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Executive summary 

In the aftermath of the financial crisis of 2007-2009, the Gaussian copula has received a lot of negative attention 

concerning its role in the valuation process of Collateralized Debt Obligations (CDOs). Specifically, by generating 

the portfolio loss distribution, the application of this model allowed its users to quantify the risk in the portfolio 

of assets underlying the CDO. However, because of its underlying distributional assumption, the Gaussian copula 

critically underestimates the probability of many simultaneous defaults, and thus the risk associated with the 

most senior CDO tranches.  

¢Ƙƛǎ aŀǎǘŜǊΩǎ ¢hesis considers the use of the one-factor Gaussian copula applied to synthetic CDO valuation, and 

compares it to an alternative represented by the one-factor Student t copula. Through a semi-analytical 

implementation of the one-factor Gaussian copula, and a Monte Carlo implementation of the one-factor Student 

t copula, this thesis finds that the Student t copula, due to its fatter-tailed nature, distributes the relative risk 

between tranches somewhat differently. In general terms, the one-factor Student t copula assigns more risk to 

the most senior tranche in the CDO and less risk to the equity tranche. In spite of this difference, no immediate 

improvement is obtained in relation to matching the observed tranched ITraxx Europe quotes, and thus in the 

ability to simultaneously price all synthetic CDO tranches correctly.   

Through a thorough sensitivity analysis of both models, the researcher finds it unlikely that the specifics of the 

Gaussian copula played a significant role in the escalation of the financial crisis. The similarities between the 

behavior of the two models under varying input assumptions indicate that no major improvement would have 

been obtained, had the one-factor Student t copula been applied as the market-accepted valuation model. 

Instead, it appears that other underlying factors within the financial industry were the main contributors to the 

outbreak of the crisis, and that math represented by the Gaussian copula, was used as an excuse to justify some 

of the unhealthy and immoral behavior that occurred across the financial industry. This, both in relation to some 

very concerning moral hazard problems within financial institutions, the inevitable conflict of interest that exists 

in the business model of the credit rating agencies, and the general overconfidence, which dominated across the 

financial industry during this period.              
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1. Introduction 

Approaching the 10-year anniversary of the Global Financial Crisis (άǘƘŜ ŎǊƛǎƛǎέ ƻǊ άǘƘŜ ŦƛƴŀƴŎƛŀƭ ŎǊƛǎƛǎέ), it has 

become clear to most that asset securitization played a significant role in the escalation of what many consider 

the worst financial crisis since the Great Depression (Stewart, 2008). In its most general form, asset securitization 

allows the originator to transfer risk from its own balance sheet to another counterparty, which is done by 

pooling the desired assets and selling them off to a so-called Special Purpose Vehicle (Jobst, 2008). In isolation, 

such a transaction does not appear to be of particularly harmful nature. HoǿŜǾŜǊΣ ŀǎ ƛǘ ƛǎ ƻŦǘŜƴ ǘƘŜ ŎŀǎŜ ƛƴ ǘƻŘŀȅΩǎ 

world, one cannot consider such an instrument to be independent from the environment in which it is applied.  

The years leading up to the outbreak of the crisis were dominated by a heavy increase in both the dollar amount 

of outstanding securities as well as the complexity of the instruments traded in the market.  One of the most 

notorious instruments within this category was, and still is, collateralized debt obligations, usually referred to as 

CDOs. A CDO consists of a number of securities with different levels of seniority and corresponding spreads, all 

backed by the cash flows from the same underlying reference portfolio of debt instruments. The cash flows 

generated from the reference portfolio are then distributed to CDO investors, based on the seniority of their 

claims (Bomfim, 2005).  Following the crisisΣ ƘŜŀŘƭƛƴŜǎ ƭƛƪŜ άThe CDOs ¢Ƙŀǘ 5ŜǎǘǊƻȅŜŘ !LDέ (Fiderer, 2011) and 

ά! ²ŀƭƭ {ǘǊŜŜǘ LƴǾŜƴǘƛƻƴ [Ŝǘ ǘƘŜ /Ǌƛǎƛǎ aǳǘŀǘŜέ (Nocera, 2010)  have painted a picture of CDOs as one of the main 

contributors to the escalation of the financial crisis. Articles like the above, typically refer to the so-called 

synthetic CDOs, which are products that are similar to the cash CDOs described above, the only difference being 

that the reference portfolio consists of credit default swaps (Gibson, 2004). As payments to CDO investors 

depend on the cash flows generated from the reference portfolio, they need to consider the probability that 

some of the reference entities default on their payments, and even more importantly, the probability that several 

of the reference entities default simultaneously. In other words, a well-prepared synthetic CDO investor should 

be aware of the default correlation between the assets in the reference portfolio, and thus the corresponding 

loss distribution function (Bomfim, 2005).   

A natural consequence of increasing complexity in the products traded in the financial markets is an increase in 

the complexity of the models used to value them. In a study from 2014, Donald MacKenzie and Taylor Spears 

investigate the use of the Gaussian copula model for CDO valuation in investment banks and credit rating 

agencies. Here they find that a specific semi-analytical version of this model was accepted as the general market 

model in derivatives departments in investment banks, as well as in all major credit rating agencies. However, 
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following the crisis, this model has been criticized heavily by several people in and around the financial industry, 

some even going as far naming it ά¢ƘŜ ŦƻǊƳǳƭŀ ǘƘŀǘ ƪƛƭƭŜŘ ²ŀƭƭ {ǘǊŜŜǘέ (Salmon, 2012). As indicated by the name, 

the Gaussian copula is based on the well-known Gaussian distribution, which as it turns out, can be said to be 

both its greatest strength and weakness. This assumption of multivariate Gaussianity made the model appealing 

to practitioners, which in turn facilitated the adoption of the model across the financial industry (MacKenzie & 

Spears, 2014). However, in retrospect the same assumption has been subject to enormous amounts of criticism, 

mainly evolving around the fact that this assumption means that the Gaussian copula completely ignores tail 

dependence. In non-statistical terms, this means that the model does not account for dependence between 

extreme values, i.e. the possibility that large crashes, or peaks, can be correlated across assets, which is in fact 

often indicated from empirical data (Oh & Patton, 2015). Considering the events that occurred around the 

financial crisis, this characteristic appears particularly unfortunate, as the instability around the crisis meant that 

the ability to model tail dependence turned out to be highly relevant.  

This thesis sets out to investigate the role of copula models in the financial crisis, with a specific focus on the use 

of the Gaussian copula and Student t copula in synthetic CDO valuation. The investigation will evolve around 

some of the short-comings of the Gaussian copula model, and the potential implications the use of this model 

had on the escalation of the financial crisis. Furthermore, the application of the Gaussian copula will be put in 

perspective to the potential improvements in synthetic CDO valuation, which could have been achieved had the 

Student t copula model been applied instead. In other words, the author of this thesis poses the question of 

whether the financial crisis would have developed any differently, had the Student t copula model been applied 

to synthetic CDO valuation instead of the Gaussian copula. The thesis seeks to answer this question through a 

model specific investigation of the relevant models, and considers the findings of this analysis in relation to the 

financial crisis.   

