multiperiod logit models are a common choice

for distress models since the work of Shumway (see Shumway, 2001) and has been used in, e.g.,

Campbell et al. (2008), Chava and Jarrow (2004). We will refer to multiperiod logit models as

generalized linear models (GLMs) since estimation can be done with regular estimation methods

for GLMs.

2.3.2 Generalized Additive Models

The GLM in Section 2.3.1 may pose too strict assumptions on the relationship between the

covariates and whether a firm enters into distress. In particular, the assumption that the covariates
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are linearly related to the logit of the probability of distress may be too strict for some of the

covariates. Generalized additive models (GAMs) relax this assumption by assuming that some of

the covariates have a continuous and nonlinear partial effect on distress probability on the logit

scale.

We employ a GAM where nonlinear effects are accounted for through natural cubic splines

with a penalty on the second order derivative. The maximization problem with q nonlinear effects

and with given penalty parameters λ = (λ1, . . . , λq)
> is

β(λ) = arg max
β

d∑
t=1

∑
i∈Rt

yitηit − log (1 + exp (ηit))− β(s)>S(λ)β(s) (2.2)

where

ηit = β(f)>x
(f)
it +

q∑
j=1

γ>j fj(x
(s)
itj ), β(s) =


γ1

...

γq

 , β =

(
β(f)

β(s)

)
(2.3)

The functions fj return a basis vector for a natural cubic spline, x
(s)
itj is covariate j of firm i with a

nonlinear effect at time t, x
(f)
it are the covariates with a linear effect for firm i at time t, and S(λ)

is a penalty coefficient matrix which yields a second order penalty on each spline j = 1, . . . , q.

The knots for the natural cubic spline basis are chosen as empirical quantiles. Equation (2.2) can

be solved with penalized iteratively re-weighted least squares if λ is known.

The penalty coefficient matrix, S(λ), depends linearly on the unknown penalty parameters λ

that have to be estimated. This is done by minimizing an un-biased risk estimator (UBRE). The

effective degrees of freedom is the trace of

Fλ =
(
X>WX + S(λ)

)−1
X>WX (2.4)

where tr (·) denotes the trace of a matrix and y, X, z, and W denote the stacked matrices and

vector from each year (e.g., y = (y>1 , . . . ,y
>
d )>). The columns of X include the evaluated basis

functions, fj , for the nonlinear effects. W and z are the diagonal matrix with working weights and

vector of pseudo-responses from iterative re-weighted least squares, respectively. They implicitly

depend on β(λ), y, and X.4 The maximization is done with the so-called performance-oriented

iteration. See Wood (2017), Wood et al. (2015) for further technical details.

The final model also includes tensor product splines to allow for smooths in two dimensions.

These are formed by taking an outer product of two spline basis functions fj and is more general

than the model in Equation (2.3). The extension to two-dimensional smooths is straightforward,

but not covered in Equation (2.3) to keep the notation simple. GAMs have received limited

attention in the corporate default literature (one example is Berg, 2007). This is despite that

there is no prior reason to expect that the associations with covariates should be linear and

4Let g denote the link function which maps from the probability of an event to the linear predictors, ηit, in
Equation (2.3), let p̂it = g−1(ηit) be the expected probability of an event at the current iteration during estimation
or at convergence, and let V (p) = p(1 − p) denote the map from the probability of an event to the variance. Then
zit = ηit + g′(p̂it)(yit − p̂it) and wiit = 1/g′(p̂it)

2V (p̂it).
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additive on the logit scale. While we may expect a monotone effect, the linearity and additivity

are not obvious.

The advantage of the GAM is that the researcher has control over the complexity of the model.

For example, he or she can decide which covariates should be modeled with a nonlinear effect

and which do not. Moreover, it is easy to validate whether the final model makes sense through

standard diagnostic plots, to obtain partial effects of the covariates, to compute confidence in-

tervals, etc. We illustrate this in Appendix 2.B.1. However, the researcher has to consider the

effect and interactions of the covariates which may be hard, especially with higher order nonlinear

interactions.

Our selection of nonlinear effects and interactions is data driven. Particularly, we use standard

residual plots to see deviations from linearity and add nonlinear effects accordingly. While one may

be concerned about overfitting with a data driven procedure then the splines we show in Appendix

2.B.1 have very low uncertainty in areas with a large number of observations and observed events.

Although, these are computed under the assumption of conditional independence, our results

would not be altered by a substantial increase in the uncertainty in these areas.

2.3.3 Gradient Tree Boosting

Gradient tree boosting (GB) is a greedy function approximation method that can approximate

very complex models. The method is greedy in the sense that we iteratively make small local

improvements without updating the previous parts of the model. GB has gained much attention

possibly due to its flexibility and easy usability, as the researcher only has a few and simple model

choices relative to the GAM described in Section 2.3.2. Furthermore, GB has shown superior

performance in many fields, see e.g., Caruana and Niculescu-Mizil (2006), where an empirical

study is presented on different data sets where GB performs best on average on many metrics.

However, the advantages of GB come at a cost of limiting the researcher’s ability to set the

complexity of the effect of each covariate. Furthermore, it is not clear how to perform inference

such as testing significance of partial effects, and evaluating if the final model is “sensible” for

various combinations of covariates may be difficult if one allows for higher-order interactions (i.e.,

deep trees). Lastly, figuring out why a given observation gets the predicted probability is not as

easily done as with the GLM and GAM. This is a drawback for a financial institution that is

required to provide an explanation of why a certain probability of distress is predicted.

We will cover gradient tree boosting in the context of classification with the logit link function.5

We use Newton boosting, but in the following we will refer to it as gradient boosting as commonly

done in literature. A key component in the GB model is regression trees. The regression trees

we use solve a weighted L2 minimization problem by repeatedly performing binary splits on one

of the covariates. The splits are found greedily by taking the covariate and splitting point (of

the points that are considered) which yields the best improvements at each iteration. Figure 2.1

shows the first regression tree of the GB model estimated on the full sample.

5We refer to Bühlmann and Hothorn (2007), Friedman (2001) and Chen and Guestrin (2016) for more details
regarding the method and the software implementation of GB that we use, respectively.
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Equity

Equity / size (%)
< 172.5

Liquid assets

Liquid assets

< -19.1764

log(age)

log(age)< 152.5

log(age)

1.298
< 61.5

0.457

0.638< 1.49787

0.032

0.090< 1.7006

-0.445

-0.463< 1.49787

-0.817

Figure 2.1: Example of a regression tree. The figure shows the first tree in a GB model
estimated on the full sample. Squares are parent nodes while ovals are leaves. The figures in the
leaf nodes are the log odds value which is the term added to the linear predictor (multiplied by
a shrinkage parameter) in the final GB model. Observations in the top leaf are the most risky.
These have negative equity and a low value of liquid assets. Observations in the bottom leaf are
the least risky firms with high equity, high liquid assets, and are older firms.

We now turn to gradient boosting. Denote the estimated mean probability of a distress by

p̄ =
1

n

d∑
t=1

∑
i∈Rt

yit

where nt = |Rt| is the number of active firms at time t and n =
∑d

t=1 nt is the total number

of observations. Initialize the linear predictors as η
(0)
it = f (0)(x) = logit(p̄), where logit(p) =

log(p/(1−p)) is the logit function. Let X, y, and η(i) denote the stacked matrix and vectors such

that, e.g., η(i) = (η
(i)>
1 , . . . ,η

(i)>
d )>. Define the loss function, L, as

L(η) =
d∑
t=1

∑
i∈Rt

l(ηit; yit)

l(η; y) = −yη + log (1 + exp(η))

Then for i = 1, . . . , k

1. compute the first and second order derivatives using the linear predictors from the previous

iteration and denote these by

git = −yit +
(

1 + exp
(
−η(i−1)

it

))−1

hit = exp
(
−η(i−1)

it

)(
1 + exp

(
−η(i−1)

it

))−2

2. fit a regression tree denoted by a(i)(x) which is an approximation to

arg min
a∈C

d∑
t=1

∑
i∈Rt

hit

(
− git
hit
− a(xit)

)2
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where C is the set of trees we consider (e.g., trees with a given maximum depth).

3. update the model such that f (i)(x) = f (i−1)(x)+ρa(i)(x), where ρ ∈ (0, 1] is a predetermined

shrinkage parameter.

4. update the linear predictors by computing η
(i)
it = f (i)(xit).

The final GB model is the function f (k). The greedy part of the procedure can be seen at step

2 and 3 where update model locally without changing the previous parts of the model. There are

three main parameters in the above algorithm: The shrinkage parameter ρ, the maximum depth

of the trees in step 2, and the number of trees k. We select these with 5-fold cross-validation where

we sample the firms (not the financial statements) and evaluate the AUC which is introduced in

Section 2.5. In general, it is preferable to decrease the shrinkage parameter, ρ, while increasing

the number of trees, k, to get a better approximation of the true dynamics. However, one has a

finite budget in terms of computational power, which limits k and thus forces one to select ρ to

get the optimal number of trees around k. We fix k to around 250 and at most 300. We find ρ

with cross-validation on the full sample from 2003-2016 which we will describe in Section 2.4.1.

We find only very small improvements of decreasing the learning rate and using more trees. This

only leaves us with a choice for the maximum depth of trees.

Usually so-called ‘weak learners’ (biased methods) are used in step 2 above. In our case, this

amounts to shallow trees (trees with a low maximum depth). The weak learners are then combined

through gradient boosting yielding one “good” model with a substantially lower bias than any of

the individual learners while not affecting the variance much. See Bühlmann and Hothorn (2007)

for some simpler examples with theoretical results. For the aforementioned reasons, we have

tried maximum depths of 2-6 in preliminary testing. We used 5-fold cross-validation as described

above. We find little difference in model performance when going from tree depths of 3 to 6 and,

thus, we choose a maximum depth of 3.

Given the fixed learning rate and maximum depth of 3, we estimate the optimal number of

trees each year when we run our out-of-sample tests. The estimations are done again with 5-fold

cross-validation and by sampling firms and not financial statements. We note that the estimation

of the optimal number of trees is done on the estimation sample and not the test set. As for our

main sample, we do not expect that decreasing the learning rate and increasing the number of

tress will have an impact on our results.

2.3.4 Generalized Linear Mixed Models

We can extend the GLM from Section 2.3.1 to relax the conditional independence assumption

by generalizing to a generalized linear mixed model (GLMM). This can be done by changing the

conditional mean in the GLM from

E (Yit | xit) = g−1(β>xit), g−1(η) = logit−1(η)

to

E (Yit | xit, zit, εt) = g−1
(
β>xit + εt

)
(2.5)
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where εt ∼ N
(
0, σ2

)
is the random effect at time t and εt ⊥ εs for t 6= s. Thus, the optimization

problem becomes

arg max
β,σ2

d∑
t=1

∫
R

(∑
i∈Rt

yitηit − log (1 + exp (ηit))

)
ϕ
(
εt;σ

2
)
∂εt (2.6)

ηit = β>xit + εt (2.7)

where ϕ(x, σ2) is the density function of a normal distribution with zero mean and variance σ2.

The log-likelihood in Equation (2.6) has no closed form solution in general, but can be approxi-

mated with a Laplace approximation. Furthermore, the computational cost of the approximation

can be greatly reduced if one exploits the sparsity of the matrices which are decomposed during

the estimation. See Bates et al. (2015) and the citations therein for further details about the

estimation method. The linear predictor in Equation (2.7) is easily modified to include splines

by changing the β>xit-term such that

ηit = β(f)>x
(f)
it +

q∑
j=1

γ>j fj(x
(s)
itj ) + εt, β(s) =


γ1

...

γq

 , β =

(
β(f)

β(s)

)

which is similar to Equation (2.3). We denote the random effect, εt, as frailty though it is not

a frailty in the original sense as in Vaupel et al. (1979). The random effect variable in Vaupel

et al. (1979) and Duffie et al. (2009) is a multiplicative factor on the hazard. Our random effect

is multiplicative on the odds rather than the hazard since we can factorize Equation (2.5) when

g is the logit function as

E (Yit | xit, zit, εt)
1− E (Yit | xit, zit, εt)

= exp
(
β>xit

)
exp (εt)

Thus, firms are more “frail” if εt is large in a given year, yielding an exp(εt)-factor higher odds

of distress. The case εt = 0 can be seen as a “standard” year. Random effect models have

received a lot of attention in the literature, where the focus is on the structure of the random

effects. E.g., Duffie et al. (2009)6 and Koopman et al. (2011) let the probability of distress depend

on an unobservable order-one autoregressive process. However, contrary to Duffie et al. (2009),

Koopman et al. (2011) assume that groups of firms depend differently on the unobservable process.

We are limited in terms of how many random effects we can estimate as we only have 14 years of

data. Thus, we will only estimate a single random intercept, where we assume that the εt-terms

are iid as in Equation (2.6). An autocorrelation plot of predicted εt-terms does not show signs of

autocorrelation.

6Duffie et al. (2009) use an Ornstein–Uhlenbeck process for the random intercept term but use a discrete
approximation in which case one gets an order-one autoregressive process.
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2.4 Data and Event Definition

Our main data set consists of all non-consolidated financial statements filed by Danish private and

public limited companies in the period 2003 to 2016.7 The financial statements are supplemented

with firm characteristics such as age, sector, and legal status from the Danish Central Business

Register (CVR). As we are conducting a prediction exercise, we utilize financial statements as of

their publication date and not the accounting period end date. In our sample, financial reports

are typically made public 5 months after the accounting period end date,8 where we only use the

most recent published accounting data for each firm from year t− 1 in year t in our models.

We apply standard filters to focus the analysis on the core of the Danish corporate sector.

First, we exclude financial firms and holding companies as is typically done in the literature.

Further, we exclude a small number of financial statements which are filed in Denmark in other

currencies than DKK, EUR, GBR, USD, or SEK.9 We do not impose any restrictions on firm size

as we want to capture the whole economy in the analysis.

It could be argued that the analysis should only focus on “large” firms, as they hold the

majority of the total assets and debt. Instead of estimating models on just large firms, we

allow for interactions between firm size and other variables in the GAM and GB models, thereby

creating different models for firms of different sizes. Among the interactions tested we find that

the interaction between scaled net profit and the log of the size variable we introduce later as well

as between scaled liquid assets and log size are significant in the GAM. Furthermore, including

small firms increases our sample size, which is important in order to estimate the nonlinear effects

in the GAM and GB model. The performance with respect to large firms is improved when we

estimate a separate GLM for large firms, but remains inferior to the performance of GAM and

GB model. For consistency, all results will be of the models estimated on the full sample.

The filtered data set includes 198 929 individual firms and 1.3 million firm years in the 2003 to

2016 period. Of the 198 929 firms, 43 674 enter into a distress period at least once. The seemingly

high rate is due to a larger distress rate for small firms. An interesting aspect of our sample is

that it includes non-traded firms, which are less studied in the literature. Models for private firms

are particularly relevant because of the large fraction of bank debt held by private firms.

2.4.1 Event Definition and Censoring

We obtain information on the full history of each firm’s status from the Danish Central Business

Registry (CVR). The CVR categorizes firm status into 21 categories. We combine categories into

7Financial statements are delivered to us by Bisnode and Experian.
8The exact publication date is used for statements filed from 2012 and onward. Unfortunately, we do not have

access to the publication date of statements filed before 2012. For these statements we set the publication date to
6 months after the accounting period end date. We have two reasons for doing this. First, Danish law requires that
the majority of firms in our sample must publish their financial statements within 5 months of the accounting period
end date. We use 6 months instead of 5 to be conservative. Secondly, we find that 96% of financial statements
are published within 6 months of the accounting period end date in the sub-sample where we have the publication
date.

9Accounting variables reported in other currencies than DKK are converted to DKK as follows. All stock
variables are converted using the end of accounting period exchange rate. All flow variables are converted using
the daily average exchange rate over the accounting period.
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three groups: “normal”, “in distress” and “other”.10 The “in distress” category includes firms in

bankruptcy, firms that went bankrupt, firms under compulsory dissolution, or firms that have

ceased to exist due to compulsory dissolution.

Our definition of “in distress” implies that firms that are “in distress” can become active again.

Thus, we model recurrent events. We choose this framework as creditors are likely to suffer losses

when a firm enters into a distress period, even if the firm becomes active again, due to delayed

payments or a write-down of the debt. In our sample 3.4% of the firms have experienced a prior

distress (some before 2003) and have recovered and, furthermore, 1 352 of these firms enter into

more than one distress period during our sample period.

Distress dates are highly seasonal and reflect a potentially delayed processing time of the

authorities.11 Thus, we limit the models to be on a yearly basis. Each year includes all firms

that:

1. had a “normal” status at the end of the previous year.

2. published a financial statement within the previous year.

3. (a) enter into “in distress” the following year or

(b) do not publish a new financial statement the following year and enter into the “in

distress”status within two years of the publication date of the latest financial statement

or

(c) are still “normal” at the end of the year (i.e., are not censored).

Firms that fulfil all of the above conditions are denoted active at the beginning of the given

year. Among these firms, we say that a firm has an event if it satisfies condition 3a or 3b, or that

the firm is a control if it satisfies condition 3c. Condition 3b is similar to the event definition in

Shumway (2001), who defines a firm as going bankrupt if the firm delists the following year and

“files for any type of bankruptcy within 5 years of delisting”. The difference to our data set is

that firms do not delist, but instead do not publish a new financial statement. We also include a

few firms that satisfy 3a or 3b as events if they enter into the “other” status between the “normal”

and the “in distress” status.

In our event definition we have chosen a window of 2 years between the publication date of the

last financial statement and the declaration date of “in distress”. Most distresses in our sample

are declared approximately 1.5 years after the publication date of the last financial statement but

some occur later. We find, across years, that 95% to 99% of all “in distress” statuses are declared

within the 2 year window we have chosen.

2.4.2 Covariates

It is common to scale most of the financial statement variables by total assets to get all financial

statement variables on a common scale and such that they are reasonable to include on the log

10The “other” group includes firms that are under liquidation, liquidated, merged and split.
11Every year, there is a large “peak” in reported distress events in a single month in the fall and this peak does not

fall on the same month every year. This arbitrary peak in reported distress events makes it questionable whether
there is any meaning in the exact reporting month.
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odds scale. However, a non-trivial fraction of the firms in our sample have negative equity at

some point. Thus, using total assets as the denominator will yield extreme covariates which may

not fit well in a GLM. As Campbell et al. (2008) we define a more suitable metric to capture the

firm size. We define firm size as

sizeit = max{debtit, total assetsit} (2.8)

where debtit and total assetsit refer to the debt and total assets of firm i on the balance sheet

from the financial statement published between year t− 1 and t, respectively. Thus, sizeit equals

the total debt of the firm when equity is negative and otherwise total assets. We use sizeit in the

denominator of all the ratios where we would otherwise use total assets.

Besides the financial statement variables we include some variables that we have constructed

ourself. Most interestingly, we include an industry-specific covariate as in Chava et al. (2011)

by computing the average net profit divided by the size variable each year for each leading four

digit standard industrial classification (SIC) group. Unlike Chava et al. (2011), we do not have

the stock return so we use the net profit divided by the size variable. Moreover, Chava et al.

(2011) include a dummy for whether median stock return in the industry is below -20%. We do

not believe that the variable has a discrete effect upon exceeding a pre-specified threshold and,

therefore, we include the average value and estimate a slope. We winsorize12 all covariates at the

5%- and 95%-quantile as in Campbell et al. (2008) since preliminary results showed influential

observations and poorer fits in the GLM when more extreme quantiles were used.

We end up with 44 numerical and 6 categorical covariates. We use the Thresholded Lasso

estimator described in Appendix 2.A to select the covariates we will use in the GLM, GAM,

and GLMM. This is similar to Tian et al. (2015) except that we have an additional step in our

algorithm to deal with bias issues with the Lasso estimator. We exclude 3 of the covariates, but

include them all in the GB model as the GB model tends to be robust against redundant covari-

ates (e.g., this model does not have issues with multicollinearity as the other models). Another

advantage of the GB model is that the regression trees used in the model are invariant to mono-

tone transformations of the covariates. Consequently, we include both the non-winsorized ratios

and the original (non-ratio) figures from the financial statements in the GB model. Descriptive

statistics of all of the covariates can be seen in Appendix 2.A.

2.5 Performance of the GLM, the GAM, and the GB Model

In this section we perform out-of-sample tests of the GLM, GAM, and GB model presented in

Section 2.3.1, 2.3.2, and 2.3.3, respectively. We will use an expanding window of data to estimate

the models and forecast the probability of the firms entering into distress two years after the

estimation window closes. As an example, we use models estimated on 2003 to 2007 to predict

default probabilities in 2009. The two-year gap mimics the true forecasting situation as the

definition of the distress event requires a lag of two years.

12Cap values at a given high level quantile and floor at a given low level quantile. We winsorize ratios and not
the numerator and denominator separately for ratio covariates.
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We measure performance on several different metrics. First, we consider the accuracy of

the individual probability-of-distress estimates by comparing the AUC and the log score of the

individual models. Next, we consider the performance of the models at an aggregated level by

examining the models’ ability to predict next year’s aggregated percentage of firms in distress as

well as the fraction of debt in distress. Finally, we look at the models’ ability to estimate portfolio

risk.

In-sample results on the 2003 to 2016 data set are presented in Appendix 2.B. The appendix

also includes some details of the final model specifications, illustrations of the estimated models,

and comparisons between the models. The in-sample results are left as an appendix to allow the

paper to focus on the forecasting ability of the models.

2.5.1 Evaluating Individual Distress Probabilities

We start by evaluating the models by their respective AUC. The AUC is a commonly used metric

to evaluate out-of-sample performance. It measures the probability that a model places a higher

event probability on a random firm that experiences an event in a given year than a random

firm that does not experience an event in a given year. Hence, 0.5 is random guessing and 1 is a

perfect result.

