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Sparsity in Optimal Randomized Classification Trees

Rafael Blanqueroa, Emilio Carrizosaa, Cristina Molero-Ŕıoa,∗, Dolores Romero Moralesb

aInstituto de Matemáticas de la Universidad de Sevilla (IMUS), Seville, Spain
bCopenhagen Business School, Frederiksberg, Denmark

Abstract

Decision trees are popular Classification and Regression tools and, when small-sized, easy to

interpret. Traditionally, a greedy approach has been used to build the trees, yielding a very

fast training process; however, controlling sparsity (a proxy for interpretability) is challenging.

In recent studies, optimal decision trees, where all decisions are optimized simultaneously, have

shown a better learning performance, especially when oblique cuts are implemented. In this

paper, we propose a continuous optimization approach to build sparse optimal classification

trees, based on oblique cuts, with the aim of using fewer predictor variables in the cuts as well

as along the whole tree. Both types of sparsity, namely local and global, are modeled by means

of regularizations with polyhedral norms. The computational experience reported supports the

usefulness of our methodology. In all our data sets, local and global sparsity can be improved

without harming classification accuracy. Unlike greedy approaches, our ability to easily trade

in some of our classification accuracy for a gain in global sparsity is shown.

Keywords: Data mining, Optimal Classification Trees, Global and Local Sparsity, Nonlinear

Programming

1. Introduction

Decision trees [40] are a popular non-parametric tool for Classification and Regression in

Statistics and Machine Learning [21]. Since they are rule-based, when small-sized, they are

deemed to be leaders in terms of interpretability [1, 2, 9, 15, 17, 23, 27, 28, 32, 36].

It is well-known that the problem of building optimal decision trees is NP-complete [22]. For

this reason, classic decision trees have been traditionally designed using greedy procedures in

which at each branch node of the tree, some purity criterion is (locally) optimized. For instance,
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CARTs [8] employ a greedy and recursive partitioning procedure which is computationally cheap,

especially since orthogonal cuts are implemented, i.e., one single predictor variable is involved

in each branching rule. These rules are of maximal sparsity at each branching node (excellent

local sparsity), making classic decision trees locally easy to interpret. However, when deep, they

become to be harder to interpret since many predictor variables are, in general, involved across

all branching rules (not so good global sparsity).

Addressing global sparsity is a challenge in decision trees and, to the best of our knowledge,

this has not been tackled appropriately in the literature. Standard CARTs or Random Forests

(RFs) [5, 7, 13, 16] cannot manage it due to the greedy construction of the trees. Nonetheless,

some attempts have been made, see [11, 12]. Classic decision trees usually select their orthogonal

cuts at each branch node by optimizing an information theory criterion among all possible

predictor variables and thresholds. The regularization framework in [11] considers a penalty to

this criterion for predictor variables that have not appeared yet in the tree. This approach is

refined in [12], by also including the importance scores of the predictor variables, obtained in a

preprocessing step running a preliminary RF.

The mainstream trend of using a greedy strategy in the construction of decision trees may

lead to myopic decisions, which, in turn, may affect the overall learning performance. The

major advances in Mathematical Optimization [10, 30, 33] have led to different approaches to

build decision trees with some overall optimality criterion, called hereafter optimal classification

trees. It is worth mentioning recent proposals which grow optimal classification trees of a pre-

established depth, both deterministic [4, 14, 18, 37, 38] and randomized [6]. The deterministic

approaches formulate the problem of building the tree as a mixed-integer linear optimization

problem. Such approach is the most natural, since many discrete decisions are to be made

when building a decision tree. Although the results of such optimal classification trees are

encouraging, the inclusion of integer decision variables makes the computing times explode,

giving rise to models trained over a small subsample of the data set [18] and, as customary, with

a CPU time limit being imposed to the optimization solver. On the other hand, a continuous

optimization-based approach to build optimal randomized classification trees is proposed in [6].

This is achieved by replacing the yes/no decisions in traditional trees by probabilistic decisions,

i.e., instead of deciding at each branch node if an individual goes either to the left or to the

right child node in the tree, the probability of going to the left is sought. The numerical results

in [6] illustrate the good performance achieved in very short time. All these optimization-based

approaches are flexible enough to address critical issues that the greedy nature of classic decision
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trees would find it difficult, such as preferences on the classification performance in some class

where misclassifying is more damaging [6, 37, 38], or controlling the number of predictor variables

used along the tree (local and global sparsity).

Optimal classification trees have been grown with both orthogonal [4, 14, 18] and oblique

cuts [3, 4, 6, 29, 37, 38]. Oblique cuts are more flexible than orthogonal ones since a combination

of several predictor variables is allowed in the branching. Trees based on oblique cuts lead to

similar or even better learning performance than those based on orthogonal cuts, and, at the

same time, they exhibit a shallow depth, since several orthogonal cuts may be reduced to one

single oblique cut. Apart from the flexibility that we can borrow from them, many integer

decision variables associated with orthogonal cuts are not present in the oblique ones, which

eases the optimization. Therefore, optimal classification trees based on oblique cuts require a

lower training computing time while showing much more promising results in terms of accuracy.

However, this comes at the expense of damaging interpretability, since, in principle, all the

predictor variables could appear in each branching rule. In this paper, we tackle this issue.

We propose a novel optimized classification tree, based on the methodology in [6] and, there-

fore, in oblique cuts, that yields rules/trees that are sparser, and thus enhance interpretability.

We model this as a continuous optimization problem. As in the classic LASSO model [35],

sparsity is sought by means of regularization terms. We model local sparsity with the `1-norm,

and the global sparsity with the `∞-norm. The `∞ reguralization has been applied to other clas-

sifiers, for instance, Support Vector Machines [25, 26, 41], but the `1 is more popular. A novel

continuous-based approach for building this sparse optimal randomized classification tree is pro-

vided. Theoretical results on the range of the sparsity parameters are shown. Our numerical

results, where well-known real data sets are used, illustrate the efectiveness of our methodology:

sparsity in optimal classification trees improves without harming learning performance. In ad-

dition, our ability to trade in some of our classification accuracy, still being superior to CART,

to be comparable to CART in terms of global sparsity is shown.

