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Abstract  

 

This thesis extends a market-based measure of systemic risk, developed by Acharya et al. (2016). 

Their systemic risk measure, the systemic expected shortfall (SES) has three components: a firm’s 

marginal risk contribution (MES), leverage and excess distress costs. In their empirical 

implementation, the authors leave out the estimation of excess distress costs. 

The excess costs of financial distress can be approximated through the distress costs during the 

5% worst market days scaled by equity capital to account for firm size.  

We estimate the expected costs of financial distress using an approach by Breitkopf and Elsas 

(2012) who develop a framework to directly estimate expected distress costs from CDS and stock 

price data.  

We find that the expected excess cost of financial distress scaled by equity capital does not explain 

returns during the crisis nor has it any explanatory power in explaining the outcome of the 2009 

SCAP stress test. However, we find that when changing the scaling to unlevered asset value, 

distress costs have significant explanatory power even when measured two years before the crisis. 
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1 Introduction 

 

Systemic risk has been a widely discussed topic in financial and economic literature. The risk of a 

financial system breaking down has increasingly been in the focus since the subprime crisis, which 

illustrated the high welfare costs due to distortions in the banking system1.  

The purpose of banking regulation is to secure the stability of the financial system. In other words, 

the objective is not to prevent individual banks from bankruptcy but to prevent a systemic crisis. 

Regulation should therefore focus on a bank’s systemic risk contribution (rather than on a bank’s 

own default risk) and make it internalize this risk by e.g. taxing banks based on their contribution. 

As a risk prevention measure, banking supervision authorities have introduced banking stress tests 

in the aftermath of the subprime crisis (Mishkin, 2011). Stress tests are designed to test whether a 

bank has sufficient regulatory capital to absorb losses during stressful conditions. To this end, a 

bank’s capital losses are projected in a potential worst case scenario, representing primarily credit 

and market risk. In the current framework, these projections are based mostly on book values, as 

is regulatory capital (Fed Board of Governors, 2017). 

Several weaknesses of the current stress test methodology have been discussed in academic 

literature. The current framework implies several assumptions. First, by focusing on individual 

risk, it is assumed that all individual risks simply add up to systemic risk. Second, it is assumed 

that the imposed regulatory capital limits individual default risk of a bank and therefore a bank’s 

systemic risk contribution. However, as pointed out by Flannery (2014), regulatory capital ratios 

are insensitive to actual default risk of banks. Furthermore, the expected shortfall (ES) of banks 

does not necessarily reflect banks’ systemic risk contribution. In stress tests, the expected shortfall 

is based on book values and it is being assessed irrespective of other banks’ losses. As Mishkin 

(2011) points out, a firm can be systemically important due to either its size or its 

interconnectedness. He provides LTCM as an example, a hedge fund of a relatively small size 

whose failure had a large systemic impact. On the other hand, the failure of Continental Illinois 

Bank in 1984, which was the largest bank failure in American history until Washington Mutual, 

                                                 
1 In the U.S., for example, GDP decreased by about 4%, unemployment increased by 4 percentage points, and capital 

investments were reduced by 15% in 2009. For an overview on the subprime crisis, see e.g. Reinhart/Rogoff (2008) 

and Mishkin (2011). Gros/Alcidi (2010) provide a detailed analysis of the welfare implications of the crisis by 

comparing pre-crisis long-term GDP growth rates to actual GDP changes (the so-called output gap).    
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did not have any significant impact on the economy. This shows that for systemic stability it is 

rather the risk that a bank’s default poses to the financial system instead of the bank’s own risk of 

default which matters. 

Alternatives to the current stress testing procedure have been developed which target a market-

value based evaluation of banks’ systemic risk contribution. Assuming markets are informationally 

efficient, these approaches have the advantage to promptly incorporate changes in probabilities of 

default and interconnected risks between banks. 

One alternative has been proposed by Acharya et al. (2016), who developed a theoretically 

motivated framework for taxing bank holding companies (BHCs) according to their overall risk 

contribution. Besides idiosyncratic risk, the model captures the contribution to systemic risk (SES). 

In their publication, the focus is on the unobservable systemic part, SES, which, according to the 

authors, can be explained through three factors: leverage, a company’s marginal risk contribution 

in a systemic downturn (MES) and excess costs of financial distress. In this context, they define 

the excess costs of financial distress as the difference between expected distress costs during a 

crisis and expected distress costs that can be observed on normal bad days. 

In their empirical implementation, the authors argue that although distress costs are probably very 

significant in a crisis, they would be approximately zero in non-crisis times. Thus, the authors 

ignore this factor in their estimation. Overall, they expect MES and leverage to sufficiently explain 

SES.  

MES and leverage are measured in the pre-crisis year to test the predictive power of the SES 

measure. The authors find that both variables – in contrast to common risk measures such as ES 

and variance – are highly significant in explaining banks’ equity returns and CDS spread changes 

during the financial crisis, as well as the SCAP results in 2009. Acharya et al. (2016) conclude that 

their SES measure (combining MES and leverage) “appear(s) to be able to predict the financial 

firms with the worst contributions in systemic crises” (p. 35). 

However, according to the theoretical model, a bank’s systemic risk contribution, SES, also 

depends on the excess costs of financial distress. Thus, if an empirical measure of this variable 

was available, incorporating it into the estimation of SES could potentially improve the predictive 

performance of the empirical systemic risk measure suggested by Acharya et al. (2016).   
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In fact, distress costs can be estimated using the framework of structural models. Building on the 

Leland and Toft (1996) model, Breitkopf and Elsas (2012) develop a framework to directly 

estimate distress costs from CDS and stock price data. The distinctive feature about their approach 

is that they do not use any ad-hoc values for model exogenous parameters, in particular loss given 

default (LGD) and debt maturity, but instead estimate these parameters from CDS spreads. In 

contrast to the assumption by Acharya et al. (2016), the authors find that expected distress costs 

are significantly and economically different from zero. In fact, they found average expected 

distress costs amounting to 6.95% of unlevered asset value in the period 2003-2011 even if firms 

were not in financial distress. 

Thus, it seems very likely that distress costs are highly relevant for banks, so that taking distress 

costs into account potentially offers a possibility to improve the SES measure.  

For this reason, the objective of this thesis is to extend the empirical analysis of market-based 

measures of banks’ systemic risk contribution by building on the Acharya et al. (2016) framework, 

empirically estimate and analyze the relevance of distress costs for banks, and test whether distress 

costs can improve the predictive power of the SES measure for banks’ actual risk contribution. For 

reasons of comparison, the sample for testing the predictive power of the improved SES measure 

will be the same as in Acharya et al. (2016). 

The rest of this thesis proceeds as follows. In section 2, we give an overview of the regulatory 

developments that led to the introduction of supervisory stress tests, after which we provide a short 

description of the current stress testing framework and describe some important shortfalls of the 

procedure. Section 3 outlines the measure for systemic expected shortfall by Acharya et al. (2016). 

In section 4, we describe the Breitkopf and Elsas (2012) method for estimating expected costs of 

financial distress. Section 5 describes our empirical implementation. Section 6 presents descriptive 

statistics of our estimated parameters and those that we implement in the model. Section 7 contains 

the empirical analysis of the implemented estimators and a robustness check. In section 8 we 

discuss the findings and section 9 concludes. 
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2 Bank Regulation and Regulatory Stress Tests 

2.1 Banking Regulation 

The current regulation builds on a set of rules developed by the Basel Committee on Banking 

Supervision (BCBS). At the end of 1982, during the Latin-American debt crisis, the ten largest 

American banks held about $ 50 billion in loans on their balance sheets from countries like Mexico, 

Brazil and Argentina which were about to default. To avoid bankruptcy and a crisis which would 

spread over to the whole financial system, the United States and the International Monetary Fund 

(IMF) had to grant billions of dollars in loans to the countries in trouble. The American banks who 

were lenders to these countries started rescheduling the loans and, due to massive 

undercapitalization, were forced to increase their loss reserves by a new regulation, the 

International Lending Supervision Act of 1983 (see Markham, 2002 pp. 128 - 130). This new law 

has been regarded as a major threat to competition and urged the need for a global standard for 

banking supervision and for certain requirements for the capitalization of banks. With the focus 

on strengthening the international banking system and reducing possible competitive inequalities, 

the Basel Capital Accord, better known as Basel I, has been released in 1988 by the BCBS. 