Figure 2.2(a) shows the out-of-sample AUCs. In all years we find that the GB model gives the

highest AUC and therefore is best at ranking firms by their distress risk, followed by the GAM and

the GLM. This observation is consistent with the findings in Zi ↪eba et al. (2016) and Jones et al.

(2017) in the sense that they also find that GB models are superior in terms of AUC. However, the

differences we measure in AUCs are much smaller than reported in the aforementioned papers.

We find that the average AUC across years are 0.798, 0.811, and 0.822 for the GLM, GAM, and

GB model, respectively. Hence, there is an improvement in AUC between the GLM and the GB

model of only 0.024. In comparison, Zi ↪eba et al. (2016) and Jones et al. (2017) find improvements

in the AUC between a benchmark logistic regression and boosted tree model above 0.1. We reckon

that the greater improvement in AUC is, to a large extent, due to the GLM used in Zi ↪eba et al.

(2016) and Jones et al. (2017).13

As mentioned above, the AUC is only a ranking measure. A model may rank the firms well,

but perform poorly in terms of the level of the predicted probabilities. As we are also interested

in well-calibrated probabilities, we look at the log score which is computed by

Ltj = − 1

nt

∑
i∈Rt

(yit log (p̂itj) + (1− yit) log (1− p̂itj)) (2.9)

where Ljt is the log score of model j in year t, yit is a dummy equal to 1 if firm i has an event

in year t, p̂itj is the predicted probability of distress of firm i in year t by model j, Rt is the

sample of active firms in year t, and nt is the number of firms in Rt. A perfect score is zero.

13The data set used in Zi ↪eba et al. (2016) is publicly available. We can confirm that the results for the GLM
can be greatly improved with limited effort. Both cited papers use raw accounting figures like “Annual Growth in
Capital Expenditure” and total assets without any transformations. While these may work well in tree algorithms
which are invariant to monotonic transformations then it seems very unseasonable to assume a linear association
on the log odds scale as they do in their logistic regression model.
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Figure 2.2: More complex models have higher AUC and better log scores. The figure
shows performance measures of the three models (GLM ; GAM ; GB ). Panel (a) shows out-
of-sample area under the receiver operating characteristics curve (AUC) for the different models.
Panel (b) illustrates the out-of-sample log scores of the three models. The figures above the center
of the grey circles are the log scores for the GLM and the areas of the circles are proportional to
the figures. The points show the log score of the model minus the log score of the GLM. That
is, Ltj − LtGLM where Ltj is defined in Equation (2.9) and j ∈ {GLM,GAM,GB model}. The
models are estimated on an expanding window of data with a 2-year gap to the forecasted data
set. E.g., the models which are used to forecast the 2011 distresses are estimated on 2003-2009
data.

The out-of-sample log scores are illustrated in Figure 2.2(b), where we observe that the GB

model outperforms the other models for all years. However, as with the AUC, we find that the

improvements in log score with more complex models are relatively small.

To summarize, we find evidence that the GB model is the best model at estimating individual

default probabilities. However, the improvements are not large compared to the GAM. Thus, one

may prefer the GAM model if interpretability is important.

2.5.2 Evaluating Aggregated Distress Probabilities

In this section, we look at the models’ ability to predict the distress risk of the aggregated sample.

Figure 2.3(a) shows the realized percentage of firms entering into distress as well as the out-of-

sample predicted percentage of firms that will enter into distress each year for each of the models.

All four models are included in the figure for later comparison, but for now we will only discuss

results of the GLM, GAM, and GB model. It is clear that none of the models capture the distress

level. Furthermore, none of the models’ 90% prediction intervals have close to 90% coverage,

which indicates that the assumed conditional independence assumption is violated, i.e., there is

some correlation in distress events which is not accounted for in any of the models. That is, the

complex GB model is just as bad at capturing the aggregated distress level as the more simplistic

GLM. We run a formal test of the models’ ability to estimate risk measures in Section 2.5.3.

The aggregated distress rate of the GB model in 2012 and 2017 is higher and in 2012 further

away from the realized value than the distress rate of the other models. This raises the question

whether the GB model suffers from overfitting, which is not the case as we use cross-validation

to select the number of trees. Furthermore, the out-of-sample aggregate distress rates of the
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Figure 2.3: Models without frailty are unable to predict aggregated distress levels.
The figures compare realized percentage of firms in distress (panel (a)) and realized fraction of
debt in distress (panel (b)) to model predicted values (realized ; GLM ; GAM ; GB ; GLMM
). The models are estimated on an expanding window of data with a 2-year gap to the forecasted

data set. E.g., the models which are used to forecast the 2011 distresses are estimated on 2003-
2009 data. The bars indicate simulated 90% prediction interval where outcomes are simulated
using the predicted probabilities for each model.

GB model are virtually the same as the distress rates of the other models in all the other years,

suggesting that the GB model is on aggregate similar to the other models. Finally, and perhaps

most convincingly, we find no improvements in in-sample results of the GB model compared to the

other models in terms of aggregate distress rates. An improvement would be expected in-sample

in the case of overfitting.

The amount of debt varies greatly from firm to firm. The largest 21% of the firms have a size

greater than 10 million DKK and account for 91% of the total debt in our sample. Thus, the
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Table 2.1: Likelihood ratio test for coverage of the out-of-sample 95% quantiles.
We form four portfolios of firms representing bank exposures for each calender year yielding
40 portfolios in total. For each portfolio we compute the 95% out-of-sample quantile for the
distress rate in each of the three different models and perform a test where the null hypothesis is
that the 95% quantiles have the correct coverage level. The “asymptotic p-value” is the p-value
from the test in Kupiec (1995) and the “MC p-value” is the Monte Carlo corrected p-values used
in Berkowitz et al. (2011).

Model Likelihood ratio Asymptotic p-value MC p-value

GLM 49.670 < 0.0000001 < 0.0000001
GAM 25.901 0.0000004 0.0000004
GB 18.005 0.0000220 0.0000190

percentage of firms in distress and the fraction of debt in distress may be substantially different.

Therefore, we also test how the models predict the amount of debt in distress. We compute the

fraction of debt in distress each year as

DiDt =

∑
i∈Rt yit (short debtit + long debtit)∑
i∈Rt short debtit + long debtit

and the predicted fraction of debt in distress each year for all models as

D̂iDtj =

∑
i∈Rt p̂itj (short debtit + long debtit)∑

i∈Rt short debtit + long debtit

where DiDt is an abbreviation for “fraction of debt in distress” in year t and short debtit +

long debtit is the total debt of firm i at time t.

Figure 2.3(b) shows results for the realized and out-of-sample predicted fraction debt in dis-

tress. Similarly to the distress level results shown in Figure 2.3(a), we find that none of the

models get near the actual level or have 90% prediction intervals with 90% coverage. However,

the results here depend highly on a few number of firms. The 25 firms with the largest debt

on their balance sheet in 2016 account for 28.47% of the debt. Thus, Figure 2.3(b) essentially

reflects a non-trivial probability of default for some of these firms. As seen by Figure 2.3(b),

frailty (the GLMM) has little impact with such unequal distributions of exposures. However, we

do not expect such unequal distribution of exposures in, say, a bank’s loan portfolio. One may

suspect that our results are somewhat driven by the latest financial crises. However, Figure 2.3

shows that all three models perform poorly even in the latter part of the sample.

2.5.3 Measuring Portfolio Risk Without Frailty

Above we illustrated that all models fail to capture the percentage of firms entering into distress

in the next period. In this section we explore this further by examining the models’ ability to

evaluate portfolio risks. Specifically, we compare the 95% quantiles of the predicted distress rate

distributions to the realized value. If the estimates are accurate, we will find that the realized

distress rate is below the upper quantiles about 95% of the cases and above about 5% of the cases.
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We use bank connections reported by the firms to construct portfolios for each year and bank.

If a firm indicates two bank connections, the firm will appear in the portfolio of both banks.

We only include banks with at least 500 connections to ensure that the portfolio is somewhat

diversified. Four banks fulfill this requirement. The smallest and largest number of connections

for a given bank and year are 534 and 5 063 firms and the mean number of connections is 2 196. We

track the four banks through 10 years resulting in a total of 40 portfolios. The portfolios we have

constructed are only a rough proxy for the exposure of the banks in the Danish economy. Thus,

this exercise should be seen as an example of non-random portfolios rather than as representing

the lending risk of the Danish banks.

We define the bank’s exposure towards a firm as the reported long-term and short-term bank

debt on the firm’s balance sheet. A small number of Danish firms issue corporate bonds. The

notional of these bonds are included in the bank debt variable in the financial statement, though

they are not held by the bank. The notional of the corporate bond is typically much larger than

the notional of the actual bank debt, thereby making some firms appear extremely large in the

bank debt portfolios. As a simply way of excluding the corporate bonds from the portfolios, we

cap the bank debt of the individual firms in each portfolio such that the exposure to a single firm

cannot exceed 1% of the total exposure of the bank.

We estimate the out-of-sample 95% quantile of the distress rate in each of the portfolios as-

suming the GLM, GAM, and GB model respectively and test the coverage of the upper quantiles.

Table 2.1 shows results of the coverage test introduced by Kupiec (1995) and the Monte Carlo

correction from Berkowitz et al. (2011). We reject the null hypothesis that the coverage has the

correct level for all models at a 1% significance level with both the asymptotic p-values and finite

sample Monte Carlo corrected p-values. That is, we can statistically reject that any of the models

including the GB model are able to estimate accurate risk measures.

Figure 2.4 illustrates when the realized values are above the 95% quantiles for each of the

portfolios, where the vertical lines represent 95% quantiles. The lines are green (black) when the

realized distress rate is below (above) the upper quantile. The GLM has 17 breaches, the GAM

has 12 breaches, and the GB model has 10 breaches. Most breaches occur in 2008-2009.

The models’ inability to capture the time-varying distress level and the lack of coverage of the

upper quantiles is a sign that the models are misspecified. In order to mitigate this we implement

a mixed model in the next section which allows for a random intercept.

2.6 Modeling Frailty in Distresses with a Generalized Linear

Mixed Model

In this section we estimate a generalized linear mixed model (GLMM) introduced in Section 2.3.4

with a random intercept to relax the conditional independence assumption we have assumed so

far. That is, the model allows for an unobservable macro effect and thus creates correlations

in distresses beyond the observed covariates. Furthermore, we add non-penalized natural cubic

regression splines to the model given the higher AUC and lower Akaike information criterion

(AIC) of the GAM compared to the GLM (see Appendix 2.B.1 for the latter). While several
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(c) 95% quantiles of the distress rate in the GB
model

Figure 2.4: Models without frailty estimate too low 95% quantiles. We form bank
portfolios based on self-reported bank connections in the firms’ financial statements. For each
portfolio we compute the 95% quantile by simulation, using the out-of-sample predicted firm
probabilities of distress. Panel (a), (b), and (c) show the upper quantiles for the GLM, GAM,
and the GB model respectively. The dots show the realized level, bars show the upper quantiles.
Black bars and dots indicate years where the realized level is not covered by the prediction interval.

others have implemented GLMM with random intercept or similar random effect models (e.g.,

see Duffie et al., 2009), we differ by including nonlinear effects. We use non-penalized splines as

software allowing for penalized splines in a GLMM is not readily accessible to us and, furthermore,

we expect only a minor difference between a penalized and a non-penalized model due to our large

sample.

The estimated standard deviation of the random intercept is σ̂ = 0.196 when estimated on the

2003–2016 data set. That is, a change of one standard deviation in the random intercept implies

an exp(0.196) = 1.217 times higher odds of entering into distress for all firms. Thus, there is

a non-negligible random effect. A conservative likelihood ratio test for H0 : σ = 0 is rejected

with a test statistics of 1 483 which is compared to a χ2 distribution with 1 degree of freedom.14

Thus, we can reject the conditional independence assumption. We end this section by illustrating

what can go wrong if one relies on a model that does not account for the observed correlation in

distresses.

14The p-value is likely conservative (e.g., see the simulations in Pinheiro and Bates, 2000). Though, it does not
matter in this case since the p-value is essentially zero already.
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Figure 2.5: Density plots of the GLMM forecasted 2016 distress rate. We estimate the
GLMM on 2003-2016 data and simulate densities of the predicted cross-sectional distress rate in
2016. In panel (a) the random effect is held constant at the 5%, 50%, and 95% quantile of its
distribution. The three quantiles can be seen as a “good”, “middle”, and “bad” future state of
the unobservable macro effect in 2016. The tall density curves and narrow prediction intervals
are consistent with what a model without a random intercept would predict. Panel (b) shows
a density curve estimate where we simulate both the random intercept term and the outcomes.
The outer dashed lines are 5% and 95% quantiles and the inner line is the mean.

2.6.1 Predictive Results of the GLMM

Figure 2.5 shows a forecast for the 2016 distress rate and illustrates how adding a random intercept

to the model affects the prediction interval of the distress rate. Panel (a) of the figure shows the

2016 forecasts of the distress rate assuming that the random effect is fixed at three different

quantiles of its estimated distribution, the 5%, 50%, and 95% quantile. The three quantiles can

be seen as a “good”, “middle”, and “bad” future state of the unobservable macro effect in 2018.

Panel (b) of the figure shows the unconditional 2016 forecast density of the distress rate (i.e.,

without fixing the random intercept). The prediction interval is much wider than that of the

GLM, GAM, and GB model (see Figure 2.3(a)), whereas the width of the prediction interval,

when the random effect is assumed to take a specific value, is of the same magnitude as in the

GLM, GAM, and GB model. The large effect of the random intercept on the prediction interval

is similar to what Duffie et al. (2009) find15 and reflects the large estimated standard deviation of

the random effect. It is worth mentioning that there is a large uncertainty in our estimate of the

standard deviation of the random intercept, σ̂, in the GLMM estimated on the full sample. This

is mainly due to the short time series as the GLMM requires a relatively long estimation period

and it is not caused by our splines or number of covariates.16 A 95% profile likelihood-based

confidence interval for σ̂ is [0.155, 0.332]. Typically, accounting for uncertainty in random effect

variance yields wider prediction intervals (e.g., see Duffie et al., 2009, p. 2110) so our prediction

intervals may be a bit too narrow.

Due to the required estimation period, we can only backtest results of the GLMM in 2016 as

in Section 2.5. We will compare these results to results of the GAM in the following, though

similar conclusions can be made for the GLM and GB model. In 2016 we find an AUC of 0.815 in

15See Figure 5 of their paper.
16The uncertainty of the estimated standard deviation would be large even if we observed the random effects, εt.
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the GLMM, which is close to the 0.818 of the GAM we find in 2016. Thus, we find evidence that

the GLMM is equally good at ranking the firms in terms of riskiness.

The 90% prediction interval of the distress rate in 2016 is [0.0220, 0.0396] in the GLMM,

while we estimated the same interval to be [0.0302, 0.0317] in the GAM. The realized distress

rate in 2016 was 0.0318, that is, the realized distress rate is not included in the prediction

interval of the GAM while it is included in the prediction interval of the GLMM. Furthermore,

the 2016 prediction intervals of the GLMM predicted fraction of debt in distress and the GAM

predicted fraction of debt in distress are [0.007665, 0.02748] and [0.008947, 0.02519], respectively,

and the realized fraction of debt in distress in 2016 is 0.007113. The prediction intervals of the

GLMM and GAM are both illustrated in Figure 2.3. The prediction intervals of the two models

are much more similar for the fraction of debt in distress than in the distressed rate. Again,

this is due to a few firms in the sample with large debt, implying that a portfolio of firm debt

is less diversified. The connection between portfolio diversification and the prediction intervals is

explained in the following section.

2.6.2 Frailty Models and Portfolio Risk

Accounting for frailty is more important for some portfolios with distress risk than others. Par-

ticularly, adding a frailty to a model matters more for portfolios with many exposures of equal

size. To illustrate this point, we randomly sample firms that are active on January 1, 2018 (as

defined in Section 2.4.1) into portfolios of sizes ranging from 500 to 32 000. Thus, some portfolios

are much more diversified than others, which means that prediction intervals of the predicted

distress rate will vary.

For each portfolio we then compute the distress rate using the estimated GLMM and simulate

90% prediction intervals of the distress rate. First, we ignore the frailty component by integrat-

ing out the random effect in the firm-specific distress probabilities and draw the firm-outcomes

independently using these probabilities. Secondly, a simulation is done where we account for the

frailty component by first drawing the random effects from its estimated distribution, compute

the firm probabilities conditional on the drawn random effect, and then draw the firm outcomes

conditional on these probabilities. The second method is the same as the one used for the simu-

lated prediction intervals in Figure 2.5(b), and the width of the prediction intervals of the model

without frailty is very similar to the width of the prediction intervals in Figure 2.5(a), which

again is very similar to the prediction intervals of the GB model.

The results are shown in Figure 2.6(a). The figure illustrates that the tail risk is generally

underestimated when we do not account for frailty. However, the discrepancy between the two

models is much more pronounced for the large portfolios than for the small. This is because

the model without frailty drastically shrinks the prediction intervals of the more diversified large

portfolios. The prediction intervals of the model with frailty are also affected when the portfolio

becomes more diversified, but to a much smaller extent. This is because the frailty model accounts

for the excess clustering defaults because of the latent variable. An economist relying on a model

without frailty could then easily conclude that a well diversified portfolio is much safer than what

it is in reality. How this can lead to misperception of portfolio risk of two banks with different
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Figure 2.6: Frailty matters more for large portfolios. In panel (a), we randomly split the
sample of firms that are active on January 1, 2016 into portfolios of size 500, 2 · 500, . . . , 32 000
and compute the distress probability based on the GLMM estimated on the 2003-2016 sample.
The dots are the expected unconditional distress rate of the portfolios. The solid lines are the
simulated 90% prediction interval where we integrate the random effect out on a firm-by-firm level
and then simulate the outcomes independently. The dashed lines are the simulated prediction
interval when we do account for frailty. Panel (b) shows 90% prediction intervals of the distress
risk of loan portfolios of two banks. Bank A has 501 clients with distress probabilities evenly
distributed on the interval [0.10, 0.30] on the logit scale in the case of the GLMM where the
random effect is equal to zero. Likewise, Bank B has 10 001 clients with distress probabilities
evenly distributed on the interval [0.15, 0.35] when the random effect is zero. The solid and
dashed lines are prediction intervals simulated in a model without and with frailty respectively.

strategies is illustrated in the following example.

Assume that we have two banks: Bank A has a few safe clients and Bank B has many relatively

more risky clients. Specifically, Bank A has provided a loan to 501 clients with distress probabil-

ities evenly distributed on the interval [0.10, 0.30] in the case of the GLMM where the random

effect is equal to zero. Bank B has provided a loan to 10 001 clients with distress probabilities

evenly distributed on the interval [0.15, 0.35] when the random effect is zero. Appendix 2.C pro-

vides further details regarding the simulation of the two bank portfolios. The prediction intervals

of the distress rate with and without accounting for frailty are illustrated in Figure 2.6(b). The

95% quantiles for Bank A and Bank B are 0.0319 and 0.0281 respectively, if we do not account

for frailty. Thus, Bank A appears more risky by this metric. However, the correct figures – the

ones where we account for frailty – are 0.0339 and 0.0348 respectively. Hence, Bank B has the

highest risk by this metric in reality. Thus, if one relies on a model without frailty, one might

wrongly assume that a large bank is exposed to relatively little risk.

2.7 Including Macro Variables in the Models

The models implemented so far are based solely on micro level data. While the models are good

at ranking the individual firms by riskiness, they are far from good at estimating the aggregated

distress rate in the next period. This raises the question whether the models could be improved

by including some macro variables. In this section we show results of models including macro

variables, and we argue that we may have a potential candidate for macro variable but estimating

56



an effect of the covariate may be hard with the few number of cross-sections we have. Lastly, we

show that the random effect is still needed in-sample after the inclusion of the random effect.

Some common macro variables in the existing literature are return of the S&P 500 index,

3-month treasury rate, 10-year treasury rate, inflation, GDP growth, and the unemployment rate

(e.g., see Chava et al., 2011, Duan et al., 2012, Duffie et al., 2009, Filipe et al., 2016, Lando et al.,

2013). We include the Danish equivalent of these variables in our models, except for the stock

index return since the majority of firms in our sample are non-traded, and test if the models’

predictions improve. We lag all macro variables to ensure predictability. Furthermore, we use

a swap rate, a short-term, and a long-term interbank rate instead of treasury rates, since the

Danish government bond market is much smaller than the U.S. Finally, we include the GDP gap

instead of the GDP growth as GDP gap has been included in earlier versions of the Danish central

bank’s internal corporate distress model. While some of the aforementioned papers track events

on a quarterly or monthly basis, we choose to do so only on a yearly basis. This is because the

start date of the “in distress” status can be somewhat arbitrary and reflects a potentially delayed

processing time of the authorities. Thus, we end up with relatively few observations in the time

dimension, implying that we can include at most one macro variable in our models.

We run separate logistic regressions including each of the macro variables one at a time and

find that the model with the unemployment rate has the lowest AIC. We then include the un-

employment rate in all four models and run predictive tests. The inclusion of the unemployment

rate in the GB model is done by estimating a logistic regression with two covariates: the unem-

ployment rate and the linear predictor from the estimated GB model without the unemployment

rate. The motivation for the two-step model is that we can control the complexity of the unem-

ployment rate. This turned out to be an issue in some preliminary results where a GB model

including the unemployment rate as a covariate generalized poorly. Including a macro variable

in the GB model could potentially lead to a separate model for each year which likely would

generalize poorly.