 

1.1 Research question 

The purpose of this MŀǎǘŜǊΩǎ ¢hesis is to investigate the role of the Gaussian copula model in the financial crisis. 

The thesis is focused around on a comparative analysis of the performance of the Gaussian copula and the 

Student t copula, and furthermore aims to consider the potential implications of using one opposed to the other 

in relation to the development of the financial crisis. Conducting this investigation, the aim is to answer the 

following research question:   
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What were the implications of the use of the Gaussian copula model in synthetic CDO valuation for the escalation 

of the financial crisis, and would anything have been different had the Student t copula been applied instead?  

In answering this question, the author seeks to answer the following sub-questions:  

- How is the Gaussian copula model applied to synthetic CDO valuation and how does it perform compared 

to market prices?  

- What are the short-comings of the Gaussian copula when applied to synthetic CDO valuation, and what 

implications could these short-comings have for investors?  

- How can the Student t copula model be applied to synthetic CDO valuation, and how does it perform 

compared to the Gaussian copula in relation to market prices?    

- Could using the Student t copula instead of the Gaussian copula for synthetic CDO valuation have 

changed anything in the development of the financial crisis?  

These questions will be answered through a theoretical analysis of the relevant models, as well as an empirical 

model-oriented analysis of the performance of both models compared to market data at different points in time. 

However, as the primary focus is to investigate the difference between the characteristics of the two models, 

the empirical data is primarily used to illustrate model behavior under various assumptions. The empirical 

analysis of this thesis will be conducted on multiple series of the tranched ITraxx Europe with 5-year maturity on 

data points representing different market conditions.  

  

1.2 Structure 

The thesis is structured in the following way. Chapter 1 lays out the problem statement and accounts for the 

limitations of the thesis. Moreover, chapter 1 also introduces the market for credit derivatives, as financial 

instruments within this market will be the focus moving forward. Chapter 2 provides a theoretical introduction 

to the components of synthetic CDO valuation. This includes the main approaches to credit risk modelling, and 

modelling of the loss distribution using copula theory. Chapter 2 also gives an overview of relevant existing 

literature within copula theory and CDO valuation. Chapter 3 introduces CDS indices and the selected empirical 

data, which lays the foundation for the model-oriented analysis conducted in chapter 4. Furthermore, chapter 3 

accounts for the general research approach applied in this thesis.  



aŀǎǘŜǊΩǎ ¢ƘŜǎƛǎ Jens Christian Betton Johansen 11/09-2017 
 

7 
 
 

In chapter 4, the introduced one-factor Gaussian and one-factor Student t copula models are applied to synthetic 

CDO valuation, and a sensitivity analysis is conducted on the results found using the two model approaches. The 

estimated tranche spreads computed under various input assumptions are then compared and used to infer if 

any improvement can be achieved, when using the Student t copula model as an alternative to the Gaussian. 

Chapter 5 contains a discussion on the results found in chapter 4, as well as a discussion on other factors that 

might have influenced in the escalation of the financial crisis. Finally, chapter 6 concludes and answers the overall 

research question, and chapter 7 takes a brief look ahead.   

   

1.3 Delimitations 

When investigating a topic as wide and complex as a global financial crisis, many factors can undoubtedly be 

examined from a variety of different angles and perspectives. Consequently, a clear delimitation of the areas 

covered within this thesis is important to secure a match between the expectations of the readers, and the 

intentions of the author.  

As stated in the problem statement presented in section 1.2, this thesis takes a very narrow starting point in the 

Gaussian copula, and the implications of its use for synthetic CDO valuation, and compares this with the potential 

alternative in the Student t copula. This narrow focus has been consciously chosen, acknowledging that many 

other interesting copula model alternatives exist in the literature. These models, however, will only be briefly 

touched upon as a detailed discussion is outside the scope of this thesis. This delimitation includes other families 

of copula models as well as extensions to the models considered, including stochastic input variables such as 

those related to stochastic correlation, stochastic recovery rate, or stochastic interest rates.  

The analysis conducted in the thesis, should not be considered a classical empirical analysis, since the purpose is 

not to prove certain phenomena in the data. Rather the focus of the analysis is to illustrate the behavior and the 

characteristics of the models considered, and discuss these in the context of the crisis. Consequently, the quality 

and the specifics of the applied data is of lower importance than it would be in the case in a classic empirical 

analysis, as the data only functions as a means towards understanding the models. For comparability purposes, 

a maturity of 5 years is assumed for all calculations and model quotes. Only the specific use of copula models for 

synthetic CDO valuation is considered in this thesis.  
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Due to the complexity of the models included, a certain level of mathematical sophistication is required to 

understand both their characteristics and implementation. However, the full mathematical derivations 

underlying the models are outside the scope of this thesis, as the purpose is not to contribute with mathematical 

advances within the field, but more so to investigate the use and practical implementation of the models in 

relation to the crisis. Thus, the thesis will only introduce mathematical content to the extent that is required to 

understand the characteristics of the models and their implementation.   

As mentioned, a very narrow focus on the two mentioned copula models has been chosen in this thesis. However, 

the author acknowledges that many other factors did undoubtedly also contribute to the escalation of the 

financial crisis. No detailed account of all these factors will, however, be given here, as this is simply not possible 

within the scope of this thesis. However, some of them will be discussed in relation to the results obtained 

through the model analysis, as this will provide a better understanding of the role of the models in relation to 

other factors.  

Regulatory details concerning defaults, issuance of credit derivatives, as well as taxations issues related to credit 

derivatives will not be included in this thesis.        

             

1.4 The market for credit derivatives 

To properly set the scene for the remainder of the thesis, it is necessary to introduce the context in which it is 

written. Thus, the following section will introduce the market for credit derivatives, and outline the development 

this market has undergone in recent decades. Of the many different derivatives traded in this market, two of the 

most well-known are credit default swaps (CDS) and collateralized debt obligations (CDO). As these are also the 

products that are most relevant to this thesis, the following introduction to the market for credit derivatives will 

mainly evolve around these products. However, the specific characteristics of the particular products will be 

introduced in more detail in section 2.1.  

The market for credit derivatives has existed for several decades. However, much has changed since the early 

beginning in the 1990s. The origin of credit derivatives can be found in the financial innovations, which took place 

in banks at this point in time. Basically, banks needed at method that would allow them to extend more credit 

to their most important clients, towards whom the limit of credit exposure had already been reached. The 

solution was to sell this credit risk to another financial institution as this allowed the originating bank to keep 
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increasing the credit volume towards the clients, without increasing risk on their own balance sheet (Dufey & 

Rehm, 2000). Even though many things have happened since these original credit risk transaction, one thing 

remains the same, a credit derivative carries credit risk.  

