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II.Abstract 

This paper investigates if Artificial Intelligence techniques can be used as an adequate model to 

calculate a standalone probability of default for counterparties. We start with introducing the 

legislative framework for the internal rating-based approach, Basel. Furthermore, before 

introducing the applied methods, we present the elementary concept of machine learning. In 

pursuance of the best applicable model we have conducted training and testing with three 

different models. For the chosen models, Neural Networks, Support Vector Machines and 

Random Forest underlying theory and mechanisms is introduced. With regards to performance 

assessment of the aforementioned models, several statistical evaluation and comparisons is 

conducted. The best performing model is the advanced option for decision trees, Random 

Forest. Nonetheless, the more complex Neural Networks and Support Vector Machines shows 

disappointing results, which is in conflict with some previous research. In contrary to previous 

findings this paper concludes that none of the tests can significantly outperform the 

comparative benchmark - logistic model. We do not wish to neglect the models entirely. Rather, 

this paper presents the challenges and importance of a satisfactory dataset. 
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AMA: Advanced Measurement Approach 
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CVA: Credit Valuation Adjustment 
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IRB: Internal Rating Based 

MLP: Multi-layered perceptron 

NN: Neural Networks 
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1 Introduction 

1.1 Background of study 
The financial industry has experienced substantial growth over the past decades. More and 

more complex investment instruments are observed. The banking industry has been 

characterized by major technological development and liberalization in the asset and credit 

markets. Banks services are no longer limited to the creation of savings accounts or the 

granting of mortgages but include complex financial services and products. It follows that 

profits no longer simply arise from interest rate differentials, but includes income generating 

activities from more advanced service lines such as Privet Banking and Wealth Management. 

The sector is of great importance for both national and international economies. Its 

intermediation provides settlements between participants providing or in need of capital. All 

economies and markets rely on a stable and well-functioning bank sector. From a historical 

perspective, it can be seen, the consequences of financial crashes on the economy. 

Beyond any doubt, the last decade’s financial crises have caused disastrous consequences. 

Since the Asian and the Russian crises of the late 1990’s where the last one famously caused 

the disaster and insolvency of Long-Term Capital Management. The latest financial crisis in 

2007-2008, were credit agencies where highly involved in the cause of the crisis. After big 

banks like Bear Sterns, Lehman Brothers and Merrill Lynch faced the disaster of insolvency. 

The rippling effect was seen in the entire financial market. AIG as one example, needed a 

bailout of some 180 billion US dollar from the US government, due to trading in credit default 

swaps on collateralized debt obligations. An event which in a worst case could have triggered 

the default of major banks worldwide. 

The Subprime crisis in 2007 showed that the banking sector not only had unfavorable 

practices but also that there were major shortcomings in public oversight and regulation 

(C.A.E.Goodhart, 2008). 
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In order not to worsen the situation, authorities with central banks in the lead, had to 

provide liquidity and guarantees packages that transferred the burden from banks to 

taxpayers (Bank for International Settlements Communications, 2010). 

The financial crisis in 2007 was a “crisis for regulation and supervision.” Capital requirements 

were not used adequately to cover important risk exposures and liquidity risk was taken 

unseriously. Further, poor coordination and monitoring of decisions on financial stability and 

the uncertain valuation of financial instruments led to instability and the financial crisis 

became a fact (Jickling, 2009). The world experienced during the financial crisis what the 

effects and consequences of a weak banking sector bared on the economy and the 

importance of a strong banking system, to create a stable global economy. 

The lack of monitoring and regulation has resulted in new measures that have been taken to 

prevent and reduce the consequences of the financial crisis. One of the most important 

measures that was implemented were the preparation of stricter and more concrete 

requirements for liquidity adjustments and capital adequacy from the Basel Committee. 

1.2 Nordea 
Nordea is the largest financial services provider in the Nordics. As of 2017, their operating 

income attributed to some EUR 9.5 billion (Nordea Group, 2018). In the same period, their 

total assets value was EUR 581.6 billion.  Their main business areas are divided into four main 

services. Personal Banking, Commercial & Business Banking, Wholesale Banking, and Wealth 

Management. 

Risk and capital management is structured in accordance with the Basel III framework 

published by the Basel Committee on Banking Supervision (Nordea Group, 2018). Their credit 

decisions are based on the preliminary credit risk assessments used consistently across the 

Group.   
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The structure emphasizes different risk exposures so to adjust the scope and weightings of 

the specific risk components. The exposures used in the risk assessments are also applied as 

part of their internal rating methods. 

Nordea performs risk monitoring and controlling on a regular basis to ensure that all 

activities remain within acceptable limits.  Some of the monitoring is conducted on a daily 

basis, here especially for market risk, counterparty credit risk, and liquidity risk. Other 

exposures are assessed on a monthly or quarterly basis (Nordea Group, 2018). 

All risks levels within the Nordea Group are defined so to measure any breaches that the 

bank is not willing to accept in order to attain risk capacity, their business model and overall 

strategic objectives. The levels of risk are set by constraints reflecting the views of 

shareholders, debt holders, regulators, and other stakeholders (Nordea Group, 2017). 

The framework defines critical risk attributes to Nordea's overall risk exposure regarding all 

business activities. The terms of risks are “credit risk, market risk, liquidity risk, operational 

risk, solvency and compliance/non-negotiable risks” (Nordea Group, 2017). 

With specificity to the objective of the thesis, the relevant risk exposure is categorized as 
counterparty credit risk, which is a subsection of credit risk. Nordea defines credit risk as: 

“Credit risk is defined as the potential for loss due to failure of a borrower(s) to meet its 

obligations to clear a debt in accordance with agreed terms and conditions. Credit risk 

includes counterparty credit risk, transfer risk and settlement risk” (Nordea Group, 2018). 

The definition of counterparty credit risk follows as: 

“Counterparty credit risk is the risk that Nordea's counterpart in an FX, interest, commodity, 

equity or credit derivative contract defaults prior to maturity of the contract and that Nordea 

at that time has a claim on the counterpart. Current exposure net (after close-out netting and 

collateral reduction) represent EUR 8,5B of which 30% was towards financial institutions” 

(Nordea Group, 2018). 
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1.3 Research Question 
For Nordea the importance of good quality assessments regarding risk management is 

substantial. Due to both the instability in the banking sector and the implemented legislative 

frameworks, Nordea seeks to expand their understanding of risk measurements further.  

The objective assigned is to develop a Bank Rating Model to initiate in-house credit 

assessment of the OTC counterparties through an up-to-date model with sufficient predictive 

ability. Model’s purpose is to assign counterparties a standalone probability of default that is 

valid one year since the analysis date. 

With the development of machine learning algorithms, big data capacity and overall 

improved computing power, they wish to analyze the potential of applying Machine learning 

for such modeling. Therefore, this paper will examine the potential use of machine learning 

to calculate the default probability. 

Nordea’s requirements for satisfactory data analysis is that the prediction is based on their 

provided dataset. Further, the result should yield the expected probability of default within a 

one-year period for the entity as a whole. The models should also satisfy relevant legislative 

frameworks (such as Basel III). 

Therefore, the research question is the following:   

“Can machine learning be used to develop an adequate model for assigning counterparties a 
standalone probability of default?” 
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1.4 Structure of the paper 
The paper is divided into 9 chapters with subsections in each chapter. Chapter 1 presents the 

background for the study and the research question. Chapter 2 will review previous 

publications in the field of machine learning and related studies. Chapter 3, 4 and 5 will 

respectively present the legislative, conceptual and theoretical framework used to 

investigate the research question. In chapter 6, the variable selection, model selection, 

performance assessment and dataset are described. Chapter 7 describes the preparation 

process and training done before testing. Results, analysis and performance is presented in 

chapter 8. Finally, chapter 9 draw conclusions and suggest future research topics related to 

this study. 

2 Literature review 

This chapter presents various theories, methods, and models related to the probability of 

default. “Bankruptcy Prediction in Banks and Firms via Statistical and Intelligent Techniques – 

A review” by (Kumar & Ravi, 2007) and “Assessing Methodologies for Intelligent Bankruptcy 

Prediction” by (Kirkos, 2015) provides an overview of what has been done in the industry and 

the reference articles in these studies are heavily used. 

In the literature, there are mainly two types of bankruptcy prediction models, accounting-

based models and market-based models (Berg, 2005). Moody's Expected Default Frequency 

(EDF) model is an example of a market-based model (Nazeran & Dwyer, 2015). This type of 

model is based on the company's market value where the stock price is usually used as an 

approach. Models based on market values thus require that the companies are listed on the 

stock exchange, while Accounting-based models use information from the accounts to 

predict default. 
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Before quantitative sizes were obtained on how enterprises performed, they established 

agencies whose task was to provide qualitative information regarding the creditworthiness of 

corporations (Altman, 1968).  

Formal studies around default chances began around 1930s, and since then several studies 

have concluded that companies that go bankrupt have significantly different vital financial 

figures from those companies that continue to operate. 

Even though discriminant analyses have restrictive assumptions, it remained the dominant 

method in the prediction of default. Until the end of the 1970s, when the seminal work of 

(Martin, 1977) introduced the first method of failure prediction that did not make any 

restrictive assumptions regarding the distributional properties of the predictive variables. 

The logistic regression separates from the discriminant analysis in the way that discriminant 

analysis assumes the financial statement data to be normally distributed. 

Later, (Ohlson, 1980) introduced his logistic regression model called the O-score as an 

alternative to Altman’s Z-score. James Ohlson (Ohlson, 1980) in company with William H. 

Beaver (Beaver, 1966) and Edward I. Altman (Altman E. I., 1968) is today recognized as some 

of the most notable studies on insolvency using financial figures. 

2.1 Standardized Methods 
William H. Beavers univariate model from 1966 is recognized as one of the first studies for 

prediction of default based on key ratios from the financial statements. Univariate analysis 

views all fundamental financial figures individually, therefore the study assumes that one 

ratio can be used as a prediction for the health of an entire corporation (Beaver, 1966). 

In his study from 1966 Beaver uses a paired selection of 79 solvent and 79 insolvent 

companies. The corporations were paired based on sector and size. He started out with 

almost 30 key financial figures, which was shortened to only 6 figures based on the ability to 

explain the situation of the organizations. 
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The weakness of the univariate method is that different conclusions can be obtained for 

different key figures for the same company depending on how much the key figures are 

weighted (Altman E. I., 1968). This is due to the fact that the model does not consider the 

relation between the individual financial figures. 

(Altman E. I., 1968) developed a multivariate linear discriminant analysis for bankruptcy 

prediction. Linear discriminant analysis (LDA) is a statistic method suitable for studies where 

the dependent variable is binary (Hair, 1998). The LDA approach tries to organize and classify 

the observed objects or events into groupings to create a linear classifier. An advantage of 

using multivariate as opposed to univariate is that the method tries to find an interaction 

between the different variables. 

In his studies, (Altman E. I., 1968) gathered information from 66 corporations, where the 

dataset was equally split in 33 default and 33 non-defaults. The model is based on 22 

financial figures, popular from earlier studies, as well as a few new. After an iterative process, 

where all variables were considered he landed on 5 ratios he found most significant for an 

accumulated bankruptcy prediction. 

The Z-score contains a linear combination of the mentioned 5 ratios multiplied by 

corresponding coefficients from the discriminant analysis. The output gives an indication of 

distress within a company.   

(Ohlson, 1980), chose to use a conditional logistic regression with a “maximum likelihood” 

estimator. His approach is an alternative procedure for multiple discriminate analysis and is a 

general linear model. Ohlson’s argument for logistic regression being better than LDA is due 

to the interpretation of the coefficients (Ohlson, 1980). 

Logistic regression is used as a statistical method to analyze data with one or more 

explanatory variable that control the outcome. It is measured with a binary variable 

containing two possible values, 0 and 1. The objective is to find the model which best 
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describes the relationship between the binary variable and the independent explanatory 

variables. 

The dataset which Ohlson used is significantly bigger than both Beaver and Altman used in 

their studies. Containing 2058 companies which did not default, and only 105 entities that 

did default. Ohlson’s model is considered to be more accurate than Altman’s Z-score. 

(Financial Ratios and the Probabilistic Prediction of Bankruptcy) In contradiction to Altman’s 

Z-Score Ohlson applies 9 factors, where 2 factors are dummy variables. 

2.2 Static Endogenous Models 
In the article by (Kumar & Ravi, 2007) the authors analyze research done on default in the 

period 1968 to 2005. They provide an overview of the different methods used during the 

period, distinguishing between two different techniques to solve the bankruptcy problem, 

statistical techniques, and intelligent techniques.  

The broad category of statistical techniques includes several of the methods discussed in this 

chapter, including linear discriminator analysis, multivariate discriminant analysis, and logistic 

regression. Intelligent techniques explain various machine learning techniques, including 

neural networks, support vector machines, k-nearest neighbors and classification trees. 

2.3 Implementation of machine learning and Neural Networks 
The implementation of Neural Networks in bankruptcy predictions started in the early 1990s. 

(Odom & Sharda, 1990) was one of the first implementing the Neural Network approach, 

applying (Altman E. I., 1968) predictive variables. After multiple experiments, they compared 

the performance of NN against the multivariate discriminant analysis. Analyzing error results 

of type 1 & 2, they concluded that NN outperformed the more traditional method. 

In the next couple of years, (Tam K. , 1991) and (Tam & Kiang, 1992) applied NN for the 

prediction of banks defaulting. Both studies concluded that NN outperformed the established 

methods on a one-year term, while the logit performed best for two-year horizons.  
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(Salchenberger, Mine, & Lash, 1992) came to a familiar conclusion based on thrift failures, 

Salchenberger concluded that using NN for prediction outperformed logit on an 18-month 

forecasting horizon. 

Further papers can be (Altman, Giancarlo, & Varetto, 1994) “Corporate distress diagnosis: 

Comparisons using linear discriminant analysis and neural networks”.  

As this paper uses firms within retail, industrial and construction it is not as relevant as 

others. However, an important takeaway from the paper is the problem of the “black-box” 

and cases of illogical weightings for indicators, as well as overfitting the data. 

Finally, “A Neural Network Approach for Credit Risk Evaluation” (Angelini, di Tollo, & Roli, 

2008) is a great fundament for this thesis as it focuses on everything from Credit Risk, and 

Basel Framework to the Neural Networks.  

The background motivation for the paper is the Basel Framework where the Basel Committee 

on Banking Supervision “proposes a capital adequacy framework that allows banks to 

calculate capital requirement for their banking books using internal assessments of key risk 

drivers”. This research article describes a successful application of neural networks to credit 

risk assessment by using feedforward networks. The application is tested on real-world data, 

and the paper concludes that “neural networks can be very successful in learning and 

estimating the bonis/default tendency of a borrower, provided that careful data analysis, 

data pre-processing and training are performed” 

After the establishment of Artificial Intelligence methods, (Huang, Chen, Hsu, Chen, & Wu, 

2004) introduce a relatively new approach, Support Vector Machines (SVM). Using 

backpropagation neural networks (BNN) as their benchmark, their research obtained an 

accuracy of around 80% for both BNN and SVM when applied for the United States and 

Taiwan markets. However, another part of their research paper is to improve the 

interpretability of AI methods. Here they applied recent study results in neural network 

interpretation and obtained relative importance of the input variables. Which then was 
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applied to create a market comparative analysis on the different determined factors in the 

chosen markets. 

The last type of model applied in this paper is a more simplistic mathematical approach, and 

therefore do not require the same in depth elaboration as the other presented methods. The 

core concept of Classification and Regression Trees (CART) was published in Leo Breiman’s 

seminal paper in 1984. Later on, in 2001, Breiman extended the theory with Random Forests.  

A number of authors have researched and described Random Forest in their papers, among 

some of them is (Amaratunga, Cabrera, & Lee, 2008), (Biau, Devroye, & Lugosi, 2008) and 

(Buja & Stuetzle, 2006).  

Even though some of the research already reviewed touches upon variable selection, we 

have looked a little more into the selection of variables. As in (Derksen & Keselman, 1992), a 

simple variable selection is well described.  

For the use of the more sophisticated Minimum Redundancy Maximum Relevance (MRMR), 

the mathematical framework is explained in (Peng, Long, & Ding, 2005). Further, the analysis 

relevant for performance assessment and the tools used in the process is explained by 

papers such as (Lobo, Jiménez‐Valverde, & Real, 2007), (Bhattacharyya, 2000) , (Siddiqi, 

2015) and (Fawcett, 2006).  

As mentioned above, a lot of research studies has been done about the use of Artificial 

Intelligence in assessing bankruptcy and/or credit risk assessment. The overall findings from 

the studies appear to be that machine learning approaches achieve adequate performances 

regarding the prediction of default. Empirical evidence on the models’ predictive 

performances relative to each other is somewhat mixed. When it comes to variable selection 

there seems to be a mixed opinion on which factors achieve the highest level of explanation 

for the end results. However, there seems to be a consensus that capital adequacy, asset 

quality, earnings, and liquidity are seen as the most important (Kumar & Ravi, 2007). 
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3 Legislative framework 

This chapter presents the underlying motivation behind the establishment of the Basel 

committee.  In addition, the different accords are presented, to introduce the relevance of 

the internal based approach and its requirements. This is done, in order to oblige the 

legislative framework required for Nordea’s’ in-house credit risk assessments.  

The section only includes the proposed Basel regulatory framework found relevant for the 

purpose of this thesis. Thereby excluding sections from the different accords. Some sections 

not directly intervened with the internal rating model are included to explain concepts or to 

present the development of the Basel accords.  