We find improvements in the out-of-sample forecasts when the unemployment rate is included

in the models (see Figure 2.3(a) and Figure 2.7(a)). However, Figure 2.7(a) still shows too narrow

prediction bounds for the GLM, GAM and GB model. The standard deviation of the random

intercept of the GLMM estimated in the period 2003 to 2016 is reduced from 0.196 in a model

without the unemployment rate to 0.106 in a model with the unemployment rate. The reduction

shows that the unemployment rate explains some of the yearly fluctuations. This is also evident

from Figure 2.7(b) which shows a much better in-sample predicted distress rate for the GLMM

with the unemployment rate. However, the random intercept remains significant with a χ2 test-

statistic of 297 with 1 degree of freedom.

The estimated slope on the unemployment rate is negative and statistically significant, which

may seem counter-intuitive. Furthermore, the slope estimate varies a lot during the first out-of-

sample forecasts, which is not surprising given the low number of cross-sections included in this

sample. One major question is whether we will see the same in the future, i.e., if the association

we estimate now will generalize. This is particularly questionable given that we have already

considered five potential macro variables with only 14 cross-sections. However, we also estimate
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Figure 2.7: Results of models with the unemployment rate. We re-estimate all four
models adding the unemployment rate as a covariate. Panel (a) shows the realized distress rate
together with the out-of-sample predicted values (realized ; GLM ; GAM ; GB ; GLMM ).
The bars indicate the simulated 90% prediction interval where outcomes are simulated using the
predicted probabilities for each model respectively. Panel (b) shows the predicted distress with and
without the unemployment rate along 90% prediction intervals for the GLMM with parameters
estimated on the full sample (realized ; GLMM without unemployment rate ; GLMM with
unemployment rate ).

a negative slope for the unemployment of the same size on aggregate defaults for which we have

data going back to 1980.17 This provides evidence that the effect we estimate may generalize.

Whether the estimated slope on unemployment generalizes or not does not change the fact that

the random intercept remains significant, i.e., we cannot avoid a frailty component.

2.8 Conclusion

We have shown that gradient tree boosting performs better in out-of-sample ranking of firms

in terms of riskiness compared to more traditional statistical models in a sample containing the

majority of Danish limited liability firms. However, the improvement is only minor compared

to what recent papers find. Furthermore, the out-of-sample tests yield too narrow prediction

intervals of the aggregated distress rate for both traditional statistical models and the gradient

boosted tree model. That is, the more complex model is not better at capturing correlations

in defaults across the cross-section of firms, leading to too small risk measures for individuals,

firms, or regulators who evaluate the riskiness of a portfolio exposed to multiple firms. We

show how to relax this assumption with a generalized linear mixed model, where we relax the

linearity assumption for some the covariates in the model, thereby obtaining competitive firm-level

performance.

While Basel III does incorporate correlations in defaults, it is not obvious that the same corre-

lations should be used regardless of the model that is used to produce the marginal probabilities

of defaults. As an example, Lando and Nielsen (2010) fail to reject the miss-specification tests

17We use the number of VAT registered firms (Danmarks Statistik, 2018a) as the denominator and the number
of defaults (Danmarks Statistik, 2018b) as the numerator in a binomial regression model similarly with the logit
link function.
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in Das et al. (2007) after inclusion of additional covariates. That is, the level of excess clustering

of defaults may vary depending on the covariates in the model. Similar effects can occur with

time-varying covariate distributions and a partial effect which is erroneously assumed to be a

line or a plane. The final frailty model in this paper is an example of a model which can relax

the linearity assumption and adjust the excess clustering of defaults depending on the assumed

association between covariates and the log odds of a distress event.
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Appendix

2.A Variable Selection with Lasso

We use the so-called Thresholded Lasso estimator to perform variable selection. The Thresholded

Lasso estimator is found by the following steps.

1. Standardize the covariates.

2. Perform K-fold cross-validation to find the penalty variable, λinit, that maximizes

λinit = arg max
λ

max
β

d∑
t=1

∑
i∈Rt

yitβ
>xit − log

(
1 + exp

(
β>xit

))
− λ‖β‖1

where ‖ · ‖1 is the L1 norm. This is the log-likelihood from the multiperiod logit model in

Equation (2.1) with an added L1 penalty.

3. Denote β̂init as the estimated coefficients with penalty parameter λinit and define the sets

S(δ) = {j : |βinit,j | > δ}. Then use K-fold cross-validation to find a threshold value, δ̂, in

the range that maximizes

arg max
δ

max
βS(δ)

d∑
t=1

∑
i∈Rt

yitβ
>
S(δ)xS(δ),it − log

(
1 + exp

(
β>S(δ)xS(δ),it

))

where β>S(δ)xS(δ),it is the linear predictors which only include the covariates in the index

set S(δ). This amounts to fitting a GLM with a subset of the covariates.

Step 1 and 2 yield the common Lasso estimator, β̂init. That is, we add an L1 penalty which

shrinks parameters and discards variables where the coefficient is shrunk to 0. Step 3, in addition

to the previous, yields the Thresholded Lasso estimator, where we discard any variables where

the coefficient is below the threshold δ̂. The final estimates are no longer shrunk as we do not

apply a penalty. The motivation to use the Thresholded Lasso estimator rather then the Lasso

estimator is to addresses the bias problems with β̂init. See Bühlmann and Van De Geer (2011),

Zhou (2010) for properties of the Thresholded Lasso estimator.

We end with the 6 categorical and 44 numerical covariates listed in Table 2.2. The numerical

variables are divided by firm size when appropriate and all are winsorized at the 5% and 95%

quantile. We exclude 3 numeric covariates in the Lasso estimation while none of the categorical

covariates considered are dropped.
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Table 2.2: Summary statistics for covariates in the data set from 2003 to 2016.
Variables divided by size are in percentages. Size is the maximum of total asset and total debt.
The statistics are computed after winsorizing. There is 1.3 million firm year observations. Panel
A shows the numerical covariates that are left after variable selection with the Thresholded Lasso
method and the estimated coefficients where stars indicate the significance of the effect with a
Wald test (∗∗∗ is 1% significance, ∗∗ is 5%, and ∗ is 10%). Panel B shows the numerical variables
that are excluded after variable selection. Panel C shows the binary and categorical covariates
included in the model. Panel D shows variable descriptions of some of the covariates.

Covariate Mean Median St. Dev. Min Max GLM coefficient estimates

Panel A: Numerical covariates included after variable selection

Accounts payable / size 8.06 2.83 10.99 0.00 38.00 0.0246∗∗∗

Accounts receivable / size 12.75 3.34 16.88 0.00 54.00 −0.0097∗∗∗

Change in log size 0.03 0.00 0.24 -0.46 0.58 −0.0901∗∗

Corporation tax / size 1.12 0.00 2.18 0.00 7.60 0.0708∗∗∗

Current assets / size 58.41 66.07 35.50 1.00 100.00 −0.0025∗∗∗

Deferred tax / size 1.16 0.00 2.31 0.00 8.10 −0.0688∗∗∗

Depreciation / size -3.08 -1.11 4.18 -14.00 0.00 0.0140∗∗∗

EBIT / size 4.19 3.44 17.44 -36.00 40.00 −0.0036∗∗∗

Equity / invested capital 6.16 2.27 10.05 -3.90 38.00 −0.0255∗∗∗

Equity / size 33.78 32.32 38.10 -48.00 96.00 0.0032∗∗∗

Expected dividends / size 1.59 0.00 4.08 0.00 15.60 −0.0968∗∗∗

Financial assets / size 6.10 0.00 14.71 0.00 58.00 −0.0117∗∗∗

Financial income / size 0.99 0.17 1.63 0.00 5.80 −0.0531∗∗∗

Financing costs / size 2.22 1.54 2.25 0.00 7.40 0.0479∗∗∗

Fixed costs / size -44.96 -25.09 52.16 -175.00 0.00 0.0002

Immaterial fixed assets / size 1.73 0.00 4.82 0.00 19.00 −0.0169∗∗∗

Ind. EW avg. net profit / size 2.03 2.11 2.94 -39.00 34.00 −0.0279∗∗∗

Interest coverage ratio 0.02 -0.71 21.75 -47.00 48.00 −0.0003

Inventory / size 9.09 0.00 16.45 0.00 56.00 −0.0052∗∗∗

Invested capital / size 20.16 9.40 25.77 0.90 97.00 0.0009∗∗

Land and buildings / size 16.04 0.00 31.17 0.00 95.00 −0.0076∗∗∗

Liquid assets / size 14.94 3.51 21.69 0.00 75.00 −0.0131∗∗∗

log(age) 1.98 2.08 1.16 0.00 4.60 −0.2965∗∗∗

log(size) 7.85 7.82 1.61 4.95 10.91 0.0133∗

Long-term bank debt / size 2.60 0.00 6.98 0.00 26.00 0.0110∗∗∗

Long-term debt / size 11.65 0.00 20.49 0.00 66.00 0.0026∗∗∗

Long-term mortgage debt / size 5.20 0.00 13.24 0.00 47.00 0.0077∗∗∗

Net profit / size 2.04 2.16 16.52 -39.00 34.00 −0.0066∗∗∗

Other operating expenses / size -2.24 0.00 6.08 -23.00 0.00 −0.0094∗∗∗

Other receivables / size 4.33 0.97 7.15 0.00 26.00 −0.0050∗∗∗

Other short debts / size 13.79 8.58 15.01 0.00 53.00 0.0114∗∗∗

Personnel costs / size -34.28 -10.05 45.82 -151.00 0.00 0.0015∗∗∗

Prepayments / size 0.52 0.00 0.96 0.00 3.40 −0.0659∗∗∗

Provisions / size 1.34 0.00 2.60 0.00 9.20 0.0096∗

Quick ratio 2.35 0.98 3.86 0.00 16.00 −0.0040

Receivables from related parties / size 5.61 0.00 12.99 0.00 49.00 0.0014∗∗

Relative debt change 0.10 0.00 0.48 -0.62 1.50 −0.0621∗∗

Retained earnings / size 6.20 6.73 38.71 -91.00 72.00 −0.0049∗∗∗

Return on equity (pct.) -1.05 0.12 4.95 -19.40 3.60 −0.0175∗∗∗

Short-term bank debt / size 7.32 0.00 13.19 0.00 44.00 0.0109∗∗∗

Short-term mortgage debt / size 0.12 0.00 0.38 0.00 1.50 −0.0223

Tangible fixed assets / size 26.17 9.44 32.59 0.00 96.00 −0.0040∗∗∗

Tax expenses / size -1.68 -0.44 3.51 -10.30 3.80 −0.0080∗∗∗

Total receivables / size 26.91 18.69 26.82 0.00 90.00 0.0037∗∗∗

Continued on next page
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Table 2.2 – Continued from previous page

Covariate Mean Median St. Dev. Min Max GLM coefficient estimates

Panel B: Numerical covariates excluded after variable selection

Current ratio 2.58 1.21 3.87 0.00 16.00

max(equity + provisions, 0) / size 39.74 34.79 31.88 0.00 100.00

Short-term debt / size 47.94 45.87 32.11 1.80 100.00

Panel C: Categorical covariates

Is non-stock based 0.73 1.00 0.45 0.3277∗∗∗

Has prior distress 0.03 0.00 0.16 0.9542∗∗∗

Large debt change 0.08 0.00 0.27 0.1936∗∗∗

Negative equity 0.15 0.00 0.36 0.1770∗∗∗

Region

Sector

Panel D: Variable description

Change in log size The log of firm size as reported in the current financial account minus the log

of firm size as reported in the financial account from the previous year. We

use the size definition in Equation (2.8). The variable is set to zero if the firm

did not hand in a financial account the previous year.

Current ratio Current assets divided with short-term debt. If the short-term debt is zero or

below 10 000 DKK we divide by 10 000 instead to avoid dividing with zero.

Is non-stock based A dummy variable equal to 1 if the firm is non-stock based (“Anpartsselskab”).

The alternative is a stock-based firm (“Aktieselskab”).

Has prior distress A dummy variable equal to 1 if the firm has previously been “in distress”.

Ind. EW avg. net profit We group firms by their 3-digit SIC code and compute the equally weighted

average net profit of each group each year.

Interest coverage ratio Net profit divided by net financial revenue. If the net financial revenue is

zero, we divide by 1 instead.

Large debt change A dummy variable equal to 1 if the total debt grew more than 100% in the

past year. It is zero if the firm did not hand in a financial account the previous

year.

Negative equity A dummy variable equal to 1 if equity is negative.

Region The firms are grouped based on the location of their headquarter into 5 geo-

graphical regions, going from the most to the least densely populated areas.

Relative debt change The firm’s total debt of the current financial account divided by the total

debt of the financial account from the previous year. The variable is set to

zero if the firm did not hand in a financial account the previous year.

Return on equity Net profit divided by equity. If equity is zero or below 10 000 DKK we divide

by 10 000 instead to avoid dividing with zero.

Sector The firms are grouped into 7 general sectors: Construction; industrial; farm-

ing and fishing; trade; transport; information; real estate; other.

Quick ratio Current assets minus inventories divided with short-term debt. If the short-

term debt is zero or below 10 000 DKK we divide by 10 000 instead to avoid

dividing with zero.

2.B Model Estimation

The estimated coefficients of the covariates included in the GLM after variable selection are listed

in Table 2.2. Figure 2.8 shows the largest absolute standardized coefficients. Most noticeably,

we find a large age effect unlike Shumway (2001). This is not surprising given that we use the
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age since incorporation for some potentially small and risky firms whereas Shumway (2001) uses

the age since listing for large corporate firms but mentions that the results may differ if age since

incorporation was used. An age effect is also found in Filipe et al. (2016) who model distress

events of SMEs. The industry specific covariate mentioned in Section 2.4.2 has a coefficient

estimate of -0.02791 with a standard error of 0.00176. The negative sign is consistent with the

results in Chava et al. (2011) who find a higher likelihood of a default when the median stock

performance in an industry is below 20%.

−0.4 −0.2 0.0 0.2 0.4

Coefficient

Expected dividends/size

log(age)

Liquid assets/size

Accounts payable/size

Equity/invested capital

Land and buildings/size

Retained earnings/size

Figure 2.8: Standardized coefficients in the GLM. The plot shows the effect on the linear
predictor from a one standard deviation move in the covariates. Only the 7 largest absolute
standardized estimates of non-dummy variables are included in the plot. The outer lines are 95%
Wald confidence intervals and the inner lines are the estimated coefficients.

The GLM uses 61 degrees of freedom whereas the GAM uses 254.7. Hence, the GAM is much

more complex than the GLM.18 In-sample estimations on the full sample period (2003-2016) yield

Akaike information criterion (AIC) of the GLM and GAM at 327 625 and 321 388 , respectively,

which shows an improvement from the GLM to the GAM in spite of the increased complexity of

the model.

2.B.1 Nonlinear Effects in the GAM and the GLMM

We will show the estimated nonlinear effects in GAM and GLMM in this section. The main

objective is to show that we can easily draw inference about the partial effects. This is unlike

what we can do for the GB model with trees with a maximum depth of three or deeper. All

partial effects of nonlinear terms will be shown. The GAM we estimate can be decomposed into

the following ANOVA decomposition

ηit = β>x
(f)
it +

q∑
j=1

γ>j fj(x
(s)
itj ) +

∑
(j,j1,j2)∈J

ω>j vec
(
fj1(x

(s)
itj1

)⊗ fj2(x
(s)
itj2

)
)

(2.10)

where vec(·) is the vectorization operator, J is the set of covariate pairs with a tensor product

spline, and β, γj , and ωj are unknown parameters. This is a generalization of the linear predictor

18We use the effective degrees freedom, which is tr (Fλ) from Equation (2.4) for the GAM.
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Figure 2.9: Main effects in GAM. The plots show the estimated main effects on the log
odds scale of the probability of entering into distress as in Equation (2.10). The fully drawn
line is estimated main effect and the dashed lines are ±2 standard deviations conditional on the
estimated penalty variables in λ. The spline bases are subject to a sum-to-zero constraint.

in Equation (2.3) to handle tensor product splines. Each basis function, fj , is subject to a

sum-to-zero constraint which is a generalization of centering in the univariate cases. Thus, the

γ>j fj(x
(s)
itj )-terms can be interpreted as main effects and the ω>j vec

(
fj1(x

(s)
itj1

)⊗ fj2(x
(s)
itj2

)
)

-terms

can be interpreted as interaction effects similarly as in the linear case with centered covariates. A
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Table 2.3: Nonlinear effects in the GAM and the GLMM. All covariates except for
log(size), log(age), and return on equity are divided by the size variable defined in Equation (2.8).
“Varying coefficient” implies an interaction with a spline basis function for the first covariate and
the identity function for the second covariate.

First covariate Second covariate Type of term

Nonlinear effects in the GAM
Retained profit Spline
Return on equity Spline
Net profit log(age) Varying coefficient
Net profit log(size) Tensor product spline
Net profit Liquid assets Tensor product spline
Net profit Other receivables Tensor product spline
log(size) Short-term bank debt Tensor product spline
log(size) Financial costs Tensor product spline
log(size) Tangible fixed assets Tensor product spline
Liquid assets log(size) Tensor product spline
Liquid assets Fixed costs Tensor product spline

Nonlinear effects in the GLMM
Retained profit Spline
Return on equity Spline
Liquid assets Spline
Other receivables Spline
Financial costs Spline
Net profit log(size) Tensor product spline
log(size) Short-term bank debt Tensor product spline

so-called varying coefficient is where one of the basis functions, fj , is the identity function. Thus,

the slope of the covariate with the identity function as the basis function can be seen as varying

as a function of the other covariate.

The GAM has 11 nonlinear effects of which nine have interactions. Table 2.3 shows all the

nonlinear effects. We reject tests as suggested by Wood (2013) at the conventional 5% level

and the largest p-value is less than 10−8. The null hypothesis is that the true effect is a line

or a plane. Figure 2.9 shows the estimated main effects. Multiple of the main effects show an

expected monotone effect, e.g., the log size plot shows a decreasing partial association between

distress and the size of the firm. Though, the effect is clearly nonlinear for some of the main

effects contrary to the assumption in the GLM. The net profit to size ratio is an example that

has a slightly non-monotone estimated effect. There is a strong association between the distress

rate and changes in the net profit ratio in the range from -10% to 0%, while the dependence of

the linear predictor is flat in other regions on the net profit ratio scale. Also, firms with a very

high net profit ratio tend to have a slightly higher rate of distress. A potential explanation is

that firms with relatively large profits may be more volatile firms.
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Figure 2.10: Main and interaction effects in GAM. The plots show the estimated main
effects plus interaction on the log odds scale of the probability of entering into distress as in
Equation (2.10). Confidence intervals as in Figure 2.9 are omitted but could easily be computed
in a similar manner. The z-axes are similar to the y-axes in Figure 2.9 for comparisons. The
plots on the right side are the same tensor product splines rotated 180 degrees.

Figure 2.10-2.12 shows the main and interaction effects. That is, each plot shows

ω>j vec
(
fj1(x

(s)
itj1

)⊗ fj2(x
(s)
itj2

)
)

+ γ>j1fj1(x
(s)
itj1

) + γ>j2fj2(x
(s)
itj2

)
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Figure 2.11: Main and interaction effects in GAM. Similar plots as in Figure 2.10.

for given (j, j1, j2) ∈ J . There is clear evidence of an interaction effect between some variables.

E.g., consider the log size and net profit ratio in Figure 2.10. Firms with large relative losses

have almost no partial association between the size of the firm and the probability of entering

into distress.

We stress that parts of the covariate space is very sparse in the sense of having a low number

of observations or a low number of observed events in the 3D plots shown in Figure 2.10-2.12.

Thus, there is some uncertainty about the estimated partial effects in these areas. Finally, we
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Figure 2.12: Main and interaction effects in GAM. Similar plots as in Figure 2.10.

include 6 nonlinear effects in the GLMM model with only 2 nonlinear interactions. The included

effects are shown in Table 2.3. We use 6 to 20 dimensional basis for each spline basis, fj , in the

GAM while we only use 5 in the GLMM. The splines in the GAM are selected by inspection of

standard diagnostic plots.

We have reduced the dimension of each spline in the GLMM compared to the GAM as we

do not penalize the splines in the GLMM. The splines and tensor product splines we include in

the GLMM are based on visual inspections of the estimated effect in the GAM and an estimate

of the marginal and joint density of pairs of covariates. The estimated splines in the GLMM are

comparable to the GAM. The software we use to estimate the GLMM is single-threaded and does

not readily have methods to impose penalties as the software we use to estimate the GAM. One

could implement a multi-threaded version of the GLMM estimation method and potentially use

approximations to reduce the computation time, however, this is beyond the scope of this paper.

2.C Details of the Two Bank Portfolios Example of Section 2.6.2

We will provide details regarding the simulation example in Section 2.6.2 in the following. Assume

that we have two banks: one with few low-risk loans (Bank A) and one with many high-risk loans

(Bank B). The probability of a default for each firm j in bank portfolio i is

pij = g−1(ηij + ε), ε ∼ N(0, σ2), ηij = g

(
pi(j − 1) + pi(ni − j)

ni − 1

)
where ε is a random effect which we cannot observe and g is the logit function. We fix σ to

0.2 and let Bank A have nA = 501 clients and Bank B have nB = 10 001 clients. Furthermore,

we set Bank A’s risk parameters to (pA, pA) = (0.10, 0.30) and Bank B’s risk parameters to

(pB, pB) = (0.15, 0.35). Thus, the latter bank has more clients which are more risky on average.

We use the marginal firm probabilities when we simulate the firms’ outcome in the model that

does not account for frailty. These probabilities are given by

p̃ij =

∫
R
g−1(ηij + ε)ϕ(ε;σ2)dε > g−1(ηij)
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Figure 2.13: Log odds and covariate distribution. Plot (a) shows the log odds as defined
in Equation (2.11). Plot (b) shows the density of Xit for t = 1, . . . , 21.

where ϕ(·;σ2) is the normal distribution density function with zero mean and variance σ2 and

the in-equality follows from a Jensen’s inequality and holds when ηij < 0 (i.e., the probability

of default is less than 50%). The firms’ outcome are then simulated independently using p̃ij to

produce prediction interval for the portfolios similar to what we do for the GLM, GAM, and GB

model in e.g., Figure 2.3.