An important development, which has catalyzed both the size and the extent of the credit derivatives market, 

was the formulation of the 1999 ISDA Credit Derivative Definitions, which essentially worked as a standardization 

of the terms under which transactions were made, e.g. by defining credit events (Rule, 2001). These standardized 

contracts must be regarded as a risk reducing alternative to the bilateral negotiations that otherwise occurred 

prior to each individual trade (Rule, 2001). 

 

1.4.1 Market development 

As mentioned, a lot has happened in the market for credit derivatives in recent decades. To give a better 

understanding on how the size of this market has evolved in the years before, during and after the crisis, this 

section will give a numerical and graphical presentation of this development. Figure 1.1, describes the total 

notional amount outstanding of CDS contracts in the OTC market in the period from 2004 to 2016.  

 

Figure 1.1: Notional amount outstanding CDS contracts, USD Billion, 2004-2016.   

Source: Own contribution -  data retrieved from BIS 

From figure 1.1 it becomes evident that the years leading up to the crisis were dominated by an explosive growth 

in the notional amount of outstanding CDS contracts. The graph clearly shows that a peak occurs around the 
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second half of 2007, which also approximately marks the outbreak of the crisis. After this, the impact of the crisis 

can be observed as the sudden decrease in the CDS market that occurred in the following years.  

Focusing specifically on CDO issuance, a similar pattern shows some very prosperous years leading up to the 

financial crisis, followed by a very drastic downturn. From figure 1.2, an increase in the yearly CDO issuance from 

around USD 25,000 million in 2001 to more than USD 130,000 million in 2008 can be observed. Following the 

outbreak of the crisis the yearly CDO issuance decreased drastically from its peak in 2008 to around USD 12,000 

million in 2013.   

 

Figure 1.2: CDO issuance, Europe, USD Million, 1996-2016 

Source: Own contribution ς data retrieved from SIFMA 

The main drivers behind this explosive growth in credit derivatives issuances will be discussed further later in the 

thesis. For now, the key takeaway from this brief introduction to the market for credit derivatives is the explosive 

expansion that the market underwent, and how this came to an immediate stop at the outbreak of the crisis.  

1.4.2 Market participants  

The participants in the credit derivatives market can generally be separated into three groups, end-buyers of 

protection, end-sellers of protection, and intermediaries (Rule, 2001). End-buyers of protection typically wish to 

hedge the credit risk they are exposed to, while end-sellers of protection typically wish to take on risk in order 

to diversify their existing portfolio. The intermediaries typically provide liquidity and assemble and manage 

structured finance products (Rule, 2001). Common for the participating groups on both sides of the deal is that 
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they mainly consist of banks. This is especially the case for the protection buyers, where banks, by far is the most 

dominating player. Other large players on the buyer side are securities houses, large corporates, and insurance 

companies. Looking at the protection sellers, banks still represent the largest group, however, on this side of the 

deal, insurance companies are also a very dominant player alongside securities houses (Rule, 2001). 
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2. Theoretical Background 

Before moving on to the empirical analysis, a theoretical introduction to CDOs must be given, as a full 

understanding of these financial instruments is a necessity for understanding the methods used in the valuation 

process. Furthermore, due to the complexity of the valuation process of synthetic CDOs, a theoretical 

introduction to the different elements in the valuation process must be given, as this will allow the reader to 

better understand the actual valuation conducted in chapter 4. In addition to this, a thorough theoretical 

introduction to the entire valuation process is a necessity for identifying the influence of copula models in the 

valuation of these financial products. Due to the magnitude of different theoretical strings required in the 

valuation process, the various theories and their origin will only be accounted for to the extent necessary for 

understanding the remaining sections of the thesis. For further details and full mathematical derivations, 

interested readers are referred to the relevant literature.     

Specifically, this chapter is structured in the following way. Section 2.1 introduces the characteristics and the 

structure of CDOs, as well as their main applications. The purpose of this section is to provide the reader with a 

basic understanding of the mechanics of these financial products, and what the basis for their existence is in 

ǘƻŘŀȅΩǎ ŦƛƴŀƴŎƛŀƭ ƳŀǊƪŜǘǎΦ ¢his understanding will be required to recognize the role of copula models in the 

valuation of these product. In continuation of this, section 2.2 will focus on two common approaches to credit 

risk modelling, namely the structural approach and the reduced-form approach. The approaches discussed in 

this section will lay the foundation for the valuation method applied later in the thesis, and understanding these 

two approaches in their most general form is therefore a prerequisite for understanding the method applied 

later in the thesis. Section 2.3 introduces the loss distribution and explains how one can move from the 

independent default probabilities, modelled using either the structural or reduced form approach, to the joint 

distribution for a given portfolio of assets. This section is essential as this is the point in the valuation process 

where copula models are applied with the purpose of capturing the dependence structure between multiple 

assets in a portfolio. The last section of the theoretical introduction ties everything together, and illustrates the 

role of the loss distribution in the calculation of the fair spread for each synthetic CDO tranche.   

Following the theoretical introduction to synthetic CDO pricing, relevant existing literature on copula models and 

CDO valuation will be reviewed, as this will help clarify where the contributions of the thesis fit within this specific 

field of research. To give a comprehensive understanding of the development of CDO valuation methods, a wide 
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selection of research is considered, as this will enable both the author and reader to position the contributions 

of this thesis in relation to the existing literature.   

2.1 The Collateralized Debt Obligation (CDO) 

Before turning to the description of the synthetic CDO, which is the focus of this thesis, the dynamics of the 

original cash CDO will be introduced. The cash CDO is a forerunner for the synthetic CDO, which was originally 

created to mimic the cash flows of a cash CDO. A CDO is categorized as a credit derivative as it, as all other credit 

derivatives, allows market participants to transfer credit risk between one another (Bomfim, 2005). The structure 

and characteristics of both cash and synthetic CDOs will be introduced in the following sections.   

2.1.1 The Cash CDO 

As previously mentioned, a cash CDO consists of a number of securities with claims of different seniority towards 

the cash flows generated by the assets in the underlying portfolio. These different levels of seniority mean that 

investors with the most senior claims, often referred to as the senior tranche holders, must be fully compensated 

before any junior tranche investors receive any of the cash flows that they are entitled to (Bomfim, 2005). The 

implications of offering tranches with different levels of seniority can be illustrated using a simple example.  

Consider a CDO issuer, typically a so-called Special Purpose Vehicle (SPV) that buys a portfolio of loans with a 

face value of USD 1 billion. The SPV finances the purchase of the loan portfolio by issuing notes that are backed 

by the cash flows generated by the underlying portfolio. If we assume that payments for both the underlying 

loans and the notes issued by the SPV occur with similar intensity, e.g. quarterly or monthly payments, the issuer 

simply passes on the payments received on the loans to the CDO investors, according to the seniority of the 

notes. Assuming that the CDO in this example consists of three tranches, a senior tranche with a face value of 

USD 850 million, a mezzanine tranche with face value USD 100 million, and an equity tranche with a face value 

of USD 50 million, the structure of the CDO can be illustrated as in figure 2.1.      
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Figure 2.1: Simple cash CDO. The figure illustrates the directions of cashflows after the purchase of the loan portfolio has occurred.  

