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1. Abstract 
We examine the relationship between the credit default swap spread and the Merton distance to default 

model, which is based on the Merton bond pricing model (1974).  We examine the relationship for the 

estimated default probability and for the estimated distance to default. For both variables we find, in a first 

difference regression setting, that we must lag them by one period for them to be significant predictors of the 

CDS spread. The results of our study indicate that distance to default explains slightly more of the variability in 

the CDS spread than the probability of default. We test if the sensitivity of the CDS spread to the Merton DD 

model changes when the economy goes into recession relative to normal times. We examine this by including 

interaction-terms. For the default probability the results indicate that the change in the relationship is 

insignificant. However, for the distance to default the results show that the first difference of CDS spread 

becomes less sensitive to changes in the first difference of distance to default lagged one period when the 

economy is in recession. Furthermore, we examine if the CDS spread can be explained by S&P500 index and 

the VIX index and if the relationships depend of the state of the economy. The S&P500 index is a significant 

predictor of the CDS spread, but as for the PD and DtD the first difference of the S&P500 index must be lagged 

by one period to be significant. The change in relationship between the S&P500 index and the CDS spread from 

normal times to crisis is insignificant. The conclusion drawn for the S&P500 index is the same for the VIX index 

in the univariate setting. However, in the multivariate setting the VIX index is insignificant whereas S&P500 

remains a significant predictor of the CDS spread.   
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2. Background, introduction, problem statement and delimitation. 

2.1 Background 
Credit risk has throughout the last decades caught the attention of both researchers and practitioners. The 

financial crisis raved during the period of 2007-2009, a period where the importance of controlling risk was 

exposed. During the crisis, large and well-established firms experienced large drops in equity value, and banks 

suffered enormous losses on loans given to private firms. The significant losses during the crisis may indicate 

that the lenders had a difficult time predicting the default risk of the borrowing firm. However, the explanation 

can also be that the models that may work fine during normal times do a poor job when the economy is in 

crisis. 

Credit risk modeling is complex and by nature quantitative, and there are numerous models out there that try 

to price and predict default risk. It is beyond the scope of the thesis to cover them all. 

The thesis investigates how the Merton DD model explains a market measure of credit risk. The market 

measure of default could be the corporate bond yield spread, defined as the bond yield minus the risk-free 

rate. This is the premium that bondholders receive for taking on the risk the bond-seller default on its 

obligation. But is has been shown in studies that a part of the bond yield spread is not due to credit risk but is 

explained by liquidity factors (Chen, Lesmond, & Wei, 2007) and (Longstaff, Mithal, & Neis, 2005). Another 

market measure for credit risk is the credit default swap spread (CDS spread), which is considered to be a more 

pure measure of default risk (Zhang, Zhou, & Zhu, 2009). 

The CDS spread can be considered the market’s price for taking on the default risk for the entity firm, hence 

the first place to look for an explanation for the movement in the CDS spread will be in the movements in the 

default risk of the company. 
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2.2 Introduction 
The structural approach has been used extensively in credit risk modeling, the approach originates out of the 

arbitrage pricing framework by Black & Scholes (1973); and (Merton, 1974).The structural approach will be the 

theoretical foundation of the thesis. A specific structural model that has won great attention both in practice 

and in academic research is the one developed by the KMV Corporation (Crosbie & Bohn, 2003), which is a 

practical application of the Merton model (1974). The thesis follows the study of Bharath & Shumway (2008) 

and refer to the KMV model as the Merton distance to default model or simply the Merton DD model.  

We will investigate how well movements in the Merton DD model measure of credit risk explains the 

movements in the CDS spread, and if the potential relationship changes for an economy in crisis relative to 

normal times.  

The Merton DD model applies the setting of Merton (1974), where the equity of a firm is viewed as a call 

option on the asset value of the specific firm, where the exercise price equals the face value of the firm’s debt. 

The market value of the assets and the asset volatility are not directly observable. But the assumptions of the 

model make it possible to infer the values from the equity value using an iterative procedure. Having these 

values, the Merton DD model produces a measure for default risk, the Distance to Default (𝐷𝑡𝐷).  

Although the structural approach is widely used in credit risk modeling, several studies find that the structural 

models do a poor job in explaining the magnitude of credit spreads, a result often referred to as the credit 

spread puzzle (Augustin, Subrahmanyam, Tang, & Wang, 2014). Numerous studies examine the credit spread 

puzzle based on the structural models using bond spreads, for evidence of the credit spread puzzle, see for 

example Eom, Helwege, & Huang  (2004b); and Huang & Huang (2012). 

In line with the credit spread puzzle other studies test the structural models using CDS spreads, where Huang & 

Zhou (2008) conclude that the structural models fail to predict the CDS spreads and capture the time-series 

changes accurately. On the other hand, a study by Ericsson, Jacobs, & Oviedo (2010), concludes that covariates 

inspired by the structural models, such as leverage and volatility in a linear regression explain a great fraction 

of the variation in the CDS spread. In the study by Bharath & Shumway (2008): “Forecasting Default with the 

Merton Distance to Default Model”  the default probability is calculated from the Merton DD model and they 

find that the measure is insufficient in predicting the CDS spreads.  

Numerous studies have been carried out testing the Merton DD model’s ability to predict default using CDS 

spreads and especially corporate bond yield spread. The results of these studies have pointed in different 

directions, however with the tendency to conclude that the Merton DD model is insufficient when it comes to 

predicting the CDS spread and/or the bond spread.  
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What have not been tested extensively, to our knowledge, is if the potential relationship between the CDS 

spread and the estimate from the Merton DD model changes as a function of the state of the economy. This 

thesis setoff to test this but will in addition tests if the S&P 500 index level and the volatility measure from the 

VIX index have explanatory power on the CDS spread, and if the relationship changes when the economy is in 

crisis. 

2.3 Problem statement 
This thesis addresses the following problem statement: 

“Does the Merton DD model estimate explain the variation in the CDS spread in a linear regression framework, 

and is relationship between Merton DD model estimate and CDS spread dependent on the state of the 

economy? Does the explanatory power of the model increase by adding macro variables and does the 

relationship between the CDS spread and the macro variables depend on the state of the economy?“ 

This thesis answers the problem statement through the following questions: 

1. How well does the Merton DD model estimate explain the variability in CDS spread in an OLS 

regression setup? 

2. Does the potential relationship between the Merton DD model and the CDS spread depend on the 

state of the economy? 

3. Is it possible to improve the regression model by including non-firm-specific variables such as the 

S&P 500 index and the volatility measure from the VIX index? 

4. Is the potential relationship between the non-firm-specific variables and the CDS spread 

dependent on the state of the economy?  

2.4 Delimitations 
Assessing the performance of Merton DD model is important because many practitioners and academics apply 

the model. In addition, it is relevant to know if the model performance depends on the state of the economy.   

Questions 1-4 in the problem statement are answered by empirically testing how the risk measure from the 

Merton DD model, The S&P500 index and the VIX index predict the CDS spread. The analysis is done for a single 

American firm for a period of 6 years, from 2007 to 2013. The conclusions drawn from the analysis will only be 

valid for the single firm investigated.  

If one wants to make more general statements about the relationship between the CDS spread and probability 

of default, distance to default, the S&P500 index, and the VIX index, then it would be necessary to increase the 

sample size significantly.  
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The empirical test carried out in the thesis can be relevant for analysts who does analysis on single firm level. In 

section: “9. Data collection”, we go into why an American firm has been chosen, the data frequency and the 

exact period of study. 

3. Structure of thesis 

In this section we present the structure of the thesis. It serves the purpose to prepare the reader for what to 

come and make it clear why each section is covered. 

In section 4 we put forth theoretical foundation and its application. We present the Merton model (1974), that 

serves as the theoretical foundation of the thesis. Hereafter follows the practical application of the model, first 

with the KMV approach to default point. But the KMV approach still leaves us with the challenge of estimating 

the asset value and its volatility which we need to calculate the distance to default and the probability of 

default. In the subsection, “The VX-algorithm”, we put forth the method of Vassalou & Xing (2004) so we can 

estimate the asset value and asset volatility. We present their iterative procedure, which we call the VX-

algorithm, it shows how we solve the two nonlinear equations for the two unknowns, asset value and asset 

volatility.  

In section 5 we cover the credit market, where we show how the CDS spread can be calculated from default 

probabilities. 

In section 6, the statistical method is put forth and we show how we make use of interaction-terms to test if 

the relationship between CDS spread and for example 𝐷𝑡𝐷 changes when the economy is in crisis relative to 

normal times. 

In section 7, we shortly present the frim Alcoa Inc. which is used to answer the problem statement 

In section 8, we go over the data collection process. In section 9, we give a summary statistic of the variables, 

and do a plot analysis of all variables included in the study. In section 10, we run the regressions that allow us 

to answer the problem statement. In section 11 it is discussed how the model could have been improved and 

in section 12 we conclude.  

4. Theoretical foundation and application 

4.1 Merton model 

First it is assumed that we operate within the settings of the standard Black-Scholes model (1973), hence we 

are in a market which trades continuous in time and the market is frictionless and competitive, that is 
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1. Agents are price takers, hence they do not have any effect on the prices on the assets traded in the 

market. 

2. No transaction costs on traded assets. 

3. No restrictions on short selling. 

4. No indivisibilities of assets.  

5. Lending and borrowing at the at risk-free rate are done at the same rate, and the risk-free rate is 

continuously compounded.  

(Lando, 2004) 

In the Merton model (1974), a firm’s equity value is viewed as a call option on the firm’s assets. To understand 

why, one must recognize that equity is a residual claim on the firm’s assets after all other obligations have 

been met. The strike price of the call option is then the book value of the firm’s liabilities. 

It is assumed that the dynamics of the assets value, V, follows a Geometric Brownian Motion (GBM): 

𝑑𝑉𝑡 = 𝜇𝑉𝑡 𝑑𝑡 + 𝜎𝑉𝑡 𝑑𝑊𝑡 

Where 𝜇 is the expected continously compoinded return on the asset value, 𝜎 is its volatility, and 𝑊 is a 

standard Brownian motion under the physical probability measure 𝑃.  

It then follows that the asset value at time t can be written as 

𝑉𝑡 = 𝑉0𝑒
(𝜇−0.5𝜎2)𝑡+𝜎𝑊𝑡 

Where 𝑊𝑡 is normally distributed with mean 0 and variance t, and the increments of W are independent, that 

is 𝑊𝑡(1) − 𝑊𝑡(0) is independetn of 𝑊𝑡(3) − 𝑊𝑡(2) for 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3 and so on. 

Taking the logarithm of the underlying assets value 

𝑉𝑡 = 𝑉0𝑒
(𝜇−0.5∗𝜎2)𝑡+𝜎𝑊𝑡  

𝑙𝑜𝑔𝑉𝑡 = log[𝑉0𝑒
(𝜇−0.5∗𝜎2)𝑡+𝜎𝑊𝑡] 

𝑙𝑜𝑔𝑉𝑡 − 𝑙𝑜𝑔𝑉0 = (𝜇 − 0.5 ∗ 𝜎2)𝑡 + 𝜎𝑊𝑡 

This means that the logarithm of the price increment is normal distributed with mean (𝜇 − 0.5𝜎2)𝑡 and 

variance 𝜎2𝑡. 

It is also assumed that there exists a money market account with a constant risk-free rate, r, that is 

deterministic: 

𝛽𝑡 = 𝑒𝑟∗𝑡 

The price of a contingent claim paying 𝐶(𝑉𝑇) at time 𝑇 is equal to 

𝐶0 = 𝐸𝑄(𝑒−𝑟∗𝑡𝐶𝑇) 

Where 𝑄 is the equivalent martingale measure under which the dynamics of  𝑉 are given as 
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𝑉𝑡 = 𝑉0𝑒
(𝑟−0.5∗𝜎2)𝑡+𝜎𝑊𝑡

𝑄

 

And 𝑊𝑡
𝑄

 is a Brownian motion, and 𝜇 is replaced by r. 

In general, the market value of a firm’s assets are far from observable, and a critical assumption is that the 

asset value process is given and does not change by financing decisions made by the firm’s owners.    

Now assume at time 𝑡 = 0 , that the firm issues two types of claims: equity and debt. Furthermore, assume 

that the debt has face value of D and is of the type zero coupon bond.  Armed with these assumptions, the 

payoff at time T to equity holders, 𝐸𝑇 , and debt holders, 𝐵𝑇 are: 

𝐸𝑇 = Max(𝑉𝑇 − 𝐷, 0) = {
𝑉𝑇 − 𝐷,     𝑓𝑜𝑟 𝑉𝑇 > 𝐷
0,               𝑓𝑜𝑟 𝑉𝑇 < 𝐷

    (1) 

𝐵𝑇 = min(𝑉𝑇 , 𝐷) = D − max(𝐷 − 𝑉𝑇 , 0) = {
𝐷,      𝑓𝑜𝑟 𝑉𝑇 > 𝐷
𝑉𝑇 ,    𝑓𝑜𝑟 𝑉𝑇 < 𝐷

   (2) 

(Lando, 2004) 

The graph below illustrates the payoff to equity and bondholders for D=100 at maturity of the debt at time T as 

a function of asset value. 

 

The firm is run by the equity owners, hence they control the assets. At maturity of the debt the equity owners 

pay the debt holders the face value of the bond, D, if the assets value exceeds the face value of the bond. The 

equity owners do that to keep the ownership over the assets. If the assets value is below the face value of the 

debt at maturity the equity owners do not want to pay D to keep the assets. Hence, when 𝑉 < 𝐷 is the case at 

maturity then bond holders overtake the ownership of the assets, and recover 𝑉𝑇 instead of the D.  

From the payoff structure it clear that equity can be viewed as a call option on the firm’s assets and debt can 

be viewed as a riskless bond and short position in a put option on the firm’s assets.   

We now make use of the Black-Scholes pricing machinery for an European call option, given the current asset 

level 𝑉 and it’s volatility 𝜎, the risk-free rate 𝑟, and strike price 𝐷 and maturity 𝑇, the call price is   
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𝐶(𝑉, 𝐷, 𝑇, 𝜎, 𝑟) = 𝑉𝑁(𝑑1) − 𝐷𝑒−𝑟𝑇𝑁(𝑑2) 

Where  

𝑑1 =
log(

𝑉

𝐷
)+(𝑟+0.5∗𝜎2)𝑇

𝜎 √𝑇
 , 

𝑑2 =
log (

𝑉
𝐷
) + (𝑟 − 0.5 ∗ 𝜎2)𝑇

𝜎 √𝑇
 = 𝑑1 − 𝜎√𝑇 

 

The function 𝑁(∙) is the cumulative distribution function of the normal distribution.  

We now apply the put-call parity for European options on non-divided paying stock to derive price of the put 

option 

𝐶(𝑉𝑇) − 𝑃(𝑉𝑇) = 𝑉𝑇 − 𝐷𝑒−𝑟𝑇 

𝑃(𝑉𝑇) = 𝐷𝑒−𝑟𝑇 − 𝐶(𝑉𝑇)−𝑉𝑇 

Applying this, we obtain the Merton model for risky debt, the value of equity and debt at time t becomes 

𝐸𝑡 = 𝐶(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟) 

 𝐵𝑡 = 𝐷𝑒−𝑟(𝑇−𝑡) − 𝑃(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟) 

For an European call option 𝑁(𝑑2) is defined as the risk neutral probability that the option finish in the money. 

To see why it is noted that the dynamics of  𝑉 are given as  

𝑉𝑡 = 𝑉0𝑒
(𝑟−0.5∗𝜎2)𝑡+𝜎𝑊𝑡

𝑄

 

where 𝑄 is the equivalent martingale measure, to calculate 𝑃(𝐷 < 𝑉𝑇) is now straight forward: 

𝑃(𝑉𝑇 < 𝐷) = 𝑃(𝑉0𝑒
(𝑟−0.5∗𝜎2)𝑇+𝜎𝑊𝑇 < 𝐷) 

𝑃(𝑉𝑇 < 𝐷) = 𝑃((𝑟 − 0.5 ∗ 𝜎2)𝑇 + 𝜎𝑊𝑇 < log (
𝐷

𝑉0
)) 

𝑃(𝑉𝑇 < 𝐷) = 𝑃 (𝜎𝑊𝑇 < log (
𝐷

𝑉0
) − (𝑟 − 0.5 ∗ 𝜎2)𝑇) 

 𝑃(𝑉𝑇 < 𝐷) = 𝑃(
𝜎𝑊𝑇

𝜎√𝑇
<

log (
𝐷
𝑉0

) − (𝑟 − 0.5 ∗ 𝜎2)𝑇)

𝜎√𝑇
) 

𝑃(𝑉𝑇 < 𝐷) = 𝑁(
log (

𝐷
𝑉0

) − (𝑟 − 0.5 ∗ 𝜎2)𝑇)

𝜎√𝑇
) 
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𝑃(𝐷 < 𝑉𝑇) = 1 − 𝑁(
log (

𝐷
𝑉0

) − (𝑟 − 0.5 ∗ 𝜎2)𝑇)

𝜎√𝑇
) 

𝑃(𝐷 < 𝑉𝑇) = 𝑁(−
log (

𝐷
𝑉0

) − (𝑟 − 0.5 ∗ 𝜎2)𝑇)

𝜎√𝑇
) 

𝑃(𝐷 < 𝑉𝑇) = 𝑁(
log (

𝑉0
𝐷

) + (𝑟 − 0.5 ∗ 𝜎2)𝑇)

𝜎√𝑇
) = 𝑁(d2) 

 

In Merton model setting this is equivalent to the risk neutral probability that the firm does not default. But 

from risk neutral probability that the firm does not default the probability of default is obtained as 1 −

𝑁(𝑑2) = 𝑁(−𝑑2), because the normal distribution is symmetric. Hence 𝑃(𝑉𝑇 < 𝐷) = 𝑁(−𝑑2).  

To calculate the risk neutral probability of default we need 𝑉0 and 𝜎, neither are directly observable in the 

market. But if the firm is publicly traded then 𝐸𝑡 is observable, and we have the following equation: 

𝐸𝑡 = 𝐶(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟) 

Which provides one condition that must be satisfied by 𝑉0 and 𝜎. 

From historical data or options, it is possible to estimate the volatility of the equity, 𝜎𝐸 . We now make use Itô’s 

lemma to set up another equation that must be satisfied by 𝑉0 and 𝜎 we have: 

𝜎𝐸𝐸0 =
𝛿𝐸

𝛿𝑉
𝜎𝑉0 

Or  

𝜎𝐸𝐸0 = 𝑁(𝑑1)𝜎𝑉0 

We now have two non-linear equations in two unknows, the non-linearity means that there is no closed form 

solution, but it is possible to determine 𝑉 and 𝜎 by solving the equations numerically using an iterative 

procedure (Hull, 2012).    

 

We now go over the properties of the Merton model: 

The sum of equity and debt is equal to the asset value at any point in time, that is, we can write 𝐵𝑡 = 𝑉𝑡 −

𝐶(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟), which makes it easier to see how debt value depends on movements in the parameters 

𝑉, 𝐷, 𝑇, 𝜎, and 𝑟. 