2.D Example of Nonlinear Effect

One argument in this article is that a misspecification due to e.g., a linearity assumption can

yield biased results which may lead one to incorrectly conclude that there is evidence of a frailty

or a macro effect. We provide an example in this section to illustrate that this is possible. This

is somewhat different from Lando and Nielsen (2010) who show that omission of covariates may

yield evidence of a macro effect or a frailty variable.

Suppose we have a single covariate Xit ∈ (0, 1) and that

z+ = max(z, 0)

logit P (Yit = 1 | Xit = x) = −1.9− 0.25x− 44.75(x− 0.4)+ + 42.5(x− 0.5)+ + 2.5(x− 0.7)+

(2.11)

Further, we assume that covariates, Xits, are independent and distributed according to

Xit ∼ Beta (α(t), 2)

α(t) = 1.5

∣∣∣∣ t− 11

10

∣∣∣∣+ 1.5

where t = 1, . . . , 21. Figure 2.13 shows the log odds in Equation (2.11) and the density of Xit

for t = 1, . . . , 21. We assume that events are recurrent so an individual is at risk after having

an event. Given this model we make 1000 simulation with 10000 individuals in each sample

(i = 1, . . . , 10000). We fit two models in each simulation: one which assumes a linear effect of Xit

on the log odds scale and one where we add a second order polynomial for time. The latter can
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be seen as a macro variable or a frailty effect. Lastly, we perform a likelihood ratio test between

the two models. We reject the test in 869 of the 1000 simulation at the conventional 5 pct. level

which could, incorrectly, be inferred as a macro or a frailty effect.

While the example may be simple, it does show that an incorrectly specified partial association

combined with a time-varying covariate distribution can yield evidence of a frailty or a macro

effect. Thus, we could potentially find that the GAM and GB model fit better on an aggregate

level. Moreover, the function chosen here could potentially be well approximated by a step

function such as the result from a GB model.
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Chapter 3

Modeling Frailty Correlated Defaults
with Multivariate Latent Factors

Benjamin Christoffersen and Rastin Matin

Abstract

Firm-level default models are important for bottom-up modeling of the default risk of corpo-

rate debt portfolios. However, models in the literature typically have several strict assumptions

which may yield biased results, notably a linear effect of covariates on the log-hazard scale, no

interactions, and the assumption of a single additive latent factor on the log-hazard scale. Using

a sample of U.S. corporate firms, we provide evidence that these assumptions are too strict and

matter in practice and, most importantly, we provide evidence of a time-varying effect of the rel-

ative firm size. We propose a frailty model to account for such effects that can provide forecasts

for arbitrary portfolios as well. Our proposed model displays superior out-of-sample ranking of

firms by their default risk and forecasts of the industry-wide default rate during the recent global

financial crisis.

Keywords: frailty models, corporate default models

JEL classification: G33, G17

The authors are grateful to Mads Stenbo Nielsen, Søren Feodor Nielsen, and seminar partici-

pants at Copenhagen Business School for helpful comments.
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Modeling the default risk of a corporate debt portfolio can be accomplished by modeling the

default risk of the portfolio’s individual firms and then aggregate up to the portfolio level. This

method is advantageous as it is easy to account for changes in the portfolio through time. It is,

however, commonly known that misspecification of the firm-level model or omitted variables can

lead to a large downward bias in risk measures. With this in mind, we perform an analysis of

a sample of large U.S. corporate firms from 1980 to 2016 and our results are twofold: First, our

results strongly suggest that earlier models in the literature have been misspecified and, secondly,

we present a model that accounts for the misspecification. With this model, we show that it is

necessary to consider nonlinear transformations of certain variables, interactions, and account for

time-varying effects of the relative firm size. Our out-of-sample results show better ranking of

firms by their default risk and a better forecast of the industry-wide default rate during the last

crisis.

Typical default models in the literature use firm-specific variables and macro-variables to

model the probability of a future default of a firm, see e.g. Campbell et al. (2008), Chava and

Jarrow (2004), Duffie et al. (2007), Shumway (2001). These models provide quite accurate ranking

of firms by their default risk. However, the predicted default rate distributions of corporate debt

portfolios are too narrow for some data sets and model specifications, indicating a violation of

the models’ assumption of conditional independence between firms given the observable variables.

Many ideas have been suggested to relax this assumption (Chen and Wu, 2014, Duan and Fulop,

2013, Duffie et al., 2009, Koopman et al., 2011, 2012, Qi et al., 2014, Schwaab et al., 2017).

Common for these is that they all introduce one latent variable which affects all firms equally

either within an industry, rating group, or across all industries and rating groups on the log-hazard

scale or logit scale in discrete time. These models are known as mixed models or frailty models

when a multiplicative random factor is included in the instantaneous hazard. The addition of

the random factor results in wider and more reliable prediction intervals for the default rate of

a group of firms, resulting in more accurate risk measures. These models are therefore better

suited for modeling risk measures of a corporate debt portfolio. Since the random factor affects

groups of firms equally on the log-hazard scale, the models often do not provide better forecasts

of the mean, nor do they improve the ranking of firms by their riskiness. This has been explicitly

shown by Qi et al. (2014).

Within the frailty literature it is common to assume that the coefficients for observable vari-

ables are constant through time, but Lando et al. (2013) show that this assumption is too strict.

Using non-parametric and semi-parametric models, they present evidence of non-constant co-

efficients, and not accounting for such effects may yield biased results and an invalid implied

distribution for the default rate of a debt portfolio. However, the models in Lando et al. (2013)

cannot directly be used for forecasting due to their non-parametric components. In this work we

bridge these two approaches by presenting a frailty model that relaxes the assumption of constant

coefficients, which is also able to forecast future default rates and properly account for conditional

correlation.

We first ensure that any time-varying effects are not due to an invalid specification of the

linear predictor. We find that additional variables are needed in the model specification of Duffie

72



et al. (2009, 2007), since we observe a smaller difference in log-likelihood than Duffie et al. (2009)

between a model with and without frailty. This is consistent with Lando and Nielsen (2010)

that cannot reject the misspecification test of Duffie et al. (2007) after inclusion of additional

firm-specific covariates.

Based on work by Berg (2007) and Christoffersen et al. (2019), we expect nonlinear effects of

some covariates on the log-hazard scale. We account for these by natural cubic splines and, unlike

Lando and Nielsen (2010), we indeed find a significant nonlinear effect of the idiosyncratic stock

volatility of the firm, the net income over total assets, and log market value over total liabilities.

Accounting for nonlinear effects in this manner is rarely done in the literature even though there

is no a priori reason to suspect that covariates should have a linear effect on the log-hazard

scale. Our findings of a nonlinear effect of the idiosyncratic stock volatility and log market value

over total liabilities provide further evidence that the Merton model provides useful guidance for

building default models but may need adjustments. As Filipe et al. (2016), Jensen et al. (2017),

Lando et al. (2013), we also find strong evidence of a time-varying coefficient for a size measure

of the firm. In this regard we note that our size variable differs from the aforementioned papers

by using the market value as in Shumway (2001).

Section 3.1 describes in detail the hazard and frailty models we use, and in Section 3.2 we

describe our data set. We present results for monthly hazard rate models with and without frailty

in Section 3.3. We begin the section by providing evidence of nonlinear effects and an interaction

in models without frailty and then we extend these models to include frailty variables. Section

3.4 contains an out-of-sample test of the models, and we conclude in Section 3.5.

3.1 Model Specification

Our baseline model is a Cox proportional hazards model with a constant baseline hazard and

time-varying covariates as in Duffie et al. (2007). Thus, the conditional instantaneous hazard

rate of firm i at time t is

λi (t | xi(t),m(t)) = Ri(t) exp
(
α+ β>xi(t) + γ>m(t)

)
(3.1)

where Ri(t) is a censoring indicator which is zero if the individual i is censored at time t, xi(t) are

the firm-specific covariates at time t, m(t) are the macro-variables at time t and α, β and γ are

unknown parameters which we need to estimate. We observe Ri(t), xi(t), and m(t) at discrete

points so we model these as variables that are piecewise constant. Thus, the instantaneous hazard

in Equation (3.1) is piecewise constant, resulting in a piecewise exponentially distributed arrival

time. Due to the discrete hazard, we simplify the notation to

λik (xik,mk) ≡ λi (t | xi(t),m(t)) = Rik exp
(
α+ β>xik + γ>mk

)
(3.2)

where k = dte, dte is the ceiling of t, and we let xik be the constant value that xi(t) takes on

the interval (k − 1, k] and similarly for Rik and mk. Letting Ti denote the default time of firm

i, then the parameters are easily estimated by using that the likelihood in discrete time (i.e., the
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probability of default) for firm i in period (k − 1, k] conditional on survival up to time k − 1 is

P (Ti ∈ (k − 1, k] | Ti > k − 1) = 1− exp (−λik (xik,mk)) (3.3)

for k ∈ {0, 1, 2, . . . }, and in continuous time by using that the conditional density function of Ti

is

fi (k − 1 + ∆t | Ti > k − 1) = λik (xik,mk) exp (−λik (xik,mk) ∆t)

where ∆t ∈ (0, 1).

The strict assumption in Equation (3.1) is that firms’ default intensities, λik, are only cor-

related through co-movements in firm-specific covariates, xik, or the macro-variables, mk. This

assumption may not hold in practice for multiple reasons: Our model could be misspecified

by omission of one or more macro-variables, co-movements in an omitted firm covariate, or co-

movements in a variable which is modeled incorrectly. As in Duffie et al. (2009),1 one way to

account for the excess clustering of defaults is by extending the hazard in Equation (3.2) to

λik (xik,mk, Ak) = Rik exp
(
α+ β>xik + γ>mk +Ak

)
(3.4)

Ak = θAk−1 + εk, εk ∼ N
(
0, σ2

)
(3.5)

whereN
(
0, σ2

)
is a normal distribution with mean zero and variance σ2 and the innovation terms,

εk, are iid. The term Ak increases the hazard of all firms in period (k− 1, k] by a factor exp(Ak),

and such a multiplicative factor on the hazard is formally referred to as a frailty. Large values of

σ increase the probability of observing larger differences in the log-hazard between consecutive

periods all else being equal, while θ controls the rate of decay of the cumulated shocks. That

is, the effect of the shock εk decays towards zero with the rate θk
′−k for k′ > k. The limit

θ → 0 corresponds to independent values of Ak, which has previously been employed in, e.g.,

Christoffersen et al. (2019) as they do not find evidence of autoregressive random effects. This

could possibly be due to wider time intervals and/or fewer cross sections.

The model specification determines whether Ak is a zero-mean stationary or non-stationary

process. The former would be the case when the frailty captures a stationary macro-variable.

However, if the model specification, e.g., includes the log of a nominal (non-real) value variable,

but the true association is linear in the log of the real value, then a non-stationary adjustment

to the intercept would be needed. Examples of the latter are found in Lando and Nielsen (2010)

and Chava et al. (2011), where it is unclear whether the authors use nominal or real values. As

we only include real values and financial ratios where inflation adjustments do not matter, we do

not expect a non-stationary intercept for the aforementioned reasons.

While the model in Equation (3.4) can account for conditional correlation, it may still be a poor

approximation of the true dynamics. First, although we may expect a monotone effect, it is not

obvious that the log of the default intensity should have a linear dependence on the covariates.

We will later account for such nonlinear effects by using natural cubic splines. Secondly, the

1Duffie et al. (2009) remark that they use an Ornstein-Uhlenbeck process, but in practice they use a discrete
approximation like in Equations (3.4) and (3.5).
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assumption that there is only one frailty variable which affects all firms equally on the hazard

scale may not be justified. A generalization is to relax the assumption of constant proportional

effect of the covariates and let some of the coefficients vary over time. The resulting model is

λik (xik,mk, Ak,Bk, zik) = Rik exp
(
α+ β>xik + γ>mk +Ak +B>k zik

)
(3.6)(

Ak

Bk

)
= F

(
Ak−1

Bk−1

)
+ εk, εk ∼N (0,Q)

where zik may contain a subset of the elements of xik and N (0,Q) is a multivariate normal

distribution with mean vector 0 and covariance matrix Q. The term Bk contains the random

components of the slopes, and the interpretation of Bk is the change in log-hazard relative to

the reference point (Bk = 0) due to a unit increase in the covariates with a random slope. E.g.,

suppose that we only have one covariate in the model and it has a random slope. Then two firms

i and j which differ by xjk = xik + 1 will have a relative hazard in time period (k − 1, k] of

λjk (xjk,mk, Ak, Bk, xjk)

λik (xik,mk, Ak, Bk, xik)
=

exp ((β +Bk) (xik + 1))

exp ((β +Bk)xik)
= exp (β +Bk)

That is, Bk changes the effect of a unit change in the covariate by a factor exp(Bk).

There are many reasons to expect non-constant slopes. The accounting standards may change,

banks may temporally change the way that variables affect their lending behavior, certain types

of firms may be more risky in poor economic downturns, etc. One may again argue whether the

frailty is a stationary process or not. If one expects that the frailty captures temporary excess

default clustering, then a stationary process seems like a natural choice.

We will estimate the frailty models using a Monte Carlo expectation maximization algorithm,

where the expectation step is approximated using a particle smoother. The details of the esti-

mation are in Appendix 3.A. The software we have developed to estimate the frailty models is

available at the Comprehensive R Archive Network (CRAN).

3.2 Data and Choice of Covariates

Moody’s Default Risk Service Database (MDRD) is used to get the firms’ default events. We

define a default event as a firm which enters into either bankruptcy, bankruptcy section 77,

chapter 10, chapter 11, chapter 7, or a prepackaged chapter 11. We also regard the following as

default events: A distressed exchange, a dividend omission, a grace-period default, a modification

of indenture, a missed interest payment and/or a missed principal payment, payment moratorium,

and a suspension of payments. These events are also included by Duffie et al. (2009) from MDRD

and are nearly the same events included by Lando et al. (2013). The by far most frequent event is

a missed interest payment followed by a chapter 11 bankruptcy and, as some of our events are not

terminal, recurrent events can occur. Firms with multiple events typically have an intermediary

period in which most would consider the firm as being in a non-normal state and thus not being

at risk of entering into default. Thus, we censor a firm until the resolution date provided by
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MDRD or 12 months after the event if the resolution date is missing. We extend the censoring

period if consecutive events fall within this default event time and the resolution date.

We only use MDRD for two reasons: First, some of the default events are closer to the point

in time at which, e.g., bond holders suffer losses. Secondly, we can use the same default events

for all firms in our sample. We could augment our data set with firms that are not in MDRD,

but then we would track different events depending on whether the firm is tracked by Moody’s.

Thus, the event definition would be broader for firms in MDRD as we would likely only have

legal bankruptcy events available for firms outside MDRD. Consequently, our results could reflect

differences between the two groups and it would be unclear what we model.

We use CRSP and Compustat for market data and financial statements, respectively. We

lag data from Compustat by 3 months to reflect the typical delay on financial statements, use

quarterly data with annualized flow variables when available and otherwise we use yearly data.

Data from CRSP is lagged by 1 month to reflect that we only know past market data. Summary

statistics are shown in Table 3.4 in the appendix, and the firm-specific variables we include are:

• Operating income to total assets: Operating income after depreciation relative to total

assets. It is a profitability measure and we expect that more profitable firms should be less

likely to enter into default.

• Net income to total assets: Net income relative to total assets. It is similarly a profitability

measure but includes all costs. Including both ratios allows one to distinguish between the

partial association of the two types of costs.

• Market value to total liabilities: Market value from CRSP relative to total liabilities. A

larger ratio should imply that the firm is further from default all else equal.

• Total liabilities to total assets: Total liabilities relative to total assets. It is an indicator of

the firm’s financial leverage and we expect that all else equal a higher ratio should imply a

higher probability of default.

• Current ratio: Current assets relative to current liabilities. A too low ratio would imply

that the firm may not be able meet its short-term debt obligations thus increasing the

probability of default.

• Working capital to total assets: Working capital relative to total assets. Similar to the

current ratio, it measures the ability to meet the short-term debt obligations but does so

with a metric relative to the size of the firm.

• Log current assets: Log of current assets deflated with the U.S. Government Consumer

Price Index from CRSP. This is similar to the pledgeable assets used in Lando et al. (2013)

but we do not add the book value of net property, plant, and equipment to the current

assets. The variable captures both the size of the firm and the assets which can be quickly

converted into cash.

• Log excess return: 1-year lagged average of monthly log return minus the value-weighted

log total market return. We require at least three months of returns. While we do not have
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a particular effect in mind, this variable has shown to be a strong predictor in the literature

(Duffie et al., 2009, 2007, Shumway, 2001).

• Relative log market size: Log market value of the firm minus the log total market value.

The total market value is the sum of market values of AMEX-, NYSE-, and NASDAQ-listed

firms. As remarked by Shumway (2001), subtracting the log total market value from the log

market value of the firm has the advantage that it deflates the nominal log market value.

Low-valued firms should be closer to entering into default in which case any investments by

investors are likely lost. Though, the variable also measures the size of the firm.

• Distance to default : Estimated 1-year distance to default. The drift and volatility of the

underlying assets are estimated over the past year using the so-called KMV method as in

Vassalou and Xing (2004), and we set the debt due in one year to be the short-term debt

plus 50% of the long-term debt as is common. We require at least 60 days of market values

to estimate the parameters.

The statistics of our distance to default is comparable to that reported by Vassalou and Xing

(2004), which is anticipated as we use the same method and listed U.S. firms.2 However,

we note that a wide range of values have been reported in the literature.3

• Idiosyncratic volatility : Estimated standard deviation of 1-year past rolling window regres-

sions of daily log return on the value-weighted log market return. We require at least 60

days of returns in the regressions. The variable is used in Shumway (2001) and one moti-

vation is that more volatile firms should have a higher chance of entering into default (e.g.,

due to more volatile cash flows as argued by Shumway, 2001).

The value-weighted market return we use is the NYSE and AMEX index from CRSP. In terms of

macro-variables, we include a market return and treasury bill rate like Duffie et al. (2009, 2007),

specifically the value-weighted past 1-year log return of the aforementioned index and 1-year

treasury bill rate. All variables are winsorized at 1% and 99% quantile and we carry forward

missing covariates for up to 3 months for CRSP-based variables and 1 year for Compustat-based

variables.

All of these covariates have appeared in multiple papers before (e.g., Bharath and Shumway,

2008, Chava and Jarrow, 2004, Shumway, 2001). It is deliberate that we use covariates that have

previously been used in the literature as the goal of this work is not to seek new covariates.

We include a firm in our sample as long as it is listed, we have data from Compustat and

CRSP for all variables, and the firm has started being rated by Moody’s or if it is less than

36 months after the rating has been withdrawn and the firm is not rated again by Moody’s.

2The probabilities of default in Vassalou and Xing (2004) are available at www.maria-vassalou.com/data/

defaultdataset.zip. Comparing our distance to default to theirs over the same period after truncating at a 10−15

and 1 − 10−15 probability of default as they do yields a mean and standard deviation of the distance to default
of 4.856 and 2.739 , respectively. The corresponding figures in Vassalou and Xing (2004) are 4.391 and 2.608,
respectively.

3Chava et al. (2011), Duan et al. (2012), Lando et al. (2013), Lando and Nielsen (2010), Qi et al. (2014) show
a mean ranging from 1.867 to 16.79 and a standard deviation ranging from 2.653 to 12.83.
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Figure 3.1: Monthly default rate in the sample. The blue line is a natural cubic spline
with an integrated square second derivative cubic spline penalty. The penalty parameter is chosen
using an un-biased risk estimator criterion. Gray areas are recession periods from National Bureau
of Economic Research.

Firms outside this range have a virtually zero default rate in the MDRD database, which is likely

because Moody’s no longer tracks the firms or has not yet started to track them.

A delisting month counts as a default if a default event happens up to one year after the firm

delists. This is similar to Shumway (2001) though he uses a five-year limit instead. An advantage

of the event definition we use relative to, e.g., Shumway (2001) is that the events happen close

to delisting or before delisting. Specifically, we observe that 84.7% of the events occur while we

still have covariate information of the firm and the firm has not delisted or delists in the month

of the event. Thus, we include the first half of 2016 in our out-of-sample test in Section 3.4 as we

may only miss a few events since our version of MDRD was last updated in October 2016.

As is standard in the literature, we exclude firms with an SIC-code in the range 6000-6999

(financial firms) and those greater than 9000 (public administration or non-classifiable). We use

the historical SIC-code from Compustat if it is available and otherwise use CRSP’s historical

code.

Figure 3.1 shows the monthly default rate in the sample. There is a visible clustering of

defaults around economic crises, however, it is not clear from this plot whether the clustering can

be captured by firm-specific variables or macro-variables.

3.3 Empirical Results

We start this section by estimating models without frailty and show that we get a better fit

by adding covariates, splines, and an interaction to the model in Duffie et al. (2007). That

additional covariates are needed is similar to the conclusion in Lando and Nielsen (2010), but
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Figure 3.2: Splines in model M3. Splines for (a) net income to total assets, (b) the id-
iosyncratic volatility, and (c) log market value to total liabilities containing both the linear and
nonlinear components in Table 3.1. The y-axes are the effect of the covariate on the log-hazard
scale and dashed lines are 95% pointwise confidence intervals. Histograms of the covariates are
shown in the background to illustrate where we have data (they have no relation to the y-axis).

treating nonlinear effects has so far received limited attention in corporate default literature. We

find a nonlinear effect of variables that are related to the Merton model and discuss this finding

and its relation to previous work. We then turn to frailty models, where we estimate a model

with a single frailty that affects all firms equally on the log-hazard scale (cf., Equation (3.4)), and

subsequently extend it to include a frailty that depends on the relative log market size of the firm

as in Equation (3.6). We end by comparing our results to previous work.