Source: Own contribution with inspiration from Bomfim (2005) 

This structure means that equity tranche holders are subject to the highest level of credit risk, as investors in this 

tranche will be the first to incur a loss in the event that borrowers in the underlying portfolio default on their 

loan payments. For this reason, investors in the equity tranche are compensated by receiving significantly higher 

spreads, compared to investors in the more senior tranches. 

2.1.2 The Synthetic CDO  

Before continuing to the introduction of the synthetic CDO, a brief introduction to credit default swaps will have 

to be given. In short, a credit default swap (CDS) is an agreement between two parties, a protection seller and a 

protection buyer. In a CDS, the protection buyer agrees to making periodic payments to the protection seller, 

who in turn, commits to covering any losses that protection buyer might have on the reference entity (Bomfim, 

2005). Thus, a CDS can be used to transfer credit risk without transferring the ownership of the actual asset. As 

mentioned earlier, CDSs play a significant role in the structure of a synthetic CDO.   

The main difference between a synthetic CDO and the cash CDO described in section 2.1.1, is the fact that the 

reference portfolio in a synthetic CDO consists of credit default swaps (Gibson, 2004). Figure 2.2 illustrates the 

structure of a simple synthetic CDO.  
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Figure 2.2: Simple unfunded synthetic CDO illustrating the transfer of credit risk from the sponsoring bank and all the way to the 

synthetic CDO investors. Source: Own contribution with inspiration from Bomfim (2005) 

As shown in figure 2.2, the SPV sells protection on losses in the portfolio of reference assets owned by the 

sponsoring bank. As it was the case in the cash CDO, the SPV issues notes with different seniority, effectively 

buying protection on losses in the reference portfolio from synthetic CDO investors (Gibson, 2004). The tranche 

structure of a synthetic CDO allows investors to sell protection on a specific fraction of losses in the reference 

portfolio, according to their own risk-return preferences. In the example illustrated in figure 2.2, equity investors 

are committed to covering losses between 0% and 5% of the value of the reference portfolio, mezzanine 

investors are committed to covering losses between 5% and 15%, and senior investors are committed to covering 

losses exceeding 15% of the value of the reference portfolio. This structure means that equity tranche investors 

start incurring losses from the first default in the reference portfolio, while senior tranche investors are unlikely 

to incur any loss at all. Consequently, investors in the equity tranche receive a significantly higher spread from 

the issuer than it is the case for investors in the senior tranche of the synthetic CDO. 

The specific setup of the synthetic CDO ŘŜŀƭ ŘŜǇŜƴŘǎ ƻƴ ǿƘŜǘƘŜǊ ǘƘŜ /5h ǘǊŀƴŎƘŜǎ ŀǊŜ άŦǳƴŘŜŘέ ƻǊ άǳƴŦǳƴŘŜŘέΦ 

In the άfundedέ version, the CDO investor pays the entire notional of the tranche at the time of issuance. The 

funds paid by the investor are typically invested in low-risk securities by the CDO issuer.  As defaults occur in the 

reference portfolio, the principal of the tranche is written down by an amount corresponding to these defaults. 

Lƴ ǘƘŜ άǳƴŦǳƴŘŜŘέ ǎȅƴǘƘŜǘƛŎ CDO, the issuer has to rely on the creditworthiness of the investors as no payments 

are made at the time of issuance, but only when defaults occur (Gibson, 2004).  
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2.1.3 CDO applications 

After having established the general structure and dynamics of a CDO deal, the attention can now be switched 

towards understanding the motivation behind the use of these financial instruments. As illustrated in the 

introduction to the market for credit derivatives, the years leading up to the outbreak of the crisis were 

dominated by explosive growth in both CDS and CDO issuance. The following section will clarify some of the 

incentives behind this explosive growth before the crisis.  

The underlying motivation for CDO issuance can generally be separated into two groups, those based on balance 

sheet considerations and those based on arbitrage speculations (Garcia & Goossens, 2010). Considering the CDOs 

issued due to balance sheet considerations, the securitization here happens mainly with the purpose of either 

gaining capital relief, increasing the liquidity of the assets in the underlying portfolio, or transferring risk off the 

balance sheet. Through such activities, financial institutions had a way of reducing some of the capital 

requirements that were forced upon them by the Basel Accords. In the arbitrage CDO, the issuer attempts to 

exploit a possible difference between the yield received on the underlying assets and the cost of funding them. 

Basically, this means that the CDO issuer tries to benefit from paying a lower fee to CDO investors than they pay 

on the underlying reference entities, as this would allow them to pocket risk-free profits (Garcia & Goossens, 

2010).  

During the years leading up to the crisis, the increasing popularity of the synthetic CDO compared to the cash 

CDO, can probably be attributed to the fact that no legal transfer of assets takes place between originator and 

SPV in the synthetic CDO. This characteristic simplifies the process of the deal significantly compared to that of 

a cash CDO, where a so-called true sale occurs between originator and SPV. By circumventing the classification 

as a true sale, a number of legal issues regarding the transfer of assets are avoided. Without going into legislative 

details, some of the main issues that are avoided in the process are approval of the sale from obligor, and 

consolidation (Garcia & Goossens, 2010). Another major benefit of the synthetic CDO relates to funding the deal. 

In a cash CDO, the issuer must raise cash to buy the reference portfolio from the originator. This is opposed to in 

a synthetic CDO, where the issuer only needs to raise cash in the event of defaults in the reference portfolio. This 

is due to the fact that the underlying portfolio in the synthetic CDO consists of credit default swaps on the 

reference entities.       

In the years leading up to the crisis, CDOs were especially used to take advantage of market mispricing. This 

mispricing was mainly caused by the credit rating agenciesΩ inability to correctly rate these structured finance 
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products. Following the crisis, credit rating agencies have been heavily criticized for these incorrect ratings, which 

were mainly caused by the complexity of the CDOs, and the obvious conflict of interest that exists in the business 

model of credit rating agencies (Jarrow, 2011). This conflict of interest and the pre-crisis financial environment 

will be discussed further in chapter 5.          

2.2 Credit Risk Modelling 

In section 2.1 it is shown that the payoff to CDO investors is highly dependent on the probability of default of the 

assets in the reference portfolio. In other words, in assessing potential investment opportunities CDO investors 

should be highly concerned with the credit risk of these reference entities as this will be the main determinant 

of their final payoff. In the extensive literature on credit risk modelling, researchers usually distinguish between 

the structural approach and the reduced-form approach. As these approaches function as a general foundation 

for the models applied later in this thesis, they will be introduced in the following.       

2.2.1 The Structural Approach to Default Modelling 

The idea behind the structural approach to credit risk modelling is that ƻōƭƛƎƻǊΩǎ ability to honor its obligations is 

connected to the total asset value of same obligor. The main assumption within this framework is that a firm 

goes bankrupt if the asset value of the firm falls below a given barrier (Giesecke, 2004). Different variations of 

the position of this default barrier exists across models, however, the intuition behind the structural approach 

can be illustrated using the well-known Black-Scholes-Merton model framework. Even though this model will not 

be applied directly in the thesis, the intuition behind this approach can be considered foundation for the models 

applied in chapter 4. 