The remainder of the paper is organized as follows. In Section 2 we detail the construction

of the Sparse Optimal Randomized Classification Tree. Some theoretical properties are given in

Section 3. In Section 4, our numerical experience is reported. Finally, conclusions and possible

lines of future research are provided in Section 5.
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2. Sparsity in Optimal Randomized Classification Trees

2.1. Introduction

We assume given a training sample {(xi, yi)}1≤i≤N , where xi represents the p-dimensional

vector of predictor variables of individual i, and yi ∈ {1, . . . ,K} indicates the class membership.

Without loss of generality, we assume xi ∈ [0, 1]p , i = 1, . . . , N .

Sparse Optimal Randomized Classification Trees, addressed in this paper, extend the Op-

timal Randomized Classification Trees (ORCTs) in [6]. An ORCT is an optimal binary clas-

sification tree of a given depth D, obtained by minimizing the expected misclassification cost

over the training sample. Figure 1 shows the structure of an ORCT of depth D = 2. Unlike

Figure 1: Optimal Randomized Classification Tree of depth D = 2.

classic decision trees, oblique cuts, on which more than one predictor variable takes part, are

performed. ORCTs are modeled by means of a Non-Linear Continuous Optimization formula-

tion. The usual deterministic yes/no rule at each branch node is replaced by a smoother rule: a

probabilistic decision rule at each branch node, induced by a cumulative density function (CDF)

F , is obtained. Therefore, the movements in ORCTs can be seen as randomized: at a given

branch node of an ORCT, a random variable will be generated to indicate by which branch an

individual has to continue. Since binary trees are built, the Bernoulli distribution is appropriate,

whose probability of success will be determined by the value of this CDF, evaluated over the

vector of predictor variables. More precisely, at a given branch node t of the tree, an individual

with predictor variables x will go either to the left or to the right child nodes with probabilities

F

(
1

p
aT·tx− µt

)
and 1−F

(
1

p
aT·tx− µt

)
, respectively, where a·t and µt are decision variables.

For further details on the construction of ORCTs, the reader is referred to [6]. Sparse ORCT,
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S-ORCT, minimizes the expected misclassification cost over the training sample regularized with

two polyhedral norms.

The following notation is needed:

Parameters

D depth of the binary tree,

N number of individuals in the training sample,

p number of predictor variables,

K number of classes,

{(xi, yi)}1≤i≤N training sample, where xi ∈ [0, 1]p and yi ∈ {1, . . . ,K} ,

Ik set of individuals in the training sample belonging to class k, k = 1, . . . ,K,

Wyik misclassification cost incurred when classifying an individual i, whose class

is yi, in class k, yi, i = 1, . . . , N, k = 1, . . . ,K,

F (·) univariate continuous CDF centered at 0, used to define the probabilities

for an individual to go to the left or the right child node in the tree.

We will assume that F is the CDF of a continuous random variable with

density f ,

λL ≥ 0 local sparsity regularization parameter,

λG ≥ 0 global sparsity regularization parameter,

Nodes

τB set of branch nodes,

τL set of leaf nodes,

NL (t) set of ancestor nodes of leaf node t whose left branch takes part in the

path from the root node to leaf node t, t ∈ τL,

NR (t) set of ancestor nodes of leaf node t whose right branch takes part in the

path from the root node to leaf node t, t ∈ τL,

Decision variables

ajt ∈ [−1, 1] coefficient of predictor variable j in the oblique cut at branch node t ∈ τB,

with a being the p×|τB|matrix of these coefficients, a = (ajt)j=1,...,p, t∈τB .

The expressions aj· and a·t will denote the j-th row and the t-th column

of a, respectively,
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µt ∈ [−1, 1] location parameter at branch node t ∈ τB, µ being the vector that com-

prises every µt, i.e., µ = (µt)t∈τB ,

Ckt probability of being assigned to class label k ∈ {1, . . . ,K} for an in-

dividual at leaf node t, t ∈ τL, being the K × |τL| matrix such that

C = (Ckt)k=1,...,K, t∈τL .

Probabilities

pit (a·t, µt) probability of individual i going down the left branch at branch node t.

Its expression is pit (a·t, µt) = F

(
1

p
aT·txi − µt

)
, i = 1, . . . , N, t ∈ τB,

Pit (a,µ) probability of individual i falling into leaf node t. Its expres-

sion is Pit (a,µ) =
∏

tl∈NL(t)
pitl (a·tl , µtl)

∏
tr∈NR(t)

(1− pitr (a·tr , µtr)) , i =

1, . . . , N, t ∈ τL,

g (a,µ,C) expected misclassification cost over the training sample. Its expression is

g (a,µ,C) =
1

N

N∑
i=1

∑
t∈τL

Pit (a,µ)
K∑
k=1

WyikCkt.

2.2. The formulation

With these parameters and decision variables, the S-ORCT is formulated as follows:

min g (a,µ,C) + λL
p∑
j=1

‖aj·‖1 + λG
p∑
j=1

‖aj·‖∞ (1)

s.t.
K∑
k=1

Ckt = 1, t ∈ τL, (2)

∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K, (3)

ajt ∈ [−1, 1] , j = 1, . . . , p, t ∈ τB, (4)

µt ∈ [−1, 1] , t ∈ τB, (5)

Ckt ∈ [0, 1] , k = 1, . . . ,K, t ∈ τL. (6)

In the objective function we have three terms, the first being the expected misclassification cost

in the training sample, while the second and the third are regularization terms. The second

term addresses local sparsity, since it penalizes the coefficients of the predictor variables used in

the cuts along the tree. Instead, the third term controls whether a given predictor variable is

ever used across the whole tree, thus addressing global sparsity. The `∞-norm is used as a group

penalty function, by forcing the coefficients linked to the same predictor variable to be shrunk
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simultaneously along all branch nodes. Note that both local and global sparsity are equivalent

when dealing with depth D = 1, as there is a single cut across the whole tree.

