
Master’s Thesis

Applying Machine Learning

in Equity Trading

The Challenge of Beating a Self-Constructed Quantitative Benchmark Strategy
Using Artificial Intelligence

Authors:

Christian S. Grønager - study number: 81226

Karl J. V. Vestergaard - study number: 43862

Supervisor:

Martin C. Richter

Study programme: MSc in Mathematical Business Economics

Date of submission: 1 August 2019

Number of pages: 84 Number of characters: 151,406



Acknowledgement
The authors will like to express their gratitude to those who have been involved in the process.

Firstly, they will thank BankInvest to provide access to the data used in this thesis and to the

colleagues at BankInvest who have provided insight to quantitative investing. Additional, they

will acknowledge the supervisor, Martin C. Richter, to give exceptional supervision throughout the

process, and thank Innolab Capital to provide insight within the field of machine learning. Lastly,

they will like to thank their family and friends for being supportive throughout the process.

i



Resumé
I denne kandidatafhandling har vi konstrueret en simpel kvantitativ benchmark strategi, der er baseret

på ni fundamentale nøgletal, som bekskriver en virksomheds værdi. Formålet med benchmark strategien

er at købe underværdiansatte aktier og short-sælge overværdiansatte aktier. For at udvælge aktierne

til porteføljen udregner vi en gennemsnitlig værdi-score på baggrund af de fundamentale nøgletal. For

hver industrigruppe og for hver måned fra februar 1991 til januar 2019 udvælger vi på baggrund af den

beregnede værdi-score ti procent af aktierne med den højeste værdi-score og de ti procent af aktierne med

den laveste værdi-score i S&P 500 Indekset. De aktier med den højeste værdi-score bliver købt, mens

de aktier med den laveste værdi-score bliver shortet. Alle investeringsstrategierne i denne afhandling er

konstrueret til at være markeds- og dollarneutrale.

Udfordringen ved denne afhandling er, om kunstig intelligens kan udnyttes til at konstruere en porte-

følje, som kan slå den førnævnte benchmark strategi. For at løse denne udfordring har vi udvalgt tre

forskellige supervised machine learning-algoritmer. Disse er naïve Bayes klassifikation, support vector

machines og random forest. Problemet bliver opstillet som et klassifikationsproblem, hvor vi klassificerer

de 20% højeste merafkast som 1, de 20% laveste som -1 og resten som 0. Det ekstreme merafkast bruges

til at træne machine learning-algoritmerne på baggrund af 50 fundamentale nøgletal.

Dataet for machine learning-algoritmerne inddeles i tre dele: et trænings-, validerings- og et test-

datasæt. I testperioden opnår naïve Bayes det højeste afkast, dog har support vector machines en lavere

volatilitet og opnår dermed den højeste Sharpe ratio på 0.735. Random forest og benchmark strategien

har et afkast på omkring nul. En stabilitetstest viser, at benchmark strategien og random forest opnår de

højeste afkast tilbage i tid. I stabilitetstesten formår random forest at slå benchmark strategien i 12 ud

af 21 perioder, hvorimod naïve Bayes og support vector machines kun formår at slå benchmark strategien

i henholdsvis 5 og 6 perioder.

Konklusionen på afhandlingen er, at benchmark strategien har vist konsekvent at skabe positivt

afkast, dog opnår strategien højere afkast i fortiden sammenlignet med det seneste årti. Machine learning

strategierne viser hver i sær forskellige resultater, der er dog ingen af dem, der konsekvent har formået at

slå benchmark strategien over tid.
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1 Introduction

1.1 Motivation

The efficient market hypothesis is an investment theorem that says that it is impossible to con-

tinuously maintain exceptional high return. This is because the effectivity in the market always

includes all relevant information regarding the stock price. The hypothesis says that all prices

trades in equilibrium, which makes it difficult for investors to buy or sell respectively under- or

overvalued stocks. Moreover, the theorem states that the only way to obtain higher returns is

by taking higher risks on the investments. On the other hand, active portfolio managers believe

that the fundamental price sometimes deviates from the market price. This is due to the fact that

humans make mistakes and have biases towards the stocks which do not cancel out in aggregate.

Therefore, active investors think of the market as being inefficient.

In 1970 Eugene Fama published his article “Efficient Capital Markets: A Review of Theory

And Empirical Work”. In his article, he states that security markets are extremely efficient and

this theory was widely accepted among academic financial economists. However, during the last

decades, many financial economists and statisticians started to have less confidence in the efficient

market hypothesis. They believe that fundamental value metrics and the past stock price patterns

can be used to predict the future stock prices. The article “The Efficient Market Hypothesis and

its Critics” (Malkiel (2003)), finds evidence that predictive patterns in stock returns can appear

over time, and concludes that the perfectly efficient market does not exist.

Since the beginning of the twenty-first century, we have seen a massive increase in computer

power. Gordon Moore, the founder of Intel, predicted in 1965 that the computer power would

double every year. Although, he revised his prediction in 1975 to be every second year, the predic-

tion has been valid until today (“Moore’s law” (2019)). As computer power has been improved,

the possibility to built more advanced computer software has increased. Also, as we have seen a

growth in the global data supply, the demand for artificial intelligence (AI), where computers are

learning from experience to predict the future outcome, has increased as well. Machine learning

6



CHAPTER 1. INTRODUCTION 7

(ML) is one of the most exciting topics when we talk about AI and is widely incorporated in the

financial sector. An article from Financials Times (“Make way for the robot stock pickers” (2016)),

discuss the topic of whether AI can predict the stock market and potentially replace portfolio man-

agers. Using advanced software and computer power, portfolio managers can analyse tons of data

and apply their models in many different markets. If AI replaced just 15% of the employees in

asset allocation, there would be about 1,000 fewer staff in the fund management roles in the UK.

Analysts believes that this would lead to lower costs for investors and more substantial profits for

portfolio managers.

In the research by Huerta et al. (2013), they managed to achieve substantial excess returns

using machine learning. As Huerta (ibid) only used one ML algorithm, we will throughout this

thesis, investigate the performance of three different algorithms, and compare those to a self-

constructed simple benchmark. The purpose of this thesis is to examine whether the algorithms

can add significant value when selecting stocks based on information from companies financial

statements. Furthermore, this thesis will focus on the predictive power of the algorithms, in other

words, how accurate the algorithms predict extreme movements of the excess return.

1.2 Thesis Statement

In this thesis, we will construct a long/short trading strategy based on the constituents in the S&P

500 Index, and the research question is whether machine learning algorithms can perform better

than a self-constructed benchmark strategy, based on publicly available fundamental key-figures

from financial statements. To answer the research question, the following sub questions will be

investigated:

• To what extent is it possible, by the use of fundamental key-figures that describe the valuation

of a company, to construct a simple long/short benchmark portfolio with a long-term positive

return after transaction costs and short-selling fees?

• To what extent is machine learning algorithms able to select stocks and construct a portfolio
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that performs better than a self-constructed benchmark strategy after transaction costs and

short-selling fees?

• Which connections are there between predictive power and returns for the machine learning

algorithms?

1.3 Limitations

1.3.1 Investment Universe

We have limited our investment universe to consist of companies which are part of the S&P 500

Index every month from February 1991 to January 2019. Furthermore, to construct an invest-

ment strategy, we are considering the public announced fundamental key-figures from companies

quarterly or annually financial statements. The start date for the investment universe is set to 28

February 1991, due to poor data quality before that date.

1.3.2 Investment Strategy

Our investment strategy is limited to a long/short strategy. We are always having the same amount

of capital in each of the positions, and thereby the portfolios are dollar-neutral. When selecting

stocks, we are choosing the 10% highest and lowest ranked stocks according to a created score.

Furthermore, we are rebalancing the portfolios each month and holds the stocks for one month.

Additional, we are keeping the portfolios industry group neutral, and each month we are investing,

there has to be a minimum of 15 stocks in the industry groups.

1.3.3 Machine Learning Algorithms

There is a wide range of different ML algorithms. The following three algorithms are used and

analysed in this thesis:
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• Naïve Bayes Classifier (NB)

• Random Forest (RF)

• Support Vector Machines (SVM)

These algorithms are chosen to get a various range of methods in order to predict the stock

market. The Naïve Bayes Classifier is a probability model, Random Forest is a tree-based model,

and SVM is a model that finds a hyperplane that distinctly classifies the data points. These

algorithms are widely used in practice as they have shown excellent performance and is very

different from each other in the way they are modelling the data. The algorithms will be described

further in chapter 3.

1.3.4 Data Limitations

It is possible to get prices and fundamental key-figures from many data sources such as Bloomberg,

Compustat, Datastream, FactSet, etcetera. For this thesis, we have got access to FactSet, which

we are using as our primary data source throughout this thesis.

1.4 Related Work

The topic of using ML to predict stock prices has spread widely, and the number of research papers

has grown during the last decades. When dealing with ML, two major prediction problems are

considered, namely, regression and classification.

The research paper by Shen and Zhang (2012) applied ML algorithms as a regression problem

to predict the next day stock trend. They used the correlation between the markets closing prices

that stop trading right before or at the beginning of US markets. They reached high numerical

results and accuracies around 75% on the NASDAQ-, S&P 500- and Dow Jones Industrial Average

Index by the use of SVM.
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Huang et al. (2002) used SVM as a classification problem. They compared SVM to several other

classification methods, by testing the accuracy on the prediction of the financial movement direction

on the NIKKEI 225 Index. They conclude that SVM outperforms the other ML algorithms such

as Linear Discriminant Analysis and Neural Networks.

A study that is very similar to the problem of this thesis is the research by Huerta et al. (2013)

that seeks to explore whether features such as financial statements and historical prices can predict

stock returns. Huerta et al. are scoring each stock, and on behalf of that score, they train an

ML model and construct a long/short portfolio. The classifier for the training data is constructed

based on the highest and lowest volatility-adjusted price changes. To predict the stock movements,

they use SVM. The algorithm was trained each month to adjust for shifting market conditions.

Additionally, they separate the data into eight sectors. The best performing model was structured

to hold the stocks for three months, and costs were not considered. This strategy reached an

annual return of 15% and volatility less than 8% by investing in the 25% highest/lowest scored

stocks in the long and short position.

1.5 Structure of this Thesis

The structure of this thesis is divided into six chapters with the purpose to end with a conclusion

that answer the research questions stated in this chapter. A short description of the chapters is

listed as follows:

Chapter 2 - Conceptual Framework: This chapter seeks to inform the reader about the

essential topics of the financial market and methods used to construct a long/short investment

strategy. Additional, we explain the use of artificial intelligence and why businesses are starting

to have more focus on this topic.

Chapter 3 – Machine Learning: The third chapter will give a brief introduction into the

different machine learning methods and the difficulty in finding a proper model. Furthermore, a

more theoretical review of the algorithms that will be used throughout this thesis is presented.

Lastly, performance evaluation techniques are introduced.
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Chapter 4 - Methodology: The fourth chapter describes how we retrieve the data and the

different data mining procedures we are using in order to form our strategies. Furthermore, we

are describing the composition of the portfolios and how we are calculating the profits and losses.

Some commonly used key statistics are introduced in order to compare each of the portfolios.

Chapter 5 - Results: In the fifth chapter, we will present the results we have obtained

throughout our analysis.

Chapter 6 - Conclusion: Finally, we will answer the research question. This is considered

based on our results obtained from our analysis. Furthermore, we will state some possible future

adjustments that could improve the performance of the results we have obtained in this thesis.



2 Conceptual Framework
In this chapter, we will start with an introduction to three different ways of looking at the financial

stock market. Secondly, we will take a closer look at some of the trading strategies that have worked

historically and the difficulties of maintaining a low-risk portfolio. As this thesis is focussing on

machine learning, we will also give a short introduction to artificial intelligence

2.1 The Efficient Inefficient Markets

A widely debated question in the financial markets is whether the markets are efficient, inefficient,

or a combination of those. Pedersen (2015), shortly defines the three types as follows:

• Efficient Markets Hypothesis: The idea that all prices are adjusted for all relevant information

at any given time. This hypothesis was developed by Fama in 1970.

• Inefficient Markets: The idea of the inefficient markets is that investors’ irrationality and

behavioral biases influence the prices.

• Efficiently Inefficient Markets: The idea of the efficient inefficient markets is that the markets

are inefficient but with an extent of efficiency. The competition across the investors makes

the markets almost efficient, but the markets are still so inefficient that the investors can be

compensated for the cost and risk they have.

To sum this up, if the markets are efficient, the market prices would always be reflected by all

relevant information as soon as it comes out. Therefore, there would be no point for investors

to take more risk and pay billions of dollars in fees if the markets are fully efficient. It is more

logical to believe that there is some inefficiency in the markets that make it possible for active

investors to outperform the markets and gain additional profits. However, when Fama (1970)

describes the efficient markets, he admits that some levels of markets information are not available

for the public. As an example, insider information could indicate other movements of the stock

12
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price than the publicly available information. Other studies have found evidence for inefficient

markets. Frazzini and Pedersen (2013) discovered the betting against beta (BAB) factor. The

factor is constructed by holding low-beta stocks, which are leveraged to a beta of one, and short

selling high-beta stocks, which are de-leverage to a beta of one. They conclude that the BAB

factor produces significant positive risk-adjusted returns. Asness et al. (2013) also found evidence

of inefficient markets. They focused their study on a value- and momentum factor, in markets

from different countries. Individually the value and the momentum factors achieved high Sharpe

ratios, and in a combination, the Sharpe ratio was improved. Momentum stocks are stocks that

have shown excellent performance, typically within a year, and the idea is that the current period’s

winners will continue to show excellent performance in the next period. Value stocks are often

considered as stocks that deviate from their fundamental value, and value investing is a long-term

mean reversion strategy. Stocks that are cheap relative to their fundamental value is often dropped

in price, which makes value and momentum negative correlated factors.

As the studies suggest, the markets might not be perfectly efficient, however, as discussed

earlier, the markets might not be extremely inefficient either. Pedersen (2015) defines the markets

as “Efficiently Inefficient”, and he describes it as follows:

“Prices are pushed away from their fundamental values because of a variety of demand pressure

and institutional frictions, and, although prices are kept in check by intense competition among

money managers, this process leads the markets to become inefficient to an efficient extent: just

inefficient enough that money managers can be compensated for their costs and risks through

superior performance and just efficient enough that the rewards to money management after all

cost do not encourage entry of new managers or additional capital.” (Pedersen (2015), p. 4)

By that, Pedersen indicates that it is possible for active portfolio managers to outperform the

markets because patterns in prices and factors exist, which makes it possible to maintain additional

profits. However, there is no guarantee that a strategy will generate positive profits, but there are

some strategies that empirically have shown better profits than others over extensive periods. In

the next section, we will further describe different investment strategies active portfolio managers

are using based on fundamental analysis.
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2.2 Investment Strategies

In this thesis, we will construct a simple benchmark strategy based on a range of fundamental key-

figures which are considered as valuation parameters. Moreover, we will construct three machine

learning strategies, which have access to additional fundamental key-figures such as profitability,

liquidity, operation efficiency, etcetera. In this section, we will describe two investment strategies,

which rely on two different factors. The first one is the valuation factor, and the second is the

quality factor.

2.2.1 Value Investing

Value investing is the first strategy we will look into and can be defined as a strategy that seeks to

buy stocks that appears to be cheap and short selling stocks that appear to be expensive. Often

stocks are cheap because investors do not rely on the company, and on the other hand, stocks with

relative high prices are companies which investors have an eye for. In other words, value investing

is like betting against other investors. This strategy has been widely analysed for the last 50 years.

Many studies have found evidence of different value measures to gain additional profits. In the

book “What Works on Wall Street”, by O’Shaughnessy (2005), he tests the Price-to-Earnings (PE)

ratio for large-cap stocks, on a long-only portfolio, in the period from 1951 to 2003. Every year he

ranks the companies from 1-10, where 1 is low PE ratio and 10 is high PE ratio. The test showed

that the portfolio consisting of the companies with the lowest PE ratio had on average the best

compounded return. Furthermore, two portfolios consisting of the 50 lowest and 50 highest PE

ranked stocks, showed very opposite results. The portfolio consisting of the 50 lowest PE ranked

stocks had an annually compounded return of 14.5%, and the other portfolio consisting of the 50

highest ranked PE stocks had an annually compounded return of 8.3%. Additionally, the standard

deviation of the return for the 50 low-PE portfolio was 27.39% and for the 50 high-PE portfolio

the standard deviation was 32.05%. O’Shaughnessy concludes the analysis by giving an advice to

the readers: “Avoid stocks with the highest PE ratios if you want to do well”.
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Often value investing shows better performance for long time horizons. Tweedy (2009) tests

different value measures in the research article “What Have Worked in Investing”. The research

found evidence of several parameters that showed high performance and consistent increasing

performance for longer holding periods. This indicates that the value strategy is a game of patience,

and a value investor will typically experience prolonged periods with low performance. However,

it is important to remember that there is no guarantee that the price of a stock will increase even

though the stock seems to be undervalued. Pedersen (2015) points out that an investor must ask

the following question when seeking for the right value stocks to invest in: “Does the stock look

cheap because it is cheap or because it deserves to be cheap?”