Assume a company that is financed through equity and a zero-coupon bond with face value K and maturity T. In 

the Black-Scholes-Merton model, default occurs if bond ƛǎǎǳŜǊΩǎ ǘƻǘŀƭ ŀǎǎŜǘ ǾŀƭǳŜ ƛǎ ōŜƭƻǿ ǘƘŜ ŦŀŎŜ ǾŀƭǳŜ ƻŦ ǘƘŜ 

debt at maturity (Duffie & Singleton, 2003). Furthermore, it is assumed ǘƘŀǘ ǘƘŜ ƳŀǊƪŜǘ ǾŀƭǳŜ ƻŦ ǘƘŜ ŦƛǊƳΩǎ ŀǎǎŜǘǎ 

follows a log-normal diffusion process:  

‘Ὠὸ„Ὠὡȟὠ πȟ              (2.1) 

where ‘ is a drift parameter, „ π is a volatility parameter, and ὡis a standard Brownian motion. Through the 

ŀǇǇƭƛŎŀǘƛƻƴ ƻŦ LǘƻΩǎ [ŜƳƳŀΣ ƛǘ Ŏŀƴ ōŜ ǎƘƻǿŜŘ ǘƘŀǘ: 
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 ὠ ὠ Ὡz  (Giesecke, 2004)                (2.2)

       

The intuition behind the Black-Scholes-Merton model is illustrated in figure 2.3.  

 

Figure 2.3: The intuition behind the Black-Scholes-Merton framework to credit risk modelling.  

Source: By inspiration from Duffie and Singleton (2003).  

As illustrated in figure 2.3, the default probability of the firm can be obtained from the probability distribution 

function at time T. Since we have that ὡ  is normally distributed with a mean of zero and variance T, the default 

probability ὴὝ can be written as:  

ὴὝ ὖὠ ὑ ὖ„ὡ ὒέὫ ὒ άὝ ɮ
 

Ѝ
 (Giesecke, 2004)                           (2.3)

  

Where ά ‘ „ , ὒ  is the initial leverage ratio, and ɮ is the standard normal distribution function. 

Writing this out gives:  

ὴὝ  ɮ
Ѝ

                            (2.4)
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Lƴ ǘƘŜ ŜǾŜƴǘ ƻŦ ŘŜŦŀǳƭǘΣ ǘƘŜ ŦƛǊƳΩǎ ŘŜōǘƘƻƭŘŜǊǎ ǿƛƭƭ Ǝŀƛƴ ƻǿƴŜǊǎƘƛǇ ƻŦ ǘƘŜ ŎƻƳǇŀƴȅ ōǳǘ ǿƛƭƭ ƻǾŜǊŀƭƭ ƭƻǎŜ ὑ ὠ. 

If no default occurs, debtholders will receive the promised payment of K, and equity holders will receive ὠ ὑ. 

Thus, the value of the bond at time T can be written as:  

ὄ ÍÉÎὑȟὠ ὑ ÍÁØ πȟὑ ὠ ,                          (2.5) 

which turns out to be equivalent to the payoff generated from a portfolio consisting of a short European put 

option on ǘƘŜ ŎƻƳǇŀƴȅΩǎ ŀǎǎŜǘǎ ǿƛǘƘ ǎǘǊƛƪŜ Y ŀƴŘ ƳŀǘǳǊƛǘȅ ¢Σ ŀƴŘ ŀ ŘŜŦŀǳƭǘ ŦǊŜŜ ƭƻŀƴ ǿƛǘƘ ŀ ŦŀŎŜ ǾŀƭǳŜ ƻŦ Y ŀƴŘ 

maturity T (Giesecke, 2004) 

¦ǎƛƴƎ ŀ ǎƛƳƛƭŀǊ ŀǊƎǳƳŜƴǘΣ ǘƘŜ ǾŀƭǳŜ ƻŦ Ŝǉǳƛǘȅ ŀǘ ǘƛƳŜ ¢ Ŏŀƴ ōŜ ǿǊƛǘǘŜƴ ŀǎ ŀ Ŏŀƭƭ ƻǇǘƛƻƴ ƻƴ ǘƘŜ ŎƻƳǇŀƴȅΩǎ assets 

with strike K and maturity T:  

Ὁ ÍÁØ πȟὠ ὑ                              (2.6) 

Valuing equity and debt using options theory is admittedly what the Black-Scholes-Merton framework is most 

commonly known for. However, as the details of this part of the framework have no immediate relevance to the 

remainder of this thesis, it will not be explained any further. Interested readers are referred to Merton (1974) 

for a more elaborate presentation.     

As mentioned in the beginning of the section, the Black-Scholes-Merton model is only one of many that fit under 

the structural approach to default modelling. Since the publication of the original Black-Scholes-Merton model 

in 1974, many alternatives and extensions to the original model have emerged. Opposed to the BSM model, 

some of these models allow default to occur before the maturity of the debt, and at a different barrier than the 

face value of the debt. However, as the intuition behind these models is similar to in the BSM model, they will 

not be covered in the thesis. For more details on some of these extensions, see among others, Black & Cox (1976) 

and Longstaff & Schwartz (1995). 

As the models applied in this thesis are mainly based on the structural approach to default modelling, the 

intuition behind this approach is the foundation for understanding the analysis conducted in chapter 4 of the 

thesis. However, as the intuition behind the reduced-from approach also contributes to some of the underlying 

assumptions, this approach will be introduced in the following.   
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2.2.2 The Reduced-Form Approach to Default Modelling  

Opposed to the structural approach, the reduced-form approach to default modelling does not assume a direct 

ŎƻƴƴŜŎǘƛƻƴ ōŜǘǿŜŜƴ ŀ ŦƛǊƳΩǎ ŀǎǎŜǘ ǾŀƭǳŜ ŀƴŘ the probability of default. Instead, this approach models default as 

an exogenous event that occurs at unpredictable times (Bomfim, 2005). This means that default is modelled as 

a stochastic process calibrated from observable data such as historic or current market prices. Generally, two 

types of models are discussed under this approach to default modelling, intensity-based and ratings-based 

models. With the purpose of this thesis in mind, only the intensity-based models will be discussed in the 

following.   