In terms of the feasible region, for each leaf node t ∈ τL, Ckt represents the probability that

an individual at node t is assigned to class k ∈ {1, . . . ,K}. Constraints (2) force that such

probabilities sum to 1, while constraints (3) force the sum of the probabilities along all leaf

nodes t ∈ τB assigned to class k to be at least one.

Theorem 1 guarantees the existence of an optimal deterministic solution, i.e., such probabil-

ities Ckt will all be in {0, 1}, and thus (6) can be replaced by

Ckt ∈ {0, 1} , k = 1, . . . ,K, t ∈ τL. (7)

Constraints (6) and (7) will be used interchangeably when needed.

Theorem 1. There exists an optimal solution to (1)-(6) such that Ckt ∈ {0, 1} , k = 1, . . . ,K, t ∈

τL.

Proof.

The continuity of the objective function (1), defined over a compact set, ensures the ex-

istence of an optimal solution of the optimization problem (1)-(6), by Weierstrass Theorem.

Let a∗ =
(
a∗jt

)
j=1,...,p, t∈τB

, µ∗ = (µ∗t )t∈τB , C
∗ = (C∗kt)k=1,...,K, t∈τB be an optimal solu-

tion. Fixed a∗, µ∗, then C∗ is optimal to the following problem in the decision variables

Ckt, k = 1, . . . ,K, t ∈ τL:

min
1

N

N∑
i=1

∑
t∈τL

Pit (a∗,µ∗)
K∑
k=1

WyikCkt + λL
p∑
j=1

∥∥a∗j·∥∥1 + λG
p∑
j=1

∥∥a∗j·∥∥∞
s.t.

K∑
k=1

Ckt = 1, t ∈ τL,

∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K,

Ckt ∈ [0, 1] , k = 1, . . . ,K, t ∈ τL.

This is a transportation problem, to which the integrality of an optimal solution is well-known

to hold, i.e., there exists C =
(
Ckt
)
k=1,...,K, t∈τL

∈ {0, 1} for all k, t such that
(
a∗,µ∗,C

)
is

also optimal for (1)-(6).

Theorem 1 gives a new interpretation of constraints (2)-(3): if (7) is used instead of (6),

when Ckt takes the value 1, then all the individuals at node t ∈ τL are labelled as k; and 0,

otherwise. Constraints (2) state that any leaf node t ∈ τL must be labelled with exactly one

class label, and constraints (3) state that each class k has at least one node t with such label.
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Once the optimization problem is solved, the S-ORCT predicts the class of a new unlabeled

observation with predictor vector x with a probabilistic rule, namely, we estimate the probability

of being in class k as
∑
t∈τL

Ckt·Pxt (a,µ). If a deterministic classification rule is sought, we allocate

to the most probable class. Moreover, if prior probabilities Πk (x) are given, one can also use

the Bayes rule.

ORCTs were also shown to deal effectively with controlling the correct classification rate

on different classes. This idea can also be applied to S-ORCTs. Hence, given the classes

k = 1, . . . ,K to be controlled and their corresponding desired performances ρk, the expectation

of achieving each performance guarantee can be computed with the ORCT parameters, provided

that the following set of constrainsts is added to the model:∑
i∈Ik

∑
t∈τL

Pit (a,µ)Ckt ≥ ρk|Ik|, k = 1, . . . ,K. (8)

With these constraints we have a direct control on the classification performance in each

class separately. This is useful when dealing with imbalanced data sets.

2.3. A smooth reformulation

Problem (1)-(6) is non-smooth due to the norms ‖·‖1 and ‖·‖∞ appearing in the objective

function. A smooth version is easily obtained by rewritting both regularization terms using new

decision variables. Since the first regularization term includes absolute values,

‖aj·‖1 =
∑
t∈τB

|ajt| , j = 1, . . . , p,

decision variables ajt ∈ [−1, 1] , j = 1, . . . , p, t ∈ τB, are split into their positive and negative

counterparts a+jt, a
−
jt ∈ [0, 1] , j = 1, . . . , p, t ∈ τB, respectively, holding ajt = a+jt − a−jt and

|ajt| = a+jt + a−jt. Similarly, we denote a+ =
(
a+jt

)
j=1,...,p, t∈τB

and a− =
(
a−jt

)
j=1,...,p, t∈τB

.

Regarding the second regularization term, new decision variables βj ∈ [0, 1] are needed:

‖aj·‖∞ = max
t∈τB
|ajt| = βj ∈ [0, 1] , j = 1, . . . , p,

and have to force βj ≥ |ajt| = a+jt + a−jt, j = 1, . . . , p, t ∈ τB.

We can now formulate S-ORCT as a smooth problem, thus solvable with standard continuous

optimization solvers, as done in our computational section. Indeed, we have that (1)-(6) is

equivalent to

min g
(
a+ − a−,µ,C

)
+ λL

p∑
j=1

∑
t∈τB

(
a+jt + a−jt

)
+ λG

p∑
j=1

βj (9)
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s.t.
K∑
k=1

Ckt = 1, t ∈ τL, (10)

∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K, (11)

βj ≥ a+jt + a−jt, j = 1, . . . , p, (12)

a+jt, a
−
jt ∈ [0, 1] , j = 1, . . . , p, t ∈ τB, (13)

βj ∈ [0, 1] , j = 1, . . . , p, (14)

µt ∈ [−1, 1] , t ∈ τB, (15)

Ckt ∈ [0, 1] , k = 1, . . . ,K, t ∈ τL. (16)

Observe that, if we are only concerned about global sparsity, and thus we set λL = 0, the

rewriting of the decision variables ajt, j = 1, . . . , p, t ∈ τB is no longer necessary and (4) replaces

(13), and (12) turns into

βj ≥ ajt, j = 1, . . . , p, t ∈ τB, (17)

