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Abstract 

This paper explores the area of different recommender systems, their implications, 

and business relevance. The experiments conducted are based on a dataset 

provided by the Danish news media Jyllands-Posten.  

The experiments seek to discover the possibilities for Jyllands-Posten to improve 

their subscribers online customer experience, utilizing the dataset provided with 

millions of data observations on thousands of articles.  

Different recommender systems and approaches to developing them have been 

tested and discussed. A ranking factorization model based on a collaborative 

filtering approach performed the best out of the tested item-similarity and 

popularity-based models. The popularity-based approach served as a baseline for 

the other models performances since it is the most simple approach and its 

functions are similar to the solution that they have currently implemented. The 

popularity-based model recommends the same articles to all users accessing 

jyllands-posten.dk and thus lack the element of personalization. This could also be 

why the ranking factorization model outperformed the popularity-based model by 

about 10-15% in every evaluation. 

The recommendation for implementing the ranking factorization model comes with 

a catch, which is that it only should start recommending to users exceeding the 

threshold of 80 read articles on jyllands-posten.dk. This is due to the fact that with 

3 given recommendations and with a threshold of at least 80 read articles the 

recommendation system had an accuracy of 33,5% and thus it is fair to assume 

that at least one of the articles recommended, statistically, is a valuable 

recommendation. 

By giving personalized recommendations to its users, Jyllands-Posten can improve 

their satisfaction as well as better utilize the long tail of having thousands of 

articles available on their site, that despite of their publishing date might be of 

relevance to some users.  
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1 Introduction 

This section provides an overview of the content presented throughout the paper 

and introduces the overall topics machine learning and the more specific 

techniques to build recommendation systems. Following is a problem definition 

that serves as the objective of the paper. 

Related work inspiring and contributing to the development of this paper will be 

presented. Next, there will be a run through of the experiments; from data 

collection and modeling to the results from the final model output. The conclusion, 

discussion, and considerations about future work, will round of the paper. 

1.1 Machine learning 

We live in a world of data, which we constantly generate through our online 

behavior and use of smartphones, computers, smart TV’s or other IoT devices, 

contributing to the ever-growing pool of data. In fact, the amount of data in the 

world is increasing exponentially, it is estimated that the total amount of stored 

data worldwide is doubled every 20 months. The challenge faced when getting 

access to all this data is the extraction of valuable and meaningful information. 

This challenge can be met by finding patterns and connections that are not 

predefined.  

Machine learning is the art of extracting knowledge from data. Essentially, it is 

different algorithms that enable computers to learn from examples and 

experiences, rather than having to rely solely on hard-coded rules written by 

humans. Machine learning consists of several steps such as; collecting data, 

preprocessing data, training and testing models to compute and predict outcomes. 

 

The model selection depends on the problem to be solved and the available data. 

Different machine learning algorithms excel at different problems. For instance, 

whether the dataset is labeled or unlabeled, explicit or implicit needs to be taken 

into account when deciding what algorithm to apply on the dataset. There are 

three overall types of machine learning problems, supervised-, unsupervised- and 

reinforcement learning. 
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Whether a supervised or unsupervised learning method applies to a given 

problem, depends on whether or not we have a target label in our data before 

building a predictive model, i.e., do we know beforehand exactly what we want to 

predict. If there is a defined label then it is a supervised learning problem, where 

several supervised learning algorithms can be used to make predictions. When the 

target label is numerical regression algorithms are appropriate to use. If the target 

variable is known but nominal instead of numeric a classification algorithm can be 

used, e.g., a decision tree. 

Unsupervised learning comes to use when searching for patterns in data without a 

pre-specified target. Unsupervised learning usually entails some sort of clustering 

to find structure in the unlabeled data. There exists different algorithms for 

clustering data into groups, like the kNN that stands for k nearest neighbor and 

works by grouping instances by their nearest neighbors determined by a distance 

measure like euclidean- or cosine distance. 

Reinforcement learning trains and optimizes parameters based on feedback that 

the model gets from the environment of which it is deployed. A well-known 

example of reinforcement learning is the Google DeepMind’s Deep Q-learning, 

playing the Atari game Breakout. The model is not taught beforehand how to play 

the game, which clearly shows in the first many iterations, where the machine dies 

very early in the game. However as the model goes through iterations of playing 

games, it improves, and after just 120 minutes, it plays on an expert human level 

and after 240 minutes of playing it has figured out an effective tactic to beat the 

game. All with just the feedback of either gaining points or returning to 0 points 

when dying. All the model knows is that its goal is to maximize the point variable. 

The trained algorithm will be of use in predicting outcomes when given new 

relevant data.  

Everyone experiences machine learning in action. Whether avoiding the receiving 

of spam emails from advertisement companies in their inbox or receive customized 

search engine results based on their preferences and historical search queries. Or 

getting recommendations for movies on Netflix, or products on Amazon based on 

previous behavior.   
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Furthermore, companies utilize machine learning technologies to aid in decision-

making. This could, be an investment bank using machine learning to predict stock 

price development, to assist brokers in buying and selling decisions. Alternatively, 

banks using machine learning models in deciding whether a certain loan is 

profitable or not to provide a given customer is also a used implementation. 

Machine learning is also present in the health sector. They have it implemented in 

the form of image recognition to aid doctors in the diagnosis process from patient 

MRI scans, etc. 

These are just a few examples of machine learning techniques being carried out by 

various institutions to illustrate how machine learning is deployed in many 

different fields. Looking just five or ten years into the future, the increasing 

amounts of data and continuous improvements in processing power, machine 

learning will become even more integrated into every aspect of business and our 

everyday lives than it is today. 

 

1.2 Recommender systems 

The following section will briefly introduce the concept of recommendation 

systems. Methods used for building recommendation systems will be further 

elaborated with concrete approaches in the section ‘Theories for 

Recommendations’. 

Recommender systems help users manage information overload. Finding 

information and making decisions where users lack the knowledge of, or about, a 

piece of information or product. One way to look at recommender systems is as 

data filters that fit data to individual user needs (Ullman, Jure, & Rajaraman, 

2014). These needs could be something the users were not aware of beforehand. 