(Goodhart, 2011) 

Basel I was designed to assess the credit risk of internationally active banks and to set minimum 

capital requirements in relation to that risk. Thus, banks had to fund their assets with enough equity 

capital that would absorb losses arising due to credit risk, i.e. counterparty default risk, during 

stressful conditions.   

For this purpose, the BCBS designed a risk-weight approach which would relate capital to different 

risk categories of assets. Four different categories of assets were defined and risk weights between 

0% and 100% were assigned to the different asset classes. Multiplying book value of the assets 

with the corresponding risk weights determined the risk weighed assets (RWA). After assessing 

RWA, book equity capital was to be divided into two classes (or "Tiers"): Tier 1 capital (or core 

capital), at that time comprising only permanent shareholders' equity and disclosed reserves 

(created by retained earnings or other surpluses) and Tier 2 capital which consists of reserves, 

hybrid debt capital, subordinated debt and other kinds of supplementary capital. The minimum 

capital requirement prescribed that 8% of RWA were to be held in capital of which at least 4% 
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would have to be core capital. To meet the proposed regulatory capital ratio of 8%, banks could 

thus either reduce the (apparent) risk on the asset side by shifting to assets in low risk asset classes, 

or increase their capital base. (BCBS, 1988) 

As an extension to Basel I, the Market Risk Amendment was released in 1996. This document 

defined a framework to quantify market risk in addition to credit risk, addressing the risk of a 

decline in market prices of equities, interest rate related and foreign-exchange positions, 

commodities, and options. Similar capital requirements applied to market risk. (see BCBS, 2005) 

Within an asset class, no distinction in terms of riskiness of the assets was made. This gave banks 

incentives to shift from low to high risk assets within an asset class2. Banks could thus keep their 

regulatory risk measure low and at the same time substantially increase their economic risk – a 

term called regulatory arbitrage (see Jones, 2000). The BCBS acknowledged banks’ practices to 

employ in regulatory arbitrage and recognized that banks’ internal models of assessing credit risk 

might produce better estimates of credit risk and thus better reflect the riskiness of assets (BCBS 

2009).   

To counteract the problem of regulatory arbitrage, Basel II was introduced in 2004. The concept 

of Basel II is a three-pillar approach, consisting of the following parts (BCBS, 2004): 

1. Minimum Capital Requirements: Defines capital requirements. 

2. Supervisory Review Process: Encourages bank supervision authorities to impose capital 

charges beyond the minimum capital requirements based on risks not (or not adequately) 

accounted for through Pillar 1. Furthermore, authorities are encouraged to intensify 

supervisory review processes. 

3. Market Discipline: Introduction of disclosure requirements about capital and capital 

structure, risk exposures and risk assessment processes. This allows market participants to 

better assess capital adequacy of banks. 

A major difference in the assessment of the required capital under Basel II is that credit risk 

weights are not determined solely based on asset classes. Rather, risk weights would depend on 

                                                 
2 For example, Acharya, Schnabl and Suarez (2013) find that banks were engaged in regulatory arbitrage by setting 

up special purpose vehicles (SPVs) to securitize their assets but were still providing liquidity guarantees for these 

assets. 
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ratings. Banks could rely on credit ratings determined by recognized external credit assessment 

institutions or they could use their own internal models to generate their credit assessment, the so-

called internal-ratings-based (IRB) approach. (BCBS, 2004) 

Under the IRB approach, banks use internal risk models to project possible losses over a one-year 

time horizon. In this context, banks have to assess the 99.9% Value at Risk (VaR), that is the 

amount of losses that would not be exceeded with a probability of 99.9%. In this context, the 

minimum capital requirements for credit risk are specified to correspond to a probability of default 

(PD) of less than 0.1%. (see Federal Register September 25, 2006, p. 55833) 

 

Figure 1: Loss Distribution (Source: Federal Register) 

 

 

Figure 1 illustrates the concept of the IRB approach. It illustrates the one-year loss distribution. 

The loss amount at the 99.9th percentile determines the capital requirement.   

Before the financial crisis in 2008/2009, the BCBS started working on a revised framework (Basel 

III), which would further strengthen the capital base of banks. The revised set of rules has been 

published at the end of 2010 with the scope of strengthening the three Basel II pillars and to extend 

the rules to “improve the banking sector’s ability to absorb shocks arising from financial or  
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economic stress […] thus reducing the risk of spillover from the financial sector to the real 

economy” (BCBS, 2010). 

Basel III basically stipulates the implementation of stricter capital requirements. The required 

amount of Tier 1 capital to RWA increases from 4% to 6%, and at least 4.5% of all RWA must be 

Tier 1 common equity capital (which is essentially non-preferred shares)3. Additionally, banks are 

required to hold a capital conservation and a countercyclical buffer4. (BCBS, 2011) 

Basel III also regulates the leverage ratio through minimum leverage standards of 3% in Tier 1 

common equity to total ‘on and off’ balance sheet assets. Further, an important kind of risk not 

accounted for in the prevailing framework is liquidity risk, i.e. the risk that an institution is not 

able to meet cash flow commitments and collateral needs (BCBS, 2011). Banks are particularly 

sensitive to this risk because they tend to fund long term loans with short term deposits. Therefore, 

Basel III introduces a global liquidity standard that most importantly demands that banks need to 

hold enough liquid assets (cash or cash-like) to cover all cash outflows of 30 days under stress5. 

The changes are to be implemented gradually until 2019. (BCBS, 2013) 

In 2007, when the subprime crisis started, Basel II regulation was in force. At that time, most banks 

had regulatory capital ratios that exceeded minimum requirements and, under Basel Pillar 2, were 

under a constant supervisory monitoring process (see Flannery, 2014). Nevertheless, the crisis has 

not been prevented. As a consequence of the crisis, regulatory institutions introduced frequent 

regulatory stress tests for the banking sector. 

 

                                                 
3 The exact definition of Tier 1 common equity capital is “Tier 1 capital less the non-common elements of Tier 1 

capital, including perpetual preferred stock and related surplus, minority interest in subsidiaries, trust preferred 

securities and mandatory convertible preferred securities” (Clark and Ryu, Federal Reserve Board, 2015). 
4 The capital conservation buffer imposes banks to build up ex-ante capital buffers that can be drawn upon in stressful 

times, the countercyclical buffer imposes banks to hold more capital during economic good times (BCBS, 2011) 
5 Stress scenario comprises a significant downgrade of the bank’s credit rating, a partial loss of deposits, partial loss 

of unsecured wholesale funding, a significant increase in secured funding haircuts, increases in derivative collateral 

calls and substantial calls on contractual and non- contractual off-balance sheet exposures, including committed credit 

and liquidity facilities. (BCBS, 2010) 
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2.2 Regulatory Stress Tests 

Stress tests in general are scenario based analyses of a firm’s asset values. Within the framework 

of financial risk modelling, scenario analysis has been and continues to be a common tool. It is 

conducted by individual companies for their own risk management. In contrast to the “internal 

stress tests” conducted by banks, regulatory stress tests differ as they enable comparisons across 

banks and, as a macro-prudential tool taking all banks’ results into account, also aim at giving an 

impression of the systemic risk prevalent within the banking sector (Petrella & Resti, 2013).  

The financial crisis of 2007-2009 can be seen as the motivation behind the regulatory stress tests. 