3.1 Bank of International Settlement (BIS) 
The severity of the financial crisis in 2007 and 2008 clarified that the current regulations were 

not optimal, and the aftermath showed how vulnerable and unstable the financial market 

was. Market participants, such as banks and other financial institutions, acted in their best 

interest and established their own paths for routines and risk assessments.  One 

consequence of this was the collapse of Lehman Brothers that illustrated the poor risk 

management in the banking sector. As important, it illustrated that control and supervision 

were not optimal. 

The response to the international crisis is that the Basel Committee has developed a new 

regulatory framework, called Basel III. Basel III will be a framework to improve the banking 

sector, so that the likelihood and consequences of new financial crises will be reduced. The 

new regulations will form national regulations and be implemented in 2019 at a global level 

(Financial Stability Board, 2018). The main objective of Basel III is that banks should be better 

prepared for financial events and handle crisis better. 

Bank for International Settlement (BIS) was established in 1930. The international institution 

is owned by central banks and plays an important role in their international cooperation. 
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Bank for International Settlement fosters international monetary and financial cooperation 

and serves as a bank for central banks (Goodhart, 2011). 

The Basel Committee on Banking Supervision (BCBS), first established in 1974, is a 

subcommittee of BIS. Its establishment was motivated by claims from the G10 countries, on 

the basis of a number of bankruptcies.  They were commissioned to develop a regulatory 

framework and a set of standards to avoid similar bankruptcies. 

In 2018, the Basel Committee totaled 45 member entities from a variety of different 

jurisdictions. The most present participants are central banks, regulatory authorities and 

other jurisdictions with formal supervision responsibilities in the banking sector (Basel, 2018). 

The Basel Committee now stands behind the standards underlying the regulation of banks 

and other credit institutions worldwide. 

The committee has no supranational supervisory authority and their proposals for 

regulations have no legal power in each country. Rather, it is only meant to be a broad 

wording of supervisory standards and guidelines. Thereby, it is up to each country's authority 

regarding their decisions on implementations of the published standards and guidelines 

(Goodhart, 2011) A national implementation of the standards with low discrepancy of the 

proposals will lead to a convergence of a common standard between member states. 

The first publication of the Accord (Basel I) was introduced in 1988 after several bankruptcies 

over the period 1965 and 1981 (Goodhart, 2011). A decade after the implementation of Basel 

I, the committee realized the need for a more detailed framework. They proposed a new 

framework based on three pillars. Firstly, a minimum requirements for solidity, structures for 

risk management and internal controls and lastly disclosure requirements. (Balin, 2008). 

Following dialogue and several tests with the member countries, Basel II was introduced in 

June 2004. 

In 2008, the regulations were found to be insufficient to avoid the financial crisis we 

experienced and realized that further regulation was necessary. At the end of 2010, the Basel 
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Committee presented a new edition of the regulations that would make banks more 

prepared for crises that had been experienced. 

In order to understand the implementations of Basel III, it is necessary to look at the previous 

accords, namely Basel I and Basel II. 

3.1.1 Basel I 
The main objective of Basel I was two-folded. The first objective was to strengthen the 

international banking system which proved to be narrowed before Basel I was introduced. In 

addition, the Committee wanted to reduce the disparities between international banks' 

competitiveness by encouraging a common standard and regulation for the financial sector 

(Goodhart, 2011). 

The reasoning for a common regulation was driven from international banking actors to the 

authorities for a regulatory race against the bottom.  

The banks threatened moving to countries with weaker regulations (Balin, 2008). With these 

two requirements, the committee wanted to strengthen the banking sector to withstand 

fluctuations in the real economy. In 1993, the Basel Committee came up with a further 

development of the current framework. Here with improved guidelines for capital adequacy 

requirements, in order to reduce losses regarding market risks. Basel I divide itself into four 

pillars (Balin, 2008). 

The Constituents of Capital - The first pillar deals with different types of capital. Basel I shares 

capital into two "Tiers". The first division of capital is called Tier 1. Tier 1 is the core capital 

indicating the financial strength for a bank. Core capital includes common stock, retained 

earnings and various funds. These factors are often referred to as common equity. Banks also 

have different types of innovative hybrid instruments that can be taken as banks' core 

capital, given that they meet a number of requirements that are set to qualify as core capital. 

An example of hybrid instruments is bond mutual funds, but these cannot exceed 15% of 

common equity (Basel, 1999). 
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The second tier is called additional capital and consists of reserves to cover potential losses 

on loans and hybrid debt. It is therefore commonly viewed as banks required reserves. 

Hybrid capital is a combination of debt and equity. This form of subordinated loan capital is a 

loan that has a lower priority than other debt.  

In case of bankruptcy, this form of debt will first be refunded after other creditors have 

covered their debts but will be repaid before any payments to the equity holders. At the 

same time, this form of capital has the characteristic that the distribution of dividend or 

payment of interest can be postponed if the bank is in need of capital. Additional capital has 

priority before common equity, which means that losses will first be covered by core capital 

(Douglas J. Elliott, 2010). 

Risk Weighting - Credit risk represents the biggest form of risk a bank holds. This is why the 

Basel Committee had a major focus in this area (Balin, 2008).  

The requirement thus encouraged banks to focus on exercising good risk management, 

identifying paying customers and being conservative in terms of credit ratings from external 

agencies. 

Assets that are included in the balance sheet are risk weighted so to calculated capital 

reserves in relation to their credit risk. The exposure is multiplied by a given risk weighting 

based on the borrower's credit rating. The risk weighting in Basel I is divided into five 

different risk classes, where the classification goes from risk-free to high risk. The lowest 

weighted class (risk-free) is weighted with 0% in the calculation in pillar II. While the highest 

weighted class (high risk) is weighted by 100%. 

A Target Standard Ratio - The third pillar is a merging of the two preceding pillars. This pillar 

provides a universal standard where tier 1 and tier 2 will cover the banks' risk-weighted 

assets. According to Basel I, the total capital should cover 8% of risk-weighted assets. 

Transitional and Implementing Agreements - The fourth and last pillar is the implementation 

and enforcement of Basel I requirements. Central banks are responsible for the 
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implementation and monitoring. By the end of 1992, all Member States had introduced Basel 

I with the exception of Japan. In the late 1980s, Japan, experienced a banking crisis that led 

to major challenges in their banking sector (Balin, 2008). The transition to the new 

regulations was criticized. 

3.1.2 Basel II 
According to FSB, member countries started their implementation of Basel III in 2013, with 

full implementation by 1.th of January 2019 (Financial Stability Board, 2018). In order to 

understand Basel III, it is important to review essential elements in Basel II. This is because 

many of these elements have been further developed and transferred into the Basel III 

regulations. We therefore need a basis to understand how important it is for today's banking 

sector with updated regulations. 

In Basel II, the requirements are defined in three pillars: minimum requirements for 

subordinated capital, supervisory follow-up and market discipline and publication 

(Douglas J. Elliott, 2010). 

Minimum Capital Requirements - In response to Basel I's criticism, Basel II creates a more 

sensitive measurement of the banks' risk-weighted assets through the first pillar. With this 

expansion, it was desired to eliminate the weaknesses that were discovered in retrospect to 

Basel I and the increasing technological developments in the banking industry (Balin, 2008). 

The expansion was made through an introduction of operational risk in the calculation basis 

of minimum capital requirements. This led to capital adequacy requirements for credit risk, 

operational risk and market risk for banks (Basel, 1999). 

Banks have different ways of calculating their credit risk. One of the methods that can be 

used is rankings from authorized ranking agencies such as Fitch, Moody’s and Standard & 

Poors.  

This method is called "the standardized method" due to an external actor's assessment of 

the debt. The following table shows different credit ratings and their risk classification 

provided by Fitch. 
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Table 1 – Fitch Rating Definition 

Fitch Rating definition  

Rank Rating grade Risk Characteristic 

1 AAA Prime 

2 AA+ High Grade 

3 AA 

4 AA- 

5 A+ Upper Medium Grade 

6 A 

7 A- 

8 BBB+ Lower Medium Grade 

9 BBB 

10 BBB- 

11 BB+ Non-investment grade speculative 

12 BB 

13 BB- 

14 B+ Highly Speculative 

15 B 

16 B- 

17 CCC+ Substantial Risks 

18 CCC Extremely Speculative 

19 CCC- Default imminent with little prospect for recovery 

20 CC 

21 C 

22 D In Default 

Source: (Fitch, 2018) 

As an alternative approach to risk calculation, banks can create internal models. The banks 

themselves can calculate the probability of default with or without regulatory approval 

(Balin, 2008). This method is called the "Internal Rating Based" approach (IRB). 
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As mentioned earlier in the thesis, there are three calculation methods for the assessment 

and protection against operational risk. The methods are mutually exclusive, in other words, 

banks must choose which method they want to use. The first of the methods, the Basic 

Indicator Approach, recommends that banks hold capital equivalent to 15% of average gross 

income over the past three years. Alternatively, banks can divide their business into different 

business areas, where each area is weighted to their relative size. Banks can then calculate 

the weighted capital requirements. This is done to hold reserves covering the total 

operational risk.  

The capital holdings required for less risky business lines, such as retail brokerage and asset 

management, have lower capital requirements than divisions such as the corporate market 

of a riskier nature. This method of calculating capital requirements around operational risk is 

called "Standard Approach". 

The final method the banks can use is the Advanced Measurement Approach (AMA). This 

method is more demanding than the two previous methods for both the authorities and the 

banks. The reason for this is that banks, using this method, must develop own models for 

calculating capital at operational risk. The supervisory authorities must then approve the 

models so that they can be used by the banks. This approach has many similarities to IRB, as 

described in more detail later in this chapter. Both models try to bring more discipline and 

self-monitoring within the banking legislation and reduce the variance that a regulatory 

framework often has because of generalization. 

The last risk the first pillar is trying to quantify is equity volatility based on their market risk. 

In assessing market risk, Basel II distinguishes between fixed income and other products such 

as equity and foreign exchange markets. There exists a variety of different areas for market 

risk, but the two biggest risks banks face is interest and volatility risk. 

When calculating capital requirements for protection against interest rate and volatility risk 

for interest-bearing assets (government debt, bonds, etc.), "Value at Risk" (VAR) is used.  
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This has similarities with AMA and IRB, with the development of own internal models from 

the banks in all three methods. 

Supervisory Review Process – The second pillar is the Supervisory Review Process. The 

authorities have the task of ensuring that banks maintain the minimum capital requirement 

and they have the authority to impose individual capital adequacy requirements. The 

individual orders may have different reasons, one reason is that banks can cause major 

socioeconomic consequences if bankrupted. 

Following an evaluation of the banks' risk and capital adequacy process, risk level and the 

quality of the management and control routines that the banks possess. It will be revealed if 

there are weaknesses / deficiencies to be addressed. If the error is detected, the authorities 

intervene at an early stage to avoid financial crises and reduce the consequences. 

Market Discipline - The last pillar of Basel II, concerns the transparency of banks' financial 

position with regard to the minimum capital requirement, in pillar I. By this pillar, both 

capital requirements and supervision must be disclosed to the market (Basel, 2016). Through 

publication, pillar III will increase transparency on banks 'financial position. Which will benefit 

the market because public information will make it easier for the market to assess the banks' 

capitalization and risk profile. 

3.1.3 Basel III 
The third accord from the Basel Committee on Regulating Capital and Banking is called Basel 

III and will start its implementation from 1.1.2019. Basel III will also be based on the same 

three pillars as Basel II. The work on designing the new guidelines came as a result of Basel II 

failing to prevent the financial crisis, we experienced in 2007-2008. Basel III thus is a further 

development of the previous three pillars. 

The Basel Committee wanted through the new rules, further increasing the robustness of 

banks. The reforms strengthen the capital base and increased risk coverage in the capital 

framework. 
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The Basel Committee identified several issues regarding the counterparty credit risk (CCR) 

during the financial crisis. CCR is the risk of counterparties defaulting on their liabilities 

before the final settlement of the transaction takes place (Bank for International Settlements 

Communications, 2010). The financial loss of default requires that the transaction or 

portfolio of the transaction is “in the money” at the time of default (Bank for International 

Settlements Communications, 2010). Unlike credit risk directed at companies by exposure 

through a loan and where exposure is unilateral, where only the lending bank is running 

some kind of credit risk. 

3.2 Counterparty Credit Risk (CCR) 
One problem that was observed during the financial crisis was defaulting counterparties 

occurring at the same time as volatility in the market was at its highest. This resulted in a 

higher counterparty risk than otherwise. In addition, it was found that about two thirds of 

the CCR losses was due to "Credit Valuation Adjustment (CVA)" and that the remaining one-

thirds were due to actual defaults (Kroon & Lelyveld, 2018). 

The Basel Committee has proposed a number of changes to the Basel III regulations to 

strengthen the capital requirement for CCR and the proposals are rooted in the reason 

behind the financial crisis. The CVA supplement is one of the proposals submitted by the 

Committee to better secure banks against counterparty risk, such as the IRB method that will 

be discussed in the next section.  

3.2.1 Internal Rating-Based (IRB) approach 
The internal rating-based approach, as the name implies, is an internal method that 

approved banks can use to calculate different risk measures.  

Such risk measures are then used for the risk-weighted assets calculation in accordance with 

the necessary capital requirements.  In other words, banks under the Basel guidelines, can 

use own risk measurements for the calculation of regulatory capital. 
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In order to calculate the capital requirements, there are three elements needed. Firstly, the 

Risk parameters. These parameters include the probability of default, exposure at default, 

loss given default and maturity. Secondly are the risk-weight functions. These functions map 

the different parameters to the respected risk-weighted assets. Lastly are the minimum 

requirements. The minimum requirements are requirements that a bank must satisfy in order 

to use the internal rating-based approach.  

The Basel accord provides two broad methods that can be used by a bank: 

1. Foundation approach 

2. Advanced approach 

When applying the foundation approach, the bank calculates their own probability of default 

parameter, while the other risk factors are provided by the national supervisors. When the 

advanced approach is used, banks calculate all the risk parameters as long as certain 

minimum guidelines are satisfied (Bank for International Settlements Communications, 

2010). 

In the Basel III, there arise some changes to the previous accord regarding what methods can 

be used. Both Basel II and Basel III differentiates between different classifications of risk 

exposures and for what methods can be applied when measuring its components.  
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Table 2 – Revised Scope of IRB  

Revised scope of IRB approaches for asset classes 

Portfolio/exposure Basel II: available approaches Basel III: available 

approaches 

Large and mid-sized 

corporates (consolidated 

revenues > EURm 500 

A-IRB, F-IRB, SA F-IRB, SA 

Banks and other financial 

institutions 

A-IRB, F-IRB, SA F-IRB, SA 

Equities Various IRB approaches SA 

Specialized lending A-IRB, F-IRB, slotting, SA A-IRB, F-IRB, slotting, SA 

Source:  (Basel Committee on Banking Supervision , 2017) 

For Nordea, the counterparty risks are classified under “Banks and other financial 

institutions”. In the previous accord the Standard Approach, Advanced Approach and 

Foundation Approach could be used. However, with the new framework, only the 

Foundation and Standard approach are accepted methods. (The standard approach uses 

external rating agencies for the calculation of the risk components.) Hence, with respect to 

the motivation of this thesis the relevant approach analyzed is the foundation approach.  

Nordea’s counterparties in relation to the OTC trade arrangements falls under the categorical 

term “Market risk” stapled by the Basel committee. This is due to that all trades are executed 

from the trading desk and that the different trades involve different type of financial 

instruments.  

To be specific, Nordea asked for the risk assessment of the OTC counterparties. In 

accordance with §40 in the Basel Committee publication of the Minimum capital 

requirements for market risk (BIS, 2016), the following is written:  
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“Banks will be required to calculate the counterparty credit risk charge for OTC derivatives, 

repo-style and other transactions booked in the trading book, separate from the capital 

charge for general market risk” (BIS, 2016). 

By adhering this method of risk assessment, Nordea must follow the same approach as for 

Credit risk in the banking book. This means that the internal rating-based approach is the 

relevant method for the OTC counterparty risk assessment. Hence, Nordea is able to 

calculate their own risk components, such as the probability of default. 

3.2.2 Probability of default 
Under the classification of Banks and other financial institutions, the probability of default is 

defined as the likelihood of a default within a one-year period. 

For the calculation of the probability of default with the application of any internal rating-

based approach, there are certain requirements that must be attained. Specifically, the 

estimation must reflect the counterparties involved and transaction characteristics. Also, the 

estimation must hold a certain consistency and be accurate when estimating the risk. The 

estimation must be logical and documented, so that replication of the method is possible for 

regulatory entities. Any scrutiny of such methods should yield a model that in no way 

provokes a rating system that favor systems minimizing regulatory capital requirements.  

In terms of data quality, the internal estimates must take into consideration all possible 

internal and external data available. The data used for estimation must be based on sound 

historical and empirical evidence so to limit decisions based purely judgmental. Lastly, for the 

parameter estimates, a layer of conservatism should be added to reflect potential errors in 

the estimations that can occur. 

The model developed can be based upon the following techniques; internal default 

experience, mapping to external data and statistical default models.  
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4 Conceptual framework 
As this paper wish to exploit opportunities by using artificial intelligence to calculate the 

default probability for different counterparties. This chapter will present a short introduction 

to Artificial Intelligence, before moving on to the subsection Machine Learning and the 

relevant methods of calculation for probability of default. 