The Xerox Palo Alto research center built the first recommender system in 1992 

called Tapestry. Tapestry was built to handle the increasing number of emails that 

researchers of the center received. The recommender system used a collaborative 

filtering approach to find user similarities based on preferences (Goldberg, Nichols, 

Oki, & Terry, 1992).  
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Figure 1.1 represents a simplified overview of a recommendation system in action. 

The database contains data about users, items, and their interactions. Data 

extracted from the database is used to train a recommendation system, which 

then presents recommended items to the user through the user interface. Data 

generated by the user’s interactions with the user interface is sent to the database 

to increase data that the recommendation model gets as training input and 

thereby improve future recommendations.  

 

 

Figure 1.1 

 

1.3 User and business implications of recommender systems 

The recommendation of products is one of the oldest and most common sale 

approaches, recommending an item based on the wants and needs of a customer. 

Recommendations could also be an associated product to something the user has 

previously bought or looked at. Websites are the new salespersons and needs to 

adopt the recommendation of goods task, which was originally handled by sales 

employees. 
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The major user benefit of recommendation systems is the reducing of complexity 

in a world with an exponential amount of data. It is a way to receive prioritized 

information to ease decision-making. Most search engines are huge recommender 

systems. Google as an example, delivers personalized search results based on 

prior search queries. 

The companies’ benefits of using recommender systems are numerous. It provides 

an opportunity to improve communication with customers through personalized 

feeds, and serves as a method for pushing sales and thereby increasing revenue. 

2 Problem definition and thesis objective 

2.1 Business relevance 

Consumers in today’s world are flooded with choices, and the number of choices 

are increasing in every aspect of life. Online retailers offer a huge range of 

selections to fit consumer’s individual tastes and needs (Koren, Bell, & Volinsky, 

2009). 

Matching the right users with right items is key to improve user experience and 

thereby overall satisfaction and loyalty (Koren, Bell, & Volinsky, 2009). 

Recommender systems can play a tremendous role in guiding consumers, 

narrowing choices down to the best-fit options and thereby leading to better 

decision-making (Gomez-Uribe & Hunt, 2016). 

Recommender systems democratize access to the long tail of products, services, 

and information to users. Machines can learn from a lot of data and with useful 

predictions of valuable recommendations. They can give users and businesses the 

opportunities of utilizing the long tail (Gomez-Uribe & Hunt, 2016). 

This new marketplace comes with a shift in demand from “hit”, being the top most 

popular products to more niche products. The vast range of opportunities that 

technology has enabled for consumers fuels this shift (Gomez-Uribe & Hunt, 

2016). Before music streaming services like Spotify, everybody listened to the 

same hits on the radio. Today, everybody creates his or her own playlists, not 

limited by genres, age or popularity. The same goes for TV, wherein the old days, 

before streaming. Everybody was more or less watching the same programs at the 

same time, or at least limited to what the channels chose to send and their time 

schedule. Today streaming services like Netflix or YouTube provides a much 
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broader range of different opportunities and the ability to offer niche movies 

without sacrificing any more popular movie.  

As with the different online streaming services, news has also changed a lot. From 

the publisher having to choose what content to print into the newspaper, to having 

the ability to publish as many articles as they can produce in real-time on a 

website.  

The news media has also changed a lot from the consumer’s point of view. Before 

news online were available to everyone, the consumer had to choose what 

newspaper to buy and with that getting all of the content printed in that specific 

newspaper. Even though he or she is might only had interest in one or two of the 

articles printed within that newspaper.  

Today with online news sites, users can jump from site to site and read a given 

number of articles on each and publishers has to deliver news in almost real-time 

to remain relevant. Furthermore, publishers do not have a limit on the number of 

different articles it can publish. Generally, physical newspapers publish 50-100 

articles a day, where online news sites publish up to a thousand, or more (Ullman, 

Jure, & Rajaraman, 2014). 
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In figure 2.1 an illustration of the long tail, also referred to as the new 

marketplace is presented. Popularity is on the x-axis and products on the y-axis. 

The range of most popular products, referred to as the head while all other 

products are called the long tail. The idea behind the concept is that physical 

retailers only have the storage capacity to display the most popular range of 

products, referred to as the head. On the other hand online retailers can tailor a 

more dynamic storefront, presenting the user with products that might not be in 

the top 100.000 of most popular books, but still relevant to the given user, based 

on valid recommendations. Thereby utilizing the long tail of products that physical 

merchants do not have the space to carry in their stores. 

 

 

Figure 2.1 

A good example of this is how Amazon has surpassed physical bookstores, partly 

due to their utilization of the long tail. Where physical bookstores have 

approximately 40-100 thousand books for sale, Amazon have approximately 3 

million books available through their e-commerce website. One could argue that 

the users do not care about the remaining 2.9 million books that are not amongst 

the most popular and thus belongs to the long tail category. Brynjolfsson, Hu, and 

Smith wrote an article addressing this dilemma (Brynjolfsson, Hu, & Smith, 2006). 

Analyzing Amazons sales data, they discovered that 30-40% of the total sales 
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were from products considered as long tail items. They concluded that 

implementation of well-constructed recommendation systems increase the sale of 

niche products. 

An example of such a real-life case from Amazon utilizing the long tail with a 

recommendation system is presented in the following paragraph.  

The book ‘Touching the Void’ about mountain climbing was published a long time 

ago and was not a best-seller in its day. Many years later the book ‘Into Thin Air’ 

was released on the same topic.  

Some users bought the two books together on Amazon, and their recommender 

system started recommending ‘Touching the Void’ to users who had bought or 

looked at ‘Into Thin Air’. ‘Touching the Void’ eventually surpassed ‘Into Thin Air’ in 

the amount of books sold. This would not have been possible if not for the 

utilization of the long tail through recommender systems that Amazon practices. 

Physical bookstores did not keep ‘Touching the Void’ in their stores due to its low 

popularity, nor might have realized the valuable associated product 

recommendation that a recommendation system enabled Amazon to discover 

(Ullman, Jure, & Rajaraman, 2014). 
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2.2 Addressing chosen problem  

The problem addressed in this paper is the exploration of data from the Danish 

newspaper Jyllands-Posten to improve their current recommendation approach. 

The approach implemented at the moment is a ‘most popular’ based article 

recommendation.  