Table 3.1 presents the parameter estimates for the models without frailty. Column M1 is

similar to the specification used by Duffie et al. (2007) and Duffie et al. (2009) when the frailty

variable is not included. A one standard deviation change in distance to default (log excess

return) is associated with an exp(−2.263) (exp(−0.932)) factor change in the hazard. The former

shows that distance to default is a good predictor of default as changes in distance to default

are associated with large changes in the instantaneous hazard. However, the latter shows that

distance to default is not a sufficient on its own, as is also observed in Bharath and Shumway

(2008).

The signs of the coefficient estimates for the two macro-variables are similar to Duffie et al.

(2009) and like them we do not have an intuitive explanation for the log market return slope

estimate that makes sense marginally. However, we agree that a univariate interpretation may

be invalid and a plausible explanation is instead that the distance to default could be “too large”

on average when entering as a linear effect on the log-hazard scale in good periods on the stock

market. In this case one would expect a positive slope on the market return. We remark that our

estimates are not directly comparable to those of Duffie et al. (2009, 2007) as they only (among

other things) consider industrial firms, have a different time period, and include events from other

databases.

The AICs of M1 and M2 show that M2 is a much better fit. Distance to default is not

significant in model M2, which may not be that surprising as we include both the market value

to liabilities and the idiosyncratic volatility, which have strong associations with the value and
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volatility of the underlying asset in the Merton model (we remark on this further in the next

subsection). All signs of the coefficients are as expected except for the log current assets. As

we show in the table and in Figure 3.10 in the appendix, we find that larger current assets are

associated with a higher default hazard for fixed relative market size. We note that removing the

relative market size from M2 yields a negative (but small in absolute terms) coefficient on the

log current asset. Further, none of the variance inflation factors in M2 are larger than four, so

there is no severe multicollinearity.

The differences between columns M2 and M3 are three spline terms and an interaction

between the current ratio and the idiosyncratic volatility. The latter shows that the partial effect

of the current ratio increases when the idiosyncratic volatility increases. This implies a lower

partial association with a measure of capability to pay short-term debt (the current ratio) when

the firm’s equity value is more volatile, since the main effect is negative. This seems plausible.

The three splines inM3 are shown in Figure 3.2. The splines are subject to a typical sum-to-

zero constraint, and a three-dimensional natural cubic spline basis is used. The left plot shows a

tilted “hockey-stick” curve, which flattens for large negative loss to total assets, similar to what

is observed in Christoffersen et al. (2019). The partial effect of the idiosyncratic volatility only

differs for firms with small to moderate idiosyncratic volatility and flattens thereafter. Due to

a relatively small number of events for firms with a moderate or large market value to total

liabilities, we log-transformed the ratio to obtain a more well-posed problem. The low number of

observed events in the right tail of the ratio is reflected in wider confidence bounds of the spline.

3.3.1 Distance to Default

Distance to default has received a lot of attention in the literature. Many noticeable papers

cover one or more probability of default models which include distance to default in some way

(Bharath and Shumway, 2008, Campbell et al., 2008, Duffie et al., 2009, 2007, Hillegeist et al.,

2004). The distance to default comes from the Merton model and assumes that the underlying

firm value follows a geometric Brownian motion and that the firm has issued a single zero-coupon

bond. Both assumptions are potentially restrictive. In particular, the ad hoc practice of setting

the debt maturing in one year to the short-term debt and 50% of the long-term debt suggests a

violation of the latter assumption.

While Duffie et al. (2009, 2007) show that distance to default is a strong predictor, Campbell

et al. (2008) only find smaller improvements when including distance to default in a model that

also includes volatility and leverage. The latter is similar to our findings in that we cannot reject

a zero slope in M2. Bharath and Shumway (2008) show that distance to default is not sufficient

on its own and that a simpler and highly correlated metric performs equally, if not better, in

ranking firms by their default risk. However, our results are not directly comparable to Bharath

and Shumway (2008), as they include the probability of default from the Merton model on the

log-hazard scale whereas we include the distance to default as in Duffie et al. (2009, 2007). That

is, if DtDit denotes the distance to default of firm i at time t and Φ is the standard normal

cumulative distribution function, then Bharath and Shumway (2008) assume that the probability
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Figure 3.3: Comparison of output from the Merton model. Plots of (a) inverse standard
normal cumulative distribution, Φ−1, versus the complementary log-log function and (b) uniform
distribution versus the complementary log-log function both for varying quantiles, p. The lines
goes through the 0.00001 and 0.04 quantile to emphasize the region where we may expect to have
data. The y-axis is decreasing from north to south to get a positive slope due to the negative
relationship between the distance to default and the probability of default.
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Figure 3.4: Difference between realized monthly default rate and in-sample predicted
default rate of model M3. Black bars indicate that a 90% point-wise confidence interval does
not cover the realized default rate. The scale is large compared to the monthly default rate (see
Figure 3.1). Gray areas are recession periods from National Bureau of Economic Research.
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of default from the Merton model

pit = Φ−1(−DtDit) (3.7)

has a linear association on the log-hazard scale while we assume that DtDit has linear association

on the log-hazard scale. The central question is what to expect if Equation (3.7) is approximately

true.

Figure 3.3 illustrates the inverse standard normal cumulative distribution and uniform dis-

tribution versus the complementary log-log function (inverse of Equation (3.3)). The inverse

standard normal cumulative distribution and complementary log-log seem to match in the low

to rather high probability of default region, suggesting that including the distance to default on

the log-hazard scale is not unreasonable if Equation (3.7) is approximately true. This is not the

case for the uniform distribution. Moreover, we have tried to replace the distance to default in

model M1 with the probability from Equation (3.7), resulting in an AIC of 5633 which is worse

than the original model that included the distance to default. Further, performing a likelihood

ratio test of the original M1 against the nested model which also includes the probabilities from

Equation (3.7) yields a p-value of 0.083. In conclusion, we find no arguments or evidence that the

probability should be used on the log-hazard scale rather than or simultaneously with distance

to default.4

Finally, we turn to our M3 model. As in the online appendix of Duffie et al. (2009), we

find limited evidence of a nonlinear relation on the log-hazard scale with distance to default.

However, we do find a significant nonlinear relationship with two related variables, namely the

idiosyncratic volatility and log market value to total liabilities. The regressions we run to estimate

the idiosyncratic volatility typically do not fit well so the idiosyncratic volatility is close to the

estimated volatility of the equity. The volatility of the equity is related to the volatility of

underlying asset in the Merton model by

dit =
log Vit/Fit + (r + σ2

iV /2)

σiV

σiE =
Vit
Eit

Φ(dit)σiV

where Vit, Eit, and Fit is the value of the underlying asset, the value of the equity, and the value

of debt maturing in one year of firm i at time t, respectively, and σiE and σiV is the volatility of

the equity and underlying value of firm i, respectively. Thus, when dit is large then σiE is merely

a rescaling of σiV , implying that the idiosyncratic volatility is a good proxy for the underlying

volatility. Consequently, adding a spline to the idiosyncratic volatility can be seen as a relaxation

of the effect of one of the key components in the Merton model. Secondly, for large Eit/Fit and

low σiV

log
Vit
Fit
≈ log

Eit + Fit
Fit

≈ log
Eit
Fit

implying that the log market value to total liabilities is a close proxy for another key component

4Though, Bharath and Shumway (2008) remark that they find inferior performance by including the log of the
distance to default. However, it is unclear to us how negative distance to default values are handled. It also seems
to be more common to include the untransformed distance to default on the log-hazard or log odds scale.
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in the Merton model. Thus, two of our splines can be seen as a relaxation of the assumptions in

the Merton model.

Our choice of covariates is based on previous literature which is reflected in our preference

for the idiosyncratic volatility and market value over total liabilities instead of the volatility of

the equity and the market value plus total liabilities over total liabilities. All the splines we

include are based on standard residual diagnostic plots. In this regard, it is interesting that we

find evidence of nonlinear effects for two variables that are this closely related to the Merton

model. As Bharath and Shumway (2008) conclude, the Merton model seems to provide guidance

to default models but we find that relaxations seem to be needed.

To motivate the next section, Figure 3.4 shows the in-sample difference between the predicted

default rate (percentage of firms that experience an event in one month) and the realized monthly

rate forM3, and reveals that the model may have issues with excess clustering of defaults. There

is a tendency of co-occurrences of too large or too small predicted monthly default rates, which

suggests a frailty model with a temporal dependence as in Equation (3.4).

3.3.2 Frailty Models

We will present results for two frailty models in this section. One with a random intercept as

in Equation (3.4) and one where we add a random slope for the relative log market size. Table

3.2 shows the estimated parameters. Column M4 shows estimates for the model with splines

and the interaction (M3) with an added frailty effect for the intercept as in Equation (3.4). The

parameter estimates are similar to M3. The estimated loading θ is close to what Duffie et al.

(2009) find. However, the difference ∆ in twice the log-likelihood is only 7.0 (the log-Bayes factor

mentioned in Duffie et al., 2009). Though, ∆ between the model similar to Duffie et al. (2009)

(M1) with and without a frailty term is 14.8, which is closer to the 22.6 reported in Duffie et al.

(2009). In conclusion, our finding suggests that the additional variables, nonlinear effects, and

the interaction capture some of the temporal heterogeneity.

Figure 3.5 shows the predicted frailty variable, Ak, conditional on the observed data. There are

some periods where the predicted value of the frailty-term is 0.2, yielding exp(0.2) ≈ 1.22 factor

higher instantaneous hazard for all firms at the same point in time. The small difference in

log-likelihood is reflected in the wide prediction intervals.

The frailty model in Equation (3.6) is denoted M5. We model the temporal dependence

between the frailty variables as(
Ak

Bk

)
=

(
θ1 0

0 θ2

)(
Ak−1

Bk−1

)
+ εk, εk ∼N

(
0,

(
σ2

1 σ1σ2ρ

σ1σ2ρ σ2
2

))
(3.8)

where Bk is the zero-mean term on the slope of the relative log market size. There is a large

difference between twice the log-likelihood of modelM5 andM4 of 60.0, providing strong evidence

in favour of the former model.

Figure 3.6 shows the predicted value of Bk. The predicted value of Ak and Bk are very similar

as θ1 and θ2 are almost equal and the correlation coefficient, ρ, is high. There is an increase in
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Table 3.2: Estimated monthly frailty models. Both models correspond to the model with
splines and an interaction,M3, with additional frailty variables: M4 has a random intercept and
M5 has a random intercept and slope for the relative log market size. All covariates are centered
in the shown models. The χ2 test statistics from the Wald tests are given in parentheses: ∗∗∗

implies significance at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level. The spline rows
are from a three-dimensional natural cubic spline basis, which is restricted to a two-dimensional
space that is orthogonal to the linear term. Thus, the linear term can be interpreted as the linear
part of the spline. The two coefficients for each basis function in the splines are omitted and a
“X” indicates that the spline term is included in the model. The estimated splines are shown in
Figure 3.11 in the appendix.

M4 M5

Intercept −10.507∗∗∗ (878.2) −10.789∗∗∗ (290.2)
Distance to default 0.137∗∗∗ (6.7) 0.107∗∗ (4.0)
Log excess return −1.734∗∗∗ (201.8) −1.673∗∗∗ (187.0)
T-bill rate 5.671∗∗ (6.3) −0.665 (0.0)
Log market return 0.945∗∗∗ (7.2) 0.981∗∗∗ (9.4)
Log current assets 0.207∗∗∗ (15.1) 0.249∗∗∗ (23.2)
Working capital / total assets −0.981∗ (3.4) −1.096∗∗ (4.2)
Operating income / total assets −1.073∗ (3.8) −1.108∗∗ (4.1)
Log market value / total liabilities −0.731∗∗∗ (9.5) −0.633∗∗∗ (7.1)
Net income / total assets −2.019∗∗∗ (14.9) −1.929∗∗∗ (13.7)
Total liabilities / total assets 0.447∗∗ (3.8) 0.521∗∗ (5.2)
Current ratio −0.847∗∗∗ (21.2) −0.809∗∗∗ (19.0)
Idiosyncratic volatility 109.290∗∗∗ (42.1) 126.717∗∗∗ (48.2)
Relative log market size −0.340∗∗∗ (29.1) −0.415∗∗∗ (7.1)
Net income / total assets (spline) X∗ (5.9) X∗ (5.2)
Idiosyncratic volatility (spline) X∗∗∗ (28.3) X∗∗∗ (34.8)
Log market value / total liabilities (spline) X∗∗∗ (17.3) X∗∗∗ (18.1)
Current ratio · Idiosyncratic volatility 16.074∗∗∗ (21.2) 15.108∗∗∗ (18.6)

θ1 0.897 0.972
θ2 0.974
σ1 0.116 0.269
σ2 0.064
ρ 0.991

AIC 5001.4 4947.4
log-likelihood −2477.7 −2447.7
Number of firms 3020 3020
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Figure 3.5: Predicted (smoothed) frailty variable Ak of M4 conditional on the ob-
served data. The dashed lines are 68.3% point-wise prediction intervals (similar to the ±1
standard deviation in Duffie et al., 2009). Gray areas are recession periods from National Bureau
of Economic Research.
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Figure 3.6: Predicted (smoothed) frailty variable Bk of M5 conditional on the ob-
served data. The dashed lines are 68.3% point-wise prediction intervals (similar to the ±1
standard deviation in Duffie et al., 2009). Ak is very similar and roughly 0.264/0.064 ≈ 4.1 times
greater in magnitude due to the very similar decay-rate (θ) estimate and high correlation between
the two random effects. The plot does not include the fixed slope estimate, i.e., -0.415 needs to be
added to get the slope on relative log market size at any point in time. Gray areas are recession
periods from National Bureau of Economic Research.
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Figure 3.7: Correlation in innovation term for different values of relative log market
size. Contours of correlation between ε1t + ε2tzit for different values of the log relative market
size, zit. The log relative market size is centered as in the M5 model.

the relative log market size slope at each of the crisis in 1990s and 2001, implying that large firms

tend to be relatively more risky during a crisis all else equal. A similar time-varying effect of the

size-variable is shown in Jensen et al. (2017), Lando et al. (2013) for a broad sample of Danish

firms, and Filipe et al. (2016) for SMEs in Europe.5 We remark that the size variable differs

between the aforementioned papers and our work. For completeness we tried to use the log of

the real value of total assets similar to Filipe et al. (2016) and Jensen et al. (2017) instead of the

relative log market size in M2, but this resulted in a worse fit.

We note that the slope of the risk-free rate is virtually zero in model M5, while all other

coefficients are similar to those of model M4. This smaller association with macro-variables is

also observed in Lando et al. (2013).

Lastly, we consider the estimated random effect. Each firm’s random effect component on the

log-hazard scale is given by

At +Btzit = ε1t + ε2tzit + θ1At−1 + θ2Bt−1zit

where zit is the relative log market size. Figure 3.7 shows the correlation between the ε1t + ε2tzit

term for two values of zit. The conclusion is that firms of equal size have a highly correlated

random effect term, while low-valued firms tend to have a lower correlation with the random

effect term of moderately- and high-valued firms. This is in contrast to the modelM4 where the

random effect term for all firms is perfectly correlated by construction.
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Figure 3.8: Density estimates of idiosyncratic volatility. The plot shows density estimates
of the winsorized idiosyncratic volatility through time. The middle vertical lines are the medians.
Densities lower than 1% of the maximum are omitted. A Gaussian kernel is used with a bandwidth
of 0.00137.

3.3.3 Comparison with Other Work

Omitting covariates with co-movements through time for all firms or groups of firms can yield

evidence of a single shared frailty (i.e., a time-varying intercept). An example of a covariate with

a co-movement through time is shown in Figure 3.8, showing density estimates of the winsorized

idiosyncratic volatility through time. Many of the covariates in our model have time-varying

distributions, which may explain the smaller Bayes factor we observe between a model with a

time-varying intercept versus a model without in comparison to Duffie et al. (2009). The results

presented by Lando and Nielsen (2010) are yet another indication of this effect, since they fail to

reject the misspecification test in Das et al. (2007) after including additional covariates.

A different approach to default modeling is to consider aggregate defaults. Some examples

are Azizpour et al. (2018), Koopman et al. (2011, 2012), Schwaab et al. (2017) who aggregate

to different levels, which are either total default counts or default counts in rating and industry

(and region or age cohort) groups. Azizpour et al. (2018), Koopman et al. (2011), Schwaab et al.

(2017) use cross-sectional averages or medians of firm-level covariates and either explicitly or

implicitly assume that firms are homogeneous given these variables at the level of default that

they model. This is a strict assumption and may not be valid in practice when covariates have

time-varying distributions as in Figure 3.8. Time-varying distributions of firm-level covariates can

yield evidence of a macro effect, frailty variable, or contagion variable as the following example

will show. We have 1000 firms which we observe over 65 periods. Each firm has a randomly

distributed incorporations date which is uniformly distributed on {0, . . . , 64} and a single time-

5See the log-size coefficient in the robustness check of Filipe et al. (2016).
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varying covariate Xit which is drawn from the mixture given by

Xit | Uit = u ∼

N (0, 1) u = 0

N (g(t), 1) u = 1
, g(t) = 4 ·

∣∣∣∣ t− 33

32

∣∣∣∣− 1

where Uit is Bernoulli distributed with probability 0.2. That is, the covariate is either drawn

from a time-invariant distribution or from a distribution with a time-varying mean. Defaults are

terminal, we observe defaults in discrete time, and define the default intensity as

λit = exp (β0 + β1xit)

where (β0, β1) = (−4, 1). We perform 1000 simulations and fit a model for aggregate defaults for

each simulated data set using the mean at time t, X̄t = |Rt|−1
∑

i:Rt
Xit, as a covariate where Rt

is the risk set at time t. Furthermore, we fit a second model where we include time as a second

order polynomial. The latter model can be seen as a model which includes either macro-variables,

a contagion factor, or a shared frailty variable. We reject the likelihood ratio test between the

two nested models in 618 of the 1000 simulations at the conventional 5% level, which could be

interpreted as evidence of a macro, a contagion, or a frailty effect when employing cross-sectional

averages of firm covariates. More importantly, both models have the undesirable feature that they

miss substantial cross-sectional variation, yielding incorrect results for a corporate debt portfolio

with a non-random sample of the population. For completeness, Koopman et al. (2012), Schwaab

et al. (2017) do state that a firm’s rating may not be sufficient statistics for default. Further,

there is evidence that ratings alone may be poor proxies of risk (e.g., see Hamilton and Cantor,

2004).

Our results in Figure 3.6 suggest that larger firms are partially more risky in some periods

than others, whereas Azizpour et al. (2018) show that periods with large amounts of defaulted

debt are followed by a higher aggregate default rate. The advantage of our model in this context

is that it can be applied to an arbitrary portfolio of firms and can distinguish between an overall

change in default rates and a change in default rates for a subset of firms. The latter is key, e.g.,

for regulators that want to evaluate the risk exposure of banks that provide loans to a subset of

firms that are not a random subset of the entire population.

We remark that we do not attempt to infer causal effects. The observed frailty effect may

be either “true” frailty (i.e., temporary shocks that affect all or groups of firms), a proxy for a

contagion effect (i.e., the default of one firm spreads to other firms), causal associations or non-

causal associations. However, we provide a model which is an accurate firm-level as well as joint

default model. Such models are needed to perform bottom-up modeling of the default risk of a

corporate debt portfolio. The model can easily be extended to relax the assumption that other

coefficients are constant and exploit information of all defaults through time.
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3.4 Out-of-sample

In this section, we will test the performance of the models out-of-sample through time. Our

goal is to test how well the models perform on the firm-level and aggregate level. The former is

important as we want to be able to use the models on a portfolio which contains an arbitrary

subset of the firms in our sample. The latter is important as any bias at a point in time can affect

the overall predicted default rate of a portfolio and subsequent modeling of other quantities using

the default model.

As described in Duffie et al. (2009), our models are so-called doubly stochastic Poisson pro-

cesses conditional on the frailty variables. That is, conditional on the covariates (and frailty

variable path), we have piecewise exponentially distributed arrival times. However, we do not

know the future covariates when we forecast apart from the value in the present month. We also

do not know whether, and if so when, the firm will exit the sample due to other reasons than

a default. What we will do is take both covariates and exits as given, i.e., in our risk set we

include the firms up to and including the month where they exit due to a default or for other

reasons. During this period we treat the firm as if it can default unconditional on that the firm

will exit within our forecasting period. E.g., if a firm exits at the end of month 4 (due to exit or

a default), then the firm is at risk for 4 months. This allows us to solely test our default models’

performance and not how well we can model the covariates in our model.6

We estimateM1 andM3-M5 up to January or July of a given year and then use the estimated

models to forecast defaults for the following half-year. We quantify the model performance in

two ways: First, we use the area under the receiver operator characteristic curve (AUC). It is a

commonly used metric in the default literature and the AUC allows us to assess the firm-level

performance. The interpretation of AUC is the fraction of correctly ordered firms in terms of

whether or not they default within the six month period. Thus, it is the probability that a

random firm in our sample with a default has a higher hazard than a random firm without a

default. A value of 0.5 is random guessing and a value of 1 means that all firms with a default

have a higher hazard than firms without a default. We compute the AUC of each model using

the mean hazard rates, which follow from the predicted default probabilities.