After numerous bank failures and bailouts of banks6, regulatory authorities around the world 

launched several initiatives to regain and preserve system stability. The first supervisory stress 

test, the Supervisory Capital Assessment Program (SCAP), has been conducted by the Federal 

Reserve System in early 2009. (Mishkin, 2011) 

The SCAP (as well as the following stress tests) was a supervisory assessment on the 19 largest 

US banking institutions and had two main purposes: First, it was supposed to assess whether banks 

have sufficient capital to withstand losses and still meet their customers’ credit needs in adverse 

macroeconomic conditions. Sufficient capital in this context referred to a common equity ratio of 

4% and a tier 1 risk-based capital ratio of 6%7. Second, the SCAP was supposed to provide 

information to regulators and the market through the disclosure of results on a bank-by-bank level 

in order to facilitate market discipline (as is the purpose of Basel Pillar 3). This was also supposed 

to enable a bank to raise - if required - additional capital by making a bank’s condition more 

transparent. 

The results of the SCAP were disclosed in March 2009 and 10 out of 19 banks failed the test (i.e. 

they were undercapitalized in the adverse scenario of the stress test) but almost all of them were 

able to raise the required amount8 . This fact shows that the stress test has been successful in terms 

                                                 
6 The most prominent bailouts are probably those of Fannie Mae, Freddie Mac, American International Group (AIG) 

and Bear Stearns, Lehman Brothers’ bankruptcy in September 2008 was the largest bank failure in American history 

(Mishkin, 2011) 
7 The Tier 1 common capital ratio is defined as the ratio between Tier 1 common equity capital to risk weighted 

assets, (see Clark and Ryu, Federal Reserve Board, 2015). 

8 General Motors Acceptance Corporation (GMAC) was the only bank not able to raise enough capital by November 

2009 (Federal Reserve, 2009) 
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of fostering transparency and trust in the banking system. Mishkin (2011) argues that stress tests 

are a key element in the recovery of the economy9.  

With the SCAP, a whole series of other regulatory stress tests around the world was initiated. The 

most prominent stress tests are those conducted in Europe and the United States. 

The current stress testing process in the U.S. basically has the following structure: Regulatory 

authorities design a baseline, an adverse and a severely adverse scenario that describe a 

hypothetical macroeconomic environment over a three-year horizon. Participating institutions, 

usually the system’s largest banks in terms asset value, provide the data necessary to assess their 

financial development within the different scenarios such as net income and balance sheet data. 

Lastly, profitability and capital ratios over the three-year time frame are projected. (Fed Board of 

Governors, 2017)  

The following figure illustrates the stress testing procedure, after which we will shortly describe 

some of the components in more detail. 

 

Figure 2: Stress Testing Procedure (Source: Capgemini) 

 

  

                                                 
9 In a similar manner, Hoshi and Kashyap (2011) argue that the 2003 stress test conducted in Japan after years of 

economic recession significantly contributed to the economic recovery 
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The foundation of regulatory stress tests are one or more hypothetical bad-case scenarios that 

represent an economic downturn caused by various simultaneous shocks to the macroeconomic 

environment. For this purpose, supervisory institutions define a set of conditions that affect the 

economy and financial markets for three subsequent years. This set of conditions captures factors 

like economic activity, asset prices (e.g. housing prices and stock indices), interest rates, GDP 

growth, inflation, and unemployment rates. Besides the stress scenario, or the adverse scenario, 

the tests usually comprise a baseline scenario, representing an economic forecast of what 

regulators consider as realistic given the prevailing economic conditions. U.S. stress tests comprise 

two stress scenarios, an adverse and a severely adverse scenario. Furthermore, the conditions are 

adjusted for each test to what regulators consider as adequate. (Dent el al, 2016) 

The following figure shows a comparison of selected projected economic variables between the 

U.S. severely adverse scenario and the European Adverse Scenario in 2016. 

 

Figure 3: Stress Test Scenarios of the 2016 U.S. Stress Test 

 

 

Figure 3 illustrates the three-year projections of the changes in unemployment rate, house price 

index, stock market index and real GDP as a part of the severely adverse scenario in the 2016 U.S. 

stress test. 
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The macroeconomic scenarios affect banks’ capital positions in several ways. For example, the 

increase in the unemployment rate could lead to more people having difficulties paying off their 

loans. In this case, a bank, being the lender, will possibly have to record losses. Another example 

would be a decline in the house price index, pointing at decreasing housing prices, that results in 

the deterioration of banks’ asset values as the value of the collateral falls below the loan amount. 

All these losses lead to a decline in equity capital. If the overall loss in equity leads to an equity 

capital position below a certain threshold (which is the regulatory capital ratio), the bank fails the 

test. (Dent et al., 2016) 

Generally, the impact of the scenario depends on the correlation of the economic variables with 

the bank’s assets. For example, if assets only consist of mortgage loans, the correlation to house 

prices is likely to be very high and losses due to credit risk are likely to be very high. The projection 

of capital ratios to future values requires banks and supervisors to make assumptions about the 

development of asset values. In this sense, regulatory institutions have decided to keep values 

constant (such as RWA and dividend policy). (Dent el al, 2016) 

All participating banks send the required data to the supervisory institution which then uses its 

own risk models to quantify the risks. The advantage of the approach applied is that it truly makes 

the stress impact comparable across institutions and that it eliminates incentives for banks to play 

down potential losses using their own models (Hirtle and Lehnert, 2014). 

One important factor of the regulatory stress testing procedure that is supporting system stability 

is the disclosure of test results. Banks’ assets in their nature are opaque, meaning banks do not 

provide sufficient information about their assets’ risk exposures (Flannery, 2010). Consequently, 

the market’s ability to assess the true value of banks’ assets is limited (Flannery, 2014). The 

disclosure of test results on a detailed level aims at providing more information to market 

participants and thus to mitigate bank opaqueness. Petrella and Resti (2013) examine whether the 

disclosure of stress test results evokes market reactions. If markets are efficient, any new 

information is reflected in market prices (Fama, 1969). They find that markets do react to the 

disclosure of results and conclude, that it in fact does provide new information and mitigates bank 

opaqueness.  
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In summary, regulatory stress tests are a tool used for the quantitative assessment of banks’ risks. 

They are used to assess whether banks can also comply with regulatory standards in times of 

economic downturn. To banking regulation they are an important complement that improves 

system stability. The results can be used as an input for both, micro- and macroprudential 

regulation. On a microprudential level, regulatory institutions can use the results to make sure that 

banks are sufficiently capitalized. On a macroprudential level, i.e. concerning the system as a 

whole, authorities can evaluate the capital adequacy of the entire financial system. (Dent el al, 

2016) 

However, the test results can only be considered in conjunction with the assumptions made in the 

modelling process. In the following section, we argue that these assumptions are incorrect and 

therefore the current stress tests are subjected to a couple of weaknesses.  

 

2.3 Weaknesses of Regulation and the Stress Testing Procedures 

Although the existence of stress tests and regulation is justified, the question remains to what extent 

they are capable of ensuring system stability and preventing another financial crisis. 

Despite the positive contribution of regulatory stress tests and banking regulation to a more stable 

system as stated above, the current stress test methodology is flawed by a number of weaknesses, 

which we elaborate in the following. 

Firstly, as stress tests aim at assessing risk on a macroprudential level, i.e. at assessing systemic 

risk, the regulators assume that systemic risk is simply the sum of individual risks of all banks. To 

understand why this is not the case, we first need to properly define systemic risk: Billio et al. 

(2012) give a formal definition, as “any set of circumstances that threatens the stability of […] the 

financial system” (p. 537). According to them, systemic risk comprises four factors: leverage, 

liquidity, losses and interconnectedness. Basel III and the stress test together capture the first three 

factors. However, the fourth factor, interconnectedness, is the crucial factor to systemic risk that 

is not covered by either as it cannot be measured on a microprudential level, which is where Basel 

III and the stress test are really employed. 
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Cai et al (2017) define interconnectedness as common exposures among financial institutions 

which lead to a higher correlation among their portfolios. Liu et al. (2015) find that these common 

exposures can arise from direct and indirect connections. Direct connections are for example credit 

exposures and financial infrastructure dependencies between financial institutions. Indirect 

connections could among others stem from marked-to-market losses, triggered by e.g. fire sales10. 

