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Abstract

Credit ratings are expensive to obtain and there is a risk of bias in the credit rating

process. It is therefore interesting to analyze the credit rating process to see if it

can be automated. In this thesis it has been investigated how the credit ratings of

firms in the manufacturing industry as well as in the retail industry can be modelled

using neural networks and logistic regression. Data sets of US credit ratings from

Standard and Poor’s for the period 1 January 2013 - 31 December 2017 were used

together with publicly available accounting data. For both industries the neural

network outperformed the logistic regression, in both terms of accuracy and Cohen’s

kappa. In most previous research using neural networks to predict credit ratings,

focus have solely been on the predictive performance. In this thesis the neural

networks was further analyzed using the connection weight approach. The analysis

showed that total assets is a especially important explanatory variable for Standard

& Poors’s credit ratings on manufacturing firms. For the retail firms the cash flow

from operations to current liabilities was found to be important. Furthermore,

earnings per share was found to be among the most important variables for both

industries.
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Chapter 1
Introduction

This chapter introduces credit ratings and their purpose. Also, the topic of modelling

credit ratings and the research question is presented. Finally, the structure and

content of the remaining chapters are given.

1.1 Background

Credit ratings are opinions about credit risk given by credit rating agencies. These

ratings are given to issuers such as corporations or governments as well as to individ-

ual issues such as corporate bonds. The scale used to express the agencies opinion

on credit risk differ between the agencies, but often ratings are expressed on a scale

of letter combinations (Standard & Poor’s, 2015).

What is the purpose of credit rating agencies, that specialize in giving opinions

about creditworthiness? Arguments related to information asymmetries in the credit

market can be made. A borrower knows its creditworthiness better than the lender.

The lender can get information by conducting its own research or use information

from credit rating agencies. Ackerloff (1970) describes with an example of the used

car market how market failure can occur when there is asymmetric information. If

buyers can not distinguish between good cars and bad cars they are only willing to

pay the average value. However, the sellers know the value and will only sell the

bad ones with a higher price than the value. This in turn results in the buyers being

willing to pay even less and the quality of cars decreasing further.

This can be translated to the credit markets, were lenders are unable to dis-

tinguish between high-risk and low-risk borrowers and therefore charge the same

interest rate. The low-risk borrowers would suffer from having to pay the same

interest rate as the high risk ones and lenders would allocate less than optimal

resources to low-risk borrowers. Reality is somewhere between no information and
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perfect information. Here the credit ratings in addition to its own analysis allows the

lender to distinguish between borrowers, but not perfectly (Adelson, 2012). Credit

ratings are of value to the issuers of debt themselves by giving access to capital

markets. Credit ratings help the issuer in communicating its credit risk and to get

access to more investors. Furthermore, ratings help in anticipating interest rates on

an issue (Standard & Poor’s, 2015).

Another function of credit ratings is that they make it harder for one investor

to make better judgment about creditworthiness than others. With credit ratings

available for all market participants the market efficiency can be improved (Adelson,

2012).

However, the credit rating process tend to be costly as allot of human resources

are spent on analyzing the issuer. The rating process is preformed by experts at the

agencies and often involves quantitative as well as qualitative analysis. Moreover, it

is a highly concentrated industry. There is three major players in the credit rating

industry: Standard & Poor’s, Moody’s and Fitch. As of 31 of December 2016 they

represented 48.9, 34.2 and 13.3 percent of the outstanding ratings respectively (U.S.

Securities and Exchange Commission, 2017). The fact that the industry is highly

concentrated and that the major rating agencies primarily generate revenue from

the issuers have raised concerns and criticism of the industry. Furthermore, the

financial crisis of 2007-2008 brought allot of attention to the credit rating agencies

and their operations. Many suggest that too high credit ratings given to the new

type of financial products was an important factor leading to the crisis (Hunt, 2009).

Many pension funds and money market funds were limited to invest in products with

the highest ratings (McLean & Nocera, 2011).

If the ratings process can be automated it would allow for cost saving and more

transparency in the rating process. This has led to several studies on modelling of

credit ratings using statistical and machine learning models. Previous studies have

used models such as linear regression, logistic regression and neural networks. In

the next chapter some of these previous studies are presented. The use of these type

of modelling techniques should also be of interest to rating agencies. Even if they

do not replace the judgment of the human rater they can offer a valuable additional

tool in the rating process.

1.2 Problem Statement

This thesis further investigates neural networks and logistic regression for predic-

tions of credit ratings. However, in this thesis the focus will be on differences when
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modelling credit ratings for different industries. There is good reason to further

investigate this as credit rating agencies such as Standard & Poor’s does in fact take

into account industry specific characteristics (Standard & Poor’s, 2018). Neural net-

works have shown great promise for modelling of credit ratings in previous research,

but the models are often treated as ”black boxes”. In this study the neural networks

will be analyzed further, which hopefully also leads to a better understanding of the

credit rating process.

Two aspects are considered: 1) the preferred modelling technique and 2) the

input variables. It is of interest to see if these aspects differ between industries and

how. A deeper look at the neural networks will be taken, not only evaluating the

predictive performance, but also analyzing the input variables. The thesis aims at

answering the following questions:

• Is there a difference in importance of input variables between manufacturing

and retail companies?

• Does the selected statistical technique differ between manufacturing and retail

firms?

Here some limitations have been made. first, only two, but broad industries are

considered. These are the manufacturing and retail industry. Second, the credit

ratings modelled are those of Standard & Poor’s. Other choices of credit ratings

could have been made, but as noted above Standard & Poor’s represents a large

fraction of the outstanding credit ratings. Third, two modelling techniques are

considered, neural network and logistic regression.

To determine the preferred statistical technique two evaluation metrics are used,

the accuracy and Cohens kappa. The accuracy is commonly used in previous re-

search on the topic. Cohens kappa is a measure that takes in to account some weak-

ness of using the accuracy. To analyze the input variables to the neural networks,

the connection weight approach is used. All these measure are further discussed in

chapter 5.

1.3 Structure of the Thesis

The remainder of the thesis is structured in the following way. Chapter 2 discusses

previous models used for credit rating predictions, variables used and other main

findings. Chapter 3 gives some background information on credit ratings and rating

methodology. Chapter 4 gives the theory for the two techniques considered in this
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study, logistic regression and neural networks. How to handle the problems overfit-

ting and underfitting are also discussed. Thereafter chapter 5 presents the metrics

used to evaluate and analyze the fitted models. Chapter 6 introduces the data used

for the thesis. The data source as well as the choice of input variables and the data

cleaning process are discussed. In chapter 7 the methodology is described. Chapter

8 presents and discusses the results for the fitted models and Chapter 9 concludes.
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Chapter 2
Literature Review

In this chapter some of the previous research done on credit rating predictions are

presented. In previous research many different types of modelling techniques and

input variables have been considered. Early studies such as Horrigan (1966) and

West (1970) used ordinary least squares (OLS) to predict corporate bond ratings.

Instead of Linear regression Pinches and Mingo (1973) used multiple discriminant

analysis and Ederington (1985) used logistic regression. Many of the more recent

studies have focused on techniques that often are called machine learning techniques.

For example Dutta and Shekhar (1988) used neural networks and Huang, Chen, Hsu,

Chen, and Wu (2004) support vector machines.

Horrigan (1966) examined the value of using accounting data in the form of

financial ratios for predictions of corporate bond ratings. Horrigan predicted Six

rating classes from Standard & Poor’s as well as Moody’s. Since the ratings are

given as letter combinations, they were translated into numeric form to allow for the

use of OLS. The analysis was done by first selecting the variables highly correlated

with the bond ratings and eliminating highly intercorrelated variables. Based on

data of stable ratings between 1959-1964 multiple regressions were fitted. Finally

the models were tested on two sets of data: 1) Firms that received ratings during

1961-1964 and 2) firms whose previous ratings were changed during 1961-1964. To

put each observation in a discrete category the mean of the predicted values for

each rating in the original data set was used. That is a prediction on a observation

in the test was assigned the category with the closest mean. On the first data set

Horrigan achieved an accuracy of 52% and 58% for Standard & Poor’s and Moody’s

respectively. For the second data set the accuracy was 57% for Standard & Poor’s

and 54% for Moodys.