2.2.2 Quality Investing

The next strategy we will look into is the quality strategy. The essence of quality investing is to

buy stocks from companies with good management and a strong balance sheet. A good manage-

ment is able to see opportunities and capitalize on them. In the fast moving global economy, it is

important to keep an eye on the development of the companies. Are they focusing on new products

and reinvesting in new technology? This could be a strong indicator for a good management. Ad-

ditionally, companies with a strong balance sheet can withstand adverse situations or unexpected

challenges. In an article from Asness et al. (2018) “Quality Minus Junk”, they define quality com-

panies as a characteristic that investors are willing to pay more than the actual price for the stock.

The value and quality investment strategies are often thought of as opposite strategies since value

investors seek to buy cheap stocks and quality investors seek to buy “good” stocks that deserve a

higher-than-normal price. However, both strategies have performed well historically, a concept of

combining the two investment strategies has also shown great performance. Warren Buffett says

in Berkshire Hathaway Inc. annual report of 2008: “Whether we’re talking about socks or stocks,

I like buying quality merchandise when it is marked down”. This concept is often referred to as

“quality at a reasonable price” by investing in stocks of high quality at a discounted price.
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2.3 Quantitative Investing

Quantitative investing is where most of the human interactions are left out of the portfolio con-

structing. This investing method uses a computer-based model to screen and evaluate multiple

factors. Often the model has access to a huge database with structured data. Such data could be

fundamental data, historical prices, or news sentiments. Quantitative investing is typically divided

the three categories: Fundamental quantitative analysis, Statistical arbitrage, and High-frequency

trading. In this thesis, we focus on the fundamental quantitative investing method. This method

seeks to find systematic trends by analysing the fundamental key-figures for each company. In

other words, the fundamental quantitative investing method is built upon a combination of statis-

tical data analysis, and economic and finance theory. Discretionary traders use similar information

as the fundamental quantitative trader, but the quantitative trader models the strategies into a

computer algorithm in order to learn the algorithm of how to select stocks. When a model is

defined, the approach can then be applied to a wide range of stocks all over the world. There are

both advantages and disadvantages for quantitative investing compared to discretionary trading.

A disadvantage of quantitative investing is that the algorithms cannot be tailored for certain situa-

tions, and soft information, such as phone calls and human judgment. On the other hand, some of

the advantages that quantitative investment contributes, are the ability to compare a large number

and variety of stocks, eliminate human biases and gives the possibility to backtest on historical

data.

2.4 Short Selling

Short-selling is basically opening a position by selling it first, assuming in the future one are able

to buy it back at a cheaper price. In reality, one is borrowing the stock from the broker and

are selling it in the market. Therefore short-selling is betting for the price to drop. The fees for

borrowing a stock can vary from nearly 0% to 50% in extreme cases, but it depends on the overall

markets conditions and the demand for the stocks. In periods with crises, some stocks are hardly
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available for short-selling. Typically because the demand for short-selling stocks has driven up the

fees, or because some countries are not allowing for short-selling in those periods.

When constructing a portfolio, a great way to limit the risk is to combine a long and short-

selling strategy. A long/short portfolio is often considered as a market-neutral portfolio. Some

advantages of a market-neutral portfolio is to be able to generate positive returns in a down market

and to generate returns with a lower volatility profile.

2.5 Cost Measures

In a perfectly liquid world, investors would trade on any investment idea and frequently move in or

out of positions. However, in the real world, investors have to take transaction costs into account.

There are several ways to measure the transaction costs, and one of them is the “effective cost”

measure. When buying stocks, this cost measure is defined as the difference between the execution

price and the market price before the trade started (plus commissions):

TC$ = P execution − P before. (2.1)

The execution price is the average price for all shares bought, and the price before the trade

started is the mid-quote price just before started trading. When selling stocks a similar approach

is applied just with an opposite sign. For example, if an investor buys stocks for 100 dollars, she

would end up having stocks for less than 100 dollars after the trade. This happens due to the

effect of purchasing share forces the price away from the observed price, and of course, due to

the commission fees to the broker. The transaction cost varies between markets, even between

similar stocks or the size of the trades. Small trades tend to have low costs, while larger trades

have higher costs. Engle et al. (2012) estimated that small orders have transaction costs on about

4 basis points, and for orders that constitute over 1% of the stocks typical trading volume has an

average trading cost of 27 basis points. Therefore, if investors must trade a large position of one

stock, the investor could split the trade over a couple of days and as a result of this lower the

transaction costs.
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2.6 Portfolio Construction and Risk Management

Active investors work hard to construct an optimal portfolio. However, there are some common

principles most portfolio managers are using to obtain a robust portfolio:

• The positions of a portfolio must be diversified

• Reasonable position limits to eliminate cases where most of the portfolio value ends up in

one position

• Consider the size of a trade and continuously resizing the position based on its potential and

its risk

• Keep a reasonable low level of correlation between the positions

These statements are some of the most basic principles and are essential for a hedge fund to obtain

a robust portfolio with limited risks. Pedersen (2015) states: “Hedge funds don’t marry their

positions and don’t let their bets grow large inadvertently”.

There are different ways to measure the risk of a security. The most common risk measure is

the volatility, which is the standard deviation of the return. Volatility is an absolute risk measure

that refers to the risk of withdrawing money at the wrong time. The portfolio manager is also

interested in the portfolios’ correlation with the market or another benchmark portfolio. The

key principle of modern portfolio theory is the idea of diversification, i.e., to reduce the overall

volatility through a combination of multiple stocks. An important component when constructing

the portfolio is the covariance of all the securities. Beta measures the portfolios tendency to follow

the market and is calculated by the covariance between a stock and a benchmark divided by the

variance of the benchmark. If the overall portfolio is constructed to have a beta of one, it indicates,

that if the return of the market or benchmark portfolio is increasing by one per cent, the return of

the portfolio will everything being equal also increase by one per cent. A hedge fund often claims

to be market-neutral, this means that the hedge fund does not depend whether the stock market

is moving up or down. In order for this to work, it is important to have the same risk exposure in
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the long and short positions. To secure the same risk exposure, one can match the beta for each

position, or use beta to hedge out the market exposure. These methods will be further described

in the methodology section 4.4.

2.7 Backtesting

When the strategy is defined, backtesting is a great tool to test the strategy. Backtesting is used

to simulate the performance of the strategy on historical data. However, a backtest does not

necessarily tell the truth about how the strategy will perform in the market today. Nevertheless,

a backtest is never a bad idea, since it gives a great insight into how the strategy would have

performed in the past. For example, if a backtest shows poor results, this could advise the investor

to not implement the strategy and potentially spare the investor for losses. Lastly, a backtest can

indicate how risky the strategy is, and potentially give ideas for improvements. To run a backtest,

one must specify the following components:

• Universe: the investment universe of the stocks

• Signals: the input data, and how to analyse it

• Trading rule: a trading rule that tells when to buy and sell based on the signals, including

how often the portfolio is rebalanced and the size of the positions

• Time lags: to make a reliable test, one needs to make sure that the data is used when the

data was available –thereby eliminate look-ahead-bias

While performing a backtest, it is important to be aware of certain biases. The backtest results

tend to look a lot better than in the real world, and several reasons could cause this to happen.

First of all, the market as it was ten years ago is not the same as it is today. Second, certain data

mining biases are unavoidable. When testing a strategy, the analyser always seeks to optimize

the implementations towards a better result, but the changes in the implementations were not

known back then. A third bias is a survivorship bias. Consider the Standard & Poor 500 Index.
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If the backtest is based on the current stocks of the index, then the investment universe is biased.

Companies today might not have been included in the index five or ten years ago. Creating a

trading strategy without eliminating this bias, will typically generate high performance for the long

position and poor performance for the short position, as the strategy only includes the surviving

stocks that have performed well until today.

2.8 Artificial Intelligence

The interest of artificial intelligence (AI) has rapidly grown in the last couple of decades. The data

information has continuously increased, and as everything is being digitalized, more and more

data has been stored in databases. In a short explanation, AI makes it possible for machines to

learn from experience to perform tasks based on those experiences. In 1997, the AI based Deep

Blue chess machine managed to defeat the reigning world champion Garry Kasparov in a game of

chess. Deep Blue was built as a brute-force searching machine. This means that it simulated a

large range of chess games and was able to perform the best move based on all that information.

Another way to use AI is in self-driven cars, which has reached significant improvement in the last

couple of years. Waymo, a subsidiary of Alphabet Inc., has launched a limited trial of self-driven

cars in Phoenix, Arizona (“Waymo Technology” (2019)). An example of how Waymo reacts to

unforeseen events, like a jogger who passes the road without looking, is that Waymo is using its

lasers to identify objects. Furthermore, Waymo is able to understand how the objects will interact

in the near future and are able to make those predictions with a blink of an eye in order to avoid

the object.

AI is often divided into seven categories:

• Knowledge reasoning

• Planning

• Machine Learning

• Natural language processing

• Computer vision

• Robotics

• Artificial general intelligence
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The interest of this thesis is in the field of machine learning, that is the study of statistical

models and computer systems to find patterns in data and predict future events. One way to

apply machine learning in finance is to teach a model which stocks that have done well historically,

based on a set of variables. If the model is well supervised, it is able to predict the future stock

movements based on new observations. But a model will find correlations between everything, and

often machine learning algorithms are referred to as a “black-box”, which means that the model

is so complex that humans cannot understand how the model has come to that conclusion. The

next chapter will focus on the key concepts within machine learning and how to evaluate a model.



3 Machine Learning

3.1 The Essentials of Machine Learning

Artificial intelligence is nowadays almost part of our everyday life. For example, Siri and Alexa,

the virtual voice assistants from Apple and Amazon, both rely on natural language generation and

processing (NLP) and have the ability to have a short and understandable dialog with humans.

Machine learning (ML) is also a significant part of these digital assistants, as they have access

to a massive amount of data. Every time Siri or Alexa give one a wrong answer to your request

they utilize the data and improves its response next time. As the available amount of data is

increasing, ML has also become a central part of almost every business. ML is used to obtain

as much information from the data as possible, trying to predict the future or maybe to work

more efficiently. There is no reason to believe that this development will decrease, and as many

people are struggling to understand what ML is, Daniel Faggella from Emerj has come up with

his definition in the article “What is Machine Learning?” (2019):

“Machine Learning is the science of getting computers to learn and act like humans do, and

improve their learning over time in autonomous fashion, by feeding them data and information in

the form of observations and real-world interactions.”

As an example a few years ago, AlphaZero, an algorithm developed by Google, beat the world’s

best chess-playing computer program. The achievement was reached after the algorithm had taught

itself how to play in under four hours. The difference between AlphaZero and its competitor is

that AlphaZero has a machine learning approach with no human input apart from the basic rules

of chess. In the beginning, AlphaZero took several random moves and lost the first many played

games. Although AlphaZero learned from the previous games, and after four hours, it managed

to beat the competitor algorithm. In the game, AlphaZero took an “arguably more human-like

approach” in the search for moves than the competitor algorithm, that simulated many games

in order to perform the best possible move (“AlphaZero AI beats champion chess program after

teaching itself in four hours” (2017)).

22
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The essentials of machine learning can be divided broadly into three parts of learning paradigms:

Unsupervised, Supervised and Reinforcement learning. In the following sections, we will define the

basics of the three learning paradigms.

3.1.1 Unsupervised Learning

In unsupervised learning, the algorithm tries to find a hidden structure in a complex and unlabeled

dataset with multivariate relationships. Unlabeled data means that there is no “correct” way of

seeing the data. In the search for a “common” structure, the algorithms use grouping as a tech-

nique to separate the data. Grouping or clustering is an excellent way to reduce the dimensionality,

identify outliers, or find interesting relationships among the observations or variables. Clustering

is based on similarities and distance, and the goal is to minimize the distance between the object

within each cluster. Although clustering is a relatively primitive technique with no assumption of

the data at the beginning, it has proven to be a helpful tool to understand the relationships in un-

structured datasets. Another approach of unsupervised learning is concerned with the explanation

of the variance-covariance structure among the variables. Through a few linear combinations of the

p variables, much of variability can often be accounted for by a smaller number of k components.

In the k components there is often as much information as in the p variables, and therefore the

original dataset consisting of p variables can often be reduced to a smaller dataset consisting of

k principal components. As the principal components are a linear combination of the p variables,

the components are geometrically obtained from a rotation of the original variables with maximal

variability and a simpler description of the covariance structure (Johnson and Wichern (2013)).

3.1.2 Supervised Learning

Supervised learning is often considered as the most common learning problem within the field of

machine learning. The principle of supervised learning is that the algorithm both has information

about the output variable, Y, and the input variables, X. The word “supervised” refers to a

supervisor who has the correct answer, and the agent must learn from those answers. Using a



CHAPTER 3. MACHINE LEARNING 24

training set of observations T = (xi, yi), i = 1, ...N , the algorithm observes the values of the input

and output variables to produce a function f̂ . As new inputs is observed, the algorithm utilize

the function to estimate an output. The goal is to estimate a function f̂(x) that hold predictive

information between the input and output variables (Hastie et al. (2009)).

An example of supervised learning is whether a bank should give a loan to a start-up company,

in relation to the probability that the start-up will default in the near future. Using historical

information about the financial condition of other start-up companies and their observed default

rate, a supervised learning algorithm can predict the default rate based on current start-ups present

financial conditions.

3.1.3 Reinforcement Learning

Reinforcement learning does not use historically labelled information to learn from but trains an

agent on experienced information. The algorithm evaluates each step, and the goal is to maximize

the reward in every situation. It is used by many software and machines to obtain the best

path or the best behaviour. Reinforcement learning varies from supervised learning in a way

that supervised learning utilizes labelled training data to predict the best answer, whereas the

reinforcement algorithm has no data to learn from, but the agent evaluates what is best in any

given task based on experience. Imagine a computer playing chess with no historical information

besides the rules. Starting from scratch, the computer tries various moves and strategies to beat

its opponent. After a lot of attempts, it finally improves the strategy and is able the predict the

next best possible moves in each situation. As an example, AlphaZero, the previously mentioned

chess-playing algorithm developed by Google, rely on reinforcement learning.

3.2 A Deeper Look into Supervised Machine Learning

In this thesis, we will focus on supervised machine learning algorithms. As discussed before,

supervised learning algorithms learn from labelled data. After the algorithm has learned and
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understood the data, the algorithm utilizes the patterns in the data in order to predict the output

of new observations. Supervised learning can be divided into two categories, namely regression

and classification. The difference between regression and classification is that regression problems

predicts a numerical output based on observed inputs, whereas classification problems predicts the

output label the data belongs to.

3.2.1 Regression and Classification

The primary difference in regression and classification problems is the output variable Y . In

regression, the output variable yi ∈ R is numeric, and one tries to estimate the relationship between

the input, X, and the output, Y , to predict the value of new observations. An example of a

regression model could be a model that describes the relationship between house prices and several

variables such as the number of rooms, municipality, distance to the capital, and the distance to

forest. Regression is used both in the classic statistical models but also in machine learning for

algorithms such as support vector machine, classification and regression trees (CART), etcetera.

To quantify how well the predictions actually match the observed data one usually uses the mean

squared error (MSE), given by:

MSE =
1
n

n

∑
i=1

(yi − f̂(xi))
2, (3.1)

where f̂(xi) is the predicted observations. If the function fits the data well, the MSE will be small

and high otherwise.

For classification, the output variable is categorical, yi ∈ Y = {0,1,2, ..., g}, where g corresponds

to the number of classes. Here one tries to classify the observations into predefined categories. The

output can also be based on the likelihood that the observation belongs to the respective category.