Acharya and Yorulmazer (2008) analyze another interesting example of indirect 

interconnectedness, namely information spillover. They state that when distressing news of a 

single bank are interpreted as a bad signal for the whole financial sector, other similar banks’ costs 

of borrowing debt will increase. 

Acemoglu et al. (2015) argue that, when negative shocks (e.g. bank failures) pass a certain 

threshold, a higher degree of interconnectedness promotes the spread of financial distress from 

one institution to the other. Therefore, interconnectedness increases the probability of one 

institution going bankrupt in times when other interlinked institutions experience financial distress. 

Interconnectedness is the key to understand why individual banks’ risks don’t just add up to 

systemic risk. To illustrate this, imagine a system with three banks, Bank A, Bank B and Bank C. 

They are highly interconnected, i.e. Bank A has large credit exposure to both, Bank B and Bank 

C, and Bank B also has credit exposure to Bank C. A stress test makes sure that Bank A can carry 

all losses arising from both banks’ credit risks seen in isolation. But what it would not capture is 

the increased probability of default of Bank B, when Bank C defaults. This example can be 

modified to illustrate the effect of other channels of interconnectedness. Let us assume Bank B is 

the only clearing bank in the system. Bank A and Bank C depend on the financial services offered 

by Bank B but do not have any credit exposure to it, so these connections do not show in any 

balance sheets and therefore are not taken into account by the stress test. If Bank B goes bankrupt, 

Bank A and Bank C would quickly have to come up with a substitute for Bank B. The default risk 

is not considered by the stress test, even though a default would significantly affect Bank A and 

Bank C and maybe even the rest of the economy. Both examples illustrate the systemic risk that 

arises from interconnectedness that is not captured by regulatory stress tests. 

                                                 
10 Fire sales occur when a failing bank does not have enough liquid assets and might be forced to sell a large amount 

of illiquid assets in a short period of time at a discount. 
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A further weakness is that regulation and stress tests rely on regulatory capital ratios to limit a 

bank’s default risk and thus their contribution to systemic risk. However, as pointed out by 

Flannery (2014) regulatory capital measures are insensitive to actual default risks of banks because 

they are based on book values. He adds that the five largest U.S. banks that failed or were acquired 

in 2008 (Bear Stearns, Lehman Brothers, Wachovia, Washington Mutual and Merrill Lynch) 

reported high Tier 1 book capital ratios in their last financial statements, while their market values 

of equity had already declined and CDS spreads had already increased as shown in Figure 4.  

 

Figure 4: Book Capital Ratios versus Market Solvency Indicators (Source: Flannery, 2014) 

 

 

Book values and regulatory risk weights, can be subject to accounting distortions because banks 

are able to manipulate book data and regulatory risk weights. Acharya, Engle and Pierret (2014) 

state that banks are not interested in holding the economic efficient amount of capital because they 

do not bear the costs of bailouts and “externalities they impose to the rest of the economy 

[…] when the financial sector is undercapitalized”. The risk weight estimates produced by banks 

under the IRB approach are a result of strategic risk modelling and do not reflect the actual risk. 

This can lead to excessive economic leverage despite having adequate regulatory capital ratios.  

The alternative to using capital ratios based on book values is the use of market values instead. 

Flannery (2014) states that regulators do not see an advantage in the use of market values, as they 

can also be flawed due to the opaqueness of banks and therefore the market is not able to assess 

the true value of their assets. In response to this argument, Flannery (2014) states that even though 
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market values might not be able to predict deteriorating conditions much in advance, they still 

adjust much sooner than book capital ratios. Figure 4 illustrates this. Their quicker adjustment is 

due to their reflection of all publicly available information under the assumption that markets are 

efficient (Fama, 1969). 

This leads to the next argument in favor of market values compared to book values: the current 

regulation and stress tests have a tedious risk assessment framework. Credit risk, market risk, 

liquidity risk etc. must be assessed separately using sophisticated models, the information must 

then be put together to obtain the final measure for capital adequacy. The advantage of market 

values is that they include an overall risk assessment based on the information that is available. 

Furthermore, in contrast to book values, market values are forward-looking and not a reflection of 

the past. 

In the following section, we explain an alternative measure for a bank’s contribution to systemic 

risk that takes the described weaknesses into account. 

 

3 Market Based Measures of Systemic Risk 

 

3.1  Systemic expected short fall 

Acharya et al. (2016) develop a theoretical framework for taxing bank holding companies (BHCs) 

according to their overall risk contribution. Instead of taking into account only BHCs’ individual 

default risk, as done in supervisory stress tests and banking regulation, they also consider their 

contribution to systemic risk. The framework is based on the idea, that BHCs should be taxed ex-

ante for their expected risk contribution because – due to their limited liability feature – they incur 

costs to society in case of a default. Such costs include the amount necessary for a bailout which, 

in the end, is carried by taxpayers but also the costs of a debt insurance program. In an 

interconnected system, the default of a bank that is systemically important can trigger other banks’ 

defaults, a credit crunch and in consequence an economic downturn. If banks have to pay for this 

risk in advance through a tax, they may find it optimal to reduce the risk by choosing a different 

(less levered) capital structure.  



23 

 

The model implies that BHCs choose a mix between equity and debt that maximizes the net worth 

for equity holders. The regulator in turn chooses a tax rate, that maximizes the welfare of the whole 

financial system considering the sum of all BHC owners’ utilities, the expected cost of the debt 

insurance program (that depends on the BHC’s choices) and the externalities that would spill over 

to the rest of the economy in case of a systemic downturn.  

An important assumption in this model is that a systemic crisis occurs when the whole financial 

system is undercapitalized. Thus, when a single bank is undercapitalized in times when the system 

as a whole is not, this one bank’s default will not impose any externalities to the whole economy 

because it could, for example, just be purchased by another BHC. 

Acharya et al. (2016) state that a financial system is undercapitalized when the aggregate capital 

falls below a fraction 𝑧 of the aggregate assets in the system. Thus, if all banks hold at least this 

much capital to cover the fraction 𝑧 of their assets, the system is not undercapitalized. In our current 

regulatory framework 𝑧 in size is comparable to the required amount of 8% of RWA that needs to 

be held in Tier 1 capital by banks. As explained in the previous section, 8% of RWA is what 

regulators define as capital adequacy. 

The tax rate has two main components: idiosyncratic risk and a bank’s contribution to systemic 

risk (SES). It is the idiosyncratic part, that the current regulation and supervisory stress tests 

address, but both, the idiosyncratic and the systemic terms, that supervisory institutions actually 

want to regulate. The focus of this thesis is on the systemic part SES.   

SES – the systemic expected shortfall - has the following form: 

 

(1) 𝑆𝐸𝑆 = 𝐸[𝑧𝑎𝑖 − 𝑤1| 𝑊1 < 𝑧𝐴] 

 

where z is a fraction that determines capital adequacy, 𝑎𝑖 is firm i’s asset value, 𝑤1 is firm i’s 

available equity capital at time 1,  𝑊1 is the aggregated amount of capital in the whole system and 

𝐴 are the aggregated assets in the whole system. 

Thus, SES is a measure for the expected difference between the fraction 𝑧 of a bank’s assets and 

its equity capital 𝑤1 when the system is undercapitalized. This difference shows how much a firm 

contributes to the shortfall of the system when a crisis occurs. 
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Because the tax will be set ex-ante, the systemic expected shortfall must be known in advance, 

which is unfortunately not the case as 𝑧 is not predictable. Hence, SES cannot be calculated the 

way it is described in equation (1) and therefore Acharya et al. (2016) derive a relationship between 

SES and market based data. For this purpose, they introduce a measure called marginal expected 

shortfall, or MES, that has the following form:  

 

(2) 𝑀𝐸𝑆5%
𝑖 =  −𝐸 [

𝑤1
𝑖

𝑤0
1 − 1| 𝐼5% ] 

 

where 
𝑤1
𝑖

𝑤0
1 − 1 is firm i’s return on equity capital, 𝐼5%denotes the 5% worst market days during a 

certain period. MES is therefore the negative average of daily equity returns during the 5% worst 

market days. The negative sign makes MES in total a positive number as average returns will most 

likely be negative during the 5% worst market days11. 