𝐵𝑡 increase in 𝑉, it is seen from the fact that the put option decrease in value when V increase, all else equal.  
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𝐵𝑡 is increasing in 𝐷, increasing the face value of debt equals a lager payoff in the state 𝑉𝑇 > 𝐷, but also seen 

from the fact that the call option in 𝐵𝑡 = 𝑉𝑡 − 𝐶(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟) decrease when D increase.  

𝐵𝑡  is decreasing 𝑟. It is easiest seen from rearranging  𝐵𝑡 = 𝑉𝑡 − 𝐶(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟) to  

𝐵𝑡 + 𝐶(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟) = 𝑉𝑡 the call increase in 𝑟, the sum of equity and debt must remain the same. For this 

to be the case 𝐵𝑡 must decrease.  

𝐵𝑡 is decreasing in T. The increasing discounting of the risk-free bond has the dominant effect here (Lando, 

2004).  

𝐵𝑡 is decreasing in 𝜎. It is easy to see why, both the put and the call options increase in value. The bond holder 

has a short position in the put, hence debt value decreases. And in the call option increase in value it is also 

easily seen from  𝐵𝑡 = 𝑉𝑡 − 𝐶(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟). The fact, that both the put and the call increase simultaneously 

in volatility is the key to understand “asset substitution”. Increasing asset volatility at time t=0, can be done by 

selling the assets and reinvest the sum in more risky assets, the value of the assets remains the same.  It will, 

on the other hand, move the wealth from equity holders to bond holders. In practice the bond holders meet 

the risk of wealth transfer by adding covenants to the bonds, so that the bondholders exercise some control 

over the investment decisions. In the Merton model, the control is incorporated by the fact that the volatility is 

constant over the period studied (Lando, 2004).  

 

Shortcomings of the Merton model 

1. The model only takes one kind of debt, the zero-coupon bond into account. In the real world it is often 

observed that debt take on different characteristics. 

2. The model assumes constant volatility. 

3. The default time restriction, it is assumed that default only can occur if the firm does not manage to repay 

the principal of the one-year zero-coupon bond at maturity. In practice default can happen any time the firm 

fails to meet its obligations, it could for example be a short time liability to one of its suppliers.   

It is rare that a model achieves everything one wants, and the Merton model is no exception. For this thesis, 

the Merton model works as the theoretical foundation and clarify our conceptual thinking.  

4.2 KMV Approach 

The KMV approach (Crosbie & Bohn, 2003) offers a practical use of the methodology for prediction of default.   

The approach assumes that the asset value evolves as  

𝑉𝑡 = 𝑉0𝑒
(𝜇−0.5∗𝜎2)𝑡+𝜎𝑊𝑡  
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Which makes it possible to calculate the probability that the asset value falls below the face value of the debt 

at maturity under physical probability measure 𝑃: 

𝑃(𝑉𝑇 < 𝐷) = 𝑃(𝑉0𝑒
(𝜇−0.5∗𝜎2)𝑇+𝜎𝑊𝑇 < 𝐷) 

𝑃(𝑉𝑇 < 𝐷) = 𝑃((𝜇 − 0.5 ∗ 𝜎2)𝑇 + 𝜎𝑊𝑇 < log (
𝐷

𝑉0
)) 

𝑃(𝑉𝑇 < 𝐷) = 𝑃 (𝜎𝑊𝑇 < log (
𝐷

𝑉0
) − (𝜇 − 0.5 ∗ 𝜎2)𝑇) 

At this point it is noted that if a random variable, X, is normally distributed with mean 𝜇 and variance 𝜎2 then 

𝑋−𝜇

𝜎
 is a standard normal variable, i.e. with mean 0 and variance 1. We also remember that 𝑊𝑇 is normally 

distributed with mean 0 and variance T.  

𝑃(𝑉𝑇 < 𝐷) = 𝑃 (𝜎𝑊𝑇 < log (
𝐷

𝑉0
) − (𝜇 − 0.5 ∗ 𝜎2)𝑇) 

𝑃(𝑉𝑇 < 𝐷) = 𝑃(
𝜎𝑊𝑇

𝜎√𝑇
<

log (
𝐷
𝑉0

) − (𝜇 − 0.5 ∗ 𝜎2)𝑇

𝜎√𝑇
  ) 

𝑃(𝑉𝑇 < 𝐷) = 𝑁(
log (

𝐷
𝑉0

) − (𝜇 − 0.5 ∗ 𝜎2)𝑇

𝜎√𝑇
  ) 

𝑃(𝑉𝑇 < 𝐷) = 𝑁(−
log (

𝑉0
𝐷) + (𝜇 − 0.5 ∗ 𝜎2)𝑇

𝜎√𝑇
  ) 

The function 𝑁(∙) is the cumulative distribution function of a normal distribution. In the literature distance to 

default (DtD) is often used instead of the probability of default. DtD measures the number of standard 

deviations the expected asset value is away from default. DtD is given as:  

𝐷𝑡𝐷 =
𝐸[log(𝑉𝑇)]−log(𝐷)

𝜎√𝑇
=

log(𝑉0)+(𝜇−0.5∗𝜎2)𝑇−log (𝐷)

𝜎√𝑇
=

log (
𝑉0
D

)+(𝜇−0.5∗𝜎2)𝑇

𝜎√𝑇
    

In the Merton model, the DtD estimate can be negative, but for 𝑉𝑇 = 𝐷 it is 0. The probability of default and 

distance to default contain the same information and the relationship is clear: 

𝑃(𝑉𝑇 < 𝐷) = 1 − 𝑁(𝐷𝑡𝐷) = 𝑁(−𝐷𝑡𝐷) 

DtD is simply another way of stating the probability of default.  

Where 𝑁(∙) is the cumulative distribution function of the normal distribution.  
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At this point it seems straight forward to calculate both 𝐷𝑡𝐷 and the probability of default, but it is not. For a 

typical firm the market value of assets, let along the asset volatility, are not directly observable (Lando, 2004). 

What is observable is the book value of the assets, but often it will make no sense to use it as a proxy for the 

market value because it can deviate from its significantly.  

If we cannot observe the market value of asset then we cannot calculate distance to default, in addition we 

cannot use observed asset values to calculate an estimate of the asset volatility 𝜎.  

In the fowling section we solve the challenge of the unknow asset value and volatility by introducing an 

iterative procedure.  

We also need to define the default point, 𝐷. In the KMV approach Crosbie (2003) the default point is defined 

as:   

𝐷 =  0.5 × 𝑙𝑜𝑛𝑔𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡 + 𝑠ℎ𝑜𝑟𝑡𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡 

The idea is that the short-term debt requires a payment of the face value soon, whereas long-term debt only 

requires coupon payments in the short run.  

4.3 The VX-algorithm  

We know put forth a method to estimate the two unknown parameters: asset value, 𝑉, and asset volatility, 𝜎. 

Several approaches to estimate 𝑉 and 𝜎 from equity exist, but the iterative procedure of Vassalou and Xing 

(2004) has been shown to work very well (Lando, 2004). We follow Jessen & Lando (2015) and from now on the 

procedure is described as the VX-algorithm.  

The iterative procedure uses the fact that equity is equal to the value of a call option on the firm’s asset with 

strike equal to the face value of debt as described in the Merton model.  

𝐸𝑡 = 𝐶(𝑉, 𝐷, 𝑇 − 𝑡, 𝜎, 𝑟) 

Assume that we observe a series of equity values, 𝐸𝑡0, 𝐸𝑡1, … , 𝐸𝑡𝑁  

By inverting the formula, we can solve for the asset value for a given 𝜎. Let 𝑉𝑡𝑖(𝜎) be the asset value obtained 

for a given 𝜎. The then nth step brings us from an estimate of 𝜎𝑉
𝑛 asset volatility to an improved estimate of 

asset volatility 𝜎𝑉
𝑛+1, the VX-algorithm follows the form:  

Start with an initial guess on 𝜎𝑉
𝑛: 

1. Calculate 𝑉𝑡0 , 𝑉𝑡1 , … , 𝑉𝑡𝑁  from the observed share prices 𝑆𝑡0, 𝑆𝑡1, … , 𝑆𝑡𝑁 using the inverse of the Black-

Scholes formula as a function of the underlying assets. 

2. Estimate 𝜎𝑉
𝑛+1 by thinking of 𝑉𝑡0(𝜎𝑉

𝑛), 𝑉𝑡1(𝜎𝑉
𝑛),… , 𝑉𝑡𝑁(𝜎𝑉

𝑛) as a GBM, i.e. let 
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𝜎𝑉
𝑛+1 = √

1

𝑁∆𝑡
∑(log(

𝑉𝑡𝑖

𝑉𝑡𝑖−1

) − 𝜉)

2𝑁

𝑖=1

 

Where 

 𝜉 = 𝑚𝑒𝑎𝑛 =
1

𝑁
∑log(

𝑉𝑡𝑖

𝑉𝑡𝑖−1

)

𝑁

𝑖

 

Now use the updated value and continue with 𝜎𝑉
𝑛+1 in place of 𝜎𝑉

𝑛, run the VX-algorithm until (𝜎𝑉
𝑛+1−𝜎𝑉

𝑛) 

converges to 0.   

To truly understand what goes on in the VX-algorithm, we again note that the asset value follows a process of 

𝑉𝑡 = 𝑉0𝑒
(𝜇−0.5∗𝜎2)𝑡+𝜎𝑊𝑡  

That can be written as 

𝑉𝑡 = 𝑉𝑡−1𝑒
(𝜇−0.5∗𝜎2)∆𝑡+𝜎√∆𝑡𝜖 

Where 𝜖 is standard normal distributed and ∆𝑡 is the distance between the asset value of the firm. We now 

remember from the properties of Brownian motions that the increments are independent if the time intervals 

do not overlap.  

It gives us 

𝑙𝑜𝑔𝑉𝑡 − 𝑙𝑜𝑔𝑉𝑡−1 = (𝜇 − 0.5 ∗ 𝜎2)∆𝑡 + 𝜎√∆𝑡𝜖 ~ 𝑁((𝜇 − 0.5 ∗ 𝜎2)∆𝑡, 𝜎2∆𝑡)  

Where 𝑁(𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒). That is, we have observations from the iid normal distribution. 

From elementary statistics it is straight forward to find mean and variance in a normal distribution.  

𝑀𝑒𝑎𝑛 = 𝜉 =
1

𝑁
∑(log𝑉𝑡𝑖 − log𝑉𝑡𝑖) 

𝑁

𝑖

=
1

𝑁
∑log(

𝑉𝑡𝑖

𝑉𝑡𝑖−1

)

𝑁

𝑖

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁
∑(log(

𝑉𝑡𝑖

𝑉𝑡𝑖−1

) − 𝜉)

2𝑁

𝑖=1

 

But we want to find 𝜇 and 𝜎, hence we put them into the expression. 

For the variance 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁
∑(log(

𝑉𝑡𝑖

𝑉𝑡𝑖−1

) − 𝜉)

2

= 𝜎2√∆𝑡

𝑁

𝑖=1

 

Moving around solving for 𝜎 
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𝜎̂ = √
1

𝑁∆𝑡
∑(log(

𝑉𝑡𝑖

𝑉𝑡𝑖−1

) − 𝜉)

2𝑁

𝑖=1

 

For the mean we have 

𝜉 =
1

𝑁
∑log(

𝑉𝑡𝑖

𝑉𝑡𝑖−1

) =

𝑁

𝑖

(𝜇 − 0.5 ∗ 𝜎2)∆𝑡 

 

Moving around and we get: 

𝜇̂ =
1

𝑁∆𝑡
∑[log (

𝑉𝑡𝑖

𝑉𝑡𝑖−1

)

  
]

𝑁

𝑖

+ 0.5 ∗ 𝜎2 

In the last equation, we put in the estimated value of 𝜎 (Dick-Nielsen, n.d.). 

We have now obtained 𝑉, 𝜎 and 𝜇, hence we can calculate distance to default and probability of default under 

physical probability measure 𝑃. Do we use the risk-free rate instead of the 𝜇 then we obtain distance to default 

and probability of default under the risk-neutral probability. 

5. Credit market 

Originally the credit market consisted of firms that issued debt to obtain capital to finance its activities. But 

there has been an ongoing development of credit products and credit derivatives throughout the last decades. 

The most popular single-name credit derivative is the credit default swap (CDS) (Hull, 2012). The payoff from 

this derivative depends on the credit risk of the reference firm. There are two sides to a CDS contract: a seller 

of protection and a buyer. There is a payout from the seller if the reference firm defaults on its obligations, 

whereas the buyer makes period payments to the seller until maturity of the contract or until a credit event 

occurs. The payments made from the buyer to the seller goes under the name the CDS spread and are often 

denoted in basis points (Hull, 2012). 

5.1 CDS spread  

Here we show how the CDS spread can be calculated, by presenting the simple numerical example that is put 

forth by Hull (2012):   

Assume that we have calculated the risk neutral probability of default to be 2% for a year conditional upon no 

earlier defaults. The default probability of the first year is 2%, hence the survival probability is 98%. The 

probability of default in the second year becomes 2%*98%=1.96%, whereas the probability of survival until the 
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end of the second year is 98%^2=96.04%. The probability of default during the third year becomes, 

2%*96.04%=1.92% and so it continuous. We assume that defaults only happen halfway through a year and 

payments on the credit default swap are at the end of year. We also assume the risk-free rate is equal to 5% 

per annum, and it is continuous compounded. And we assume that the recovery rate is 40%. There are three 

steps to the calculations. The first step is to calculate the present value of the expected payments made by the 

protection buyer of the credit default swap. The second step is to calculate present value of the expected 

payments made by the protection seller of the credit default swap. As the third and final step we need to 

consider the accrual payments made in the event of default. For example, there is a 1.92% chance that there 

will be a final accrual payment halfway through the third year. The expected accrual payment half way through 

the third year becomes 1,92%*0.5*s. 

We now calculate the expected payments made by the protection buyer,  

 

Where we see that the total present value of the payments is 4.0704s 

Next, we calculate the present value of the expected of the accrual payment in the event of default. 

 

Where we see that the total present value of the payments is 0.0426𝑠 

The total of the two present values is 4.1130𝑠 =  (4.0704 + 0.0426)𝑠 

The next step is to know the present value of the expected payments made by the protection seller, the 

following table shows the calculations 

Time PD Survival probability E[payment] Dis. Factor PV( E[payment] )

1 0.0200 0.9800 0.9800 0.9512 0.9322

2 0.0196 0.9604 0.9604 0.9048 0.8690

3 0.0192 0.9412 0.9412 0.8607 0.8101

4 0.0188 0.9224 0.9224 0.8187 0.7552

5 0.0184 0.9039 0.9039 0.7788 0.7040

Total 4.0704

Time PD Survival probability E[Accrual payment] Dis. Factor PV (E[Accrual payment])

0.5 0.0200 0.9800 0.0100 0.9753 0.0098

1.5 0.0196 0.9604 0.0098 0.9277 0.0091

2.5 0.0192 0.9412 0.0096 0.8825 0.0085

3.5 0.0188 0.9224 0.0094 0.8395 0.0079

4.5 0.0184 0.9039 0.0092 0.7985 0.0074

Total 0.0426
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The total present value of the expected payments of the accrual payments is 0.0511. 

When the two parties agree on the CDS spread on the given example, they should agree up on a value that 

solves the following equation: 

4.1130𝑠 = 0.0511 

𝑠 = 0.0124 

In basis points this will be 124 per year. 

5.2 Corporate bond yield spread 

A bond is a security sold by a government or a firm to raise capital today in exchange for a promised future 

payment to the bondholder.  

A government bond is often assumed to be risk-free because it is assumed that a government will always be 

able to meet its obligations. Government bonds are often used as a proxy for the risk-free rate in a given 

currency. In contrast corporate bonds are not assumed to be default free. The difference in the risk exposure 

depends upon the firm and the government to which it is compared. To take on the additional risk the 

bondholder wants to be compensated. The difference in the yields is defined as the corporate bond yield 

spread (Berk & DeMarzo, 2013).  

5.3 Why use the CDS spread over the corporate bond yield spread as a measure of credit risk? 

In our empirical test the CDS spread has some advantages relative to the corporate bond yield spread, when 

used as a measure for credit risk.  

The corporate bond yield spread account for more than just the risk of default, a significant part of the bond 

yield spread are determined by liquidity factors, these factors may not reflect the probability of default of the 

underlying firm (Chen et al., 2007) and (Longstaff et al., 2005).  

It has also been shown that the CDS spread generally reacts faster to changes in credit risk of the reference 

firm than the corporate bond yield spread (Blanco, Brennan, & Marsh, 2005) and (Zhu, 2006). Furthermore the 

derivative nature of the CDS makes the CDS spread less sensitive to shocks in supply and demand compared to 

the bond spread (Cesare & Guazzarotti, 2010).  

Time PD Survival probability Recovery rate E[payment] Dis. Factor PV( E[payment] )

0.5 0.0200 0.9800 0.4 0.0120 0.9753 0.0117

1.5 0.0196 0.9604 0.4 0.0118 0.9277 0.0109

2.5 0.0192 0.9412 0.4 0.0115 0.8825 0.0102

3.5 0.0188 0.9224 0.4 0.0113 0.8395 0.0095

4.5 0.0184 0.9039 0.4 0.0111 0.7985 0.0088

Total 0.0511
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6. Regression method 

Credit risk is by nature quantitative and it falls natural to use a quantitative method to answer the problem 

statement. The choice of method falls on the OLS regression.  

The problem statement addresses the possibility that the relationship between the CDS spread and estimated 

credit risk measure from the Merton DD Model might depend on state of the economy. To capture the 

potential change, we make use of a binary variable to indicate the state of the economy and in addition we let 

the binary variable interact with the estimate for credit risk. We do so to allow for a different intercept and a 

different slope of the regression line during the financial crisis. In the following section we put forth the general 

theory of how we set up the regression models that allow to test for different intercept and different slope 

during the financial crisis.  

6.1 Interactions between a continuous and a binary variable  

The following section builds on Stock & Watson (2012) method to deal with interactions between a continuous 

and a binary variable. Their method allows the population regression line relating 𝑌 and the continuous 

variable 𝑋 to depend on the binary variable 𝐷 in three ways. The three ways are: different intercept, different 

intercept and slope, and different slope.  

Different intercept:  

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷 + 𝜖𝑖 

It is a multiple regression model with a population regression function that is linear in 𝑋𝑖  and 𝐷. 𝐷 is a binary 

variable that can only take on the values 1 or 0.  

When 𝐷 = 0, then the estimated regression line is 𝛽0 + 𝛽1𝑋𝑖. When 𝐷 = 1 the estimated regression line is 

𝛽0 + 𝛽1𝑋𝑖 + 𝛽2, the slope, 𝛽1, does not change, but the intercept does and becomes (𝛽0 + 𝛽2). Thus 𝛽2 is the 

difference between the two intercepts of the two regression lines.   