βj ≥ −ajt, j = 1, . . . , p, t ∈ τB. (18)

3. Theoretical properties

This section discusses some theoretical properties enjoyed by the S-ORCT. Let us consider

the objective function of (1)-(6). When taking λL and λG large enough, the first term related

to the performance of the classifier becomes negligible and therefore a will shrink to 0. The tree

with a = 0 is the sparsest possible tree though not the best promising one from the accuracy

point of view, since none of the predictor variables is used to classify. In this case, the probability

of an individual with predictor variables x being assigned to class k is independent of x, and

nothing more than the distribution of classes is available. In this section, we derive upper bounds

for the sparsity parameters, λL and λG, in the sense that above these bounds the sparsest tree

(with a∗ = 0) is a stationary point of the S-ORCT, that is, there exists (a∗ = 0,µ∗,C∗) such

that the necessary optimality condition with respect to a is satisfied. This is done in Theorems

2 and 3.
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Theorem 2. Let σ ∈ [0, 1]. For

λL ≥ (1− σ) max
µ∈[−1,1]|τB |

C∈{0,1}K×|τL|

max
j=1,...,p

∥∥∇aj·g (0,µ,C)
∥∥
∞ and

λG ≥ σ max
µ∈[−1,1]|τB |

C∈{0,1}K×|τL|

max
j=1,...,p

∥∥∇aj·g (0,µ,C)
∥∥
1
,

a∗ = 0 is a stationary point of the S-ORCT.

Proof.

Let σ, λL, λG be such that they satisfy the assumptions.

By Theorem 1, there exists (a∗,µ∗,C∗) optimal solution to (1)-(6) satisfying C∗kt ∈ {0, 1} ∀k =

1, . . . ,K, t ∈ τL. In the following we will show that (0,µ∗,C∗) is a stationary point of the S-

ORCT, i.e.,

−∇ag (0,µ∗,C∗) ∈ ∂a

λL p∑
j=1

‖aj·‖1 + λG
p∑
j=1

‖aj·‖∞

 (0) (19)

where ∂a is the subdifferential operator.

For every aj·, j = 1, . . . , p, we have that

∂aj·
(
‖aj·‖1

)
(0) = B∞ =

{
q ∈ R|τB | : ‖q‖∞ ≤ 1

}
∂aj·

(
‖aj·‖∞

)
(0) = B1 =

{
q ∈ R|τB | : ‖q‖1 ≤ 1

}
.

Hence,

−∇aj·g (0,µ∗,C∗) ∈ λL∂aj·
(
‖aj·‖1

)
(0) + λG∂aj·

(
‖aj·‖∞

)
(0) ,

if, and only if,

−∇aj·g (0,µ∗,C∗) ∈ λLB∞ + λGB1,

if, and only if, there exist qLj , q
G
j ∈ R|τB | such that∥∥qLj ∥∥∞ ≤ 1,∥∥qGj ∥∥1 ≤ 1,

−∇aj·g (0,µ∗,C∗) = λLqLj + λGqGj ,

if, and only if, there exist q̃Lj , q̃
G
j ∈ R|τB | such that∥∥q̃Lj ∥∥∞ ≤ λL,∥∥q̃Gj ∥∥1 ≤ λG,
−∇aj·g (0,µ∗,C∗) = q̃Lj + q̃Gj .
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Let us consider

q̃Lj = − (1− σ)∇aj·g (0,µ∗,C∗) ,

q̃Gj = − σ ∇aj·g (0,µ∗,C∗) ,

and check that the conditions are satisfied:∥∥q̃Lj ∥∥∞ = (1− σ)
∥∥∇aj·g (0,µ∗,C∗)

∥∥
∞ ≤ (1− σ) max

µ∈[−1,1]|τB |

C∈{0,1}K×|τL|

max
j=1,...,p

∥∥∇aj·g (0,µ,C)
∥∥
∞ ≤ λ

L,

∥∥q̃Gj ∥∥1 = σ
∥∥∇aj·g (0,µ∗,C∗)

∥∥
1
≤ σ max

µ∈[−1,1]|τB |

C∈{0,1}K×|τL|

max
j=1,...,p

∥∥∇aj·g (0,µ,C)
∥∥
1
≤ λG,

q̃Lj + q̃Gj = − (1− σ)∇aj·g (0,µ∗,C∗)− σ∇aj·g (0,µ∗,C∗) = −∇aj·g (0,µ∗,C∗) .

Therefore, the desired result follows.

A stronger result is proven for the S-ORCT of depth D = 1 and K = 2. Since local and

global sparsity are equivalent for the S-ORCT of depth D = 1, without loss of generality, we

can assume that λG = 0. Therefore, the objective function of the S-ORCT of depth D = 1 can

be written as:

g1 (a·1, µ1,C) = g (a·1, µ1,C) + λL ‖a·1‖1 ,

where

g (a·1, µ1,C) =
1

N

N∑
i=1

[
pi1 (a·1, µ1)

2∑
k=1

WyikCk2 + (1− pi1 (a·1, µ1))
2∑

k=1

WyikCk3

]

=
1

N

2∑
k=1

∑
i∈Ik

pi1 (a·1, µ1)
∑
k′ 6=k

Wkk′Ck′2 + (1− pi1 (a·1, µ1))
∑
k′ 6=k

Wkk′Ck′3

 (20)

and

pi1 (a·1, µ1) = F

(
1

p
aT·1xi − µ1

)
, i = 1, . . . , N.

A technical lemma is needed to prove the desired result.

Lemma 1. For any allocation rule C, the objective function of the S-ORCT of depth D = 1,

g1, is monotonic in µ1 when a·1 = 0.

Proof.