For example, a spam detector must estimate whether the email is spam or not. In this case, the

output variable can be 1 (spam) or 0 (no-spam), but also a likelihood for the events. Instead of

using the MSE to measure the accuracy of the estimated function, the training error rate (TER)

is more appropriate for the classification problem:

TER =
1
n

n

∑
i=1
I(yi ≠ ŷi). (3.2)
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The TER measures the proportion of misclassifications of the predicted ŷi. If the indicator function

I(yi ≠ ŷi) = 0 then the observation is classified correctly, and otherwise it is a misclassification.

Figure 3.1 shows an example of the regression and classification problem. In the right-hand side of

Regression Classification

Figure 3.1: Regression vs. classification.

the figure, a perfect separating decision boundary is drawn. That is not always the case, as errors

of prediction can occur since data often is noisy. Additional, the decision boundary does not have

to be linear but can appear in many shapes.

3.2.2 Bias and Variance Trade-off

In general, we would like to have as little bias and variance as possible. However, those measures

are opposing effects, and one cannot lower the bias without increasing the variance. In order to

find the optimal balance between bias and variance, one evaluates several models in order to find

the best parameters for the model. As an example, one sometimes splits the dataset into two

parts: a training and test set. When evaluating how a model build on the training set performs

both on the training and test set, one wants the prediction error to be as low as possible. If the

model has a low prediction error on the training set, but a high prediction error on the test set, it

is said that the model has high variance, and thus is overfitting the data. On the other hand, if

the model has a high prediction error on both the training and test set, it is said that the model

has high bias, and thus underfitting the data. In figure 3.2, the prediction error for a training and
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test dataset is compared to the complexity of the model. The figure shows that if the model based

on the training data is highly complex, the prediction error will tend to be low on the training

data. In other words, the model will typically be overfitted and therefore not fit the test data very

well, causing a higher prediction error for the test set. The goal is to find the optimal solution,

Figure 3.2: Prediction error of training and test data as a function of model complexity (Hastie et al.

(2009), p. 38).

and that is a trade-off between the bias and variance. There are several ways to adjust the bias

and variance. Most algorithms have parameters that regulate the complexity of the model. For

example, in a simple CART model, the variance can be reduced by using fewer nodes in the tree

or increased by adding more nodes. This process is often referred to as “hyperparameter tuning”

in the literature, an is an essential part of the model evaluation phase.

3.2.3 Performance Measures for Classification

When modelling with a supervised machine learning algorithm, it is possible to obtain the precision

of the predictions. This is very convenient since we want to find the best possible model based on

a range of parameters. This thesis concerns a classification problem and there are several methods

which can give an understanding of how well the model performs. Among those are the ROC

curve, F-measure, G-mean, etcetera. However, in this section, we will introduce the confusion
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matrix in a two-dimensional case, while give an example of a three-dimensional case, as we are

using the elements of the confusion matrix to hyper-parameter tune the ML models.

Confusion Matrix

The confusion matrix shows how many of the observations which are correctly classified or mis-

classified. In the two-dimensional case the matrix is a 2 × 2 grid, and looks as follows:

Actual Positive Class Actual Negative Class

Predicted Positive Class True Positive (TP) False Positive (FP)

Predicted Negative Class False Negative (FN) True Negative (TN)

Table 3.1: Confusion matrix.

The first column of the confusion matrix represents the actual positive observations, while the

second column represents the actual negative observations. To find the distribution of the actual

positive and negative labelled observations, one can take the sum of each of the columns and

compare it to the total number of observations. The most common measure from the confusion

matrix is the accuracy or its reverse, the prediction error:

Accuracy = TP + TN

TP + FN + FP + TN
(3.3)

Prediction error = 1 −Accuracy (3.4)

The accuracy gives the overall hit ratio of the model, and if the data is perfectly separable one

wants to maximize the accuracy. However, most of the times, the data is not perfectly separable,

and a higher overall accuracy could also lead to more false negative or false positive classifications.

Therefore it is often convenient to know how many observations that are correctly classified or

misclassified in the different states of the confusion matrix:

True Positive Rate (TPR) = TP

TP + FN
, (3.5)

True Negative Rate (TNR) = TN

TN + FP
, (3.6)
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False Negative Rate (FNR) =
FN

TP + FN
, (3.7)

False Positive Rate (FPR) =
FP

TN + FP
, (3.8)

Positive Predicted Value = TP

TP + FP
. (3.9)

Equation (3.5) is also called sensitivity and measures how many of the actual positives that is

classified correctly, where equation (3.6) is called specificity and measures the misclassification of

the actual positives. Equation (3.9) measures the distribution of the actual positive class relative

the predicted positive class and is also called the precision.

In the following example, the confusion matrix is extended to be a 3×3 grid. Two models that

detect the accuracy for an investment strategy is evaluated. The classes are generated to be -1

for the 20% lowest returns, 1 for the 20% highest returns, and 0 otherwise. Among 100 stocks the

models have predicted which of the stocks that belong to the different classes. Model 1 in table

3.2 has the best overall accuracy of 70%, while model 2 in table 3.3 has an accuracy of 64%.

-1 0 1

-1 5 0 5

0 10 60 10

1 5 0 5

class -1 class 0 class 1

sen 0.25 1 0.25

ppv 0.50 0.75 0.50

Table 3.2: Model 1 with 70% accuracy.

-1 0 1

-1 12 10 0

0 8 40 8

1 0 10 12

class -1 class 0 class 1

sen 0.60 0.67 0.60

ppv 0.55 0.71 0.55

Table 3.3: Model 2 with 64% accuracy.

By evaluating the models based on accuracy, model 1 seems to be a great model. However, when

examining the sensitivity and the precision of the models, the conclusion is different. Model 1 has

predicted a lot of the observations to be 0, which result in higher sensitivity and precision for that

class. Although model 2 has lower accuracy, the sensitivity that measures how many of the actual
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positives that are classified correct is much higher for the extreme classes. Moreover, the precision

is also increased. Therefore, it indicates that model 2 is a better choice for predicting extreme

returns.

3.3 Supervised Machine Learning Algorithms

In this section, we will describe the theory of the machine learning algorithm we are using to

model different investment strategies. The algorithms we are focusing on are the Naïve Bayes

Classifier, Random Forest and Support Vector Machine. These algorithms are supervised learning

algorithms, and for this thesis, we are using them as a classification problem.

3.3.1 Naïve Bayes Classifier

The naïve Bayes (NB) classifier is a simple and fast algorithm based on Bayes’ Theorem:

P (A∣B) =
P (B∣A)P (A)

P (B)
. (3.10)

Bayes’ theorem says that the best way to find the probability of A given B is to find the probability

of how many times A occurred with B out of all the times in which B occurred. Furthermore,

Bayes’ theorem applies the naïve independence assumption within the distributions of the variables

(Lantz (2015)).

To implement NB, a training dataset is required. The training data must contain a matrix of

m independent variables XT
= (xT1 , ...,xTm) and a classification vector y with g possible classes.

According to the assumption of independence between the variables x, the possibility to classify y

given x is:

P (y∣xi) = P (y)
m

∏
i=1
P (xi∣y) (3.11)

This tells us that NB considers each of the variables regardless of the class of y. An example could

be to classify a person as male or female, based on the person’s height, fat percentage, length of

hair, and length of beard. One could imagine that there exists a negative correlation between the
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length of the hair and the length of the beard. The NB will generate a probability for classifying

the person as male, independent of the correlation between the variables. As the independence

between the variables is ignored the class density estimates may be biased, but the bias does not

have a huge impact on the posterior probabilities, especially not near the decision regions.

In a multivariate classification problem with k possible classes, we can obtain the maximum

probability of the class ŷ by the following equation:

ŷ = argmaxyP (y)
m

∏
i=1
P (xi∣y). (3.12)

This function estimates the class ŷ given the predictors. Although the rather naïve assumption,

the NB often tends to outperform more advanced supervised machine learning algorithms (Hastie

et al. (2009)).

3.3.2 Tree Based Models

The random forest (RF) algorithm was introduced by Breiman in 2001, as a further development of

the decision tree. The algorithm produces a large number of de-correlated trees with the purpose

of reducing the variance, which is represented in each of the individual decision trees (Hastie

et al. (2009)). As each tree in the RF model contributes to the final model, we will start with an

introduction to the original classification and regression tree (CART) model. The CART algorithm

can be used as a regression and classification problem. However, as the focus of this thesis is within

classification, we will limit the description of the CART to a classification problem.

The Underlying Decision Tree

The way to implement tree-based methods is to split the features by a threshold and fit the model

based on these splits. When constructing a decision tree, three types of nodes are used: the root

node, which is the top node of the tree, the internal nodes, which extent the branch, and the leaf

node, which is the end of the branch.

Consider at dataset D with N observations, input variables xi ∈ Rp,∀i ∈ N with p dimensions,

and an output variable yi ∈ Y = {0,1,2, ..., g}. The dataset D will continuously be dividend
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into M nodes, Dm ∈ D,m = {1, ...,M} with subsets of observations of the dataset. Each node is

constructed by calculating the impurity of the node which can be done using various methods, such

as misclassification error, cross-entropy, or the Gini index. The Gini index is used in the original

definition of the CART model, and it indicates how many observations that are misclassified if it

was classified random according to the distribution of classes in the respective node. The formula

for the Gini index is:

Gini index =
G

∑
g=1
p̂mg(1 − p̂mg), (3.13)

where p̂mg is the proportion of the g class in node m, and is calculated by:

p̂mg =
1
Nm

∑
xt∈Rm

I(yi = g). (3.14)

The variable xi with the lowest impurity is selected in the root node and divides D into two internal

nodes, D2 and D3, by a threshold tm. Then the impurity subset D2 is measured and compared to

the remaining input variables. The variable with the lowest impurity is selected as a new internal

node for the branch, and the same process is done for this node, etcetera. If an internal node has

the lowest impurity compared to the remaining variables, it will be changed to a leaf node and

ends the branch. The decision tree is complete, when all branches have reached an end node. The

class of a new observation xj is predicted by starting at the root node D1, and evaluate each node

to its threshold, by the following constraints:

Lj,t = xj ≤ tm

Rj,t = xj > tm.

When a leaf node is reached, the prediction of the new observation x̂j is reached. However, it is

easier said than done. When modelling decision trees, the size of the tree plays an important part

of whether the model shows good or bad performance. A tree that contains many nodes tend to

overfit the model, which could lead to a low accuracy on the test dataset. On the other hand, if

the tree only consists of a few nodes, some structure of the data can potentially be left out and

lead to underfitting of the model. To prevent too many or too few nodes in the model, a stopping

parameter is often defined, which typically is a minimum number of observations in each leaf. One
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of the biggest concerns with trees is the high variance. Small changes in the data can lead to

significant changes in the way the tree is divided, which makes it hard to predict noisy data.

Random Forest

Random forest (RF) is an extension of the CART model, and benefits from the use of the bagging

(bootstrap aggregation) technique. The idea of bagging is to reduce the variance within the trees,

and the essentials of bagging is to find a suitable prediction from many noisy but approximately

unbiased trees (Hastie et al. (2009)). For the classification problem, the RF built a committee of

trees, which each have a vote for the outcome of the prediction.

The RF model consists of B identically distributed and de-correlated trees, where each tree

b ∈ B are built on bootstrapped samples Zb of the training set. An RF tree Tb is constructed for each

bootstrapped dataset Zb. Each tree is constructed using the same technique as described in the

previous section. When all trees Tb are constructed, a voting system to predict new observations

xj is created by the following formula:

ĈB
rf(x) =majority vote{Ĉb(x)}B1 ,

where Ĉb(x) is the class prediction of the bth RF tree. As the trees generated in the RF model

is identically distributed, the expectations for each tree are the same, as is the bias for each tree.

Hereby, the only improvement from the CART to the RF is through the reduction of the variance

which is defined as 1
B ⋅ σ2. To improve the variance reduction in RF, the tree-growing process is

made through random selection of the input variables. Before each split, the algorithm selects

m ≤ p random input variables, where m typically is equal to √
p. Reducing m will typically reduce

the correlation of each trees in the RF model, and hence reduce the variance (Hastie et al. (2009)).

The RF algorithm includes several parameters, among them are number of trees to grow,

number of variables randomly sampled as candidates for each split, sample size to draw from the

population, node size of each terminal node, maximum number of terminal nodes in the forest,

etcetera. In practice, the default value for those parameters might not generate the best fit for the

model. It is therefore necessary to tune these parameters, to find the best combination based on
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different performance measures.

When the number of relevant variables is small relative for the total number of variables, RF

tend to perform poorly for small m, since the change of getting a relevant variable in each split

will be small. However, the hyper-geometric probability of getting at least one relevant variable

in each split is calculated by the following formula:

1 − P (X = 0) =
(
r
y
)(

p−r
m−y)

(
p
m
)

, (3.15)

where r is the number of relevant variables, y is the number of observed successes, p is the total

number of variables, and m is the number of variables to include in each split. If the dataset

consists of p = 45 variables, where only 5 of those variables has a significant influence of describing

the outputs and the rest of the variables are noisy, the probability of getting a relevant variables

in each split is 59%, assuming m =
√

45 ≈ 7. This indicates that RF is relative robust and feature

selection is only necessary in cases with hundreds of noisy variables and few relevant variables.

Another feature with RF is the variable importance plot. For every split in the tree, each

variable is evaluated, and the sum of the Gini decrease for the chosen variable is accumulated

across every tree in the forest. To give an average of the Gini decrease for every variable, the sum

is divided by the number of trees in the forest. This is a great tool to analyse as it gives an idea

of the variables impact on the outputs. In contrast, variable with low impact might be omitted

from the model, to make it simpler and faster to fit and predict.

3.3.3 Support Vector Machines

The support vector machines (SVM) was introduced in 1995 by Cortes and Vapnik. It was intro-

duced as a linear classification method with soft margin hyperplanes. The overall idea is to create

a hyperplane, that can separate the observations into classes or at least try to separate them if

possible. The optimal separating hyperplane is defined as a function that separates classes and

maximizes the distance from each of the classes by its closest observations, also called support

vectors. The boundaries that the hyperplane creates are used to classify new observations. There

are two types of SVM problems, one separates the data perfectly, and the other is a non-separable
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problem (Hastie et al. (2009)). These types are further described in the next sections.

The separable case

The definition of the separable two classifier problem, is to create a hyperplane function, such that

all observations from one class is on one side of the hyperplane and all the observations associated

with the second class is on the other side of the hyperplane.

Figure 3.3: Separable vs. non-separable case, where ξi represents the misclassified observations (Hastie

et al. (2009), p. 418).

Consider a dataset with N observations and two classes, where xi ∈ Rp is the input variables

and yi ∈ Y = {−1,1} is the response or output variable. The decision boundary function is defined

as:

f(x) = xTβββ + β0 = 0 (3.16)

where βββ ∈ Rp is a unit vector: ∣∣βββ∣∣ = 1. The separating hyperplanes is defined as a margin around

the function f(x) with a minimum width of M on both sites, where M = 1
∣∣βββ∣∣ . The observations

on the edge of the margin are called “support vectors”. The function f(x) is seen as a boundary

condition for all new observations xj, and on behalf of the boundary it classifies the observation
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as -1/1 under the following condition:

ŷj =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1 if x̂Tβββ + β0 < 0

1 if x̂Tβββ + β0 > 0
.

To ensure that all observations are at least M distance away from the decision boundary f(x),

the following condition have to be maximized:

max
βββ,β0,∣∣βββ∣∣=1

M

subject to yi(xTβββ + β0) ≥M, i = 1, ...,N.
(3.17)

This can be rewritten as a convex optimization problem, which is done by removing the constraint,

∣∣βββ∣∣ = 1 and replacing the condition in (3.17) with:

1
∣∣βββ∣∣

yi(xTi βββ + β0) ≥M ⇒ yi(xTi βββ + β0) ≥M ∣∣βββ∣∣,

and since all βββ and β0 fulfill these inequalities at any positive scaled multiplier, it is possible to set

∣∣βββ∣∣= 1
M . That gives the possibility to rewrite the condition from (3.17) as a minimization problem:

min
βββ,β0,

∣∣βββ∣∣2

subject to yi(xTβββ + β0) ≥ 1, i = 1, ...,N.
(3.18)

The constraint defines a margin around the linear decision boundary with a width of 1
∣∣βββ∣∣ , thereby

βββ and β0 is chosen to maximize the width. These changes make it possible to set up the following

Lagrange (primal) function and hereby minimize this problem with respect to βββ and β0:

LP =
1
2 ∣∣βββ∣∣2 −

N

∑
i=1
αi[yi(xTβββ + β0) − 1]. (3.19)

Moreover, by setting the derivatives of βββ and β0 equal to zero, we obtain:

∂LP
∂βββ

= 0⇔
N

∑
i=1
αiyixi = βββ (3.20)

∂LP
∂β0

= 0⇔
N

∑
i=1
αiyi = 0, (3.21)
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and by substituting these result into (3.18) we get the following Lagrange (dual) function:

LD =
N

∑
i=1
αi −

N

∑
i=1

N

∑
j=1
αiαjyiyjxTi xj

subject to αi ≥ 0 ∧
N

∑
i=1
αiyi = 0.