Different intercept and slope: 

To allow for different slope we use the interaction between a 𝑋 and 𝐷, which yields the following population 

regression line: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷 + 𝛽3(𝑋𝑖𝐷) + 𝜖𝑖 

The new variable (𝑋𝑖𝐷) is the product of 𝑋𝑖  and 𝐷, the term is called an interacted-regressor or interaction-

term. It captures the potential change in the slope. If we let 𝐷 = 0, then the population regression line is 𝛽0 +

𝛽1𝑋𝑖. But when 𝐷 = 1 then population regression line is 𝛽0 + 𝛽2 + (𝛽1 + 𝛽3)𝑋𝑖. The difference between the 

intercepts in the two regression lines is 𝛽2 and the difference between the slopes is 𝛽3.    



Page 19 of 91 
 

 

A third possibility is that the two lines have the same intercept but different slopes. The population regression 

line is: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝑋𝑖𝐷) + 𝜖𝑖 

𝑋𝑖𝐷 is still the interacted regressor and captures the potential change in the slope. Taking expected value of 𝑌𝑖  

given 𝐷 = 0 yields a regression line of 𝛽0 + 𝛽1𝑋𝑖. Letting 𝐷 = 1, then the regression line becomes 𝛽0 +

(𝛽1 + 𝛽2)𝑋𝑖, the difference between the two slopes is 𝛽2.  

6.2 Applying the statistical method to our data 

We now apply the statistical method of “Interactions between a continuous and a binary variable” to set up 

the statistical method to answer the problem statement. To ease the notation, we denote the CDS spread at 

time t as 𝑆𝑡.  

The first question in the problem statement is: “how well does the Merton DD model estimate explain the 

variability in CDS spread in a linear regression setup?”  

The question can be answered using either the 𝐷𝑡𝐷 or 𝑃𝐷 estimated from the Merton DD model, to exemplify 

we use 𝐷𝑡𝐷.  

To answer the first question, we can set up the following regression model:  

𝑆𝑡 = 𝛽0 + 𝛽1𝐷𝑡𝐷𝑡 + 𝜖𝑡 

𝛽1 is the estimated slope of the regression line and capture the sensitivity of the CDS spread to the 𝐷𝑡𝐷. To 

test if the relationship is significant we set up the following hypothesis, 𝐻0: 𝛽1 = 0 versus the alternative 𝐻1: 

𝛽1 ≠ 0. Do we reject 𝐻0, then we conclude that the estimate obtained from the Merton DD model is a 

significant covariate for the CDS spread. We report the R-square and the Adjusted R-square to answer how 

much of the variability in the CDS spread that the DtD estimate captures.  

 

The second question in the problem statement is: 

“Does the potential relationship between the Merton DD model and the CDS spread depends on the state of 

the economy?” 

To answer the question, we make use of “different intercept and different slope” method and the regression 

model becomes: 

𝑆𝑡 = 𝛽0 + 𝛽1𝐷𝑡𝐷𝑡 + 𝛽2𝐷 + 𝛽3(𝐷𝑡𝐷𝑡 ∗ 𝐷) + 𝜖𝑡 

 

Where D is a binary variable, which is equal to 1 if financial crisis and else equal to zero.   
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We set up the hypothesis 𝐻0: 𝛽3 = 0 versus the alternative 𝐻1: 𝛽3 ≠ 0. If we reject 𝐻0, then we conclude that 

the estimated beta coefficient for the interaction-term is significant and we conclude that the relationship 

between the CDS spread and the estimated 𝐷𝑡𝐷 does depend on the state of the economy. The sign of the 

estimated beta, 𝛽3,shows if the CDS spread becomes more or less sensitive to the 𝐷𝑡𝐷 when in crisis. 

The regression also makes it possible to test if the CDS spread increase as a function of the economy being in 

crisis, all else equal. We set up the hypothesis: 𝐻0: 𝛽2 = 0 versus the alternative 𝐻1: 𝛽2 ≠ 0, do we reject 𝐻0, 

then we conclude that the CDS spread increase as function of being in crisis, all else equal. 

 

Third and fourth question in the problem statement are: “Is it possible to improve the regression model by 

including non-firm-specific variables such as the S&P 500 index and the volatility measure from the VIX index?” 

and “Is the potential relationship between the non-firm-specific variables and the CDS spread dependent on 

the state of the economy?” 

For each of the two variables, the S&P500 index and the VIX index, we run the same analysis as done for the 

CDS spread against the DtD.  

If they are significant predictors of the CDS spread and their relationship do change as a function of the state of 

the economy, then the final regression model can have the form:  

𝑆𝑡 = 𝛽0 + 𝛽1𝐷𝑡𝐷𝑡 + 𝛽2𝐷 + 𝛽3(𝐷𝑡𝐷𝑡 ∗ 𝐷) + 𝛽4𝑆𝑃500𝑡+𝛽5(𝑆𝑃𝑋𝑡 ∗ 𝐷) + 𝛽6𝑉𝐼𝑋𝑡 + +𝛽7(𝑉𝐼𝑋𝑡 ∗ 𝐷) + 𝜖𝑡 

The interpretation of the estimated beta coefficients is the same as just presented and the hypothesis to test 

for will follow the same procedure as just presented.  

To answer if including the two macro variables improve the model we compare the Adjusted R-Square of the 

final model against the Adjusted R-square of the regression model:  𝑆𝑡 = 𝛽0 + 𝛽1𝐷𝑡𝐷𝑡 + 𝛽2𝐷 + 𝛽3(𝐷𝑡𝐷𝑡 ∗

𝐷) + 𝜖𝑡 

6.3 OLS regression model assumptions 

We now present the assumptions the models rely on and what the consequences may be if the assumptions 

are violated. The 4 basic assumptions are: model form, independence of residuals, homoscedasticity, and 

normal distributed residuals, (Makridakis, Wheelwright, & Hyndman, 1998).   

 

Model form the assumption is about the form of relationship between the dependent and the explanatory 

variable. For the OLS regression we assume that the relationship is linear. If the assumption is violated the 

forecasts may be inaccurate, and the F-test, t-test and confidence intervals are not strictly valid. 
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Independence of residuals is directly linked to the validity of F-test, t-tests, R-square and the confidence 

intervals. If the assumption is violated then the F-test, t-tests, and the confidence interval are not strictly valid, 

and the estimate of the coefficients might be unstable.  

 

Homoscedasticity is a term used for constant variance of the residuals. The regression model assumes that the 

variance of the residuals is same throughout. Is the assumption violated then it affects the validity of the F-test, 

t-test, and confidence intervals.  

 

Normal distributed residuals have no effect on the estimates of the coefficients nor the ability to predict the 

dependent variable. But if the assumption is violated then the F-test and t-test and confidence intervals are 

affected.  

This assumption is the least serious of the 4 assumptions, because residuals are the result of many factors, of 

which many are unimportant factors acting together influencing the forecast variable. It is often reasonable to 

assume that the net effect of such influence is normal distributed. However, is the assumption seriously 

violated, then tests for significance are inappropriate (Makridakis et al., 1998).  

 

Each of the assumptions can be examined by producing appropriate residual plots.  

For model form, we plot the residuals produced by the regression model against the explanatory variable, if 

any curvature appears then it indicates that the relationship between the dependent and independent variable 

is non-linear, and the assumption about linearity has been violated.  

For independence of residuals, we plot the residuals as a function of observation number to examine if they 

are independent. In addition, we calculate the autocorrelation of the residuals (serial correlation), if each 

residual is affected by the residual of the previous period, then the residuals show autocorrelation at lag 1 and 

we conclude that the assumption has be violated. It is noted that it is possible to have correlation between 

residuals that at more than one period apart. 

Homoscedasticity, we plot the residuals against the fitted values from the regression model. If any pattern 

arises then the residuals do not have constant variance. 

Normal distribution of residuals, we plot the residuals as a histogram to examine if the distribution is normal or 

approximately normal (Makridakis et al., 1998).  
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6.4 Stationarity  

Although we are investigating the cross section between the CDS spread and the 4 potential covariates PD, 

DtD, the S&P500 index, and the VIX index, we must keep in mind that we are dealing with time series data 

since observations are obtained over multiple periods. When dealing with time series data, one must always 

worry about the time-series being stationary or non-stationary.  

First, we need to define what a stationary series is, we follow Brooks (2008) and defined as a series with a 

constant mean, constant variance, and constant autocovariance structure as stationary, hence we are dealing 

with the concept of weak stationarity. Put more loosely, a stationary series means that the process does not 

“wander off” in upward or downward direction.  

The use of non-stationary data may lead to spurious regressions, and the regression model could have a high R-

square even if the two variables are totally unrelated. If the assumption is not met then it may cause the 

hypothesis test and confidence intervals not to be valid (Stock & Watson, 2012).  

 

Non-stationarity caused by trend 

Trend is a movement of a variable over time, the variable then oscillates around its trend. There are two types 

of trends in time series data, stochastic and deterministic (Stock & Watson, 2012).  

A stochastic trend varies over time and is random. For example, a stochastic trend in CDS spreads might display 

a long period of increase followed by a prolonged period of decrease. In contrast a deterministic trend is 

nonrandom in time, a deterministic trend may be a linear function of time. For example, if a stock index had a 

deterministic linear trend, so that it increases by 2.5 percentage per quarter, then the trend could be 

expressed as 2.5t, where t denotes number of quarters.  

Economics is complex and it is difficult to accept the predictability implied by a deterministic trend for 

economic variables in the light of surprises and complications met month after month by governments, 

workers, and businesses. So many econometricians find it most appropriate to model economic time series as 

having a stochastic trend rather than deterministic (Stock & Watson, 2012). For this reason, we focus on 

stochastic trends in our dataset.  

A very simple model with a stochastic trend is the random walk. A time series 𝑦𝑡 follows a random walk if the 

change in 𝑦𝑡 is i.i.d., that is:  𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡 where 𝑢𝑖 is i.i.d. 

Often the term random walk is used more general to refer to a time series: 𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡 where the 

conditional mean of the error term, 𝑢𝑡, is zero (Stock & Watson, 2012). The idea of a random walk is that the 

value of tomorrow is the value of today plus an unpredictable change. ´ 
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A time series such as the value of S&P500 index has an obvious upward tendency, in such a case the best 

forecast must include an adjustment. It leads to an extension of the random walk model that includes the 

tendency to drift in one direction, hence a random walk with drift. We can model the relationship as 

𝑦𝑡 = 𝜇 + 𝑦𝑡−1 + 𝑢𝑡 

Where we have 𝐸(𝑢𝑡|𝑦𝑡−1, 𝑦𝑡−2, … ) = 0, and 𝜇 is the drift in the random walk.  The best forecast for 

tomorrow is today’s value plus the drift. A random walk model with a drift has a unit root, the unit root is the 

drift, 𝜇, (Stock & Watson, 2012). 

If a series 𝑦𝑡 follows a random walk, then the variance increases over time, hence the series is non-stationary. 

To see why, one must remember that  𝑢𝑡 is uncorrelated with 𝑦𝑡−1, hence the variance of 𝑦𝑡 is given by 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝑦𝑡−1) + 𝑉𝑎𝑟(𝑢𝑡). For 𝑦𝑡 to be stationary 𝑉𝑎𝑟(𝑦𝑡) must be independent of time and should be 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝑦𝑡−1) but this can only hold if 𝑉𝑎𝑟(𝑢𝑡) = 0. Another way to see it is to set the 𝑦0 equal to 

zero, then we have  𝑦1 = 𝑦0 + 𝑢1 = 𝑢1,  𝑦2 = 𝑦1 + 𝑢2 = 𝑢1 + 𝑢2 and so it continuous so we have  𝑦𝑡 = 𝑢1 +

𝑢2 + ⋯+ 𝑢𝑡 and we have that 𝑢𝑡 is serially uncorrelated then 𝑉𝑎𝑟(𝑦𝑡) = 𝜎𝑢
2𝑡 and clearly dependent of time 

(Stock & Watson, 2012).  

For an AR(p) to be stationary we need to look at its roots of the polynomial 1 − 𝛽1𝑧 − 𝛽2𝑧
2 − 𝛽3𝑧

3 − ⋯𝛽𝑝𝑧
𝑝, 

the roots are the values of 𝑧 that makes 1 − 𝛽1𝑧 − 𝛽2𝑧
2 − 𝛽3𝑧

3 − ⋯𝛽𝑝𝑧
𝑝 = 0. For an 𝐴𝑅(𝑝) to be stationary 

the roots of the polynomial must all be greater than one 1 in absolute value (Stock & Watson, 2012). Does the 

AR(p) has a root that is equal 1 then the series has a unit root. If a series has a unit root then it has a stochastic 

trend and is non-stationary (Stock & Watson, 2012).    

 

Problems that arise by stochastic trends.  

If an explanatory variable has a unit root then the OLS estimator for the coefficient and its t-statistic may have 

non-normal distributions, even in large samples.  

There are three specific aspects of the above problem, 1) the estimator of the autoregressive coefficient in an 

AR(1) is biased toward 0 when the true value is 1, 2) the t-statistic of the explanatory variable with a stochastic 

trend have nonstandard distribution in large samples, and 3) An example of the risk that stochastic trends pose 

is that two series that are independent will falsely appear to be related if they both have stochastic trends, 

known as spurious regression(Stock & Watson, 2012).  

 

Detecting stochastic trends 
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Informal methods to detect trends involves examining the time series plot of data and computation of 

autocorrelation coefficients. The first autocorrelation coefficient will be close to 1, if the series has a stochastic 

trend, at least in large samples. If the autocorrelation coefficient at lag 1 is small in combination with a time 

series plot that has no apparent trend then it indicates that the series does not have a trend  (Stock & Watson, 

2012) .   

A more formal test is the Dickey-Fuller test. It is not the only test for a stochastic trend, but it is the most 

commonly used in practice and among the most reliable (Stock & Watson, 2012).  

The Dicky-fuller test in the AR(p) model 

The augmented Dickey-Fuller test for a unit root tests the hypothesis 𝐻0: 𝜙 = 0 versus the one-sided 

alternative 𝐻1: 𝜙 < 0 in the regression model : 

∆𝑦𝑡 = 𝜇 + 𝜙𝑦𝑡−1 + 𝛾1∆𝑦𝑡−1 + 𝛾2∆𝑦𝑡−2 + ⋯+ 𝛾𝑝∆𝑦𝑡−𝑝 + 𝑢𝑡 

Under the null hypothesis the series, 𝑦𝑡, has a stochastic trend versus the alternative hypothesis where 𝑦𝑡 is 

stationary. The augmented Dickey-Fuller statistic is the OLS t-stat testing 𝜙 = 0 in the above equation. 

In general, the lag length 𝑝 is unknow, but it can be estimated using the information criteria AIC or BIC to 

decide on the lag length (Stock & Watson, 2012).   

6.5 Omitted variable bias 

The analysis only includes four explanatory variables, PD, DtD, S&P500 and the VIX index and plus one binary 

variable. The aim of the thesis it not to try to find the regression model that yields the highest possible R-

square in a model with the CDS spread as the dependent variable. But rather to test if and how the four 

variables effect on the CDS spread depends on the state of the economy. However, only including four 

variables plus a dummy may cause omitted variable bias in the OLS estimators. The omitted variable bias can 

occur if either PD, DtD, S&P500 or the VIX index are correlated with the omitted variable, and the omitted 

variable is a determinant of the CDS spread (Stock & Watson, 2012). 

7. Case study, Alcoa Inc 

To answer the problem statement, we make a case study of Aluminum Company of America (Alcoa). Alcoa is a 

global industry leader in production of aluminum and has its headquarters in Pittsburgh, Pennsylvania, in the 

U.S (alcoa.com). Alcoa has been chosen more or less at random, but was picked because there was no missing 

data points in the period studied for the variables needed. 
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Alcoa dates back nearly 130 years to the ground-breaking discovery that made aluminum a vital and affordable 

part of production and modern life. Alcoa is a major producer of aluminum, such as primary aluminum, 

fabricated aluminum and alumina combined (alcoa.com).  

In the sections to come we put forth information on equity value, debt, ratings and CDS spread for the period 

of study for Alcoa.  

8. Data collection 

To answer the research questions, we collect observations for Alcoa. In the data collection process certain 

questions arise, and the process is not straight forward. The questions are: what is the exact period of study, 

from which country should the firm be, and what data frequency is optimal.  

We want to investigate if the relationship between the CDS spread and the risk estimate from the Merton DD 

model depends on the state of the economy. A way to do so is to include the financial crisis in the period of 

study. There is no official start date of the global financial crisis, however the U.S economy experience a 

recession period of 19 months from December 2007 to June 2009, according to the U.S National Bureau of 

Economic Research (2010). We choose to define this period as the financial crisis. The period defined as non-

crisis then becomes July 2009 forward, then end date of the study is picked arbitrary to be November 2013.  

A vast amount of research focusing on credit spread has been carried out on U.S data. We do the same and 

chose an American firm making comparability between the results of the thesis and existing literature possible.    

At which frequency should the data points be observed, in general, when it comes to data, the more the 

merrier, indicating that daily observations may be the optimal choice. Using daily observations, however cause 

two main problems: first it can cause the data to by biased by market microstructure noise, which in turn could 

bias the results (Cohen & Frazzini, 2008). The second problem using daily observations may be that the 

variability in the variables are not great, making it harder to capture the relationship relative to monthly data. 

Hence, we answer the research questions using monthly data.  

To perform the study, the following data has been collected: 

1) Shares outstanding, 2) Share price, 3) Short-term debt, 4) Long-term debt, 5) One-year swap rate, 6) CDS 

spread, 7) S&P 500 index, and 8) VIX index 

1)-6) were obtained from Wharton Research Data Service, whereas 7)-8) was obtained from Yahoo Finance. 

To estimate asset value and asset volatility we need the equity value. Equity value is calculated as shares 

outstanding multiplied by the price per share, data was available at monthly frequency. Book values of short 

and long-term debt are only published quarterly. To by-pass the missing data points between publication 
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dates, we use the method of (Gündüz & Uhrig-Homburg, 2014) and (Eom, Helwege, & Huang, 2004a).  The 

quarterly data points for short and long-term debt are kept constant during quarter up until new quarterly data 

is published.  

The risk-free rate is a theoretical concept and no investment is truly risk-free. As a proxy for the risk-free rate 

we use the one year swap rate, the choice is motivated by the study of Feldhütter & Lando (2008) where they 

conclude that the swap rate is a better proxy for the risk-free rate than the Treasury rate is for all maturities. 

They argue that the Treasury yields are affected by convenience yield and if used as a proxy will underestimate 

the risk-free rate.  

The CDS spreads are obtained from CDS contracts with a maturity of 5 years. The maturity of 5 years is 

motivated by the fact that market is concentrated on maturities of this length (Ericsson et al., 2010).  

S&P 500 index, short for Standard and Poor’s 500 index, constitutes 500 of the largest U.S stocks, value-

weighted. Size however is only one selection criteria, the S&P try to have a representation of different sectors 

of the economy and picks firms that are industry leaders to represent the broader economy. Many investors 

consider the S&P 500 an adequate measure of overall US stock market performance (Berk & DeMarzo, 2013).   

The VIX is the ticker name of the Chicago Board Options Exchange Volatility index. It tracks the one-month 

implied volatility of options written on the S&P 500 index.  The volatility measure is quoted in percent per 

annum. The index is one of the most-cited measures of market volatility (Berk & DeMarzo, 2013). 