4.1 Artificial Intelligence 
Artificial intelligence is a common term used for machine intelligence. All sub-terms are 

based on the same goal, learning or programming a machine to perform or reach a specific 

objective without any task-specific programming. There exist a variety of Artificial 

Intelligence fields, such as robotics, voice recognition and machine learning. Common for all 

is to “mimic” the human brain and how it reacts and responds to problems by observing, 

analyzing and imminently learning from past experiences (Poole, Mackworth, & Goebel, 

1998). In our case, we which to use machine learning.  

4.2 Machine learning 
Machine learning is a subsection of artificial intelligence. (Samuel, 1959) defines machine 

learning as a collective term for methods that have the ability to learn without explicitly 

being programmed. It involves machines learning from historical input data to develop a 

wanted behavior. By using statistical models, mathematical optimization and algorithms, the 

machine can find complex patterns in a dataset and take intelligent decisions based on these 

discoveries.  

This learning is then applied when looking at other companies in the future. The goal is 

similar to the linear approximation, where the network map’s the input variables to the 

dependent variables (McNelis, 2005). When working through the dataset, the system should 

in the future be able to identify corporations that most likely default.  
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The three types of learning structures within Machine Learning will be presented in the 

following sections 

4.2.1 Supervised learning 
Supervised learning operates with labeled input data. This means that the algorithms learn to 

predict the given output from the input data. Learning evolves around creating training sets 

where the algorithm is provided with correct results. The aim is then for the network to learn 

and find connections between the input and output pairs.  

If the algorithm predicts the wrong result, it adjusts the weights in the model. This type of 

learning is applied in cases were the network has to learn to generalize the given examples. A 

typical application is classification. In this example, a given input has to be labeled as one of 

the defined categories. This is done by using the algorithm as a mapping function. During the 

training process, as the results are known, the process stops if the algorithm achieve an 

acceptable level of performance.  

The two main subsections of supervised learning problems are regression and classification 

problems: 

- Classification: A classification problem is when the output variables is a category, 

such as red or blue 

- Regression: A regression problem is when the output variable is a real value 

4.2.2 Unsupervised learning  
With unsupervised learning, the data infused to the model is unlabeled. Hence no dependent 

variables are provided. The algorithm then develops structures and systems to find patterns 

in the data. This means that the model itself creates desired outputs.  Different algorithms 

can be used with unsupervised learning to guide the networks adaption of its weights and 

self-organize.  

As the learning is unsupervised, there are no correct answers (or penalties given to the 

model). The algorithm is simply used to discover and resent acknowledgeable patterns or 



25 
 

structures. This type of learning is mostly used when the data modeler believes there exists 

underlying structures as well as distributions in the data, making the process relevant for 

both data mining and clustering.  

The unsupervised learning problems are subdivided into two main objectives. These are 

association or clustering. 

- Clustering: Clustering explore similar patterns for different data points. Which 

makes it possible to group subsets. One example is using purchasing behavior to 

classify customers. 

- Association: Aims at mapping segments of the data by creating rules to describe 

patterns.  One example could be to find relations between a customer that buys 

product x also tends to buy product y. 

4.2.3 Reinforced learning 
Reinforced learning trains the network by introducing prizes and penalties as a function of 

the network response. Prizes and penalties are then used to modify the weights. Reinforced 

learning algorithms are applied, for instance, to train adaptive systems which perform a task 

composed of a sequence of actions. The outcome is the result of this sequence. Therefore, 

the contribution of each action must be evaluated in the context of the action chain 

produced.  

4.3 Supervised algorithms 
As this thesis aims at explaining the relation between input data and the likelihood of default 

based on historical data, the teaching method with most relevancy is the supervised learning. 

There exists a great amount of supervised learning algorithms that can be used for prediction 

problems. A learning algorithm is constructed by a “loss” function and an optimization 

technique with the goal of finding the correct weightings for the model.  
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The loss function is the penalty rate, when estimations from the model is too far off the 

expected result. The optimization technique tries to limit the prediction errors. The different 

algorithms use different loss functions and different optimization techniques.  

Each algorithm has its own style or inductive bias and it is not always possible to know which 

algorithm is most suitable for one specific problem. Therefore, one need to experiment with 

several different algorithms to see which algorithm provide satisfactory results.   

As the goal of any algorithm used is to find out the probability of a company defaulting or 

not, the problem falls under the category of binary classification. Thereby, the experiment 

can be limited so to only use algorithms developed for that purpose.  

Algorithms that are used for classification problems are subdivided into two categories. 

Namely discriminative and generative. Generative models are a statistical model of the joint 

probability distribution of X∙Y where x is the input and y is the prediction.  

The prediction is done by applying Bayes theorem to calculate Px, and then to select the 

most likely outcome based on a threshold. (It is the Px value that will yield the wanted 

probability of default for the counterparties). The discriminative model is a model of the 

conditional probability that gives Px, which makes it possible to predict y when the value of x 

is given.  

Generative programming provides a richer model with more insights to how the data was 

generated. This makes the model more flexible as it is possible to assign conditional relation 

between data points, generate synthetic data or adjust for missing data. 

Discriminant learning does not yield the same insights, as its only focus is to predict the result 

y given x. As the generic model is richer with respect to data insights, it requires higher 

computational power. Further, discriminant models are proven superior because it only 

focuses on the actual task the machine need to solve. Therefore, when not in need of the 

insights the generative models provide, it is more profitable to use a discriminatory model.  
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5 Theoretical Framework 
The underlying theory for the various models is presented in this chapter. Here with special 

emphasis on the mathematical construction of the different models. All presented models 

will be introduced in its simplest form before adding, different relevant components or 

dimensionalities. Such as the different activation functions, kernels and other tuning 

parameters. Before any of the models are introduced, as theoretical framework of the 

different models’ objectives is explained. With special emphasis on binary classification 

where the data is liner or non-linear. Also, the logistic regression will be presented, being the 

underlying benchmark for the models. 

5.1 Linear and Non-Linear Classification 
The importance of classification is absolute for finding good and bad counterparties. 

(Breiman, Random Forests, 2001) defines statistical classification as “the problem of 

identifying to which of a set of categories a new observation belongs, on the basis of a 

training set of data containing observations whose category membership is known”. Meaning 

that the ability to split the data, distinguish between groups and differentiate random noise 

from the data, is evident for all good classification models. 

The classifiers main application is for predicting unobserved data. The functions separate two 

classes by applying a hyper-plane or a line to separate the classes in different dimensions. 

Standard theory presents two methods for creating such boundaries, either linearly or non-

linearly.  Which is decided by the shape of the decision boundary. For the more formal 

definition and underlying math, we have focused heavily on the theory provided by (Hastie, 

Tibshirani, & Friedman, 2013). 

Given a data universe R with two classes of observations, say X and Y. The separating 

hyperplane is constructed by a linear boundary. There can be multiple separating 

hyperplanes, and we will therefore first present the general theory before moving on to the 

optimal separating hyperplane. 
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Constructing the separating hyperplane with a decision boundary can be formulated as: 

 

𝑓𝑓(𝑋𝑋) = 𝑥𝑥𝑇𝑇 𝛽𝛽 +  𝛽𝛽0 = 0 

5.1.1 

Where 𝛽𝛽0 is the intercept, also known as bias in machine learning and the weight vector is 

described as 𝑥𝑥𝑇𝑇. While x is the observed values.  

 

 

Source: (Hastie, Tibshirani, & Friedman, 2013) 

 

Hastie et.al defines a hyperplane as:  

{𝑥𝑥 ∶ 𝑓𝑓(𝑥𝑥) =  𝑥𝑥𝑇𝑇 ∗  𝛽𝛽 + 𝛽𝛽0 = 0} 

 

5.1.2 

Where 𝛽𝛽 is a unit vector: 𝛽𝛽  = 1. The classification from here is straight forward, infused data-

points yielding a value above 1 belongs to one of the classes as they are above the decision 

boundary. An observation value that belongs to -1 is thus the opposite and lays underneath 

the decision boundary.  

We can therefore construct the decision function accordingly: 

𝐺𝐺(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑇𝑇 𝛽𝛽 +  𝛽𝛽0) 

 

5.1.3 

Figure 1 – Linear decision boundary Figure 2 – Linear decision boundary equation 
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Where sgn() represents the sign function which produce output above one for positive 

parameters,  -1 for negative parameters. With only two possible outcomes [-1, 1] the 

problem is known as the statistical binary classification problem.  

There exists generalization for finding the optimal decision boundary. If the output domain 

consists of 𝑚𝑚 classes, in example 𝑦𝑦 = {1, 2, 3, . . . , m}, the method is m-class classification. 

The aim is to minimize the variance from the predicted and known outputs by adjusting the 

weighting of the variable vector 𝑥𝑥𝑇𝑇 and the constant term b (Hastie, Tibshirani, & Friedman, 

2013). 

Discriminative learning is the most common approach for this problem. The discriminative 

learning aims at finding the optimal relation between the inputted variables and the 

dependent variables. This without any assumption regarding the underlying distributions of 

all relevant variables. In other words, the model attempts finding the conditional probability 

distribution 𝑝𝑝{y . . . x} directly. As opposed to generative models, that attempts finding the 

joint probability distribution. Examples of discriminative models are Neural networks, Logistic 

regression and Support vector machines.  

Discriminative learning uses geometrical interpretation of the linearity and input data, to find 

the boundaries. Their methods however distinguish by the different linear classifiers creating 

such boundaries. The conceptual idea of the different models is relatively similar.  

Some classifiers are often more applicable, as they tend to outperform other types. There 

exists some common characteristics for evaluating classifiers. The ability of handling the 

linearly inseparable data.  

- Finding non-linear relationships in the dataset and utilizing these relations 

- Handling and classifying non-linearly data 

- Capability of generalizing and reducing the impact of outliers as well as noise 

In the following sections, some classifiers will lack the ability to deal with some of these 

points. While other classifiers have the ability to handle these issues. 
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5.2 Logistic Regression 
The mathematical concept of the logistic regression is used in accordance with the theory 

presented by (Agresti, 2012) and (Hosmer, Lemeshow, & Sturdivant, 2013) and its connection 

to the probability of default modelling (Hastie, Tibshirani, & Friedman, 2013). 

Ever since David Cox developed the model in 1958 the logistic regression model has become 

somewhat of an industry standard. Due to its stable performance and easy implementation it 

has been heavily used in finance and other areas. Further (Ohlson, 1980) pointed out that the 

logistic regression provides highly interpretable coefficients compared with other models. 

In the following section the mathematics underlying the logistic model is presented.  

If considering a collection of 𝑛𝑛 independent variables denoted by the vector 𝑥𝑥′ =

(𝑥𝑥1, 𝑥𝑥2 … , 𝑥𝑥𝑛𝑛). The dependent variable 𝑌𝑌𝑥𝑥 has a binary distribution:  

𝑌𝑌𝑥𝑥 �
1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

0 = 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

5.2.1 

Then the conditional probability for the outcome can be denoted:  

 

𝑃𝑃(𝑌𝑌 = 1 ∣ 𝑥𝑥 ) =  𝜋𝜋(𝑥𝑥)  

 

5.2.2 

The logit of multiple regression model is given by equation: 

𝑔𝑔(𝑥𝑥) = 𝐵𝐵0 +  𝛽𝛽1 𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯  𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 

 

5.2.3 

In which case the logistic regression model’s final form is described by (Hosmer, Lemeshow, 

& Sturdivant, 2013): 

𝜋𝜋(𝑥𝑥) =  
𝑒𝑒𝛽𝛽′𝑥𝑥

1 +  𝑒𝑒𝛽𝛽′𝑥𝑥
 

 

5.2.4 

The primary objective is to define an appropriate model to capture the dependence of the 

probability of default on the vector for the input variables. 
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To receive our desired results, we can apply the odds-function as the ratio for the probability 

of default. 

𝑂𝑂𝑂𝑂(𝑥𝑥) =  
𝑃𝑃(𝑌𝑌𝑥𝑥 = 1)
𝑃𝑃(𝑌𝑌𝑥𝑥 = 0) =  

𝜋𝜋(𝑥𝑥)
1 − 𝜋𝜋(𝑥𝑥)

 

 

5.2.5 

However, this function is mapped into the interval (0,∞ ) because the Odds-Ratio can take 

on any real-value. While in our case, the probability 𝜋𝜋(𝑥𝑥) ranges between one and zero. We 

therefore apply the logit transformation from (Hosmer, Lemeshow, & Sturdivant, 2013). 

𝑔𝑔(𝑥𝑥) = ln(
𝜋𝜋(𝑥𝑥)

1 − 𝜋𝜋(𝑥𝑥)
= 𝐵𝐵0 +  𝛽𝛽1 𝑥𝑥 

 

5.2.6 

Therefore, we end up with the formula for a logistic regression within our desired interval. 

The final form is as mentioned in (Hastie, Tibshirani, & Friedman, 2013): 

𝜋𝜋(𝑥𝑥) =  
𝑒𝑒𝛽𝛽′𝑥𝑥

1 +  𝑒𝑒𝛽𝛽′𝑥𝑥
 

 

5.2.7 

Other possible transformation is an application of the distribution function Φ of standard 

normal distribution, known as probit (Hastie, Tibshirani, & Friedman, 2013): 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) = ɸ−1�𝜋𝜋(𝑥𝑥)� 

 

5.2.8 
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Figure 3 – Logit vs Probit 

Source: Produced in RStudio 

The main advantage of logit is its closed form. Making it not only easier to compute, but also 

offering a better understanding and interpretation of change in the parameters. This is 

suitable when calculating the odds effect for a change in the vector value 𝑥𝑥𝑖𝑖 . 

5.3 Neural Networks 
The structure and theory in this section is inspired by (McNelis, 2005). Where we have 

decided to focus on Feedforward Networks, Jump Connections and Multi-layered 

Feedforward Networks for the task at hand. To start with, a short introduction of Neural 

Networks as a concept is presented. 

Neural networks are machine learning systems based on a simplified model of the biological 

neuron (Haykin, 2009).  Similar to the behaviour of the biological neuron, neural networks 

modify their internal parameters in order to perform a given computational task. Both linear 
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models and neural networks aim to transform a set of given input variables into a set of 

output variables.  

The difference between other approximation methods and neural networks is that neural 

networks uses a hidden layer. “In which the input variables are squashed or transformed by a 

special function, known as a logistic or logismoid transformation” (McNelis, 2005). Where the 

special function often is referred to as the activation function. The hidden layers can often be 

hard to understand due to its “black-box” structure, nevertheless they can be extremely 

powerful in the effort for making nonlinear relationship models.  

The two main issues to be defined in a neural network application are the structure of the 

network typology and the learning algorithm (In example, the procedure used to adapt the 

network so to solve the computational task at hand).  

5.3.1 Feedforward Networks 

The figure underneath presents a simplified structure of the feedforward network. It can be 

seen that the network composes three input variables {𝑥𝑥𝑥𝑥}, 𝑖𝑖=1,2,3….,𝑛𝑛, an additional layer, 

known as the “hidden layer” n, and lastly the output variable y (McNelis, 2005). 

Source: Illustration inspired by (McNelis, 2005). 

Figure 4 – Architecture of Basic Feedforward Network 
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The hidden layer is useful for parallel calculation of information as compared to, in example, 

linear models applying sequential processing. The parallel processing gives an advantage in 

the estimation of outputs due to its ability of running several different calculation processes 

at once. Imminently resulting in multiple outputs that can expose different variations of the 

final result (McNelis, 2005). Therefore, not being limited by the disadvantage of linear 

optimization.  

Typical tasks neural networks perform efficiently and effectively are: Classification, 

recognizing patterns in data and prediction. 

Neural networks generation of an output is divided in two steps, weights and activation. 

Firstly, the weighted sum of inputs are transformed into linear combinations: 

𝑦𝑦𝑖𝑖 = �𝑊𝑊𝑗𝑗,𝑖𝑖𝑎𝑎𝑗𝑗
𝑗𝑗 ∈ 𝐼𝐼

   𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 5.3.1.1 

 

Secondly, the linear combinations are processed by an activation neuron. 

𝑎𝑎𝑖𝑖 = 𝑔𝑔(𝑦𝑦)  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑔𝑔 

 

5.3.1.2 

Where 𝑊𝑊𝑗𝑗,𝑖𝑖 is the weight of the link connection neuron j with neuron 𝑖𝑖 and 𝑎𝑎𝑖𝑖 is the activation 

of neuron 𝑗𝑗. (Angelini, di Tollo, & Roli, 2008). The activation function g can be any function, 

where the most common is linear, step, Gaussian, tansigmoid or logismoid functions.  

The following graph visualises the behaviour for different activation functions from the input 

layer to the output neutron. 
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Figure 5 – Different activation functions 

Source: Produced in RStudio 

The attractiveness of the sigmoid function, or more commonly known as the logit function, is 

due to its binary behaviour. First of all, it is bounded between zero and one, and its derivative 

is easy to calculate. Secondly, it can reasonably well describe the majority of the different 

responses to development in underlying variables.  

Hence, the network is able to distinguish between large changes in outliers not relevant for 

the population as a whole, and rather highlight smaller changes in relevant observations 

reflecting the majority of the data-set.    

The mathematical expression for a simple network with one hidden layer as described by 

(McNelis, 2005). 