(3.22)

The optimal solution is then obtained by maximizing LD for αi ≥ 0, by complying with its con-

ditions that give a more simple convex optimization problem. Furthermore, this solution must

satisfy Karush-Kuhn-Tucker (KKT) conditions, which include (3.20), (3.21), (3.22) and

αi[yi(xTi βββ + β0) − 1] = 0∀i. (3.23)

From these conditions we observe that if αi > 0 then yi(xTi βββ + β0) = 1 which means that xi is on

the boundary of the hyperplane margin. But if yi(xTi βββ + β0) > 1 then xi will not appear on the

hyperplane margin, and αi = 0. From equation (3.20), the solutions for βββ are defined as a linear

combination of the support vector points xi and lies on the boundary of the hyperplane margin

when αi > 0. β0 is obtained with help of (3.23) for any of the support vector points xi. The

optimal hyperplane is defined as the following decision boundary function, f̂(x) = xT β̂ββ + β̂0 and

this function is used to classify new observations xj.

The described case is for linear separable data, however, it is generally not possible to obtain

perfectly separated data. To allow for misclassifications in the decision boundary, a new function

is introduced. This leads to the next section, where the soft margin approach will be presented.

The non-separable case

As seen in the separable case, we were able to define a function f(x) that satisfied the following

constraint yif(xi) > 0,∀i. However, this is not possible in the non-separable case. In this case, it

is necessary to change the approach by allowing the observations to be on the wrong side of the

decision boundary which is illustrated in the right-hand side of figure (3.3). The new approach

is called soft margin support vector and introduces a slack variable ξi for each observation. This

allows to change the constraint from (3.17) to:

yi(xTi βββ + β0) ≥M(1 − ξi), (3.24)
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where ξi ≥ 0,∀i and∑Ni=1 ξi ≤ C. The error for misclassified observations, is measured as the distance

towards the hyperplane margin, and thereby makes it possible to solve it as a convex optimization

problem. With that said, a misclassfication will occur when ξi > 1. To obtain the optimal solution

we use the same approach as for the separable case. At first, we rewrite the maximization problem

into a minimization problem and the constrains for the mathematical optimization problem is

written as:

min
βββ,β0,

∣∣βββ∣∣2 +C
N

∑
i=1
ξi

subject to ξi ≥ yi(xTβββ + β0) ≥ 1 − ξi,∀i.
(3.25)

The cost parameter C, defines the complexity of the model. It determines the amount of over-

lapping classes and tells how simple the model is. As in the separable case, the solutions to the

non-separable problem is found through the Lagrange function. However, instead of just consider-

ing βββ and β0, this case concerns three parameters βββ, β0 and ξi. The Lagrange function is defined

as:

LP =
1
2 ∣∣βββ∣∣2 +

N

∑
i=1
ξi −

N

∑
i=1
αi[yi(xTi βββ + β0) − (1 − ξi)] −

N

∑
i=1
µiξi. (3.26)

By setting the derivatives of βββ, β0 equal zero, we obtain the same results as in the separable case

(3.20) and (3.21). Additionally, by setting the derivative of ξi equal zero we get:

∂LP
∂ξi

= 0⇔ αi = C − µi,∀i. (3.27)

Furthermore, a constraint of αi, ξi, µi ≥ 0,∀i is added, which makes it possible to obtain the

Lagrangian (dual) objective function by substituting (3.20),(3.21) and (3.27) into (3.26), and obtain

the equation:

LD =
N

∑
i=1
αi −

1
2

N

∑
i=1

N

∑
j=1
αiαjyiyjxTi xj

subject to 0 ≤ αi ≤ C ∧
N

∑
i=1
αiyi = 0.

(3.28)

The optimal solution can be obtained by maximizing the Lagrangian (dual) function. As earlier

the solution has to comply with equation (3.20),(3.21) and (3.27) and the KKT conditions, by
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including the following constraints:

αi[yi(xTi βββ + β0) − (1 − ξi)] = 0, (3.29)

µiξ = 0, (3.30)

yi(xTi βββ + β0) − (1 − ξi) ≥ 0, (3.31)

for i = 1, ...,N . Hereby, an unique solution of the (primal) and (dual) problem can be constructed.

From equation (3.20), the optimal solution for βββ is found as:

β̂ββ =
N

∑
i=1
α̂iyixi (3.32)

and with α̂i > 0 for observations xi that meets the constraint of (3.31) given the constraint of (3.29)

is complied. These observations are the support vectors and have ξ̂i = 0 and are characterized by

0 < α̂i < C, the rest of the observations have ξ̂i > 0 and α̂i = C. From constraint (3.29) any of

the support vectors can be used to solve β0, and the average of the solutions is used to obtain β̂0.

Based on the results of β̂ββ and β̂0 the final decision boundary function is:

f̂(x) = xT β̂ββ + β̂0 = xT
N

∑
i=1
α̂iyixi + β̂0. (3.33)

Both the separable and the non-separable case find a linear decision boundary function, but as

the complexity in data increases, a linear decision boundary might not be the right choice. In the

next section we will address this problem.

Kernel functions

The SVM is a combination of the classifier described in the previous section and a kernel function.

The kernel function is used when the input variables cannot be linear separable, and makes the

decision boundary more flexible by using basis expansions, and to transform the data into higher

dimensions which have a clearer insight of the data.

We start by defining the m’th input space as hm(xi),m = 1, ...,M , which produces a nonlinear

function. Since h(xi) is only represented in the inner function of the Lagrange function, we do not
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need to specify the transformation of h(xi), but all we need to know os the kernel function:

K(x,z) = ⟨h(x), h(z)⟩. (3.34)

The kernel computes the inner product of the transformed space. Thereby, the Lagrange (dual)

function is stated as follows:

LD =
N

∑
i=1
αi −

1
2

N

∑
i=1

N

∑
j=1
αiαjyiyj⟨h(xi), h(zj)⟩. (3.35)

The decision boundary can be found in the same way as earlier, and is defined by:

f̂(x) =
N

∑
i=1
α̂iyiK(x,xi) + β̂0, (3.36)

and at all times, the kernel function must be a symmetric positive (semi-) definite function.

There are several types of kernels and the three most frequently used kernels according to

Hastie et al. (2009) are:

d’th-Degree polynomial ∶K(x,z) = (1 + ⟨x,z⟩)d, (3.37)

Radial basis ∶K(x,z) = exp(−γ∣∣x − z∣∣2), (3.38)

Neural network ∶K(x,z) = tanh(κ1⟨x,z⟩ + κ2). (3.39)

When applying kernels to the SVM some additional parameters, other than C, must be defined.

For example in the Radial basis kernel, an extra parameter, γ, is introduced and determines the

strength of the support vectors. When creating a SVM model it is unknown which value of the

parameters that gives the best results. Therefore, it is important to tune the model by trying

multiple combination of the parameters to obtain the best classifier.



4 Methodology
In this chapter, we will present the data analysis from the start of how we are collecting the

data to the final construction of the investment strategies. At the beginning of this chapter, a

brief description of the dataset variables will be introduced. Additionally a data analysis process

diagram will give an overview of how the data analysis is structured. At the end of this chapter,

we will describe how the portfolio turnover i is calculated and introduce several basic financial key

statistics we are using to evaluate the performance of the portfolios.

4.1 Dataset Description

The dataset we are using in this thesis consists of a time series for each company which are part of

the S&P 500 Index from 28 February 1991 to 31 January 2019. Additionally, a range of variables

that hold information about the company are included. A subset of the variables are listed below:

• Date: the last day in each month

• CUSIP: number that identifies most financial instruments

• Ticker: a symbol used to uniquely identify traded shares of a particular security

• Company name: the name of the company who issues the shares

• Industry Group: a class based on the GICS classification system

• Industry Group name: the name associated with the GICS classifier

• Price_SSD: the share price for the company corrected for splits, spinoffs and dividends

• Price_SS: the share price for the company corrected for splits and spinoffs

In addition to the above variables, the dataset consists of 46 fundamental key-figures. A lot of

the fundamental key-figures are ratios of two or more fundamentals, such as “Enterprise value

41
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divided by Sales”. These key-figures hold information that contributes to the financial or economic

well-being and the subsequent financial valuation of a company. In the following section, we will

describe how we got access to the data, structured it in a database, divided it into industry groups,

and prepared it for the different investment strategies.

4.1.1 Data Analysis Process Diagram

In figure 4.1, the data analysis process diagram is shown, which has the purpose of presenting the

process of collecting, transforming, cleaning, and modelling the data we are using in our analysis.

As shown, we have separated the process into five steps. In the first step, we are collecting the data

and prepare it for the analysis. In step two, we are modelling and cleaning the data. Step three is

divided into two parts. Part A concerns the constructing of the simple benchmark strategy, while

in part B, we are using machine learning to model several investment strategies. In step four,

we are identifying the stocks to invest in, and in step six, we are testing the performance of the

investment strategies.

4.2 Data Preparation

Data collection and excellent data quality are essential parts of doing a practical project. We

have retrieved the data used in the thesis from two separate sources. To construct the investment

universe, we have used Compustat North America, and to download the fundamental key-figures,

GICS codes, stock prices, and reporting dates we have used FactSet Research System Inc.

To ensure the best data quality as possible, we have spent an exceptional amount of time

considering how we should collect the data in the best and smartest way. Much time has also been

used to chat with the support from FactSet, in order to learn how to work with the system in the

most efficient way. In the following sections, we will discuss how we retrieved the data, constructed

the investment universe, and prepared the data for the modelling phase.
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Data	Analysis	Process

1 - Data preparation

Download	S&P
500	Index
constituents

from
Compustat.

Download	50
different

fundamentals,
GICS	codes,
stock	prices
and	reporting
dates	for	the
last	33	years
from	FactSet.

Map	companies
from

Compustat	to
FactSet	by
cusip,	ticker,
gvkey	and
name.

Correct	the
fundamentals
for	look-ahead-

bias.

Calculate
additional

ratios	from	the
fundamentals
and	prices.

Calculate	betas
and	excess
return.

2 - Data analytics

Split	dataset
into	industry
groups.

Detect
coverage	on
variables	and
observations.

Transform
variables	so
every

fundamental
has	the	same
direction.

Outlier
detection
variables.

Z-score
variables.

Combine	all	the
data	and

construct	panel
dataset.

3A - Benchmark

Make	a	total
score	by

averaging	z-
scores.

Select	value
fundamentals	
for	the	BM
strategy.

3B - Machine learning

Cluster
fundamentals
into	minimum	8
clusters	if
needed.

Classify	excess
return	>=	0.8
quantile	=	1,
<=	0.2

quantile	=	-1
and	0

otherwise.

Divide	the
dataset	into
training,

validation	and
test	sets.

Use	ML
algorithm	to
train	and	tune
a	model.

Hyperparameter
selection.

Use	the
hyperparameters
to	train	a	model
and	predict	a
total	score

4 - Identifing stocks

Save	the	result
in	a	categorical
variable	called
"invest".	The
categories	are
1	for	long

position,	-1	for
a	short	position
and	0	for	no
position.

Regress	the
total	score	on
beta.	Use	the
residuals	as	a
new	total
score.

Find	the
top/bottom	10

percent
best/worst
stocks	each
month.

5 - Backtesting

Backtest
investment
strategies.

Construct
performance
charts.

Save	key	stats
in	a	table.

Make	a	robust
test	of	the
strategies	in
different	time
periods.

Figure 4.1: Data Analysis Process Diagram.

4.2.1 Data Providers

In this section, we will give a brief introduction to the data providers we have used for the analysis.

Compustat North America

To construct the investment universe, we have got access to Compustat North America. Compustat

is a database of U.S. and Canadian fundamental and market information on active and inactive
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publicly held companies. From Compustat we have retrieved the S&P 500 Index constituents. The

access to Compustat is obtained via CBS since CBS has an agreement with Wharton Research

Data Services1 (WRDS). WRDS is a platform with multiple databases that provides the user

access to data across multiple disciplines, including finance, marketing, and economics.

FactSet Research Systems Inc.

FactSet is a U.S. financial data and software company that offers access to a broad range of financial

data and provides analytical applications. FactSet is used by a vast number of investment banks

and hedge funds all over the world (“FactSet” (2019)). FactSet collects annual and quarterly

financial statement data, per share data, derived ratios, stock prices, and business segments,

which has made FactSet the most valued data source in our thesis. The Danish investment bank

BankInvest have in agreement with FactSet provided us access to FactSet during this thesis.

4.2.2 Data Collection

The S&P 500 Index usually consists of 500 stocks. A list of the stocks which are part of the current

index can be found on the webpage “https://www.slickcharts.com/sp500”, but the constituents

changes now and then because the companies market capitalization changes as well. If we are

constructing a long-only portfolio that solely consists of the current stocks in the index, a backtest

of that strategy would potentially overperform the market as we would only have included the most

successful stocks until today. This bias is called a survivorship bias and is important to eliminate

when comparing past performances against the index. It is also important when we are using

machine learning to predict stock return based fundamental key-figures, that the machine learning

algorithm has learned from all different types of companies financial situation. To eliminate this

bias and construct the investment universe, we must find all the stocks which have been part of

the index every month from the starting date to the ending date of the analysis.
1WRDS is the leading, comprehensive, internet-based data research service used by academic, government,

non-profit institutions, and corporate firms “Welcome to WRDS!” (2019)
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Investment Universe

In order to build the investment universe, we have retrieved index constituents from Compustat.

In Compustat, we made a query regarding which stocks that have been part of the S&P 500 Index

in the time frame of 31 December 1985 to 31 January 2019. In order to find information about

the companies in FactSet, the query also contained company identification information such as the

company name, ticker symbol, and CUSIP code.

iid from thru co_conm co_tic co_cusip

1 1985-12-31 1994-07-12 UNITED CONTINENTAL HLDGS INC UAL 902549500

4 2015-09-03 UNITED CONTINENTAL HLDGS INC UAL 910047109

1 1985-12-31 1999-01-03 FOOT LOCKER INC FL 344849104

1 2016-04-04 FOOT LOCKER INC FL 344849104

1 2001-01-16 2009-03-26 NOBLE CORP PLC NE G65431101

1 2011-01-18 2015-07-19 NOBLE CORP PLC NE G65431101

4 2004-12-20 TWENTY-FIRST CENTURY FOX INC FOXA 90130A101

1 2015-09-21 TWENTY-FIRST CENTURY FOX INC FOXA 90130A200

Table 4.1: Raw constituents data from Compustat.

Seen in the table 4.1, the companies are part of the index in different periods. From 21

September 2015, Twenty-First Century Fox Inc. has two types of stocks which both are part of

the index at the same time. The ticker symbols are the same, but the CUSIP codes are different.

Further investigation shows that there is an error in the Compustat database. The ticker symbol

of the stock with CUSIP code “90130A200” should have been “FOX” instead of “FOXA”, hence

that stock is the B stock-class of the company. A blank cell in the table indicates that the company

was still part of the S&P 500 Index when data was retrieved.

As we only will be using monthly data, we have added two extra columns to the dataset. In the

first column, we changed the dates of the column “from” to be the last day in the current month.

A similar procedure was made for the column “thru”, but in this case, we changed the date to be

the last day in the previous month. The reason why we did this was due to the fact that we must
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construct a dataset where we only have information about the companies ultimo each month. If a

company is part of the index up to and including 26 March 2009, the last date it has been part of

the index on a monthly basis is 28 February 2009.

The next part of the process was to construct a matrix, where the rows represent the number

of stocks in the index and the columns represent the months in which the stocks were a part of

the index. By doing so, we were able to count how many stocks that were part of the index each

month. A slice of the matrix is shown in table 4.2.

1985-12-31 1986-01-31 1986-02-28 1986-03-31 1986-04-30 1986-05-31 . . .

1 002824100 002824100 002824100 002824100 002824100 002824100 . . .