Secondly, we simulate the events conditional on the predicted default probabilities for each

firm using the models without frailty and use these to compute the industry-wide default rate for

the following half-year. Repeating this multiple times gives us a distribution for the predicted

default rate, and a correctly specified model should have decent coverage of the prediction interval

of this rate. To assess this we use that the upper bound of the prediction interval is similar to

a 95% Value-at-Risk but for the whole industry’s default rate. For the frailty models, we first

have to sample a (Ak, Bk)-pair from the so-called particle cloud (see Appendix 3.A) of the last

month of the estimation period, simulate (Ak+1, Bk+1, . . . , Ak+6, Bk+6) conditional on the sampled

(Ak, Bk)-pair, and then simulate the outcomes as we do for the models without frailty conditional

6Evidence presented in Duan et al. (2012) suggests that a first order vector autoregression as in Duffie et al.
(2007) may be inappropriate when modeling covariates. Modeling the high dimensional and non-fixed size set of
covariate vectors (varying since the set of firms at-risk changes through time) is interesting, but not what we pursue
in this paper.
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Table 3.3: Number of breaches of the upper bounds of the prediction intervals in Figure 3.9(b).
The first row shows the number of strictly greater realized default rates and the second row
shows greater than or equal. The large difference between the two rows is due to low realized
and expected default rates in some periods. The last row shows the number of half-years in our
out-of-sample test.

M1 M3 M4 M5

# breaches (>) 3 3 1 0
# breaches (≥) 7 7 5 4
# periods 36 36 36 36

on the sampled path of the frailty variables. We do so as we need the entire paths of the frailty

variables over the following six months to forecast the likelihood of an event for a given firm. We

emphasize that the Monte Carlo EM algorithm, particle filter, and particle smoother only use

the data available up to and including the last month of the estimation period (time k) when

estimating parameters and forming the particle cloud.

The out-of-sample results are shown in Figure 3.9. The AUC in Figure 3.9(a) shows that

the model like in Duffie et al. (2007) (M1) performs poorly in terms of firm-level performance

relative to the other models. The difference in AUC sometimes exceeds 0.05 compared to the

other models, which means that the latter models have more than a 5% higher fraction of correctly

ordered firms by whether they default or not. This is substantial. The second conclusion is that

our final frailty model (M5), which allows for a time-varying slope of the relative log market size,

does best 19 of the 35 periods.

Next, we turn to the aggregate level performance. The industry-wide predicted default rates

show that M5 is better in some periods in the sense that the median of the predicted rate is

closer to the realized, and in particular we notice the crisis in 2009 and last period from January

to June in 2016. However, it is not always true that the median of M5 is closest to the realized

default rate. Table 3.3 shows the frequency of breaches of the upper bound in the prediction

interval for the industry-wide default rate, and from these figures we observe that both of the two

random effect models, M4 and M5, have coverage close to the 95% coverage level.

3.5 Conclusion

We have extended the hazard model of Duffie et al. (2007) by including additional covariates,

a nonlinear effect for the idiosyncratic volatility, net income relative to total assets of the firm,

and log market value over total liabilities, and by adding an interaction between the idiosyncratic

volatility and the current ratio. This yields much better out-of-sample ranking of firms by their

riskiness. Despite these additions, the model still has issues with excess default clustering although

we observe less evidence for excess clustering with a random effect as in Duffie et al. (2009)

compared to the model without our additions. We show that this clustering cannot be modeled

by adding a single frailty effect affecting all firms equally on the log-hazard scale, as otherwise
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Figure 3.9: Out-of-sample performance. Figure (a) shows the out-of-sample AUC where is
modelM1, isM3, isM4, and isM5. The points are the values over the past half-year. The
vertical bars are used to separate different time periods, the model with the highest AUC is in
black, the model with the lowest AUC is in blue, and the rest are gray. Results for the half-year
t = 2006 are absent as the half-year contains no defaults. Plot (b) shows the out-of-sample default
rate along with 90% prediction intervals, where the upper bound is like a 95% Value-at-Risk but
for the industry default rate. The symbols in the middle denote the median value and denotes
the realized default rates. Gray areas are recession periods from National Bureau of Economic
Research.
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argued by Duffie et al. (2009).

Instead, we add a time-varying random slope to the relative log market size of the firm, similar

to the size effect in Lando et al. (2013). However, unlike the semi-parametric and non-parametric

models used by Lando et al. (2013), our model is an extension of previous frailty models and thus

it can be used for forecasting. We show that our frailty model fits much better in-sample and,

furthermore, our out-of-sample test shows superior ranking of firms by riskiness.

We also present evidence for two nonlinear effects of variables that are closely related to the

Merton model. This finding corroborates the conclusion of Bharath and Shumway (2008) that

the Merton model provides useful guidance for building default models but it is not sufficient.

We remark that our list of covariates may not be complete, and this may also be true for

the covariates we model with nonlinear association on the log-hazard scale, included interactions

and frailty variables, and the assumed distribution of frailty variables. Despite this, our study

highlights that the traditional assumption of linearity on the log-hazard scale, the assumption

of no interactions, and the assumption of constant slopes within corporate default modeling are

too strict in our sample. With this work we show how to easily relax these assumptions in the

presented models, and the software we have developed is readily available for practitioners. See

the appendix for details.

Time-varying size effects like the one we show have been observed in other data sets by Filipe

et al. (2016), Jensen et al. (2017), but it is yet to be determined if this is a more general effect

within corporate default models.
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Table 3.4: Summary statistics for the covariates used in the monthly hazard models
in Section 3.3. The right-most columns show the 1% and 99% quantiles, and means and
standard deviations are computed after winsorizing. The current assets are deflated by the U.S.
Consumer Price Index.

Mean Median Standard deviation 1% 99%

Distance to default 5.834 5.294 4.144 -1.631 18.756
Log excess return -0.057 -0.020 0.400 -1.516 0.964
Working capital / total assets 0.153 0.129 0.164 -0.168 0.607
Operating income / total assets 0.090 0.087 0.088 -0.220 0.362
Market value / total liabilities 1.657 1.035 1.927 0.012 11.686
Net income / total assets 0.032 0.042 0.103 -0.523 0.278
Total liabilities / total assets 0.631 0.615 0.189 0.237 1.358
Current ratio 1.836 1.602 1.042 0.421 6.432
Log current assets 5.117 5.076 1.546 1.686 9.026
Idiosyncratic volatility 0.023 0.020 0.013 0.007 0.078
Relative log market size -8.945 -8.908 1.792 -13.445 -4.852

Appendix

3.A Estimating Frailty Models

We will describe how the frailty models are estimated in this section. To do this, we start by

defining the sum of the log-likelihood terms for each firm. We will focus here on the continuous

case where we observe the exact event times and the most general frailty model which is shown in

Equation (3.6). Let yik be one if firm i has an event in time period (k− 1, k] and zero otherwise.

Furthermore, let ∆tik be the time at risk of firm i in interval (k − 1, k], i.e., this will be 1 in the

monthly hazard models if firm i does not have an event in the interval and otherwise the time

until the event, Ti − k + 1. Then the log-likelihood terms from firm i conditional on the frailty

variables are

li (A0:d,B0:d) =
d∑

k=1

∑
i:Rik=1

yik log λik (xik,mk, Ak,Bk, zik)− λik (xik,mk, Ak,Bk, zik) ∆tik

where we observe d periods, A0:d = (A0, A1, . . . , Ad), and B0:d = (B0,B1, . . . ,Bd). The complete

data log-likelihood where we observe the frailty variables is

L (α,β,γ,F,Q) = φ

((
A0

B0

)
; 0,Q0

)
+

d∑
k=1

φ

((
Ak

Bk

)
; F

(
Ak−1

Bk−1

)
,Q

)
+

n∑
i=1

li (A0:d,B0:d)

(3.9)

where we have n firms, φ (·;v,V) is the multivariate normal distribution density function with

mean v and covariance matrix V, and Q0 is the time-invariant covariance matrix which is given

by Q0 = FQ0F
> + Q. Direct maximization would require that we integrate A0:d and B0:d

out of Equation (3.9) which is infeasible. An alternative is to employ an expectation max-

imization (EM) algorithm (Dempster et al., 1977). This is done by starting at some value
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Figure 3.10: Marginal effect of relative log market size and log current assets. Figure
(a) shows the density of the relative log market size and log current assets. It shows that the
two are correlated and the majority of the observations are along the diagonal. The density plot
also shows that the two are not nearly perfectly correlated. Figures (b) and (c) show a tensor
product spline from a generalized additive model with only the two variables included. The z-
axis shows the log-hazard rate of default. The integral of the estimated density over the plotted
surface is 99% and the colors of Figure (a) are added to the surface. We observe that along the
diagonal in the xy-plane (the area where we have data) the log-hazards are higher for firms with
higher current assets. The penalty parameter in the generalized additive model is chosen with an
un-biased risk estimator criterion.
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Figure 3.11: Estimated splines for the monthly frailty models. The inner dotted lines
are from the model without frailty, M3, the dashed lines are from the model with a random
intercept, M4, and the solid lines are from the model with a random intercept and random
relative log market size slope,M5. The splines are for the following covariates: (a) net income to
total assets, (b) the idiosyncratic volatility, and (c) log market value to total liabilities. The y-
axis is the effect of the covariate on the log-hazard scale and outer dotted lines are 95% pointwise
confidence intervals for the model without frailty.
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θ(0) =
(
α(0),β(0),γ(0),F(0),Q(0)

)
and then computing

H
(
θ
∣∣∣ θ(0)

)
= E

(
L (α,β,γ,F,Q)

∣∣∣ y1:d,θ
(0)
)

(3.10)

where y1:d = (y1,y2, . . . ,yd), yk = (y1k, y2k, . . . ynk), and the expectation is w.r.t. A0:d and B0:d.

This is referred to as the E-step. Then, we find a new set of parameters by

θ(1) = arg max
θ

H
(
θ
∣∣∣ θ(0)

)
which is referred to as the M-step. The process is then repeated with θ(1) in place of θ(0) until a

convergence criterion is reached.

In our case, Equation (3.10) has no closed-form solution. Instead, we use a Monte Carlo

expectation maximization algorithm where the E-step is approximated by the particle smoother

suggested by Fearnhead et al. (2010). A multivariate t-distribution approximation at a mode

is used at each step of the algorithm as described by Pitt and Shephard (1999). The particle

smoother uses an auxiliary particle filter which is also used to get the log-likelihood approxima-

tions shown in Table 3.2. The auxiliary particle filter also yields a discrete approximation of

the density of (Ad,Bd) given the observed data. The approximation is a so-called particle cloud

consisting of K (Ad,Bd)-pairs where each pair has a weight of its conditional probability relative

to the other pairs in the cloud. The Wald tests are computed with an approximation of the

observed information matrix obtained with the method suggest by Poyiadjis et al. (2011) with a

particle filter as suggested by Lin et al. (2005). The R (R Core Team, 2018) package dynamic-

hazard (Christoffersen, 2019) contains implementations of the methods described above and the

“Particle filters in the dynamichazard package”-vignette in the package covers the methods in

more details. The data preparation code is available at http://bit.ly/github-US PD data-r2 and

the data analysis is available at http://bit.ly/github-US PD models-r3.
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Chapter 4

Particle Methods in the
dynamichazard Package

Benjamin Christoffersen

Abstract

This chapter introduces the particle filters and smoothers implemented in the dynamichazard

package in R used for a class survival analysis models. In particular, the methods suggested by

Briers et al. (2009), Fearnhead et al. (2010), and Poyiadjis et al. (2011) are covered in the chapter.

The general methods are briefly explained towards the end whereas the majority of the chapter

concerns particular application of the methods.

Keywords: survival analysis, particle filter, particle smoothing
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4.1 Introduction

I will cover the implemented particle filters and smoothers in the dynamichazard package in this

chapter along with the particle-based methods to approximate the gradient and the observed

information matrix. Some of the methods and implementations are those used in the random

effect model in Chapter 3. This chapter shows what is implemented, shows why, and gives a brief

overview of the methods in R. Some prior knowledge of particle filters is assumed, although a brief

introduction is given at the start of the chapter. Doucet and Johansen (2009) provide a tutorial

on particle filters and Kantas et al. (2015) cover parameter estimation with particle filters. See

also Cappé et al. (2005) for a general introduction to hidden Markov models. This chapter relies

heavily on Fearnhead et al. (2010), and there is a sizable overlap between what is presented here

and in the source.

The models implemented in the dynamichazard package are survival analysis models for ter-

minal events. These can be in discrete time where we have binary indicators Yik = 1{Ti∈(tk−1,tk]}

which is one if the random event time of individual i denoted by Ti ∈ (0,∞) is in the interval

(tk−1, tk] and zero otherwise. It can also be in continuous time where we model the distribution

of the event time of individual i, Ti, with a piecewise exponential distribution conditional on

observable covariates and the path of a discrete latent variable. More formally, the model is

yit ∼ g (yit | ηit )

ηt = Xtαt + ot + Ztω

αt = Fαt−1 + εt εt ∼ N (0,Q)

α0 ∼ N (µ0,Q0)

,
i = 1, . . . , nt

t = 1, . . . , d
(4.1)

where I define the conditional densities gt (yt | αt ) = g (yt | Xtαt + ot + Ztω ) and f (αt | αt−1 ).

For each t = 1, . . . , d, we have a risk set given by Rt ⊆ {1, 2, . . . , n}. Further, we let nt = |Rt|
denote the number of observations at risk at time t and nmax = maxt∈{1,...d} nt. The observed

outcomes are denoted by yt = {yit}i∈Rt . Xt is the design matrix of the covariates and αt is

the state vector containing the time-varying coefficients. The Zt is the design matrix for the

covariates with time-invariant coefficients and ω represents the corresponding coefficients.

The ith row of Xt is xit, such that xit, εt,µ0,αt ∈ Rr, F,Q,Q0 ∈ Rr×r, where the latter

two are positive definite matrices, and ots are known offsets. The data sets we are working with

have nmax � r (e.g., nmax > 1000 and r = 5). Thus, nmax is typically the primary factor for the

computation time.

The dynamichazard package uses a particle smoother to achieve a discrete approximation of

the conditional density of αk for k = 1, . . . , d given the outcomes y1:d = {y1,y2, . . . ,yd} and

uses the discrete approximation in a Monte Carlo EM-algorithm to estimate Q, ω, and µ0. One

choice of smoother is suggested by Fearnhead et al. (2010) and another is the generalized two-filter

smoother suggested by Briers et al. (2009).

The rest of the chapter is structured as follows: first, I give a brief introduction to the im-

plemented particle filters and smoothers. Then I describe the effect of some of the arguments to
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particle functions in R in the package. The implemented particle filter and smoother from Fearn-

head et al. (2010) is presented next, followed by the Monte Carlo EM-algorithm and the smoother

suggested by Briers et al. (2009). The last section covers the implemented approximations of the

gradient and observed information matrix.

4.1.1 Overview

As a brief introduction before the next sections, we will review an application of importance

sampling, use this to motivate particle filtering, and then give a brief idea of the implemented

particle smoothers. Suppose we want to approximate a density c(x) = ζc̃(x), where we only know

c̃(x) and not the normalization constant ζ. One way to approximate the density is to

• sample x1, x2, . . . , xN from a distribution with density b(x) where the support of b covers

the support of c,

• compute the unnormalized weights w̄i = c̃(xi)/b(xi), and

• normalize the weights wi = w̄i/
∑N

i=1 w̄i.

This gives us the following discrete approximation of the density

c(x) ≈
N∑
i=1

wiδxi (x)

where δx is the Dirac delta function which has unit point mass at x. This is directly applicable

to the model in Equation (4.1) because at time 1 we want to approximate

p (α1 | y1 ) =
g1 (y1 | α1 )

∫
f (α1 | a0 )φ (a0 | µ0,Q0 ) da0

p (y1)

where φ ( · |m,M) is the density function of a multivariate normal distribution with mean m and

covariance matrix M. We can easily evaluate the numerator for each α1 but not the normalization

constant, p (y1).

The extension to a particle filter (which I will call a forward particle filter) is that at time 2

we want to approximate

p (α1:2 | y1:2 ) = p (α1 | y1 )
g2 (y2 | α2 ) f (α2 | α1 )

p (y2 | y1 )

Now, we can use the discrete approximation at time 1 of p (α1 | y1 ), sample α2 given each

sampled α1, and apply importance sampling again. We can repeat this with similar arguments

at times 3, 4, . . . , d, reaching an approximation of p (α1:d | y1:d ). We will call the last element of

a sampled path at time t a particle. Further, we will denote the jth particle at time t and its

associated weight by α
(j)
t and w

(j)
t respectively.

One issue that may arise is that our samples (particles) may degenerate, so essentially only

one sample path of α1:d has any weight in the end. To avoid this, we may introduce a resampling
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step. One way to resample is using the weights and letting the resampling weights be β
(j)
t+1 = w

(j)
t ,

where β
(j)
t+1 is the resampling weight of particle j at time t. We then sample with replacement,

using β
(j)
t+1 (or another resampling schema, so long as it satisfies certain criteria, described in e.g.,

Douc and Cappé, 2005). Another option when we resample the particles from time t is to use the

information of the outcomes at time t + 1, yt+1. This is called an auxiliary particle filter and is

introduced by Pitt and Shephard (1999).

While resampling may allow for efficient use of the available hardware, it does not solve the

issue of the variance of the estimate of the density of the entire path of the state vector, α1:d. In

particular, we may end up with few unique values or only one value at the early time points (say

α1) when we resample. Thus, it is useful to use a smoother to achieve a better approximation

of the marginal density p (αt | y1:d ). One idea in this line is to use the two-filter formula from

Kitagawa (1994). However, this requires that we can evaluate p (yt:d | αt ). It turns out that we

can approximate this up to a constant, which is just what we need. This is covered in further

details in Section 4.5.

The approximation uses a particle filter run backwards in time that approximates an artificial

distribution. The arguments for the backward particle filter are very similar to those for the

forward particle filter presented above. The kth particle in the backward particle filter at time t,

its resampling weight, and the associated weight will be denoted by, respectively, α̃
(k)
t , β̃

(k)
t−1, and

w̃
(k)
t . The final ith smoothed particle and weight at time t will be denoted by α̂

(i)
t and ŵ

(i)
t . The

latter gives us the following approximation of the marginal density of αt | y1:d

p (αt | y1:d ) ≈
NS∑
i=1

ŵ
(i)
t δα̂(i)

t
(αt)

if we sampled NS smoothed particles at time t. The smoothing algorithm from Fearnhead et al.

(2010) is shown in Algorithm 1, the forward particle filter is shown in Algorithm 2, and the

backward particle filter is shown in Algorithm 3. The arguments for the algorithms will be given

later in Section 4.5. First, I will cover the choices available in the R interface of the dynamichazard

package before covering the implemented method in the concrete application.

4.1.2 Methods in the Package

The PF_EM method in the dynamichazard package contains an implementation of the described

methods. We specify the number of particles by the N_first, N_fw_n_bw, and N_smooth argument

for Nf , N and Ns, respectively, in the Algorithm 1-3. We may want more particles in the

smoothing step, Ns > N , as pointed out in the discussion in Fearnhead et al. (2010). Further,

selecting more particles at the start of the forward and backward particle filter, Nf > N , may be

preferable, to ensure coverage of the state space at time 0 and d+ 1.1

The method argument specifies how the filters are set up. The argument can take the following

values

1We do not need to sample the time 0 and d+ 1 particles. Instead we can make a special proposal distribution
for time 1 and time d. This is not implemented, though.
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• "bootstrap_filter" for a bootstrap filter. This is where we sample using Equation (4.5),

(4.12), and (4.15). This is fast, but the proposal, distribution may be a poor approximation

of the distribution we want to target.

• "PF_normal_approx_w_cloud_mean" and "AUX_normal_approx_w_cloud_mean" for the Tay-

lor approximation of the conditional density of yt made using the mean of the parent par-

ticles and/or mean of the child particles. See Section 4.2. The PF and AUX prefixes specify

whether the auxiliary version should be used.

• "PF_normal_approx_w_particles" and "AUX_normal_approx_w_particles" for the Tay-

lor approximation of the conditional density of yt, made using the parent and/or child

particle. See Section 4.2. The PF and AUX prefixes specify whether the auxiliary version

should be used.

The smoother is selected with the smoother argument. "Fearnhead_O_N" gives the smoother

in Algorithm 1, and "Brier_O_N_square" gives the smoother in Algorithm 4. The systematic

resampling is used in all resampling steps (see Douc and Cappé, 2005, for a comparison of re-

sampling methods). The rest of the arguments for PF_EM are similar to those for the ddhazard

function covered in chapter 1 or are explained in the manual page.

It is not clear what will yield the best performance for a given data set at a fixed computation

cost. One recommendation is to use the trace argument and check the effective sample size at each

point in time during the estimation. The "bootstrap_filter" may not be that much cheaper

in terms of computation time given that we still must evaluate gt in Equation (4.17), (4.18), and

(4.20), which have a computational complexity of O (nmaxNr) or O (nmaxNSr) that is typically

computationally expensive given that nmax is large. By contrast, the "..._w_particles" meth-

ods have a computational complexity of O
(
nmaxNr

2
)

or O
(
nmaxNSr

2
)

with a potentially much

larger constant. Thus, the "..._w_cloud_mean" may be preferred.

The rest of the chapter covers the implemented methods. It is mainly included to show exactly

what is computed and why.

4.1.3 Proposal Distributions and Resampling Weights

Algorithm 1 shows one of the particle smoothers suggested by Fearnhead et al. (2010). We need

to specify a series of proposal distributions and resampling weights. To show what is implemented

and why, we first consider the model where

yt | αt ∼ N (Xtαt + ot + Ztω,Ht)

for some known positive definite matrix Ht. This is not implemented in this package, but deriving

optimal resampling weights and proposal distributions is possible in this case. In fact, it makes

little sense to use a particle filter and particle smoother because the Kalman filter and an exact

smoother can be applied. However, the results here will turn out to be useful to motivate the
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approximations we use later. The state space model is

yt ∼ N (ηt,Ht)

ηt = Xtαt + ot + Ztω

αt = Fαt−1 + εt εt ∼ N (0,Q)

α0 ∼ N (µ0,Q0)

,
i = 1, . . . , nt

t = 1, . . . , d

We let ht = ot+Ztω such that ηt = Xtαt+ht to ease the notation. We first turn to the forward

particle filter in Algorithm 2. Ideally, we want the resampling weights to be

β
(j)
t ∝ p

(
yt

∣∣∣ α(j)
t−1

)
w

(j)
t−1 (4.2)

=

∫
gt (yt | αt ) f

(
at

∣∣∣ α(j)
t−1

)
datw

(j)
t−1

= φ
(
yt

∣∣∣ XtFα
(j)
t−1 + ht,XtQX>t + Ht

)
w

(j)
t−1

We may notice that setting β
(j)
t = w

(j)
t−1 yields the so-called sequential importance resampling

algorithm. For the proposal distribution, the optimal proposal density is

q
(
αt

∣∣∣ α(j)
t−1,yt

)
= p

(
αt

∣∣∣ α(j)
t−1,yt

)
where we find that

log p
(
αt

∣∣∣ α(j)
t−1,yt

)
= log p

(
αt,yt

∣∣∣ α(j)
t−1

)
+ . . .