As indicated by the name, intensity-based models are based on modelling the arrival intensity of defaults as a 

stochastic process. In its simplest form, default is defined as the first jump in a Poisson process happening with 

a constant intensity ‗. According to Schönbucher (2003), we can assume that the probability of a jump in the 

next small time interval ɝὸ is proportional to ɝὸ. This can be written as:  

ὖὔὸ ɝὸ ὔὸ ρ ‗ɝὸ                                (2.7) 

Moreover, if we assume that the probability of more than one default occurring during a very short time interval 

is practically zero, and that the number of defaults occurring in nonoverlapping time periods are independent, 

then the probability of no defaults can be written as:  

   

ὖὔὸ ɝὸ ὔὸ π ρ ‗ɝὸ                     (2.8) 

Similarly, the probability of no defaults occurring within two time-intervals can be written as:  

ὖὔὸ ςɝὸ ὔὸ π ρ ‗ɝὸ              (2.9) 

According to Schönbucher (2003), the probability of no defaults during the entire interval ὸȟὝ, after dividing it 

into ὲ intervals, so that ɝὸ , can be written as:  

ὖὔὝ ὔὸ ρ ɝὸ‗ ρ ᶻὝ ὸ‗          (2.10) 

As ρ ᴼὩ ύὬὩὲ ὲᴼЊ, the above expression converges to:  

ὖὔὝ ὔὸ ᴼÅ             (2.11) 
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Similar to before, this corresponds to the following expression denoting the probability that at least one default 

occurs within the period:  

ὖὔὝ ρ ρ Å             (2.12) 

Since its introduction, several extensions to this approach has been published. A natural extension relates to the 

assumption of a constant intensity of the jump process. Among others, Duffie & Singleton (2003) describes the 

implementation of both a deterministic time-varying intensity as well as a stochastic intensity. For more details 

on this, see Duffie & Singleton (2003).  

 

2.2.3 Summary ς Credit risk modelling  

In the above sections, two general approaches to credit risk modelling have been presented, the structural 

approach and the reduced-form approach. In the structural approach, the probability of default is directly 

connected to the asset value of the firm, whereas the reduced-form approach considers default as an exogenous 

event occurring at unpredictable times. However, common for both is that they only describe the probability of 

default for a single asset, meaning that they are insufficient when assessing the credit risk of a portfolio of assets, 

as some degree of correlation will have to be included in such assessment. This particular issue will be addressed 

in the next section.    

 

2.3 The Loss Distribution  

In continuation of the approaches introduced for modelling the probability of default for a single firm, this section 

will focus on the distribution of losses of a large portfolio of assets, such as the one underlying a synthetic CDO. 

Using either one of the approaches introduced in the above, investors can create the marginal distribution of 

losses for each asset in the portfolio. This, however, is not sufficient when assessing the full credit risk of a given 

reference portfolio. Assuming independence between defaults in a large portfolio of assets is unrealistic, which 

is why investors require a method for evaluating the joint default behavior of the reference entities. A way of 

addressing this issue is through the application of copula theory as a tool for modelling the dependence structure 

between entities in a given portfolio.  
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2.3.1 Copula Theory 

In this section, the notion of copulas will be introduced both in a general sense and in terms directly applicable 

to the use of the specific copulas in this thesis.  In general terms, copula models are used to describe the 

dependence between multiple random variables (Malevergn & Sornette, 2006). In terms of financial markets, 

these variables could typically be equity returns, or as in this thesis, the value of given assets at different points 

in time. More formally, a copula function can be defined by the following properties:  

Definition: 

A function C: πȟρ ᴼ πȢρ is a n-copula if it enjoys the following properties:  

¶ όᶅ ɴ πȟρȟὅρȟȣȟρȟόȟρȟȣȟρ ό 

¶ όᶅ ɴ πȟρȟὅόȣȟό π if at least one of the όᴂί equals zero 

¶ ὅ is grounded and n-increasing (Malevergn & Sornette, 2006) 

In essence, a copula function is a multivariate distribution with uniform marginals and with support within the 

interval πȟρ .  

Copula functions are relevant for modelling the loss distribution of a portfolio of assets, as they allow for a way 

to link univariate marginal distributions to their full multivariate distribution (Li, 2000).  For ὲ uniform random 

variables, ὟȟὟȣȟὟ , the joint distribution function ὅ can be defined as:  

ὅόȟόȟȣȢȟόȟ” 0Ò Ὗ όȟὟ ό ȟȣȢȟὟ ό            (2.13) 

where ” is a dependence parameter and ὅ can be considered a copula function (Li, 2000). 

In 1959, Abe Sklar proved that if ὊὼȟὼȣȢȟὼ  is a joint multivariate distribution function with continuous 

marginal distributions ὊȟὊȣȟὊ, there exist a copula function ὅόȟόȣȢό  such that 

ὊὼȟὼȟȣȢὼ ὅὊ ὼ ȟὊ ὼ ȟȣȟὊ ὼ  (Sklar, 1973)             (2.14) 

Therefore, the copula function allows for a way to combine a set of marginal distributions to form a joint 

multivariate distribution. The copula function describes the dependence structure between these marginal 

distributions. Moreover, as {ƪƭŀǊΩǎ ǘƘŜƻǊŜƳ ǎǘŀǘŜǎ ǘƘŀǘ ǘƘŜ ŘŜǇŜƴŘŜƴŎŜ ǎǘǊǳŎǘǳǊŜ ŀƴŘ ƳŀǊƎƛƴŀƭ ŘƛǎǘǊƛōǳǘƛƻƴǎ Ŏŀƴ 

be separated completely, it is possible to apply the dependence structure for one set of dependent random 

variables, to a different set of random variables with different marginal distributions (Schönbucher, 2003). Only 
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copula functions allow for the separate study of marginal distributions and of the dependence, as they allow for 

clear distinction between the information held in each component.           

Several different copula functions have been used in biostatistics, physics, and actuarial sciences long before 

they were introduced to finance by David X. Li in his now infamous paper άhƴ 5ŜŦŀǳƭǘ /ƻǊǊŜƭŀǘƛƻƴΥ ! /ƻǇǳƭŀ 

CǳƴŎǘƛƻƴ !ǇǇǊƻŀŎƘέ (2000). However, as the focus of this thesis is limited to the comparison between the use of 

two different factor copulas, namely the one-factor Gaussian copula and the one-factor Student t copula, the 

specifics of these two models will be investigated further in the next sections. Other copula model alternatives 

will be discussed as part of the literature review in section 2.5.  

 

2.3.2 Copula models 

In the following section, the Gaussian copula and the Student t copula will be presented. Both models belong to 

the group of copulas derived from elliptical distributions. First, the general form of both models is presented, 

before the actual factor models applied in chapter 4 are introduced.     

 

2.3.2.1 Elliptical Copulas 

As indicated from the name, elliptical copulas have their foundation in multivariate elliptical distributions  

(Malevergn & Sornette, 2006). Two of the most widely used distributions within this family of probability 

distributions are the Gaussian and the Student t distribution, and these are exactly the two distributions that 

form the basis for the copula models applied in this thesis. Generally speaking, these two copula models are 

quite similar, however, as it is discussed in a later section, their behavior in relation to the dependence between 

extreme values can be very different.        

The Gaussian copula:  

The Gaussian copula is based on the multivariate Gaussian distribution. The random vector ╧ ὢȟȣȟὢ  is 

multivariate normal if the following two properties hold:  

¶ The univariate margins ὊȟὊȣȢȟὊ follows a Gaussian distribution 

¶ The dependence structure between these margins can be described by the Gaussian copula:  

ὅȟ όȟȣȟό ɮȟ ɮ ό ȟȣȢȟɮ ό ,           (2.15) 
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where ɮȟ denotes the n-dimensional standard Gaussian distribution, which is completely determined 

by correlation matrix ⱬ, and ɮ denotes the standard normal cumulative distribution (Malevergn & 

Sornette, 2006). 