𝑛𝑛𝑘𝑘,𝑡𝑡 = 𝜔𝜔𝑘𝑘,0 + �𝜔𝜔𝑘𝑘,𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡

𝑖𝑖

𝑖𝑖=1

 
5.3.1.3 
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𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝐿𝐿�𝑛𝑛𝑘𝑘,𝑡𝑡� =
1

1 + 𝑒𝑒−𝑛𝑛𝑘𝑘,𝑡𝑡
 

5.3.1.4 

 

𝑦𝑦𝑡𝑡 = 𝛾𝛾0 + 𝑁𝑁𝑘𝑘,𝑡𝑡 = �𝛾𝛾𝑘𝑘𝑁𝑁𝑘𝑘,𝑡𝑡

𝑘𝑘

𝑘𝑘=1

 

 

5.3.1.5 

If we create an index i containing all of the inputted variables {𝑥𝑥}{x}, and also an index k for 

all of the neurons enabling the parallel processing, we can use the logismoid activation 

function 𝐿𝐿(𝑛𝑛𝑛𝑛). With the application of the activation function a multitude of linear 

connections of nk is produced with different functions of weights 𝑤𝑤𝑤𝑤, and the constant term 

𝑤𝑤𝑤𝑤,0. The transformation of nk by the activation function creates neurons for the different 

observations t, resulting in the different neurons 𝑁𝑁𝑁𝑁,  for all observations t. The 

combinations of the linear functions with the specific neurons creates a vector containing all 

of the coefficients {𝑦𝑦𝑦𝑦} and the constant term 𝑦𝑦0. The vector is then used to calculate the 

forecasted 𝑦̂𝑦𝑡𝑡 at observation 𝑡𝑡. 

As described earlier, the logismoid is preferred as an activation function for generating 

outputs of probability. There exist alternatives such as tansigmoid to use as activation 

functions instead. Depending on the task at hand, the different functions all serve their 

purpose as activation functions. To illustrate the change of activation function in a 

mathematical context, we present the calculation described by (McNelis, 2005): 

𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝐿𝐿�𝑛𝑛𝑘𝑘,𝑡𝑡� is replaced with 𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝑇𝑇�𝑛𝑛𝑘𝑘,𝑡𝑡� 
 

5.3.1.6 

 

Which gives  𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝑇𝑇�𝑛𝑛𝑘𝑘,𝑡𝑡� = 𝑒𝑒𝑛𝑛𝑘𝑘,𝑡𝑡−𝑒𝑒−𝑛𝑛𝑘𝑘,𝑡𝑡

𝑒𝑒𝑛𝑛𝑘𝑘,𝑡𝑡+𝑒𝑒−𝑛𝑛𝑘𝑘,𝑡𝑡    instead of 𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝐿𝐿�𝑛𝑛𝑘𝑘,𝑡𝑡� = 1
1+𝑒𝑒−𝑛𝑛𝑘𝑘,𝑡𝑡 

 

As we can see the only change in the end formula is the interpretation of 𝑁𝑁𝑘𝑘,𝑡𝑡,. We can follow 

the same procedure for the Gaussian function, also an alternative activation function. 
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Giving us  𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝜙𝜙�𝑛𝑛𝑘𝑘,𝑡𝑡� = ∫ � 1
2𝜋𝜋

𝑛𝑛𝑘𝑘,𝑡𝑡
−∞ 𝑒𝑒

−𝑛𝑛𝑘𝑘,𝑡𝑡
2

2  

 

5.3.1.8 

 
As mentioned, neural networks perform classification in a highly effective way. To illustrate 

decision boundaries for aforementioned activation functions, see below. 

 

 

Source: Visualisation inspired by (Ozaki, https://tjo-en.hatenablog.com, 2015) 

 

 

𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝐿𝐿�𝑛𝑛𝑘𝑘,𝑡𝑡� is replaced with 𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝜙𝜙�𝑛𝑛𝑘𝑘,𝑡𝑡� 5.3.1.7 

Figure 6 – Separation using Neural Network with Different Activation Functions 
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5.3.2 Jump Connections 

 The previous section introduced a simple feedforward architecture. The following section will 

present an extension to the simple network. One example, and as shown in the figure 

underneath, is jump connections. Where the inputs can have a direct linear link to the output y 

(McNelis, 2005). 

 

Source: Illustration inspired by (McNelis, 2005). 

𝑛𝑛𝑘𝑘,𝑡𝑡 = 𝜔𝜔𝑘𝑘,0 + � 𝜔𝜔𝑘𝑘,𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡
𝑖𝑖

𝑖𝑖=1
 

5.3.2.1 

 

𝑁𝑁𝑘𝑘,𝑡𝑡 = 𝐿𝐿(𝑛𝑛𝑘𝑘,𝑡𝑡) =
1

1 + 𝑒𝑒−𝑛𝑛𝑘𝑘,𝑡𝑡
 

5.3.2.2 

 

𝑦𝑦𝑡𝑡 = 𝛾𝛾0 + �𝛾𝛾𝑘𝑘𝑁𝑁𝑘𝑘,𝑡𝑡 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡

𝑖𝑖

𝑖𝑖=1

𝑘𝑘

𝑘𝑘=1

 

 

5.3.2.3 

Figure 7 – Feedforward Network with Jump Connections  



39 
 

As we can see, the only difference from the original feedforward network is the additional 

coefficient 𝛽𝛽𝑖𝑖. Which represents the direct link from input x with output y. The advantage of 

this, is that the non-linear and linear calculations gets gathered as a combined version of the 

non-linear and linear components. However, this also means that computational process is 

extended due to the increased parameters (McNelis, 2005). 

5.3.3 Multi-layered Feedforward Networks. 

When opposing problems with increased complexity, we can extend the network by adding 

multiple hidden layers. This type of feedforward network is known as “Multi-layered 

Feedforward networks”. The mathematical representation as described by (McNelis, 2005) 

follows: 

𝑛𝑛𝑘𝑘,𝑡𝑡 = 𝜔𝜔𝑘𝑘,0 + �𝜔𝜔𝑘𝑘,𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡

𝑖𝑖

𝑖𝑖+1

 
5.3.3.1 

 

𝑁𝑁𝑘𝑘,𝑡𝑡 =
1

1 + 𝑒𝑒−𝑛𝑛𝑘𝑘,𝑡𝑡
 

5.3.3.2 

 

𝑝𝑝𝑙𝑙,𝑡𝑡 = 𝜌𝜌𝑙𝑙,0 + �𝜌𝜌𝑙𝑙,𝑖𝑖𝑁𝑁𝑘𝑘,𝑡𝑡

𝑘𝑘

𝑘𝑘=1

 
5.3.3.3 

 

𝑃𝑃𝑙𝑙,𝑡𝑡 =
1

1 + 𝑒𝑒−𝑝𝑝𝑙𝑙,𝑡𝑡
 

5.3.3.4 

 

𝑦𝑦𝑡𝑡 = 𝛾𝛾0 + �𝛾𝛾𝑙𝑙𝑃𝑃𝑙𝑙,𝑡𝑡

𝑙𝑙

𝑙𝑙=1

 

 

5.3.3.5 
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Figure 8 – Architecture of Multilayered Feedforward Network 

Soruce: Illustration inspired by (McNelis, 2005). 

As seen in Figure 8 and in the mathematical system the second hidden layer is described as 

𝑃𝑃𝑖𝑖. It should be emphasized that adding additional hidden layers increases the number of 

parameters to be estimated. 

A more complex architecture as shown in Figure 8 allows for higher complexity, which can 

improve productiveness on more advanced problems. However, the negative impacts are 

that we estimate much more parameters, which increase computation time and effort.  With 

more parameters, there is also the likelihood that the parameter estimates may converge to 

a local, rather than global optimum (McNelis, 2005). 

5.4 Support Vector Machines 
Support Vector Machines (SVM) is a relatively new learning method and has since the 1995 

been one of the most popular learning methods used for regression and binary classification. 

Its current structure, introduced in 1992 by Boser, Guyon and Vapnik, is known as a method 

with high prediction power. In addition, the algorithm can be adjusted so to limit over-fitting 
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the prediction, and thereby improve the accuracy of the model. The following section will 

introduce the application of the Support Vector Machine.  

The crucial idea of the SVM is that it uses the geometrical concept of hyperplanes, which 

separates multidimensional data into classes. When the data is not linearly separable, SVM 

introduces the approach of kernel tricks, or “kernel induced feature space” (Cortes & Vapnik, 

1995). The kernel trick creates a higher dimensional space, where it is possible to separate 

the data linearly, thereby splitting positive and negative data points in the multi-dimensional 

space.      

The hyperplane serves as a function for creating a boundary between the different 

classifications’ groups, so that imaginary margins between classes are maximized. In a two-

dimensional space, the positives and negatives are separated by a line. If the space is three-

dimensional, a plane separates the different data points. Lastly, if the space is of n-

dimensions, the classes are separated using a hyperplane (Elizondo, 2006). 

The figure below, illustrates a classification in a two-dimensional space, where the two 

groups are separated with a line.  

 

Figure 9 – Separable and Non-separable classification 

Source: (Hastie, Tibshirani, & Friedman, 2013) 
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The figure illustrates the two cases of separable and non-separable classification. The 

decision boundary is the solid line, whereas the dotted lines bound the maximal margin with 

distance 2𝑀𝑀 = 2
||𝛽𝛽||

. For the non-separable case on the right panel, there can be observed 

data points overlapping the decision boundary. Here the points labeled 𝜀𝜀∗are on the wrong 

side of the boundary with size 𝜀𝜀𝑗𝑗∗ = 𝑀𝑀𝜀𝜀𝑗𝑗∗. (The observations on the correct side of the margin 

holds the error value 𝜀𝜀𝑗𝑗∗ = 0) The boundary in the non-separable case are maximized in 

accordance to a budgeted relaxation equal to  ∑𝜀𝜀𝑗𝑗∗ ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. In other words, ∑𝜀𝜀𝑗𝑗∗ is the 

total allowed distance of observations on the wrong side of the decision boundary.  

 

Figure 10 – SVM different cost functions 

Source: Produced in RStudio 
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The graph shows how different cost parameters affect the distance 2𝑀𝑀 = 2
||𝛽𝛽||

. When 2𝑀𝑀 is 

increased the size of ∑𝜀𝜀𝑗𝑗∗ can increase. (Will be further explained in this chapter).This can be 

useful, when there are no clear boundaries, between two subsets. In an attempt of finding a 

feasible solution, it can be relevant relaxing the cost parameter.  

The mathematical approach in the following subsections follows the same approach as 

presented by (Hastie, Tibshirani, & Friedman, 2013). Assuming a training set of 𝑁𝑁 pairs 

(𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛), with 𝑥𝑥𝑖𝑖𝜖𝜖 ℝ𝑝𝑝 and 𝑦𝑦𝑖𝑖𝜖𝜖{−1,1}. If 𝛽𝛽 is a unit vector: �|𝛽𝛽|� = 1, and 

𝑓𝑓(𝑥𝑥) is the induced classification rule, then 𝐺𝐺(𝑥𝑥) for two classes is set as: 

𝐺𝐺(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑥𝑥𝑇𝑇𝛽𝛽 + 𝛽𝛽0]. 5.4.1 

When defining a hyperplane (as in Ch. 5.1): 

{𝑥𝑥: 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝛽𝛽 + 𝛽𝛽0 = 0} 

 

5.4.2 

The induced classification rule 𝑓𝑓(𝑥𝑥) produces a positive or negative vector from the margin 

𝑀𝑀 to a point 𝑥𝑥𝑖𝑖 in the data set. If the two classes are separable, there exist a function for the 

classification rule as follow: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝛽𝛽 + 𝛽𝛽0 subject to min
β,β0

�|𝛽𝛽|� →𝑦𝑦𝑖𝑖𝑓𝑓(𝑥𝑥) ≥ 1, 𝑖𝑖 = 1, … ,𝑁𝑁,   

 

5.4.3 

If the classes overlap in the future space, we can relax the cost parameter: 

𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0) ≥ 𝑀𝑀(1 − 𝜀𝜀𝑖𝑖), ∀𝑖𝑖𝜀𝜀𝑖𝑖𝑦𝑦𝑖𝑖 ≥ 0,∑ 𝜀𝜀𝑖𝑖 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁
𝑖𝑖=1 . 

 

5.4.4 

The idea of 𝑀𝑀(1 − 𝜀𝜀𝑖𝑖) is to allow some of the observations to be on the other side of the 

decision boundary. The slack variables are then 𝜀𝜀 = (𝜀𝜀1, 𝜀𝜀2, … , 𝜀𝜀𝑖𝑖). Hence 𝜀𝜀𝑖𝑖 in the constraint 

𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0) ≥ 𝑀𝑀(1 − 𝜀𝜀𝑖𝑖), is the corresponding amount when 𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0 is on the 

wrong side of decision boundary (Hastie, Tibshirani, & Friedman, 2013). In other words, there 

will be a misclassification when 𝜀𝜀𝑖𝑖 > 1. By bounding this relaxation at some constant value, 

puts an acceptance criterion on the total amount of training misclassifications. 
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The alternative of relaxing the boundary makes the SVM attractive, as it is possible to adjust 

the effect of outliers. To specify, observations that are far away from the decision boundary 

are less influential in shaping the hyperplane (Cristianini & Shawe-Taylor, 1999).  

5.4.1 Support Vector Classifier 

The computation of the Support Vector classifier is complex from a mathematical standpoint. 

This section is therefore merely to present the mathematical relevancy of the classification 

problem. A more advanced and in-depth presentation of the issue can be found in (Hastie, 

Tibshirani, & Friedman, 2013). 

As presented above, the modification of the constraint with overlapping classification in the 

future space can be solved by relaxing the constrain in accordance with 𝑀𝑀(1 − 𝜀𝜀𝑖𝑖).  By using 

the measurement of actual distance from the boundary, the result is a convex optimization 

problem.  

Firstly, the support vector classifier is defined for the non-separable case as follow: 

min�|𝛽𝛽|� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �
𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0) ≥ 1 − 𝜀𝜀𝑖𝑖 ∀𝑖𝑖 ,

𝜀𝜀𝑖𝑖 ≥ 0,�𝜀𝜀𝑖𝑖 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
 

 

5.4.1.1 

Thus, the programming solution is quadratic with linear inequality constraints. It follows that 

the solution can be stated using Lagrange multipliers.  

minimize
𝛽𝛽,𝛽𝛽0

‖β‖2 + 𝐶𝐶 �𝜀𝜀𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 
5.4.1.2 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 𝜀𝜀𝑖𝑖 ≥ 0;𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0) ≥ 1 − 𝜀𝜀𝑖𝑖  

 

5.4.1.3 

It can be observed from the equation that the parameter 𝐶𝐶 replaces the constant. (In the 

separable case the constant 𝐶𝐶 corresponds to 𝐶𝐶 = 0.) 
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The Lagrange (primal) function is 

min
β,β0,𝜀𝜀𝑖𝑖

𝐿𝐿𝐿𝐿 → 𝐿𝐿𝑝𝑝 = 1
2
‖β‖2 + 𝐶𝐶 ∑ 𝜀𝜀𝑖𝑖 − ∑ 𝛼𝛼𝑖𝑖[𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑇𝑇β + β0) − (1 − 𝜀𝜀𝑖𝑖)] −𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

∑ 𝜇𝜇𝑖𝑖𝜀𝜀𝑖𝑖𝑁𝑁
𝑖𝑖=1 ´ 

 

5.4.1.4 

Setting the relevant derivatives to 0 gives us: 

𝛽𝛽 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 
5.4.1.5 

 

0 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 
5.4.1.6 

 

𝛼𝛼𝑖𝑖 = 𝐶𝐶 − 𝜇𝜇𝑖𝑖 ,∀𝑖𝑖 

 

5.4.1.7 

Further, the positive constraint is set to 𝛼𝛼𝑖𝑖 , 𝜇𝜇𝑖𝑖 , 𝜀𝜀 ≥= 0 ∀𝑖𝑖. Then, by substituting 𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼𝑖𝑖 in 

the primal function, the resulting function is the Lagrangian (Wolfe) dual objective function:   

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖 −
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖′ 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖′𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑖𝑖′

𝑁𝑁

𝑖𝑖′=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 

 

5.4.1.8 

The presented function produce a lower boundary for all appropriate points in the primal 

Lagrange function (Hofmann, Scholkopf, & Smola, 2008). 

The function 𝐿𝐿𝐿𝐿 is then maximized subject to 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 and ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0.𝑁𝑁
𝑖𝑖=1  By also 

employing the Kuhn-Tucker conditions, the following constraints are obtained: 

𝛼𝛼𝑖𝑖[𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0) − (1 − 𝜀𝜀𝑖𝑖)] = 0 5.4.1.9 
 

𝜇𝜇𝑖𝑖𝜀𝜀𝑖𝑖 = 0 5.4.1.10 
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𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0) − (1 − 𝜀𝜀𝑖𝑖) ≥ 0 

 

5.4.1.11 

For 𝑖𝑖 = 1, … ,𝑁𝑁. By the inclusion of the Kuhn-Tucker constraints and the referenced functions 

above equates the solution of the primal and dual problem, and that the solution for 𝛽𝛽 has 

the form: 

𝛽̂𝛽 = �𝛼𝛼�𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

 

5.4.1.12 

For the observations 𝑖𝑖 in which the constraints in (5.4.1.11) are exactly met as from (5.4.1.9) 

the 𝛼𝛼𝚤𝚤�  coefficients are nonzero.   

These observations are what is known as support vectors, due to the fact that 𝛽̂𝛽 is defined by 

them alone. Some of these support observations, lies on the edge of the boundary, thereby 

holding a zero distance from the margin. It follows from the equation (5.4.1.10) and (5.4.1.7), 

that when 𝜀𝜀𝚤𝚤� = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 0 < 𝛼𝛼𝚤𝚤� < 𝐶𝐶, and that for values were 𝜀𝜀𝚤𝚤� > 0,  𝛼𝛼�𝑖𝑖 = 𝐶𝐶. 