2 438516106 438516106 438516106 438516106 438516106 438516106 . . .

3 025537101 025537101 025537101 025537101 025537101 025537101 . . .

4 097023105 097023105 097023105 097023105 097023105 097023105 . . .

5 110122108 110122108 110122108 110122108 110122108 110122108 . . .

6 134429109 134429109 134429109 134429109 134429109 134429109 . . .

7 149123101 149123101 149123101 149123101 149123101 149123101 . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

Table 4.2: Matrix of constituents in the S&P 500 Index.

Technically, the S&P 500 Index is an index consisting of the 500 largest companies on the New

York Stock Exchange (NYSE) and NASDAQ Stock Market, weighted by market capitalization.

In figure 4.2 a chart shows that the typical amount of stocks included in the index is 500, but

for two months there are 499 stocks in the index –the reason for this is unknown for us. In the

period from 2014 to 2019, there is a small increase in stocks included in the index. The reason

for this is that some companies listed in the index have issued multiple types of common stocks,

and they are both traded enough to be part of the index. However, not all forms of common stock

for each company are included. Instead, S&P picks and chooses which companies will have more

than one class of common stock included, and the potential exists for the number of stocks in

the S&P 500 Index to continue growing in the future (“How many stocks are in the S&P 500?”

(2015)). The five companies who have two classes of common stocks in the index on 31 January
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2019 are, Twenty-First Century Fox Inc., Under Armour Inc., Alphabet Inc., Discovery Inc., and

News Corp.
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Figure 4.2: S&P 500 Index constituents vs. identified stocks.

From the matrix in table 4.2, a new dataset that includes the date, CUSIP code, ticker symbol,

and company name was constructed. The dataset consists of 1278 different stocks and holds

information about the constituents of the S&P 500 Index from 31 December 1985 to 31 January

2019. In order to retrieve the fundamental key-figures, we had to identify the stocks in FactSet.

First, we manually looked up the CUSIP codes in FactSet, and by doing so, we were able to identify

most of the stocks. However, the CUSIP code for 26 stocks was not recognized by FactSet. To

identify these stocks, we looked up the ticker symbol and company name, and this lets us identify

17 more stocks. The last nine stocks were not to find in the FactSet database. Most of these

stocks were part of the S&P 500 Index in the end of the 1980s and early 1990s. A search on the
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web showed that most of these companies were merged, acquired, or defaulted, and therefore, we

excluded these companies from the investment universe. A chart that shows the proportion of the

identified stocks is showed in figure 4.2.

To retrieve the data from FactSet, we have used FactSet’s Application Programming Interface

(API), which makes it possible to retrieve data from FactSet’s databases within Excel, using

FactSet’s self-programmed Excel formulas. In order to spend as less time as possible on the data

retrieving, we have used Excel’s programming language Visual Basic for Application (VBA), to

write a macro which automatically retrieved the data and saved it in Excel files on a virtual storage

cloud.

Fundamental Key-Figures

The variables we are using for the investment strategies are publicly available fundamental key-

figures from financial statements. In a correspondence with FactSet’s online support, there is a

list with the 50 most commonly used fundamental key-figures in FactSet. In appendix A.1 there

is a list of the fundamental key-figures. These fundamental key-figures are e.g., Current Assets,

Earnings Per Share, Return on Equity, etcetera, and are grouped in the following eight different

categories:

• Asset Turnover Analysis

• Coverage

• Leverage

• Liquidity

• Operating Efficiency

• Per Share

• Profitability

• Valuation

Using FactSet’s API for Excel, we downloaded the fundamental key-figures for all the companies

in our investment universe. We had to make six Excel-files for every key-figure because Excel could

not handle all the data in one workbook. The key-figures was downloaded on a quarterly basis.

However, if quarterly key-figures were not available, we downloaded annual key-figures. If no
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key-figures were available on a specific day, it was left blank.

Look-Ahead-Bias

In FactSet, the fundamental key-figures are listed starting from the fiscal ending date and not on

the actual reporting date, where the information is available for investors. That means as Apple

Inc.’s fiscal ending date is 30 September, Apple Inc. will publish the financial report two or three

months after this date. This bias is called a look-ahead-bias, and one has to correct for this when

backtesting an investment strategy, to ensure one only uses information when it was available.

If the bias is not taking into account, one will generate an investment strategy with information

about the future, and potentially experience higher profits as the stock price does not reflect the

publicly known fundamental value.

To correct for the look-ahead-bias, we had to download the reporting date of the financial

statement. FactSet’s support suggested using the formula “FF_EPS_RPT_DATE” to get the

reporting date, and manually displace the key-figures. First, we matched the reporting dates

quarterly. However, if the quarterly reporting dates were not available, we matched the reporting

dates on an annual basis. If neither of the reporting dates were available, a conservative alternative

of a three-month lag was used.

Prices

In order to calculate the total returns of the stocks, we are using historical prices, which are split,

spinoff, and dividend adjusted. It is especially essential to correct for stock splits. If a company

performs a 1:2 stock split, the price would be half the price from one day to another, and that

would have a significant impact on the total return of the share.

As we discussed earlier, we must correct the fundamental key-figures for look-ahead-bias. How-

ever, as some of the key-figures are price ratios, we decided to calculate the ratios manually. The

ratios are Earning per Share, Book Value per Share, Sales per Share, Cash Flow per Share, and

Free Cash Flow per Share, each divided by the price. The price we are using to create the ratios
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Date Fiscal period Date Published

2018-02-28 9.7300 2018-02-28 9.7300

2018-03-31 10.3600 2018-03-31 9.7300

2018-04-30 10.3600 2018-04-30 9.7300

2018-05-31 10.3600 2018-05-31 10.3600

2018-06-30 11.0300 2018-06-30 10.3600

2018-07-31 11.0300 2018-07-31 11.0300

2018-08-31 11.0300 2018-08-31 11.0300

2018-09-30 11.9100 2018-09-30 11.0300

2018-10-31 11.9100 2018-10-31 11.0300

2018-11-30 11.9100 2018-11-30 11.9100

2018-12-31 12.1600 2018-12-31 11.9100

2019-01-31 12.1600 2019-01-31 12.1600

Table 4.3: Earnings per Share for Apple Inc. corrected for look-ahead-bias. As the fiscal year for Apple

Inc. ends 30 September 2018, the Earnings per Share are reported from the 30 September 2018 and three

months ahead in FactSet. However, the financial report was publicly announced in November 2018.

should not be dividend adjusted since the company only are paying dividends to the shareowners.

Therefore, we also have to download price data, which only are splits and spinoffs adjusted.

Global Industry Classification Standard

In order to distinguish between the companies and make a balanced trading strategy, we must

classify the companies relative to their peers. MSCI2 and Standard & Poor’s (S&P) developed

the Global Industry Classification Standard (GICS) for use by the global financial community

in 1999. The GICS structure consists of 11 sectors, 24 industry groups, 69 industries, and 158

sub-industries, in which S&P has classified all major companies (“Global Industry Classification

Standard” (2019)). The GICS codes provide the classification point-in-time for every company in

our investment universe. The point-in-time feature is very convenient because sometimes compa-
2MSCI Inc. is a global provider of equity, fixed income, hedge fund stock market indexes, and multi-asset

portfolio analysis tools (“MSCI” (2019)).
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nies can change GICS classifier. Companies changes GICS classifier if the company is merging with

another company or if the company has been acquired. After such situations, the company focus

area may be changed, and therefore the GICS classifier changes as well. In other situation, MSCI

is reorganizing the classification structure as they did in September 2018 where MSCI, e.g., chose

to move the sub-industry “Internet Software & Services” from the sector “Information Technology”

to be part of the sector “Communication Services”.

Index Prices

It is essential to construct a risk-adjusted portfolio, i.e., avoid to invest in extreme volatile stocks.

Therefore, to reduce the overall portfolio volatility, we must diversify our investments to reduce the

systematic risk. As our investment universe consists of companies in the S&P 500 Index, we have

downloaded the historical prices of the index in order to calculate beta between the stocks and

the index. However, instead of using the cap-weighted index, we are using the equally weighted

index. The difference between the cap-weighted and the equally weighted index is that in the

cap-weighted index, larger companies have a more significant position, whereas, in the equally

weighted index, all companies have the same weight. As our portfolios will be equally weighted,

we are using the S&P 500 Equally Weighted Index to calculate betas.

4.3 Data Analytics

In this section, we will describe the data mining process we have used to prepare the data for the

modelling and analysis part. The overall process is divided into distinct parts, which include the

grouping process, cleaning process, outlier detection and scaling of the features.

4.3.1 Industry Groups

As we are using fundamental key-figures to decide if a stock will have a positive or negative

return in the next rebalancing period, it is essential to look at the fundamental key-figure of a
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company relative to its peers. Therefore, we are grouping companies according to their GICS

classification. In order to choose the classification standard, we have to make some considerations.

Ideally, we would like to use the finest classification system possible, as that would ensure the best

diversification among the companies. However, since we are investing in around 500 companies,

the classification system called “sub-industries” that consists of 158 different groups is too specific.

The second most diversified group consists of 69 industries. Monthly, there are on average less

than ten stocks, and sometimes only one stock in this industry, and therefore, as we want to invest

in the ten per cent best and worst stocks each month this industry is also too specific. On the other

hand, the roughest classification system called “sector”, includes on average 47 stocks every month

which would be fine. The only problem with this classification system is that we do not think

that the companies are well enough diversified. For example, “Consumer Services” like hotels and

restaurants will be in the same classification group as “Automobiles & Components”. Therefore,

we are using the GICS classification system called “industry group” consisting of 24 categories to

separate the stocks. On average, there are monthly 20 companies in every industry group, but

in some cases, there are also just one or two companies in each group. Therefore, when we are

rebalancing our portfolios, we are making a criterion that for each day there must be a minimum

of 15 stocks in each industry group. If there are less than 15 stocks in a particular industry group,

we will not invest in that industry group that day.

We want to stress that the further process of the data analysis and modelling is made individ-

ually for each industry group if not stated otherwise.

4.3.2 Coverage Detection

Most of the companies do in general report the fundamental key-figures we are using, but sometimes

companies are not reporting every fundamental key-figure. However, this can be expected as for

some industries and sectors these key-figures may be less relevant and therefore not included in the

quarterly or annual report. For example, banks are not reporting Earnings Before Interest, Taxes,

Depreciation, and Amortization (EBITDA), and one could expect a lot of missing values for that

industry group. Furthermore, the accounting standards we know from today were not implemented



CHAPTER 4. METHODOLOGY 53

broadly before 2001, making it difficult to maintain full coverage on all the fundamentals before

2001 (“International Financial Reporting Standards” (2019)).

To ensure that we have the best data quality, but still have as much data as possible, we

are doing some coverage detection of the variables and observations. Firstly, we have examined

the overall coverage for the variables on a monthly basis. As shown in appendix figure A.2, the

coverage is significantly lower before February 1991. Therefore, we have determined to start our

investment universe at 28 February 1991.

Next, we will take a closer look at the coverage for each variable. As shown in table 4.4

the overall coverage for the industry groups is 88.6%. As mentioned earlier, some industry groups

have in general low coverage because they do not report every fundamental key-figures. To improve

the coverage ratio, we are removing variables with more than 10% of missing values within each

industry group. Moreover, to ensure that two variables are not a linear combination of each other,

we are creating a correlation matrix. If two variables have a correlation of 1, we are removing the

variable with the lowest coverage.

Furthermore, we examine the coverage of the observations. If an observation are missing

more than 10% of its variables, we will exclude it from the dataset. That leads to a deletion of

approximately 3.5% of the observations.

The result of this process gives us an investment universe with almost complete coverage. As

seen in table 4.4, the coverage for each industry group is now above 99%. For the ML portfolios,

the number of variables in the industry groups ranges from 32 to 46 out of 50 variables in total.

The number of variables in the industry groups for the BM portfolio ranges from 8 to 9. However,

the BM portfolio only uses valuation key-figures, and the total number of valuation key-figures is

9. Although not every industry groups has the same number of variables, it is less important since

we are creating a specific model for each industry group.
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Industy Group Industy Group name Raw cov ML cov BM cov

1010 Energy 0.902 0.996 0.997

1510 Materials 0.923 0.994 0.99

2010 Capital Goods 0.927 0.992 0.997

2020 Commercial & Professional Services 0.899 0.993 0.996

2030 Transportation 0.91 0.991 0.991

2510 Automobiles & Components 0.92 0.994 0.993

2520 Consumer Durables & Apparel 0.927 0.994 0.993

2530 Consumer Services 0.914 0.993 0.998

2540 Media 0.883 0.992 0.989

2550 Retailing 0.924 0.992 0.997

3010 Food & Staples Retailing 0.917 0.996 0.999

3020 Food Beverage & Tobacco 0.917 0.996 0.999

3030 Household & Personal Products 0.916 0.995 1

3510 Health Care Equipment & Services 0.898 0.994 1

3520 Pharmaceuticals Biotechnology & Life Sciences 0.92 0.995 0.997

4010 Banks 0.652 0.995 0.997

4020 Diversified Financials 0.754 0.995 0.997

4030 Insurance 0.724 0.994 0.999

4040 Real Estate 0.825 0.997 0.996

4510 Semiconductors & Semiconductor Equipment 0.925 0.993 0.99

4520 Software & Services 0.9 0.992 0.992

4530 Technology Hardware & Equipment 0.921 0.996 0.998

5010 Media & Entertainment 0.919 0.992 1

5020 Telecommunication Services 0.898 0.994 0.995

5510 Utilities 0.912 0.995 0.999

6010 Real Estate 0.82 0.998 1

Grand Total 0.886 0.994 0.996

Table 4.4: Coverage table. The column “Raw cov” shows the coverage from 28 February 1991 to 31

January 2019 before any detection was made. The two other columns shows the coverage for the ML and

BM strategies after coverage detection.
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4.3.3 Outlier Detection

Sometimes companies report fundamental key-figures which can be considered as an extreme value

relative to the previously reported key-figure or its peers. An extreme value can occur in different

ways. For example, it can happen that companies or the data provider accidentally report the

fundamental key-figures for one period in billions instead of millions. Alternatively, some key-

figures such as Dividend Payout Ratio has Net Income in the denominator, and since Net Income

can go towards zero, the Dividend Payout Ratio can explode.

To avoid extreme values among the fundamental key-figures, we are truncating them down to

a minimum, which can be done in different ways. In descriptive statistics, the interquartile range

(IQR) measures the spread from the 75th quantile (Q3) to the 25th quantile (Q1). Often the IQR

is used to detect outliers. In the literature, an outlier is often defined as an observation that falls

below Q1 − 1.5 ⋅ IQR or above Q3 + 1.5 ⋅ IQR. If the data is normally distributed Q1 − 1.5 ⋅ IQR

corresponds to -2.698 standard deviations from the mean, which corresponds to less than 0.5% of

the data. Since the fundamental key-figures are far from normally distributed (most of them are

Figure 4.3: Boxplot with IQR and a probability density function of a normal distributed population

(“Interquantile range” (2019)).
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very right skew distributed), we do not find the IQR method suitable. Instead, we are using a

conservative 1% quantile truncating in both tails. That means if an observation is lower than the

1% quantile or higher than the 99% quantile, we are replacing those values with the respectively

1% and 99% quantile value.

4.3.4 Standardized Scores

Standardized scores, or sometimes called z-scores are frequently used in statistics to compare an

observation to a theoretical deviate, such as standard normal deviate. Z-scores are calculated by

subtracting the population mean from each observation value and then dividing by the population

standard deviation:

z =
x − µ

σ
. (4.1)

Other standardization method is to sort the values by lowest to highest and score each ob-

servation relative to its position in the dataset. For example, if one has 10.000 observations, the

observations will be scored 1,2,3, . . . ,10.000. Afterwards, it would be appropriate to rescale the

dataset so the values lies in between, e.g., [-1:1]. Using this standardization method, outliers or

very high values in the dataset, would not have a significant impact anymore. On the other hand,

if lots of observations have the exact same value, this method randomly ranks these observations.

Therefore, if one has many observations with the same value, it would be appropriate to give these

observations the same score.

Since we are interested in keeping the distribution for the variables, we find z-scoring suitable for

our case. Z-scores are especially useful for a multidimensional dataset when variables on different

scales need to be compared. For example, for our BM portfolio, we are creating a total valuation-

score by averaging different fundamental key-figures. Since the key-figures are not following the

same data range, we are standardizing all the key-figures. As an approximator for µ we are

using the arithmetic mean x̄ = 1
n ∑

n
i=1 xi, and for σ we are using the sample standard deviation

s =

√
1
n−1 ∑

n
i=1(xi − x̄i)

2. By z-scoring the variables we avoid that some key-figures will have a
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major impact on the total valuation-score.