Fisher (1959) used linear regression to explain risk premiums of corporate bonds.

Where the difference between the yield to maturity of the bond and the risk free rate
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was used as the risk premium. He showed that the risk premiums can be successfully

determined by measures of marketability of the bonds, earnings variability, reliability

of the firm in meeting its obligations and capital structure

Inspired by Fisher (1959), West (1970) argued that a better model than the one

of Horrigan (1966) can be achieved by not only relying on one year of financial data

in ratio form. Using a similar model and variables to Fisher West predicted Moody’s

bond ratings using six classes, and achived an accuracy of 62%.

instead of using linear regression as in previous studies, Pinches and Mingo (1973)

tested the usefulness of multiple discriminant analysis for predicting corporate bond

ratings. Pinches and Mingos data set consisted of Moody’s bond ratings between

1967 and 1968, using only ratings of B or above and excluding the Aaa class due

to few observations. That is in total they predicted five different classes of ratings.

When testing the model on a holdout sample they achieved an accuracy of 65%.

Dutta and Shekhar (1988) began to examine if neural networks are suitable for

predictions of corporate bond ratings. They used data of bonds and ten financial

variables taken from the April 86 issues of the Valueline Index and the SS-P Bond

Guide. Using two classes (AA or non-AA) they achieved and accuracy of 83% on

their holdout sample.

Surkan and Singleton (1990) used neural networks and a data set of 18 telephone

operating companies divested by AT and T in 1982. In their analysis they tried to

predict whether a bond is rated Aaaa (Moody’s highest rating) or one of A1, A2, A3

(the three lowest investment grade ratings of Moody’s).They compared the accuracy

of networks with one and two hidden layers. They concluded that a network with two

hidden layers outperforms a single layer network, independent of the combination of

the number of elements in the layers. furthermore, to evaluate the neural networks as

a classification technique they used multiple discriminant analysis as a benchmark.

Depending on number of of layers and elements neural networks achieved an accuracy

between 65 and 88 percent on their holdout sample. While the accuracy for their

multiple discriminant analysis was only 39%.

Huang et al. (2004) compared support vector machines with neural networks as

well as logistic regression for bond rating predictions. Moreover, they analyzed the

neural network and compared the Taiwan and US market using Garson’s meassure

of variable importance (Garson, 1991). They used two similar data sets, one data

set of the Taiwan market and one for the US market. The Taiwan data set consisted

of ratings from Taiwan Ratings Corporation (a partner with Standard & Poor’s)

and 16 financial variables. The data set for the US consisted of Standard & Poor’s

ratings and the same financial variables, except two that were not available for the
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US data set. Both of these data sets consisted of a total of five rating categories, that

were used as output variables. When testing the different techniques they considered

both the full set of variables as well as a subset of only seven previously commonly

used variables. Using 10-fold cross validation as well as leave one out cross validation

they found that support vector machines and neural networks consistently achieved

a higher accuracy than logistic regression. However, support vector machines and

neural networks achieved similar results. They also found that a model with a small

set of variables achieves comparable and sometimes better result than the larger

model. For the US data set the best model used neural networks and achieved an

accuracy of 80.75%. A model using support vector machines and with an accuracy

of 79.73% was the best for the Taiwan data.

Kumar and Bhattacharya (2006) compared a three layer neural network with

linear discriminant analysis for prediction of corporate bond credit ratings. As

dependent variables they used Moody’s ratings for 129 companies during the period

January 2003 to June 2004. The ratings were divided into six categories and 25

variables were used as inputs. That is their network had 25 elements in the input

layer and 6 elements in the output layer. When testing their neural network on

a holdout sample it achieved and accuracy of 79% while the multiple discriminant

analysis only achieved an accuracy of 33%.
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Chapter 3
Credit Ratings

Before taking on the task of modelling credit ratings it is important to understand

the agencies issuing them, the purpose of them and the framework used when giving

a rating. Therefore this chapter will first give an introduction to the credit rating

agencies and the types of ratings. Thereafter the purpose of credit ratings will be

discussed and finally the framework of Standard & Poor’s credit rating process will

be presented.

3.1 Introduction

There are several definitions of credit ratings available, for example the US Securi-

ties and Exchange Commission use the following definition:

”A credit rating reflects a rating agency’s opinion, as of a specific date, of the cred-

itworthiness of a particular company, security, or obligation” (Langohr & Langohr,

2010).

The credit rating agencies also have their own definitions of credit ratings. Standard

& Poor’s (2015) define credit ratings as

”Credit ratings are opinions about credit risk. Our ratings express the agency’s

opinion about the ability and willingness of an issuer, such as a corporation or state

or city government, to meet its financial obligations in full and on time.”

A credit rating with respect to a specific financial obligation is called issue credit

rating while a rating with respect to the obligor’s overall is called issuer credit

rating. Furthermore, ratings can be either short-term or long-term (Standard &
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Poor’s, 2014). In this study the long-term issuer credit ratings of Standard & Poor’s

are used. The opinion of the credit rating agency is often summarized by assigning

a rating represented by symbols. The symbols and rating system differ between

credit rating agencies. The symbols and definitions used by Standard & Poor’s for

long-term issuer ratings can be seen in Table 3.1 below:

Table 3.1: Standard & Poor’s rating scale

Category Definition

AAA
”An obligor rated ’AAA’ has extremely strong capacity to meet its financial commitments.

’AAA’ is the highest issuer credit rating assigned by S&P Global Ratings.”

AA
”An obligor rated ’AA’ has very strong capacity to meet its financial commitments. It differs

from the highest-rated obligors only to a small degree.”

A

”An obligor rated ’A’ has strong capacity to meet its financial commitments but is somewhat

more susceptible to the adverse effects of changes in circumstances and economic conditions

than obligors in higher-rated categories.”

BBB

”An obligor rated ’BBB’ has adequate capacity to meet its financial commitments. However,

adverse economic conditions or changing circumstances are more likely to weaken the obligor’s

capacity to meet its financial commitments. ”

BB

”An obligor rated ’BB’ is less vulnerable in the near term than other lower-rated obligors.

However, it faces major ongoing uncertainties and exposure to adverse business, financial, or

economic conditions that could lead to the obligor’s inadequate capacity to meet its financial

commitments.”

B

”An obligor rated ’B’ is more vulnerable than the obligors rated ’BB’, but the obligor cur-

rently has the capacity to meet its financial commitments. Adverse business, financial, or

economic conditions will likely impair the obligor’s capacity or willingness to meet its financial

commitments.”

CCC
”An obligor rated ’CCC’ is currently vulnerable and is dependent upon favorable business,

financial, and economic conditions to meet its financial commitments.”

CC

”An obligor rated ’CC’ is currently highly vulnerable. The ’CC’ rating is used when a default

has not yet occurred but S&P Global Ratings expects default to be a virtual certainty,

regardless of the anticipated time to default.”

R

”An obligor rated ’R’ is under regulatory supervision owing to its financial condition. During

the pendency of the regulatory supervision, the regulators may have the power to favor one

class of obligations over others or pay some obligations and not others.”