9. Empirical analysis 

9.1 Data and summary statistics 
To calculate asset value and the asset volatility, we need the equity and debt value of Alcoa, and the risk-free 

rate. Table 1 in the appendix contains start-of-month value for the three variables over the period December 

2007 to November 2013, yielding 73 monthly observations for each variable. In addition, the table contains the 

5-year CDS spread (in basis points), the rating and recovery rate of Alcoa.  

Table 2 in the appendix contains the estimated asset value, and the calculated distance to default and the 

probability of default for all 73 points in time. Table 3 in the appendix shows the index values of the S&P 500 

index and the VIX index for 73 points in time. 

Summary statistics for equity, debt, the risk-free rate, CDS spread, Recovery, Asset value, Distance to default, 

default probability, S&P500 and the VIX index are presented in the following table: 
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And from the VX-algorithm we have estimated 𝜇 to -0.0733, and 𝜎 to 0.3503.  

9.1.1 Plot analysis 
We now plot all variables against time to get an impression of how the data has evolved over the period of 

study. 

We start out with the firm specific variables that are directly observable in the market, hence equity value, 

debt value defined as short term debt + one half of long term debt, the 5-year CDS spread and the recovery 

rate.  

 

Summary statistics 

Variable Mean Std. dev. Min 0.25 median 0.75 Max

Equity 13520 6616 4995 9126 10842 15691 33084

Debt 5193 450 4509 4814 5246 5487 6324

rf(%) 0.95% 0.96% 0.28% 0.39% 0.52% 0.95% 4.29%

CDS spread 294 163 47 192 275 348 883

Recovery 0.40 0.00 0.40 0.40 0.40 0.40 0.40

Asset 18661 6631 10535 14388 16192 20538 38181

DtD 3.37 0.87 1.64 2.80 3.09 3.82 5.66

PD (%) 0.2716% 0.6808% 0.0000% 0.0068% 0.1009% 0.2585% 5.0421%

S&P 500 index 1272 243 735 1099 1286 1408 1848

VIX index 24 10 13 17 22 26 60

Quantiles 

Panel: Means, standard deviations, and quantiles 
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The CDS spread 

As expected the CDS spread peaks in the period defined as the financial crisis, December 2007 – June 2009 

(observation 1-19), it peaks in March 2009 (observation 16) with a value of 883 basis points (rounded). We 

notice that the CDS spread takes on rather low values in the start of the financial crisis, and for the first 11 

months the CDS spread does not get above 160 basis points. That is, more than 50% of the observations in the 

period defined as the financial crisis fall below the average and median of the CDS-spread for the whole time-

period, which are 294 and 275 respectively.  

The Recovery rate 

The recovery rate does not change during the period and is fixed at 40%. 

The Debt value 

The debt value, here calculated as short-term debt plus one half of long term debt has an average value of 

5193, a standard deviation of 450, a median of 5246, all denoted in millions of dollars.  

The minimum debt value is 4509, whereas the maximum is 6324. We note how the maximum debt value is 

within the financial crisis. 

The Equity value 

The equity value has an average of 13520 and a standard deviation of 6616, denoted in millions of $. The 

minimum value is 4995 and which is observation number 15, which is February 2009, the date falls in the 

interval of the financial crisis. The maximum value is of 33084 and is in the start of the period studied, hence 

both the minimum and maximum value of equity is in the financial crisis. Comparing the CDS spread and equity 

plot it appears that there is a negative relationship between the CDS spread and the Equity value, which 

intuitively makes perfect sense.  

 

Macro variables 
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The S&P 500 index 

The S&P 500 index has an average of 1272 and a standard deviation of 243. The S&P 500 index has, as 

expected, its minimum value in the financial crisis, the value is 735 and falls on the February 2009. This is the 

same date as Equity value of Alcon has it minimum, and one month before the CDS spread has it maximum. 

From its minimum value the S&P500 index shows a clear upward trend, and the index has a maximum value of 

1848, on the last observation in the dataset. 

 

The risk-free rate 

The first observation is the maximum for the risk-free rate, and it is 4.29%. The risk-free decreases down to a 

minimum of 0.39% on the last observation. The average value of the risk-free rate is 0.95%, whereas the 

median is 0.52% and the 0.75 quantile is 0.95%. The risk-free rate shows a significant decrease from 

observation 1 to 4. From 4 to 7 it increases and from 7 to 18 it again decreases significantly from 3.2% to 0.9%. 

From observation 18 and forward it decreases slowly, with a few of exceptions of positive increases. 

 

The VIX index 

The VIX index has an average value of 24 which is close to the median value of 22. The VIX index is rather 

volatile with a standard deviation of 10. The minimum value is 13 versus the maximum value of 60. The 
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maximum value is the 11th observation, that is October 2008. At first it seems surprising the that VIX index 

peaks 4 months before the S&P500 index hits its low. But a chock hits the financial world at midnight Monday, 

September 15, 2008, when the investment bank Lehman Brothers filed for bankruptcy. And it seems natural 

the volatility measure of the VIX index increase tremendous given the news, it increased by around 300%. After 

this it starts to decline, but from June 2011 to September 2011 it increases from 25 to 43, and hereafter it 

declines. The explanation could be that investors had a renewed fear about the health of the global economy 

and may have feared a new recession. From the plot of the S&P500 index, we see that the S&P500 index level 

drops in the same period, but quickly recover. The US economy did not go in to recession and the VIX index 

decreased again. 

Firm specific variables estimated from the Merton DD model 
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The Asset value 

Using the Merton DD model, we obtain an estimated asset value for each of 73 observations in the sample. The 

average asset value for the period is 18661 and it has a standard deviation of 6631 with a median of 16192, 

and it has a minimum and maximum value of 10535 and 38181 all values are in millions. It is noted that both 

the maximum and minimum value fall within the financial crisis, and that combined with a visual inspection of 

the time-series plot makes it clear that asset value has a higher variance in the financial crisis compared to the 

period after. 

 

The distance to default estimate 

The estimated distance to default is obtained for each observation in the sample. It has an average value of 

3.35 with a standard deviation of 0.85. It has a minimum of 1.64 and a maximum of 5.66, both minimum and 

maximum are contained in the period defined as the financial crisis. As expected DtD has its minimum value in 

the financial crisis, indicating that the probability of default is highest in the financial crisis. 

By visual inspection of the plot we see that variance for the DtD is greatest in the financial crisis. DtD is a 

function of the asset value, and increases when asset value increases, all else equal. The relation is confirmed 

by the plots and, to some degree, DtD resembles the pattern of the asset value.  

 

The probability of default 

The PD estimate from the Merton DD model contains the same information as the DtD measure. However, it is 

easier to communicate a probability of default than the number of standard deviations the expected asset 

value is from the default point at maturity in one year. The probability of default is given by 1 − 𝑁(𝐷𝑡𝐷) =

𝑁(−𝐷𝑡𝐷), hence, it is just a question about how the credit risk is expressed. The maximum default probability 

is on the same date as when the DtD has its minimum value, the maximum default probability is N(-1.64) 

=5.0421% (note rounding). The minimum PD is 𝑁(−5.66) ≈ 0.0000%. PD has an average value of 0.2716% 

and a median of 0.1009%. Over all Alcoa Inc has a relatively low probability of default. 
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9.1.2 Relationship between the CDS spread and the potential explanatory variables. 
We examine the potential relationship by plotting data. Four scatterplots are produced with the CDS spread on 

the vertical axis, and the variables: S&P 500 index, VIX index, Distance to default and the probability of default 

are on the horizontal axis.  

 

 

CDS spread against S&P 500 index  

From the scatterplot it appears that there is a negative relationship between the CDS spread of Alcoa Inc and 

the S&P500 index level.  When the S&P 500 index level increases it is a sign that the American economy is 

growing, and then the credit risk of firms in general decrease. From the scatterplot the relationship appears 

rather linear. 

 

CDS spread against VIX index  

The scatterplot indicates that there is a positive relationship between the VIX index level and the CDS spread of 

Alcoa. The relationship appears to be somewhat linear, but as the VIX index increases so does the variance of 

the datapoints. The relationship does not appear to be as strong as the relationship between the CDS spread 

and the S&P500 
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CDS spread against distance to default   

A clear relationship appears when we plot the CDS spread against distance to default, as expected and 

predicted by theory the relationship is negative. We see low values of the CDS spread when distance to default 

is large and we see the CDS spread take on large values when distance to default takes on small values. The 

relationship appears to be linear and the variance of the datapoints does not increase significantly for large 

values of distance to default.   

 

CDS spread against default probability 

By visual inspection of the scatterplot with the CDS spread against the probability of default it appears that 

there is a positive relationship, just as we expect. However, in contradiction to the other variables the 

relationship does not appear to be linear. Hence, not to violate the model from assumption about the relation 

being linear we need to carry out a linear transformation of the variables before we run the OLS regression 

model. 

 

We now present the correlation matrix. The matrix shows how each variable correlate with the CDS spread and 

how the potential explanatory correlate with each other.  

 

The correlation matrix does confirm what the inspection of the scatterplot indicated, and we see that all the 

correlation coefficients have the expected signs. The CDS spread correlates most with distance to default, the 

correlation is -0.7463, which is in line with plot analysis where the CDS spread has a strong relationship with 

distance to default.  

A bit surprising is the correlation between CDS and PD, it is 0.6768. The relationship did not appear that strong 

and linear from the scatterplot. The correlation between the CDS spread and S&P500 index is -0.4970, whereas 

the CDS spread has a correlation of 0.4235 with the VIX index. 

When we look at how the potential explanatory variables correlate with each other, then we see that the 

S&P500 and the VIX is highly correlated, with a correlation coefficient of -0.7636. We also see that the default 

CDS spread S&P500 VIX DtD PD(%)

CDS spread 1.0000

S&P500 -0.4970 1.0000

VIX 0.4235 -0.7632 1.0000

DtD -0.7463 0.2364 -0.2990 1.0000

PD(%) 0.6768 -0.4355 0.5230 -0.4983 1.0000

Correlation Matrix 
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probability is more correlated with S&P500 and the VIX than distance to default is. PD has correlations of -

0.4355 and 0.5230 with S&P500 and the VIX respectively, compared to distance to default which has 

correlations of 0.2364 and -0.2990 with S&P500 and VIX respectively.  

The fact, that DtD shows smaller correlations with S&P500 and the VIX than PD, indicates that it might be more 

optimal to use DtD over PD in the multivariate regression setting. However, there is not a problem with perfect 

multicollinearity, but imperfect multicollinearity could mean that one or more regression coefficients are 

estimated imprecisely (Stock & Watson, 2012).  

10. Regression  

10.1 Regression, CDS spread regressed on default probability 

10.1.1 Level regression and checking the assumptions  

The relationship between the CDS spread and the default probability appear non-linear in the scatterplot in the 

previous section, to make a linear transformation we take the logarithms of both variables.  

We run the OLS regression model: log (𝑆𝑡) = 𝛽0 + 𝛽1log (𝑃𝐷𝑡) + 𝜖𝑡, and plot the least squares regression line 

in a scatterplot with log(S) plotted against log(PD). 

 

The relationship now appears linear. Before we analyze the regression model output, we examine if the 4 

assumptions put forth in “OLS regression model assumptions” section are violated, and we check if both series 

are stationary. 
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Model from  

When we plot the residual against the variable log (𝑃𝐷), then the residuals appear random and independent of 

log(𝑃𝐷), we conclude that the assumption about model form being linear is met.  

Independence of the residuals  

From the plot where the residuals are plotted against observation number, the residuals appear to be 

dependent of each other, with positive autocorrelation. 
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Investigation of the autocorrelation function plot indicates that the residuals have significant autocorrelation at 

lag 1, 6 and 7, where especially the spike for lag 1 is far from the 95% limit. The overall conclusion is that the 

assumption about independence of the residuals is violated.   

Homoscedasticity  

The residuals appear to be independent of the value of fitted values from the regression model. We conclude 

that the assumption about constant variance of the residuals is not a problem.  

Normal distributed residuals  

The histogram of the residuals resembles the probability density function of a normal distribution to some 

degree, but the match is not perfect. Observations near the mean are more frequent that observations far 

from the mean. The assumption is not seriously violated, and we conclude that the assumption about 

normality is not a problem. 

 

Stationary 

We recall that stationarity means that there is no decline or growth in data, that is the observations must be 

roughly placed horizontal along the time axis.  That is, data fluctuate around a constant mean independent of 

time and the variance of the fluctuations is essentially constant over time.  

Autocorrelation function plot can expose non-stationarity, for stationary data the autocorrelations drop to zero 

relatively fast, where a non-stationary series have significant autocorrelation for numerous lags (Makridakis et 

al., 1998).  

We now plot the log(S) and log(PD) and plot the autocorrelation function to examine if the two series are 

stationary or non-stationary. 
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It is clear from both time series plots that the series do not fluctuate around a constant mean. The 

autocorrelation function plots also show two series that are non-stationary. The autocorrelation at lag 1 is 

significant and positive. For both series the autocorrelations at lag 1 are above 0.8. The autocorrelations do 

decrease but the autocorrelation for the first 4 lags are significantly different from zero at a 5% significance 

level for log(𝑆𝑡). For log (𝑃𝐷𝑡) the autocorrelation for the first 5 lags are significant.  

log(𝑆𝑡) shows negative and significant autocorrelation for lag 9 to 14, where log (𝑃𝐷𝑡) shows negative and 

significant autocorrelation for lag 10-12, however these spikes are close to the 95% limit. The plot analysis 

indicates that both series are non-stationary. 

In addition to the plot analysis we run the more formal test for stationarity, the augmented Dickey-Fuller test. 

The test yields the following results for log(𝑃𝐷𝑡) 

 

For the series log (𝑆𝑡), we get the following results, 

Variable Dickey-Fuller test stat Lag order P-value

-3.8298 4 0.0223log (𝑃𝐷𝑡)
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In the augmented Dickey-Fuller test we have the following, hypothesis 0: the series is non-stationary against 

the alternative hypothesis that the series is stationary.  

For the series log (𝑃𝐷𝑡), we reject hypothesis 0 at a 5% significance level, with a test stat of -3.8298 and a 

corresponding p-value of 0.02227, hence the ADF test indicates that the series is stationary. 

For the log(𝑆𝑡), we do not reject hypothesis 0 at a 5% or 10% significance level, the test yields a test stat of -

3.1452 with a p-value of 0.1088. The ADF test indicates that the series is non-stationary. But if we accept 

significance level of 15% then ADF test indicates stationarity of the series. 

For log (𝑆𝑡) both the plot analysis and the augmented Dickey-Fuller test indicate that the series is non-

stationary. For the log (𝑃𝐷𝑡) the ADF indicate that the series is stationary, but the plot analysis of log (𝑃𝐷𝑡) 

indicates that the series is non-stationary.  

 

All though the assumptions are far from perfectly met, we report the regression model output to compare our 

results with the findings of (Bharath & Shumway, 2008) who, among many tests, also regress log(𝑆𝑡) on 

log(𝑃𝐷𝑡).  

Regression model results for model: log (𝑆𝑡) = 𝛽0 + 𝛽1log (𝑃𝐷𝑡) + 𝜖𝑡 

 

R square 

The model yields a R-square of 0.7452, hence the model explains 74.52% of the variability in log (𝑆𝑡). The 

adjusted R-square of the model is 0.7416.  

Slope analysis for varibale log(𝑃𝐷𝑡), 𝛽1 

𝛽1 has an estimated value of 0.1372, the coefficient is significant at a 1% significance level, with a t-test stat of 

14.41 with a corresponding p-value of 2e-16.  

Intercept analysis, 𝛽0 

The intercept has an estimated value of 6.0396, it is significant at a 1% level with a t-test value of 125.20 

yielding a p-value that is smaller than 2e-16.  

 

Variable Dickey-Fuller test stat Lag order P-value

-3.1452 4 0.1088log (𝑆𝑡)

6.0396 0.0482 125.2 <2e-16

0.1372 0.0095 14.41 <2e-16

0.7452

0.7416

log (𝑃𝐷𝑡)

 n       

             .                     

𝑅2

𝐴𝑑 𝑢𝑠𝑡𝑒𝑑 𝑅2

𝛽0

𝛽1
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Our findings differ from the resutls that Bharath & Shumway (2008) obtain. They find that log(𝑃𝐷) explains 

26% of the variability in the log (𝑆). Their model finds that the estimated coefficient to log (𝑃𝐷) is significant at 

a 1% significance level and has a value of 0.1737. Their results indicate that the CDS spread is more sensitive to 

default probability than our model predicts. However, their model has a significantly lower R-square than our 

model. 

The explanation for the difference in results can be multiple. First, they have a large sample, where they 

investigate 3833 firms, furthermore their study covers the period 1998-2003, whereas our study only covers 

one firm for a period of 6 years, from 2007-2013.  

The high R-square in our model, might be a result of spurious regression. From the plot analysis both of the 

variables appeared non-stationary, hence we are not sure that we can trust the R-square of our model. 

10.1.2 Removing non-stationarity   

To obtain more trustworthy results, we want to remove the non-stationarity of both variables. One way to do 

so is trough differencing (Makridakis et al., 1998). We take the first difference of both series, the difference 

series for the two variables become:  

∆ log(𝑃𝐷𝑡) = log(𝑃𝐷𝑡) − log(𝑃𝐷𝑡−1) 

∆ log(𝑆𝑡) = log(𝑆𝑡) − log(𝑆𝑡−1) 

We now plot both series and their autocorrelation function plots to investigate if they have become stationary. 
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The time series plots show two series that do not appear to wander of in any direction, hence indicting that the 

series are stationary in mean. However, we do notice that both time series plots have some larger absolute 

values within the first 11 observations compared to the rest of the period. The autocorrelation function plots 

confirm the impression of stationarity for both series. No autocorrelations are outside the 95% limits for 

∆log (𝑆𝑡) and only the autocorrelation at lag 3 is significant for ∆log (𝑃𝐷𝑡). 

 

Running the augmented Dickey-Fuller test for the series ∆𝑙𝑜𝑔(𝑃𝐷𝑡) yields the following results:  

 

For the series ∆𝑙𝑜𝑔(𝑆𝑡), we get: 

 

For the series ∆ 𝑙𝑜𝑔(𝑃𝐷𝑡), we reject hypothesis 0 that the series is non-stationary at a 5% significance level, 

because p-value <0.05. Hence the ADF test indicates that the series is stationary at 5% level.  

For the series ∆𝑙𝑜𝑔(𝑆𝑡), we do not reject hypothesis 0 at a 5%, because p-value >0.05, hence we cannot reject 

that the series is non-stationary at 5%. However, we notice that the p-value has dropped to 0.0734, and if we 

accept a significance level of 10% then we reject non-stationary and conclude that the series is stationary. 

A way to make the ∆log (𝑆𝑡) stationary at a 5% significance level could be to take the second-order difference. 

Doing so would demand that we also take the second-order difference of ∆log (𝑃𝐷𝑡) as well before running the 

regression model. The differences become less interpretable and the results of such a regression model are 

harder to interpret sensibly. So, we now assume that both series are stationary and continue without taking 

the second-order difference. 