Crisis returns are not predictable, but what can be observed are returns and values during the worst 

days of a year. By employing Extreme – Value – Theory, these can be translated to extreme day 

returns, thus approximating crisis returns. Acharya et al. (2016) use this connection and derive a 

relationship between systemic expected shortfall (SES) and 𝑀𝐸𝑆5%
𝑖 . The relationship looks as 

follows:  

 

(3) 
𝑆𝐸𝑆𝑖

𝑤0
𝑖 =  

𝑧𝑎𝑖−𝑤0
𝑖

𝑤0
𝑖 + 𝑘𝑀𝐸𝑆5%

𝑖 + ∆𝑖 , 

 

where 𝑎𝑖 is a firm’s pre-crisis amount of assets, z is the capital adequacy threshold, as explained 

above, 𝑘 is the extreme-value-scaling factor and ∆𝑖 are the excess costs of financial distress, which 

will be described further below. For the remainder of the thesis we will refer to this term as SES. 

                                                 
11 To be precise, this term should use the following notation: −𝐸 [

𝑤𝑡+1
𝑖

𝑤𝑡
1 − 1| 𝐼5% ] as otherwise it refers to the whole 

period instead of the 5% worst sub-periods of one day.  
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As can be seen, 𝑆𝐸𝑆𝑖 relative to equity capital 𝑤0
𝑖  is explained by three summands, which are in 

their own right. The first term, 
𝑧𝑎𝑖−𝑤0

𝑖

𝑤0
𝑖  , describes to what extent the company meets its capital 

threshold, 𝑧𝑎𝑖 , in relation to how much equity capital a company holds. If this term is positive, 

firm i is already undercapitalized and the firm’s systemic expected shortfall increases.  

The second term is 𝑀𝐸𝑆5%
𝑖  (referred to as MES from now on) and is scaled by factor k, which is 

the power law translation from normal bad-day-returns to returns in a systemic crisis.12  

The third factor has the following form:  

 

(4) ∆𝑖=  
𝐸[𝐷𝐶𝑖∣∣

∣𝑊1 < 𝑧𝐴 ]− 𝑘𝐸[𝐷𝐶𝑖∣∣
∣𝐼5% ]

𝑤0
𝑖 −

(𝑘−1)(𝑓𝑖−𝑏𝑖)

𝑤0
𝑖  

 

where 𝐷𝐶𝑖 are BHC i’s costs of financial distress, 𝑓𝑖 is its face value of debt, and 𝑏𝑖 is its market 

value of debt. 𝐸[ 𝐷𝐶𝑖 ∣∣ 𝑊1 < 𝑧𝐴 ] are therefore the expected distress costs in a crisis for BHC i, 

𝑘𝐸[𝐷𝐶𝑖 ∣∣ 𝐼5% ] are the scaled expected distress costs during the 5% worst market days.  

Distress costs are costs to a firm that arise when the firm experiences financial difficulties. Despite 

the costs that arise after a bankruptcy, such as the costs of hiring lawyers and accountants, filing 

for bankruptcy or restructuring costs, distress costs also arise from actions like cutting down capital 

expenditures or selling assets at a discount (see Andrade and Kaplan, 1998). In a theoretical Trade-

Off framework, expected distress costs increase with leverage because with increasing leverage, a 

firm’s probability of default (PD) increases (and the present value of distress costs is roughly the 

product of PD and distress costs).  

Thus, the first part of ∆𝑖 measures the excess costs of financial distress, i.e. the expected amount 

that will exceed the distress costs predicted for the crisis. If the true distress costs in a crisis are 

higher than the distress costs translated from normal days, this term is positive and ∆𝑖 and 𝑆𝐸𝑆𝑖 

increase. If they are actually lower, the opposite is the case.  

                                                 
12 As aforementioned, we can use Extreme Value Theory to derive a direct relationship between tail distributions and 

values during a crisis. Under the assumption that returns have a thin-tailed distribution, the tail distribution can be 

translated to extreme events over a factor. If the tail of a probability distribution has an extreme value distribution, the 

log of the probability of tail outcomes is linearly related to the log of the random variable. The proportionality factor 

is the tail index. See for example Kearns/Pagan (1999). For a more precise explanation see Acharya et al. (2016). 
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The second part of ∆𝑖, 
(𝑘−1)(𝑓𝑖−𝑏𝑖)

𝑤0
𝑖  is simply an adjustment term.13 It is relatively small and will not 

be considered any further in this study. Thus, ∆𝑖 are essentially the excess costs of financial 

distress. 

In their empirical implementation, Acharya et al. (2016) test the predictive power of their SES 

measure. They use the past financial crisis as the crisis event and the pre-crisis year as their 

measurement period.  

For the first part of SES, the ex-ante degree of undercapitalization, they use leverage as a proxy. 

This is feasible because the real z is not observable and because leverage and undercapitalization 

are related to each other. They are related because with higher leverage, a lower fraction of assets 

is covered by equity capital, and the firm is therefore closer to being undercapitalized (if not 

already undercapitalized). To avoid using book values as far as possible, the authors use a proxy 

for market leverage, 
𝑏𝑜𝑜𝑘 𝑎𝑠𝑠𝑒𝑡𝑠−𝑏𝑜𝑜𝑘 𝑒𝑞𝑢𝑖𝑡𝑦+𝑚𝑎𝑟𝑘𝑒𝑡 𝑒𝑞𝑢𝑖𝑡𝑦

𝑚𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦
. Because data for the market value of 

assets is not available, they approximate it by subtracting the book value of equity from the book 

assets and add the market value of equity. 

The second term, MES , is easily measurable.14 

The third part of SES, the excess costs of financial distress ∆𝑖, is left out. They argue that 

although 𝐸[ 𝐷𝐶𝑖 ∣∣ 𝑊1 < 𝑧𝐴 ], the expected costs of financial distress in a crisis, are probably very 

significant, they would be approximately be zero in non-crisis times and therefore cannot be 

captured. Overall, they rely only on MES and leverage to predict SES.  

MES and leverage are measured in the pre-crisis year and tested for their power to predict a bank’s 

systemic expected shortfall. Acharya et al. (2016) find significant explanatory power and conclude 

that their SES measure (combining MES and leverage) “appear(s) to be able to predict the financial 

firms with the worst contributions in systemic crises”. 

                                                 
13  (𝑓𝑖 − 𝑏𝑖) measures the excess returns on bonds and is part of MES as equity can be written as assets less distress 

costs and outstanding debt. When translating MES to extreme return over k, this term would scale up with the same 

factor. Acharya et al. (2016) state, that this term should actually not scale up, multiplying it by (k - 1) thus scales it 

back (Note: k >1). 
14 The scaling factor k is actually irrelevant to finding the correlation between SES and 𝑀𝐸𝑆5%

𝑖 , as k is a constant. 

Simply using 𝑀𝐸𝑆5%
𝑖  will thus have the same explanatory power. 
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In this thesis we will attempt to measure the expected excess costs of financial distress and 

implement it into the empirical measurement of systemic expected shortfall. 

 

3.2 CoVar 

Another similar measure for banks’ systemic risk contribution, CoVar, has been proposed by 

Adrian and Brunnermeier (2016). In contrast to Acharya et al. (2016), the authors suggest a 

measure based on Value at Risk (VaR) instead of the expected shortfall. Here, the measure of 

interest is the change in a financial system’s VaR when a company is getting in distress. SES and 

CoVar differ in their measurement methodology. Where Acharya et al. (2016) base their prediction 

of asset values during a crisis on Extreme Value Theory, Adrian and Brunnermeier (2016) apply 

quantile regression. This model shows several weaknesses compared to the SES approach. The 

use of VaR is disadvantageous compared to the use of the expected shortfall, especially in the 

situation, where the behavior beyond the VaR-quantile is of interest. This is because VaR is only 

a certain threshold but does not capture the quantity of the losses beyond this threshold and exactly 

these losses matter in a crisis. Furtermore, Adrian and Brunnermeier (2016) find only a weak 

correlation between a company’s VaR and the change in the system’s VaR. Accordingly, this 

motivates putting the focus on SES rather than on CoVar in this thesis. 