Screenshot 2.2 is taken from an article page at Jyllands-Postens website jyllands-

posten.dk. In the marked red box is the currently implemented recommendation 

function. This function is based on the most read articles of all users on the site 

and thus is a popularity recommender. 

 

 

Screenshot 2.2 

A popularity model works well as a baseline model. However, it does not 

personalize the newsfeed for individual users. This paper will address how to 

personalize these recommendations for a higher prediction accuracy of 
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recommendations. Measured by the ratio between recommended and actually read 

articles.  

Improving the recommendation function through a personalized newsfeed is not 

an end goal by itself. The improvement of recommendations is proposed for the 

purpose of improving the user experience. Matching users with the right items is 

key to improving user experience and in turn satisfaction and loyalty (Koren, Bell, 

& Volinsky, 2009). Satisfied and loyal customers will lead to an increase in paying 

subscribers as fewer users leave the site and the ones trying out the service are 

left more satisfied. The end goal of increasing revenue is realized through the 

increasing number of paying subscribers on jyllands-posten.dk. 

2.3 Research Question 

 How can Jyllands Posten improve their subscribers online customer 

experience? 

o How can user data be utilized to improve the customer experience? 

With this research question, I wish to investigate how Jyllands Posten can improve 

their readers experience when visiting their website. How to leverage their 

collected user and article data from user behavior on their website, to deliver 

personalized news feeds for registered users.  
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3 Related work 

This paper builds upon several articles on related problems to the research 

question of this paper. This related work is a gathering of several papers on 

recommendation system approaches and different implementations and 

implications in these contexts. 

The topic of recommender systems and their application is addressed by Aher and 

Lobo (2013) in their article; Combination of machine learning algorithms for the 

recommendation of courses in E-Learning System based on historical data. The 

study addresses course recommendations on an E-learning platform. The approach 

is recommending courses to students based on data on other students’ course 

selection and past attended courses. They test different combinations of methods 

without great results, until discovering a combined approach of the methods 

Simple K-means clustering and Apriori association rule algorithm, which performs 

well enough to recommend accurate and valuable course recommendation to 

students suited to their individual interests. They argue that their method could 

have great implication if integrated with MOOC (Massively Open Online Courses). 

The approach to solving information overflow with the use of recommender 

systems is explored by Wang and David in their paper Collaborative Topic 

Modeling for Recommending Scientific Articles (2011). They propose implementing 

a hybrid recommender to recommend relevant scientific articles to users of an 

online community. Their hybrid recommender approach utilizes both articles 

contents and user ratings. Their findings concluded that the hybrid recommender 

approach they propose in their solution, outperforms traditional matrix 

factorization approaches while working well with new publications not yet rated by 

anyone from the community. 

Another article assessing the approach to recommender system algorithms and 

their evaluation is Pabani and Deulgaonka in their paper News Recommendation 

System Based on Multiple Classifiers (2016). This paper assesses the 

recommendation of news articles using multiple classifiers. The experiments are 

conducted on a dataset from the BBC news website. Their different approaches to 

recommending using classifiers are K-means clustering, a Naïve Bayes probabilistic 

classifier and a Rank-Classifier using word frequency in articles to index them. 

With their findings which was based on evaluation through metrics, such as 
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precision and recall, they concluded that the Naïve Bayes classifier was the best 

performing on their dataset, but an incorporation of different classifiers was the 

optimal solution. 

A commonly cited paper on the topic of recommender systems when using implicit 

feedback, is the paper; Collaborative Filtering for Implicit Feedback Datasets by 

Koren, Hu, and Volinsky (2008). They discuss the implications of using implicit 

feedback data, largely due to the fact of its lack of negative user feedback 

indication. The only feedback that can be considered negative are the items not 

yet consumed, which e.g. can be because of a deselection or unawareness of the 

item. These items are also the ones in where recommendations are to be found. 

There can be many reasonings behind an item not yet being consumed by a user; 

lack of knowledge about the existence of the item, low preference towards the 

item or difficulties finding a certain item. In their paper, they present a method of 

dealing with implicit feedback data by transferring user observations into positive 

and negative user and item pair preferences with different confidence levels. From 

this, a factor recommender model is developed, which competes in performance 

with the best explicit feedback recommenders.   

Wang, Chuang, Hsu, & Keh (2004) wrote a paper studying the business 

implications of implementing recommendation systems. They implemented a 

personalized recommender in an e-commerce cosmetic business. Their findings 

concluded, after tracking performance for a year, that recommendations of similar 

items improved sales of recommended items with 9 percent. Meanwhile, 

recommendations across product categories did not make a difference. They state 

that domain knowledge is crucial when implementing recommender systems in an 

industry like cosmetics. 

Another paper addressing the business implications of recommender systems is 

The Value of Personalised Recommender Systems to E-Business: A Case Study, by 

Dias, Locher, Li, and El-Deredy (2008). This paper explores the effects of 

recommender systems in e-commerce businesses. The effect of recommender 

systems is investigated through a case study in the e-commerce business 

LeShop.ch. Recommender systems were implemented in-store and at checkout, 

introducing customers to new and unpurchased items. They implemented the 

recommender systems in May 2006 and measured the effect of these until June 

2008. Their findings concluded that the effect of implementing the recommender 
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systems indicated an increase in revenue superior to recent years. Furthermore, 

they discovered two key findings; to frequently retrain the model on new data to 

keep it updated, and that the benefits of implementing a recommender system 

extended beyond short-term revenue increase. The recommender systems not 

retrained frequently on new user and item data quickly dropped in performance. 

Secondly, that benefits from recommender systems extends beyond directly extra 

revenue generated. Users who were introduced to new products that they did not 

usually buy, not only possibly bought this product but also revisited the site to buy 

more related products from that category of products. 

 

These former studies lays the foundation that this paper is based and tries to 

extend on. It draws on Aher and Lobo’s (2013) approach to testing different 

recommendation methods to eventually finding the best performing recommender. 

Additionally Wang and David’s (2011) considerations about information overflow 

as a problem for recommendation systems to solve. While using hybrid 

recommender approaches for dealing with collaborative filtering’s cold start 

problem. On the field of recommending news articles, Pabani and Deulgaonkar’s 

(2016) article worked as inspiration to the approach for recommending news 

articles based on users past reading history. Using evaluation metrics like 

precision and recall to evaluate models and exploring hybrid models composed of 

different recommendation methods. Koren, Hu and Volinsky’s (2008) paper on 

how to handle implicit data such as; search patterns, browsing history and 

purchases. It contains techniques for for working with implicit data, e.g., 

transferring user observations into preference and confidence levels.  