Variable Dickey-Fuller test stat Lag order P-value

-3.5626 4 0.0428∆log (𝑃𝐷𝑡)

Variable Dickey-Fuller test stat Lag order P-value

-3.3086 4 0.0773∆log (𝑆𝑡)
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10.1.3 First difference regression 

We run the following model: ∆ log(𝑆𝑡) = 𝛽0 + 𝛽1∆ log(𝑃𝐷𝑡) + 𝜖𝑡 and plot the regression line in a scatterplot 

where we plot the ∆log (𝑆𝑡) against ∆log (𝑃𝐷𝑡). 

 

From the plot the relationship between the ∆log (𝑆𝑡) and ∆log (𝑃𝐷𝑡) appears insignificant. Before we analyze 

the regression model results, we check if the assumptions are violated.  
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Model form  

When the residuals are plotted against ∆log(𝑃𝐷𝑡) no obvious pattern appears, and we conclude that the 

assumption about a linear relationship between ∆log (𝑃𝐷𝑡) and ∆log (𝑆𝑡) is not violated. We do note the two 

outliers, observation 2 and 11, both observations are within the financial crisis and do not seem to come from 

measurement error. During the financial crisis both the CDS spread and the default probability took on big 

values, relative to the rest of the period. Therefore, we hope to “catch” these errors when we include the 

interaction-term and the financial crisis dummy. 

Independence of residuals  

The autocorrelation function plot shows that there is no problem with autocorrelation of the residuals, as all 

spikes are within the 95% limits. The time series plot of the residuals confirms this, and no pattern appear. We 

conclude that the assumption about independence of the residuals is not violated. 

Homoscedasticity 

The residuals appear to be independent of fitted values obtained from the regression model, thus the 

assumption about homoscedasticity is not a problem.  



Page 43 of 91 
 

Normal distribution of residuals 

In the histogram of the residuals mass is concentrated around the mean of 0, and the distribution appear to be 

somewhat symmetric. However, there are some outliers in right tail, meaning that the residuals do not 

resemble a normal distribution perfect, but the assumption is not severely violated.  

 

All 4 assumptions are met at a reasonable level, we now analyze regression model results for:  

∆ log(𝑆𝑡) = 𝛽0 + 𝛽1∆ log(𝑃𝐷𝑡) + 𝜖𝑡  

 

R-square  

The R-square is equal to 0.01378, hence 1.38% of the variability in the ∆dlog(𝑆) is explain by the variability in 

∆dlog(𝑃𝐷).  

Slope analysis for variable ∆𝑙𝑜𝑔 (𝑃𝐷𝑡), 𝛽1 

𝛽1 has an estimated value of 0.02492, a t-test stat of 0.989 with a corresponding p-value equal to 0.326. 

Hence, we cannot reject that 𝛽1=0 on a 5%, 10% or even 15% significance level. We conclude that 𝛽1 is 

insignificant.  

Overall 

The model results indicate that the changes in ∆log (𝑃𝐷𝑡) has no effect on the changes in ∆log (𝑆𝑡). An 

explanation could be that the market is not fast enough to incorporating the small changes of ∆ log(𝑃𝐷𝑡) into 

∆log (𝑆𝑡) just as they occur. It might be that it takes some time the CDS spread to react. In the next session we 

test if this is the case by lagging ∆log (𝑃𝐷𝑡) by one period.  

10.1.4 First difference regression, default probability lagged one period 

We now set up the following regression model: ∆ log(𝑆𝑡) = 𝛽0 + 𝛽1∆ log(𝑃𝐷𝑡−1) + 𝜖𝑡 and we plot the OLS 

regression line in a scatter plot with ∆log (𝑆𝑡) plotted against log (𝑃𝐷𝑡−1) 

0.0172 0.0295 0.582 0.563

0.0249 0.0252 0.989 0.326

0.0137

-0.0003

∆log (𝑃𝐷𝑡)

 n       

             .                     

𝑅2

𝐴𝑑 𝑢𝑠𝑡𝑒𝑑 𝑅2

𝛽0

𝛽1
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By inspection of the plot and it appears that the relationship between the ∆ log(𝑆𝑡) and ∆log (𝑃𝐷𝑡−1) is 

stronger than the relationship between ∆ log(𝑆)𝑡 and ∆ log(𝑃𝐷)𝑡. Before going into the regression results we 

check if any of the assumptions has been violated. 
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Model form  

No pattern in the plot where the residuals are plotted against ∆log (𝑃𝐷𝑡−1), we conclude that the assumption 

about linearity is not violated. 

Homoscedasticity  

The residuals have come closer to mean value of zero when we plot them against the fitted values, compared 

to the former model. The residuals are now more well-behaved. We see no big outliers, and no clear curvature, 

hence the assumption about constant variance is not violated. 

Normal distribution of residuals  

From the histogram we conclude that the residuals now have come closer to resemble a normal distribution. It 

is still not perfect, but there is no extreme values and the highest concentration of the mass is concentrated 

around the mean, thus the assumption is met. 

Independence of the residuals  

From the residuals plotted against the observation number it appears that the residuals are independent of 

each other. Investigation of the autocorrelation function plot, however, shows that there are significant and 

negative autocorrelation at lag 7 and 16. But the spikes are just outside the 95% limit. The spikes are close to 

the limit and we therefor conclude that the assumption of independence of residuals is not severely violated, 

and we continue as the residuals are independent of each other for all lags.  

 

We now report the results for the regression model: ∆ log(𝑆)𝑡 = 𝛽0 + 𝛽1∆ log(𝑃𝐷)𝑡−1 + 𝜖𝑡 
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R-square  

The model yields a R-square of 0.5127 and an adjusted R-square of 0.5056, that is the ∆ log(𝑃𝐷𝑡−1) explains 

50.56% of the variability ∆log (𝑆𝑡).  

Slope analysis for variable ∆𝑙𝑜𝑔 (𝑃𝐷𝑡−1), 𝛽1 

The estimate slope,  𝛽1, has a value of 0.1526 , a t-test stat value equal to 8.52, and a corresponding p-value of 

2.24e-12. We conclude that the 𝛽1 is significant different from 0, at a 1% level. Hence, there is a positive and 

significant relationship between the ∆ log(𝑆)𝑡 and ∆ log(𝑃𝐷)𝑡−1.  

Intercept analysis, 𝛽0 

The estimated intercept, 𝛽0, takes on a negative value of 0.0036, but the intercept is insignificant with a t-test 

stat value of -0.171 yielding a p-value of 0.865. 

 

Overall 

The result is surprising, when we compare it to the existing literature. It is often concluded that the Merton DD 

model is insufficient in explaining the credit spread and/or its movements. The first question in the problem 

statement is “How well does the Merton DD model explain the variability in CDS spread in a linear regression 

setup?” The answer is that the Merton DD model explains 50.56% of the variability of the changes in first 

difference of the CDS spread, when the estimate from the Merton DD model is lagged by one period. However, 

the Merton DD model explains basically zero % when not lagged, and the relationship is insignificant. 

We conclude that the estimate of the default probability obtained from the Merton DD model is an important 

variable when predicting the changes in first difference of the CDS spread. We also conclude that the CDS 

spread does not react immediately when the estimated default probability change, and we conclude that it 

takes some time before change is incorporated into the CDS spread. 

10.1.5 Adding an interaction-term and a financial crisis dummy 

The second question addressed by the thesis is: “Does the relationship between the Merton DD model and the 

CDS spread depend on the state of the economy”, we answer the question by adding an interaction-term and a 

financial crisis dummy, which yield the following regression model:  

-0.0036 0.0211 -0.171 0.865

0.1526 0.0179 8.52 2.24E-12

0.5127

0.5056

∆log (𝑃𝐷𝑡−1)

 n       

             .                     

𝑅2

𝐴𝑑 𝑢𝑠𝑡𝑒𝑑 𝑅2

𝛽0

𝛽1
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∆log(𝑆)𝑡 = 𝛽0 + 𝛽1∆ log(𝑃𝐷)𝑡−1 + 𝛽2𝐷 + 𝛽3∆ log(𝑃𝐷𝑡−1 ∗ 𝐷) + 𝜖𝑡 

The regression model allows for different intercept during the financial crisis, if 𝛽2 is significantly different from 

zero then the intercept differs by 𝛽2 and becomes (𝛽0 + 𝛽2) when in crisis, given 𝛽0 is significant else it would 

be 𝛽2.  

The interaction-term allows the sensitivity of ∆log (𝑆𝑡) to ∆log (𝑃𝐷𝑡−1) to change when in crisis relative to 

normal times. If 𝛽3 is significantly different from zero, then the slope of the regression line changes by 𝛽3 when 

in crisis relative to normal times. ∆log (𝑆𝑡) changes by (𝛽1 + 𝛽3) when ∆log (𝑃𝐷𝑡−1) changes by one unit when 

in crisis, all else equal. When not in crisis ∆log (𝑆𝑡) changes by 𝛽1 when ∆log (𝑃𝐷𝑡−1) changes by one unit given 

𝛽1 is significant, all else equal. 

Before we analyze the regression model results we go over how well the model meets its assumptions. 
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Model form  

When the residuals are plotted against ∆log (𝑃𝐷𝑡−1), then they scatter random around the mean and we 

detect no clear pattern, hence the assumption of linearity is not violated. 

When the residuals are plotted against ∆log (𝑃𝐷𝑡−1 ∗ 𝐷), then we ignore the data points where 

∆ log(𝑃𝐷𝑡−1 ∗ 𝐷) is equal to zero, the non-crisis period. No clear pattern in the other datapoints are detected, 

hence we conclude that the assumption about linearity is not violated. 

When we plot the residuals against the dummy 𝐷, then we cannot expect the residuals to be random in the 

scatterplot. The object of the financial crisis dummy is to catch the potential change in intercept, if the 

intercept changes for an economy in crisis, then we would expect the residuals to be close to zero for 𝐷 = 1.  

Independence of residuals 

The residuals plotted against observation number show no clear pattern, besides taking on bigger absolute 

values for the first observations compared to the rest of the study. The autocorrelation function plot, however, 

shows significant autocorrelation at lag 7 and 17, but the spikes are not far away from the 95% limit. This is 

autocorrelations as in the former regression model. When comparing the autocorrelation function plots, we do 



Page 49 of 91 
 

notice that the spikes on average have decreased. The comparison indicates the regression model is an 

improvement. We conclude that the assumption is not severely violated. 

Homoscedasticity  

There appear to be pattern of curvature in the residuals when they are plotted against the fitted values of the 

model. Therefore, we conclude that the assumption about constant variance of the residuals is not violated. 

Normal distribution of residuals  

The residuals are close to resemble a normal distribution, when plotted as a histogram. It is not perfect but 

close enough not to be a concerned. 

 

Regression model results for: ∆log(𝑆)𝑡 = 𝛽0 + 𝛽1∆ log(𝑃𝐷)𝑡−1 + 𝛽2𝐷 + 𝛽3∆ log(𝑃𝐷𝑡−1 ∗ 𝐷) + 𝜖𝑡 

 

R-Square 

The model yields an adjusted R-Square of 0.5092 versus 0.5056 of the former model which did not include the 

interaction-term and the financial-crisis dummy. Hence the increase in explanatory power is insignificant. 

Intercept analysis, 𝛽0 

The estimated intercept, 𝛽0, has a value of −0.008054, with a t-test stat of -0.334 yielding a corresponding p-

value of 0.739. That is, we cannot reject that 𝛽0 = 0 at a 1%,5%,10% or even 15% significant level, we conclude 

that the intercept is insignificant. 

Slope analysis for ∆log (𝑃𝐷𝑡−1), 𝛽1 

The estimated beta coefficient to the variable ∆ log(𝑃𝐷)𝑡−1, 𝛽1, has a value of 0.1877, a t-test stat of 6.066, 

with a corresponding p-value of 6.81e-08. We conclude that the estimated 𝛽1 is significantly different from 

zero at a 1% level. It is noted that estimated coefficient to ∆log (𝑃𝐷𝑡−1) has increased compared to the model 

where we do not include the financial crisis dummy and the interaction-term.  

Intercept financial crisis, 𝐷, 𝛽2 

-0.0081 0.0241 -0.3340 0.7390

0.1877 0.0309 6.0660 6.81E-08

0.0413 0.0512 0.8060 0.4230

-0.0586 0.0387 -1.5120 1.35E-01

0.5302

0.5092

∆log (𝑃𝐷𝑡−1)

 n       

             .                     
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𝛽2, has an estimated value 0.0413, a t-test stat of 0.806, with a corresponding p-value of 0.423.  Hence, we 

cannot reject that 𝛽2 = 0 at 1%,5%,10% or even 15% significance level. We conclude that the regression model 

intercept does not change from normal times to crisis.  

Interaction-term analysis, variable ∆𝑙𝑜𝑔(𝑃𝐷𝑡−1 ∗ 𝐷), 𝛽3   

The estimated beta coefficient,  𝛽3, has a value of −0.0586, with a t-test stat of -1.512, with a corresponding 

p-value of 0.135. We cannot reject that 𝛽3 = 0 at a 1%,5%, or 10% level. However, if we accept a significance 

level of 15% then we reject 𝛽3 = 0 and conclude that the sensitivity of ∆log (𝑆𝑡) to ∆log (𝑃𝐷𝑡−1) does changes 

when the economy is in crisis relative to normal times. For the following part we assume that that 𝛽3 is 

significant. 

The sign of the estimated beta coefficient for the interaction-term is negative. It indicates that the CDS-spread 

becomes less sensitive to changes in the estimated default probability, when the economy is in crisis relative to 

normal times, because 𝛽1 is positive. The difference in the regression line is given by 𝛽3, thus -0.0586. Then 

“the financial crisis beta coefficient” for the variable ∆log (𝑃𝐷𝑡−1) becomes: (𝛽1 + 𝛽3) = (0.187666 −

0.051202) = 0.136464.  

Default probability is a non-systematic risk factor and the result indicates that first difference of CDS spread 

during times of emergency becomes less sensitive to the changes in it.  

The question that arise is, does the CDS spread in our case study depend on systematic risk factors, and do the 

potential relationships between theses and CDS spread then become stronger during the financial crisis 

relative to normal times? 

 

To test if the CDS spread does depend on systematic risk, we include the two systematic risk factors: the S&P 

500 index and the VIX index.  

Adding the first difference of the SP500 index and the VIX index variables to the regression yield the following 

model:  

∆log(𝑆)𝑡 = 𝛽0 + 𝛽1∆ log(𝑃𝐷)𝑡−1 + 𝛽2𝐷 + 𝛽3∆ (log(𝑃𝐷) ∗ 𝐷)𝑡−1 + 𝛽4∆𝑆𝑃500𝑡 + 𝛽5∆𝑉𝐼𝑋𝑡 + 𝜖𝑡  

But the model causes concerns, first it is questionable that ∆log(𝑆)𝑡 is a linear function of ∆𝑆𝑃500𝑡 and ∆𝑉𝐼𝑋𝑡, 

hence we might violate the assumption about model form. A way to by-pass this is to remember that it is 

possible to express the riskiness of default as distance to default instead of default probability. Distance to 

default contains the same information as probability of default and we remember that they are linked together 

by 𝑃𝐷 = 𝑁(−𝐷𝑡𝐷).  
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The relationship between the CDS spread and the DtD appears to be rather linear from the scatterplot in 

previous sections, so do the relationships between CDS spread and the two variables SP500 index and VIX 

index. Hence a potential regression model where we do not expect to violate the model from assumption is:  

𝑆𝑡 = 𝛽0 + 𝛽1𝐷𝑡𝐷𝑡−1 + 𝛽2𝐷 + 𝛽3(𝐷𝑡𝐷 ∗ 𝐷)𝑡−1 + 𝑆𝑃500𝑡 + 𝑉𝐼𝑋𝑡 + 𝜖𝑡 

But before running the model, we would have to check if the variables are stationary, and we might end up 

with a model of the form: 

∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝛽2𝐷 + 𝛽3∆(𝐷𝑡𝐷 ∗ 𝐷)𝑡−1 + ∆𝑆𝑃500𝑡 + ∆𝑉𝐼𝑋𝑡 + 𝜖𝑡 

It is not unreasonable to assume that both the dependent and independent variables are stationary after 

taking first difference. In the following section we examine if the variables are stationary. 

10.2 Are the CDS spread, DtD, the S&P500 index, and the VIX index stationary? 

The CDS spread level and first difference 

 

 

Level 
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Investigation of the plot with the CDS spread as a function of the observation number does not appear to be 

stationary in mean. The conclusion is supported by the autocorrelation function plot, where we see spikes far 

from the 95% limits, autocorrelation at lag 1-4 are positive and significant, where 7-13 are negative and 

significant and lag 14 is just on the limit. 

The augmented Dickey-Fuller test yields the following results:  

 

A bit surprisingly, the test reject H0 that the series is non-stationary at a 5% significance level, hence the 

augmented Dickey-Fuller test indicates that the series is stationary. The plot analysis and the ADF test point in 

different directions for the CDS spread at levels. 

First difference 

The first difference of the CDS spread appears stationary when plotted against observation number. The 

autocorrelation function plot shows significant autocorrelation at lag 1, but the spike is relatively close to the 

95% limit, and the autocorrelations at lag 3, 6 and 7 are just at the 95% limit.   

The augmented dickey-fuller test for the first difference of the CDS spread yields the following results: 

 

We reject H0, that the series is non-stationary at a 5% significance, hence the test indicates that the first 

difference of the CDS spread is stationary.  

The results of the augmented Dickey-Fuller test and only a few of the autocorrelation being significant, but 

close the 95% limit, makes it reasonable to assume that the first difference of the CDS spread is stationary. 

 

Distance to default level and first difference 

 

Variable Dickey-Fuller test stat Lag order P-value

-3.6042 4 0.0392𝑆𝑡

Variable Dickey-Fuller test stat Lag order P-value

-4.0302 4 0.0133∆𝑆𝑡
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Level 

From the time series plot 𝐷𝑡𝐷 does not appear to be stationary. Investigation of the autocorrelation function 

plot also indicates that the series is non-stationary, with autocorrelations significant for lag 1-5 and 10-13.  

The augmented Dickey-Fuller test yields the following results:  

 

With a p-value of 0.02119, that is, we reject non-stationary at a 5% significance level, and concludes that the 

series is stationary. The plot analysis and the augmented Dickey-Fuller test point in different direction. 

First difference 

The time series plot of ∆𝐷𝑡𝐷 show a series that appear to be stationary, however it is noted that the variance 

appears to be a bit larger in the start of the series. The autocorrelation function plot also indicates that the 

series is stationary with only the autocorrelation at lag 3 being significant. The augmented Dicky-Fuller test 

yields the fowling results: 

 

The test yields a p-value of 0.06699, that is, we cannot reject that the series is non-stationary at 5% level. If we 

accept a 10% significance level, then we reject non-stationarity and to conclude that the series is stationary. 

Keeping this significance level in mind we continue as if the ∆𝐷𝑡𝐷 is stationary.  