= log gt (yt | αt ) + log f
(
αt

∣∣∣ α(j)
t−1

)
+ . . .

= −1

2
(yt −Xtαt − ht)>H−1

t (yt −Xtαt − ht)

− 1

2

(
αt − Fα

(j)
t−1

)>
Q−1

(
αt − Fα

(j)
t−1

)
+ . . .

= −1

2
α>t Σ−1

t αt +α>t Σ−1
t µ

(
α

(j)
t−1

)
+ . . .

Σt =
(
Q−1 + X>t H−1

t Xt

)−1
(4.3)

µ(x) = Σt

(
Q−1Fx+ X>t H−1

t (yt − ht)
)

(4.4)

The . . . are terms of the normalization constant. We recognize the multivariate normal distribu-

tion density, and thus the optimal proposal density is

q
(
αt

∣∣∣ α(j)
t−1,yt

)
= φ

(
αt

∣∣∣ µ(α
(j)
t−1),Σt

)
Alternatively, we can use the so-called bootstrap filter and let

q
(
αt

∣∣∣ α(j)
t−1,yt

)
= φ

(
αt

∣∣∣ Fα
(j)
t−1,Q

)
(4.5)
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which we can sample from in O
(
Nr2

)
time if we have a pre-computed Cholesky decomposition of

Q. This is computationally cheap compared with the optimal solution which has a computational

complexity of O
(
Nr2 + r3 + nmaxr

2
)
, but it is not optimal.

Backward filter (Algorithm 3)

We need to specify the artificial prior γt (αt) for our artificial backward distribution. Briers

et al. (2009) provides recommendations for the selection. One suggestion is the artificial density

function

γt (αt) = φ
(
αt

∣∣∣←−mt,
←−
P t

)
←−mt = Ftµ0

←−
P t =

{
Q0 t = 0

F
←−
P t−1F

> + Q t > 0

(4.6)

The backward arrows are added to stress that these are means and covariance matrices used

the artificial distribution we target in the backward particle filter. The artificial distribution we

target in backward particle filters has the following conditional density functions

p̃ (αt:d | yt:d ) ∝ γt (αt)

d∏
i=t

gi (yi | αi )
d−1∏
i=t

f (αi+1 | αi )

p̃
(
αt
∣∣ y(t+1):d

)
∝ γt(αt)

∫
p̃
(
at+1

∣∣ y(t+1):d

) f (at+1 | αt )
γt+1(at+1)

dat+1

p̃ (αt | yt:d ) ∝ gt (yt | αt ) p̃
(
αt
∣∣ y(t+1):d

)
(4.7)

γt (αt | αt+1 ) =
f (αt+1 | αt ) γt(αt)

γt+1(αt+1)
(4.8)

where we have left out some of the normalization constants. Sampling from this artificial distri-

bution turns out to be useful as it gives us an approximation of a conditional density we need up

to a constant (see Section 4.5). To derive the resampling weight, we first find an expression for

the density γt (αt | αt+1 ). We observe that

log γt (αt | αt+1 ) = log f (αt+1 | αt ) + log γt(αt) + . . .

= −1

2
α>t
←−
S−1
t αt −α>t

←−
S−1
t
←−a t(αt+1) + . . .

←−
S t =

(
P−1
t + F>Q−1F

)−1

←−a t(x) =
←−
S t

(
P−1
t mt + F>Q−1x

)
so

γt (αt | αt+1 ) = φ
(
αt

∣∣∣←−a t(αt+1),
←−
S t

)
(4.9)

.
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As in Fearnhead et al. (2010), we can show that

←−
S t =

←−
P tF

>←−P−1
t+1QF−> (4.10)

←−a t(x) =
←−
P tF

>←−P−1
t+1x+

←−
S t
←−
P−1
t
←−mt

e.g., by (←−
P tF

>←−P−1
t+1QF−>

)−1 (
P−1
t + F>Q−1F

)−1

= F>Q−1←−P t+1F
−>←−P−1

t

(
←−
P t −

←−
P tF

>
(
Q + F

←−
P tF

>
)−1

F
←−
P t

)
= F>Q−1←−P t+1F

−> − F>Q−1F
←−
P t

= F>Q−1
(
F
←−
P tF

> + Q
)

F−> − F>Q−1F
←−
P t

= I

where we assume that all matrices are non-singular and we use the Woodbury matrix identity.

Similar arguments can be used for ←−a t(x). Using the above, we find that the optimal resampling

weights are

β̃
(k)
t ∝ p̃

(
yt

∣∣∣ α̃(k)
t+1

)
w̃

(k)
t+1 (4.11)

∝
∫
gt (yt | at ) p̃

(
at

∣∣∣ α̃(k)
t+1

)
datw̃

(k)
t+1

= φ
(
yt

∣∣∣ Xt
←−a t(α̃(k)

t+1) + ht,Xt
←−
S tX

>
t + Ht

)
w̃

(k)
t+1

Alternatively, we can set the resampling weights to β̃
(k)
t = w̃

(k)
t+1 and arrive at an algorithm like

the sequential importance resampling algorithm. As for the proposal distribution, the optimal

density is

log p̃
(
αt

∣∣∣ yt, α̃(k)
t+1

)
= log γt (αt) + log gt (yt | αt ) + log f

(
α

(k)
t+1

∣∣∣ αt)+ . . .

= −1

2
α>t
←−
Σ−1
t αt +α>t

←−
Σ−1
t
←−µ t(α̃

(k)
t+1) + . . .

←−
Σ t =

(
P−1
t + F>Q−1F + X>t H−1

t Xt

)−1

←−µ t(x) = Σt

(
P−1
t mt + F>Q−1x+ X>t H−1

t (yt − ht)
)

Thus, we set

q̃
(
αt

∣∣∣ yt, α̃(k)
t+1

)
= φ

(
αt

∣∣∣←−µ t(α̃
(k)
t+1),

←−
Σ t

)
A computationally simpler but nonoptimal option is to use a method like the bootstrap filter,

setting

q̃
(
αt

∣∣∣ yt, α̃(k)
t+1

)
= p̃

(
αt

∣∣∣ α̃(k)
t+1

)
(4.12)
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Combining / smoothing (Algorithm 1)

We end this example with the conditional Gaussian observable outcome model with the proposal

distribution needed for Algorithm 1. We want to select

q
(
αt

∣∣∣ α(j)
t−1,yt, α̃

(k)
t+1

)
= p

(
αt

∣∣∣ α(j)
t−1,yt, α̃

(k)
t+1

)
∝ g (yt | αt ) f

(
αt

∣∣∣ α(j)
t−1

)
f
(
α̃

(k)
t+1

∣∣∣ αt)
Looking at the log density as we did before, we find that

log q
(
αt

∣∣∣ α(j)
t−1,yt, α̃

(k)
t+1

)
= −1

2
α>t
←→
Σ −1

t αt +α>t
←→
Σ −1

t
←→µ t(α

(j)
t−1, α̃

(k)
t+1) + . . .

←→
Σ t =

(
Q−1 + F>Q−1F + X>t H−1Xt

)−1
(4.13)

←→µ t(x,
←−x ) =

←→
Σ t

(
Q−1Fx+ F>Q−1←−x + X>t H−1

t (yt − ht)
)

(4.14)

so that

q
(
αt

∣∣∣ α(j)
t−1,yt, α̃

(k)
t+1

)
= φ

(
αt

∣∣∣←→µ t(α
(j)
t−1, α̃

(k)
t+1),Σt

)
Alternatively, we can use a method like the bootstrap filter with a proposal distribution with

←→
Σ t =

(
Q−1 + F>Q−1F

)−1

←→µ t(x,
←−x ) = Σt

(
Q−1Fx+ F>Q−1←−x

) (4.15)

This is not optimal but faster.
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Algorithm 1 O (N) particle smoother using the method suggested by Fearnhead et al. (2010).

Input:

Q,Q0,a0,X1, . . . ,Xd,Z1, . . . ,Zd,o1, . . . ,od,y1, . . . ,yd, R1, . . . , Rd,ω

Proposal distribution with density

q
(
αt

∣∣∣ α(j)
t−1,yt, α̃

(k)
t+1

)
(4.16)

1: procedure Filter forward

2: Run a forward particle filter to yield particle clouds
{
α

(j)
t , w

(j)
t , β

(j)
t+1

}
j=1,...,N

approximating the density p (αt | y1:t ) for t = 0, 1, . . . , d. See Algorithm 2.

3: procedure Filter backwards

4: Run a similar backward filter to yield
{
α̃

(k)
t , w̃

(k)
t , β̃

(k)
t−1

}
k=1,...,N

approximating the

artificial density p̃ (αt | yt:d ) for t = d+ 1, d, d− 1, . . . , 1. See Algorithm 3.

5: procedure Smooth (combine)

6: for t = 1, . . . , d do

Resample

7: Sample i = 1, 2, . . . , Ns pairs of (ji, ki) ∈ N2 where each component is independently

sampled using resampling weights β
(j)
t and β̃

(k)
t .

Propagate

8: Sample particles α̂
(i)
t from the proposal distribution q̃

(
·
∣∣∣ α(ji)

t−1,yt, α̃
(ki)
t+1

)
.

Re-weight

9: Assign each particle a weight

ŵ
(i)
t ∝

f
(
α̂

(i)
t

∣∣∣ α(ji)
t−1

)
gt

(
yt

∣∣∣ α̂(i)
t

)
f
(
α̃

(ki)
t+1

∣∣∣ α̂(i)
t

)
w

(ji)
t−1w̃

(ki)
t+1

q̃
(
α̂

(i)
t

∣∣∣ α(ji)
t−1,yt, α̃

(ki)
t+1

)
β

(ji)
t β̃

(ki)
t γt+1

(
α̃

(ki)
t+1

) (4.17)
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Algorithm 2 Forward filter as in Pitt and Shephard (1999). The version and notation below is
from Fearnhead et al. (2010).

Input:

Proposal distribution with density

q
(
αt

∣∣∣ α(j)
t−1,yt

)
Function h to compute resampling weights

β
(j)
t ∝ h(yt,α

(j)
t−1)w

(j)
t−1

1: Sample α
(1)
0 , . . . ,α

(Nf)
0 particles from N (µ0,Q0) and set the weights w

(1)
0 , . . . , w

(Nf)
0 to

1/Nf .

2: for t = 1, . . . , d do

3: procedure Resample

4: Compute resampling weights β
(j)
t using h and resample according to β

(j)
t to yield

indices j1, . . . jN . If we do not resample, then set β
(j)
t = 1/N or 1/Nf at time t = 1.

5: procedure Propagate

6: Sample new particles α
(i)
t using the proposal distribution q

(
αt

∣∣∣ α(ji)
t−1,yt

)
.

7: procedure Reweight

8: Reweight particles using

w
(i)
t ∝

gt

(
yt

∣∣∣ α(i)
t

)
f
(
α

(i)
t

∣∣∣ α(ji)
t−1

)
w

(ji)
t−1

q
(
α

(i)
t

∣∣∣ α(ji)
t−1,yt

)
β

(ji)
t

(4.18)
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Algorithm 3 Backwards filter. See Briers et al. (2009) and Fearnhead et al. (2010).

Input:

An artificial distribution

p̃ (αt | yt:d ) ∝ γt (αt) p (yt:d | αt ) (4.19)

with an artificial prior distribution γt (αt).

Proposal distribution

q̃
(
αt

∣∣∣ yt, α̃(k)
t+1

)
Function h to compute resampling weights

β̃
(k)
t ∝ h(yt, α̃

(k)
t+1)w̃

(k)
t+1

1: Sample α̃
(1)
d+1, . . . , α̃

(Nf)
d+1 particles from γd+1(·) and set the weights w̃

(1)
d+1, . . . , w

(Nf)
d+1 to 1/Nf .

2: for t = d, . . . , 1 do

3: procedure Resample

4: Compute resampling weights β̃
(k)
t using h and resample according to β̃

(k)
t to yield

indices k1, . . . kN . If we do not resample, then set β̃
(k)
t = 1/N or 1/Nf at time t = d.

5: procedure Propagate

6: Sample new particles α̃
(i)
t using the proposal distribution q̃

(
αt

∣∣∣ α̃(ki)
t+1,yt

)
.

7: procedure Reweight

8: Reweight particles using

w̃
(i)
t ∝

gt

(
yt

∣∣∣ α̃(i)
t

)
f
(
α̃

(ki)
t+1

∣∣∣ α̃(i)
t

)
γt

(
α̃

(i)
t

)
w̃

(ki)
t+1

q
(
α̃

(i)
t

∣∣∣ α̃(ki)
t+1,yt

)
γt+1

(
α̃

(ki)
t+1

)
β

(ki)
t

(4.20)
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4.2 Nonlinear Conditional Observation Model

If we go back to the model in Equation (4.1), then yt | αt is not a multivariate normal distribution

for the implemented models, and we have no closed-form solutions for the optimal resampling

weights. We also do not know the following conditional distributions: αt | yt,αt−1, αt | yt,αt+1

(in the artificial distribution P̃), and αt | yt,αt−1,αt+1. However, if we assume that gt (yt | αt )
is log-concave in αt, then it is easy to show that all of the previous three conditional distributions

are unimodal. Hence, we can make a multivariate normal approximation as in Pitt and Shephard

(1999). To do so, we make a second order Taylor expansion around some value z to arrive at

kt(αt) = log gt (yt | η(αt)) , η(αt) = Xtαt + ht

log gt (yt | αt ) ≈ Dkt(z)(αt − z) +
1

2
(αt − z)>Hkt(z)(αt − z) + . . .

= α>t Dkt(z)> − 1

2
(αt − z)> (−Hkt(z)) (αt − z) + . . .

= α>t (−Hkt(z))
(
z −Hkt(z)−1Dkt(z)>

)
− 1

2
α>t (−Hkt(z))αt + . . .

where . . . includes the zero order term, Dkt is the Jacobian, and Hkt denotes the Hessian. I add

a subscript to D and H to indicate which variable the Jacobian or Hessian are with respect to.

We find that

Hkt(z) = Dαtη(z)>Hη log gt (yt | η(z)) Dαtη(z)

= X>t (−Gt(z))Xt, Gt(z) = −Hη log gt (yt | η(z))

which follows from the chain rule and where we use that Hαtη(z) = 0. Thus,

log gt (yt | αt ) ≈ α>t X>t Gt(z)ut(z)− 1

2
αtX

>
t Gt(z)Xtαt

ut(z) = Xtz −XtHkt(z)−1Dkt(z)>

This yields the following multivariate normal approximation

gt (yt | αt ) ≈ φ
(
Xtαt

∣∣ ut(z),Gt(z)−1
)

The Taylor approximation is easily used in the proposal distributions. For instance, for given

z, we arrive at the following mean and covariance matrix analogues to Equation (4.3) and (4.4)

in the proposal distribution in the forward particle filter

Σt(z) =
(
Q−1 + X>t Gt(z)Xt

)−1

µt(x, z) = Σt(z)
(
Q−1Fx+ X>t Gt(z)ut(z)

)
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As for the resampling weights, we can use

α̂ = µt(α
(j)
t−1, z)

β
(j)
t ∝ p

(
yt

∣∣∣ α(j)
t−1

)
w

(j)
t−1

=
p
(
yt

∣∣∣ α(j)
t−1

)
gt (yt | α̂) f

(
α̂
∣∣∣ α(j)

t−1

)gt (yt | α̂) f
(
α̂
∣∣∣ α(j)

t−1

)
w

(j)
t−1

=
gt (yt | α̂) f

(
α̂
∣∣∣ α(j)

t−1

)
w

(j)
t−1

p
(
α̂
∣∣∣ α(j)

t−1,yt

)
≈
gt (yt | α̂) f

(
α̂
∣∣∣ α(j)

t−1

)
w

(j)
t−1

q
(
α̂
∣∣∣ α(j)

t−1,yt

)
as in Fearnhead et al. (2010). We can approximate the backwards particle filter resampling

weights in Equation (4.11) in a similar way

β̃
(k)
t ∝ p̃

(
yt

∣∣∣ α̃(k)
t+1

)
w̃

(k)
t+1

≈
gt (yt | α̂) p̃

(
α̂
∣∣∣ α̃(k)

t+1

)
w̃

(k)
t+1

q̃
(
α̂
∣∣∣ yt, α̃(k)

t+1

)
=
gt (yt | α̂) f

(
α̃

(k)
t+1

∣∣∣ α̂) γt(α̂)w̃
(k)
t+1

q̃
(
α̂
∣∣∣ yt, α̃(k)

t+1

)
γt+1(α̃

(k)
t+1)

(4.21)

α̂ =←−µ (α̃
(k)
t+1, z)

←−µ (x, z) =
←−
Σ t(z)

(
P−1
t mt + F>Q−1x+ X>t Gt(z)ut(z)

)
(4.22)

←−
Σ t(z) =

(
P−1
t + F>Q−1F + X>t Gt(z)Xt

)−1
(4.23)

We may also use a multivariate t-distribution for the proposal distribution to yield heavier

tails than we do with the multivariate normal distribution. This may be important as too light

tailed proposal distributions (relative to the target) can yield few large importance weights.
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4.2.1 Where to Make the Expansion

An option is to make the Taylor expansion at a mode for each particle or particle pair in the

smoothing step. This yields

z(j) = arg max
z

gt (yt | z ) f
(
z
∣∣∣ α(j)

t−1

)
z(k) = arg max

z
gt (yt | z ) γt(z)f

(
α̃

(k)
t+1

∣∣∣ z)
z(i) = arg max

z
f
(
z
∣∣∣ α(ji)

t−1

)
gt (yt | z ) f

(
α̃

(ki)
t+1

∣∣∣ z)
for, respectively, the forward particle filter, the backward particle filter, and the smoother. The

downside is a O
(
r2nmaxNS

)
or O

(
r2nmaxN

)
computational complexity at each time step given

that we have to evaluate X>t Gt(z)Xt for each particle or particle pair. Instead, we can make the

approximation once at each time step at, respectively,
∑N

i=1w
(j)
t−1α

(j)
t−1,

∑N
i=1 w̃

(j)
t+1α̃

(j)
t+1, and

(
Q−1 + F>Q−1F

)−1
(

Q−1F

N∑
i=1

w
(j)
t−1α

(j)
t−1 + F>Q−1

N∑
i=1

w̃
(j)
t+1α̃

(j)
t+1

)

which will reduce the computational complexity at each time step to O
(
rnmaxNS + r2nmax

)
or

O
(
rnmaxN + r2nmax

)
.

4.3 Log-Likelihood Evaluation and Parameter Estimation

In this section, I show an example of parameter estimation in the first-order random walk using a

Monte Carlo EM-algorithm. Then I cover the general vector autoregression model and how one

can estimate the fixed effects. See Del Moral et al. (2010), Kantas et al. (2015), Schön et al. (2011)

for general discussion of parameter estimation with particle filters and smoothers. Firstly, though,

I will remark that we can approximate the log-likelihood for a particular value of {Q,Q0,µ0,F}
as described in Doucet and Johansen (2009) and Malik and Pitt (2011), using the forward particle

filter shown in Algorithm 2. Details are omitted here for the sake of brevity.

The formulas for parameter estimation for the first-order random walk model are particularly

simple. We need to estimate Q and a0 elements of ϕ = {Q,Q0,µ0}. We do this by running

Algorithm 1 for the current ϕ. This yields the following quantities from the E-step

t
(ϕ)
t ≈

Ns∑
i=1

α̂
(i)
t ŵ

(i)
t

T
(ϕ)
t ≈

Ns∑
i=1

(
α̂

(i)
t − Fα

(jit)
t−1

)(
α̂

(i)
t − Fα

(jit)
t−1

)>
ŵ

(i)
t

(4.24)

where we have extended the notation in Algorithm 1 such that superscript jit is the index from

forward cloud at time t − 1 matching with ith smoothed particle at time t. Then we carry out

111



the M-step by updating µ0 and Q given the summary statistics above

µ0 = t
(ϕ)
1 Q =

1

d

d∑
t=1

T
(ϕ)
t (4.25)

We then take another iteration of the EM-algorithm with the new µ0 and Q and repeat until

a convergence criteria is satisfied.

4.3.1 Vector Autoregression Models

We start by defining the following matrices to cover estimation in general vector autoregression

models for the latent space variable

N =
(
α̂

(1)
2 , . . . , α̂

(Ns)
2 , α̂

(1)
3 , . . . , α̂

(Ns)
3 , α̂

(1)
4 , . . . , α̂

(Ns)
d

)>
M =

(
α

(j12)
1 , . . . ,α

(jNs2)
1 ,α

(j13)
2 , . . . ,α

(jNs3)
2 ,α

(j14)
3 , . . . ,α

(jNsd)
d−1

)>
W = diag

(
ŵ

(1)
2 , . . . , ŵ

(Ns)
2 , ŵ

(1)
3 , . . . , ŵ

(Ns)
3 , ŵ

(1)
4 , . . . , ŵ

(Ns)
d

)
where diag(·) is a diagonal matrix. We suppress the dependence above on the result of the E-step

in a given iteration of the EM-algorithm to ease the notation. The goal is to estimate F and Q

in Equation (4.1). We can find that the M-step maximizers are

F̂> =
(
M>WM

)−1
M>WN (4.26)

Q̂ =
1

d− 1

(
N− F̂M

)>
W
(
N− F̂M

)
(4.27)

which are the typical vector autoregression estimators with weights. Equation (4.26) and (4.27)

can easily be computed in parallel using a QR decomposition as in the bam function in the mgcv

package with a low memory footprint (see Wood et al., 2015). This is currently implemented.