SD and D

”An obligor rated ’SD’ (selective default) or ’D’ is in default on one or more of its financial

obligations including rated and unrated obligations but excluding hybrid instruments clas-

sified as regulatory capital or in nonpayment according to terms. An obligor is considered

in default unless S&P Global Ratings believes that such payments will be made within five

business days of the due date in the absence of a stated grace period or within the earlier

of the stated grace period or 30 calendar days. A ’D’ rating is assigned when S&P Global

Ratings believes that the default will be a general default and that the obligor will fail to pay

all or substantially all of its obligations as they come due. An ’SD’ rating is assigned when

S&P Global Ratings believes that the obligor has selectively defaulted on a specific issue or

class of obligations but it will continue to meet its payment obligations on other issues or

classes of obligations in a timely manner. An obligor’s rating is lowered to ’D’ or ’SD’ if it is

conducting a distressed exchange offer.”

Source: Standard & Poor’s (2014).
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3.2 Credit Rating Methodology

In this section focus is on the credit rating methodology of Standard & Poor’s as

these ratings are used in this study. The rating process involves a combination of

qualitative and quantitative analysis. Information about the credit rating methodol-

ogy is released in Standard & Poor’s criteria documents. However, these documents

only give a description of the framework used not the detailed information about

the credit rating assessment. Therefore this thesis can also give more insight into

the credit rating process.

When rating non-financial corporates Standard & Poor’s credit rating process

is divided into several different categories, this is described in Standard & Poor’s

(2018). First, The Business risk profile is assessed by looking at country risk, in-

dustry risk and competitive position. The Business risk profile is then combined

with an assessment of the financial risk profile to form an anchor rating. This so

called anchor can then be modified by considering several modifiers. Finally, group

or government influence is accounted for in some cases to get the issuer credit rating.

The credit rating process of Standard & Poor’s is illustrated in Figure 3.1.

Business risk profile

Competitive position Industry risk

Financial risk profile

Anchor

Modifiers

Stand alone credit 
profile

Group or government 
influence

Issuer credit rating

Country risk

Figure 3.1: The credit rating process of Standard and Poor’s.

Standard & Poor’s assign a country risk that reflects factors such as economic
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risk, institutional and governance effectiveness risk, financial system risk, and rule

of law/payment culture risk. If the company is exposed to more than one country

the risk assessment will be a weighted average of the country risks. To asses the

industry risk Standard & Poor’s consider, cyclicality as well as competitive risk and

growth. Together these factors give the risk of the industry. By combining the

country risk and the industry risk Standard & Poor’s assign the issuer’s Corporate

Industry and Country Risk Assessment.

The competitive position of the issuer is combined with the above mentioned

corporate industry and country risk assessment to get the business risk profile. When

determining the competitive position, four components are considered: competitive

advantage, scale/scope/diversity, operating efficiency and profitability. The three

first components determine the competitive position, that is then either confirmed

or adjusted for profitability.

The business risk profile is combined with the financial risk profile to get the an-

chor rating. When assessing the financial risk profile it is taken into account how the

company is funded and how the balance sheet is constructed. For investment-grade

anchor ratings a higher weight is put on business risk profile and for speculative-

grade a higher weight is put on financial risk profile.

After assigning an anchor, modifiers are taken into account to possibly modify the

rating and get the so called stand-alone credit rating. These earlier not considered

factors in the categories: diversification, capital structure, financial policy, liquidity,

governance, and an overall assessment of these factors. Companies can get a upwards

adjustment due to having diversified their business. In the capital structure category

factors such as mismatch of its cash flows and sources of financing due to currency

and maturity of debt is considered. These factors can result in an upwards as well

as downwards adjustment. Upwards or downwards adjustments due to earlier not

considered financial policy factors is the impact of the managements preferences for

risk. The analysis of liquidity includes for example a quantitative analysis of the

the sources and use of cash as well as a qualitative analysis of bank relationships

and ability to handle rare events with high impact. Governance modification factors

focus on qualitative assessment of the managements, board and owners competence

with respect to aspects such as strategic competence and operational effectiveness.

Finally, after considering the above mentioned modifiers an overall assessment of

the modifications is done to possibly adjust the rating up or down.

A company can be part of a group, for example as a subsidiary, and therefore

receive support from the group. For companies being part of a group Standard &

Poor’s evaluate the credit profile of the group and the likelihood of the company

15



getting help from the group. The likelihood of getting help is evaluated by consider-

ing the importance of the company within the group. The stand-alone credit rating

can be kept unadjusted or adjusted anywhere up to the group credit profile.

In addition to the above described framework, a stand alone credit profile below

B is given if the issuers capital structure is sensitive and the issuer relies on beneficial

business, economic, and financial conditions to fulfill its financial obligations.
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Chapter 4
Modelling Techniques

In this chapter the two techniques considered for modelling the credit ratings, logistic

regression and neural networks are presented. For these models the general setup,

how the models are fitted to the data and how they can be used for prediction is

described. The chapter also describes how to avoid problems with overfitting and

underfitting .

4.1 Logistic Regression

One of the models considered in this thesis is logistic regression. Here the basic

logistic model is introduced first, that is a model with a binomial response vari-

able. However, in this study more than two different categories of credit ratings

are predicted, therefore the chapter proceeds with explaining how this basic model

can be modified to allow for more than two categories for the response. A similar

presentation of logistic regression can be seen in Hosmer and Lemeshow (2000).

4.1.1 Logistic Regression with Binary Response

Logistic regression can be used when there is a data set with a binary response

variable Y taking on values 0 or 1. Logistic regression models the probability that

Y belongs to a given category. That is we model Pr(Y = 1|X), were X is the

explanatory variable. In short this is written as p(X). To make sure that the

probability falls between 0 and 1 we use the logistic function:

p(X) =
eβ0+β1X

1 + eβ0+β1X
(4.1)
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In logistic regression the interpretation of the β1 coefficient is not the same as with

linear regression. With linear regression β1 is the average change when X increases

by one unit. For logistic regression a positive β1 means that an increase of X

increases the probability p(X).However, as we do not have a linear relationship

between p(X) and X the size of the effect depends on the value of X. (4.1) can be

rewritten as:
p(X)

1− p(X)
= eβ0+β1X (4.2)

This is the odds, a high value meaning a high probability of Y = 1. As an example

with odds of 1/4 we will have on average that 1 of 5 Y = 1. Increasing X by one

unit will multiply the odds by eβ1 . By taking the logarithm of 4.2 we get the log

odds or logit:

log

(
p(X)

1− p(X)

)
= β0 + β1X (4.3)

The logit is linear in X and a one unit increase of X does on average increase the

logit by β1.

The unknown parameters β = (β0, β1) are estimated using maximum likelihood.

Using maximum likelihood the parameters are estimated such that the probability of

obtaining the training data is maximized. This is done by writing the probability of

obtaining the data as a function of the the parameters to be estimated and choose

these such that the function is maximized. This function is called the likelihood

function and can be found by using (4.1). As we have that Pr(Y = 1|X) = p(X)

and Pr(Y = 0|X) = 1 − p(X), the contribution to the liklihood function of a pair

(xi, yi) is p(xi)
yi [1− p(xi)]1−yi . As the observations are assumed to be independent

the likelihood function can be written as:

l(β) =
n∏
i=1

p(xi)
yi [1− p(xi)]1−yi (4.4)

By taking the logarithm of (4.4) we get the log-likelihood function, which is easier

to work with. This is possible as the logarithm is a strictly increasing function.

Therefore the likelihood function and the log-likelihood function will have the same

maximum. The log-likelihood is:

L(β) =
n∑
i=1

{yiln[p(xi)] + (1− yi)ln[1− p(xi)]} (4.5)

To find the parameters β0 and β1 (4.5) is maximized by differentiating it with respect

to β0 and β1 and setting these equal to zero. This results in the following equations,
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called the likelihood equations:

n∑
i=n

[yi − p(xi)] = 0 (4.6)

n∑
i=1

[yi − p(xi)] = 0 (4.7)

The estimated parameters β̂ = (β̂0, β̂1) is the solution to these equations.