 

The S&P500 index level and first difference 

Variable Dickey-Fuller test stat Lag order P-value

-3.8535 4 0.0212𝐷𝑡𝐷𝑡

Variable Dickey-Fuller test stat Lag order P-value

-3.3731 4 0.0670∆𝐷𝑡𝐷𝑡
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Level 

From the time series plot we conclude that the series S&P500 index is not stationary. The autocorrelation 

function plot shows a text book example of a series that is non-stationary in mean with a slow decay of the 

autocorrelation for numerous lags. The first 11 autocorrelations are positive and significantly different from 

zero at a 5% significance level.  

The augmented Dickey-Fuller yields the following results:  

 

Which indicates that the series is non-stationary at a 5% significance level, due to the p-value of 0.07292. If we 

accept a significance level of 10% then the test rejects H0 and indicate that series is stationarity. This is bit 

surprising considering the time series plot and autocorrelation function plot. 

First difference 

Variable Dickey-Fuller test stat Lag order P-value

-3.3354 4 0.0729𝑆𝑃500𝑡
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Judging form time series plot the series now appear stationary, however we do note a slightly upward trend. 

The autocorrelation function plot shows no significant autocorrelations, although the autocorrelation at lag 4 is 

just at the 95% limit.  

The augmented Dickey-Fuller yields the following results: 

 

The augmented Dickey-Fuller test result is surprising, the p-value has increased to 0.08891, hence to reject that 

the series is non-stationary, we must accept a significance level of 10%. We now move on as if the series 

∆𝑆𝑃500𝑡 is stationary.  

 

The VIX index level and first difference 

 

 

 

  

Variable Dickey-Fuller test stat Lag order P-value

-3.2365 4 0.0889∆𝑆𝑃500𝑡
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Level 

From the time series plot, the series does not appear stationary, the autocorrelation function plot confirms the 

impression with the first 5 autocorrelations being significantly different from zero at a 5% level. The 

augmented Dickey-Fuller test yields the following results: 

 

The test has a p-value of 0.01754, indicating that the series is stationary, hence the plot analysis and the 

augmented Dickey-Fuller test point in different directions.  

First difference 

From the time series plot the series now appear to be stationary, we do note that the variance appears to be 

bigger in start of the period. The autocorrelation function plot also shows a series that appear to be stationary. 

Only the autocorrelation at lag 2 is significant, but it is close to the 95% limit. And the autocorrelation at lag 15 

is just on the 95% limit. The plot analysis indicates that it is not unreasonable to assume that the series is 

stationary. Running the augmented Dickey-Fuller test yields the following results: 

 

The test has a p-value smaller than 0.01, hence we reject that the series is non-stationary at 1% significance 

level and conclude that the series is stationary.   

 

Over all conclusion: 

We have taken the first difference of all variables and examined both time series plots and autocorrelation 

function plots. And in addition, we run the augmented Dickey-Fuller test for all the variables.  

When running the augmented Dickey-Fuller test on levels, we reject that the CDS spread, distance to default 

and the VIX index are non-stationary at a 5%, hence the test indicates that all three variables are stationary. 

The plot analysis, however, indicates that the three series are non-stationary.  

For the S&P500 index we cannot reject non-stationarity at a 5% level, but only if we accept a 10% significance 

level. The plot analysis also indicates that series S&P500 index is non-stationary. 

The question that arise is, should we run the regression models on levels rather than on first difference? The 

plot analysis indicates it would be wrong, all 4 series have significant autocorrelation for several lags and none 

of the time series plots seem to resemble series that are stationary.   

Variable Dickey-Fuller test stat Lag order P-value

-3.9346 4 0.0175𝑉𝐼𝑋𝑡

Variable Dickey-Fuller test stat Lag order P-value

-4.1972 4 <0.01∆𝑉𝐼𝑋𝑡
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After taking the first difference only few of the autocorrelations are significant for the series CDS spread, and 

for 𝐷𝑡𝐷 only one autocorrelation is significant. For the first difference of the S&P500 index a few of the lags are 

at the 95% limit but none of the spikes cross the limit. For the first difference of the VIX index one lag is 

significant, but close to the 95% limit. The time series plots of the first difference of all the variables are closer 

to resemble series that are stationary compared to the plots on levels.  

The augmented Dickey-Fuller test indicates that ∆𝑆𝑡 and ∆𝑉𝐼𝑋𝑡  are stationary at 5% level, whereas we must 

accept a significance level of 10% to reject non-stationarity for ∆𝑆𝑃500𝑡 and ∆𝐷𝑡𝐷𝑡. Combing the plot analysis 

with augmented Dickey-Fuller tests we believe that it is most correct to run the regression on first difference 

rather than on levels.  

10.3 Regression, the CDS regressed on distance to default 

10.3.1 First difference regression, distance to default lagged one period 

From theory and the empirical tests we have carried out so far, a negative and significant relationship between 

the CDS spread and the distance to default is expected. When we regressed ∆log (𝑆𝑡) on ∆(𝑃𝐷𝑡) we had to lag 

∆(𝑃𝐷𝑡) by one period for the relationship to be significant, we expect the same to be true for ∆𝐷𝑡𝐷𝑡. 

We now run two regression models: ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡 + 𝜖𝑖  and ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝜖𝑖 and plot the 

estimated regression lines in scatterplots with ∆𝑆𝑡 plotted against ∆𝐷𝑡𝐷𝑡 and ∆𝐷𝑡𝐷𝑡−1. 

 

It is clear from the two plots that the relatinship between ∆𝑆𝑡 against ∆𝐷𝑡𝐷𝑡−1 is much stronger than the 

relationship between  ∆𝑆𝑡 against ∆𝐷𝑡𝐷𝑡, just as expected. Hence, we continue the analysis using ∆𝐷𝑡𝐷𝑡−1 to 

explain ∆𝑆𝑡. 

We now check how well the regression model:  ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝜖𝑖  meets the 4 assumptions:  
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Model form  

We examine the plot where the residuals are plotted against ∆𝐷𝑡𝐷𝑡−1. The linear model specification seems 

somewhat correct, but it is noted that there appear to be a bit of a spread when ∆𝐷𝑡𝐷𝑡−1 deviate from 0, both 

in positive and negative direction. It may be a problem for the accuracy of the F-test, t-tests and the confidence 

intervals, but the assumption about linearity does not appear to be severely violated. The explanation for the 
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spread in the residuals might be that the relationship between ∆𝑆𝑡 and ∆𝐷𝑡𝐷𝑡−1 differ for the financial crisis, 

where ∆𝐷𝑡𝐷𝑡−1 also takes on bigger absolute values relative to normal times. If this is the explanation, then 

including the interaction-term and the financial crisis dummy might make residuals independent of the values of 

∆𝐷𝑡𝐷𝑡−1. 

Independence of residuals 

The autocorrelation at lag 4 is significant, and the autocorrelation at lag 17 is significant, however much closer 

to the 95% limit. We conclude that the assumption is violated. 

Homoscedasticity  

In the plot with the residuals against the fitted values, the variance increases for bigger absolute values of the 

fitted values. The explanation might be the same as for the violation of the model form, and if so the solution 

would be the same.  

Investigation of the residuals plotted against observation number shows that the variance is bigger in the start 

of the period relative to later observations. Hence, we may solve the problem of lack of homoscedasticity by 

including the interaction-term and the financial crisis dummy to catch the potential different relationship that 

may be between the CDS spread and distance to default for the financial crisis, relative to the rest of the period 

of study. But it is noted that the assumption about homoscedasticity is not severely violated. 

Normality of the residuals 

From the histogram we see that the distribution of the residuals to some degree resembles a normal 

distribution. We conclude that the assumption about normality is not a problem.  

Nevertheless, there are extreme values in both ends of the tails, with a relatively high concentration in the left 

tail. This indicates that the model overestimates the predicted change in the CDS spread for certain values of 

∆𝐷𝑡𝐷𝑡−1, these may be for the financial crisis. If this is the case, then the beta coefficient should be smaller in 

absolute terms when in crisis relative to normal times. This means that we expect the estimated beta 

coefficient for the interaction-term to have the opposite sign than the estimated beta coefficient ∆𝐷𝑡𝐷𝑡−1 

when included in the model. 

 

The regression model results for: ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝜖𝑖  

 

-3.885 5.954 -0.653 0.516

-179.904 19.276 -9.333 7.41E-14

0.5580

0.5516

∆D D −1

 n       

             .                     

𝑅2

𝐴𝑑 𝑢𝑠𝑡𝑒𝑑 𝑅2

𝛽0

𝛽1
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R-Square  

The model yields a R-square of 0.558 and an adjusted R-Square of 0.5516. This is a slight improvement 

compared to the regression model: ∆ log(𝑆)𝑡 = 𝛽0 + 𝛽1∆ log(𝑃𝐷𝑡−1) + 𝜖𝑡, which had an adjusted R-Square of 

0.5056. Hence, using the ∆𝐷𝑡𝐷𝑡−1 instead of ∆log (𝑃𝐷𝑡−1) makes it possible to explain a bigger fraction of the 

variability in the first difference of the CDS spread.  

Slope analysis for variable ∆𝐷𝑡𝐷𝑡−1, 𝛽1 

The estimated beta coefficient is -179.904, it has a t-test stat of -9.333 with a corresponding p-value of 7.41e-

14, therefore we conclude that the estimated beta coefficient is significant. 𝛽1 has the expected sign.  

Intercept analysis 𝛽0,  

The intercept has an estimated value of -3.885, but it is insignificant with a t-test stat of -0.653 and a 

corresponding p-value of 0.516. 

10.3.2 Adding an interaction-term and a financial crisis dummy 

We now set up the regression model:  

∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝛽2∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽3𝐷 + 𝜖𝑡 

Where 𝐷 is an indicator variable that takes on 1 in value if we are in the financial crisis, and otherwise 0. 

(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) is the interaction term, is 𝛽2 significantly different from zero then we conclude that the slope of 

the regression line between ∆𝑆𝑡 and ∆𝐷𝑡𝐷𝑡−1 depends on the state of the economy. From the analysis of the 

residuals from the previous regression model, ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝜖𝑡, makes us expected the estimated  

𝛽2 to be positive given it is significant.  

 

We now check the assumptions to by examining the residuals. 
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Model from 

The residuals still appear to be a somewhat dependent of the of the value of the explanatory variable 

∆𝐷𝑡𝐷𝑡−1. Hence including the interaction-term has not solved the issue perfectly. Nevertheless, the 

assumption about linearity is not severely violated.  
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For the residuals plotted against Interaction-term ∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) no clear pattern appears in the datapoints, 

and the residuals do not appear to depend on ∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷). We conclude that the assumption about the 

model form being linear is not a problem for this variable either. For the residuals plotted against 𝐷, we see 

that the residuals deviate more from zero, when 𝐷 = 1, relative to 𝐷 = 0.  

Independence of residuals 

We see that the assumption about independence of the residuals is violated, the residuals show significant 

autocorrelation at lag 4, and we see that the spike of lag 17 is just outside the 95% limit. Therefore we 

conclude that the the assumption is still violated. 

Homoscedasticity  

After including the interaction-term and the time dummy the residuals still seem to depend on the fitted values 

and tend to increase in absolute terms when the fitted values deviate from zero. But it is noted that the 

assumption is not severely violated.  

Normal distribution of residuals 

The residuals are relatively close to resemble a normal distribution, with a high concentration of the mass 

around the mean 0. The distribution does not resemble a normal distribution perfectly, but close enough not 

to be a concern. 

 

The regression model results for  ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝛽2∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽3𝐷 + 𝜖𝑡 

 

R-square 

Including the two variables, make the adjusted R-square increase a bit. The adjusted R-Square of the former 

regression model was 0.5516, whereas the new regression model yields an adjusted R-Square of 0.5833.  

Slope analysis for variable ∆𝐷𝑡𝐷𝑡−1, 𝛽1 

The estimated 𝛽1 coefficient is -185.558, hence the slope has increased compared to the former model. The t-

test stat is -9.567 yielding p-value of 3.73e-14, thus we conclude that beta coefficient is significant at a 1% level 

significance level.  

-2.4860 6.4880 -0.3830 0.7028

-185.558 19.3950 -9.5670 3.73E-14

42.9230 15.0870 2.8450 0.0059

6.6320 14.1850 0.4680 0.6417

0.6059

0.5883

∆D D −1

 n       

             .                     

𝑅2

𝐴𝑑 𝑢𝑠𝑡𝑒𝑑 𝑅2

𝛽0

𝛽1

    

∆(D D −1 ∗ D) 𝛽2

𝛽3𝐷
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The interaction-term analysis for ∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷), 𝛽2 

The estimated beta coefficient, 𝛽2, has a value of 42.923, a t-test stat value equal to 2.845 which yields a p-

value of 0.0059. Hence, we reject that the 𝛽2 is equal to zero at 1% significance level. The estimated beta is 

positive as expected. The result indicates that the relationship between the ∆𝑆𝑡 and the ∆𝐷𝑡𝐷𝑡−1 depends on 

the state of the economy.  

𝛽2 estimates the change in the beta coefficient for ∆𝐷𝑡𝐷𝑡−1 when in crisis. When not in crisis ∆𝑆𝑡 changes by 

𝛽1 when ∆𝐷𝑡𝐷𝑡 changes by one unit, all else equal. When in crisis ∆𝑆𝑡 changes by (𝛽1 + 𝛽2) when ∆𝐷𝑡𝐷𝑡 

changes by one unit, all else equal.  

𝛽1 is negative and 𝛽2 is positive, hence the ∆𝑆𝑡 becomes less sensitive to ∆𝐷𝑡𝐷𝑡−1 when in crisis. 

The finding indicates that the unsystematic risk that 𝐷𝑡𝐷 capture is less important for the CDS spread when in 

crisis relative to normal times.  

We also note that the former regression model yields an estimated coefficient for ∆𝐷𝑡𝐷𝑡−1 of -179.904 

whereas the new regression model yields an estimated coefficient for ∆𝐷𝑡𝐷𝑡−1 of -185.558.  

The estimated coefficient for ∆𝐷𝑡𝐷𝑡−1 increases (in absolute terms) when we include the interaction-term. The 

result indicates that the estimated coefficient for ∆𝐷𝑡𝐷𝑡−1 in the model where the interaction-term and 

financial crisis dummy were not included, was positively biased for the non-crisis period (not steep enough), 

whereas it negatively biased for crisis period (too steep).  

Intercept analysis, 𝛽0 

The intercept is estimated to a value of -2.486, but is insignificant with a t-test stat of -0.383 and a 

corresponding p-value of 0.7028.  

Intercept financial crisis, 𝐷, 𝛽3 

The estimated beta coefficient for the financial crisis dummy variable, 𝛽3 is equal to 6.632, it is insignificant 

with a t-test stat value of 0.468 with a corresponding p-value of 0.64166. We conclude that the intercept does 

not change as a function of state of the economy.  

 

10.4 Regression, CDS spread regressed on S&P500 index 

10.4.1 First difference regression, the S&P500 index lagged one period 

The third question of the problem statement is, “Is it possible to improve the regression model by including 

non-firm-specific variables such as the S&P 500 index and the volatility measure from the VIX index?”. To 
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answer the question, we start out by investigating the relationship between the CDS spread and the SP500 

index.  

We plot the ∆𝑆𝑡 against ∆𝑆𝑃500𝑡, and add the least square regression line, we also plot ∆𝑆𝑡 against 

∆𝑆𝑃500𝑡−1, and add the corresponding least square regression line. 

 

For ∆𝑆𝑡 against the ∆𝑆𝑃500𝑡 the relationship appears weak, whereas for ∆𝑆𝑡 against ∆𝑆𝑃500𝑡−1 the 

relationship appears much stronger. We continue the analysis by running the following regression: ∆𝑆𝑡 = 𝛽0 +

𝛽1∆𝑆𝑃500𝑡−1 + 𝜖𝑡, but before we go into analyzing the regression model results we go over the assumptions. 
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Model form 

When the residuals are plotted against the explanatory variable ∆𝑆𝑃500𝑡−1 a pattern appears. When 

∆𝑆𝑃500𝑡−1 takes on big values, both positive and negative, then the residuals deviate more from zero than 

they do for small absolute values of ∆𝑆𝑃500𝑡−1. Therefore, we conclude that the residuals are not 

independent of the ∆𝑆𝑃500𝑡−1, hence model form is not perfect. 

 ∆𝑆𝑃500𝑡−1 takes on bigger absolute values in the financial crisis relative to normal times. Consequently, it 

may be solved by including the interaction-term into the model. 

Independence of the residuals 

From the time series plot of the residuals we conclude that the residuals take on the biggest values, both 

positive and negative, within the 20 first observations, all observations that fall within the financial crisis. In the 

time series plot the residuals, however appear to be independent of each other. The autocorrelation function 

plot shows that the autocorrelation at lag 4 is significant, but just outside the 95% limit. Thus, it might just be 

by chance. It is noted that the autocorrelation at lag 3 is just on 95% limit.  
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The bigger values of the residuals for the period defined as the financial crisis may indicate that we can 

decrease the sum of squared errors by including the interaction-term, that allow the slope of the regression 

line to differ when in crisis relative to when not in crisis. 

Homoscedasticity 

To check assumption about homoscedasticity, we plot the residuals against the fitted values estimated from 

the regression model. The values of the residuals on average tend to increase for bigger absolute values of the 

fitted values, just as it did in the plot with the residuals plotted against 𝑆𝑃500𝑡−1. However, the pattern is not 

that clear, and we conclude that the assumption is not severely violated. 

Normality of residuals 

From the histogram we conclude that there is no problem with the assumption about normality of the 

residuals. 

 

The assumptions seem to be met at a reasonable level or at least not severely violated. 

Regression model results for ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑆𝑃500𝑡−1 + 𝜖𝑡 

 

R-square 

The model yields a R-Square of 0.625, and an Adjusted R-Square of 0.6195. That is significantly higher than 

model where we regressed ∆𝑆𝑡 on ∆𝐷𝑡𝐷𝑡−1, indicating that the S&P500 index explains more of the variability 

in the CDS spread than DtD does.  

Slope analysis for variable ∆𝑆𝑃500𝑡−1, 𝛽1 

The estimated beta coefficient, 𝛽1, is -0.97991, and has a t-test stat value of -10.723 with a corresponding p-

value of 2.24e-16, hence we conclude that the coefficient is significant at a 1% level. The sign of the estimated 

beta coefficient is negative, just as expected.  

Intercept analysis, 𝛽0 

The intercept, 𝛽0, has an estimated value of 6.96148, with a t-test value of 1.273 yielding p-value of 0.207, 

hence we conclude that it is insignificant.  

6.9615 5.4674 1.2730 0.2070

-0.9800 0.0914 -10.7230 2.42E-16

0.6250

0.6195

∆  500 −1

 n       

             .                     

𝑅2
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10.4.2 Adding interaction-term and financial crisis dummy 

We set up a regression model that allow for the relationship between ∆𝑆𝑡 and ∆𝑆&𝑃500𝑡−1 to change during 

the financial crisis by including the interaction-term and the financial crisis dummy. The regression model has 

the following form: ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑆𝑃500𝑡−1 + 𝛽2∆(𝑆𝑃500𝑡−1 ∗ 𝐷) + 𝛽3𝐷 + 𝜖𝑡 
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Model form 

When plotting the residuals against ∆𝑆𝑃500𝑡−1, then the residuals still deviate more from zero for large 

absolute values of ∆𝑆𝑃500𝑡−1 relative to smaller absolute values of ∆𝑆𝑃500𝑡−1. The pattern is not as clear as 

in the former model but including the interaction-term has not solved the problem completely. The 

assumption about linearity is to some degree violated for the variable ∆𝑆𝑃500𝑡−1. 