Looking into the business value of recommender systems, the paper from Wang, 

Chuang, Hsu, and Keh (2004), is considered when arguing the business 

implications of recommender systems. Considerations about the domain within the 

recommender system are operating and specific domain knowledge in that 

context, is important to acknowledge. Another paper used for assessing the 

business implications of recommender systems is the one of Dias, Locher, Li, El-

Deredy, and Lisboa (2008). Considering how the introduction of articles from new 

categories might improve user experience, making them coming back to read 

more within the same category of articles. Remembering the importance of 

retraining recommender systems frequently 
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The way this paper differentiates and thereby contributes to the academic pool of 

value on the subject is by using implicit feedback data. Something very common in 

real-world applications, but less common in literary research. The method of 

altering thresholds to combine different recommender models. This paper 

introduces the concept of a hybrid recommendation system approach using 

different recommending methods for different data thresholds. 

4 Theory and methodology 

The following paragraphs introduce the different theories and procedures for 

building recommendation systems. Followed by an explanation of the specific 

concepts applied in the recommendation model building, described in the 

experiments section. 

4.1 Theories for recommendations 

There are two general approaches for recommending items to users. One is 

content-based relying on the content of items to be recommended, the other is 

collaborative filtering. It is based on historical user-generated data. Additionally, 

the two approaches can be combined into a hybrid model method, with the 

purpose of getting the best of both worlds. The following sections will elaborate on 

the technique and different features of each method. 
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4.1.1 Content-Based systems 

Content-based recommender systems rely mainly on item content. Items with the 

most similar content to what the user has consumed in the past, but not yet 

consumed, is recommended to the user (Ullman, Jure, & Rajaraman, 2014).  

The approach simplified is illustrated in figure 4.1.1.  

 

Figure 4.1.1 

 

Diving deeper into the content-based approach a look at figure 4.1.2 gives a more 

detailed description of what actually is going on behind the scene. A user interacts 

with some articles; their feature values are stored in that user’s user profile, this 

user profile is used for matching with content profiles, recommending articles with 

similar feature values as the ones contained in the user profile.  

 

Figure 4.1.2 
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4.1.2 Collaborative-Filtering 

The collaborative filtering approach is based on historical user-generated data, 

collaborative filtering algorithms can be user or item based. User-based 

approaches generate recommendations by finding similar users with the 

assumption that they have similar preferences. Item-based approaches use 

similarity between items, their closest K-neighbors to give recommendations 

(Ullman, Jure, & Rajaraman, 2014). 

Collaborative filtering algorithms are generally more accurate than content-based 

approaches when scaled, but has a cold start problem (Koren, Bell, & Volinsky, 

2009). The cold start problem is the inability to present new users with the 

valuable recommendation, with data being sparse. New items also need some 

attention to be considered in recommendations and thereby gaining traction. 

A simple figure illustrating the user-based approach is presented in figure 4.1.3. 

The shared interest in items matches users and give recommendations based on 

items that one has consumed, which the other is yet to consume. 

 

Figure 4.1.3 
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Going further into the user-based collaborative filtering method, figure 4.1.4. 

illustrates a simple example of how a correlation matrix extracts recommendations 

for a user, after matching with another user having similar interests. 

 

 

Figure 4.1.4 

 

4.1.3 Hybrid recommenders 

Hybrid recommenders blends methods of content-based and collaborative filtering 

recommenders, trying to tackle the downsides that each method faces. Content-

based approaches perform well on new users but do not have the scalability when 

offered tremendous amounts of data that collaborative filtering has. On the 

contrary collaborative filtering models have a cold start problem and do not 

perform well on new users or items. A problem that could be dealt with by 

incorporating a content-based approach to accompany the collaborative filtering 

algorithm, thus working as a hybrid recommender system. 
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4.2 Applied theories 

This research paper will focus on collaborative filtering due to it generally being 

more accurate than content-based approaches (Koren, Bell, & Volinsky, 2009). 

Furthermore, collaborative filtering provides good scalability while also efficient on 

sparse data. There are generally two different methods for collaborative filtering; 

neighborhood- and latent factor methods.  

Neighborhood methods work by computing relations between items that tend to 

get similar ratings or users that tend to give similar ratings to similar items. Latent 

factor models map users and items into factors in obvious or uninterpretable 

dimensions. Factors of u and i mapped close to each other on dimensions would 

result in a recommendation. 

One of the most successful latent factor models is matrix factorization. The 

approach characterizes both users and items as vectors inferred from rating or 

interactions patterns. Matrix factorization proved to be the most successful 

algorithm in the Netflix price challenge, surpassing neural network methods for 

making recommendations (Koren, Bell, & Volinsky, 2009). 

The chosen algorithms for building recommenders in this paper are the 

neighborhood method; item similarity and latent factor model; factorization 

machine, built upon the matrix factorization approach. These algorithms are 

explained further in the following sections. 

 

4.2.1 Popularity model 

 

One recommender system approach is a simple popularity model. The popularity 

recommender always recommends the most popular items; hence, it does not 

individualize recommendations. Every user gets the same items recommended 

based on those items overall popularity, the most views, or ratings. This model 

can be valuable with new users, overcoming the cold-start problem of 

collaborative filtering algorithms since it does not differentiate recommendations 

for users that have generated a lot of data and completely new users. In these 

experiments, the popularity recommender model will act as a baseline model to 

which other models can be compared based on their performance. 
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4.2.2 Item similarity model 
 

Another approach is the item similarity model; this model recommends items 

based on item-item similarity. This similarity is computed based on observations of 

the user interactions that these items have in common. In practice, the model 

ranks items according to their similarities to other items already purchased and 

viewed by the user in question. There are three different formulas for measuring 

these similarities: Cosine similarity, Pearson correlation similarity, and Jaccard 

similarity. 

Since the data available for building this recommender system is implicit log data, 

of users views on articles, the choice of similarity metric needs to match the 

implicit data without any rating measures. Jaccard similarity only assesses 

whether a user and item interacted and do not evaluate on the possible rating 

given by the user for that item, contrary to Cosine and Pearson correlation 

similarity. Thus, the most applicable choice of metric is Jaccard similarity when 

dealing with implicit feedback data. 