 

4 Estimating expected cost of financial distress 

4.1 Literature review 

Several studies investigated actual and expected costs of financial distress. One of the most 

prominent studies is that of Andrade and Kaplan (1998), who determine the costs attributable to 

financial distress after a firm defaulted. Their sample consists of 31 companies that encountered 

financial distress after highly-levered transactions and they find that the actual costs of financial 

distress amount to 10% - 23% of pre-distress firm value. They argue that, consistent with Acharya 

et al. (2016), expected (ex-ante) costs of financial distress are negligible because the probability 

of default is usually low. 
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In contrast to Andrade and Kaplan (1998), Almeida and Philippon (2007) estimate the expected 

costs of financial distress. For this purpose, they use the ex-post distress costs estimates from 

Andrade and Kaplan (1998) and weigh them with probabilities of default to obtain estimates for 

their expected value. As opposed to other studies that rely on historical probabilities of default to 

calculate expected costs of financial distress, they use observed bond spreads to obtain risk-

adjusted default probabilities. This automatically takes risk premia in bad states into account, 

which other studies ignore. Risk premia are higher in bad states because then the marginal utility 

of money to investors is higher than in good states (Breitkopf and Elsas, 2012). They find that 

expected distress costs amount to up to 4.5% of pre-distress firm value for investment grade firms 

(whereas ignoring risk premia, expected distress costs amount to only 1.4%). 

Based on a sample of 175 firm that defaulted in the period between 1997 and 2010, Davidenko, 

Strebulaev and Zhao (2012) estimate the actual costs of financial distress that arise due to 

bankruptcy. In contrast to Andrade and Kaplan (1998), they do not only analyze distress costs for 

highly levered firms, rather they use a more diversified sample. Using an event-study approach, 

the authors extract the firm’s distress costs from the change in equity and debt prices around the 

announcement of default. They find that the average distress costs amount to 21.7% of asset values 

and that they are significantly lower for highly levered firms (20.2%). 

Breitkopf and Elsas (2012) estimate expected costs of financial distress for European non-financial 

firms. They find average expected distress costs of 6.7 % of asset values. The unique feature about 

their estimation procedure is that they don’t take any ad-hoc values for the estimation of loss given 

default which is an essential parameter in the estimation of distress costs. Rather, they estimated 

the parameter from observed market values of equity and spreads of credit default swaps. 

We think that distress costs of banks are even higher for the following reason. It seems likely, that 

banks are over-levered due to deposit insurance and being “too big to fail” (TBTF). The term 

TBTF usually applies to systemically important banks that require certain regulation while solvent 

in order to keep them solvent (through a bailout for example) and/or that are subject to special 

liquidation rules with respect to allocation losses when they are bankrupt, that don’t apply to other 

companies in the same industry (see Kaufman, 2014). This creates a moral hazard problem for 

systemically important financial institutions as it gives bank owners incentives to engage in risk 

shifting and therefore to take on excessive risk. In support to this argument, the leverage ratchet 
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theory (Admati et al., 2013) shows that particularly bank owners have no incentives to de-lever, 

even if they deviate from their optimal capital structure. 

Following the findings in recent literature, we think that distress costs will be significantly different 

from zero, other than assumed by Acharya et al. (2016). We want to estimate expected costs of 

financial distress for U.S. bank holding companies and to expand Acharya et al.’s (2016) SES 

measure. For this purpose, we will use the estimation procedure applied by Breitkopf and Elsas 

(2012). In the following section, we describe their estimation procedure in more detail.  

4.2 The Breitkopf and Elsas (2012) procedure for estimating distress costs 

Distress costs can be estimated using the framework of structural models. Based on Merton’s 

(1974) model of corporate debt, Leland (1994) derives a structural model incorporating taxes and 

distress costs, which is thus grounded on the trade-off theory of capital structure (Myers 1984, 

Fischer et al. 1989). Leland and Toft (1996) complement this model by including an endogenous 

default barrier. 

Building on the Leland and Toft (1996) model (LT model), Breitkopf and Elsas(2012) developed 

a framework to directly estimate distress costs from CDS and stock price data instead of using ad-

hoc values for model exogenous parameters. 

Structural models, like the LT model, can be generalized by the following form: 

 

(5) 𝑓𝑖𝑟𝑚 𝑣𝑎𝑙𝑢𝑒 =  unlevered 𝑎𝑠𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 + 𝑃𝑉(𝑡𝑎𝑥 𝑠ℎ𝑖𝑒𝑙𝑑) − 𝑃𝑉(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠 𝑐o𝑠𝑡𝑠) 

 

As can be seen, the expected costs of financial distress are an explicit component of this model. 

One central parameter determining distress costs is loss given default (LGD), defined as the ratio 

of losses to exposure at default (Schuermann 2014). Because this parameter is unknown prior to 

default, studies such as Almeida and Philippon (2007) have to make assumptions about the size of 
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LGD. Breitkopf and Elsas (2012) avoid this by using credit default swap (CDS) spreads15 to find 

market implied parameter values. 

Besides LGD, there are other unknown exogenous parameters in the LT model that must be known 

in order to obtain estimates for distress costs, such as asset values, asset volatilities, debt maturity 

(T) and the asset pay-out ratio. Instead of making flat assumptions about their values, Breitkopf 

and Elsas (2012) derive them from market prices.  

In order to obtain market implied estimates for the unknown parameters e.g. LGD, Breitkopf and 

Elsas (2012) must know firm value components such as the unlevered assets value and asset 

volatility. To obtain those, Breitkopf and Elsas (2012) use the direct relationship between equity 

prices (that can be observed), unlevered asset value and asset volatility to obtain the unlevered 

asset value and the asset volatility.  They do this for various combinations of LGD, T and the asset 

payout ratio. Thus, they obtain a large matrix with different time series of asset values and 

volatilities and then use observed CDS spreads to search the time series for the combination that 

corresponds best to the observed CDS spreads.  

In this thesis, we will use the same procedure with the only difference that we take the asset payout 

ratio as given by approximating it through a weighted average of dividends and interest expenses. 

Reneby et al. (2005) state that the approximation through weighted averages provides reasonable 

results. 

In summary, to obtain market-implied expected costs of financial distress we, in accordance with 

Breitkopf and Elsas (2012), conduct the following steps: 

1. Estimation of the market values of assets and asset volatilities using the Leland and Toft 

(1996) framework for various combinations of debt maturities and LGDs. 

2. Determination of market-implied values for LGD by searching for the optimal parameter 

combination through calibration with observed CDS spreads on a subindustry-level 

                                                 
15 Credit default swaps are instruments that provide an insurance against the default of a counterparty. Usually the 

holder of a bond would buy it as a protection of the bond issuer defaulting (and consequently the bond holder losing 

his investment). In such a case, the CDS buyer makes periodical payments to the seller of the CDS. The total amount 

of the payments as a percentage of the notional principal is known as the CDS spread or the premium (Hull, 2012). If 

the reference entity defaults, the CDS seller must compensate the buyer with the nominal value of the bonds. Naturally, 

the amount of the premium depends on the likelihood of the firm defaulting. 
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3. Translation of the estimated LGD parameters to the expected costs of financial distress for 

each firm. 

In the following section, we describe the different steps in more detail. 

 

5 Empirical Design 

5.1 Estimating Asset Values and Asset Volatilities 

Leland and Toft (1996) derive closed-form solutions for the determination of firm value 

components. Leland and Toft (1996) extend the Merton (1974) model by including the tax 

deductibility of interest payments (tax shield) and bankruptcy costs which enables the valuation of 

corporate securities in the context of the Trade-Off theory. 