Fixed a·1 = (aj1)j=1,...,p, and C = (Ckt)k=1,2, t=2,3,

∂g1
∂µ1

∣∣∣∣
a·1=0

=
1

N

K∑
k=1

∑
i∈Ik

∑
k′ 6=k

Wkk′Ck′2 −
∑
k′ 6=k

Wkk′Ck′3

 ∂pi1 (a·1, µ1)

∂µ1

∣∣∣∣
a·1=0

,
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where

∂pi1 (a·1, µ1)

∂µ1
=

∂F

(
1

p
aT·1xi − µ1

)
∂

(
1

p
aT·1xi − µ1

) ∂

(
1

p
aT·1xi − µ1

)
∂µ1

= −f
(

1

p
aT·1xi − µ1

)
, i = 1, . . . , N,

and

∂pi1 (a·1, µ1)

∂µ1

∣∣∣∣
a·1=0

= −f (−µ1) , i = 1, . . . , N.

Thus,

∂g1 (a·1, µ1,C)

∂µ1

∣∣∣∣
a·1=0

=
1

N
f (−µ1)

∑
i∈I1

W12 (C23 − C22) +
∑
i∈I2

W21 (C13 − C12)


=

1

N
f (−µ1) (W12 (C23 − C22) |I1|+W21 (1− C23 − 1 + C22) |I2|)

=
1

N
f (−µ1) (C23 − C22) (W12|I1| −W21|I2|) .

Since f is a probability density function, the expression
∂g1 (a·1, µ1,C)

∂µ1

∣∣∣∣
a·1=0

will always have

the same sign for any value of µ1 and the desired result follows.

Theorem 3. For

λL ≥ 1

N
max
j=1,...,p

∣∣∣∣∣∣−W21

∑
i∈I2

xij +W12

∑
i∈I1

xij

∣∣∣∣∣∣ max
µ1∈{−1,1}

f (µ1) , (21)

a∗·1 = 0 is a stationary point of the S-ORCT of depth D = 1.

Proof.

Using the monotonicity of µ1 proven in Lemma 1 and Theorem 2 with σ = 0, we have that

for

λL ≥ max
µ1∈{−1,1}
C∈{0,1}2×2

max
j=1,...,p

∣∣∇aj1g (0, µ1,C)
∣∣

= max
µ1∈{−1,1}
C∈{0,1}2×2

‖∇a·1g (0, µ1,C)‖∞ , (22)

where g is as in (20), a∗·1 = 0 is a stationary point of thr S-ORCT. The remainder of the proof

is devoted to rewriting (22) as in (21).

We proceed with the calculation of the gradient.

For j = 1, . . . , p:

∂g (0, µ1,C)

∂aj1
=
∂g (a·1, µ1,C)

∂aj1

∣∣∣∣
a·1=0

=
1

N

2∑
k=1

∑
i∈Ik

∑
k′ 6=k

Wkk′Ck′2 −
∑
k′ 6=k

Wkk′Ck′3

 ∂pi1 (a·1, µ1)

∂aj1

∣∣∣∣
a·1=0

,
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where

∂pi1 (a·1, µ1)

∂aj1
=

∂F

(
1

p
aT1 xi − µ1

)
∂

(
1

p
aT1 xi − µ1

) ∂

(
1

p
aT1 xi − µ1

)
∂aj1

=
xij
p
f

(
1

p
aT1 xi − µ1

)
, i = 1, . . . , N.

and
∂pi1 (a·1, µ1)

∂aj1

∣∣∣∣
a·1=0

=
xij
p
f (−µ1) , i = 1, . . . , N.

Thus,

∂g (0, µ1,C)

∂aj1
=

1

Np
f (−µ1)

W12

∑
i∈I1

xij (C22 − C23) +W21

∑
i∈I2

xij (C12 − C13)

 .

Now, we look for the maximum λL among every possible allocation of the decision variables

C, i.e.:

λLµ1 = max
C∈{0,1}2×2

‖∇a·1g (0, µ1,C)‖∞ = max
C∈{0,1}4×1

‖DC‖∞,

where

D =
1

Np
f (−µ1)


−W21

∑
i∈I2 xi1 W21

∑
i∈I2 xi1 −W12

∑
i∈I1 xi1 W12

∑
i∈I1 xi1

...
...

...
...

−W21
∑

i∈I2 xip W21
∑

i∈I2 xip −W12
∑

i∈I1 xip W12
∑

i∈I1 xip


and C = (C12, C13, C22, C23)

T .

max
C∈{0,1}4×1

‖DC‖∞ = max
C∈{0,1}4×1

max
{
|dT1 C|, . . . , |dTp C|

}
= max
C∈{0,1}4×1

max
{
dT1 C,−dT1 C, . . . , dTp C,−dTp C

}
= max

{
max

C∈{0,1}4×1
dT1 C, max

C∈{0,1}4×1
−dT1 C, . . . , max

C∈{0,1}4×1
dTp C, max

C∈{0,1}4×1
−dTp C

}
.

A finite number of transportation problems is to be solved, with the form:

z = max
C∈{0,1}4×1

{
±dTj C

}
s.t. C12 + C22 = 1

C13 + C23 = 1

C12 + C13 ≥ 1

C22 + C23 ≥ 1,
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for which the integrality property holds. Then, we only have as possible solutions: C =

(1, 0, 0, 1)T or C = (0, 1, 1, 0)T . Thus, the optimal objective is obtained as follows:

zopt = max
{
±dTj C

∣∣
C=(1,0,0,1)T

, ±dTj C
∣∣
C=(0,1,1,0)T

}
= max

 1

Np
f (−µ1)

−W21

∑
i∈I2

xij +W12

∑
i∈I1

xij

 ,
1

Np
f (−µ1)

W21

∑
i∈I2

xij −W12

∑
i∈I1

xij


=

1

Np
f (−µ1)

∣∣∣∣∣∣−W21

∑
i∈I2

xij +W12

∑
i∈I1

xij

∣∣∣∣∣∣ .
Let us define

λLµ1 =
1

Np
f (−µ1) max

j=1,...,p

∣∣∣∣∣∣−W21

∑
i∈I2

xij +W12

∑
i∈I1

xij

∣∣∣∣∣∣ ,
and the result holds when

λL ≥ max
{
λLµ1=−1, λ

L
µ1=1

}
.