 

Equation 4.2.1 illustrates the formula for measuring Jaccard similarity. Here the 

similarity is measured for item 𝑖 and 𝑗. 𝑈𝑖 are the set of users who consumed item 

𝑖, and 𝑈𝑗 are the set of users who consumed item 𝑗. The intersection between 𝑈𝑖 

and 𝑈𝑗 is denoted 𝑈𝑖 ∩ 𝑈𝑗 and discloses all items present in both sets, whereas the 

union denoted 𝑈𝑖 ∪ 𝑈𝑗 exposes those items represented in either set (Phillips, 

2013). 

 

 

Equation 4.2.1 

 

Equation 4.2.2 gives an example of a Jaccard similarity between 𝑖 and 𝑗 being 

calculated. Item 𝑖 and 𝑗 both have recorded four user interactions, of these users 
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two of them have intreacted with both items. This results in a Jaccard similarity of 

33% between items 𝑖 and 𝑗. 

 

 

Equation 4.2.2 

 

4.2.3 Ranking factorization model 
 

One last approach used in our experiments is ranking factorization. The ranking 

factorization recommender works by learning latent factors for all users and items. 

Then using these latent factors to rank the highest recommended items based on 

the likelihood of detecting those user and item pairs.  

The method behind the ranking factorization model is the factorization machine, 

introduced by Rendle (Rendle, 2010) which is a generalization of the matrix 

factorization approach. It works as matrix factorization, with the additional ability 

to learn latent factors for all variables including side features, which in our case 

could be the article categories data. 

The model works by assigning the raw page view data (rui) into two separate 

magnitudes: preferences(pui) and confidence levels(cui), of distinct interpretations. 

These factors are used when training the model to be capable of predicting 

preferences and confidence levels for every possible user and item combination.  

 

The internal coefficients of the recommender are trained from the pre-known 

interactions between users and items. Later the recommendations given are based 

on these interactions. 
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In the process of optimizing the model's internal coefficients, it learns from all 

users available in the dataset. Factorization machines break the independence of 

interaction parameters by factorizing these. Thus, data from one interaction 

contributes in the estimation of related interaction parameters. These aspects 

contributes to the models efficiency even when faced with data sets of high 

sparsity. 

 

When the user and item factors are computed, the model can recommend for user 

u the K not yet viewed articles with the largest pˆui. pˆui indicates the predicted 

preference of user u for item i (Koren, Hu, & Volinsky, 2008). 

The ranking factorization model has two different choices for solvers when fed with 

implicit data. The first one is ‘sgd’, which is the stochastic gradient descent 

method. The other one is called implicit alternating least squares, or ‘ials’, an 

alternating least squares solver specifically designed for implicit data. The 

following paragraphs will go through the training of two different ranking 

factorization models with each different solver and with graphs illustrating their 

mean precision measure given the number of recommended items. 

The IALS solver seeks to minimize the objective function. The goal is to make the 

sum of weighted squared differences between the true and predicted rankings as 

small as possible. 

This training is done by computing on the P and Q matrices containing users u and 

items i. The process is executed by initializing Q with small random numbers and 

then for E number of iterations computing the P that minimizes fR for fixed Q, 

followed by computing the Q that minimized fR for fixed P (Takács & Tikk, 2012). 

With user or item factors set fixed, the cost function is quadratic. Thus an 

alternating least squares optimization works well (Koren, Hu, & Volinsky, 2008). fR 

denotes the ranking objective function (Takács & Tikk, 2012). 

Stochastic gradient descent computes an estimate of the loss, by taking the 

average loss of a little fraction of the training data. This fraction could be between 

1-1000 training instances and picked at random, which is a crucial prerequisite for 

the method to work. Loss and derivative are computed from each fraction of 

training data. The computed derivative is treated as the pretended right direction 

for gradient descent, reducing the real loss. Sometimes this derivative might 
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increase the real loss and go opposite the right direction, this is however 

compensated for by doing a lot of iterations, taking small steps each time. This is 

possible due to the small cost of computing each step. Stochastic gradient descent 

does more iterations than the original gradient decent method but is still more 

efficient (Ruder, 2016). The method scales well with a lot of data and big models 

and is therefore a method used a lot in the area of deep learning. 

 

5 Experiments 

5.1 Overview 

The following section will go through the whole process of creating a 

recommendation system. From data handling, collecting the dataset, data pre-

processing and splitting data into train and test sets, to training and testing 

different recommender models, finding the optimal parameters and delivering 

actual individual article recommendations to users. 

 

The recommender system models are build using Python while utilizing the 

libraries pandas and GraphLab Create. The Python package pandas is a data 

analysis toolkit providing a software library for data manipulation and analysis. 

The tool implements intuitive functions, making work with real-world data and 

different data analysis tasks simpler to perform (pandas, n.d.). The GraphLab 

Create library delivers a machine learning modeling toolkit, with a high-level 

programming interface for straightforward implementations of machine learning 

models and visualization of their output (Turi, n.d.). 

 

The code example 5.1 imports these dependencies, giving them a shortened 

nickname for ease of use.    

 

 

Code example 5.1 
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In these experiments the pandas package is mainly used for data importing and 

preprocessing, while the GraphLab Create package is used for making the test, 

train data split, building, training and evaluating different machine learning model 

approaches for recommender systems. 

 

5.2 Dataset 

The dataset consists of user logs collected since July 2015 from jyllands-posten.dk 

(Hardt & Rambow, 2017). The dataset includes 253,752,032 data observations on 

89,605 different articles. 

There are 89,179 distinct registered users, meaning that they have logged into 

Jyllands-Posten's website: jyllands-posten.dk. 

For this research paper, the data observations are restricted to those generated 

from article clicks. Many data entries are from users entering the front page, 

clicking onto the premium page, etc. Since the purpose of this paper is article 

recommendations, the dataset is restricted to only include article views from 

registered users. 

The dataset consists of implicit feedback data since there is no explicit feedback 

from users in the data; hence, the data available is extracted from user behavior. 