In the plot where we have the residuals against the ∆(𝑆𝑃500𝑡−1 ∗ 𝐷) no clear pattern appears, and we accept 

the assumption about a linear relationship.  

For the residuals plotted against 𝐷, we see that the residuals deviate more from zero, when 𝐷 = 1, relative to 

𝐷 = 0 

Homoscedasticity 

The assumption about constant variance for the residuals is to some degree violated. For large absolute values 

of the fitted values the residuals show greater variance compared to small absolute values.  

Independence of residuals 

From the residuals against observation number, no autocorrelation in the residuals appears. However, when 

we look at the autocorrelation function plot, we conclude that we have significant autocorrelation at lag 3 and 

4, but the two spikes are just outside 95% limits, so the assumption does not seem to be violated severely.  

Normality of residuals 

The residuals do to some degree resemble a normal distribution, but it is clear from the histogram that the 

distribution it positively skewed. But the distribution does not deviate so much from a normal distribution that 

it is unreasonable to continue as if the assumption has been met.  

 

The regression model results for the model: ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑆𝑃500𝑡−1 + 𝛽2∆(𝑆𝑃500𝑡−1 ∗ 𝐷) + 𝛽3𝐷 + 𝜖𝑡 



Page 69 of 91 
 

 

R-Square 

Including the financial crisis dummy and the interaction term do increase the adjusted R-Square to 63.71%, but 

the increase is small. 

Slope analysis for variable ∆𝑆𝑃500𝑡−1, 𝛽1 

The estimated beta coefficient, 𝛽1, for the variable ∆𝑆𝑃500𝑡−1 is still significant, with a t-test stat value of -

7.20 and a corresponding p-value of 6.64e-10. The beta coefficient has increased in value to -0.9089, hence the 

slope has decreased relative to former regression model, where the interaction-term and the financial crisis 

dummy were not included.  

Interaction-term analysis, variable ∆(𝑆𝑃500𝑡−1 ∗ 𝐷), 𝛽2 

The estimated beta, 𝛽2, for the interaction-term is -0.2971, but it is insignificant at a 5% and 10% significance 

level, and we must accept a significance level of 15% to reject that it is insignificant. Although the interaction-

term is in insignificant it can make sense to include it in the regression model to function as a control variable 

that makes 𝛽1 less biased.  

If we accept a significance level of 15%, then we can conclude that the regression line becomes steeper during 

the financial crisis relative to normal times, and it changes by, 𝛽2, hence -0.2971.  Meaning when the 

∆𝑆&𝑃500𝑡−1 increases by one unit during the financial crisis then the ∆𝑆𝑡 changes by (𝛽1 + 𝛽2) =

(−0.9089 − 0.2971) =  −1.206 whereas during normal times ∆𝑆𝑡 changes by  -0.9089 (𝛽1) when 

∆𝑆&𝑃500𝑡−1 increases by one unit. The interpretation can be that the changes in the CDS spread becomes 

more sensitive to systematic risk, during stages of emergencies. The finding goes well with the finding that the 

CDS spread become less sensitive to changes in the un-systematic risk estimate Distance to Default when in 

crisis relative to normal times.  

Intercept, 𝛽0 

The estimated beta for the intercept, 𝛽0, takes on the value 10.5979, it is insignificant at a 10% level, with a t-

test stat of 1.644 and a corresponding p-value of 0.1048. If we accept a significance level of 15% then we 

conclude that the beta coefficient is significant. 

10.5979 6.4462 1.6440 0.1048

-0.9089 0.1262 -7.2000 6.64E-10

-0.2971 0.1923 -1.5450 0.1271
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0.6526

0.6371

∆  500 −1

 n       

             .                     

𝑅2

𝐴𝑑 𝑢𝑠𝑡𝑒𝑑 𝑅2

𝛽0

𝛽1

    

∆(  500 −1 ∗ D) 𝛽2

𝛽3𝐷



Page 70 of 91 
 

Intercept financial crisis, 𝛽3 

The potential difference in intercept for the financial crisis, 𝛽3, has an estimated value of -26.1953, a t-test stat 

value of -1.942 with a p-value of 0.0563. 𝛽3 is insignificant at 5% significance level, but do we accept a 

significance level of 10% then we conclude that it is significant and conclude that the intercept changes from 

normal times to crisis.  

 

10.5 Regression, CDS spread regressed on DtD and the S&P500 index 

10.5.1 First difference regression, the DtD and S&P500 index lagged one period plus interaction-terms 

Now we create a regression model that allows both the firm specific risk and systematic risk to explain ∆𝑆𝑡, the 

model is of the fowling form: 

∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑆𝑃500𝑡−1 + 𝛽2∆(𝑆𝑃500𝑡−1 ∗ 𝐷) + 𝛽3∆𝐷𝑡𝐷𝑡−1 + 𝛽4∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽5𝐷 + 𝜖𝑡 

Checking the assumptions: 
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Model from 

∆𝑆𝑃500𝑡−1 and ∆(𝑆𝑃500𝑡−1 ∗ 𝐷) 

The residuals do not appear 100% random when they are plotted against ∆𝑆𝑃500𝑡−1, we still see the same 

pattern where the residuals tend to increase when ∆𝑆𝑃500𝑡−1 deviates from zero. Hence, we conclude that 

the assumption of a linear relationship between ∆𝑆𝑡 and ∆𝑆𝑃500𝑡−1 is to some degree violated. When we plot 
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the residuals against  ∆(𝑆𝑃500𝑡−1 ∗ 𝐷) , then they appear random and we conclude that the assumption of 

linearity is met. 

∆𝐷𝑡𝐷𝑡−1 and ∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) 

The residuals appear independent of both variables from the two plots, so we conclude that the assumption 

about a linear relationship between ∆𝑆𝑡 and the two variables is met. 

For the residuals plotted against 𝐷, we see that the residuals deviate more from zero, when 𝐷 = 1, relative to 

𝐷 = 0   

Independence of residuals,  

Investigation of the autocorrelation function plot shows that there is significant autocorrelation at lag 4 for the 

residuals, all other spikes are within the 95% or just right at the limit. The assumption about the residuals being 

100% independent is not met. However, it is not strongly violated either, as the autocorrelation is around 0.3 

at lag 4.  

Homoscedasticity  

We see that the variance of the residuals tends to increase as the fitted value deviate from zero. Hence 

including the interaction-term and the financial crisis dummy did not remove the pattern in the residuals, when 

plotted against the fitted values from the model. However, the pattern is not that clear, and we conclude the 

assumption about constant variance does not appear to be strongly violated. 

Normal distribution 

The distribution of the residuals does not resemble a normal distribution perfectly, but the assumption does 

not appear to be severely violated, hence the normality assumption is not a problem. 

 

The regression model results for:  

∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑆𝑃500𝑡−1 + 𝛽2∆(𝑆𝑃500𝑡−1 ∗ 𝐷) + 𝛽3∆𝐷𝑡𝐷𝑡−1 + 𝛽4∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽5𝐷 + 𝜖𝑡 

 

R-Square  

7.3445 5.9984 1.224 0.2252

-0.6487 0.141 -4.601 2.00E-05

-0.0875 0.1867 -0.469 0.6409

-86.4915 26.7258 -3.236 0.0019
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The regression model now yields an adjusted R-square of 69.49%, hence including both ∆𝐷𝑡𝐷𝑡−1 and 

∆𝑆𝑃500𝑡−1 into one model increase the explanatory power of the model, relative to having only one of the 

variables explain the CDS spread. 

Slope analysis for variable ∆𝑆𝑃500𝑡−1, 𝛽1 

We see that 𝛽1 is significant at a 1%, with a t-test stat of -4.601 with a corresponding p-value of 2e-5. The 

estimated  𝛽1 value is -0.6487, that is when ∆𝑆𝑃500𝑡−1 increase by 1 unit then ∆𝑆𝑡 changes by -0.6487. The 

sign of the estimated beta coefficient is negative as expected. However, we do notice that in this multivariate 

setting the CDS spread is now less sensitive to S&P500 index, relative to the model where CDS spread is only 

regressed on the S&P500 and interaction-term. 

Interaction-term analysis, variable ∆(𝑆𝑃500𝑡−1 ∗ 𝐷), 𝛽2 

𝛽2 is insignificant, with a t-test stat of -0.469 and a corresponding p-value of 0.64091, that is the model 

indicates that the relationship between the changes in ∆𝑆𝑡 and ∆𝑆𝑃500𝑡−1 does not depend on the state of 

the economy. 

Slope analysis for variable ∆𝐷𝑡𝐷𝑡−1, 𝛽3   

𝛽3 is significant at a 1% level, with a t-test stat of 3.236 with a corresponding p-value of 0.00191. The estimated 

value of 𝛽3 is -86.4915, hence when ∆𝐷𝑡𝐷𝑡−1 increase by one unit then ∆𝑆𝑡 changes by -86.4915 basis points. 

The sign is negative as expected. But just as for 𝑆&𝑃500, the sensitivity of the CDS spread to the 𝐷𝑡𝐷 has 

decreased, compared to the model where the CDS spread is only explained by the DtD and its interaction-term. 

Interaction-term analysis, for variable ∆(𝐷𝑡𝐷 ∗ 𝐷), 𝛽4 

𝛽4 is significant at a 5% level, with a t-test stat of -2.525 with a corresponding p-value of 0.014. 𝛽4 has an 

estimated value of 34.7972, hence we conclude that the relationship between the ∆𝑆𝑡 spread and ∆𝐷𝑡𝐷𝑡−1 

does change from normal times to crisis. The model results say that ∆𝑆𝑡 becomes less sensitive to the changes 

in ∆𝐷𝑡𝐷𝑡−1 during crisis relative to normal times, because 𝛽4 is significant and has the opposite sign than 𝛽3 

has.  

The model predicts that ∆𝑆𝑡 change by (𝛽3 + 𝛽4) = −51.6943 when ∆𝐷𝑡𝐷𝑡−1 increase of one unit during the 

crisis, but when not in crisis ∆𝑆𝑡 changes by 𝛽3 = −86.4915 when ∆𝐷𝑡𝐷𝑡−1 increases by one unit, all else 

equal. The finding indicates that the unsystematic risk that ∆𝐷𝑡𝐷𝑡−1 captures is less important during the 

financial crisis for the movements in ∆𝑆𝑡 relative to normal times. 

Intercept analysis, 𝛽0 and intercept analysis for financial crisis intercept, 𝛽5  

Both 𝛽0 and 𝛽5 are insignifincant, with t-test stats values of 1.224 and -0.985 with the corresponding p-values 

of 0.22521 and 0.32810 respectively. That is, we cannot reject that both beta coefficients are equal to zero at a 
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1%, 5%, 10% or even 15% significance level. The regression model indicates that the intercept is equal to zero 

in normal times and that the intercept does not change from zero when in the financial crisis.  

 

Conclusion:  

Letting both the ∆𝑆𝑃500𝑡−1 and  ∆𝐷𝑡𝐷𝑡−1 enter the regression model with both of their interaction-terms 

plus a dummy for the financial crisis, yields an adjusted R-Square of 0.6949. That is, we have achieved a 

regression model that explains almost 70% of the variability ∆𝑆𝑡 by only including two variables and their 

interaction-terms, leaving 30% of the variability to unexplained. 

In the regression model, we see that both ∆𝑆𝑃500𝑡−1 and ∆𝐷𝑡𝐷𝑡−1 are significant predictors for ∆𝑆𝑡. We also 

see that that ∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) is a significant, hence the sensitivity of ∆𝑆𝑡 to ∆𝐷𝑡𝐷𝑡−1 dependents on the state of 

the economy and changes from non-crisis to crisis. The ∆𝑆𝑡 becomes less sensitive to changes in ∆𝐷𝑡𝐷𝑡−1 

when in crisis, indicating that the CDS spread is less sensitive to the unsystematic risk captured by the DtD in 

crisis. The question then becomes, does it mean that the CDS spread becomes more sensitive to systematic risk 

during the crisis? The results from the regression model does not suggest so, as the estimated beta coefficient 

for the interaction-term, ∆(𝑆𝑃500𝑡−1 ∗ 𝐷), is insignificant, indicating that the relationship between the ∆𝑆𝑡 

and ∆𝑆𝑃500𝑡−1 does not change as a function of the state of the economy.  

In the next session we examine if there is a relationship between the CDS spread and the systematic risk 

measure, the VIX index, and if the potential relationship changes as a function of the economy.  

 

10.6 Regression, CDS spread regressed on the VIX index 

10.6.1 First difference regression, the VIX index lagged one period 

We now plot ∆𝑆𝑡 against ∆𝑉𝐼𝑋𝑡  and add the least square regression line. We also plot ∆𝑆𝑡 against ∆𝑉𝐼𝑋𝑡−1 and 

add the regression line. 
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From the two plots the relationship between ∆𝑆𝑡 and ∆𝑉𝐼𝑋𝑡−1 is much stronger than the relationship between 

∆𝑆𝑡 and ∆𝑉𝑖𝑥𝑡−1, so we set up the following regression model: ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑉𝐼𝑋𝑡−1 + 𝜖𝑡 

Running the regression model: ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑉𝑖𝑥𝑡−1 + 𝜖𝑡  yields the following results: 

 

R-Square  

The simple regression model yields an adjusted R-Square of 0.333. The R-square is lower than the ones the 

univariate regression models with ∆𝑆𝑃500𝑡−1 and ∆𝐷𝑡𝐷𝑡−1 as explanatory variables. They explained about 

60% and 55% of the variability in ∆𝑆𝑡 respectably.   

Slope analysis for variable ∆𝑉𝐼𝑋𝑡−1, 𝛽1 

The estimated beta, 𝛽1 is equal to 7.510, with a t-test stat value of 5.996 with a corresponding p-value of 8.3e-

08, hence we reject that 𝛽1 is equal to zero at a 1% significance level, and conclude that ∆𝑉𝑖𝑥𝑡−1 is a significant 

predictor of ∆𝑆𝑡 

Intercept analysis, 𝛽0 

We see that the intercept is insignificant at a 1%, 5%, 10% and even 15% significance level, with a t-test stat 

value of 0.448 yielding a p-value of 0.655.  

10.6.2 Adding interaction term and financial crisis dummy 

To test if the potential relationship between ∆𝑆𝑡 spread and ∆𝑉𝐼𝑋𝑡−1 is a function of the state of the economy 

we include the financial crisis dummy and the interaction-term, yielding the following regression model: 

∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑉𝑖𝑥𝑡−1 + 𝛽2∆(𝑉𝐼𝑋𝑡−1 ∗ 𝐷) + 𝛽3𝐷 
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The regression model results are: 

 

R-Square  

Including both the financial crisis dummy and the interaction-term does not improve the model, the adjusted 

R-square has decreased to 0.3318, making it clear that the two new variables only add noise to the model.  

Slope analysis for variable ∆𝑉𝐼𝑋𝑡−1, 𝛽1 

𝛽1 does barely change by adding the two variables ∆(𝑉𝑖𝑥𝑡−1 ∗ 𝐷) and 𝐷 to the model, hence they do not serve 

a purpose as control variables. 𝛽1 is still significant with a t-test value of 4.886 yielding a p-value of 6.72e-06.  

Interaction-term analysis, ∆(𝑉𝐼𝑋𝑡−1 ∗ 𝐷), 𝛽2 

𝛽2 is insignificant with a t-test stat of -0.252 and a corresponding p-value of 0.802, hence the relationship 

between the ∆𝑆𝑡 and ∆𝑉𝐼𝑋𝑡−1 does not changes as a function of the state of the economy. 

Intercept analysis, 𝛽0, and intercept analysis for financial crisis intercept, 𝛽3  

The estimated intercept, 𝛽0, is insignificant with a t-test stat value of -0.287 yielding a p-value of 0.775. The 

change in the intercept, 𝛽3, has a t-test stat value of 1.356 with a corresponding p-value of 0.180, hence it is 

concluded that the changes in intercept from normal times to crisis is insignificant.  

10.7 Regression, CDS spread regressed on DtD and the VIX index 

10.7.1 First difference regression, the DtD and VIX index lagged one period plus interaction-terms 
We now add the ∆𝑉𝐼𝑋𝑡−1 to the 𝐷𝑡𝐷 regression model to see if it adds any value, we run the following model:  

∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑉𝐼𝑋𝑡−1 + 𝛽2∆𝐷𝑡𝐷𝑡−1 + 𝛽3∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽4𝐷 + 𝜖𝑡 

Regression model results:  
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R-Square  

Adding the ∆𝑉𝐼𝑋𝑡−1 to the regression model does not improve explanatory power of the model. The model 

yields an adjusted R-Square of 0.5853 , compared to the regression model of the form: 

∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝛽2∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽3𝐷 which yields an adjusted R-Square of 0.5883.  

Slope analysis for variable ∆𝑉𝐼𝑋𝑡−1, 𝛽1 

𝛽1 is insignificant, with a t-test stat value of 0.790 with a corresponding p-value of 0.43230.  

Slope analysis for variable ∆𝐷𝑡𝐷𝑡−1, 𝛽2 

𝛽2 is significant with a t-test stat value of -6.035 and a p-value if 8.05e-08, it has an estimated value of -

170.196. 

Interaction-term analysis for ∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷), 𝛽3 

𝛽3 is significant with a t-test stat value of 2.755 and a p-value if 0.00757, it has an estimated value of 43.737 

Intercept analysis, 𝛽0, and intercept analysis for financial crisis intercept, 𝛽4 

Both 𝛽0 and 𝛽4 are insignificant with t-test stat values of -0.306 and 0.488 with corresponding p-values of 

0.76063 and 0.62692 

 

Over all, we conclude that it does not add value to include ∆𝑉𝐼𝑋𝑡−1 into the regression. We conclude that 𝑉𝐼𝑋 

does not capture variability in the CDS spread that is not captured by the 𝐷𝑡𝐷. Hence, there is no reason to 

check if the assumptions are violated. 

11. Discussion 

11.1 Implications to practice 
The results of the regression models in the thesis show that it matters if one picks the 𝐷𝑡𝐷 or 𝑃𝐷 when one 

wants to predict the CDS spread in an OLS regression setting. The results indicate that it is easier to capture the 

variability in the first difference of the CDS spread with 𝐷𝑡𝐷 rather than the 𝑃𝐷, although the two measures 

contain the exact same information. The regression model results also show that if one is interested in 

capturing the change in the relationship between the CDS spread the risk measure produced by the Merton DD 

model for an economy in crisis, then one must use 𝐷𝑡𝐷 rather than 𝑃𝐷. The results of the regression models 

also show, that one can explain a higher fraction of the variability in the first difference of the CDS spread by 

the first difference in the S&P500 index, than one can by the first difference in the 𝐷𝑡𝐷. This is relevant for 

practice where the first difference of the S&P500 index is easily obtained whereas much work must be done to 

calculate the 𝐷𝑡𝐷. 
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11.2 Possible to improve the model? 
For several of the regressions run in the thesis there are some pattern left in the residuals, which can affect the 

validity of F-test, t-tests and the R-square. One way we could have attempted solve the violation of 

independence of residuals, is to allow for more time-related features of our data, in addition to the interaction-

terms and financial crisis dummy.  