By looking at (5.4.1.9), any of the points that lies on the margin can be used for solving 𝛽𝛽0. For 

numerical stability, the average value of the solutions are normally applied.  

When knowing the solution for both 𝛽̂𝛽0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽̂𝛽, the final function optimizing 𝐺𝐺�(𝑥𝑥)is therefore 

described as: 

𝐺𝐺�(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(𝑥𝑥)� = 𝑠𝑠𝑠𝑠𝑠𝑠[𝑥𝑥𝑇𝑇𝛽̂𝛽 + 𝛽̂𝛽0] 

 

5.4.1.13 

5.4.2 Kernels 

Up to this point, the general description of the Support vector machine has been presented. 

Further, an introduction to the calculation of the support vector classifier and its solution 

were illustrated. The classifier of the support vectors so far found linear boundaries in the 

input feature space. However, this is not always the case. By continuing the example of 

separating datasets in a two-dimensional space. The figure below shows how non-separable 

datasets can be mapped into a higher dimensional space.  
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This is done in order to separate the data in the new dimension, thereafter, classify and 

transform the data back into the original space.  In other words, employing a suitable 

function for mapping the observations into a higher dimensional space, and then separate 

the classes with a linear hyperplane.   

 

Figure 11 – Example of separating two classes in a new dimension 

Source: (Roemer, 2018) 

If assuming as before: {𝑥𝑥: 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝛽𝛽 + 𝛽𝛽0 = 0}  𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽 = ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1  the solution function 

𝑓𝑓(𝑥𝑥) can be written: 

𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥)𝑇𝑇𝛽𝛽 + 𝛽𝛽0 = � 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 ⟨ℎ(𝑥𝑥𝑖𝑖),ℎ(𝑥𝑥𝑖𝑖′)⟩ + 𝛽𝛽0 

 

5.4.2.1 

 

As before, given 𝛼𝛼𝑖𝑖 ,𝛽𝛽0 can be determined by solving 𝑦𝑦𝑖𝑖𝑓𝑓(𝑥𝑥) = 1 in (ref) for any (or all) 𝑥𝑥𝑖𝑖 for 

which 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶. 
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Then, to fit the Support vector classifier using the input feature space ℎ(𝑥𝑥𝑖𝑖) =

�ℎ1(𝑥𝑥𝑖𝑖),ℎ2(𝑥𝑥𝑖𝑖), … ,ℎ𝑚𝑚(𝑥𝑥𝑖𝑖)�, 𝑖𝑖 = 1, … ,𝑁𝑁 includes ℎ(𝑥𝑥) only through inner products. Here, 

examples of inner products can be the length of a vector, or the angle between two vectors.   

The main point is that the procedure of the classification in its essence is the same as without 

any kernel transformation. There is no need to specify the transformation ℎ(𝑥𝑥), but simply to 

understand the kernel function that computes the inner products in the transformed space. 

Hence, the computational cost is the same.  

As the classification procedure is the same, the dual function can be reformulated as: 

𝐿𝐿𝑑𝑑 = �𝛼𝛼𝑖𝑖 −
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖′  𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖′ ⟨ℎ(𝑥𝑥𝑖𝑖), ℎ(𝑥𝑥𝑖𝑖′)⟩

𝑁𝑁

𝑖𝑖′=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 

 

5.4.2.2 

 

And the solution for 𝑓𝑓(𝑥𝑥) can be rewritten 

𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥)𝑇𝑇𝛽𝛽 + 𝛽𝛽0 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖⟨ℎ(𝑥𝑥𝑖𝑖),ℎ(𝑥𝑥𝑖𝑖′)⟩
𝑁𝑁

𝑖𝑖=1

+ 𝛽𝛽0 
5.4.2.3 

 

As seen, both 𝐿𝐿𝐿𝐿 and 𝑓𝑓(𝑥𝑥) only involve ℎ(𝑥𝑥) through inner products. Hence, a mentioned, 

there is no need to specify the transformation ℎ(𝑥𝑥).  

If 𝐾𝐾 is defined as a symmetric positive (semi-) kernel function, then the function can be 

written as: 

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = ⟨ℎ(𝑥𝑥𝑖𝑖), ℎ(𝑥𝑥𝑖𝑖′)⟩ 

 

5.4.2.4 

Where 𝐾𝐾 is the computation of the inner products in the transformed space.  
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Four popular choices for 𝐾𝐾 in the SVM literature are: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: 𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = 𝑥𝑥 ∙ 𝑥𝑥′ 5.4.2.5 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑑𝑑 − 𝑡𝑡ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: 𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = (1 + ⟨𝑥𝑥, 𝑥𝑥′⟩)𝑑𝑑 5.4.2.6 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: 𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = exp(−𝛾𝛾‖𝑥𝑥 − 𝑥𝑥′‖2) 5.4.2.7 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = tanh(𝑘𝑘1⟨𝑥𝑥, 𝑥𝑥′⟩ + 𝑘𝑘2) 

 

5.4.2.8 

The figure below gives an example of the different Kernel functions and their separation: 

 

Figure 12 – Kernels and their approach for classification 

Source: Visualization inspired by (Ozaki, www.tjo-en.hatenablogg.com, 2015) 
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To our knowledge, there are no general rules for the selection of an optimal kernel function. 

The selection varies depending on the complexity of the data. In example, for datasets with 

linear relationships the Linear Kernel should be adequate. Further, applying Kernels that are 

more complex should not yield any improvements. If the data are of complex structures, in 

example no linear relations, there should be significant improvements by applying functions 

that are more complex.  Such complexity in the data often arises from graphical analysis, text 

analysis or audio analysis. Calculation of the default probability generally is between these 

extremes.  

5.4.3 Regression 

In this section, the adaptation of the Support Vector Machines for regression is presented. 

The adaption is done with a quantitative response in order to employ some of the properties 

from the classification function. Hence, SVM regression can be used to separate different 

classes. 

To discuss the base line, the linear regression model is defined as: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝛽𝛽 + 𝛽𝛽0 

 

5.4.3.1 

To handle nonlinear generalization, the estimation of 𝛽𝛽 is done by the minimization of: 

𝐻𝐻(𝛽𝛽,𝛽𝛽0) = �𝑉𝑉�𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)� +
𝜆𝜆
2

𝑁𝑁

𝑖𝑖=1

‖β‖2 

 

5.4.3.2 

Where 

𝑉𝑉𝜀𝜀(𝑟𝑟) = � 0         ;      |𝑟𝑟| < 𝜀𝜀  
|𝑟𝑟| − 𝜀𝜀 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

5.4.3.3 

For 𝑉𝑉𝜀𝜀(𝑟𝑟) the "𝜀𝜀 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠" is an error measure, so to ignore errors of size lower than 𝜀𝜀. 

Thereby limiting points far away from the decision boundary as well as points on the correct 

side during the optimization. This is similar to the analogy of support vector classification 

setup.   
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To specify, the "𝜀𝜀 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠" should not be mixed with the calculation of the support 

vector points. The calculation is similar, but the selection is different. Rather, in terms of 

regression, theses points are the observations with small residuals. Hence, fitting of the 

regression model, makes it less sensitive towards outliers in the training-set.  

The figure below is a graphical illustration of the 𝜀𝜀 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 error function exercised by 

the SVM. All points outside the decision boundary is not considered during the regression.  

 

Figure 13 - 𝜀𝜀 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 error function 

Source: (TwarakaviJiri, Simunek, & Schaap, 2009) 

For the successful minimization of 𝐻𝐻(𝛽𝛽,𝛽𝛽0), the solution for 𝛽𝛽 ̂ can be written 

𝛽̂𝛽 = �(𝛼𝛼�𝑖𝑖∗ − 𝛼𝛼�𝑖𝑖)𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 
5.4.3.4 

 

𝑓𝑓(𝑥𝑥) = �(𝛼𝛼�𝑖𝑖∗ − 𝛼𝛼�𝑖𝑖)⟨𝑥𝑥, 𝑥𝑥′⟩ + 𝛽𝛽0

𝑁𝑁

𝑖𝑖=1

 

 

5.4.3.5 
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As 𝛼𝛼𝚤𝚤� ,𝛼𝛼𝚤𝚤�
∗are positive, it is possible to solve the quadratic programming problem 

min
αi
∗,𝛼𝛼𝑖𝑖

𝜀𝜀 �(𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖) − 𝑦𝑦𝑖𝑖�(𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖) +
1
2
� (𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖)(𝛼𝛼𝑖𝑖′

∗ − 𝛼𝛼𝑖𝑖′)
𝑁𝑁

𝑖𝑖,𝑖𝑖′=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

⟨𝑥𝑥, 𝑥𝑥′⟩ 

 

5.4.3.6 

Subject to the constraints 

𝛼𝛼𝑖𝑖 ≥ 0;𝛼𝛼𝑖𝑖∗ ≤
1
𝜆𝜆

;�(𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖) = 0;𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖∗ = 0
𝑁𝑁

𝑖𝑖=1

. 

 

5.4.3.7 

The mathematics of the Kernel trick for the support vector machines makes it possible to find 

solutions on the input values from the inner product ⟨𝑥𝑥, 𝑥𝑥′⟩ when data is not-linearly 

separable. Hence, generalization of the approach is possible by defining an appropriate inner 

product. Regarding the kernel induced feature space for SVM regressions, the calculations 

are computational challenging, and excessive compared to the binary classification 

framework of our dissertation.    

5.5 Random Forest and Trees 
In this section, we will introduce our last machine learning model. The Random Forest 

algorithm was developed by (Breiman, Random Forests, 2001), as an extension to his 

Classification and Regression Trees (Breiman, Friedman, Stone, & Olshen, 1984). The Random 

Forest algorithm subsist of many other models, which makes it an ensemble method. 

However, the final prediction and quantities obtained is a combination of outputs from the 

underlying models. 

We will start with the classification and regression trees (CART), before moving onto the 

Regression Trees. 
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5.5.1 Classification and Regression Trees 

The elemental concept of CART is based on (Breiman, Friedman, Stone, & Olshen, 1984). 

They present regression trees as a method for binary classification with the use of multiple 

variable batches from the data-source. They aim at establishing a systematic approach for 

predicting the classification correctly across the different datasets. We start by structuring 

the data in a measurement vector; 

𝑋𝑋 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝� 

 

5.5.1.1 

Where each 𝑥𝑥𝑝𝑝 represents a variable, in the task at hand, each 𝑥𝑥𝑝𝑝 is a new accounting factor. 

We can then use the vector of observations, 

𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛)𝑇𝑇 

 

5.5.1.2 

To construct a matrix holding all input data and the corresponding classes. In the effort of 

systematic predicting the correct classification we can use the rule 

𝑥𝑥𝑗𝑗 = �𝑥𝑥1𝑗𝑗 , … , 𝑥𝑥𝑛𝑛𝑛𝑛�
𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {1, … , 𝑝𝑝} 

 

5.5.1.3 

To assign one of the classes to 𝑥𝑥𝑗𝑗  (Breiman, Friedman, Stone, & Olshen, 1984).  

At each branch the objective of the algorithm is to do a binary split. Meaning that the split is 

a base-2 numeral system (in example 0 or 1, or Yes/No). CART operates by estimating the 

conditional distribution of the dependent variable based from the different partitioning 

branch. The resulting output is that each split only contains the base-2 numeral split. 
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Underneath is a simple example of a Classification and Regression Tree.

 

Figure 14 – Flowchart for Classification and regression trees 

Source: Visualisation inspired by (Breiman, Friedman, Stone, & Olshen, 1984) 

The CART logic can be extended so to arrive at a non-binary classification result for the 

dependent variables. The main conceptual difference for this approach is the calculation and 

application of the loss function used in the regression tree.  First and foremost, each branch 

has different nodes, where each node can be expressed as (Breiman, Friedman, Stone, & 

Olshen, 1984).  

𝑦𝑦𝑚𝑚 = (𝑦𝑦1𝑚𝑚, … ,𝑦𝑦𝑛𝑛𝑚𝑚);𝑋𝑋𝑚𝑚 = �𝑥𝑥1𝑚𝑚, … , 𝑥𝑥𝑝𝑝𝑚𝑚� 

 

5.5.1.4 

At each node split,  𝑥𝑥𝑠𝑠𝑚𝑚 represents the specific split s, where 𝐶𝐶𝑚𝑚 is the independent variable  

𝐶𝐶𝑚𝑚 = {𝑥𝑥𝑖𝑖𝑚𝑚}𝑖𝑖∈{1,…,𝑛𝑛𝑚𝑚} 

 

5.5.1.5 
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Each node contains a specific set of variables considered from the element of 𝐶𝐶𝑚𝑚. The 

different nodes hence constitute different independent subsets of 𝐶𝐶𝑚𝑚: 

In each node, a new iteration creates a binary split resulting in two new nodes. The new 

nodes 𝑦𝑦𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑚𝑚  are based on the previous explanatory variable c from the preceding 

mother node.  The value of 𝑦𝑦𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑚𝑚 is affected by the value of c corresponding to x𝑠𝑠𝑚𝑚. 

The proceeding nodes are therefore based on the decision of x𝑠𝑠𝑚𝑚 ≤ 𝑐𝑐  at the specific node. 

After the split, the nodes receive the corresponding values of 𝑦𝑦𝑚𝑚, depending on the side of 

the iteration. The optimization for all iterations is obtained by the reduction in the error term 

for the whole regression as defined by  (Breiman, Friedman, Stone, & Olshen, 1984) 

∆(𝑦𝑦𝑚𝑚) = 𝐿𝐿(𝑦𝑦𝑚𝑚) − �
𝑛𝑛𝑚𝑚𝑡𝑡

𝑛𝑛𝑚𝑚
𝐿𝐿(𝑦𝑦𝑚𝑚𝑡𝑡) −

𝑛𝑛𝑚𝑚𝑟𝑟

𝑛𝑛𝑚𝑚
𝐿𝐿(𝑦𝑦𝑚𝑚𝑟𝑟)� 

 

5.5.1.6 

Based on the decision criteria x𝑠𝑠𝑚𝑚 ≤ 𝑐𝑐  , 𝑛𝑛𝑚𝑚𝑚𝑚 are the number of times the condition is true, 

whereas 𝑛𝑛𝑚𝑚𝑚𝑚 accounts for all non-true conditions at the iteration splits. , L(·) is the loss 

function occurring from the foregoing node. The loss function is relevant due to the 

measurement of wrong classification in all nodes. 

With classification, the categorical output of the dependent variable can be defined as a set 

of unique predetermined classes of 𝑦𝑦𝑚𝑚 so that: 

𝔇𝔇𝑚𝑚 = {𝑦𝑦𝑖𝑖𝑚𝑚}𝑖𝑖∈{1,…,𝑛𝑛𝑚𝑚} 

 

5.5.1.7 

As mentioned, the loss function L(·) measures the level of misclassification in each node. In 

order to calculate the total error value for the model, we need to find the number of times 

the dependent variable is grouped in the correct class membership d ∈  𝔇𝔇𝑚𝑚 and denote it as 

p m(d). The monotonous class is set as (𝑦𝑦�𝑚𝑚). The total error can then be finalized as 

following the calculation of (Breiman, Friedman, Stone, & Olshen, 1984): 

𝐿𝐿𝑚𝑚𝑚𝑚(𝑦𝑦𝑚𝑚) =
1
𝑛𝑛𝑚𝑚

�𝕝𝕝(𝑦𝑦𝑖𝑖𝑚𝑚 ≠ 𝑦𝑦�𝑚𝑚) = 1 − 𝑝𝑝𝑚𝑚𝑦𝑦�𝑚𝑚
𝑛𝑛𝑚𝑚

𝑖𝑖=1

 
5.5.1.8 
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Where the loss function L(·) can only obtain a value of 1 if the condition is true, else 0. 

The use of the loss function as mentioned is only applicable with categorical regression 

threes. When dealing with continues outcomes, a different approach is applied. In this event, 

the error term in each branch is often calculated as the mean squared error (MSE) as 

proposed by (Ghodselahi & Amirmadhi, 2011). 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑚𝑚) = �𝕝𝕝(𝑦𝑦𝑖𝑖𝑚𝑚 − 𝑦𝑦�𝑚𝑚)2
𝑛𝑛𝑚𝑚

𝑖𝑖=1

 

 

5.5.1.9 

Where 𝑦𝑦�𝑚𝑚 is the mean for all 𝑦𝑦𝑖𝑖𝑚𝑚. 

After the selection of a suitable loss function, we can find the optimal combination, based on 

the quantity∆(𝑦𝑦𝑚𝑚). The calculation containing the highest ∆ is chosen, due to its cumulative 

sum of all correct classifications (for all feasible splits combinations). The readjustments of 

the weightings are continued until the stopping criterion is met. This continuous iteration 

process is implemented to avoid overfitting, the node weightings during the model 

development and to limit excessive usage of complex modelling. It is further relevant for 

training the model to generalize its interpretations of the independent variables (Hastie, 

Tibshirani, & Friedman, 2013). 

The importance of not overfitting the CART model is true as it may result in high variance of 

the fitted values making them very volatile to small changes in the training data. In the next 

section, we will discuss how the introduction of Random Forest deals with these problems. 