4. Computational experience

4.1. Introduction

The aim of this section is to illustrate the performance of our sparse optimal randomized

classification trees S-ORCT’s. We have run our model for a grid of values of the sparsity

regularization parameters λL and λG. The message that can be drawn from our experimental

experience is twofold. First, we show empirically that our S-ORCT can gain in both local and

global sparsity, without harming classification accuracy. Second, we benchmark our approach

against CART, the classic approach to build decision trees, which considers orthogonal cuts and

therefore has the best possible local sparsity. We show that we are able to trade in some of our

classification accuracy, still being superior to CART, to be comparable to CART in terms of

global sparsity.

The S-ORCT smooth formulation (9)-(16) has been implemented using Pyomo optimization

modeling language [19, 20] in Python 3.5 [31]. As solver, we have used IPOPT 3.11.1 [39],

and have followed a multistart approach, where the process is repeated 20 times starting from

different random initial solutions. For CART, the implementation in the rpart R package [34]
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is used. Our experiments have been conducted on a PC, with an Intelr CoreTM i7-2600 CPU

3.40GHz processor and 16 GB RAM. The operating system is 64 bits.

The remainder of the section is structured as follows. Section 4.2 gives details on the pro-

cedure followed to test S-ORCT. In Sections 4.3 and 4.4, respectively, we discuss the results for

local and global sparsities separately, while in Section 4.5 we present results when both sparsi-

ties are simultaneously taken into account. Finally, Section 4.6 statistically compares S-ORCT

versus CART in terms of classification accuracy and global sparsity.

4.2. Setup

An assorted collection of well-known real data sets from the UCI Machine Learning Reposi-

tory [24] has been chosen for the computational experiments. Table 2 lists their names together

with their number of observations, number of predictor variables and number of classes with the

corresponding class distribution. In our pursuit of building small and, therefore, less complex

trees, the construction of S-ORCTs has been restricted to depth D = 1 for two-class problems

and depth D = 2 for three- and four- class problems.

Each data set has been split into two subsets: the training subset (75%) and the test subset

(25%). The corresponding S-ORCT is built on the training subset and, then, accuracy, local and

global sparsities are measured. The out-of-sample accuracy over the test subset is denoted by

acc. Local sparsity is denoted by δL and reads as the average percentage of predictor variables

not used per branch node:

δL =
1

|τB|
∑
t∈τB

|{ajt = 0, j = 1, . . . , p}|
p

× 100.

Global sparsity, δG, is measured as the percentage of predictor variables not used at any of the

branch nodes, i.e., across the whole tree:

δG =
|{aj· = 0, j = 1, . . . , p}|

p
× 100.

Note that when D = 1, local and global sparsity are measuring the same since there is a single

cut across the whole tree. The training/testing procedure has been repeated ten times in order

to avoid the effect of the initial split of the data. The results shown in the tables represent the

average of such ten runs to each of the three performance criteria.

In what follows, we describe the choices made for the parameters in S-ORCT. Equal mis-

classification weights, Wyik = 0.5, k = 1, . . . ,K, k 6= yi, have been used for the experiments.
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Table 2: Information about the data sets considered.

Data set Abbrev. N p K Class distribution

Monks-problems-3 Monks-3 122 11 2 51% - 49%

Monks-problems-1 Monks-1 124 11 2 50% - 50%

Monks-problems-2 Monks-2 169 11 2 62% - 38%

Connectionist-bench-sonar Sonar 208 60 2 55% - 45%

Ionosphere Ionosphere 351 34 2 64% - 36%

Breast-cancer-Wisconsin Wisconsin 569 30 2 63% - 37%

Credit-approval Creditapproval 653 37 2 55% - 45%

Pima-indians-diabetes Pima 768 8 2 65% - 35%

Statlog-project-German-credit Germancredit 1000 48 2 70% - 30%

Banknote-authentification Banknote 1372 4 2 56% - 44%

Ozone-level-detection-one Ozone 1848 72 2 97% - 3%

Spambase Spam 4601 57 2 61% - 39%

Iris Iris 150 4 3 33.3%-33.3%-33.3%

Wine Wine 178 13 3 40%-33%-27%

Seeds Seeds 210 7 3 33.3%-33.3%-33.3%

Balance-scale Balance 625 16 3 46%-46%-8%

Thyroid-disease-ann-thyroid Thyroid 3772 21 3 92.5%-5%-2.5%

Car-evaluation Car 1728 15 4 70%-22%-4%-4%

We have added the set of constraints (8) with ρk = 0.1, k = 1, . . . ,K. The logistic CDF has

been chosen for our experiments:

F (·) =
1

1 + exp (− (·) γ)
,

with a large value of γ, namely, γ = 512. The larger the value of γ, the closer the deci-

sion rule defined by F is to a deterministic rule. We will illustrate that a small level of ran-

domization is enough for obtaining good results. We have trained S-ORCT, as formulated

in (9)-(16), for 17 × 17 pairs of values for
(
λL, λG

)
starting from λL = 0 followed by the grid{

2r

p |τB|
, −12 ≤ r ≤ 3, r ∈ Z

}
, and, similarly, λG = 0 followed by the grid

{
2r

p
, −12 ≤ r ≤ 3, r ∈ Z

}
.

We start solving the optimization problem with
(
λL, λG

)
= (0, 0), where the multistart approach

uses 20 random initial solutions. We continue solving the optimization problem for λL = 0 but
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with larger values of λG. Once all values of λG are executed, we start the process all over again

with the next value of λL in the grid. For pair
(
λL, λG

)
, we feed the corresponding optimization

problem with the 20 solutions resulting from the problem solved for the previous pair. For

a given initial solution, the computing time taken by the S-ORCT typically ranges from 0.33

seconds (in Monks-1) to 22.27 seconds (in Thyroid).

For CART, the default parameter setting in rpart is used.