With the estimated parameters of the model the probability of an example be-

longing to the category where Y = 1 is predicted to be:

p̂(X) =
eβ̂0+β̂1X

1 + eβ̂0+β̂1X
(4.8)

The logistic regression can be generalized to include a set of p predictors X =

(X1, X2, ..., Xp), generalizing (4.3) we have:

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + β2X2 + ...+ βpXp (4.9)

This can be rewritten to:

p(X) =
eβ0+β1X1+β2X2...+βpXp

1 + eβ0+β1X1+β2X2+...+βpXp
(4.10)

4.1.2 Logistic Regression with More than Two Response

Classes

Using multinomial logistic regression is possible when the response variable takes

on more than two categories. For ease of exposition the case with three categories

will be explained here, but the principle of the multinomial model is the same when

there are more categories. In this case the response variable Y will be coded such

that it takes on 0, 1 or 2. Similar to (4.3) we form two logits, with Y = 0 being the

base line outcome. The p explanatory variables and the constant is represented by

the column vector x of length 1+p. β1 and β2 are column vectors with elements

being the parameters in the first and second logit respectively. Then the logits can

be written as:

g1(x) = log

[
P (Y = 1|x
P (Y = 0|x

]
= β10 + β11X1 + β12X2 + ...+ β1pXp = x′β1 (4.11)
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g2(x) = log

[
P (Y = 2|x
P (Y = 0|x

]
= β20 + β21X1 + β22X2 + ...+ β2pXp = x′β2 (4.12)

Using (4.11) and (4.12) it can be shown that:

P (Y = 0|x) =
1

1 + eg1(x) + eg2(x)
(4.13)

P (Y = 1|x) =
eg1(x)

1 + eg1(x) + eg2(x)
(4.14)

P (Y = 2|x) =
eg2(x)

1 + eg1(x) + eg2(x)
(4.15)

To form the likelihood function indicator variables Y0, Y1 and Y2 are used. Were,

if Y = 0 then Y0 = 1, Y1 = 0 and Y2 = 0

if Y = 1 then Y0 = 0, Y1 = 1 and Y2 = 0

if Y = 2 then Y0 = 0, Y1 = 0 and Y2 = 1

Now letting pj(x) = P (Y = j|x), were j = 0, 1, 2 indicates the class and β′ =

(β′
1,β

′
2) is a vector holding the parameters of the model, the likelihood function can

be written as:

l(β) =
n∏
i=1

[p0(xi)
y0ip1(xi)

y1ip2(xi)
y2i ] (4.16)

Taking the logarithm of (3.16) gives the log-likelihood function which can be written

as:

L(β) =
n∑
i=1

y1ig1(xi) + y2ig2(xi)− ln(1 + eg1(xi) + eg2(xi)) (4.17)

Taking the partial derivatives of the log-likelihood function with respect to each

of the unknown parameters and setting these equal to zero we get the likelihood

functions. letting pji = pj(xi) these can be written as:

∂L(β)

∂βjk
=

n∑
i=1

xki(yji − pji) = 0, j = 1, 2 and k = 0, 1, 2, ..., p (4.18)

As in the case with a binary response variable the estimated parameters β̂ is the

solution to these equations.
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4.2 Artificial Neural Networks

The second technique considered is a backpropagation neural network with one

hidden layer. In this section this technique is descibed in a similar way to Hastie,

Tibshirani, and Friedman (2009).

4.2.1 Network Structure

A neural network can be represented by a network diagram as in Figure 4.1. The

method got the name ”neural network” as it first was developed as a model of

the human brain. The circles in Figure 4.1 are called units or neurons and the

connections can be thought of as synapses. The first layer is the input layer with p

inputs X`. The middle layer is called the hidden layer and consists of M units Zm.

The final layer is the output layer with K units Yk, where each unit represents a

class to be predicted.

YK

Y2

Y1

Z1

Z2

Z3

ZM

X1

X2

X3

Xp-1

Xp

{

{

Input layer

Hidden layer

Output layer

Figure 4.1: Neural network diagram.

The derived features in the hidden layer are modeled as a function of linear

combinations of the input variables, that is:

Zm = σ(α0m + αTmX),m = 1, ...,M (4.19)

Where, αm is a vector of weights of length p and α0m is a bias. The bias can be

thought of as an additional input feeding into the units in the hidden layer. σ(υ)

is called the activation function and gives the activation of the units in the hidden
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layer. The activation function is usually chosen to be the logistic function, that is

σ(υ) = 1/(1 + e−υ). The logistic function is illustrated in Figure 4.2.

Figure 4.2: The logistic function.

The target Yk is then modeled as a function of linear combinations of the units

Zm in the hidden layer:

Tk = β0k + βTk Z, k = 1, ..., K (4.20)

fk(X) = gk(T ), k = 1, ..., K (4.21)

where, βk is a vector of weights and β0k is a bias. T = (T1, T2, ..., TK), Z =

(Z1, Z2, ..., ZM) and gk(T ) is the output function that transforms the vector T to the

final output. Here again the logistic function can be chosen as the output function.

The unit in the output layer with the highest activation is then the classification of

an observation x, that is:

G(x) = argmaxkfk(x) (4.22)

4.2.2 Fitting the Neural Network

The unknown parameters of the neural network are the weights and biases. The

goal is to find these such that the model fits the training data well. To evaluate how

well the model fits the data an error function is used. As error function often the

mean squared error is used. With N observations i = 1, ..., N , the set of unknown
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parameters denoted by θ and the true activation denoted by yik, then the mean

squared error function can be written as:

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))2 (4.23)

The error function is minimized by gradient descent. This involves calculating

the gradient of the error function, that is calculating the partial derivatives of the

error function with respect to any weight and bias. By making small adjustments

to the weights and biases in the opposite direction of the gradient a minimum of

the error function can be found. An algorithm that can be used to do this is called

backpropagation. To find the equations that are needed for the backpropagation

algorithm the chain rule is used. In the case of the mean squared error function the

error for an individual training example is:

Ri(θ) =
K∑
k=1

(yik − fk(xi))2 (4.24)

With an observation xi we have from (4.19) that zmi = σ(α0m + αTmxi) and we

let zi = (z1i, ..., zMi). Using the chain rule the derivatives can be found:

∂Ri

∂βkm
= −2(yik − fk(xi))g′k(βTk zi)zmi (4.25)

∂Ri

∂αm`
= −

K∑
k=1

2(yik − fk(xi))g′k(βTk zi)βkmσ′(αTmxi)xi` (4.26)

(4.25) can be written as

∂Ri

∂βkm
= δkizmi (4.27)

where

δki = −2(yik − fk(xi))g′k(βTk zi) (4.28)

and (4.26) can be written as
∂Ri

∂αm`
= smixi` (4.29)

where

smi = −
K∑
k=1

2(yik − fk(xi))g′k(βTk zi)βkmσ′(αTmxi) (4.30)
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This can be written as

smi = σ′(αTmxi)
K∑
k=1

βkmδki (4.31)

δki and smi are called the errors of the output layer and hidden layer respectively.

They measure how far of the units of the current model are.

The backpropagation algorithm can now be explicitly expressed.

1. Set the starting weights and biases θ.

2. Predicted values are computed using (4.19), (4.20) and (4.21). This is called

the Forward pass.

3. The error in the out put layer δki is calculated from (4.28) and then back

propagated using (4.31) to get the error in the hidden layer. This is called the

Backward pass.