The Student t copula:  

The Student t copula is derived from the multivariate Student t distribution. It can be expressed as:  

ὅȟȟ όȟȣȟό 4ȟȟ 4 ό ȟȣȢȟ4 ό ,            (2.16) 

where Ὕȟȟ is an n-dimensional Student t distribution with ὺ degrees of freedom and shape matrix ”. Ὕ denotes 

the univariate Student t distribution with ὺ degrees of freedom  (Malevergn & Sornette, 2006). 

Since it is the case for the underlying distributions that the Student t distribution goes towards the Gaussian 

distribution, when ὺ goes to infinity, the same characteristics is transferred to the corresponding copula models. 

Thus, when ὺ goes to infinity, the Student t copula model approaches the Gaussian copula (Malevergn & 

Sornette, 2006). However, a key difference that will play an important role later in the thesis is the level of tail 

dependence in the Student t copula. In particular, this characteristic makes this model better suited for modelling 

situations of financial instability than its Gaussian counterpart. Consequently, a variation of the Student t copula 

model is applied as an alternative to the Gaussian copula in the chapter 4. The concept of tail dependence will 

be introduced further after the introduction of the applied factor models.     

 

2.3.2.2 Factor models 

A subclass of copula models referred to as factor copulas have been widely used in the financial industry. This 

type of model allows for a higher level of computational tractability, which is why it has been preferred over the 

entirely simulation based models in the industry (Cousin & Laurent, 2009). MacKenzie and Spears (2014), 

describe how this semi-analytical version of the Gaussian copula was used by the majority of financial market 

participants in the time leading up to the crisis.   

In factor copulas, the dependence structure of default times across assets is assumed to follow a factor structure, 

meaning that the dependence structure is driven by latent variables ὠȟȣȢȟὠ, where ὠ in turn depends on a 

common risk factor, ὓȟ and an idiosyncratic risk factor, ὤ. Within the group of factor copulas, the additive factor 

copulas have been used extensively in relation to pricing of synthetic CDO tranches. As indicated from the name, 

in this specific family of factor copulas the latent variable ὠ is assumed to follow an additive function (Cousin & 
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Laurent, 2009). The one-factor Gaussian copula and the one-factor Student t copula applied in chapter 4 both 

belong to the family of additive factor copulas. Both models will be introduced in the next sections.  

 

2.3.3 One-factor Gaussian Copula 

As mentioned in chapter 1, the one-factor Gaussian copula was broadly accepted as the market model for 

synthetic CDO valuation (MacKenzie & Spears, 2014). Essentially, this version of the Gaussian copula can be 

considered a special case of the original Gaussian copula introduced by David Li (2000). This semi-analytical 

version introduced by among others, Jean-Paul Laurent & Jon Gregory (2003), was accepted across the industry 

in the time leading up to the financial crisis, mainly due to the significant reduction in computation time that 

could be achieved. This allowed traders and other users of the model to react much faster than it had otherwise 

been the case (MacKenzie & Spears, 2014). In the literature, several different implementation methods are 

applied, however, this thesis adopts the approach described by Gibson (2004) and Hull & White (2004), and 

combines this with the approach described in Schönbucher (2003).  

Consider a portfolio of N credits described by the following parameters:  

ὃ: Notional amount of each credit Ὥ 

Ὑ: Recovery rate of credit Ὥ 

ὸȡThe time of default of company Ὥ 

ήὸȡThe cumulative risk-neutral probability that company Ὥ will default before time t, i.e. the probability that 

ὸ ὸ 

Ὓὸ ρ ήὸȡ The risk-neutral probability that company Ὥ will survive beyond time t, i.e. the probability that 

ὸ ὸ  

The general assumption regarding this model is that creditworthiness of a given company depends on its 

normalized asset value ὼ. Thus, default occurs when ὼ falls below ὼӶ, which is a specified default threshold. The 

normalized asset value ὼρ Ὥ ὔ  is defined as:  

ὼ ὥὓ ρ ὥὤ                (2.17) 
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where ὼ, ὓ and ὤ all have independent standard normal distributions, ὊȟὋ and Ὄ, and ρ ὥ ρ. In this 

expression, M represents a common factor that affects the probability of default for all companies in the 

economy, and can therefore be perceived as an economy-wide factor such as the business cycle or interest rate 

levels. Conversely, ὤ represents an idiosyncratic factor that only affects the probability of default of the 

individual company. Finally, ὥ specifies the factor loading, and ὥὥdenotes the correlation between asset value 

for company Ὥ and company Ὦ. The default threshold ὼӶ is defined as: 

 ὼӶ Ὂ ήὸ , (2.18) 

 where Ὂ  denotes the inverse of the standard normal cumulative distribution function.   

According to Hull & White (2004), the copula model implies that ὼ is mapped to ὸ using a percentile-to-

percentile transformation. This means that the conditional default probability ήὸ ὸȿὓ ὖὼ ὼӶȿὓ  can 

be written as:  

ήὸȿὓ Ὄ
Ӷ

              (2.19) 

The main point of formulating the probability of default, conditional on the common factor ὓ, is the fact that 

this leaves the idiosyncratic factor as the only driver of asset value. Consequently, both firm value and defaults 

are now independent across entities as they, conditional on a given realization of the common factor ὓ, are only 

affected by the firm-specific factor ὤ, which by definition is uncorrelated across entities.  

The loss distribution is a discrete process as each credit either incurs no loss or a loss of ὃ ρ Ὑ . Assuming 

that ὃ and Ὑ are equal for every credit in the reference portfolio, the number of discrete values must equal 

ὔ ρ. Furthermore, this assumption means one can go from the distribution of the number of defaults to the 

loss distribution, simply by multiplying the number of defaults by ὃρ Ὑ.  

The conditional distribution of the number of defaults can be computed using the recursion algorithm applied 

by Gibson (2004). The probability of exactly ὰ defaults by time ὸ, conditional on ὓ, in a reference portfolio 

consisting of K credits can be written as:  

ὴ ὰȟὸȿὓ    ὰ πȟȣȢȟὑ               (2.20) 
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By adding one credit with a conditional default probability of ή ὸȿὓ , the default distribution for the new 

reference portfolio of ὑ ρ credits is now: 

ὴ πȟὸȿὓ ὴ πȟὸȿὓ ρ ή ὸȿὓ              (2.21) 

ὴ ὰȟὸȿὓ ὴ ὰȟὸȿὓ ρ ή ὸȿὓ ὴ ὰ ρȟὸȿὓή ὸȿὓ     ὰ ρȟȣȟὑ        (2.22) 

ὴ ὑ ρȟὸȿὓ ὴ ὑȟὸȿὓή ὸȿὓ              (2.23) 

By continuing to add credits until ὑ ὔ, this recursion can be used to find the default distribution for the 

reference portfolio of ὔ credits.  