Observations about the users click views on different sites of the jyllands-

posten.dk website are composing the feedback data. The challenge when dealing 

with implicit data is the lack of negative feedback. The data observations gives no 

indications about disliking any articles. The only thing to withdraw from the 

feedback is what the users probably liked, based on their viewing of different 

articles (Koren, Hu, & Volinsky, 2008).  

Another challenge faced when using implicit data for building recommender 

systems are the lack of literature on the subject. This is strange since implicit data 

is more common to come across in real-world examples than explicit feedback 

data. There is a lot of implicit data to be collected by user behavior online, but 

limited explicit data from users actively giving feedback on a given product, 

service or good. Despite this being the case, the vast majority of literature and 

examples on the topic of recommender systems are conducted on explicit 

feedback. A reasoning might be the Netflix prize challenge from 2009 where the 

streaming company Netflix awarded $1 million dollars to the person or team that 
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could come up with a recommender system algorithm to beat theirs by at least 

10% (Gomez-Uribe & Hunt, 2016). The economic incitement and attention inspired 

a lot of research in the field of recommender systems with explicit feedback data. 

 

The Jyllands-Posten dataset is stored in a Postgres SQL database and to build the 

recommendation system different SQL queries were called on the database to 

extract the data needed for building and testing the different models.  

Below is an example of the SQL query executed within the database, which 

contains various tables with everything from visit data to article categories and 

actual titles and text bodies on all published articles. The query selects sso_id’s 

and content id’s from the views_complete table, containing data of all page views, 

i.e., every time a user has opened up a web page on jyllands-posten.dk.  

To exclude blank entities in the sso_id, the NOT IN (‘NULL’, ‘NOTSET’,’ ’) is 

included in the query. Furthermore, the only relevant instances to look at is 

articles, without considering page views of the front page or other pages within 

the website that are not articles. This is why the page_id LIKE ‘%.art%’ is 

executed, to only return page_id rows with .art. in the name, which all articles 

have in their page_id name.   

 

 

Query 5.2 
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Table 5.2 illustrates the output from the SQL query in ‘Query 5.2’ when called on 

the jp database. This output is stored in a comma-separated file (csv). 

 

 

Table 5.2 

 

5.3 Data preprocessing 

Now that data is extracted from the database; the next step is data preprocessing 

to groom the dataset into something suitable for training and testing 

recommender models.  

Code example 5.3.1 loads in the csv formatted and converts it to a pandas data 

frame containing the viewing data of all logged-in users. The data frame contains 

the columns ‘uid’, which is the user id and ‘aid’ short for the unique article id of 

each different articles. Calling the df.head() function returns an output visualizing 

the first five rows of the data frame with the defined column names from the line 

above. 
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Code example 5.3.1 

  

Now that the dataset has been loaded into data frames, some data preprocessing 

is performed to optimize later model performance.  

Duplicates are removed to ensure that each user and item pair only appear once in 

the dataset. The removing of duplicates is executed in code example 5.3.2 with 

the df.drop_duplicates method. 

 

 

Code example 5.3.2 

 

Another step in preprocessing the data set is setting the thresholds. Thresholds 

assess the minimum number of articles that a user has read and the minimum 

number of users to have read a certain article. Altering the thresholds determines 

the number of interactions that a user has to have in the dataset for the user to be 

contained in the train and test data that the recommender systems are trained 
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and tested on. 

Code example 5.3.3 counts the interactions between uid and aid in a while loop. 

The minimum of uid and aid are set in the threshold functions parameters. The 

output at the bottom illustrates the users and articles included in the dataset 

before and after running the thresholds function. 

 

Code example 5.3.3 

 

When duplicates have been removed, and thresholds have been set the next step 

is to convert the data frame df into an SFrame, which is the format used to train 

recommenders in the GraphLab environment. Once converted, the SFrame is split 

into a train and test dataset for training and testing the recommender models. The 

random split is done by choosing 1000 random users and subsequently randomly 

taking 30% of those users’ interactions for use in the test set. This is executed by 

the random_slip_by_user GraphLab function. The whole process is executed in 

code example 5.3.4.  
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Code example 5.3.4 

 

5.4 Training model 

Using the Sframe ‘train’, the different models are initialized and trained on this 

data at this stage.  

The ranking factorization recommender has an option optimized for ranking 

implicit data using the implicit matrix factorization model. This model addresses 

the unique characteristics of implicit data. To utilize the capabilities of this model 

feed in ‘user_id’ and ‘item_id’ data without any ‘target’ column when creating a 

ranking factorization recommender to choose the implicit matrix factorization 

model by default (Turi, 2016). The ‘target’ column is the one that would contain 

any available rating data in case of an explicit dataset.  

The same goes for the item similarity model. Here the same user_id and item_id 

from the ‘train’ Sframe is fed into the item_similarity_recommender.create 

function. As discussed in the section theory and methodology the Jaccard similarity 

is the solver used in this model. 
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The popularity model is just trained to function as a baseline model for the other 

approaches to compare. 

The create functions initializing and training the different recommender systems 

are displayed in code example 5.4. 

 

Code example 5.4 

 

5.5 Testing models 

This section will go through tests of different recommender models. Altering 

various parameters and comparing the results. 

5.5.1 Evaluation metrics 

The basic goal of the model is to deliver recommendations for users. To measure 

the performance of the model, it needs evaluation measures. The first tests are 

done using precision and recall. 

Precision is the definition of the measure; out of all the recommended items shown 

to the user, how many did the user actually like? Thus if our model recommends 

top 5 articles to a user based on the test set, and the user actually viewed 2, the 

precision calculated in this example would be 0.4 or 40%. 

Recall is a measure of the ratio of items a user likes that actually were 

recommended by the model. Say a user likes 10 items and the recommender 

shows him 2 of these items, the recall would be 0.2 or 20%. 

The two graphs 5.5.1 and 5.5.2 clearly illustrates is the inverse relationship 

between precision and recall as the number of recommended articles is altered. 
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Graph 5.5.1 

 

Graph 5.5.2 

 

Precision drops by more than 50% as we go from recommending 1 item to 50 

items, while recall increase significantly. 

The reason behind is that precision only considers the actual recommended 

articles and if this or these article(s) are in the selected number of 
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recommendations, whereas recall measures the ratio between recommended 

articles to the total amount of articles read. So increasing the articles attempted to 

recommend will always result in a higher recall, while precision will suffer 

tremendously. 