4. The partial derivatives are then calculated using (4.27) and (4.29).

5. The weights and biases are updated according to (4.32) and (4.33) below.

The updates of the weights and biases for the r+1 iteration is done according to:

βr+1
km = βrkm − γr

∂Ri

∂β
(r)
km

(4.32)

αr+1
m` = αrm` − γr

∂Ri

∂α
(r)
m`

(4.33)

This process is then repeated, thereby getting closer to a minimum of the error

function. As a stopping criteria for the learning process a maximum allowed value

for the error function can be used as well as a predefined maximum number of

iterations (Zell et al., 1998). γr is a small positive number called the learning rate,

controlling how big the steps are in each update. Typically the learning rate is

chosen to be a number between 0.1 and 1 (Zell et al., 1998). Later in this chapter

it will be discussed how this parameter can be optimized. In (4.32) and (4.33) one

training example i is processed before the weights and biases are updated. This is

called online learning and it is the update function used in this study. Alternatively

the updates can be done by batch learning, then all training examples are used

before updating the weights and biases. For this the above equations are modified

to (4.34) and (4.35).

βr+1
km = βrkm − γr

N∑
i=1

∂Ri

∂β
(r)
km

(4.34)
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αr+1
m` = αrm` − γr

N∑
i=1

∂Ri

∂α
(r)
m`

(4.35)

4.2.3 Starting Weights

In the above describe backpropagation algorithm starting weights need to be set.

The starting weights should be set to random values close to zero. With values close

to zero the logistic function is close to linear (see 4.2) and a linear model. So the

model is initially close to a linear model and increases the size of the weights as

nonlinearities are needed. However, starting with exactly zero weights gives zero

derivatives and the algorithm does not update the weights. Furthermore, large

values tend to give poor solutions (Hastie et al., 2009).

4.3 Overfitting and Underfitting

The models are built with the purpose of making better predictions of the output

variables based on the inputs, to know how well this is done the actual values can be

compared to the predicted ones. However, when testing the model we want to see

if it is generalizing, that is that the model performs well on inputs it has not seen

before and not only on those used for training. For this reason we need to save data

that is not used while training the model, a test set. But only using these two data

sets can be a problem. Goodfellow, Bengio, and Courville (2016) explain why three

data sets are needed. There is a risk of overfitting, that is that the model learns the

training data well, but it is not generalizing. We want to control for overfitting as

our model learns, this is done using a validation set. When there is overfitting the

difference between the error of the model on the training set and testing set is large.

In addition underfitting occurs when the training set is not learned well, the training

error is large. By controlling the models ability to fit a large variety of functions

(the models capacity) we can control if it is more likely to overfit or underfit.

4.3.1 Hyperparameters

This ability can be controlled by the settings of the models hyperparameters, set-

tings that control the learning algorithm. Examples of hyperparamters that can

be tuned in the neural network is the number of hidden units and learning rate.

To choose hyper parameters and controlling for how well the model generalizes, an

additional data set, the validation set is used. The validation set is not used during

training process. The error measuring the genearlization plotted as a function of a
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hyperparameter generally has a U-shape, at one extreme we have low capacity and

underfitting and at the other high capacity and overfitting. Somewhere between

these extremes is the model with the optimal capacity, achieving the lowest general-

ization error. Note that whether a high or low value of the hyperparameter achieves

a high or low capacity depends on the hyperparameter. So three sets of data are

needed, the training set used for training the model, the validation set to check how

well it generalizes while it learns and the test set that is used in the end to test the

model when all choices of the model is done including hyperparameters (Goodfellow

et al., 2016).

There are several methods that can be used to choose hyperparameters. For

example, suitable hyperparameters can be searched for manually, using experience

of the perticular application of the model. Another approach is to use an automatic

procedure. Here an automtic precedure called Grid search will be used. Using

Grid search a set of values for each of the hyperparameters to be tuned is selected.

Thereafter, all combinations of the hyperparameters are trained on the training set

and validated on the validation set. Finally, the set of hyperparameters that gives

the lowest validation error is selected (Goodfellow et al., 2016).

4.3.2 K-Fold Cross Validation

when the amount of data is small the above mentioned procedure using a separate

validation set can be replaced with what is called k-fold cross validation. The train-

ing data is split into K folds, where one of them is used for validation and the rest for

training of the model. The training and validation is done K times each time using

a different fold for validation. The average performance of the K folds is the overall

measure of the performance (Zheng, 2015). Here the accuracy will be used as the

measure of the performance during the cross validation. The K-fold cross validation

can be used to generate the data while using one of the above mentioned methods

for tuning the hyperparameters. In this study K-fold cross validation repeated three

times will be used together with grid search.

Validation Training Training Training Training

Training Training Training Training Validation

Training Validation Training Training Training

Figure 4.3: K-fold cross validation.
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Chapter 5
Evaluation Metrics

In this chapter the methods used to evaluate and compare how well the models are

able to predict the credit ratings are described. Also, a measure used to analyze the

contribution of each of the inputs in the neural networks is presented.

5.1 Accuracy

Accuracy is a simple measure of the performance of the model that is commonly

used in previous research on credit rating predictions. The accuracy is the number

of correct predictions divided by the total number of predictions (Zheng, 2015).

Accuracy =
Number of correct predictions

Total number of predictions
(5.1)

5.2 Kappa

Cohens Kappa (Cohen, 1960) was originally developed as a measure of agreement

between two judges classifying cases into a set of categories. In the context of this

study kappa measures the agreement between the model and the true credit ratings.

Instead of only considering the accuracy Kappa takes into account the expected

agreement by chance. The expected agreement by chance for the first class is simply

the product of the judges proportions classified into the first class. Summing over all

classes gives the overall expected agreement by chance. With po being the observed

accuracy and pe the expected agreement by chance, k = 1, ...K indicating category,

N the number of cases and nik the number of cases classified into category k by

judge i. The kappa is:

κ =
po − pe
1− pe

(5.2)
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where,

pc =
1

N2

K∑
k=1

n1kn2k (5.3)

The kappa is the proportion of agreement when chance agreement has been

removed. When agreement by chance equals the accuracy κ = 0. Perfect agreement

occurs when κ = 1. A negative kappa occurs when there is less agreement than by

chance.

5.3 The Connection Weight Approach

In most of the previous research on the use of neural networks for credit rating

predictions little attention is put on the difference in importance of input variables

to the networks and neural networks have often been considered to be a ”black

box”. However, Huang et al. (2004) did analyze the variable importance for neural

networks predicting ratings in the US and Taiwan market using Garson’s measure.

In this thesis the importance of inputs are analyzed using the connection weight

approach suggested by Olden and Jackson (2002). Olden, Joy, and Death (2004)

tested the connection weight approach as well as Garson’s measure on simulated

data sets were the true importance of the variables are known. In their study

they showed that the connection weight approach consistently outperforms Garson’s

measure. The connection weight approach gives a measure of the relative impor-

tance/contribution of each input variable to each output category. It is calculated

as the product of the input-hidden and hidden-output weights that is between each

input and output neuron and summed across all hidden neurons. Having a neural

network with J inputs, M hidden units and K outputs. Letting the weights

between input j and and neuron m in the hidden layer be denoted wmj and the

weights between neuron m in the hidden layer and output k be denoted wmk.

Then the importance of input j on output k is:

Impjk =
M∑
m=1

wmjwmk (5.4)
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Chapter 6
Data

In this chapter, the data used in this study is described to be as transparent as

possible and allow for the results to be validated. First it is described how the raw

data was selected and thereafter how the raw data was prepared before it was used

for modelling.

6.1 Data Selection

The data used are Standard & Poor’s credit ratings and accounting data of com-

panies in the United States. The accounting data was then used to calculate the

ratios used as explanatory variables in the models. The financial ratios that were

used are ratios that are commonly used in research on credit rating predictions,

such as in Huang et al. (2004) and Kumar and Bhattacharya (2006). Two data

sets of this type were prepared, one representing manufacturing companies and one

representing retail companies.