The foundation of the model is the assumption that a firm has unlevered assets whose value follows 

a geometric Brownian motion16: 

(6) 
𝑑𝑉

𝑉
= [𝜇(𝑉, 𝑡) − 𝛿]𝑑𝑡 + 𝜎𝑑𝑧 

 

where μ is the expected rate of return of the unlevered asset value V, and δ is the fraction of assets 

paid out to equity and debt holders (payout ratio). The firm has a stationary debt structure, which 

means that the firm continuously replaces maturing debt and with freshly issued coupon bonds 

(Leland & Toft, 1996). Under these assumptions, Leland and Toft (1996) provide a closed-form 

solution for the determination of the firm value: 

 

(7) 𝑣(𝑉; 𝑉𝐵) = 𝑉 +
𝜏𝐶

𝑟
[1 − (

𝑉

𝑉𝐵
)
−𝑥
] − 𝛼𝑉𝐵 (

𝑉

𝑉𝐵
)
−𝑥

 

                                                 
16 It is possible to extend the Leland & Toft model and making it more realistic by incorporating a jump diffusion 

process. Hilberink and Rogers (2002) show in a series of cases the impact of a jump-diffusion process in the Leland 

and Toft model. The find all maturities, except short ones, the firm value components are similar.  

 

 



32 

 

 

where 𝜏 is the tax rate, 𝑟 is the risk-free interest rate, C is the coupon, 𝛼 is loss given default. 

(
𝑉

𝑉𝐵
)
−𝑥

 is the present value of one dollar at the time the firm defaults with x being a discount factor. 

V are the firm’s assets,  
𝜏𝐶

𝑟
[1 − (

𝑉

𝑉𝐵
)
−𝑥
] is the present value of the firm’s tax shield, while 

𝛼𝑉𝐵 (
𝑉

𝑉𝐵
)
−𝑥

 is the present value of the firm’s distress costs. 𝑉𝐵 is the asset value where the owners 

of the firm find it optimal to stop servicing the debt (i.e. default). This is shown in the following 

formula: 

(8) 𝑉𝐵 =      
(
𝐶

𝑟
)(

𝐴

𝑟𝑇
−𝐵)−

𝐴𝑃

𝑟𝑇
−
𝜏𝐶𝑥

𝑟

1+𝛼𝑥−(1−𝛼)𝐵
   

 

The market value of debt and equity is defined as: 

 

(9) 𝐷(𝑉; 𝑉𝐵, 𝑇) =
𝐶

𝑟
+ (𝑃 −

𝐶

𝑟
) (

1−𝑒𝑟𝑇

𝑟𝑇
− 𝐼(𝑡)) + ((1 − 𝛼)𝑉𝐵 −

𝐶

𝑟
)𝐽(𝑇) 

 

(10) 𝐸(𝑉; 𝑉𝐵, 𝑇) =  𝑣(𝑉; 𝑉𝐵) − 𝐷(𝑉;𝑉𝐵, 𝑇) 

 

P is the principal of debt, for explanations of variables A and B in equation (8) and I(T) and J(T) 

in equation (9), we refer to Leland and Toft (1996).17 

The problem is, that many of the parameters that determine the firm value in the LT model cannot 

be directly overserved. Some parameters, such as the market value of equity and the principal of 

debt, can be observed, while others, for example the default barrier, 𝑉𝐵, are determined within the 

model by the optimal behavior of the firm owners. Two parameters, the coupons and the asset 

                                                 
17 Equation (7) and (8) are only valid if the tax shield is not lost prior to default. For the cases where this happens, 

Leland and Toft (1996) derived closed form solutions as well. They can be found in Appendix A. 
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payout ratio, can be approximated. Parameters, such as asset value, asset volatility, maturity and 

loss given default cannot be directly observed.  

Duan, Gauthier & Simonato, (2005) use an iterative approach to find asset values and asset 

volatilities. Unlike the market value of equity (E) for exchange listed companies, the market value 

of assets is not observable, hence they use the functional relationship that exists between E and the 

unlevered asset value (V) to find the asset value that is consistent with the observed market value 

of equity for the firm. This works by inverting the equity function, equation (9), and deriving asset 

values and volatilities through an iterative approach. 

The approach works by making an initial guess on the asset volatility 𝜎0, which is included in the 

term x, and generate a time series of 250 asset values that correspond to this volatility and the 

observed daily equity prices during the time period of 250 days. The resulting asset value time 

series is used to calculate a new volatility 𝜎1, which serves as an updated guess on the true annual 

asset volatility. Then we redo the previous step with 𝜎1. This procedure is repeated 𝑖 times until 

the values for 𝜎 for two consecutive iterations converge, i.e. when 𝜎𝑖 deviates from 𝜎𝑖−1 by no 

more than 2%. This yields the annual asset volatility. However, we do not assume that the volatility 

remains constant throughout the whole year and therefore we transform this volatility into the daily 

volatility and then assign it to the asset value of day 1. Then we move the observation period 

forward by one day (day one leaves the time series, and day 251 is added) and repeat the iteration 

process to obtain the daily volatility for day 2 and continue to do so until we have generated a time 

series of daily asset values and their corresponding daily volatilities. 

We repeat this entire process for all firms with different combinations of time to maturity, T, and 

loss given default, LGD.  

 

 

 



34 

 

5.2 Determination of Market-Implied Parameter Values and Calibration with CDS 

Spreads 

After obtaining estimates for asset values and volatilities using the iterative approach just 

described, we have one time series of asset values and asset volatilities per combination of T and 

LGD. In the next step, we find the optimal parameters for each subindustry through a calibration 

with CDS spreads. 

Reneby, Ericsson and Wang (2005) derive a formula for calculating the theoretical value of credit 

default swaps and spreads using the stochastic assumptions of the LT model. They split the 

valuation of the credit default swaps into two parts, the premium paid by the protection buyer and 

the expected payoff to the buyer if the reference entity defaults.  

If a credit default swap involves paying a continuous flow of CDS premiums ‘q’ until some day 

between today and expiration, Reneby et al. claim that the value of the CDS is given as: 

 

 

(11) 𝐶𝐷𝑆 (𝑉, 𝑡) = (𝑃 − (1 − )𝑃) ∗ 𝐺(𝑉, 𝑡, 𝑇∗) −
𝑄

𝑟
(1 − 𝐻(𝑉, 𝑡, 𝑇∗) − 𝐺(𝑉, 𝑡, 𝑇∗)) 

 

The first part of the equation is the value of the bond’s principal in case the firm goes bankrupt. 

The second part is the value of the risk-less infinite cash flow less two terms, 𝐻(𝑉, 𝑡, 𝑇∗) 

and 𝐺(𝑉, 𝑡, 𝑇∗). 𝐺(𝑉, 𝑡, 𝑇∗) is a dollar-in-default claim if the firm defaults and 𝐻(𝑉, 𝑡, 𝑇∗) is a 

binary option on the firm not defaulting.  

The CDS fee at initiation 𝑡 = 0, Q, is chosen in a way that the credit default swap has zero value: 

 

(12) 𝑄 = 𝑟 ∗ (𝑃 − (1 − )𝑃) ∗
𝐺(𝑉0,0,𝑇

∗)

(1−𝐻(𝑉0,0,𝑇∗)−𝐺(𝑉0,0,𝑇∗))
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where alpha is the same LGD as in the Leland and Toft (1996) model. The CDS premium is then 

defined as: 

(13) 𝑞 =
𝑄

𝑃
 

 

Equation (12) expresses the CDS fee as a fraction of the bond notional. Reneby et al. (2005) find 

that the model implied CDS spreads are quite accurate. The whole derivation of the CDS valuation 

formulas can be found in Appendix B. 

In order to obtain the market implied parameters LGD and T, we must first calculate the CDS 

premiums implied by the LT Model. For this purpose, we use the daily asset values and volatilities 

found in Step 1 for each combination of LGD and T. We then search for the combinations of LGD 

and T which results in CDS premiums that are closest to the actually observed CDS premiums. 

This is achieved via the Root Mean Squared Error (RMSE) function. 