However, the gains from a parallel implementation may be small, because the computational

complexity is independent of the number of observations. The computation involved here is often

fast relative to other parts of the Monte Carlo EM-algorithm because the dimension of the state

vector is relatively small.

4.3.2 Restricted Vector Autoregression Models

Suppose that we want to restrict some of the parameters of F and Q. Let

(s1, s2, . . . , sr)
> = Jψ

(o21, o31, . . . , or1, o32, . . . , or2, o43, . . . , or,r−1)> = Kφ
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Then we can restrict the model such that

σi = exp(si) ρij =
2

1 + exp(−oij)
− 1

vec (F) = Gθ Q = VCV

V =


σ1 0 · · · 0

0 σ2
. . . 0

...
. . .

. . .
...

0 . . . 0 σr

 C =


1 ρ21 · · · ρr1

ρ21 1
. . . ρr2

...
. . .

. . .
...

ρr1 . . . ρr,r−1 1


and where vec (·) is the vectorization function which stacks the the columns of a matrix from left

to right. For example,

vec (A) = (a11, a21, a31, a12, a22, a32, a13, a23, a33)>

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


G ∈ Rr2×g is a known matrix with g ≤ r2, and we assume that it has full column rank. Similarly,

J ∈ Rr×l with l ≤ r and K ∈ Rr(r−1)/2×k with k ≤ r(r − 1)/2 are known and have full column

rank. We assume that G is such that F is nonsingular for some θ because Equation (4.10) is

used. Further, we assume that J and K are such that Q is a positive definite matrix for some ψ

and φ pair. V is a diagonal matrix containing the standard deviations, and C is the correlation

matrix.

We cannot jointly maximize θ, ψ, and φ analytically, but we can maximize θ analytically

conditional on ψ and φ. Hence, we can employ a Monte Carlo expectation conditional maxi-

mization algorithm in which we take two so-called conditional maximization steps (see Meng and

Rubin, 1993, for the non-Monte Carlo expectation maximization algorithm). The first conditional

maximization step is

θ(i+1) = G+

(
Q(i) ⊗

(
M>WM

)−1
)

G+>G> vec
(
M>WNQ−(i)

)
(4.28)

where ⊗ is the Kronecker product and Q−(i) is the inverse of Q(i) and G+ is a pseudoinverse

of G. Equation (4.28) is easily computed with the QR decomposition we make to compute for

Equation (4.26). Having obtained the new θ(i+1), we update F and denote the new estimate

F̂(i+1). The second conditional maximization step where we update ψ and φ is

Z =
(
N− F̂(i+1)M

)>
W
(
N− F̂(i+1)M

)
ψ(i+1),φ(i+1) = arg max

ψ,φ
−(d− 1) log |Q(ψ,φ)| − tr

(
Q(ψ,φ)−1Z

)
which can be done numerically. We have made Q’s dependence on ψ and φ explicit to emphasize
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which factors are affected. C may not be a valid correlation matrix for all φ ∈ Rk for some choices

of K. Thus, the numerical optimization algorithm is constrained to valid correlation matrices.

This completes the two conditional maximization steps. The next E-step is then performed using

θ(i+1), ψ(i+1), φ(i+1). Meng and Rubin (1993, see the discussion) comments that it may be

beneficial to perform an E-step between each conditional maximization step when the E-step is

relatively cheap. This is not the case here because all the above computations are independent

of the number observations, nmax. Thus, if we have a moderately large number of observations

at each time point relative to the dimension of the state vector, then the E-step will use most of

the computation time.

4.3.3 Estimating Fixed Effect Coefficients

Next, we turn to estimating the fixed effect coefficients, ω, in Equation (4.1). If we assume that

observations, yits, are from an exponential family conditional on the state vector and covariates

(or we can transform the data into an exponential family that differ only by a normalization

constant), then it is easy to show that the M-step estimator can be found as the MLE to a

specific generalized linear model with Ns observations for each yit, differing only by an offset

term and a weight. The offset term comes from the x>itα̂
(t)
j term in Equation (4.1) for each of

the j = 1, . . . , Ns smoothed particles. The corresponding weights are the smoothed weights, ŵ
(t)
j .

The problem can be solved in parallel using a QR decomposition as in Section 4.3.1. This is what

is done in the current implementation. Currently, only one iteration of the iteratively re-weighted

least squares is performed at each M-step due to (somewhat limited) empirical evidence that the

fixed coefficients typically do not change much with further iteration in the M-step.

4.4 Other Filter and Smoother Options

There is a long list of other particle-based methods besides the implemented smoother from

Fearnhead et al. (2010). This section will give a brief overview of some the options and argue for

the alternative smoother that is implemented in the package. The O
(
N2
)

two-filter smoother in

Fearnhead et al. (2010) is going to be computationally expensive, because an approximation will

be needed for Equation (8) in their article. The non-auxiliary version in Briers et al. (2009) is

more feasible as it only requires evaluation of f in the smoothing part of the generalized two-filter

smoother (see Equation (46) in their paper). Similar conclusions apply to the forward smoother

in Del Moral et al. (2010) and the backward smoother as presented in Kantas et al. (2015). Both

have a O
(
N2
)

computational cost.

Despite the O
(
N2
)

cost of the methods in Briers et al. (2009) and Del Moral et al. (2010), they

may still be useful, because the computational cost in the smoothing step is independent of the

number of observations, nmax. Further, the computational cost can be reduced to a O (N log(N))

average-case complexity with approximations as in Klaas et al. (2006). The method in Malik

and Pitt (2011) can also be used to do continuous likelihood approximations as a function of the

unknown parameters.
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Kantas et al. (2015) show, empirically that only using a forward filter may be an effective

method. However, the example is with an univariate outcome (nmax = 1, not to be confused with

the number of periods d). In the problems shown in this chapter, the computational complexity

of the forward filter is at least O (dNnmaxr). Every new particle yields an O (dnmaxr) cost, which

is expensive due to the large number of observed outcomes, nmax. Thus, the considerations are

different and a O
(
dNnmaxr +N2

)
method will not make a big difference unless N is large. Thus,

one of the O
(
N2
)

particle smoothers is also implemented in the dynamichazard package.

4.5 Generalized Two-Filter Smoother

The O
(
N2
)

smoother from Briers et al. (2009) is also implemented because it is feasible for a

moderate number of particles. Algorithm 4 shows this smoother. The weights in Equation (4.31)

comes from the generalized two-filter formula. The arguments for the smoother is that

p (yt:d | αt ) = p̃ (yt:d)
p̃ (αt | yt:d )

γt(αt)

which we can use to generalize the two-filter formula from Kitagawa (1994) as follows

p (αt | y1:d ) =
p (αt | y1:t−1 ) p (yt:d | αt )

p (yt:d | y1:t−1 )
(4.29)

∝ p (αt | y1:t−1 ) p̃ (yt:d)
p̃ (αt | yt:d )

γt(αt)

∝ p̃ (αt | yt:d )

[∫
p (αt−1 | y1:t−1 ) f (αt | αt−1 ) dαt−1

]
γt(αt)

∝∼
N∑
i=1

w̃
(i)
t δα̃(i)

t
(αt)

[∑N
j=1w

(j)
t−1f

(
α̃

(i)
t

∣∣∣ α(j)
t−1

)]
γt

(
α̃

(i)
t

)
where ∝∼ means approximately proportional. Similar arguments lead to

p (αt−1:t | y1:d ) ∝ p (αt−1:t | y1:t−1 ) p (yt:d | αt−1:t )

∝ f (αt | αt−1 ) p (αt−1 | y1:t−1 )
p̃ (αt | yt:d )

γt(αt)

∝∼
N∑
i=1

N∑
j=1

w̃
(i)
t δα̃(i)

t
(αt)

[∑N
k=1w

(k)
t−1f

(
α̃

(i)
t

∣∣∣ α(k)
t−1

)]
γt

(
α̃

(i)
t

)
·
w

(j)
t−1δα(j)

t−1

(αt−1) f
(
α̃

(i)
t

∣∣∣ α(j)
t−1

)
[∑N

k=1w
(k)
t−1f

(
α̃

(i)
t

∣∣∣ α(k)
t−1

)]
∝

N∑
i=1

N∑
j=1

ŵ
(i,j)
t δ

α̃
(i)
t

(αt) δα(j)
t−1

(αt−1)
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where

ŵ
(i,j)
t = ŵ

(i)
t

w
(j)
t−1f

(
α̃

(i)
t

∣∣∣ α(j)
t−1

)
[∑N

j=1w
(j)
t−1f

(
α̃

(i)
t

∣∣∣ α(j)
t−1

)] (4.30)

We need the latter for the Monte Carlo EM-algorithm.

Algorithm 4 O
(
N2
)

generalized two-filter smoother suggested by Briers et al. (2009).

Input:

Q,Q0,a0,X1, . . . ,Xd,y1, . . . ,yd, R1, . . . , Rd,ω

1: procedure Filter forward

2: Run a forward particle filter to yield particle clouds
{
α

(j)
t , w

(j)
t , β

(j)
t+1

}
j=1,...,N

approximating p (αt | y1:t ) for t = 0, 1, . . . , d. See Algorithm 2.

3: procedure Filter backwards

4: Run a similar backward filter to yield
{
α̃

(k)
t , w̃

(k)
t , β̃

(k)
t−1

}
k=1,...,N

approximating

p̃ (αt | yt:d ) for t = d+ 1, d, d− 1, . . . , 1. See Algorithm 3.

5: procedure Smooth (combine)

6: for t = 1, . . . , d do

7: Assign each backward filter particle a smoothing weight given by

ŵ
(i)
t ∝ w̃

(i)
t

[∑N
j=1w

(j)
t−1f

(
α̃

(i)
t

∣∣∣ α(j)
t−1

)]
γt

(
α̃

(i)
t

) (4.31)

With the results above, we can show the arguments behind the smoother from Fearnhead

et al. (2010). Similar to Equation (4.29), we find that

p (αt | y1:d ) ∝ p (αt | y1:t−1 ) p (yt:d | αt )

= p (αt | y1:t−1 ) gt (yt | αt ) p (yt+1:d | αt )

=

∫
f (αt | αt−1 ) p (αt−1 | y1:t−1 ) dαt−1gt (yt | αt )

·
∫
f (αt+1 | αt ) p (yt+1:d | αt+1 ) dαt+1

∝
∫
f (αt | αt−1 ) p (αt−1 | y1:t−1 ) dαt−1gt (yt | αt )

·
∫
f (αt+1 | αt )

p̃ (αt+1 | yt+1:d )

γt+1(αt+1)
dαt+1

∝∼
N∑
j=1

N∑
k=1

f
(
αt

∣∣∣ α(j)
t−1

)
w

(j)
t−1gt (yt | αt ) f

(
α̃

(k)
t+1

∣∣∣ αt) w̃
(k)
t+1

γt+1(α̃
(k)
t+1)

Thus, we can sample αt from a proposal distribution, given the time t− 1 forward filter particle,

α
(j)
t−1, and time t + 1 backward filter particle, α̃

(k)
t+1, for all N2 particle pairs. Alternatively, we

can sample the t− 1 and t+ 1 particles independently, which yield Algorithm 1. Further, we can
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find that

p (αt−1:t | y1:d ) = p (αt−1:t | y1:t−1 ) gt (yt | αt−1:t ) p (yt+1:d | αt−1:t )

∝ f (αt | αt−1 ) p (αt−1 | y1:t−1 ) gt (yt | αt )

·
∫
f (αt+1 | αt )

p̃ (αt+1 | yt+1:d )

γt+1(αt+1)
dαt+1

∝∼
Ns∑
i=1

δ
α̂

(i)
t

(αt) δ
α

(ji)
t−1

(αt) f
(
α̂

(i)
t

∣∣∣ α(ji)
t−1

)
w

(ji)
t−1gt

(
yt

∣∣∣ α̂(i)
t

)
·
∫
f
(
αt+1

∣∣∣ α̂(i)
t

) p̃ (αt+1 | yt+1:d )

γt+1(αt+1)
dαt+1

∝∼
Ns∑
i=1

ŵ
(i)
t δα̂(i)

t
(αt) δ

α
(ji)
t−1

(αt)

where superscripts ji are used as in Algorithm 1 implicitly dependent on t.

4.6 Gradient and Observed Information Matrix

An alternative to the Monte Carlo EM-algorithm is to approximate the gradient and use it to

perform the maximization with a gradient descent algorithm. Moreover, one may be interested

in the observed information matrix e.g., to get approximate standard errors for the coefficient

estimates. Two methods are implemented to make such approximations. The first method is the

method covered in Cappé et al. (2005, section 8.3 and chapter 11). Its advantage is that it uses

the output from the forward particle filter. However, the variance of the estimates increase at

least quadratically in time, d (Poyiadjis et al., 2011). An alternative is to use the method shown

by Poyiadjis et al. (2011). Like the smoothing algorithm from Briers et al. (2009), this method

has the disadvantage of having a computational complexity that is quadratic in the number of

particles, N .

I will give a brief introduction to the two methods in this section. What is presented here

closely follows Poyiadjis et al. (2011). First, we will need some notation. We denote the complete

data log-likelihood by

c (y1:t,α0:t) = log h (y1:t,α0:t)

h (y1:t,α0:t) = ν (α0)
t∏

k=1

gk (yk | αk ) f (αk | αk−1 )

where ν is the density function of the state vector at time zero, all functions may implicitly

depend on the unknown parameters, and the dimension of the arguments for c and h is given

by the superscript of the arguments. A direct application of the results from Louis (1982) shows

that the gradient of the observed data log-likelihood

o (y1:t) = log

∫
h (y1:t,a0:t) da0:t
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with respect to the unknown parameters are

∇o (y1:t) =
∂

∂θ
log

∫
h (y1:t,a0:t) da0:t =

∫
h′ (y1:t,a0:t) da0:t∫
h (y1:t,a0:t) da0:t

(4.32)

=

∫
c′ (y1:t,a0:t) p (a0:t | y1:t ) da0:t

where θ are the unknown parameters in the model, derivatives are with respect to θ, and

p (a0:t | y1:t ) is the conditional density function of a0:t given y1:t. Moreover, the Hessian is

∇2o (y1:t) =

∫
h′′ (y1:t,a0:t) da0:t∫
h (y1:t,a0:t) da0:t

−∇o (y1:t)∇o (y1:t)
>

=

∫
c′′ (y1:t,a0:t) p (a0:t | y1:t ) da0:t (4.33)

+

∫
c′ (y1:t,a0:t) c

′ (y1:t,a0:t)
> p (a0:t | y1:t ) da0:t −∇o (y1:t)∇o (y1:t)

>

We can use that the forward particle filter yields not just an approximation of p (ad | y1:d )

but the entire path p (a0:d | y1:d ). That is, we can use the weights at time d from Equation

(4.18) to make a discrete approximation of Equation (4.32) and (4.33) as shown in Cappé et al.

(2005). However, the variance of the estimates grows at least quadratically in d. The issue is

that for larger d, then few if not only one unique value of the initial state vector values (αi with

0 ≤ i << d) are present in the discrete approximation.

As an alternative, Poyiadjis et al. (2011) develop a marginal version of Equation (4.32) and

(4.33). That is,

c̃ (y1:t,αt) = log h̃ (y1:t,αt)

h̃ (y1:t,αt) =

gt (yt | αt )
∫
f (αt | at−1 ) h̃

(
y1:(t−1),at−1

)
dat−1 t > 0

ν (at) t = 0
(4.34)

∇o (y1:t) =

∫
c̃′ (y1:t,at) p (at | y1:t ) dat (4.35)

∇2o (y1:t) =

∫
c̃′′ (y1:t,at) p (at | y1:t ) dat

+

∫
c̃′ (y1:t,at) c̃

′ (y1:t,at)
> p (at | y1:t ) dat −∇o (y1:t)∇o (y1:t)

>

=

∫ (
h̃′′ (y1:t,at)

h̃ (y1:t,at)
− c̃′ (y1:t,at) c̃

′ (y1:t,at)
>

)
p (at | y1:t ) dat (4.36)

+

∫
c̃′ (y1:t,at) c̃

′ (y1:t,at)
> p (at | y1:t ) dat −∇o (y1:t)∇o (y1:t)

>

While there is no analytical expression for the derivatives, one can establish a pointwise

approximation recursively for c′ (y1:t,at) and c′′ (y1:t,at), as suggested by Poyiadjis et al. (2011).

To see this, let

st (αt,αt−1) = log gt (yt | αt ) + log f (αt | αt−1 )
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Then

h̃′ (y1:t,αt) = exp (o (y1:t−1)) gt (yt | αt )
∫
f (αt | at−1 ) p (at−1 | y1:t−1 ) (4.37)

·
(
s′t (αt,at−1) + c̃′

(
y1:(t−1),at−1

))
dat−1

Taking the ratio of Equation (4.37) and (4.34) yields c̃′ (y1:t,αt) in Equation (4.35). Moreover,

for Equation (4.36)

h̃′′ (y1:t,αt) = exp (o (y1:t−1)) gt (yt | αt )
∫
f (αt | at−1 ) p (at−1 | y1:t−1 )

·
( (

s′t (αt,at−1) + c̃′
(
y1:(t−1),at−1

)) (
s′t (αt,at−1) + c̃′

(
y1:(t−1),at−1

))>
+ s′′t (αt,at−1) + c̃′′

(
y1:(t−1),at−1

) )
dat−1

where we again take the ratio with (4.34). Unlike before, we need to evaluate two ratios,

h̃′ (y1:t,at) /h̃ (y1:t,at) and h̃′′ (y1:t,at) /h̃ (y1:t,at), which require evaluation of expressions of

the form ∫
f (αt | at−1 ) p (at−1 | y1:t−1 )κt (αt,at−1) dat−1∫

f (αt | at−1 ) p (at−1 | y1:t−1 ) dat−1
(4.38)

for some function κt. To do so, redefine the weights in Equation (4.18) in the forward particle

filter shown in Algorithm 2 to

w
(i)
t ∝

gt

(
yt

∣∣∣ α(i)
t

)∑N
j=1 f

(
α

(i)
t

∣∣∣ α(j)
t−1

)
w

(j)
t−1

q

(
α

(i)
t

∣∣∣∣ {(α(j)
t−1, w

(j)
t−1

)}
j=1,...,N

,yt

)
where we have made it explicit that the proposal distribution, q, may depend on the previous

particle cloud and assume that we use the same number of particles at time 0. Further, we define

the weights

w̄
(i,j)
t =

f
(
α

(i)
t

∣∣∣ α(j)
t−1

)
w

(j)
t−1∑N

k=1 f
(
α

(i)
t

∣∣∣ α(k)
t−1

)
w

(k)
t−1

(4.39)

Now a discrete approximation of the expression in Equation (4.38) for each particle i is given by

N∑
j=1

w̄
(i,j)
t κt

(
α

(i)
t ,α

(j)
t−1

)
Thus, the recursive formula for the gradient approximation is

ζ
(i)
t =

N∑
j=1

w̄
(i,j)
t

(
s′t

(
α

(i)
t ,α

(j)
t−1

)
+ ζ

(j)
t−1

)
(4.40)

∇o (y1:t) ≈
N∑
i=1

w
(i)
t ζ

(i)
t
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and for the Hessian we have

Υ
(i)
t =

N∑
j=1

w̄
(i,j)
t

( (
s′t

(
α

(i)
t ,α

(j)
t−1

)
+ ζ

(j)
t−1

)(
s′t

(
α

(i)
t ,α

(j)
t−1

)
+ ζ

(j)
t−1

)>
(4.41)

+ s′′t

(
α

(i)
t ,α

(j)
t−1

)
+ Υ

(j)
t−1

)
− ζ(i)

t ζ
(i)>
t

such that

∇2o (y1:t) ≈
N∑
i=1

w
(i)
t

(
ζ

(i)
t ζ

(i)>
t + Υ

(i)
t

)
−∇o (y1:t)∇o (y1:t)

>

The issue with the latter method is that the method has an O
(
N2
)

computational complexity

because of the sums in Equation (4.39), (4.40), and (4.41). Further, because there is no direct

dependence between pairs of particles, an alternative type of particle filter can be used. A

particular type of particle filters that are well suited for approximations like those in Equation

(4.38) are the so-called independent particle filters suggested by Lin et al. (2005). The key point

about these filters is that they use a proposal distribution that only depends on the observed

outcome, yt, or also the previous particle cloud or a group of particles, but not any particular

particle. Currently, the implementation supports the use by independence particle filters like

the bootstrap filter using the mean of the previous particle cloud or a filter that makes a mode

approximation using the mean of the previous particle cloud. Details are omitted for the sake of

brevity, because the filters are very similar to those covered in Section 4.1.3 and 4.2.

An alternative to the methods in the dynamichazard package is the mssm package. It contains

both the method shown in Cappé et al. (2005) and the method suggested by Poyiadjis et al. (2011),

but for more general models. Moreover, the mssm package has an implementation of the dual k-d

tree approximation method as in Klaas et al. (2006). This reduces the average-case complexity to

O (N logN), and thus it allows one to use substantially more particles. Lastly, the mssm package

also allows for two types of antithetic variables like those suggested by Durbin and Koopman

(1997). This decreases the variance of the estimates at a fixed computational cost.
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