The data was extracted from Bloomberg using the rating changes function (RATC)

and the Excel plugin. As a first step one list of companies classified as manufactur-

ing companies and one list of companies classified as retail companies were created

in the Bloomberg terminal. To create these lists Standard Industrial Classification

codes (SIC) was used. Companies with SIC codes 2000-3999 are classified as manu-

facturing companies. For retail companies, the retail trade category with SIC codes

5200-5999 was used.

Thereafter, a list of Standard & Poor’s Long-term issuer credit ratings available

was obtained for the period 1 January 2013 - 31 December 2017. Then using the

Bloomberg Excel plugin the following accounting data from the companies annual

reports was obtained:
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Table 6.1: Accounting data downloaded from Bloomberg.

Cash Flow Statement Balance Sheet Income Statement

Cash flow from operating activities Revenue Total assets

Total liabilities Operating income

Current assets EBIT

Current liabilities Interest expense

Inventories Costs of goods and services sold

Long-term debt Income tax expense

Short-term debt Net income

Total equity Earnings per Share

Common equity

Cash and equivalents

6.2 Data Preparation

Some observations were missing accounting data and were therefore removed. Other

observations had credit ratings recorded as NR, which stands for not rated, and were

also removed. After removing these the manufacturing data set consisted of 604 ob-

servations and the retail data set of 143 observations. In addition some of the credit

ratings contained additional information to the standard rating categories. This

additional information was removed to only focus on the standard rating categories.

For example an u suffix indicates an unsolicited rating, that is a credit rating ini-

tiated by some one else than the issuer. A + or - indicates the relative standing

within a category.

Thereafter, the financial ratios were calculated using the financial variables pre-

sented in Table 6.1. By using financial ratios instead of accounting data directly the

input variables are comparable across companies of different size. However, total

assets and total liabilities were kept to measure the pure effect of size. The full set

of 23 explanatory variables are (For definitions of these see Appendix A.1):
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Total assets Net profit margin Asset turnover

Total liabilities Pretax margin Earnings per share

Debt ratio Operating margin Cash flow from operations to current liabilities

Current ratio Gross profit margin so Inventory to current assets

Quick ratio Operating profitability Total equity to total assets

Current assets to total assets Return on assets before interest and tax Sales to net worth

Solvency ratio Return on assets after interest and tax Cash to total assets

Return on equity Debt to equity

Summary statistics of the input variables in the manufacturing data set and

retail data set are shown in Table 6.2 and Table 6.3 respectively.

Table 6.2: Summary statistic for the manufacturing data set.

Statistic Mean St. Dev.

TOTAL ASSETS 15,271.830 44,315.870

TOTAL LIABILITIES 9,678.013 30,590.890

EPS 1.679 3.947

DEBT RATIO 0.339 0.192

OPERATING MARGIN 0.081 0.148

RETURN ON ASSETS BEFORE INTEREST AND TAX 0.071 0.085

RETURN ON ASSETS AFTER INTEREST AND TAX 0.039 0.085

PRETAX MARGIN 0.061 0.169

NET PROFIT MARGIN 0.046 0.157

CURRENT RATIO 2.260 1.177

QUICK RATIO 1.591 1.009

CURRENT ASSETS TO TOTAL ASSETS 0.399 0.159

INVENTORIES TO TOTAL ASSETS 0.301 0.153

TOTAL EQUITY TO TOTAL ASSETS 0.358 0.239

OPERATING PROFITABILITY 0.081 0.148

GROSS PROFIT MARGIN 0.334 0.201

SOLVENCY RATIO 0.358 0.239

SALES TO NET WORTH 3.196 15.970

CASH TO TOTAL ASSETS 0.094 0.081

DEBT TO EQUITY 0.967 6.097

ASSET TURNOVER 0.929 0.520

RETURN ON EQUITY 0.114 0.723

CASH FLOW OPERATIONS TO CURRENT LIABILITIES 0.591 0.498
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Table 6.3: Summary statistics for the retail data set.

Statistic Mean St. Dev.

TOTAL ASSETS 8,853.900 14,864.030

TOTAL LIABILITIES 6,256.585 10,253.900

EPS 0.370 7.109

DEBT RATIO 0.405 0.272

OPERATING MARGIN 0.052 0.103

RETURN ON ASSETS BEFORE INTEREST AND TAX 0.089 0.116

RETURN ON ASSETS AFTER INTEREST AND TAX 0.039 0.095

PRETAX MARGIN 0.037 0.097

NET PROFIT MARGIN 0.019 0.085

CURRENT RATIO 1.714 0.870

QUICK RATIO 0.793 0.702

CURRENT ASSETS TO TOTAL ASSETS 0.402 0.179

INVENTORIES TO TOTAL ASSETS 0.520 0.253

TOTAL EQUITY TO TOTAL ASSETS 0.247 0.276

OPERATING PROFITABILITY 0.052 0.103

GROSS PROFIT MARGIN 0.336 0.135

SOLVENCY RATIO 0.247 0.276

SALES TO NET WORTH 17.125 110.763

CASH TO TOTAL ASSETS 0.075 0.074

DEBT TO EQUITY 2.656 22.470

ASSET TURNOVER 1.745 1.032

RETURN ON EQUITY −0.258 6.942

CASH FLOW OPERATIONS TO CURRENT LIABILITIES 0.528 0.447

Finally these inputs were scaled to have a mean of zero and a standard deviation

of one. This was done to have a range of the starting weights in the neural networks

that are meaningful (Hastie et al., 2009).

6.3 Grouping of Ratings

For the two data sets, manufacturing and retail, there is imbalance in the rating

categories, see Figure 3.1. Due to his, first a broad grouping of the categories into

investment grade and non-investment grade was made. Standard & Poor’s ratings

of BBB or above are investment grade and all below are non-investment grade.

Classification into two broad categories have been done by several previous studies,

making it interesting for comparison. However, it is also interesting to see how

32



well the models classify rating categories that are close. As seen in Figure 3.1 the

majority of the ratings belong to the categories: BBB, BB and B. Subsetted data

sets only including these categories were formed for classification into these three

categories. The data set for manufacturing then consisted of 500 observations and

the data set for retail of 110 observations.

Figure 6.1: The distribution of ratings in the data sets

6.4 Training and Test Set

Finally, the data was split into a training set and a test set. The training set is

used for training and cross validation while the test set is saved for testing of the

final models. The data was split into 70% training and 30% testing. To preserve

the overall rating distribution observations were randomly selected as trainig and

testing within each rating category.
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Chapter 7
Methodology

In this chapter, first the programming language and packages used are described.

Then the steps taken when building and evaluating the models are presented.

7.1 Software

After obtaining the raw data set from Bloomberg using the Excel plugin, data prepa-

ration, modelling and evaluation was done using the statistical programming lan-

guage R (R Core Team, 2017). The R packages caret (Kuhn, 2018), nnet (Venables

& Ripley, 2002) and RSNNS (Bergmeir & Beńıtez, 2012) were used to build and

evaluate the models. The caret package contain different functions that makes the

modelling process efficient and allows for the use of a common syntax for different

models. Moreover, the caret package has functions for cross validation and param-

eter tuning. For modelling of neural networks caret was used together with the

RSNNS package. RSNNS provides an R interface to the Stuttgart Neural Network

Simulator (SNNS) (Zell et al., 1998), that allows for building, training and testing

of neural networks. The modelling with logistic regression was done using the caret

package together with the function for logistic regression in the nnet package.