4.3. Results for local sparsity

Tables 3 and 4 present the results of the so-called local S-ORCT, i.e., when λG = 0 and thus

only local sparsity is taken into account. Figures 2 and 3 depict these results per data set, by

showing simultaneously δL (blue solid line) and acc (red dashed line) as a function of the grid of

the λL’s considered. As expected, the larger the λL, the larger the δL. The sparsest tree is shown

in most of the data sets for large values of the parameter λL, where the best solution in terms of

sparsity is obtained but the worst possible one in terms of accuracy. In terms of accuracy, the

best rates are sometimes achieved when not all the predictor variables are included in the model.

For instance, best performance is reached when sparsity is about 9− 25% for Pima, the 30% for

Monks-1, the 32% for Monks-2, the 44% for Germancredit, the 47% for Car, the 52 − 56% for

Thyroid, the 54% for Monks-3, the 55− 60% for Iris, the 72− 90% for Sonar, the 81% for both

Wine and Seeds and the 87% for Ionosphere. We highlight the Creditapproval data set, on which

one single predictor variable can already guarantee very good accuracy. For Ozone, accuracy

remains over the 96% for the grid of λL’s considered. Accuracy might be slightly damaged but

a great gain in sparsity is obtained. This is the case for Banknote, Spam, Balance or Wisconsin,

which present a loss of accuracy lower than the 1 percentage point (p.p.), 4 p.p., 6 p.p. and 1

p.p. but 25%, 52%, 63% and 85% of local sparsity is reached, respectively.
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Table 4: Results for the local S-ORCT of depth D = 2 as a function of λL, where δL represents the average

percentage of predictor variables not used per branch node in the tree over the ten runs and acc, the average

out-of-sample accuracy.

λL
Iris Wine Seeds Balance Thyroid Car

δL acc δL acc δL acc δL acc δL acc δL acc

0 8 95.9 15 96.6 10 94.4 33 96.6 57 92.8 20 92.7

2−12 42 95.9 51 98.6 33 93.8 58 92.0 61 92.7 36 91.5

2−11 42 95.9 54 98.4 38 93.8 60 91.1 59 92.9 33 91.9

2−10 42 96.2 54 97.3 38 94.0 65 91.0 64 92.6 36 91.5

2−9 42 95.9 56 97.5 43 93.8 67 91.2 62 92.7 36 91.4

2−8 42 95.9 56 96.8 48 93.2 60 91.9 65 92.5 36 91.4

2−7 42 95.9 59 96.8 48 91.3 60 91.7 70 92.1 36 91.3

2−6 42 95.9 59 96.8 52 94.0 65 92.2 72 92.1 38 91.6

2−5 42 95.4 59 96.8 52 94.4 58 92.6 74 92.2 40 91.3

2−4 42 95.9 59 97.3 57 93.8 58 92.4 79 92.2 42 91.1

2−3 42 93.2 62 97.5 67 94.6 63 91.1 83 92.1 40 91.7

2−2 50 89.7 62 97.7 67 94.4 65 90.6 87 92.3 47 90.4

2−1 50 92.7 64 98.2 71 93.6 67 89.2 90 92.0 51 90.2

20 58 90.0 69 96.8 76 93.6 71 88.1 91 91.9 64 87.6

21 67 90.5 77 95.2 81 90.2 75 87.2 92 92.0 71 85.4

22 75 91.1 82 89.5 81 88.5 77 82.6 95 91.8 80 80.8

23 83 88.6 90 76.4 91 73.6 83 77.3 100 92.2 91 68.2

4.4. Results for global sparsity

This section is devoted to the global S-ORCT, i.e., when λL = 0 and thus only global sparsity

is taken into account. We focus on depth D = 2, since for D = 1 global sparsity is equal to local

sparsity. Similarly to Subsection 4.3, Table 5 presents the results of the global S-ORCT, while

Figure 4 visualizes these results by showing simultaneously, per data set, δG (blue solid line)

and acc (red dashed line) as a function of the grid of the λG’s considered. As for local sparsity,

as λG grows, δG increases. For Iris and Seeds, a similar classification accuracy to that with all

of the predictor variables is obtained while removing the 75% and 29% of them, respectively.

For Wine, the best rates of accuracy are obtained with 15% − 23% of global sparsity. A loss
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Figure 2: Graphical representation, for each data set, of the average percentage of predictor variables per branch

node, δL, together with the average out-of-sample accuracy obtained, acc, as a function of the values of λL

considered in the local S-ORCT construction.
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Figure 3: Graphical representation, for each data set, of the average percentage of predictor variables per branch

node, δL, together with the average out-of-sample accuracy obtained, acc, as a function of the values of λL

considered in the local S-ORCT construction.
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Figure 4: Graphical representation, for each data set, of the average percentage of predictor variables per tree,

δG, together with the average out-of-sample accuracy obtained, acc, as a function of the values of λG considered

in the global S-ORCT construction.
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Table 5: Results for the global S-ORCT of depth D = 2 as a function of λG, where δG represents the average

percentage of predictor variables not used per tree over ten runs and acc, the average out-of-sample accuracy.