4.4 Beta Stabilized Portfolio

In statistics, beta corresponds to the slope of a linear regression, in which the regression equation

for a simple linear model is:

yi = α
®

intercept

+ β ⋅ xi
±

linear relationship

+ εi
®

error term

(4.2)

where i = 1,2,3, ...,N represents the number of observations.

The error term:

εi = yi − (α + β ⋅ xi) (4.3)

accounts for the deviation from the model due to other factors, which cannot be explained by x.

What we are interested in is to fit a regression line between y and x, which on average keeps the

errors from every point to the line as small as possible. Mathematically this is solved by estimate

α and β such that the sum of squared errors
n

∑
i=1
ε2
i =

n

∑
i=1

(yi − (α + β ⋅ xi))
2 (4.4)

is minimized. This is also called ordinary least squared (OLS) method.

If we let

x̄ =
1
n

n

∑
i=1
xi and ȳ =

1
n

n

∑
i=1
yi (4.5)

the solution for the parameters α and β are:

β̂ =
∑
n
i=1(xi − x̄) ⋅ (yi − ȳ)

∑
n
i=1(xi − x̄)

2 (4.6)

and

α̂ = ȳ − β̂ ⋅ x̄. (4.7)

As discussed in the Conceptual Framework, it is important to risk-adjust the portfolio, and a

very useful risk adjustment tool is the stock’s beta. Beta measures the stock’s volatility towards a
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benchmark and is estimated on a rolling basis. Mathematically, we split the time interval [0, T ] into

N equidistant subintervals, which is months in our case. Further we calculate the subperiod returns

of the share r1
s , r

2
s , r

3
s , . . . , r

N
s and the subperiod returns of the benchmark r1

bm, r
2
bm, r

3
bm, . . . , r

N
bm.

Depending on the chosen subperiod we can calculate the associated beta as:

βsubperiods,bm =
Cov(rsubperiods , rsubperiodbm )

V ar(rsubperiodbm )
. (4.8)

For example, if the return of the benchmark increases (decreases) by 1%, the return of the share

price tends to increase (decrease) by β times 1%. If β is estimated to be 0.5, the return of the

share tends to have half of the return as the benchmark for the subperiod, everything else being

equal. In the long run, the β of a portfolio or a share versus the benchmark index tend to be

positive.

Many hedge funds claim to be market-neutral. This important feature means that the hedge

fund’s performance does not depend on the market movements and the hedge fund will perform

equally well both in bull and bear markets. Mathematically, to be market-neutral means that the

portfolio has a β = 0. In practice, it can be challenging to select stocks to ensure that the hedge

fund has the same β exposure in their long and short positions. However, one can also use β to

hedge out the market exposure of one position. In other words, for every dollar of exposure to the

hedge fund strategy, one needs to short β dollars of the market (Pedersen (2015), p. 28).

Even though it can be challenging for a hedge fund to maintain a market-neutral portfolio, there

exist some practical methods the hedge fund is using when selecting stocks. A straightforward and

widely used method is to rank all the stocks from bad to good performing according to the hedge

fund investment strategy. Afterwards, the hedge fund is grouping the stocks in intervals based on

the beta value. In each interval, the hedge fund both selects low and high ranked stocks, to ensure

that they include high and low beta stocks in the portfolio. This method works well for larger

investment universes. However, in our case, we are selecting stocks within every industry group.

Monthly there are often 20 or fewer stocks in the industry groups, and therefore this method is

not suitable in our situation. Instead we are making a regression of the total score against the

S&P 500 Equally Weighted Index beta. From this regression, we are using the residuals as a new

ranking score. If the original total score and beta have a linear relationship, this method will,
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on average, contribute to include more stabilized beta stocks in both the long and short position.

For example, if the slope is positive, we are choosing high ranking stocks with a lower beta and

low-ranking stocks with a higher beta. When this process is repeated for every rebalance day, we

will end up having a more stabilized beta portfolio in the long run.
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Figure 4.4: Scatterplot of the total score against beta including a regression line.

Figure 4.4 illustrates a linear regression of the total score for industry group 2520 on 30 Septem-

ber 1999 against the beta. On this date, the industry group consists of 25 different stocks. Since

we are investing in the 10% lowest and highest scores, we will invest in three stocks in the long

and short position this date. When selecting stocks without the beta adjustment, the long po-

sition have an average beta of 1.37, and the short position have an average beta of 0.84. As we

are interested in being market-neutral, this is considered as a significant difference in the average

beta. However, when using the residuals from the regression line as a new total score, we obtain a



CHAPTER 4. METHODOLOGY 60

new average beta of 0.99 in the long position. As a result, we have reduced the market-exposure

for the long position, while the short position is unchanged.

4.5 Quantitative Benchmark Strategy

It is said that 90% of the data in the world has been created in the past few years (“Big Data:

Are you ready for blast-off?” (2014)). As computers are being more powerful, it is natural to

use the data to predict the future. Within finance, data from companies financial statements

are being collected and stored in expensive databases. Quantitative investing is a combination of

using statistics, computer science, and finance to develop a trading strategy. Based on advanced

data analytics, the portfolio manager codify her trading strategy into an algorithm. Based on

some criteria, the algorithm analyses an enormous amount of data and selects potential stocks to

invest in. In this section, we are constructing a so-called simple quantitative benchmark strategy.

The strategy is “simple” in the sense of that we are selecting stocks based on an average of some

fundamental key-figures from FactSet. From that score, we are selecting the 10 per cent highest

and lowest scores. Hence, we do not evaluate whether it makes sense to invest in the selected

stocks, based on human judgement.

4.5.1 Construction of Simple Benchmark Strategy

As discussed in the Conceptual Framework, a successful strategy that has performed well histori-

cally is the so-called value strategy, and to construct the quantitative benchmark strategy, we are

using the fundamental key-figures considered as “valuation” parameters in FactSet. The reason

why we only are using the valuation key-figures is that we believe in the hypothesis, that stocks

sometimes are under- or overvalued relative to their “equilibrium” price. Put differently, we be-

lieve that it is possible to identify stocks that are priced lower or higher than indicated by the

fundamental value of the company. This strategy is said to be invented by Benjamin Graham as

he started teaching the philosophy of patience and focus on undervalued stocks in the early 1950s.

It has proved to be a successful strategy since many of Graham’s students have earned a fortune
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using this strategy, among them Warren Buffett (Christensen (2015)).

The nine key-figures that are classified as valuation parameters in FactSet are listed as follows:

• Price-to-Earnings

• Price-to-Book value

• Price-to-Sales

• Price-to-Cash Flow

• Price-to-Free Cash Flow

• Dividend Yield

• Enterprise Value-to-EBIT

• Enterprise Value-to-Sales

• Total Debt-to-Enterprise Value

However, in order to calculate a weighted average of the fundamental key-figures, they have to

be ordered. That means the key-figures have to indicate the same thing. We are constructing the

key-figures to be the higher value the higher is the likelihood for the company to be undervalued.

Therefore, we are dividing the Earnings-, Book Value-, Sales-, Cash Flow-, and Free Cash Flow-per

Share with the price. Additional, we are taking the inverse of Total Debt-to-Enterprise Value.

From the selection of the variables, we are separating the companies in categories based on

their industry group. If an industry group contains less than 15 stocks on a given rebalancing

date, we are not investing in that industry that date. To determine which stocks to invest in on a

monthly basis, we are calculating a weighted average of z-scores. This score is our total valuation

score and reflects the over- and undervalued stocks. In order to maintain a beta neutral portfolio

on average, we create a regression of the total valuation score against the beta for the S&P 500

Equally Weighted Index. The residuals of the regression are determined as the new total valuation

score, as described in section 4.4. Lastly, we identify the 10% highest and lowest valuation scores.

We classify the highest 10% as 1 and the lowest 10% as -1, to indicate that we respectively are

going long and short in those stocks.
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4.6 Machine Learning Strategy

Most financial studies are modelling with returns, instead of the prices of the stocks. There are two

main reasons for using returns. First, the return of a stock is a scale-free summary of an investment.

Second, return series have more attractive statistical properties than price series (Tsay (2002)).

There are several definitions of returns, and one of the most traditional assumptions is that the

simple return, are normal independently and identically distributed with fixed mean and variance.

The one-period simple net return of a stock from t − 1 to t is calculated by:

rt =
Pt
Pt−1

− 1 = Pt − Pt−1

Pt−1
. (4.9)

Although the simple return has tractable statistical properties, it encounters several difficulties.

When buying stocks, the returns tend to have positive excess kurtosis. This indicates that the

probability of extreme returns is higher compared to a normal distribution.

4.6.1 Labelling Returns for Classification

Machine learning models can either be used for regression or classification problems. As we are

trying to predict whether a stock has an extreme excess return in the future, we find it suitable to

divide the excess returns into groups and use the machine learning algorithms as a classification

problem.

As proposed by Huerta et al. (2013), modelling of returns are often divided into three categories:

• Real returns

• Excess return relative to the sector

• Returns divided by volatility estimate

The first option that uses real returns, make the model focus on stocks with higher volatility

as those also typically have the highest return from one period to another. This strategy tends to
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form portfolios with larger drawdowns and volatility. Option two regresses returns on the sector

index makes this focus on modelling excess return within the sector. Option three creates a list of

ordered stocks with volatility-adjusted returns.

Although Huerta et al. are using option three, option two is our preferred choice. Specifically,

we are estimating the β between the stock returns and the average returns for the industry group

on a three-year rolling basis. Hereafter, we are calculating the monthly excess return as:

rexcesss = rs − βs,ig ⋅ rig. (4.10)

To label the excess returns, we experimented with different options. The first option was to

label the excess return in three classes. These classes were 1 for the highest excess return, -1 for

the lowest, and 0 otherwise. To avoid imbalanced data, we started to split the classes into three

equal parts. One of the difficulties in using this labelling technique was that the model was not

able to distinguish the classes, and predicted almost 90% of the excess returns as 0. However,

Huerta et al. suggests to remove the neutral ones. The reason behind this is that the model now

is a two-class classification problem, instead of a multi-class, which is easier to handle. Additional,

Huerta et al. explains in their study that the mid-ranking volatility-adjusted returns tend to

follow the trend of the market. Furthermore, the mid-ranking volatility-adjusted returns also tend

to follow the unsystematic structure in the data with no strong correlations to the explanatory

variables. By removing the neutral stocks from the training dataset, we experienced that the overall

performance increased. Therefore we chose to disregard the neutral class from the training model.

As we now have a two-class classification problem, we can model more extreme excess returns

without an imbalanced dataset. Although, the training model has to contain a reasonable number

of observations to avoid underfitting. We find it suitable to do an 20/80 quantile classification

split of the excess returns. In other words, we are labelling the 20% lowest excess returns as -1

and the 20% highest excess returns as 1, and hereby using 40% of the original training datasets to

train our models.
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4.6.2 Data Separation

First of all, we are splitting the datasets into three parts: training, validation, and test dataset.

We are splitting the dataset into three parts, as we want to optimise the models for the validation

set. Only when we have a proper model that is tested on the validation set, we will include the

test set, to see how the model fits on the test data. The three datasets represent the following

periods:

• Training dataset from 28 February 1991 to 31 January 2011

• Validation dataset from 28 February 2011 to 31 January 2015

• Test dataset from 28 February 2015 to 31 January 2019

This corresponds to about 70%/15%/15% of the whole time period. However, this separation does

not exactly match the distribution of the observations in the datasets, as the number of stocks in

the industry groups varies over time. Not all industry groups contain observations in each period,

and some industry groups do not fulfil the constraint to a minimum of 15 stocks each rebalancing

date. Therefore we are excluding industry groups in the machine learning part if they do not meet

these criteria in just one of the datasets. As a result of this, the machine learning datasets includes

15 of the 26 industry groups. Table 4.5 shows the coverage of the different datasets.

4.6.3 Variable Reduction

Discussed in section 4.3.2, the number of variables for each industry group differs. However,

machine learning algorithms like naïve Bayes classifier and support vector machines shows poor

accuracy with many irrelevant features (“Feature Selection Techniques in Machine Learning with

Python” (2018)). As our dataset contains many similar variables, we are clustering those variables

that are similar to each other.

From a correlation matrix, we are using K-means with the Silhouette method to find the optimal

number of clusters. K-means is a nonhierarchical clustering method designed to group items in
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Period 1010 1510 2010 2020 2030 2510 2520 2530 2540

Train 0.62 0.78 0.72 0.82

Vali 0.20 0.12 0.13 0.05

Test 0.18 0.10 0.14 0.13

Period 2550 3010 3020 3030 3510 3520 4010 4020 4030

Train 0.67 0.68 0.62 0.53 0.91 0.53 0.66

Vali 0.16 0.17 0.17 0.22 0.04 0.23 0.17

Test 0.16 0.15 0.21 0.25 0.05 0.24 0.17

Period 4040 4510 4520 4530 5010 5020 5510 6010

Train 0.52 0.88 0.63 0.74

Vali 0.22 0.11 0.23 0.13

Test 0.25 0.01 0.15 0.13

Table 4.5: The coverage of the datasets for each industry group. Industry groups with low coverage are

excluded from the datasets.

a collection of K clusters. The number of clusters is either specified in advance or determined

as part of a procedure. In this case, the procedure is the Silhouette method. The way K-means

works is that it starts to partition the items into K initial clusters. For each cluster, the items

are reassigned to the cluster whose centroid (mean) is nearest. The distance is computed using

the Euclidean distance of the correlation matrix of all the variables. As the items change clusters,

new centroids are recalculated. This procedure is repeated until no more reassignments take place

(Johnson and Wichern (2013)). The Silhouette method measures the quality of a cluster. That is,

this method determines how similar each item is within its cluster. A good cluster combination

has a high average silhouette width. The average width is calculated for different values of K

clusters, and the cluster with the highest width is considered as the best cluster. The formula for

the silhouette width is defined as:

Si =
(bi − ai)

max(ai, bi)
, (4.11)

where bi = minKd(i,K) is the smallest distance to the cluster where item i does not belong, and



CHAPTER 4. METHODOLOGY 66

ai is the average dissimilarity between i and all other items of the cluster to which i belongs.

As we have eight different categories of fundamental key-figures, we want at least eight clusters,

and the silhouette width defines the optimal number of clusters from eight and beyond. From the

optimal number of clusters, new features are created based on an average of the identified correlated

variables.

Random forest works well with lots of features since it does not consider all variables, but only

a sample of them. Therefore we do not find it necessary to lower the dimension of the datasets for

RF.

4.6.4 Accuracy and Hyperpameter Tuning

As mentioned in section 3.3, the RF and SVM algorithms have several parameters to tune to

obtain the model with the highest accuracy. To find the most stable and suitable combination

of parameters, we are implementing a grid search. Based on several combinations of parameters,

models are produced from the training dataset with a prediction on the validation dataset.

For the RF model, we are tuning over the parameters mtry and nodesize. Mtry is the number

of variables randomly sampled as candidates at each split, and nodesize is the minimum size of

terminal nodes. We are using these parameters as we find it essential to know how many variables

that have to be included to obtain the best model. If many variables give the best accuracy,

it indicates that the data constitute of a few relevant variables, as the probability of getting a

variable with low impurity is high. Moreover, we are using the nodesize in the tuning process, as

the nodesize indicates how far a tree can grow. A good accuracy for a deep tree indicates that

the data from the training to the validation period is similar, and the model can be more detailed

without increasing the bias.

For the SVM model, we are using the radial kernel, which introduces a parameter other than

cost. The parameter for the radial kernel is gamma and indicates the smoothness of the curvature

of the decision boundary. A high value of gamma takes fewer support vectors into account, while

a small value of gamma considers a larger amount of support vectors near the decision boundary.



CHAPTER 4. METHODOLOGY 67

If the value of gamma is minimal, the decision boundary acts similar to a linear model. The

cost parameter indicates the cost of misclassifying an observation. A small cost focus on a wide

hyperplane and vice versa.

The NB model does not include any parameter to tune as it only considers the conditional

probability to classify observations.