As the goal of this research paper is to recommend a fixed number of articles. 

With recall, a user who reads 100 articles and only are recommended three, would 

only result in a 3% recall despite them all being correct. In comparison, a user 

who only read 10 articles, but got 3 recommendations and only one correct ‘hit’ 

would result in a recall of 10%. Taking this inverse relationship between precision 

and recall into consideration, the remainder of the experiments are done by only 

assessing the precision metric. 
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5.5.1.1 Comparing models 

The popularity, item similarity, and ranking factorization models are compared 

using the compare_models GraphLab function, defining the models to compare, 

the metric to evaluate the models, in this case precision_recall, and feeding in the 

test data SFrame for the models to be evaluated on.  

This process is displayed in code example 5.5.1. The output are three different 

tables of the different performance metric values at different recommendation 

cutoffs.  

 

Code example 5.5.1 
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This table data is visualized in graph 5.5.3. It shows obvious distinctions in 

precision performance between the three models. Both the item similarity model 

and ranking factorization model are outperforming the popularity baseline model 

by a great deal. For comparison; at 3 recommendations, the baseline model’s 

precision is about 10%, the item similarity model is about 15%, and the ranking 

factorization model is about 20%.  

Next, the ranking factorization model will be tested with different solvers to try 

and improve this best performing model. 

 

Graph 5.5.3 

 

5.5.1.2 Testing different solvers 

The ranking factorization model has two different choices for solvers when fed with 

implicit data. The first one is ‘sgd’, which is the stochastic gradient descent 

method. The other one called implicit alternating least squares, or ‘ials’, an 

alternating least squares solver specifically designed for implicit data. The 

following paragraphs will go through the training of two different ranking 

factorization models with each different solver and with graphs illustrating their 

mean precision given the number of recommended items. 
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The IALS solver seeks to minimize the objective function. The goal is to make the 

sum of weighted squared differences between the true and predicted rankings as 

small as possible. 

This training is done by computing on the P and Q matrices containing users u and 

items i. The process is executed by initializing Q with small random numbers and 

then for E number of iterations computing the P that minimizes fR for fixed Q, 

followed by computing the Q that minimized fR for fixed P (Takács & Tikk, 2012). 

With user or item factors set fixed, the cost function is quadratic. Thus an 

alternating least squares optimization works well (Koren, Hu, & Volinsky, 2008). fR 

denotes the ranking objective function (Takács & Tikk, 2012). 

Stochastic gradient descent computes an estimate of the loss by taking the 

average loss of a little fraction of the training data. This fraction should be 

between 1-1000 training instances and picked at random, which is a crucial 

prerequisite for the method to work. Loss and derivative are computed from each 

fraction of training data. The computed derivative is treated as the pretended right 

direction for gradient descent, reducing the real loss. Sometimes this derivative 

might increase the real loss and go opposite the right direction. However, this is 

compensated for by doing a lot of iterations, taking small steps each time. This is 

possible due to the small cost of computing each step. Stochastic gradient descent 

does more iterations than the original gradient decent method but is still more 

efficient (Ruder, 2016). The method scales well with a lot of data and big models 

and thus a method used a lot in the area of deep learning. 

In illustration 5.5 the process of stochastic gradient descent is depicted. Taking a 

lot of small steps, not always optimal, but reach a loss minimum at the end of 

iterations.  
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Illustration 5.5 

 

Code 5.5.2 is extracted from the python notebook and is the part that initializes 

two different ranking factorization recommenders with the .create function. The 

solver is what differentiates these models initiated with the solver set to ‘ials’ for 

the rank_fac_model_ials model and ‘sgd’ for the rank_fac_model_sgd model. 

 

 

Code example 5.5.2 

 

Code 5.5.3 compares the two models created on their performance on the test set. 

Using the metrics precision and recall to assess their relative performance, the 

output are two tables with precision and recall values for each model at different 

cutoffs. As discussed in the section ‘evaluation metrics’, precision is the only 

measurement relevant and hence recall is discarded for analysis. 



40 

 

Code example 5.5.3 

 

Graph 5.5.4 is created to give a better overview of the models, and their 

performances measured on precision. 
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Graph 5.5.4 

 

Looking at the graph 5.5.4 the IALS solver clearly outperforms SGD up until the 

cutoff at 5 recommended items, thereafter the two solvers perform similar from 

cutoffs 6 to 10. 

Due to this discovery, the IALS solver will be the one used going further into 

testing models with added side info and at different thresholds.   
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5.5.1.3 Adding side info 

In an attempt to optimize recommender systems performance, side information is 

added to the recommender models to measure if this can improve precision.  

Code example 5.5.4 loads in the csv file ‘category.csv’, which contains the data 

about the category related to each aid. In the same procedure as the data 

preprocessing, the csv file is loaded into a pandas data frame and subsequently 

converted to an SFrame.  

 

Code example 5.5.4 

 

As in the code from the training model section, code example 5.5.5 initializes and 

trains models using the create function. The difference here is the item_data, 

which is set equal to the SFrame ‘side_sf’ just created. 

 

 

Code example 5.5.5 
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Graph 5.5.5 compares the item similarity models, with and without side 

information. They perform almost identically, with the side info recommender 

being slightly better on precision. However, nothing significant. 

 

 

Graph 5.5.5 
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When comparing the ranking factorization models with and without side 

information, the model performance differs a bit more. The interesting observation 

from graph 5.5.6 is that the recommender with side information has the highest 

precision when only recommending one item, while the ranking factorization model 

without side information performs better when recommending 2 or 3 articles. 

Since the goal is to recommend 3 articles to users, further experiments will be 

done on the ranking factorization model without side information. 

 

 

Graph 5.5.6 
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5.5.1.4 Altering thresholds 

The model performance differs a lot when altering the thresholds set in 

preprocessing of the dataset. As thresholds are set higher, precision improves, but 

at the cost of the number of users in the dataset. Graph 5.5.7 illustrates the effect 

that the value of thresholds has on the baseline, item similarity and ranking 

factorization models performance metric precision. The number of users left, 

qualifying for each threshold is represented by the green spaced line, the users 

metric is shown on the right y-axis. 

All model precisions are measured given 3 item recommendations. 