5.5.2 Random Forest 

The problem with high variance for fitted values is discussed in a paper from Breiman. In 

1996 he proposed “Bagging”, short for “bootstrap aggregation”. Bagging, is used as a device 

to reduce the prediction error in CART. Breiman argues that the high variance and problems 

with overfitting is due to the fact that Classification and Regression Trees are highly unstable 

functions of the data (Buja & Stuetzle, 2006). Meaning that only small changes in the training 
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sample can result in very different trees. And this is where bagging comes in to play. By doing 

multiple samples from the training, we can use an average of the models to create a more 

precise prediction. 

Which means that we exclude some parts of the original dataset, known as “out-of-bag” data 

(Breiman, Bagging Predictors, 1996).  

By building multiple samples of CART, we can construct the Random Forest by using the 

components sampled. To do so, the predicted variables for each observation is used to 

construct an ensemble estimate. The estimate has a lower variance than only one CART. By 

producing an average of all CARTs the variance is reduced. (Buja & Stuetzle, 2006). 

Other attempts to improve the accuracy was done, and Breiman himself mentions random 

split selection (Dietterich, 1998) and his own introduction of random noise in the outputs 

(Breiman, 1998c) as better performing alternatives than Bagging. However, Adaboost 

(Freund and Schapire, 1996) is believed as the best performing random forest according to 

Breiman. (Breiman, 2001). Adaboost uses adaptive reweighting, instead of developing 

completely new trees for each simulation. This means that the weighing of any new model 

training uses and reweighs previous ensemble trees.  

In 2001, Breiman extended his own logic of Random Forest inspired by Adaboost. To improve 

accuracy, he decided to apply a random selection of independent variable or joint 

combinations of variables at each node to build each tree. The intention is to minimize 

correlation from the dependent and independent variables. The random selection of 

explanatory variables is an effort to analyse a greater variety of variable sets, rather than 

obtaining a local optimum.  With the old architecture, redundant but predictive variables 

would be left out in advance of higher predictive variables, neglecting the relationship of 

conditional variables as a whole can be highly explanatory. With the use of adaptive 

reweighting the trees produced is far more diverse and the predictions, as a consequence of 

this, yields a lower variance (Breiman, Random Forests, 2001). 
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Breiman uses bagging complementary to the random feature selection. The out-of-bag 

sample is used to obtain higher explanatory power, as well as an estimator for generalization 

error. Even though out-of-bag classifiers often overestimate the current error rate the 

calculation is an unbiased prediction when reaching adequately variable combinations 

(Breiman, Bagging Predictors, 1996).  

When dealing with continues dependent variables, the simple form of random forest is 

adequate. The final weightings are achieved by the average value of all modelled trees 

(Breiman, Random Forests, 2001): 

𝑓𝑓(𝑋𝑋) =
1
𝑇𝑇
�𝑓𝑓𝑡𝑡(𝑋𝑋𝑖𝑖∈Β�𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 

 

5.5.2.1 

The parameter T in the formula is the overall sample of trees in the finalized model. Where  

𝐵𝐵�𝑡𝑡 describes “bagging” for the 𝑓𝑓𝑡𝑡(𝑋𝑋𝑖𝑖∈Β�𝑡𝑡)  tree at a given time t. 𝑓𝑓(𝑋𝑋) is thereby the average 

from all previous interations. 

The overall objective is to minimize the generalization error. In the effort of finding this, the 

number of trees and variables at each node in the trees are the tuning parameters. The 

preferred solution depends on the optimization problem, as well as the data. A risk in the 

process is overfitting the Random Forest. The expected generalization error provided by 

bootstrap aggregating can be used to find the optimal number of trees, as the error 

decreases with more combinations. 

An outspread resampling method in machine learning is cross-validation. For more details, 

see (Amaratunga, Cabrera, & Lee, 2008) or (Biau, Devroye, & Lugosi, 2008). 

The following figure illustrates classifications with different amounts of n trees. This is done 

to illustrate that excessive usage of trees can result in overfitting. In addition, the figure 

present the predictive power of only one three (whereas the classification has no chance in a 

non-linear dataset). 
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Figure 15 – Comparison of Random Forests 

Source: Visualisation inspired by (Ozaki, www.tjo-en.hatenablogg.com, 2015) 
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6 Model Development 
The objective of any model development is to initiate in-house credit assessment of 

counterparties with sufficient ranking ability. This is accordance with the requirements from 

Nordea and the legislative framework presented. The ultimate task is to differentiate and 

distinguish between good and bad counterparties. Hereby, estimating the probability of 

being a good or bad party. To do so, the algorithms aims at utilizing historical data in such a 

way that it becomes possible assessing relationships between historical data and future 

performance with high enough quality to limit false negatives and false positives 

classifications with satisfactory standards. All of the model developments’ will be based on 

the internal dataset provided by Nordea. Where the expected probability of default is 

calculated to reflect on a one year expected default basis for the entity as a whole. 

This chapter presents how we derived at the different components and their application so 

to arrive at the final models. This includes underlying theory of variable selection. In addition, 

theory for assessing the performance of the different machine learning models is presented. 

Furthermore, a thorough description of the dataset is given. At last, the process of building 

the aforementioned models is described to give a better view of the structure and 

computational task.  

The following section will differentiate between model, variables and method. A model is 

defined as a simplification of reality, where a dependent variable is explained by one or more 

independent variables. A variable set is defined as a collection of key figures from annual 

reports that are used as the independent variables in a given model. Methods are different 

techniques for estimating models using a view and a given set of variables. 

6.1 Variable Selection 
The difficulty of selecting variables arises from the existence of a very large data set, making 

it a daunting task to select enough but also not too many variables. Other issues relate to the 

behavior of the variables.  
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Here especially is the redundancy affected by correlations between potential input variables. 

Another common issue is including variables with no or very little predictive power.  

A bad selection of input variables can affect the model negatively and lowering the 

predicator power. This again can have huge negative consequences, as Nordea might take 

unwanted risk from counterparties. The prediction of the dependent variable relies on, for 

any statistical model, exploitation on relationships between the inputted data and the 

output. Thereby making the process of good variable selection crucial, to develop a good 

statistical model.  

In view of the thesis, non-parametric methods, are models with no underlying assumption on 

any factors such as population, distribution or sample size of the independent variables. In 

comparison, parametric models are models with some physical interpretation of the 

underlying system. Here, the linear regression is one example.  The main difference between 

the two methods, are the underlying assumptions regarding the structure of the model. 

Artificial neural networks or other similar data driven modeling approaches falls under the 

category of non-parametric methods. For such models, the variables are selected from the 

available data, and the statistical model is thereafter developed. The complexity and non-

parametric structure of Artificial Neural Networks makes the application of many existing 

variable selection methods inapplicable.  

(May, Dandy, & Maier, 2011) present six key considerations for variable selection when using 

artificial neural networks. These are; relevancy, computational effort, training difficulty, 

dimensionality and lastly comprehensibility.  

Relevance – The most common concern regarding variable selection is to include too few 

variables, or that the variables included are not sufficiently informative. Consequently, the 

performance of the model is poor, amid unexplained behavior of the output variable. 

A priori – The “a priori” assumption evolves around the concept that at least one of the 

available variables should be capable of finding some, or all of the output behavior.  
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Hence, the strength of these relations is the unknown and what is disclosed by the models. In 

the case of low prediction power by the variables, the development is intractable. Resulting 

in the necessity of reconsider the data set and the choice of model output.  

Computational effort – The computational effort can largely be affected by the number of 

included variables. The immediate consequence is the data cost of querying the network. 

Which to a large effect, decrease the training speed.  

Further, if the model developed is multilayered, the input holds an increased number of 

incoming connection weights. With kernel-based regression (such as the SVM) and radial 

basis functions, the increased input will result in more prototype vector calculations due to 

the higher dimensionality. Overall, excessive usage of variables, place an increased burden 

on all data pre-processing steps during the model development.    

Training difficulty – The training process for the ANN modelling becomes more complex 

when including variables that are redundant or with low explanatory power. Training sets 

with redundant variables increases the combination of different parameters that will results 

in the same locally optimal error term. (In the error function over the parameter space of the 

model). This is problematic, as the algorithm applies resources adjusting the weights that 

yield no improved bearing on the output variable. In addition, redundant variables can bring 

noise, so to mask the relationships of the input-output.   

Dimensionality – The challenge of dimensionality is the relation between dimensions and 

domains. As the dimensionality of a model increases linearly, the total volume of the 

modelling problem domain increases exponentially (Bellman, 1961).  

To solve the challenge of mapping a given function over the parameter space, with 

satisfactory confidence – the sample size must increase exponentially (Scott, 1992).  

Comprehensibility – For most machine learning and neural network modelling, including too 

many variables can reduce the comprehensibility.  
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ANN can be seen as a “black box”, where modelers are keen and increasingly concerned with 

the knowledge discovery during the process of model development.  Here, especially to 

check if the behavior of the modeled input-output response make sense. 

The ending goal of any variable selection should therefore obtain a model with the fewest 

input variables required to describe the behavior of the output variable. Further, the 

variables selected should hold a minimum degree of redundancy and with no uninformative 

variables. Successful selection of such, will lead to a cost-effective, more accurate ANN model 

and make the results and model development more interpretable. 

For all the reasons mentioned above, there should occur a process of variable selection or 

filtering process before the model development can commence. There exist several methods 

for such filtering, and their application can be used not only for the models presented in this 

thesis. The variable selection processes used for this thesis are as included in (May, Dandy, & 

Maier, 2011).  For the variable selection there exists different applicable perspective of how 

the inputted variables are analyzed.  

6.1.1 Model based approach 
The model-based approach divide itself into two main subtypes for the variable selection. 

Namely wrapper and embedded algorithms.  

Wrapper algorithms is a model-based approach for the input variable selection. The wrapper 

is an integrated part of the model architecture, where all possible combinations of available 

variables are tested, so to find the combination that yields the optimal generalization 

performance of the trained ANN.  

In other words, the wrapper approach treats the variable selection as a model selection task, 

where each model is a unique combination of different variables. The process is illustrated in 

the following figure (May, Dandy, & Maier, 2011): 
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Figure 16 – Wrapper Structure 

Embedded algorithms, as the name implies, are directly embodied into the Artificial Neural 

Network algorithm. The model adjusts the weights of the inputted data to measure the 

impact of each candidate on the performance of the model. Further, during the training 

process, redundant and non-explanatory variables are less and less weighted until removed. 

The process is illustrated in the figure below. 

 

Figure 17 – Embedded algorithm structure 

6.1.2 Model-free approach 
Filter algorithms are model-free, meaning that the filters operate as a preliminary process 

externally from the Artificial Neural Network training. The filers adopt an auxiliary statistical 

analysis technique when looking at the validity of the variables individually or different 

combinations of the different candidates. The process is illustrated in the figure below. 
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Figure 18 – Model free structure 

The analysis of the candidates for the filter algorithm identify preferable candidates by 

applying the following criteria: 

Maximum relevancy (MR), is a criterion for finding variables that are highly informative. This 

is archived by filtering candidates that have a high degree of correlation with the outputted 

data. The procedure follows the structure of finding the determined relevancy for each input 

variable independently, with the output variable. One example of such processing is input 

ranking schemes. To the maximum relevancy, greedy selection can be applied. The greedy 

selection puts a limit or threshold to the maximum allowed candidate inclusion.   

Minimum redundancy (mR), is an additional criterion to deal with the down side of including 

the greedy selection. By applying a limit, the candidate variables do not strictly gain an 

optimal Artificial Neural Network. Hence, the minimum redundancy search for variables to 

find candidates that are highly dissimilar from each other. This in order to find combinations 

with minimum redundancy and select sets with maximum containment of relevant variables.  

Minimum redundancy-maximum Relevancy (mRMR), the combination of the two criterions 

lead to the mrMR selection criteria. Here, the inputted variables are evaluated according to 

both the relevance and dissimilarity compared to the other variables.  

6.1.3 Search Strategies 
As different Artificial Neural Network models are tested throughout the thesis, the models 

should be based on the same input of candidates. As both wrappers and the embedded 

algorithms operates in different ways for each unique mode, the overall selection of inputted 

variables is based on the model-free approach.  
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Here by validating the variables externally before inclusion. The variable selection methods 

applied therefor accounts for this externality decision when comparing the models. 

Incremental search strategies tend to dominate filter designs, hence the different methods 

used are forward selection, backward elimination and step-wise regression.   

Forward selection is an incremental linear selection strategy, where the individual variables 

are selected one at a time. The process is continued until adding one extra variable gain no 

improvement of performance. For filter designs, the process starts by including the most 

significant variable first.  The search strategy then continues by iteratively locating the next 

most relevant candidate and evaluating if the candidate should be included or not. This 

process is continued until the optimal criteria is satisfied.  

Overall, the process is efficient and with reduced computational costs. Further, the ending 

result often includes a relatively small set of input variables when the optimal requirement is 

satisfied. The most significant downside of this method, it that the search strategy does not 

test for all observable combinations. Consequently, the risk of finding a local optimum, and 

then kill the search exist. Lastly, as forward selection is an incremental search algorithm, the 

search may ignore variable combinations that are highly information combined, but do not 

yield any improvement, when looked at individually.  

The backward elimination strategy operates in a similar manner as the forwards selection. 

Essentially, selecting the potential candidates in reversed order. This means that process 

starts by including all candidates, and then eliminate one-by-one.   

With filter strategies, the least explanatory candidates are iteratively removed up until the 

optimality threshold is satisfied. Compared to the forward selection, the backward 

elimination operates with higher computational costs. Especially for many large models, 

where the data set constitute a large amount of candidates. Also, when starting off with all 

variables, it can be harder to differentiate the significant importance of the different 

variables. 
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Forward selection is said to have fidelity, in that once an input variable is selected, the 

selection cannot be undone. Step-wise selection is an extension of the forward selection 

approach, where input variables may also be removed at any subsequent iteration. The 

formulation of the step-wise approach is aimed at handling redundancy between candidate 

variables.  

Step-wise selection can be viewed as an optimization of the forward selection. Here in the 

perspective of fidelity. With the previous method once a variable is selected, the selection 

cannot be undone. However, when employing step-wise search strategies, variables can be 

removed at each iteration. In other words, variable x1 was selected due to its explanatory 

power. At a later iteration, the combination of the two new variables x2 and x3 outperform 

the relevancy of x1. The x1 variable is therefore redundant and will be removed in favor of 

the combination of the two new variables.  

6.2 Model Selection 
If the size of the dataset is low, one can use k-fold cross-validation or leave-one-out 

validation. K-fold cross validation is about splitting the dataset into subjunctive subsets of 

equal size.  

Each subset is used as a test set and the remaining k-1 subsets are joint to be used as training 

sets. The accuracy rate is the calculated for each test set, and the average of these k scores 

will be used to measure the accuracy. Popular values for k are 5 and 10. These value for k are 

statistically likely to provide an estimate that is accurate. 

 It is important to note that the calculation time increases with the number of subsets 

created. In other words, 5 subsets will result in 5 times longer prediction time. When using 

leave-one-out validation, only one of the data items is used for testing and the rest is used as 

a training set. If the data set is of size m, the process will correspond to m-fold cross 

validation and this procedure is only used with small datasets’. 
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6.3 Performance Assessment 
In this section, we will focus on a suitable definition for default vs non-default, and 

subsequently performance indices based on distribution and density functions.  

The first step, and potentially the most important is the definition of the dependent variable. 

Working with credit scoring it is important to define the cases of default vs non-default. We 

will apply the commonly used binary solution with one as default, and zero as non-defaults. 

Additionally, it is important to specify the time range. We look at the entities separately on a 

one-year horizon.  

The reason behind a short time-range is due to Basel requirements for the internal rating-

based method. Here the probability of default is defined as the likelihood of a default within 

a one-year period.  

After defining the default and non-default entities for building of the model, we will apply 

multiple statistical measurements. This is done in order to evaluate the overall performance 

and predictability. We have decided to use assessment factors such as accuracy, sensitivity, 

specificity, cumulative lift and the AUC coefficient.    

We use the following labels classifying the binary output: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � 1 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
0 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 

 

6.3.1 

 

6.3.1 Accuracy  
Hit percentage is a percentage of total events that the model predicts correctly. The higher 

the percentage, the better the model. This way to evaluate models is easy to understand and 

require no special knowledge of statistics. On the other hand, the percentage of hits in some 

Cases are a less good evaluation goal, as it does not take into account the class distribution in 

data selection or error costs. 
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6.3.2 Receiver Operating Characteristic 
ROC is an abbreviation for receiver operating characteristics, and is a technique for 

visualizing, organizing and categorizing events with only two possible outcomes (Fawcett, 

2006). 

All models in this task classify events to one of two values; "Default" or "Non default", where 

the former is considered positive and the latter as negative. Each event the model predicts 

can be placed in one of the four outcomes as shown: 

 

Table 3 – Four outcomes for classification 

 True Company-Positive True Company-Negative 

Positive 

Model 

True Positive False Positive 

Negative 

Model 

False Negative True Negative 

 

As a further explanation of the properties we have attached the underneath matrix. 

Table 4 – Outcomes of classification and types of error 

 

Positive class: Non default
Negative class: Default

True Positive False Positive False negative True Negative
True Company Non Default Default Non Default Default
Model prediction Non Default Non-default Default Default
Result Correct decision Type 1 error Type 2 error Correct decision
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Figure 19 – Receiver Operating Characteristic 

Source: Produced in RStudio 

The curve for ROC (Receiver Operating Characteristic) can be described as: 

𝑦𝑦 = 𝐹𝐹𝑛𝑛,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎), 6.3.3.1 
 

𝑥𝑥 = 𝐹𝐹𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏(𝑎𝑎), 𝑎𝑎 ∈ [L, H] 

 

6.3.3.2 

In order to evaluate the performance, we apply some common measurements for statistical 

binary classification problems, such as Sensitivity and Specificity. Where the Sensitivity 

represents the prediction of classification for True Positives, or in our case, the non-defaults. 