7.2 Hyperparameters and Model Training

The trained neural networks are single hidden layer networks. That is neural net-

works with three layers, a input layer, a hidden layer and a output layer. Two

hyperparameters were tuned for the neural network, the nummber of hidden untis

and the learninig rate. The number of hidden units in the neural network depends

on things such as the number of inputs and output. One rule of thumb is that the

number of hidden units should be somwhere between the size of the input layer and
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the output layer (Blum, 1992). The learning rate is choosen to be some small pos-

itive number, and as noted by Zell et al. (1998) typicall numbers are 0.1,...1.0. To

find the hyperparameters, grid search was used together with 10-fold cross valida-

tion repeated three times, where the hyperparameters corresponding to the model

with the highest accuracy was selected. Using grid search, a grid for the hyperpa-

rameters is defined. This grid is a set of hyperparmeters that are considered. The

set of hidden units considerd were all integer values from number of outputs to the

number of inputs. For the learning rate values considered are 0.1,...1.0.

After the hyperparameters being selected the neural network was trained using

the whole training data set. When training the neural networks, backpropagation

was used as learning algorithm and the logistic function as activation function.

The starting weights for the backpropagation algorithm were randomized values

close to zero. More precisely the default interval [-0.3, 0.3] of the Stutgart Neural

Network Simulator was used. Furthermore, for the maximum number of allowed

iterations while training and maximum training error the default options of 100 and

0 respectively were used.

For logistic regression no hyperparameters were tuned, the model was directly

trained on the full training data.

With two different modelling techniques, two industries and two types of classi-

fication, there are eight models in total as described in the table below:

Table 7.1: Summary of trained models.

Model Name Method Industry Classification

Model 1 Neural Network Manufacturing Investment grade / non-investment grade

Model 2 Neural Network Manufacturing BBB, BB and B

Model 3 Logistic Regression Manufacturing Investment grade / non-investment grade

Model 4 Logistic Regression Manufacturing BBB, BB and B

Model 5 Neural Network Retail Investment grade / non-investment grade

Model 6 Neural Network Retail BBB, BB and B

Model 7 Logistic Regression Retail Investment grade / non-investment grade

Model 8 Logistic Regression Retail BBB, BB and B
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7.3 Model Evaluation and Analysis

After training both the logistic regression and neural network models they were

evaluated on the test set. The models were evaluated using both the accuracy of

the models as well kappa. Furthermore, the impact of different input variables for

the neural network models were analyzed using the connection weight approach.
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Chapter 8
Modelling Results and Analysis

In this chapter, the results from following the steps described in chapter 7 are

presented and analyzed. First the predictive ability of the different models are

compared using the accuracy and kappa. Finally, the neural networks fitted on the

two industries are further analyzed using connection weights.

8.1 Manufacturing

For the model classifying the ratings into investment grade and non-investment

grade, the logistic regression model achieved an accuracy of 83 % while the neural

network achieved an accuracy of 86 %. Both models performed about equally well

and the accuracy is similar to what Dutta and Shekhar (1988) presented for a neural

network predicting two classes (83 %). Comparing the kappas of the models reveals

a similar result, with the logistic regression having a value of 0.63 and the neural

network a slightly higher value of 0.69.

When predicting three categories (BBB, BB and B) the neural network again

performed slightly better than the logistic regression model. The logistic regression

achieved an accuray of 62 % on the test set and the neural network 64 %. The kappa

of the logistic regression is 0.41 and 0.4488 for the neural network.

8.2 Retail

Logistic regression achieved an accuracy of 92 % and the neural network 95 % for

the investment grade\non-investment grade grouping. The kappas is 0.82 and 0.87

for the logistic regression and the neural network respectively. Again the neural

network performed better than the logistic regression on the test set. However, the

evaluation metrics were also in this case close.
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For the grouping into three categories the results were similar. The neural net-

work achieved a higher accuracy of 75 % while the accuracy for the logistic regression

was 66 %. Also in terms of kappa the neural network with a value of 0.62 is slightly

better than the logistic regression with a value of 0.49.

8.3 Comparison

For both industries the neural network has a higher accuracy and kappa. It seems

that a neural network better predicts the credit ratings independent of industry.

However, it should be noted that the simpler logistic regression is close to the neural

networks in terms of accuracy and kappa.

It is interesting to note that the accuracy and kappa for both the logistic re-

gression and the neural network is much higher for the retail firms than the man-

ufacturing firms. One explanation for this can be that there is more quantifiable

information in credit ratings for retail firms than for manufacturing firms. The credit

rating agencies does not only use quantitative information, but also qualitative. The

qualitative information is harder to capture in models such as neural networks and

logistic regression. It is also possible that the firms in the retail data set are eas-

ier to differentiate, because of larger differences between firms. The results for the

neural networks and logistic regressions are summarized in Table 8.1 and Table 8.2

respectively.

Table 8.1: Summary of neural network models

Industry Classification Accuracy Kappa Learning rate Hidden units

Manufacturing Investment grade / non-investment grade 0.8571 0.6931 0.1 10

Manufacturing BBB, BB and B 0.6443 0.4488 0.2 19

Retail Investment grade / non-investment grade 0.9487 0.8734 0.2 10

Retail BBB, BB and B 0.7500 0.623 1.0 11
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Table 8.2: Summary of logistic regression models

Industry Classification Accuracy Kappa

Manufacturing Investment grade / non-investment grade 0.8343 0.6318

Manufacturing BBB, BB and B 0.6242 0.4060

Retail Investment grade / non-investment grade 0.9231 0.8152

Retail BBB, BB and B 0.6562 0.4899

8.4 Variable Importance

In this section the neural networks with three credit rating categories are analyzed.

Using Olden’s connection weight measure of variable importance. It is analyzed

which input variables that are the most important in general for prediction. Also,

the differences between the two industries are further analyzed to see if there are

differences in the input variables that are the most and least important. The result-

ing connection weights for the neural network fitted on the manufacturing data are

given in Figure 8.1 to 8.3 and for the retail data in Figure 8.4 to 8.6.

Figure 8.1: BBB class connection weights for three category neural network model
on manufacturing data.
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Figure 8.2: BB class connection weights for three category neural network model on
manufacturing data.

Figure 8.3: B class connection weights for three category neural network model on
manufacturing data.
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Figure 8.4: BBB class connection weights for three category neural network model
on retail data.

Figure 8.5: BB connection weights for three category neural network model on retail
data.
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Figure 8.6: B class connection weights for three category neural network model on
retail data.

Input variables that are contributing allot to one of the output classes also tend

to do so for one or both of the other classes. For example, for the manufacturing

firms total assets is important across all rating classes. Other important variables

for the manufacturing firms are pretax margin, debt to equity and net profit margin.

For retail firms, asset turnover contributes the most for the BB class and second

most for the BBB class among all variables. Another important input variable is

cash flow from operations to current liabilities, it contributes most for the B class

and second most in the BB class. Return on asset, both before and after tax, are

also important variables.

Comparing the model for the manufacturing firms with the one of retail firms,

shows some similarities and differences. The relative importance of the total assets

is especially high in the manufacturing model. It is not among the least important

in the retail model, but its relative importance in the retail model tends to be

lower. This suggests that the size of the firm is important in the rating process, and

especially for manufacturing firms.

As mentioned, cash flow from operations to current liabilities is an important

variable for the retail model. While, it is not an important variable in the manu-

facturing model. The short term liquidity seems to be especially important in the

rating process of retail firms. In general it is good for a firm to have a high cash flow

from operations to current liabilities ratio. However, a low ratio is not necessarily

a warning. A firm can have a lower ration due to investments that will generate

more cash in the long run. Differences in the ratio for manufacturing firms might
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more often be due to things such as temporary investments and therefore not be as

valuable information in the rating process.

Inventories to total assets is a fairly important variable for the retail firms. It

contributes fifth most to the BB class and sixth most to the B class. But it is

not important for the manufacturing firms, it is the 23 most important for BBB

(least important), 22 for the B class and 21 for the BB class. The inventories to

total assets is likely a more important factor for retail firms because they hold more

inventories in general and there being bigger differences between firms. For a retail

firm it is important to not hold too much inventory. The average inventories to

total assets for the firms in the retail data set is 52 % and 32 % for the firms in the

manufacturing data set.