However, as it in the context of this thesis is assumed that all reference entities have equal default probabilities, 

and that the pairwise asset correlation is equal across all assets in the portfolio, the conditional default 

probability will be equal for all entities in the reference portfolio. This means that instead of the above described 

recursion algorithm, the conditional probability distribution of the number of defaults in the reference portfolio 

can be found using the binomial distribution (Schönbucher, 2003).The conditional default probability of exactly 

ὰ defaults by time ὸ in the entire portfolio can then be written as:  

ὴὰȟὸȿὓ
Ȧ

ȦȦ
ήz ὸȿὓ ᶻρ ήὸȿὓ ,           (2.24) 

where ὔ is the number of credits in the portfolio, ὰ denotes the number of defaults in the reference portfolio, 

and ήὸȿὓ  is the risk-neutral conditional default probability for each underlying reference entity.  

After all conditional distributions have been calculated, the unconditional default distribution can be written as 

the following integral:  

ὴὰȟὸ ᷿ ὴ ὰȟὸȿὓὫὓὨὓ              (2.25) 

where g is the probability density of ὓ. This integral can be considered as an average of the conditional 

distributions weighted by the density function of the common factor ὓȢ Mathematically, this expression can be 

calculated using numerical integration. In this thesis, this numerical integration is implemented through the use 

of the trapezoidal rule.  
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2.3.4 One-factor Student t Copula 

Although the one-factor Gaussian copula was accepted as the market model by the majority of market 

participants, researchers both before and after the crisis have heavily criticized the widespread use of this model 

for synthetic CDO valuation. The details of this criticism will be elaborated when discussing the results of the 

model analysis. However, in order to understand the purpose of introducing the one-factor Student t copula as 

an alternative model, the general basis for the criticism will be presented. The main area of criticism related to 

the one-factor Gaussian copula model presented in the previous section, is the distributional assumption 

underlying the model. The underlying assumption of multivariate Gaussianity results in a lack of tail dependence 

in the copula model. Specifically, this means that the Gaussian copula model is unable to price all CDO tranches 

simultaneously, which is mainly due to the occurrence of the so-called correlation smile created from the varying 

implied tranche correlations (Goegebeur, Hoedemakers, & Tistaert, 2007). Therefore, introducing an alternative 

model, which better incorporates tail dependence will allow the researcher to compare the results found under 

this different distributional assumption. The Student t distribution distinguishes itself from the Gaussian in the 

sense thŀǘ ƛǘ Ƙŀǎ άŦŀǘǘŜǊ ǘŀƛƭǎέΣ ƳŜŀƴƛƴƎ that it accounts for tail dependence. Compared to the one-factor 

Gaussian copula presented in section 2.3.3, multiple modifications will have to be made in order to include the 

change in distributional assumption.  In the one-factor Student t copula, the following factor model forms the 

basis for the calculations: 

ώ ὥὓ ρ ὥὤ                (2.26) 

Where ώ, ὓ and ὤ all have independent standard normal distributions, ὊȟὋ and Ὄ, and ρ ὥ ρ. 

However, where the output of this model could be compared directly to the default threshold in the Gaussian 

case, the following transformation is necessary to compute the asset value of the company in the one-factor 

Student t model. According to Goegebeur et. al (2007) and Greenberg, Mashal, Naldi, & Schloegl (2004), ὼ 

follows a Student t distribution with ὺ degrees of freedom if:   

ὼ  ώ                           (2.27) 

where ὼ again denotes the normalized asset value of company Ὥ and ὡ follows a … distribution with ὺ degrees 

of freedom and is independent of ώȟώȟȣȢȟώ.  
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Combining the two expressions therefore gives the following factor model:  

ὼ ὥὓ ρ ὥὤ ᶻ               (2.28) 

The threshold for default, ὼӶȟ can in this setup be expressed as:  

ὼӶ ὸ ήὸ ,  (2.29) 

where ὸ  denotes the inverse of the cumulative distribution function for the Student t distribution with ’ 

degrees of freedom.  

Contrary to the semi-analytical implementation of the one-factor Gaussian copula presented in section 2.3.3, the 

one-factor Student t copula will be implemented through the use of Monte Carlo simulation. The specifics of this 

implementation approach will be introduced next.  

 

2.3.4.1 Monte Carlo implementation  

The Monte Carlo implementation of the one-factor Student t copula can be explained in the following steps.  

1. The random independent drawings from both the normal distribution and the … distribution are made. 

For the … distribution, 4 degrees of freedom is chosen. For every simulation, the market factor ὓ is 

defined as 1 standard normal variable common for all entities within the individual simulation. The 

idiosyncratic factor ὤ is represented by an individual standard normal variable specific to each firm in 

the simulation (here 125 firms). The sampled  … variable is in the same way as the market factor 

ὓȟ common for all entities within the individual simulation. Thus, for every simulation step, 1 occurrence 

of the market factor is drawn, 1 occurrence of the … variable is drawn, and 125 occurrences of the 

idiosyncratic factor is drawn.  

2. Based on the values drawn in 1., the normalized asset value of company Ὥ is calculated using equation 

2.28. For every simulation 125 asset values are calculated. In practice, this results in a 100000 x 125 

matrix of simulated asset values as the process of calculating the normalized asset value of company Ὥ is 

repeated 100.000 times.   

3. Each of the calculated normalized asset values are then compared to the default threshold ὼӶ

ὸ ήὸ  at each of the 20 timesteps, and information about whether ὼ is above or below the 
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threshold at that given time is stored. If ὼ ὸ ήὸ , a value of 1 is assigned, whereas if ὼ

ὸ ήὸ   a value of 0 is stored.  

4. The algorithm then counts how many of the 125 credits that have defaulted at each of the 20 time steps.  

5. Finally, the loss distribution is constructed by calculating the probability of experiencing ὰ defaults at 

each individual time step.  

The reasoning behind the simulation can be illustrated by the following simplified example:  

  

Table 2.4: Simplified illustration of the counting process within the applied Monte Carlo simulation. The results are generated for t=5, a 

hazard rate of 0.41%, 4 degrees of freedom, and an assumed asset correlation of 0.3.  

Source: Own contribution. 

  

In the above example, the value of 3 individual assets are simulated 10 times. Every time an asset value falls 

below the common default threshold, this information is stored and used to construct the loss distribution. In 

the above, the probability of experiencing 0 defaults at time 5 in this very simplified example is therefore 6/10, 

which is equal to 60%. In the actual implementation, 125 asset values are simulated and compared to the 

default threshold at every timestep as it has been done for ὸ υ in the above example. This process is then 

repeated 100.000 times.  

2.3.5 Tail dependence 
 

To understand the reasoning behind selecting the Student t copula as an alternative to the Gaussian copula, the 

notion of tail dependence will be introduced briefly. However, with the scope of this thesis in mind, only a very 

mathematically-light introduction will be given. For the full mathematical details, see McNeil, Frey, & Embrechts 






















































































































