While Specificity validates the models ability to correctly distinguish the True 

Negatives/Defaults.  
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

 

6.3.3.3 

To further explain, this means that a perfect model, in terms of classifying all non-defaults 

correctly obtain a value of 1 due to all observations being True Positives. In other words, the 

wrongly classification of non-defaults will increase the proportion of false negatives, thereby 

reducing the Sensitivity. In example a prediction of 0.7 is due to 0.3 of the non-defaults being 

classified as false negatives.  To recognize defaults, we use the specificity measurement.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

 

6.3.3.4 

The specificity is similar to the sensitivity. However, it measures the accuracy of the default 

observations, instead of the non-defaults. The sensitivity and specificity measurements are a 

good way to capture the characteristics of the classification. As an example, a high sensitivity 

but a low specificity indicates that the classifications cannot correctly identify the defaults in 

a satisfying manner. 

At last, we can use the Likelihood to measure the probability of how many times a non-

default correct classification will appear rather than a default being misclassified as a non-

default. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 

 

6.3.3.5 

A great strength with the ROC graph and values is the fact that it visualizes and categorise 

without taking class classification and error cost (Fawcett, 2006). This feature is especially 

important when dealing with datasets that have a skew distribution and thus are not 

normally distributed. It is also important when working with cost-sensitive learning as in this 

case. It is therefore preferable to use ROC as a measure for how well a model predicts. 
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6.3.3 Area Under the Curve 

As mentioned, an additional measurement for the predictive accomplishment is the AUC 

(Area Under ROC Curve). The outcome of the model lays in the name, as it represents the 

value underneath the ROC curve, describing a global performance for the classifier (Lobo, 

Raimundo, & Jimenez-Valverde, 2008). As the ROC curve measures a binary classifier, the 

output value for AUC will be between 0 and 1. Where 1 indicates an optimal score. We can 

see from the four graphs below that a model capable of distinguishing the two class 

populations will yield a higher AUC. In the bottom right ROC curve, the model has a hard time 

differentiating the two populations. The AUC is 50%, which can be the equivalent of a 

random selection or coin flip.  
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Figure 20 – Different ROC curves 

Source: (navan.name, 2018) 

6.3.4 Cumulative Lift 
Lastly, the Cumulative Lift supplements the other statistical methods with its indication of 

explanatory power. This is a rather local, not global, performance measure. Which measures 

the level of acceptance (or rejection) a scoring model is better than a random model. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑎𝑎) =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎)
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

=
𝐹𝐹𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏(𝑎𝑎)
𝐹𝐹𝑛𝑛+𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎) , 𝑎𝑎 ∈ [L, H] 

 

6.3.5.1 

The cumulative lift describes the ratio between the predicted results and results using no 

model. The greater the area between the lift curve and the baseline, the better the model. 

The Cumulative Lift is nicely demonstrated on the subsequent figure. 
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Figure 21 – Cumulative Lift 

Source: (Paduaa, Schulzeb, Matkovićb, & Delrieux, 2014) 

6.3.5 McNemars test 
In (Dietterich, 1997) five different statistical methods for measuring machine learning 

performance is presented. McNemars test (McNemar, 1947) and (Gillick & Cox, 1989) is 

viewed as the most precise measurements of the five methods.  

Let’s assume that the rate for the number of error classifications by a method used is given 

by:  

𝑒𝑒1 =  
𝑀𝑀1

𝑛𝑛
 

 

6.3.6.1 

where 𝑛𝑛 is the number of observations in the dataset, and 𝑀𝑀1is the number of wrong 

classifications.  

 

The rate of misclassifications for a comparable method, based on the same sample data is 

given by: 

𝑒𝑒2 =  
𝑀𝑀2

𝑛𝑛
 

6.3.6.2 
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We then test for the hypotheses that 𝑒𝑒1 =  𝑒𝑒2, furthermore to categorise the test we can 

apply a similar categorisation as the ROC. 

 

 Method 2 

Correct Wrong 

Method 1 Correct A B 

Wrong C D 

 

McNemars test in its simplified form can be written as this (Gillick & Cox, 1989). 

𝑊𝑊 =  
|𝐵𝐵 − 𝐶𝐶| − 1
√𝐵𝐵 + 𝐶𝐶

 

 

6.3.6.3 

The reason behind B and C over A and D, is that B and C are the observations where the two 

models predict different results. Based on this, the formula can be described as; 

𝑝𝑝 = 2𝑝𝑝(𝑍𝑍 ≥ 𝑤𝑤),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑍𝑍 ~ 𝑁𝑁(0,1) 

 

6.3.6.4 

And 𝑤𝑤 is the actual value for W. Furthermore, a p-value lower than 5% would indicate a 

significant difference between the models chosen for the task. 
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Figure 22 – McNemar’s test 

Source: (Scalelive, 2018) 

6.4 Data Description 
Explanatory variables are collected from different sources. But all data is extracted from the 

same data provider, namely SNL. SNL is the S&P global database for market intelligence. Data 

collection of the non-defaulted entities was performed by rolling all European commercial 

banks operating in 2014 and back to 2008.  All entities were treated as independent.  As for 

defaulted entities, all defaulted European banks with accounting statements available in SNL 

were collected. No distinguish was made between bailed out and not bailed out entities.  

Most observations consist of German Banks. 

The dataset as mention is provided by Nordea. The data constitutes a variety of different 

entities that are relevant for the prediction of counterparty risks. All unique observations 

hold the same number of variables. To differentiate companies risk profile, all observations 

include a short-term credit rating by Fitch.  
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The variables general categorization arises from the respected company’s financial 

statement. Not all of the variables are reported “as is”, in the different companies’ income 

statement and balance sheet. This is due to that; Nordea has provided different financial 

ratios that they find relevant for the prediction of default.  

All data is as mentioned collected over the time period 2008 to 2014. This is done to ensure 

data quantity as well as to cover the business cycle. In total, there are 5,183 unique 

observations, with 75 independent variables. The lowest grade a company holds in the data 

set is “D” (which indicate that the company has defaulted or are under liquidation.) The 

highest rating in the dataset is AAA, indicating a company with the lowest risk possible. The 

following table illustrates 10 of the first variables in the dataset: 

Table 5 – Some variables in the dataset 

Example of variables (SNL Dataset provided by Nordea) 

Variable nr. Variable name Variable nr. Variable name 

1 Total Assets 6 Net Interest Margin 

2 Total Equity 7 Return on Equity 

3 Net Income 8 Total Capital Ratio 

4 Net Income Growth 9 Net Loans to Assets 

5 EBIT to Assets 10 Loans to Deposits 
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All of the different variable types can be broadly categorized into 7 core groups. These are: 

Table 6 – Category of variables 

Category of variables 

1 Capitalization 

2 Financial flexibility 

3 Liquidity 

4 Market position 

5 Profitability 

6 Revenue Mix and Diversity 

7 Asset Risk 

 

In total, there are 45 companies that has defaulted. This is 0.95% of the total population. The 

following table shows the different distributions of the ratings, where the number-value 

indicate the number of ratings in the different rating grades. (Only ratings with observations 

higher than zero is presented in the table).  
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Table 7 – Rating Distribution 

Rating Distribution (SNL Dataset provided by Nordea) 

Ratings Observations 

AAA 42 

AA+ 28 

AA 34 

AA- 2,832 

A+ 1,387 

A 64 

A- 97 

BBB+ 80 

BBB 75 

BB+ 114 

BB 61 

BB- 58 

B+ 65 

B 63 

B- 74 

CCC 6 

D 45 
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7 Model Building 
This chapter presents the whole process of model development, here by describing how 

relevant variables are selected. How the training of the models is conducted and validated. 

The process starts with the full dataset provided by Nordea and ends up with how the results 

from the different models are collected.  

All calculations, including model development and performance assessments has been done 

in R-studio.  

7.1 Data Preparation 
Before any of the tests were started, the dataset was analysed and cleaned for low quality 

variables and observations. This was done in a two-step process. First, dependent variables 

missing 5% or more of their values were removed. Thereafter, entities missing any of their 

independent variables were removed. This was done to insure high quality data for 

modelling.  

The cleaning provides a dataset with no missing observations for any of the variables. This 

reduced the amount of observation from 5,183 to 3,904. The total number of defaults after 

the reduction accounts for 1.3% of the entities.    

The dependent variables for all observations are the credit rating assigned. All ratings were 

converted as either 1 or 0. Where 1 indicate a company that has defaulted and 0 for non- 

defaults. All dependent variables with a rating of higher than D were set as 0, and companies 

with a rating of D were set as 1.  

7.2 Finding relevant variables 
When the data cleaning process were completed, the task was to find the relevant variables 

to be included. For the variable selection process, all three searching methods, as presented 

in the section 6.1, has been applied. The different methods resulted in three different sets of 

variables.  
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Only the best performing set, based on the 𝑅𝑅2-value were used for the different algorithms 

throughout this thesis. The selected variables that yielded the highest result is the step-wise 

selection process.  

The graph below shows the different junctions where different variables are included. The 

horizontal axis represents all the variables available. On the vertical axis is the 𝑅𝑅2-value. Each 

step on the vertical axis contains a different variable combination with a higher 𝑅𝑅2-value 

than the one underneath. In example, in the first step there are a combination of 3 variables 

with an 𝑅𝑅2-value of 0.0072. In the next step, two more variables are added which obtain a 

𝑅𝑅2-value of 0.0085. As this is a step-wise regression, each advancement improves the 𝑅𝑅2-

value, but there can exists different variable combinations than in the previous step. 

Variables can be added, removed or kept at each advancement. (This is different compared 

to the backward and forward regression, where an added variable is kept after inclusion). 

As mentioned, the vertical axis is the 𝑅𝑅2 factor. (Ranging from a minimum of 0 and a 

maximum of 1. Where 1 indicates the highest possible explanatory power). The process is 

stopped when there is no improvement of adding an extra variable in terms of the 𝑅𝑅2 value. 

The process stops with 𝑅𝑅2 of 0.099. At this point the total variables included are 20.  

 

Figure 23 – Step-wise Selection (Output from R-studio) 
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As a short illustration, the two graphs below present the output from the two other 

methods. Backward selection has a  𝑅𝑅2 value of 0.098 and Forward Selection has a 𝑅𝑅2 value 

of 0.07.  

Backward Selection Forward Selection 

  
Figure 24 – Backward selection & Forward Selection (Output from R-Studio) 

In the following table, the 20 selected variables from the step-wise strategy are presented: 

Table 8 – Selected Variables 

Variables selected after search strategy 

Variable name Description 
Total Assets Total Assets 
Net Int Income To Op Income Net Interest Income to Operating Income 
Net Comm Income to Op Income Net fee and commission Income / Operating Income (%) 
Trd Income To Op Income Trading Income to Operational income 
Cost to Income Cost to Income 
Net Income At To Avg Assets Net Income Attribution to Average Assets 
Net Int Income to Avg Assets Net Interest Income to Average Assets 
Net Income to RWA Net Income to Risk Weighted Assets 
Net Income BTAX To Assets Net Income Before tax to Assets 
Net Income Net Income 
Net Income Growth Net Income Growth 
EBIT To Assets Earnings before Interest and Taxes to Assets 
Tang Equity to Tang Assets Tangible Equity to Tangible Assets 
Tier1 Ratio Tier1 Ratio 
Total Capital Ratio Total Capital Ratio 
Net Loans To Assets Net Loans to Total Assets 
Total Debt to Total Assets Total Debt to Total Assets 
Cash Equiv to Assets Cash and cash equivalents to Assets 
Tang C equity To Assets Tangible Common Equity to Assets 
Government Support Poc Government support for privately owned companies 
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To summarize, all three searching algorithms found 20 unique independent variables. Based 

on their selection, three datasets were created from the cleaned date.  Each set represented 

on of the respected searching strategies. Only the dataset providing the highest result from 

the statistical evaluation is used as selected inputs for the machine learning algorithms.  The 

selected inputs come from the step-wise selection.  

7.3 Training and validation 
After the selection of input variables, the dataset needs to be split into different segments. 

This in order to train the machine learning algorithms and test their performance. The first 

segment is the training set, used for training the models. The second segment is the 

validation set. This set is simply used to test the accuracy of the weights found by only using 

the training set. A common practice is to use 80 percent of the observations for training and 

the remaining 20 percent for validation. A random selection process was used to allocate the 

data.  

Cross-Validation, sometimes called rotating estimating, use several training and validation 

datasets. We have decided to use a multiple cross-validation, with 10 as a subset. This means 

that the process is looped 10 times. Each loop using a different unique partition of the 

dataset. The ending result for each loop is stored in a data table, and the average value for all 

validations are used to present the final result. This approach follows the same method as in 

(Kumar & Ravi, 2007). 

7.3.1 Model training 
All chosen machines learning algorithms inculcated the training data. This was also done for 

the logistic regressions. As there are different subtypes of the models, we have decided to 

use the multi-layer perceptron where jump connections are allowed. This is due to the 

complexity of the problem, which the MLP has proven to outperform other neural networks. 

For the same reasons the Support Vector Machine will be used with induced kernel feature 

space. It is unclear how to find the optimal mapping into different space, hence all different 

kernels must be tested.  
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When it comes to decision trees, we have decided to employ the advanced option Random 

Forest. The other machine learning models are viewed as far more complex structures. 

Making it compelling to see its performance measured towards the others. The chosen 

number of trees is based on the error value returned from the algorithm. As shown in the 

graph below the error slowly declines, and flat out at 80. Which is the number of trees 

chosen for the training.  

 

Figure 25 – Finding the optimal number of Trees 

Source: Output from RStudio 

Lastly, the logit model will be used as benchmark. This is due to the fact that it is a widely 

used statistical model in the research papers we have read. Its closed form and binary 

behaviour have made it an attractive alternative method to compare. 

There are different parameters and tuning factors that can be used for each algorithm. In 

academic studies it is not clear when to apply the different adjustments.  
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The most common approach is trial and errors. After considerable testing, the following 

parameters gave the highest performance.  

Their settings are the following: 

- Neural Network: Multi-layer perceptron with 2 hidden layers and logit function as 

activation function 

- Support Vector Machines:  Radial kernel for induced feature space. Cost parameter of 

10 and gamma value 0.5 

- Random Forest: Depth of 5 with 80 trees 

7.3.2 Model Validation 

When training is completed, all models’ weights and parameters are set. Below is the output 

of the Feed-Forward Neural Network training:  

 

Figure 26 – Output of the Feed-Forward neural Network Training 

Source: Output from RStudio 
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To validate the models, the validation set is used. Simply by infusing the observations into 

the trained models. The models will then give a value for the probability that one entity 

belongs to one classification or the other.  

Due to the binary classification, these values are rounded given a threshold, so that the 

output is either 1 or 0. (1 indicating that the company is defaulted).  

The point of running the validation set on the trained models is to validate the performance. 

The aim is to make a forecasting model that can successfully predict a default given some 

modelled input. Therefor the trained data is tested on “unseen data” where the correct 

classification is known. 

As the classifications are known, it is possible to perform different analysis to validate the 

overall quality for different algorithms. If the models are approved, the weights are based on 

the average value of all looped model developments.  

The results in the following chapter is based on the difference between the predicted and 

known classifications in the validation set.  
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8 Results and analysis 
In this section, the results from the model building is presented and the model performance 

is evaluated. All machine learning algorithms are measured against each other, but more 

importantly, against the more conventional method- logistic regression.  This is done by 

comparing the different model’s performance measurements.  

In the table below, the relevant measurements are presented. 

Table 9 – Result presentation 

  Logit RF MLP SVM 
Accuracy 0.99113 0.92522 0.84664 0.98606 

Sensitivity 0.99872 0.98649 0.98958 0.98855 
Specificity 0.40000 0.32450 0.07564 0.33333 
Likelihood 1.66450 1.46040 1.07060 1.48280 

AUC 0.96829 0.92432 0.57683 0.96270 
 

By first looking at the accuracy values, there is no huge difference in model performance. The 

logit is the best performing model, while MLP is the worst performing. However, the 

accuracy does not differentiate between true-positive and true-negative. It is therefore 

important to measure these differences. The sensitivity measures the accuracy of true 

positive, while the specificity measures the true negative classifications of the validation set.  

We can see that all models yield a high performance for the sensitivity. On the other hand, 

with relevancy to the probability of default, the specificity is the most important 

measurement. The dataset contains very few defaulted observations, and it is often the case, 

when one class is predominant in the dataset, that the model overgeneralize. In this specific 

case, the non-defaults. With regards to specificity, the logistic regression is the best 

performing model followed by the SVM. 

The likelihood is an important measurement as well, as it indicates the likelihood of 

misclassifying an entity. For all models, this value is low. Here especially, is the performance 
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of the MLP. The value is almost 1, meaning that a default has an almost equal probability of 

being classified as either default or non-default.  

The last measurement is the area under the curve (AUC), specifically the area under the ROC 

curve. The graph below, present the different ROC curves: 

 

Figure 27 – ROC curve 

 

The ROC curves are a graphical visualization of the True Positive Rate vs the False Positive 

Rate, in other words Sensitivity and (1-Specificity) as also used in the Likelihood Ratio. Area 

Under the Curve is the overall area underneath the ROC curve and is the measurable 

outcome from the ROC curve. As we can see from the graph, the Logit SVM, and Random 

Forest has the highest discriminatory power, on the other hand the more complex algorithm 
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- Neural Networks is performing bad and is having a hard time differentiating between the 

two classifications.  