There are also similarities between the two models. Earnings per share is a

important variable for both. Earning per share contributes the most to the BBB

class and fifth most to the B class for the retail model. Earnings per share also

contributes the second most to the B class and sixth most to the BB class for the

manufacturing model.
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Chapter 9
Conclusion and Further Work

The main conclusions from this study will now be discussed and some guidance for

further research will be given.

The use of neural networks and logistic regression for predictions of credit rat-

ings of manufacturing firms and retail firms have been studied. The neural networks

consistently outperforms the logistic regression in terms of the evaluation metrics

considered. Independent of industry the neural network is better at predicting the

credit ratings than the reference model logistic regression. This result is in line with

previous studies investigating the use of machine learning for prediction of credit

ratings. The models show that a large part of credit ratings can be explained by

publicly available accounting data. Using two output classes the neural networks

achieved an accuracy of 86 % and 95 % for the manufacturing and retail data set

respectively. In the more demanding challenge of classifying into three neighbor-

ing classes the neural networks achieved an accuracy of 64 % and 75 % for the

manufacturing and retail data set respectively. The usefulness of machine learning

in explaining credit ratings is interesting to better understand the rating process,

cutting costs and providing a way of giving an artificial rating for unrated firms.

Furthermore, it is of interest to the credit rating agencies themselves. There is

promise for the usefulness of machine learning techniques as a tool in the rating

process.

Previous studies using neural networks for credit rating predictions tend to solely

focus on the predictive performance of the networks. In this study the neural net-

works were further analyzed using Olden’s connection weight approach. This allowed

for a industry comparative study and a better understanding of the bond rating pro-

cess. The total assets was found to be a especially important variable for predicting

the credit ratings of the manufacturing firms. For the network fitted on the retail

data set, cash flow from operations to current liabilities is an important variable, but
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not so for the network fitted on the manufacturing data set. Other variables such

as earnings per share is among the most important variables for both the network

fitted on the manufacturing data set and retail data set.

In future studies it would be interesting to further study the importance of the

input variables to the neural network. In this study the ratings of Standard & Poor’s

were used, further research using ratings from other credit rating agencies is needed

to see if the results hold for other ratings than Standard & Poor’s. Moreover, a

different set of input variables can be used. For example also including different

types of non accounting data might give even better performance and new insight

into the credit rating process. With data getting more accessible there is hope for

finding models with better inputs and larger data sets can be used to get more

reliable results.
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Appendix A
Appendix

A.1 Input Variables

1. Total Assets

2. Total Liabilities

3. Earnings Per Share

4. Debt Ratio = Long−Term Debt+Short−Term Debt
Total Assets

5. Operating Margin = Operating Income
Revenue

6. Return on Assets Before Interest and Taxes = Earnings Before Interest and Taxes
Total Assets

7. Return on Assets After Interest and Taxes = Net Income
Total Assets

8. Pretax Margin = Net Income+Tax Expense
Revenue

9. Net Profit Margin = Net Income
Revenue

10. Current Ratio = Current Assets
Current Liabilities

11. Quick Ratio = Current Assets−Inventories
Current Liabilities

12. Current Assets to Total Assets = Current Assets
Total Assets

13. Inventories to Total Assets = Inventories
Total Assets

14. Total Equity to Total Assets = Total Equity
Total Assets

15. Operating Profitability = Earnings Before Interest and Taxes
Total Revenue

16. Gross Profit Margin = Revenue−COGS
Total Revenue
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17. Solvency Ratio = Net Worth
Total Assets

18. Sales to Net Worth = Revenue
Net Worth

19. Cash to Total Assets = Cash and Equivalents
Total Assets

20. Debt to Equity = Short−Term Debt+Long−Term Debt
Total Equity

21. Asset Turnover = Revenue
Total Assets

22. Return on Equity = Net Income
Total Assets−Total Liabilities

23. Cash F low From Operations to Current Liabilities = Cash F low From Operations
Current Liabilities
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Bergmeir, C., & Beńıtez, J. M. (2012). Neural networks in R using the stuttgart

neural network simulator: RSNNS. Journal of Statistical Software, 46 (7),

1–26. Retrieved from http://www.jstatsoft.org/v46/i07/

Blum, A. (1992). Neural networks in c++: An object-oriented framework for build-

ing connectionist systems. New York, NY, USA: John Wiley & Sons, Inc.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

psychological measurement , 20 (1), 37–46.

Dutta, & Shekhar. (1988). Bond rating: a nonconservative application of neural

networks. In Ieee 1988 international conference on neural networks (Vol. 2,

p. 443-450).

Ederington, L. H. (1985). Classification models and bond ratings. Financial review ,

20 (4), 237–262.

Fisher, L. (1959). Determinants of risk premiums on corporate bonds. Journal of

Political Economy , 67 (3), 217–237.

Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert ,

6 (4), 46–51.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

(http://www.deeplearningbook.org)

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical

learning: Data mining, inference, and prediction, second edition. Springer.

Horrigan, J. O. (1966). The determination of long-term credit standing with financial

ratios. Journal of Accounting Research, 4 , 44–62.

Hosmer, D., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). Wiley-

Interscience.

Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating anal-

ysis with support vector machines and neural networks: a market comparative

study. Decision support systems , 37 (4), 543–558.

Hunt, J. P. (2009). Credit rating agencies and the worldwide credit crisis: the limits

of reputation, the insufficiency of reform, and a proposal for improvement.

Columbia Business Law Review , 2009 , 109.

Kuhn, M. (2018). caret: Classification and regression training [Computer software

manual]. Retrieved from https://CRAN.R-project.org/package=caret (R

48



package version 6.0-80)

Kumar, K., & Bhattacharya, S. (2006). Artificial neural network vs linear discrim-

inant analysis in credit ratings forecast: A comparative study of prediction

performances. Review of Accounting and Finance, 5 (3), 216–227.

Langohr, H., & Langohr, P. (2010). The rating agencies and their credit ratings:

what they are, how they work, and why they are relevant (Vol. 510). John

Wiley & Sons.

McLean, B., & Nocera, J. (2011). All the devils are here: The hidden history of the

financial crisis. Penguin.

Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: a random-

ization approach for understanding variable contributions in artificial neural

networks. Ecological modelling , 154 (1-2), 135–150.

Olden, J. D., Joy, M. K., & Death, R. G. (2004). An accurate comparison of

methods for quantifying variable importance in artificial neural networks using

simulated data. Ecological Modelling , 178 (3-4), 389–397.

Pinches, G. E., & Mingo, K. A. (1973). A multivariate analysis of industrial bond

ratings. The journal of Finance, 28 (1), 1–18.

R Core Team. (2017). R: A language and environment for statistical com-

puting [Computer software manual]. Vienna, Austria. Retrieved from

https://www.R-project.org/

Standard & Poor’s. (2014). S&P global ratings definitions.

Standard & Poor’s. (2015). Guide to credit rating essentials: What are credit ratings

and how do they work?

Standard & Poor’s. (2018). How standard & poor’s rates nonfinancial corporate

entities.

Surkan, A. J., & Singleton, J. C. (1990). Neural networks for bond rating improved

by multiple hidden layers. In 1990 ijcnn international joint conference on

neural networks (Vol. 2, p. 157-162).

U.S. Securities and Exchange Commission. (2017). Annual report on nationally

recognized statistical rating organizations.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth

ed.). New York: Springer.

West, R. R. (1970). An alternative approach to predicting corporate bond ratings.

Journal of Accounting Research, 8 (1), 118–125.

Zell, et al. (1998). Snns, stuttgart neural network simulator, user manual v.

4.2. University of Stuttgart and University of Tübingen. Retrieved from
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