The Tuning Process

The hyperparameters for RF and SVM are listed in the following table:

RF

mtry 3 5 7 9 11 13 15 17 19 21

nodesize 7 14 21 28 35 42 49 56 63 70

SVM

gamma 0.015625 0.03125 0.0625 0.125 0.25 0.5 1 2 4 8

cost 1 2.5 5 10 25 50 100 250 500 1000

Table 4.6: The tuning parameters for RF and SVM.

For each combination of the parameters, a model based on the training dataset is created with

a prediction on the validation dataset. For every prediction, several accuracy measures are stored

in a data frame. The accuracy measures are listed as follows:

• The overall hit-ratio

• The sensitivity for -1

• The sensitivity for 1

• The sensitivity for 0

• The positive predicted value for -1

• The positive predicted value for 1

• The negative predicted value for -1

• The negative predicted value for 1

To select the best combination of the parameters, several heatmaps are constructed. The

heatmaps are a 10×10 matrix that spans all the different combination of the hyperparameters. We

are using a heatmap to select the best combination of hyperparameters, as we want a stable model,



CHAPTER 4. METHODOLOGY 68

and not necessarily the overall best combination, as that combination easily could be achieved due

to luck. Moreover, we are interested in finding the model with the best combination of the positive

predicted value, negative predicted value, sensitivity and hit-ratio. As described in section 3.2.3,

it is not sufficient to evaluate a model only based on the overall hit-ratio. A model with a high hit-

ratio can also be a model with a low precision rate for negative excess returns, and the contribution

to the high hit-ratio comes from a high precision rate for the positive excess return. Therefore it

is essential when we want to find a stable model, that we take all the different accuracy measures

into account.

Figure 4.5: Heatmap for industry group 4010 that shows the positive predicted value (PPV) for negative

excess returns. The best PPV is obtained where mtry = 17 and nodesize = 35. However, this combination

of parameters is not the most stable one as the PPV for the parameters around varies a lot. A more

stable combination of parameters is found for mtry = 5 and nodesize = 49. The dotted lines indicates an

average of the parameters in the bottom grid.
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4.6.5 Final Machine Learning Strategies

The final machine learning models consists of the following combination of parameters:

SVM RF NB

industry group clusters gamma cost variables mtry nodesize clusters

1010 9 8 5 43 19 56 9

1510 9 0.015625 1 46 13 49 9

2010 13 8 25 46 21 56 13

2520 16 0.015625 10 45 19 49 16

2550 13 8 1 45 15 49 13

3020 11 0.125 1000 44 17 63 11

3510 8 0.015625 1 35 17 56 8

3520 9 0.5 50 45 15 63 9

4010 15 0.015625 1000 33 5 63 15

4020 8 0.5 10 32 21 21 8

4030 10 0.015625 100 33 17 63 10

4510 9 8 1 43 13 63 9

4520 12 2 25 43 17 49 12

4530 13 0.015625 500 43 15 63 13

5510 8 0.0625 50 46 17 49 8

Table 4.7: The final combination of machine learning parameters.

To select the stocks to invest in, we are training the machine learning models on the training

and validation datasets. Each model is trained specifically for each industry group. The models are

trained to predict extreme excess returns. When predicting on the test dataset, each stock will get

a likelihood to have either an extreme positive or extreme negative excess return. This likelihood

corresponds to a total score, and as we did for the BM strategy, we are making a regression of

the total likelihood score against the beta for the S&P 500 Equally Weighted Index. From the

regression, we are using the residuals as the new total score, in order to make the score more

stabilised compared to the beta. Lastly, we identify the 10% highest and lowest scores. We classify

the highest 10% as 1 and the lowest 10% as -1, to indicate that we respectively are going long and
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short in those stocks.

4.7 Portfolio Turnover, Transaction Costs, and Short Fees

In this section, we will outline how we are calculating the profit and loss for our portfolios. We

are using the same procedure for all our investment strategies, whether it is a backtest of the

benchmark or a machine learning strategy. To make the trading algorithm more realistic, we are

adjusting for transaction costs and short-selling fees. Adjusting for transaction costs makes the

performance of the portfolio more sensitive to high frequently rebalancing. To simplify, we are not

reinvesting profits, but keeps profits on a bank account with no interest rates. Furthermore, we

assume that we have money to cover losses.

4.7.1 Portfolio Turnover

The portfolios we are constructing includes a long and short position, and therefore, we are cal-

culating the turnover for each position separately. At each rebalancing date, the same amount

of capital is invested in both positions and divided equally between the identified stocks. The

turnover for each position at time t is calculated as the difference in the invested capital from t−1

to t. The turnover for each rebalancing period is withdrawn and saved on a bank account with no

interest rates. If the turnover is negative, we will add more capital to the position in order to keep

the invested capital fixed. The total turnover for the whole period is the total value on the bank

account at time T :

TT =
T

∑
t=1
Turnoverlongt +

T

∑
t=1
Turnovershortt , (4.12)

where T is the total number of rebalancing dates.

4.7.2 Transaction Costs and Short Fees

The costs for our trading strategies includes both transaction costs and short-selling fees. The

short-selling fee is fixed at 30 basis points per year, which corresponds to 30/12 basis points per
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month for each dollar shorted. The transaction costs are fixed at 5 basis points for each bought

or sold dollar. The total cost is defined as:

TC =
T

∑
t=1
transactioncostlongt +

T

∑
t=1
transactioncostshortt +

T

∑
t=1
shortfeet, (4.13)

and the realised turnover is obtained by subtracting (4.13) from (4.12):

RT = TT − TC. (4.14)

4.8 Portfolio Performance Measures

To evaluate the performance of our portfolios, we are calculating the annualised return, annualised

standard deviation, annualised Sharpe ratio, and maximum drawdown.

To calculate the annualised return, we are estimating the expected returns as the arithmetic

average:

E[R] = (R1 +R2 + ... +RT )

T
, (4.15)

where T is the number of time periods. To annualise the expected return, we multiply E[R] by n

which is the number of periods per year:

E[R]annual = E[R] ⋅ n. (4.16)

The standard deviation is calculated as the square root of the variance, which is estimated as

the squared deviations around the arithmetic average:

σ =

√

(R1 − R̄)2 + (R2 − R̄)2 + ... + (RT − R̄)2

T − 1 (4.17)

To annualise the standard deviation, we multiply σ with the square root of n:

σannual = σ ⋅
√
n. (4.18)

The annualised Sharpe ratio is calculated as the annual return divided by the annually standard

deviation. In general Sharpe ratio is a risk-reward ratio and is found by the expected excess return,
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E(R −Rf), divided with the standard deviation of (R −Rf), where Rf is the risk-free rate. The

formula for the Sharpe ratio is as follows:

SR =
E[R −Rf ]

σ[R −Rf ]
. (4.19)

As the capital in our strategies is financed by short-selling stocks, we are already in excess.

Therefore, we can rewrite the annualised Sharpe ratio as:

SRannual
=
E[R]annual

σ[R]annual
. (4.20)

Another essential performance measure is the portfolio’s drawdown (DD). The DD is the decline

of the portfolio value during a specific period. Often the drawdown is quoted as the percentage

change of the portfolio value. Usually, one is interested in finding the maximum drawdown (MDD).

To calculate the MDD we will introduce the high water mark (HWM). The HWM represents the

highest achieved price in the past:

HWMt =maxs≤tPs. (4.21)

Using the HWM we can calculate the DD as follows:

DDt =
HWMt − Pt
HWMt

. (4.22)

The MDD is found by taking the maximum DD over the time period:

MDDT = max
t≤T

DDt. (4.23)

If the MDD is significant large, it is costly for the hedge fund, and the portfolio is considered as a

risky portfolio.



5 Results
In this chapter, we will present the results we have obtained during our analysis. The first part will

focus on a representation of the results for the benchmark strategy. The representation consists of

the performance for the whole time period, and how stabilised the strategy is. Furthermore, we

will present the performance of the test period. The second part will focus on a representation of

the machine learning strategies. This consist of the performance of the test period for the three

ML strategies. The third part will compare the BM to the ML strategies. Lastly, we will examine

whether there is a relationship between the overall hit ratio and return for all the investment

strategies.

5.1 Results for the Benchmark Strategy

The benchmark strategy is based on nine different valuation fundamental key-figures. Using a

simple quantitative model, we have identified the 10 % most under- and overvalued stocks each

month. A portfolio consisting of the identified stocks from 28 February 1991 to 31 January 2019

is constructed, and the performance presented in the following table:

R Beta lng Beta sht AnnR AnnV AnnSR MDD Hit Hld lng Hld sht

1.817 1.094 1.053 0.065 0.099 0.658 -0.404 0.507 6.563 5.017

Table 5.1: Performance and evaluation parameters for the benchmark strategy from 28 February 1991

to 31 January 2019.

The benchmark strategy has generated a positive return on 1.817, including transaction costs

and short-selling fees. The portfolio is market-neutral on average as the beta for the long and

short positions is close to each other at an acceptable level. The maximum drawdown is -0.404,

which means that the bank account has at some point in time lost 0.404 of the realised turnover.

The overall hit ratio indicates that the strategy has managed to correctly identify 50.7% of the

stocks excess return relative to the industry group. The 95% confidence interval for the hit ratio is

73
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Figure 5.1: Profits and losses for the benchmark strategy.

[50.1%; 51.3%]. The “no information rate” (NIR), which is the largest class percentage in the data,

is 51.1%, and the p-value for whether the hit ratio is greater than the NIR is 0.922. This indicates

that there is no statistical evidence for that the hit ratio is greater than the NIR. The average

holding period for the long position is 1.5 months longer than for the average holding period for

the short position. The average holding period indicates that the fundamental value and the price

of the stock have come into equilibrium after 6.5 months for an undervalued stock, and 5 months

for an overvalued stock. A chart of the return is shown in figure 5.1. The chart shows that in

general, the long position generates positive turnover while the short position generates negative

turnover. However, in times with crises, there is an opposite trend. From 28 February 1991 to 30

June 2005 (approximately half of the time period), the strategy has generated a return of 1.579.

In contrast, from 31 July 2005 to 31 January 2019, the strategy has generated a return of 0.238.
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It indicates that the benchmark strategy has performed better in the past compared to the last

decade.

5.1.1 Benchmark Stability Test

To test whether the benchmark strategy is stable we have performed a “leave one out” test for the

variables. The test will show if any of the variables have a significant impact on the overall result.

The annual return, standard deviation and Sharpe ratio for each test is represented in table 5.2.

By comparing the mean of the tests to the BM strategy, we find that the mean Sharpe ratio for

the tests is lower than the Sharpe ratio for the BM strategy. This indicates that the BM strategy

is better when combining all the variables. The mean volatility of the tests is almost equal to the

volatility of the BM strategy, which means that on average, the strategies have the same volatility.

Although the strategies show different results, it seems like a reasonable assumption that the BM

strategy is stable.

Missing variable AnnR AnnVol AnnSR

Dept/Enterprise Value 0.064 0.104 0.620

Dividend Yield 0.065 0.099 0.651

Enterprise Value/EBIT 0.061 0.101 0.601

Enterprise Value/Sales 0.063 0.107 0.586

Earnings/Price 0.056 0.101 0.552

Book Value/Price 0.060 0.088 0.680

Sales/Price 0.066 0.091 0.730

Cash Flow/Price 0.044 0.092 0.480

Free Cash Flow/Price 0.055 0.102 0.537

Mean 0.059 0.098 0.604

Standard deviation 0.007 0.006 0.077

Benchmark strategy 0.065 0.099 0.659

Table 5.2: Performance for the stability test.
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5.1.2 Benchmark Results for the Test Period

To compare the BM- and ML strategies, we will evaluate the performance from 28 February 2015

to 31 January 2019 that corresponds to our test period for the ML strategies. As shown in table

5.3, the BM strategy shows poor performance with an annual return on 0.4%. In the next section,

we will present the results for the ML strategies, and compare these results to the BM strategy.

5.2 Results for the Machine Learning Strategies

The three selected ML models have the possibility to fit a model based on all the 50 fundamental

key-figures from FactSet. However, as the NB and SVM are sensitive to highly correlated variables,

we have lowered the dimension by clustering the variables for those models. Additional, the RF and

SVM are tuned using a grid search, and the most stable hyperparameters are selected. The number

of variables and hyperparameters for the ML models are listed in table 4.7 in the previous chapter.

The models are trained to predict extreme excess return within each industry group. From the

prediction, we identify the 10% highest and lowest likelihoods for an extreme excess return. The

training period for the final models goes from on 28 February 1991 to 31 January 2015, and the

test period goes from on 28 February 2015 to 31 January 2019. The portfolio performance for the

ML- and BM strategies are presented in table 5.3, and a chart of the return is shown in appendix

figure A.3.

R Beta lng Beta sht AnnR AnnV AnnSR MDD Hit Hld lng Hld sht

SVM 0.152 1.075 1.033 0.038 0.052 0.735 -0.057 0.516 4.784 4.706

NB 0.159 1.010 1.029 0.040 0.061 0.650 -0.108 0.522 7.610 8.278

RF -0.014 0.984 1.017 -0.003 0.056 -0.062 -0.078 0.499 5.346 4.703

BM 0.017 1.086 1.078 0.004 0.062 0.068 -0.068 0.496 6.071 5.041

Table 5.3: Performance and evaluation parameters for all the strategies from 28 February 2015 to 31

January 2019.

The NB and SVM strategies show great performance in the test period. The annualised return
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is around 4%, but the volatility for the SVM is lower than the volatility for the NB, which causes

the highest Sharpe ratio for the SVM. What is remarkable when comparing the strategies is the

difference between the MDD and the average holding period. The NB has almost double as high

MDD than the SVM, which indicates that the NB is a more risky model. Additional, the average

holding period for NB is over three months longer compared to the SVM. The results for the RF

has shown poor performance in the test period. However, the interesting thing is that the RF and

the BM strategy have shown similar results. Even though the return for the RF is negative, the

overall key statistics are not far from the key statistics for the BM strategy. It indicates that the

RF might not be a bad model compared to the BM strategy. When evaluating the hit ratio for the

strategies, it indicates that there is a link between a high hit ratio and a high return. However,

only the NB has a statistically significant p-value at a 0.05 level, for the hit ratio is greater than

the NIR. The confidence interval and p-values for the strategies can be found in appendix A.5.

5.2.1 Prediction Power

In this section, we will investigate the relationship between the likelihood for an extreme excess

return and the return. As the portfolio consists of a long and short position, the machine learning

models predicts the likelihood of extremely positive and negative excess returns. To investigate

the relationship, we have divided the likelihoods into ten intervals consisting of 10% of the stocks.

The likelihood intervals are shown in table 5.4. The intervals from 0.0 to 0.5 represent stocks with

a higher likelihood for extreme negative excess returns, and the intervals from 0.5 to 1.0 represents

stocks with a higher likelihood for extreme positive excess returns.

Short [0.0 ; 0.1[ [0.1 ; 0.2[ [0.2 ; 0.3[ [0.3 ; 0.4[ [0.4 ; 0.5[

Long [1.0 ; 0.9[ [0.9 ; 0.8[ [0.8 ; 0.7[ [0.7 ; 0.6[ [0.6 ; 0.5[

Table 5.4: Likelihood intervals.

Figure 5.2 illustrates the return for each likelihood interval for the NB. The charts for the

SVM and RF are shown in appendix A.6 and A.7. The interesting thing is whether there is a

separation between the realised turnover for the different likelihoods. It seems like there is the
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correct tendency for the NB, but the order of the return for SVM and RF is not as good as for

the NB. The SVM and RF have obtained the best results in the intervals ]0.8; 0.9] and ]0.7; 0.8]

for the long position. Furthermore, the interval with the highest likelihood, ]0.9; 1.0], has shown

the worst performance for RF. This indicates that RF has found it challenging to find the highest

extreme excess returns.
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Figure 5.2: Profits and losses for different likelihood prediction intervals for the NB.

5.2.2 Industry Group Contribution

The contribution of each industry group is presented in figure 5.3. From the figure, we see that

all the ML strategies achieve a positive turnover in 6 out of the 15 industry groups, but RF has

struggled to select the best stocks in several industry groups. The Health Care sector consisting

of the industry groups Health Care Equipment & Services and Pharmaceuticals, Biotechnology

& Life Sciences, have in general shown poor performance. However, this sector is a notoriously
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fickle industry. Often the fundamental key-figures does not represent the value of the stocks, but

instead, the prices are influenced by expectations to the growth of the companies.
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Figure 5.3: Contribution chart for the industry groups in the test period.