We could for example have made use of seasonal dummy variables. We have monthly data, so we could use 11 

dummy variables, one dummy variable for 11 months out the 12 months in a year, using the general rule of use 

(x-1) dummy variables to denote x different periods  (Makridakis et al., 1998). However, we do note that there 

is no guarantee that this will solve the problem.  

Another way to deal with the problem could have been running regressions with ARIMA errors after we have 

detected that there was some pattern in the residuals. However, it would require the use of more complicated 

methods of estimation such as the Maximum likelihood estimation instead of the simple OLS regression 

estimation (Makridakis et al., 1998).  

12. Conclusion 

The thesis addresses four questions. The first question is “how well does the Merton DD model explain the 

variability in the CDS spread in a linear regression setup?” First it was shown that the Merton DD model offers 

two measures for default risk, distance to default (DtD) and default probability (PD). The two measures contain 

the exact same information but express it differently. The two measures are linked together by 𝑃𝐷 =

𝑁(−𝐷𝑡𝐷).   

 

Question one was answered by running regression models where the CDS spread (S) was regressed on the two 

risk measures from the Merton DD model.  The first regression model took the form log (𝑆𝑡) = 𝛽0 +

𝛽1log (𝑃𝐷𝑡) + 𝜖𝑡, the model is similar to the one run in Bharath and Shumway (2008). Their regression model 

yielded a R-square 26% and the sign of the coefficient was positive. In our model the relationship was positive 

and significant and yielded an adjusted R-square of 74.16%. At first it indicates that the PD estimate from the 

Merton DD model explains 74,16% of the variability in the CDS spread. Checking the assumptions, however, 

made it clear that there was an imminent risk of a spurious regression.  

To meet the challenge of the potential non-stationarity first difference of both variables was taken and a plot 

analysis of the two variables indicated that it was not too unreasonable to assume that both variables were 

stationary. The new regression model took the from  ∆log (𝑆𝑡) = 𝛽0 + 𝛽1∆log (𝑃𝐷𝑡) + 𝜖𝑡.  
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The new model yielded an adjusted R-square of -0.0003 and beta coefficient for the default probability was 

insignificant. The result indicates that the ∆log(𝑃𝐷𝑡) has zero explanatory power on the ∆log (𝑆𝑡).  

Lagging ∆log (𝑃𝐷𝑡) by one period and running the regression model of the form ∆log (𝑆𝑡) = 𝛽0 +

𝛽1∆log (𝑃𝐷𝑡−1) + 𝜖𝑡, however, yields an adjusted R-square of 50.56% and the coefficient to  ∆log(𝑃𝐷𝑡) is 

positive and significant.  

The result indicates that the changes in first difference of CDS-spread do not react immediately to changes in 

the first difference of the default probability. The answer to the first question the thesis addresses at this point 

is that the changes in the first difference of log (𝑃𝐷) is a significant predictor of the changes in the first 

difference of log (𝑆), when log (𝑃𝐷) is lagged by one period. The model explains 50.56% of the variability in 

log(𝑆). But when not lagged then the changes in first difference of log (𝑃𝐷) explains essentially zero % of the 

variability in log (𝑆). 

The second question the thesis addresses is “Does the potential relationship between the Merton DD model 

and the CDS spread depend on the state of the economy?” It was investigated by including a financial crisis 

dummy and an interaction-term. The regression model results show that the relationship between 

∆log (𝑃𝐷𝑡−1) and ∆log (𝑆𝑡) did not change as a function of the state of the economy at a 10% significance level, 

however if we accept a significance level of 15% then ∆log (𝑆𝑡) does become less sensitive to the changes in 

∆log (𝑃𝐷𝑡−1) when in crisis relative normal times. The regression model of the form ∆log(𝑆)𝑡 = 𝛽0 +

𝛽1∆ log(𝑃𝐷)𝑡−1 + 𝛽2𝐷 + 𝛽3∆ log(𝑃𝐷𝑡−1 ∗ 𝐷) + 𝜖𝑡 yields an adjusted R-square of 50.92%. 

 

Question one and two addressed by the thesis were also answered using the risk measure distance to default 

from the Merton DD model. For ∆𝐷𝑡𝐷𝑡 to be a significant predictor of the ∆𝑆𝑡, it had to be lagged by one 

period just as PD. The regression model of the form:  ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝐷𝑡𝐷𝑡−1 + 𝛽2∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽3𝐷 + 𝜖𝑖 

yields an adjusted R-square of 58.83%. Both 𝛽1 and 𝛽2 are significant at a 1% significance level, 𝛽1 is negative 

and 𝛽2 is positive. The model result shows that  ∆𝐷𝑡𝐷𝑡−1 is a significant predictor of ∆𝑆𝑡 and that the 

relationship between the two changes as a function of the economy. 𝛽2 being positive indicates that the 

changes in CDS spread becomes less sensitive to the changes in DtD lagged one period when in crisis relative to 

normal times. 

The third question addressed in the thesis is “Is it possible to improve the regression model by including non-

firm-specific variables such as the return on the S&P 500 index and the volatility measure from the VIX index?” 

and the forth question is: “Does the potential relationship between the non-firm-specific variables and the CDS 

spread change depending on the state of the economy?”  
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A plot analysis of the potential relationship between ∆𝑆 and ∆𝑆𝑃500 indicates that changes in the first 

difference of CDS spread take some time to react to the changes in S&P500 index, just as it did for the default 

probability and the distance to default. Therefore, to answer the third question, we set up a univariate 

regression model of the form ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑆𝑃500𝑡−1 + 𝜖𝑡. The model yields an adjusted R-square of 

61.95%, and 𝛽1 is negative and significant at a 1% level. Adding the interaction-term and the financial crisis 

dummy to the regression form the model:  ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑆𝑃500𝑡−1 + 𝛽2∆(𝑆𝑃500𝑡−1 ∗ 𝐷) + 𝛽3𝐷 + 𝜖𝑡. The 

model has an adjusted R-square of 63.71, hence only a slight increase compared to the simple model. Both 𝛽2 

and 𝛽3 are insignificant at 5% level, at a 10% 𝛽3 becomes significant whereas 𝛽2 is still insignificant. The results 

show that the relationship between the CDS spread and the S&P500 does not change as function of the state 

of the economy. 

We do the same analysis for the VIX index and we conclude that we must lag VIX by one period to have a 

significant relationship between VIX index and CDS spread. We run the model ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑉𝐼𝑋𝑡−1 +

𝛽2∆(𝑉𝐼𝑋𝑡−1 ∗ 𝐷) + 𝛽3𝐷, and only 𝛽1 is significant and we conclude that the relationship between the first 

difference of the VIX index and the first difference CDS spread does not change as a function of the state of the 

economy. The model explains 33% of the variability in ∆  , hence significantly lower than what the ∆𝑆𝑃500𝑡−1 

and the ∆𝐷𝑡𝐷𝑡−1 explains individually. 

When we run ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑉𝐼𝑋𝑡−1 + 𝛽2∆𝐷𝑡𝐷𝑡−1 + 𝛽3∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽4𝐷 + 𝜖𝑡, then 𝛽1 becomes 

insignificant, whereas 𝛽2 and 𝛽3 are still significant at a 1% level, and the model has an adjusted R-square of 

58.53%, hence the model does not improve by including VIX.  

 

When we set up the regression model  ∆𝑆𝑡 = 𝛽0 + 𝛽1∆𝑆𝑃500𝑡−1 + 𝛽2∆(𝑆𝑃500𝑡−1 ∗ 𝐷) + 𝛽3∆𝐷𝑡𝐷𝑡−1 +

𝛽4∆(𝐷𝑡𝐷𝑡−1 ∗ 𝐷) + 𝛽5𝐷 + 𝜖𝑡 then we see an increase in the adjusted R-square, the model now explains 

69.46% of the variability in ∆𝑆𝑡, the model results show that only 𝛽1, 𝛽3 and 𝛽4 are significant in the final 

model. The overall conclusion is that the relationship between ∆𝑆𝑡 and ∆𝐷𝑡𝐷𝑡−1 is significant and does depend 

on the state of the economy. Adding ∆𝑆𝑃500𝑡−1 to the regression does improve the model, but the 

relationship between the changes in the first difference of CDS spread and the changes in first difference of 

S&P500 index lagged one period does not changes from normal times to crisis.  



Page 81 of 91 
 

14. Appendix 
Table 1, data for the period December 2007 to November 2013, on monthly basis, start of the month values. 
Equity and debt are million USD, the CDS spread is in basis points. 

  

Month/obs Equity Debt Rf rate% Recovery Rating CDS spread

1 30999.809 4812.5 4.29 0.4 AA 47.22

2 27378.732 5277.0 3.33 0.4 AA 48.38

3 30245.739 5277.0 2.69 0.4 AA 120.16

4 29366.218 5277.0 2.41 0.4 AA 143.49

5 28348.587 5246.0 2.71 0.4 AA 113.39

6 33084.219 5246.0 2.88 0.4 AA 76.74

7 29033.256 5246.0 3.22 0.4 AA 92.72

8 27452.081 5944.0 3.09 0.4 AA 102.22

9 26134.381 5944.0 3.03 0.4 AA 112.17

10 18366.459 5944.0 3.03 0.4 AA 134.46

11 9203.646 6323.5 2.86 0.4 AA 157.23

12 8611.411 6323.5 2.11 0.4 AA 439.29

13 9011.569 6323.5 1.62 0.4 AA 631.25

14 6234.469 5651.5 1.15 0.4 AA 658.33

15 4995.058 5651.5 1.33 0.4 AA 821.09

16 6975.327 5651.5 1.36 0.4 AA 882.86

17 8836.683 5571.5 1.19 0.4 AA 768.96

18 8982.825 5571.5 0.94 0.4 AA 582.12

19 10064.271 5571.5 0.95 0.4 A 445.55

20 11458.615 5539.5 0.78 0.4 AA 423.54

21 11741.183 5539.5 0.77 0.4 A 273.66

22 12783.761 5539.5 0.61 0.4 A 302.29

23 12101.775 5332.0 0.62 0.4 AA 240.11

24 12199.213 5332.0 0.50 0.4 BB 219.32

25 15706.973 5332.0 0.57 0.4 A 227.40

26 12403.845 5294.5 0.53 0.4 BB 197.73

27 13569.684 5294.5 0.51 0.4 A 247.51

28 14528.744 5294.5 0.53 0.4 A 269.33

29 13712.299 5659.5 0.59 0.4 A 192.76

30 11884.673 5659.5 0.78 0.4 AA 213.92
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Month/obs Equity Debt Rf rate% Recovery Rating CDS spread

31 10271.461 5659.5 0.78 0.4 A 346.55

32 11406.960 4814.0 0.60 0.4 A 402.30

33 10434.254 4814.0 0.46 0.4 A 312.52

34 12366.902 4814.0 0.44 0.4 AA 383.28

35 13421.748 4744.0 0.38 0.4 A 313.04

36 13406.426 4744.0 0.44 0.4 A 270.66

37 15719.992 4744.0 0.50 0.4 AA 258.68

38 16934.971 5043.5 0.46 0.4 A 196.85

39 17906.310 5043.5 0.47 0.4 AA 176.87

40 18767.088 5043.5 0.44 0.4 AA 157.30

41 18083.155 4961.5 0.41 0.4 A 158.06

42 17845.143 4961.5 0.37 0.4 AA 149.58

43 16836.643 4961.5 0.39 0.4 AA 154.21

44 15675.416 4982.0 0.43 0.4 AA 184.81

45 13621.542 4982.0 0.44 0.4 AA 190.47

46 10184.231 4982.0 0.49 0.4 A 286.57

47 11451.911 5051.0 0.57 0.4 BB 452.97

48 10664.326 5051.0 0.66 0.4 AA 348.94

49 9206.230 5051.0 0.67 0.4 AA 359.68

50 10814.426 5434.0 0.58 0.4 A 376.97

51 10842.318 5434.0 0.50 0.4 AA 274.61

52 10682.282 5434.0 0.50 0.4 A 281.32

53 10379.020 5268.5 0.52 0.4 AA 282.78

54 9120.311 5268.5 0.55 0.4 AA 269.11

55 9333.651 5268.5 0.52 0.4 AA 358.02

56 9036.575 5349.0 0.45 0.4 A 363.42

57 9132.596 5349.0 0.42 0.4 BB 334.67

58 9447.329 5349.0 0.36 0.4 A 353.84

59 9145.921 4673.5 0.33 0.4 A 312.66

60 8975.169 4673.5 0.33 0.4 A 314.28
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Month/obs Equity Debt Rf rate% Recovery Rating CDS spread

61 9263.313 4673.5 0.33 0.4 AA 305.49

62 9434.154 5052.5 0.33 0.4 A 314.69

63 9110.658 5052.5 0.33 0.4 BB 283.28

64 9110.658 5052.5 0.33 0.4 A 269.13

65 9089.875 4509.0 0.32 0.4 A 299.70

66 9089.875 4509.0 0.31 0.4 AA 267.84

67 8362.685 4509.0 0.35 0.4 AA 269.15

68 8502.930 4529.0 0.35 0.4 AA 315.47

69 8235.543 4529.0 0.34 0.4 AA 293.66

70 8684.754 4529.0 0.33 0.4 BB 305.54

71 9915.211 4515.5 0.31 0.4 A 301.06

72 10278.875 4515.5 0.28 0.4 A 238.01

73 11369.869 4515.5 0.29 0.4 A 211.97
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Table 2, distance to default (DtD), probability of default (PD), asset values in million USD. 

   

Month/obs DtD PD Asset

1 5.7 0.0000% 35610.219

2 5.1 0.0000% 32482.902

3 5.3 0.0000% 35382.68

4 5.3 0.0000% 34517.563

5 5.2 0.0000% 33454.329

6 5.6 0.0000% 38181.289

7 5.3 0.0000% 34113.026

8 4.8 0.0001% 33215.22

9 4.7 0.0001% 31900.979

10 3.9 0.0046% 24133.037

11 2.4 0.7404% 15344.127

12 2.3 1.0395% 14795.975

13 2.4 0.8658% 15227.773

14 2.0 2.4975% 11804.881

15 1.6 5.0421% 10535.499

16 2.1 1.6221% 12540.324

17 2.6 0.5272% 14339.349

18 2.6 0.4911% 14499.482

19 2.8 0.2653% 15581.697

20 3.0 0.1181% 16954.491

21 3.1 0.1009% 17237.699

22 3.3 0.0573% 18289.302

23 3.2 0.0643% 17400.524

24 3.2 0.0614% 17504.339

25 3.8 0.0087% 21008.632

26 3.3 0.0518% 17670.126

27 3.5 0.0268% 18837.135

28 3.6 0.0156% 19795.192

29 3.3 0.0405% 19338.315

30 3.1 0.1072% 17499.663
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Month/obs DtD DD Asset

31 2.8 0.2608% 15885.595

32 3.3 0.0475% 16191.97

33 3.1 0.0889% 15225.785

34 3.5 0.0264% 17159.663

35 3.7 0.0123% 18147.709

36 3.7 0.0124% 18129.553

37 4.0 0.0031% 20440.321

38 4.0 0.0027% 21955.314

39 4.2 0.0016% 22926.155

40 4.3 0.0010% 23788.442

41 4.2 0.0012% 23024.35

42 4.2 0.0014% 22788.314

43 4.1 0.0025% 21778.822

44 3.9 0.0049% 20636.021

45 3.6 0.0162% 18581.606

46 3.0 0.1297% 15141.298

47 3.2 0.0650% 16473.92

48 3.1 0.1043% 15681.633

49 2.8 0.2562% 14222.28

50 3.0 0.1526% 16216.246

51 3.0 0.1509% 16248.47

52 2.9 0.1654% 16088.357

53 2.9 0.1630% 15619.41

54 2.7 0.3440% 14358.16

55 2.7 0.3033% 14573.295

56 2.7 0.3946% 14359.492

57 2.7 0.3734% 14457.229

58 2.7 0.3113% 14775.506

59 2.9 0.1718% 13803.286

60 2.9 0.1924% 13632.438
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Month/obs DtD PD Asset

61 3.0 0.159% 13920.737

62 2.8 0.227% 14468.931

63 2.8 0.278% 14145.175

64 2.8 0.278% 14145.175

65 3.0 0.143% 13583.883

66 3.0 0.143% 13584.332

67 2.8 0.236% 12854.929

68 2.8 0.220% 13015.175

69 2.8 0.265% 12748.033

70 2.9 0.194% 13198.017

71 3.1 0.082% 14416.409

72 3.2 0.065% 14781.499

73 3.4 0.031% 15872.177
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Table 3, the S&P500 index level and the VIX index level, start of the month value. 

 

  

Month/obs S&P 500 Vix

1 1468.36 22.50

2 1378.55 26.20

3 1330.63 26.54

4 1322.70 25.61

5 1385.59 20.79

6 1400.38 17.83

7 1280.00 23.95

8 1267.38 22.94

9 1282.83 20.65

10 1166.36 39.39

11 968.75 59.89

12 896.24 55.28

13 903.25 40.00

14 825.88 44.84

15 735.09 46.35

16 797.87 44.14

17 872.81 36.50

18 919.14 28.92

19 919.32 26.35

20 987.48 25.92

21 1020.62 26.01

22 1057.08 25.61

23 1036.19 30.69

24 1095.63 24.51

25 1115.10 21.68

26 1073.87 24.62

27 1104.49 19.50

28 1169.43 17.59

29 1186.69 22.05

30 1089.41 32.07
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Month/obs S&P 500 Vix

31 1030.71 34.54

32 1101.60 23.50

33 1049.33 26.05

34 1141.20 23.70

35 1183.26 21.20

36 1180.55 23.54

37 1257.64 17.75

38 1286.12 19.53

39 1327.22 18.35

40 1325.83 17.74

41 1363.61 14.75

42 1345.20 15.45

43 1320.64 16.52

44 1292.28 25.25

45 1218.89 31.62

46 1131.42 42.96

47 1253.30 29.96

48 1246.96 27.80

49 1257.60 23.40

50 1312.41 19.44

51 1365.68 18.43

52 1408.47 15.50

53 1397.91 17.15

54 1310.33 24.06

55 1362.16 17.08

56 1379.32 18.93

57 1406.58 17.47

58 1440.67 15.73

59 1412.16 18.60

60 1416.18 15.87
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Month/obs S&P 500 Vix

61 1426.19 18.02

62 1498.11 14.28

63 1514.68 15.51

64 1569.19 12.70

65 1597.57 13.52

66 1630.74 16.30

67 1606.28 16.86

68 1685.73 13.45

69 1632.97 17.01

70 1681.55 16.60

71 1756.54 13.75

72 1805.81 13.70

73 1848.36 13.72
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