 

 

Graph 5.5.7 

 

Choosing a threshold to use for building the recommendation system is tricky 

since it is a trade-off between the number of users available and model precision. 

Hence it is a consideration, assessing both measures. It can be concluded from the 

graph 5.5.7 that as more data about user activity is gathered, the 

recommendations made from the models are increasingly precise and thus 

valuable. 
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With the assessment that each user gets three recommendations and we wish at 

least one of the recommendations to be valuable to the user the choice of 

threshold was 80. With 80 as the threshold, making 3 recommendations for each 

user, a precision of 33.5% is reached, and it is safe to assume that in most cases, 

statistically, the recommender system will get at least one recommendation right. 

The threshold could be set even higher to improve precision further but at the cost 

of the number of users available to make recommendations for. 
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5.6 Results 

The function overview in code example 5.6.1 is called to assess the final ranking 

factorization model compared to the baseline popularity recommender model and 

measured on the test set.  

 

Code example 5.6.1 

 

Graph 5.6 illustrates the model performance measured on precision. As clearly 

stated in the graph, the ranking factorization model outperforms the baseline 

model by far. The precision at 3 recommendations for the ranking factorization 

model is 33.5%, well above in comparison to the popularity model with 18.4% 

precision. 

 

Graph 5.6 
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To display the recommendations in a more meaningful way, another csv file 

containing the title of the articles is loaded in as the SFrame title_sf in code 

example 5.6.2. 

 

Code example 5.6.2 

 

Each title is assigned a certain article id as illustrated in code example 5.6.2. 

Following are a few examples of real recommendations made by the ranking 

factorization recommender system on randomly chosen users. 

Recommendation example 5.6.1 is displaying three recommended articles to a 

user who have read 116 articles previously. The recommendation suggestion 

seems to be reasonably within the same ballpark, with at least two dealing with 

the topic of some relationship advice.  
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Recommendation example 5.6.1 

 

Recommendation example 5.6.2 has three very high precision rated articles for a 

user who have read 626 articles previously. The user is presented with articles on 

war and political issues, which is probably something that the user has read a lot 

about previously. 

 

Recommendation example 5.6.2 

 

The articles presented in recommendation example 5.6.3 also seems reasonably 

aligned with two of them addressing some navy stories and one about formula 1. 
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Recommendation example 5.6.3 

The last recommendation example 5.6.4, also has some articles along the same 

lines. The amazing observation is that the system actually recommends the top 

two articles concerning the same person, without giving any text input data to 

train on. The algorithm does not know that the same name are present in the top 

two recommendations, these recommendations are based on a or some similar 

user(s) probably reading both articles about Anja Andersen. 

 

 

Recommendation example 5.6.4 

To conclude it seems like the recommendations made by the recommender system 

makes logically sense along with the statistical argument that at least one of them 

should be appropriate on average. 
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6 Conclusion 

The proposed approach to improving the online experience of users on jyllands-

posten.dk is by giving valuable recommendations to users, by utilizing user data 

and recommendation systems. 

The proposed recommender system solution is a ranking factorization 

recommender as it have proved to be the best performing model on the data 

available. The models performance is way above baseline when implemented on 

users with a minimum amount of historical data, and the recommender system 

precision improves as user data accumulates, through the interaction with content 

on jyllands-posten.dk. 

With the implementation of the recommender system on the jyllands-posten.dk 

website, Jyllands-Posten will be better capable of utilizing the long-tail of their 

published content. Of course, some news are only relevant the day or week of it 

being published. However, some articles debating different subjects or analyzing a 

certain situation can be relevant for years. This is where the recommendation 

system really will improve how the users experience is on jyllands-posten.dk in 

what content they are presented with. Preferably more relevant to them being a 

user specific recommendation than some generic recommendation of content that 

tries to fit to everyone’s taste.  

The proposed recommendation system solution is only applicable to users logged 

on to the website for now, because of the difficulties in tracking not logged-in 

users from session to session. However, solving this logging of non-users through 

cookies could widen the utilization of the recommendation system to more users 

visiting jyllands-posten.dk both users and non-users. 

 

6.1 Discussion 

Evaluation of the model performance are based on predictions of 

recommendations based on what the users already consumed, evaluated on the 

examples hidden in the test set, emulating the future consuming behavior of 

users. However, the purpose of recommender systems can be to guide customers 

towards something they would not have thought of consuming if not 
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recommended. Thus recommending something out of the scope of the usual user 

consumption behavior. 

 

Although there are many upsides to personalizing the user experience for people 

online, such as relevance, better-targeted ads, and valuable recommendations, as 

addressed throughout this paper, there are also ethical issues with personalizing 

the web that requires attention. The activist Eli Pariser calls this problem ‘The 

Filter Bubble’, the term describes the situation we live in where everyone lives in 

their own online universe. A universe where you do not actively choose the 

content that you see, and you do not see what is edited out before the information 

is presented to you. Examples of this are how different people can make the exact 

same search query on Google and get different results, and the Facebook 

newsfeed where filtering enables, that the information presented is from the 

people whom you interact the most with, leaving you no clue about what other 

friends or less active Facebook users might be posting. When asked about the 

Facebook news feed Mark Zuckerberg, the founder of Facebook, said this: “A 

squirrel dying in front of your house may be more relevant to your interests right 

now than people dying in Africa.” (Pariser, 2011). 

There is a difference between what users wants to see vs. what they need to see. 

Eli Pariser calls this a balance in the information diet. People need to be fed 

information vegetables along with information junk food. A way to overcome this 

issue could be with a focus on training these new algorithms serving as 

information gatekeepers to give individuals more control and transparency, and 

encode a sense of societal responsibility. This could be presenting information to 

users that are from another point of view, uncomfortable, relevant, important, and 

challenging along with the information that the person usually consumes. 

 

6.2 Future work 

For future work, a merging of a collaborative filtering recommender and a content-

based approach, creating a hybrid recommender, could overcome the cold-start 

issues of a collaborative filtering model. Thus being applicable to implement in the 

recommendation of articles to users or non-users from the first interaction with 

jyllands-posten.dk.  
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Another approach could be to do some natural language processing on the titles or 

text corpuses of the articles, to extract themes or features for use in the building 

of the recommendation system model.  
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8 Appendix 

8.1 Full code from final run 
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