5.3 Machine Learning Stability Test

To test how the ML models have performed in the past, we have evaluated several models at

different time periods. The models are based on data from the training and validation datasets.

For example, if we predict from 28 February 2001 to 31 January 2005, the model is trained on the

observations from 28 February 1991 to 31 January 2001 and from 31 March 2005 to 31 January

2015. We are offsetting the training period two months after the test period to eliminate quarterly

tendencies directly related to the fundamental key-figures. The ML models are created to predict

the four years tendency on a one-year rolling basis. In figure 5.4, the annual Sharpe ratios for all
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the strategies are shown.
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Figure 5.4: Chart with the annual SR for the strategies.

The figure shows that the RF, in general, achieves the highest Sharpe ratios relative to the

other ML strategies. Furthermore, the RF seems to be the most stable model with an average

annual SR at 0.959. The average annual SR for SVM is 0.398, and for the NB it is 0.228. However,

if we only include the past ten periods, the NB and the SVM have obtained a higher average

annual SR, but RF still has the highest annual SR. Furthermore, table 5.5 shows that the average

annual SR for the BM is lower in the past ten periods compared to the whole period.

Ending dates for the interval BM NB RF SVM

28 February 1995 to 31 January 2015 0.781 0.228 0.959 0.398

28 February 2006 to 31 January 2015 0.323 0.509 0.835 0.550

Table 5.5: Average annual SR for the stability test.

When looking at how many times the models have obtained a higher annual SR than the BM
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strategy, we see the same tendency. RF has achieved a higher annual SR than the BM in 12 out

of 21 periods, which corresponds to 57.1%. The NB and SVM have only obtained a higher annual

SR than the BM in around 25% of the times. However, in the past ten periods, all of the ML

models have obtained higher annual SR than the BM at least 50% of the times.

Ending dates for the interval NB RF SVM

28 February 1995 to 31 January 2015 5 12 6

28 February 2006 to 31 January 2015 5 8 5

Table 5.6: Number of times the models has obtained a higher average annual SR than the BM.

5.4 Return versus Hit Ratio

To investigate the relationship between the return and the hit ratio, we are using the information

from the stability test performed in the previous section. Figure A.8 in the appendix, shows a

scatterplot of the return against the hit ratio. The trend indicates that a better hit ratio leads to

a higher return, and the correlation between the features is 0.693. A linear regression between the

return and the hit ratio has a beta on 11.065 with a p-value near zero and an r-squared on 0.481.

This indicates that there is a significant positive relationship between the return and the hit ratio.



6 Conclusion
In this final chapter, we will answer and discuss the thesis statement stated in section 1.2, based

on our analysis and results. Furthermore, we will introduce some interesting future changes of this

thesis, which could lead to an improvement in the results.

6.1 The Findings of This Thesis

In this thesis, we have constructed a simple investment strategy using nine fundamental key-

figures that describes the valuation of a company. Every month the strategy identifies the most

over- and undervalued stocks within each industry group. From the identified stocks, we construct

a long/short portfolio which we are using as our benchmark (BM). The annual Sharpe ratio (SR)

in the period from 28 February 1991 to 31 January 2019 is 0.658. Most of the turnover is realised

in the first half of the period, but the turnover is diminishing in the latter half of the period.

A stability test constructed using the “leave one out” technique shows that portfolios consisting

of eight out of the nine fundamental key-figures also obtained a positive return. The minimum

annual SR for the portfolios is 0.480. In the past four years, the strategy has achieved an annual

SR at 0.068. Even though the return is positive, the annual SR is ten times lower compared to the

whole time period. It indicates that it is possible to construct a simple benchmark strategy that

generates a positive return. However, the benchmark strategy tends to perform better in the past

compared to recent times. This is also what other investors have experienced. According to the

US fund management company Wisdom Tree, the valuation key-figure Price-to-Book value has in

the last decade been the worst in history to measure the value of a stock. It is often suggested

that value investing have been matured in popularity, and lost the effectivity as the strategy

has become widely known. Another factor that has performed well since the financial crisis is

the growth factor. Growth companies are companies showing great potential in future growth.

It could be stocks from companies with strong historically and forward earnings growth, strong

return on equity and strong stock performance. As an example, the FAANG stocks consisting of

82
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Facebook Inc., Amazon, Apple Inc., Netflix and Google, is considered as growth stocks and almost

all the companies have achieved at least a ten times increase of the stock price since the end of the

financial crisis. However, Cliff Asness from AQR points out that even though value investing have

underperformed the last decade, it is too early to say that value investing is dead and a turnaround

in the future is not impossible “Value investing: is the age-old strategy dead?” (2019).

In this thesis, we are using three different supervised machine learning (ML) algorithms to

identify stocks with either extremely high or low excess returns. In the test period from 28

February 2015 to 31 January 2019, the ML models are predicting the likelihood for an extremely

positive or negative excess return based on fundamental key-figures. The results show that the

naïve Bayes (NB) classifier and the support vector machines (SVM) achieve a higher SR than

the BM portfolio. The random forest (RF) model achieved a small positive return, but after

transaction costs and short-selling fees, the turnover became negative and ended having a lower

SR than the BM portfolio. To test the stability of the ML models, we trained and tested the

models in several time periods. The stability test shows that the ML models, in general, have

achieved a positive annual SR, and the hit ratios range from 48.7% to 54%. This indicates that it

is possible for the supervised machine learning algorithms to predict stocks with an extreme excess

return. By comparing the ML models to the BM strategy, the RF model has achieved the highest

annual SR. In contrast, the NB and SVM achieve, on average, an annual SR that is significantly

lower than the annual SR for the BM. However, when investigating the performance in the past

ten years of the stability test, all the ML models achieve an average annual SR that is higher than

the BM strategy. One interesting thing about the RF model is the variable importance feature,

that calculates the impurity of the variables at each split. It turns out that RF primarily has used

five fundamental valuation key-figures to build the model in the test period. As shown in appendix

figure A.9 the key-figures are Book-to-Price, Sales-to-Price, Cash Flow-to-Price, Earnings-to-Price

and Free Cash Flow-to-Price. This may be the reason why the RF and the BM strategy shows

similar results in the test period, but also for the stability test.

A linear regression of the returns against the hit ratios shows a statistically significant relation-

ship, and the correlation between the features is 0.693. It proofs that there is a positive relationship
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between the return and the hit ratio for the ML models.

In general, the ML models have shown positive performance. However, none of the ML models

has proven to beat the BM strategy consistently. In recent times the NB and SVM achieve the

highest annual SR, but they have not performed well in the past. Conversely, RF has achieved good

performance in the past but has struggled in recent times. Furthermore, the RF model follows the

same trend as the BM strategy. The conclusion of this thesis is that it has not been consistently

possible to beat a self-constructed quantitative benchmark strategy using artificial intelligence.

6.2 Future Work

As this thesis only uses fundamental key-figures, it could be interesting to include technical key-

figures such as trends in stock prices and moving average. Technical key-figures do not attempt to

evaluate a stocks intrinsic value, but instead, use price movements to recognise trends that suggest

what the stock price will be in the future.

Another approach to building a more robust ML model is by combining multiple of ML algo-

rithms and identify the stocks based on an average of the likelihood predictions of the models. By

combining various models, it is possible to identify stocks with an overall high likelihood for an

extreme excess return. Moreover, instead of predicting an extremely high or low excess return in

one model, one can create two models, each of which predicts either the extreme high and extreme

low excess return. This can potentially improve the performance of the models as they only have to

focus on predicting one specific class. However, one difficulty using this method is that the models

potentially can predict the same stocks as being good and bad. Furthermore, one will experience

an imbalanced data problem.

In this thesis, we have focused on creating an overall model, that works in every time period.

However, as times changes, fundamental key-figures obtained in the past may not be relevant in

newer times. Therefore, it can be interesting to construct a model on a rolling basis. However, it

is necessary to have a reasonable size of observations in the training datasets to avoid high bias in

the models.
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A Appendix - Charts and Tables

A.1 List of Fundamental Key-Figures From FactSet

Fundamental key-figure FactSet formula Category

Current Assets FF_ASSETS_CURR Asset Turnover Analysis

Cash & ST Investments FF_CASH_ST Asset Turnover Analysis

Inventories FF_INVEN_TURN Asset Turnover Analysis

Fixed Assets FF_PPE_NET Asset Turnover Analysis

Receivables FF_RECEIV_TURN Asset Turnover Analysis

Cash Dividend Coverage Ratio FF_CASH_DIV_COVG_RATIO Coverage

Total Debt_EBITDA FF_DEBT_EBITDA_OPER Coverage

Fixed-charge Coverage Ratio FF_EBIT_OPER_FIX_CHRG_COVG Coverage

EBIT_Interest Expense (Int. Coverage) FF_EBIT_OPER_INT_COVG Coverage

Total Debt_Total Assets FF_DEBT_ASSETS Leverage

Total Debt_Equity FF_DEBT_EQ Leverage

LT Debt_Total Capital FF_LTD_TCAP Leverage

Net Debt_Total Capital FF_NET_DEBT_TCAP Leverage

Total Debt_Total Capital FF_TOT_DEBT_TCAP_STD Leverage

Cash Ratio FF_CASH_RATIO Liquidity

Current Ratio FF_CURR_RATIO Liquidity

Asset Turnover (x) FF_ASSET_TURN Operating Efficency

Assets_Employee (actual) FF_ASSETS_PER_EMP Operating Efficency

Payables Turnover (x) FF_PAY_TURN Operating Efficency

Revenue_Employee (actual) FF_SALES_PER_EMP Operating Efficency

Working Capital Turnover FF_SALES_WKCAP Operating Efficency

Book Value per Share FF_BPS Per Share

Dividends per Share FF_DPS Per Share

EBIT (Operating Income) per Share FF_EBIT_OPER_PS Per Share

EPS FF_EPS Per Share

89
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Fundamental key-figure FactSet formula Category

Free Cash Flow per Share FF_FREE_PS_CF Per Share

Cash Flow per Share FF_OPER_PS_NET_CF Per Share

Dividend Payout Ratio FF_PAY_OUT_RATIO Per Share

Sales per Share FF_SALES_PS Per Share

Cash Flow Return on Invested Capital FF_CF_ROIC Profitability

Free Cash Flow Margin FF_FREE_CF Profitability

Gross Margin FF_GROSS_MGN Profitability

Net Margin FF_NET_MGN Profitability

Net Operationg Cash Flow FF_OPER_CF Profitability

Operating Margin FF_OPER_MGN Profitability

Pretax Margin FF_PTX_MGN Profitability

Return on Assets (pct) FF_ROA Profitability

Return on Common Equity FF_ROCE Profitability

Return on Equity (pct) FF_ROE Profitability

Return on Invested Capital FF_ROIC Profitability

Return on Total Capital FF_ROTC Profitability

Price_Earnings FF_PE Valuation

Price_Book Value FF_PB Valuation

Price_Sales FF_PS Valuation

Price_Cash Flow FF_PCF Valuation

Price_Free Cash Flow FF_PFCF Valuation

Total Debt_Enterprise Value FF_DEBT_ENTRPR_VAL Valuation

Dividend Yield FF_DIV_YLD Valuation

Enterprise Value_EBIT FF_ENTRPR_VAL_EBIT_OPER Valuation

Enterprise Value_Sales FF_ENTRPR_VAL_SALES Valuation
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A.2 Monthly Overall Coverage of Variables for the Invest-

ment Universe
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A.3 Realised Turnover for all the Strategies in the Test

period
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A.4 Confusion Matrix for the BM Strategy for the Whole

Period

1 Confusion Matrix and Statistics

2

3 Reference

4 Prediction -1 1

5 -1 7714 7172

6 1 7504 7382

7

8 Accuracy : 0.5071

9 95% CI : (0.5014 , 0.5127)

10 No Information Rate : 0.5112

11 P-Value [Acc > NIR] : 0.92223

12

13 Kappa : 0.0141

14 Mcnemars Test P-Value : 0.00629

15

16 Sensitivity : 0.5069

17 Specificity : 0.5072

18 Pos Pred Value : 0.5182

19 Neg Pred Value : 0.4959

20 Prevalence : 0.5112

21 Detection Rate : 0.2591

22 Detection Prevalence : 0.5000

23 Balanced Accuracy : 0.5071

24

25 Positive Class : -1
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A.5 Confusion Matrix for the Strategies in the Test Period

A.5.1 Confusion Matrix SVM

1 Confusion Matrix and Statistics

2

3 Reference

4 Prediction -1 1

5 -1 1096 985

6 1 1029 1052

7

8 Accuracy : 0.5161

9 95% CI : (0.5008 , 0.5314)

10 No Information Rate : 0.5106

11 P-Value [Acc > NIR] : 0.2427

12

13 Kappa : 0.0322

14

15 Mcnemars Test P-Value : 0.3380

16

17 Sensitivity : 0.5158

18 Specificity : 0.5164

19 Pos Pred Value : 0.5267

20 Neg Pred Value : 0.5055

21 Prevalence : 0.5106

22 Detection Rate : 0.2633

23 Detection Prevalence : 0.5000

24 Balanced Accuracy : 0.5161

25

26 Positive Class : -1
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A.5.2 Confusion Matrix NB

1 Confusion Matrix and Statistics

2

3 Reference

4 Prediction -1 1

5 -1 1079 1002

6 1 988 1093

7

8 Accuracy : 0.5219

9 95% CI : (0.5066 , 0.5371)

10 No Information Rate : 0.5034

11 P-Value [Acc > NIR] : 0.008845

12

13 Kappa : 0.0437

14

15 Mcnemars Test P-Value : 0.770731

16

17 Sensitivity : 0.5220

18 Specificity : 0.5217

19 Pos Pred Value : 0.5185

20 Neg Pred Value : 0.5252

21 Prevalence : 0.4966

22 Detection Rate : 0.2593

23 Detection Prevalence : 0.5000

24 Balanced Accuracy : 0.5219

25

26 Positive Class : -1



APPENDIX A. APPENDIX - CHARTS AND TABLES 96

A.5.3 Confusion Matrix RF

1 Confusion Matrix and Statistics

2

3 Reference

4 Prediction -1 1

5 -1 1084 997

6 1 1089 992

7

8 Accuracy : 0.4988

9 95% CI : (0.4835 , 0.5141)

10 No Information Rate : 0.5221

11 P-Value [Acc > NIR] : 0.99875

12

13 Kappa : -0.0024

14 Mcnemars Test P-Value : 0.04632

15

16 Sensitivity : 0.4988

17 Specificity : 0.4987

18 Pos Pred Value : 0.5209

19 Neg Pred Value : 0.4767

20 Prevalence : 0.5221

21 Detection Rate : 0.2605

22 Detection Prevalence : 0.5000

23 Balanced Accuracy : 0.4988

24

25 Positive Class : -1
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A.5.4 Confusion Matrix BM

1 Confusion Matrix and Statistics

2

3 Reference

4 Prediction -1 1

5 -1 1140 1159

6 1 1159 1140

7

8 Accuracy : 0.4959

9 95% CI : (0.4813 , 0.5104)

10 No Information Rate : 0.5

11 P-Value [Acc > NIR] : 0.7174

12

13 Kappa : -0.0083

14 Mcnemars Test P-Value : 1.0000

15

16 Sensitivity : 0.4959

17 Specificity : 0.4959

18 Pos Pred Value : 0.4959

19 Neg Pred Value : 0.4959

20 Prevalence : 0.5000

21 Detection Rate : 0.2479

22 Detection Prevalence : 0.5000

23 Balanced Accuracy : 0.4959

24

25 Positive Class : -1
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A.6 Realised Turnover for Different Likelihood Prediction

Intervals for the SVM
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A.7 Realised Turnover for Different Likelihood Prediction

Intervals for the RF
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A.8 Scatterplot with a Linear Regression of the Return

against the Hit Ratio
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Figure A.1: Predicted return and hit ratio for a four year period on a one-year rolling basis from 28

February 1991 to 31 January 2015.
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A.9 Average Variable Importance for Random Forest
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B Appendix - USB Drive

B.1 Data

In the Data folder, one can find the data from Compustat used to identify the S&P 500 Index

constituents. Moreover, the folder includes the fundamental key-figures, prices, industries and

reporting dates from FactSet. Furthermore, the data folder also contains the processed data,

VBA codes and charts used in the analysis and results. The data from Compustat and FactSet is

confidential material.

B.2 R Scripts

In the R folder, one can find the R scripts used in the analysis. The insourcing of packages,

self-programmed functions and data are combined in the file called ratioanalysis.R.
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