λG
Iris Wine Seeds Balance Thyroid Car

δG acc δG acc δG acc δG acc δG acc δG acc

0 0 95.9 0 96.6 0 94.4 0 96.6 1 92.8 0 92.7

2−12 0 96.2 18 97.7 0 94.0 0 96.7 3 93.0 0 93.4

2−11 0 96.2 15 97.5 0 93.8 0 95.4 5 93.9 0 93.7

2−10 0 96.2 15 97.5 0 94.0 0 95.9 5 93.9 0 94.1

2−9 0 95.9 15 97.3 0 93.8 0 96.7 7 94.0 0 94.0

2−8 0 95.9 15 97.7 0 93.8 0 96.2 12 94.1 0 94.7

2−7 0 95.9 15 97.9 14 94.6 0 95.8 17 94.0 0 95.0

2−6 0 95.4 15 98.2 14 95.4 0 96.1 26 94.0 0 94.9

2−5 2 95.7 15 98.2 14 95.4 0 96.7 40 93.9 0 94.9

2−4 0 95.4 15 98.4 14 94.6 0 96.5 57 93.8 0 94.7

2−3 0 95.7 23 98.4 29 93.6 0 94.7 65 93.5 7 94.6

2−2 25 95.4 23 97.9 29 95.2 0 91.1 73 91.5 7 94.1

2−1 25 95.7 31 96.6 29 94.2 19 87.4 81 90.6 13 92.2

20 50 96.2 39 95.7 43 92.5 25 87.0 83 90.0 27 86.7

21 50 96.2 46 94.3 57 90.2 44 80.5 87 92.4 47 79.8

22 50 96.5 62 93.6 71 85.8 56 71.3 95 91.7 73 68.2

23 75 96.2 85 71.1 86 72.5 94 48.8 100 92.2 80 68.2

of less than 10 p.p. of accuracy is observed for Balance but 25% of predictor variables are not

being used, respectively. Car remains around the accuracy rate of 80% while using half of the

predictor variables. Thyroid, an imbalanced data set, is over the 90% of accuracy for the whole

grid of λG’s considered.

4.5. Results for local and global sparsity

In this section, results enforcing local and global sparsity are presented by means of heatmaps,

as seen in Figure 5. The experiment has been conducted on data sets of K = 3 and 4 classes,

for which S-ORCTs of depth D = 2 are built. For each dataset, three heatmaps are depicted as

a function of the grid of the sparsity regularization parameters, λL and λG: the average out-of-

sample accuracy, acc, and the local and global sparsities, δL and δG, respectively, obtained over
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the ten runs performed. The color bar of each heatmap goes from light green to dark blue, being

the latter the maximum accuracy, local sparsity or global sparsity achieved, respectively. As a

general behavior, the best rates of accuracy are not always achieved only for
(
λL, λG

)
= (0, 0),

but also for other pairs of the chosen grid, i.e., the data set remains equally well explained while

needing less information. As before, according to local sparsity, for a fixed λG, δL has a growing

trend. A similar behavior is observed for δG when λL is fixed. It is also worth mentioning that

small changes of λL quickly lead to a gain in δL. Nevertheless, as expected, the gain in δG is

slower for the same range in λG.

4.6. Comparison S-ORCT versus CART

A statistical comparison between the proposed S-ORCT and CART, the classic approach

to build decision trees, is provided in this section. As stated in the introduction of the paper,

CARTs, as many other approaches that implement orthogonal cuts [4, 14, 18], are leaders in

terms of local sparsity. Thus, the comparison S-ORCT versus CART is performed in terms

of accuracy and global sparsity. Tables 3 and 5 for S-ORCT have been considered for the

experiment.

CART has been trained and tested over the same ten runs as S-ORCT. For each pair S-

ORCT
(
λG
)

versus CART, two hypothesis tests for the equality of means of paired samples

were carried out, one for accuracy and another for global sparsity, assuming normality, at a 5%

significance level. For this task, the t.test function in R has been used. Figure 6 depicts,

for each data set, the resulting confidence intervals (blue solid line) at the 95% confidence level

for the difference in average accuracy (on the left) and global sparsity (on the right) between

S-ORCT
(
λG
)

and CART. The red dashed horizontal line represents the null hypothesis in each

case. Except for Creditapproval and Thyroid, for the smaller values of λG, our approach is

significantly better than, or at least comparable to, CART in terms of accuracy, while CART is

significantly better than, or at least comparable to, in terms of global sparsity. For the larger

values of λG, our approach starts to be comparable and then dominate CART in terms of global

sparsity at the cost of accuracy.

5. Conclusions and future research

Recently, several proposals focused on building optimal classification trees are found in the

literature to address the shortcomings of the classic greedy approaches. In this paper, we have

proposed a novel continuous optimization-based approach, the Sparse Optimal Randomized
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(a) Iris

(b) Wine

(c) Seeds

25



(d) Balance

(e) Thyroid

(f) Car

Figure 5: Heatmaps representation, for each data set, of the average out-of-sample accuracy, acc, the average

percentage of predictor variables not used per branch node, δL, and the average percentage of predictor variables

not used per tree, δG, respectively, as a funcion of the grid of the sparsity parameters, λL and λG, considered in

the S-ORCT of depth D = 2 construction.
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(a) Monks-3

(b) Monks-1

(c) Monks-2

(d) Sonar
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(e) Ionosphere

(f) Wisconsin

(g) Creditapproval

(h) Pima
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(i) Germancredit

(j) Banknote

(k) Ozone

(l) Spam
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(m) Iris

(n) Wine

(o) Seeds

(p) Balance
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(q) Thyroid

(r) Car

Figure 6: Graphical representation, for each data set, of the confidence intervals (blue solid line) at the 95%

for the difference in average accuracy (on the left) and global sparsity (on the right) between S-ORCT
(
λG

)
and

CART. The red dashed horizontal line represents the null hypothesis in each case.
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Classification Tree (S-ORCT), in which a compromise between good classification accuracy and

sparsity is pursued. Local and global sparsity in the tree are modeled by including in the

objective function norm-like regularizations, namely, `1 and `∞, respectively. Our numerical

results illustrate that our approach can improve both sparsities without harming classification

accuracy. Unlike CART, we are able to easily trade in some of our classification accuracy for a

gain in global sparsity.

Some extensions of our approach are of interest. First, this metholodogy can be extended

straightaway to a regression tree counterpart, where the response variable is continuous. Second,

categorical data is addressed in this paper through the inclusion of dummy predictor variables.

For a given categorical predictor variable, and by means of an `∞-norm regularization, one can

link all its dummies across all the branch nodes in the tree, with the aim of better modeling its

contribution to the classifier. Third, it is known that bagging trees tends to enhance accuracy.

An appropiate bagging scheme of our approach, where sparsity is a key point, is a nontrivial

design question.
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