 

  

  
Figure 28 – Cumulative lift 

The last performance measurement analyzed is the cumulative lift. As mentioned, it 

measures the level of acceptance. As also seen from accuracy and sensitivity, all models 

perform well predicting the non-defaults. However, in the case of predicting defaults, models 

underperform when compared to no model at all.     

The next graph, as an example, presents the average expected probability of default 

obtained from the logistic regression per rating provided by Fitch. In accordance with the 

performance analysis, it can be seen how the low classification performance impact the 

expected default probabilities. In example, the average AAA (Lowest risk) rating has a higher 

probability of default than the AA+ rating.  
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Figure 29 – Average expected probability per rating class provided by Fitch. 
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9 Conclusion and future research 

9.1 Conclusion 
The aim of this thesis was to investigate if machine learning can be used to develop an 

adequate model for assigning counterparties a standalone probability of default. The 

predictions were entirely based on companies past achievements without incorporation of 

any forecast of feature performance prospects. This implies that the most accurate 

assessment would always be achieved on the most recently available company information.  

The logistic regression, Multi-layered Feedforward Networks, Support Vector Machines and 

Random Forest were all used in the attempt to calculate the probability of default for 

Nordea’s counterparties. The variable selection and model development satisfy the 

requirements of certain estimation consistency underpinned by the Basel III framework.  

When evaluating the results, we find little supporting evidence in promoting the use of 

machine learning algorithms for calculations of the probability of default. We adopted 

multiple statistical evaluation methods such as Sensitivity, Specificity, Likelihood, AUC, ROC 

and Cumulative lift in assessing the performance of the models. Even though the accuracy for 

the models is high, the models have a hard time predicting and classifying the defaulted 

observations. The models have been tested against logistic regression, and the results are 

either similar or strongly disappointing. Especially, the performance of neural networks was a 

big disappointment, as previous research such as (Angelini, di Tolo, & Roli, 2008) has 

indicated a high performance for neural networks.  

We do believe that this paper is important in the extent that it can cast extra light upon the 

use of machine learning algorithms for default risk assessment for banks. As our models do 

not perform as wished, we want to point out the importance of securing high quality data for 

testing. As (Angelini, di Tolo, & Roli, 2008) specify in the success of implementing Neural 

Networks, “careful data analysis, data pre-processing and training” should be performed.  
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Preparing, analysing and training the used models has been extremely time consuming. Also, 

the loss of model development insight is high due to the “black-box” nature of the 

algorithms, the illogical weighting and overfitting of data as described by (Altman, Giancarlo, 

& Varetto, 1994). This also concerns the requirements from the Basel Committee, where the 

estimation must be logical and well documented. 

In accordance with the results, we cannot conclude that there exists a clear relation between 

the input data and the probability of default. As classification perform reasonably well, there 

occurs miss classifications, which again impact the probability of default. Therefore, the 

selected models do not perform adequately for assigning counterparties a standalone 

probability of default. 

9.2 Future Research 
Overall, we find Random Forest and Support Vector Machine to be the best performing 

models. We wish to motivate future research to continue testing these models. There are 

great opportunities in terms of data quality improvements and data size that can address 

some of the challenges found in this thesis and therefore improve accuracy. Although the 

results may indicate that machine learning models cannot be used to calculate the expected 

probability of default, we believe the comparison of probabilities should be done over a 

larger amount of entities before reaching a final conclusion. Lastly, the data range is 

relatively short; including longer time horizon could improve data accuracy.    

In terms of the legislative framework there must be developed strict guidelines for how 

datasets should be developed and how training should be conducted. The tuning of 

parameters must also be addressed, if machine learning should be used for calculating the 

probability of default. A data-modeller can influence the outputted result by a great amount 

based on the selection of data points, and overfitting or underfitting the estimations. 



93 
 

References 
Agresti, A. (2012). Categorical Data Analysis, 3rd Edition. Wiley Series in Probability and Statistics. 

Alpaydin, E. (2016). Machine Learning: The New AI. The MIT Press Essential Knowledge series. 

Altman, E. I. (1968). Financial Ratios, Disriminant Analysis and the Prediction of Corporate Bankruptcy. 
The Journal of Finance, Vol 23, Issue 4, 589-602. 

Altman, E., Giancarlo, M., & Varetto, F. (1994). Corporate distress diagnosis: Comparisons using linear 
discriminant analysis and neural networks (the Italian experience). Journal of Banking & 
Finance, Vol 18, Issue 3, 505-529. 

Amaratunga, D., Cabrera, J., & Lee, Y.-S. (2008). Enriched random forests. Bioinformatics, Volume 24, 
Issue 18, 2010-2014. 

Angelini, E., di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The 
Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), 733-755. 

Azuaje, F. (2005). Data Mining: Practical Machine Learning Tools and Techniques 2nd edition. Morgan 
Kaufmann Publishers. 

Balin, B. J. (2008). Basel I, Basel II, and Emerging Markets: A Nontechnical Analysis. The Johns Hopkins 
University School of Advanced International Studies. 

Bank for International Settlements Communications. (2010). Basel III: A global regulatory framework 
for more resilient banks and banking system. BIS. 

Basel. (1999). Core Principles Methodolog. Basel Committee on Banking Supervision. 

Basel. (2016). Minimum capital requirements for market risk . Basel Committee on Banking 
Supervision . 

Basel. (2018, 05 31). BIS. Retrieved from BIS.org: https://www.bis.org/bcbs/membership.htm 

Basel Committee on Banking Supervision . (2017). High-level summary of Basel III reforms . BIS. 

Beaver, W. H. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, Vol 4, 
Empirical Research in Accounting: Selected Studies, Wiley, 71-111. 

Bellman, R. (1961). Adaptive Control Process: A Guided Tour. Princeton University Press. 

Bellotti, T., & Crook, J. (2009). Support vector machines for credit scoring and discovery of significant 
features. Expert Systems with Applications Volume 36, Issue 2, Part 2, 3302-3308. 

Berg, D. (2005). Bankruptcy Prediction by Generalized Additive Models. Statistical Research Report No. 
1, University of Oslo. 



94 
 

Bhattacharyya, S. (2000). Evolutionary algorithms in data mining: multi-objective performance 
modeling for direct marketing. ACM SIGKDD international conference on Knowledge discovery 
and data mining, Vol 6, 465-473. 

Biau, G., Devroye, L., & Lugosi, G. (2008). Consistency of random forests and other averaging 
classifiers. Journal of Machine Learning Research, Vol 9, 2015-2033. 

Biau, G., Devroye, L., & Lugosi, G. (2008). Consistency of Random Forests and Other Averaging 
Classifiers. The Journal of Machine Learning Research, Vol 9, 2015-2033. 

BIS. (2016). Minimum capital requirements for market risk. Basel Committee on Banking Supervision. 

Breiman, L. (1996). Bagging Predictors. Machine Learning, Vol 24, Issue 2, 123-140. 

Breiman, L. (2001). Random Forests. Machine Learning, Vol 45, Issue 1, 5-32. 

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. (1984). Classification and Regression Trees. 
Wadsworth Statistics/Probability 1st Edition. 

Buja, A., & Stuetzle, W. (2006). Observations on Bagging. Statistica Sinica, Vol 16, No. 2, 323-351. 

C.A.E.Goodhart. (2008). The regulatory response to the financial crisis. Journal of Financial Stability, 
Vol 4, Issue 4, 351-358. 

Christiani, N., & Scholkopf, B. (2002). Support Vector Machines and Kernel Methods, The New 
Generation of Learning Machines. AI Magazine, Vol 23, 31-42. 

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, Issue 3, 273-297. 

Cristianini, N., & Shawe-Taylor, J. (1999). An introduction to support Vector Machines: and other 
kernel-based learning methods. Cambridge University Press. 

Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection 
algorithms: Frequency of obtaining authentic and noise variables. British Journal of 
Mathematical and Statistical Psychology, Volume 45, Issue 2, 265-282. 

Dietterich, T. G. (1997). Approximate Statistical Tests for Comparing Supervised Classification Learning 
Algorithms. Oregon State University, Department of Computer Science. 

Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression 
data. Journal of bioinformatics and computational biology, Vol 3, Issue 2, 185-205. 

Douglas J. Elliott. (2010). A Primer on Bank Capita. The Brookings Institution. 

Elizondo, D. (2006). The linear separability problem: some testing methods. IEEE Transactions on 
Neural Networks, Vol 17, Issue 2, 330-344. 

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, Vol 27, Issue 8, 861-
874. 



95 
 

Financial Stability Board. (2018, June 30). Financial Stability Board. Retrieved from FSB.org: 
http://www.fsb.org/what-we-do/implementation-monitoring/monitoring-of-priority-
areas/basel-iii/ 

Fitch. (2018). Fitch Ratings, Rating Definitions. Fitch. 

Ghodselahi, A., & Amirmadhi, A. (2011). Application of Artificial Intelligence Techniques for Credit Risk 
Evaluation. International Journal of Modeling and Optimization, Vol 1, Issue 3, 243-249. 

Gillick, L., & Cox, S. J. (1989). Some statistical issues in the comparison of speech recognition 
algorithms. Acoustics, Speech, and Signal Processing, (pp. 532-535). 

Goodhart, C. (2011). The Basel Committee on Banking Supervision: A History of the Early Years 1974–
1997. London School of Economics and Political Science. 

Gouvêa, M., & Gonçalves, E. (2007). Credit risk analysis applying logistic regression, neural networks 
and genetic algorithms models. POMS 18th Annual Conference. Pomsmeetings. 

Hair, J. F. (1998). Multivariate Data Analysis. Pearson. 

Hastie, T., Tibshirani, R., & Friedman, J. (2013). The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction, Second Edition. Springer Series in Statistics. 

Haykin, S. O. (2009). Neural Networks and Learning Machines, 3rd Edition . Prentice Hall, Neural 
Networks and Learning Machines sv. 10. 

Hofmann, T., Scholkopf, B., & Smola, A. (2008). Kernel methods in machine learning. The Annals of 
Statistics, Vol 36, Issue 3, 1171-1220. 

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression, 3rd Edition. 
Wiley Series in Probability and Statistics. 

Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector 
machines and neural networks: A market comparative study. Decision Support Systems, Vol 
37, Issue 4, 543-558. 

Jickling, M. (2009). Causes of the Financial Crisis. Congressional Research Service. 

Khashman, A. (2010). Neural networks for credit risk evaluation: Investigation of different neural 
models and learning schemes. Expert Systems with Applications: An International Journal, Vol 
37, Issue 9, 6233-6239. 

Kirkos, E. (2015). Assessing methodologies for intelligent bankruptcy prediction. Artificial Intelligence 
Review, Vol 43, Issue 1, 83-123. 

Kroon, S., & Lelyveld, I. v. (2018). Counterparty credit risk and the effectiveness of banking regulatio. 
DNB Working Paper, No. 599. 

Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent 
techniques. 1-28: European Journal of Operational Research, Vol 180, issue 1. 



96 
 

Lobo, J. M., Jiménez‐Valverde, A., & Real, R. (2007). AUC: a misleading measure of the performance of 
predictive distribution models. Global Ecology and Biogeography, Vol 17, Issue 2, 145-151. 

Lobo, J., Raimundo, R., & Jimenez-Valverde, A. (2008). AUC: A misleading measure of the 
performance of predictive distribution models. Global Ecology and Biogeography, Vol 17, 
Issue 2, 145-151. 

Martin, D. (1977). Early warning of bank failure: A logit regression approach. 249-276: Journal of 
Banking and Finance. 

May, R., Dandy, G., & Maier, H. (2011). Review of Input Variable Selection Methods for Artificial 
Neural Networks. In K. Suzuki, Artificial Neural Networks - Methodological Advances and 
Biomedical Applications (pp. 22-44). InTech. 

Mays, E. (2001). Handbook of Credit Scoring. Business Series, Global Professional Publishing. 

McNelis, P. (2005). Neural Networks in Finance 1st Edition: Gaining Predictive Edge in the Market. 
Academic Press Advanced Finance. 

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or 
percentages. Psychometrika, Vol 12, Issue 2, 153-157. 

navan.name. (2018, 08 20). Understanding ROC curves. Retrieved from Navan.name: 
http://www.navan.name/roc/ 

Nazeran, P., & Dwyer, D. (2015). CreditRiskModelingofPublicFirms: EDF9. Moody’sAnalytics. 

Nordea Group. (2017). Capital and Risk Management Report 2016. Nordea. 

Nordea Group. (2018). Annual Report 2017. Nordea. 

Odom, M., & Sharda, R. (1990). A Neural Network for Bankruptcy Prediction. International Joint 
Conference on Neural Networks, 1638-168. 

Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of 
Accounting Research, Vol. 18, No. 1, 109-131. 

Ozaki, T. J. (2015, 06 04). https://tjo-en.hatenablog.com. Retrieved from Machine learning for 
package user with R(5): Random Forest: https://tjo-
en.hatenablog.com/entry/2015/06/04/190000 

Ozaki, T. J. (2015, 05 22). www.tjo-en.hatenablogg.com. Retrieved from Machine Learning for 
package user with R(4): Neural Network: https://tjo-
en.hatenablog.com/entry/2015/05/22/190000 

Ozaki, T. J. (2015, 04 20). www.tjo-en.hatenablogg.com. Retrieved from Machine Learning for 
package user with R(3): Support Vector Machine: https://.tjo-
en.hatenablogg.com/entry/2015/04/20/190000 



97 
 

Paduaa, L., Schulzeb, H., Matkovićb, K., & Delrieux, C. (2014). Interactive exploration of parameter 
space in data mining: Comprehending the predictive quality of large decision tree collections. 
Computers & Graphics, Vol 41, 99-113. 

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol 27, Issue: 8, 1226-1238. 

Poole, D., Mackworth, A., & Goebel, R. (1998). Computational Intelligence A Logical Approach. Oxford 
University Press, New York. 

Random forests. (2001). Machine Learning, Vol 45, Issue 1, 5-32. 

Rezac, M., & Rezac, F. (2011). How to Measure the Quality of Credit Scoring Models. Finance a Uver, 
Vol 61, Issue 5, 486-507. 

Rodríguez, J. D., Martínez, A. P., & Lozano, J. A. (2010). Sensitivity Analysis of k-Fold Cross Validation 
in Prediction Error Estimation. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 569-575. 

Roemer. (2018, 6 12). Use Gaussian RBF kernel for mapping of 2D data to 3D. Retrieved from 
Stackexchange: https://stats.stackexchange.com/questions/63881/use-gaussian-rbf-kernel-
for-mapping-of-2d-data-to-3d 

Salchenberger, L., Mine, C. E., & Lash, N. A. (1992). Neural Networks: A New Tool for Predicting Thrift 
Failures. Decision Sciences Vol 23, No. 4, 899-916. 

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of 
Research and Development, Vol 44, Issue 1.2, 206-226. 

Scalelive. (2018, 08 30). McNemar's test, Compare two observations of a dichotomous categorical 
outcome. Retrieved from Scalelive: https://www.scalelive.com/mcnemars.html 

Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, 
Optimization, and Beyond. Adaptive Computation and Machine Learning series, MIT Press. 

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Pactice and Visualization. Wiley. 

Siddiqi, N. (2015). Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring Vol 
3. Finance & Investments Special Topics, Wiley. 

Souza, C. (2010). Kernel Functions for Machine Learning Applications. Creative Commons Attribution-
Noncommercial-Share Alike. 

Tam, K. (1991). Neural network models and the prediction of bank bankruptcy. Omega, Elsevier, vol 
19, issue 5, 429-445. 

Tam, K. Y., & Kiang, M. Y. (1992). Managerial Applications of Neural Networks: The Case of Bank 
Failure Predictions. Management Science Vol 38, Issue 7, 926-947. 



98 
 

TwarakaviJiri, N. K., Simunek, J., & Schaap. (2009). Development of Pedotransfer Functions for 
Estimation of Soil Hydraulic Parameters using Support Vector Machines. Soil Science Society 
of America Journal, 73. 

Warnock, D., & Peck, C. (2010). A roadmap for biomarker qualification. Nature Biotechnology, Vol 28, 
Issue 5, 444-445. 

Witzany, J. (2010). Credit Risk Management and Modeling. Oeconomica. 

Yu, L., Wang, S., & Lai, K. K. (2008). Credit risk assessment with a multistage neural network ensemble 
learning approach. Expert Systems with Applications: An International Journal, 1434-1444. 

Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental 
evaluation tool in clinical medicine. Clinical Chemistry, Vol 39, Issue 4, 561-577. 

 

B. Appendixes 
 

We completed a similar test, with the same approach as for the Nordea Data set. The data 
was collected from the Wharton (Wharton Research Data Services). The period ranged from 
2000 up until 2016, and explanatory variables were based on accounting statements. The 
rating, indicating the risk profile of the companies where gathered from Standard & Poors. – 
We obtained similar results as with the Nordea data. Some of the results are presented 
below: 

  Logit RF MLP SVM 
Accuracy 0,9751037 0,92013 0,82141 0,9751037 
Sensitivity 0,9957447 0,93213 0,96320 0,9831224 
Specificity 0,1666667 0,6666667 0,25 0,5 
Likelihood 1,1949 2,7964 1,2843 1,9662 
AUC 0,58121 0,86170 0,52092 0,66241 
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C. Rstudio 
All code has been written in Rstudio with the help of multiple packages. The code will be made 
available upon request. 
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