 

 

 

Breitkopf and Elsas (2012) use an adapted version of the RMSE for their calibration: 

 

(14) 𝑅𝑀𝑆𝐸𝑗 = √∑ (
1

𝐷𝐷𝑗
) ∗ (𝑆𝐿𝑇𝑗 − 𝑆𝑎𝑐𝑡𝑗)

2
𝑛
𝑗=1  

 

where n is the number of observations, DD is the distance to default,  𝑆𝐿𝑇 is the CDS premium 

implied by the LT model and 𝑆𝑎𝑐𝑡  is the observed CDS spread. Because CDS spreads are not 

available for all companies, we split our sample into sub-industries according to SIC codes. We 

sum up the bank-individual RMSEs for each sub-industry. This yields the sub-industry’s specific 

RMSE, which we optimize. 
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The root mean squared error (RMSE) is a goodness of fit measure that, in this context, measures 

the squared deviations between the calculated and the observed CDS spreads. To find the optimal 

values, RMSE must be minimized. 

As can be seen in the objective function (13), Breitkopf and Elsas (2012) weigh the squared spread 

difference for each observation with the factor 
1

𝐷𝐷𝑗
, where DD is the distance to default for 

company j. The distance to default is a measure for the default risk of a company. It measures the 

difference between the expected asset value and the default barrier in terms of standard deviations, 

i.e. how many standard deviations the asset value can decline before the company defaults. 

Breitkopf and Elsas (2012) argue, that CDS spreads show a large variation when default risk is 

low. This means, when default risk is low, observed spreads can be both, high and low. As credit 

default swaps act as an insurance against the default of a firm, one would expect CDS spreads to 

be low in case of a low probability of default. If this is not the case, there must be other factors 

driving the spreads which are not priced in a theoretical model. Therefore, the model-predicted 

CDS spreads might be low, although observed spreads are high. This can be seen in the following 

plot: 

 

Figure 5: Model-implied CDS-spreads vs observed CDS-spreads 
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Figure (5) plots observed spreads against model implied spreads. Optimally, if the model described 

the observed CDS spreads perfectly well, all data points should be on a 45° line. As can be seen, 

this is not the case. Especially the observed spreads corresponding to low model implied spreads, 

i.e. to model implied spreads with a low probability of default show large variation. For very low 

model implied spreads, observed spreads have a range of up to 8 basis points. 

Getting back to our optimization problem, (𝑆𝐿𝑇 − 𝑆𝑎𝑐𝑡)
2 can be high, not due to a bad parameter 

choice of T and LGD but because of the underlying theoretical model which does not describe the 

observed spreads perfectly well. In this case, these inconsistent observations should be attributed 

lower weights because the observed and predicted values cannot be perfectly optimized through 

the right parameter choice. But it is the right parameter choice that our objective function is looking 

for. 

To calculate the distance to default, Breitkopf and Elsas (2012) use a formula derived by Merton 

(1974), which is defined as: 

 

(15) 𝐷𝐷 =
ln(

𝑉

𝑉𝐵
)+(𝜇 −0.5∗𝜎2)∗𝑇

𝜎∗√𝑇
 

 

where 𝜇 is a firm’s expected rate of return between time zero and T, V is the unlevered asset value, 

σ is the asset volatility and 𝑉𝐵 is the same default barrier as before. We calculate the expected rate 

of return 𝜇 using the capital asset pricing model (CAPM). 

To find the market implied parameters for time to maturity and LGD, we calculate the RMSE for 

all possible combinations of T and LGD and pick the combination with the lowest RMSE. That 

means that for each possible combination of the two parameters, we must estimate asset values 

and asset volatilities. This quickly becomes unfeasible due to the time it takes to compute such 

time series as described in section 6.2. The firm’s asset value and asset volatility for a given day 

is usually found within 10 iterations (Breitkopf and Elsas, 2012). This implies that it takes 
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approximately 625.00018 calculations to find V and  for a one year time series on a daily basis, 

one company and one single combination of T and LGD. The time this would take for even a small 

data-set makes it an unfeasible approach within the scope of this thesis.  

As applied in Breitkopf and Elsas (2012), a solution to this computational problem is to limit the 

possible input parameters for T and LGD and to set up a multi-dimensional matrix containing time 

series of asset values and asset volatilities for a limited amount of combinations of parameters. 

The different values for T we use for the grid are {3, 5, 7, 9} in years, for LGD we use {10%, 25%, 

40%, 55%, 70%}. Breitkopf and Elsas (2012) obtain optimal maturities in their sample between 

5.9 and 9.5 years. As banks tend to rely more on short-term funding, we expect to find maturities 

that minimize the RMSE objective between 3 and 9 years. Based on the findings in other studies 

(see literature review), we do not expect LGD to exceed 70% and we believe it is at least 10%. 

From there on, we choose intervals with equal lengths. 

The objective function will search within this matrix for the smallest possible value of RMSE. To 

enable solutions in between the matrix items, we apply an interpolation scheme. Instead of finding 

asset values and volatilities for all possible points in between, we interpolate between them to 

obtain the values. This further reduces computational time. Breitkopf and Elsas (2012) mention, 

this is reasonable because V and  are relatively smooth functions of T and LGD. The smaller the 

distance between the entries in the matrix, the smaller the approximation error due to the 

interpolation. Thus, we trade off gains in computational time against approximation errors.  

We want to test whether it is in fact justified to interpolate between the different values of T and 

LGD that were mentioned above. We want to see how smooth the functions are for asset value and 

asset volatility with varying debt maturity and LGD. If the functions are not smooth, then 

interpolation cannot be justified due to large approximation errors19. As shown below in Figure 

(6), asset values and volatilities within the LT model are very smooth in alpha and debt maturity.  

                                                 
18 For each asset value and asset volatility, a time series of 250 is used. Assuming there is 250 trading days a year, this 

would be 250*250*10 = 625.000 
19 To assess this, we assume values for the risk-free rate, the principal of debt, payout ratio and observed equity values 

as input. When we vary T for asset values, we assume a constant volatility and when we vary T for asset volatility, 

we assume constant asset values. When varying T, we keep LGD constant, so the only thing that changes are T and 

the output (asset value or asset volatility). The same goes for when the LGDs are varied for asset values and asset 

volatilities. 
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Figure 6: Smoothness Plots 

  

Given this, we think it is justified to interpolate between asset values and asset volatilities.  

However, unlike the asset values and asset volatilities, the RSME objective function is not smooth 

in either LGD or T. To show this, we calculate the RMSE for 900 combinations of LGD and T for 

the whole sample of our firms, which shows the difficulties of trying to apply linear optimization. 

This can be seen below: 

 

Figure 7: Surface Plot of the RMSE Function 
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To work around this problem, Breitkopf and Elsas (2012) use a stochastic global optimization 

method known as simulated annealing that uses a randomized optimization algorithm. They do 

this because, as seen in the plot above, the objective function has multiple local minima. This can 

be imagined with a 3-dimensional surface plot that is searched for the lowest point (minimum) of 

the RMSE function in a random process until it is approximated to a convenient degree. We 

calculate the optimal parameters over a 2.5-year period for each subindustry. In our sample, if a 

sufficiently short sample is chosen, the optimization is likely to find solutions for LGD and T at 

the endpoints of the grid. This is the reason why we optimize the parameters over the 2.5-year 

period.  

The more iterations the optimization procedure uses, the more precise will the results be but the 

optimal parameters are varying with each optimization run due to its random nature (Breitkopf & 

Elsas, 2012). We therefore again need to trade precision against the number of times we want to 

repeat the procedure. We chose to do 2000 iterations, and repeat these 50 times and take the 

average of them.  

 

5.3 Translation of loss given default into expected costs of financial distress 

After finding market implied values for loss given default (LGD) through the calibration with 

credit default swap spreads, we can translate LGD to expected costs of financial distress. Leland 

and Toft (1996) provide the following formula for the expected distress costs of a given firm: 

 

(16) 𝐷𝐶𝑗 =  𝛼𝑉𝐵𝑗 (
𝑉𝑗

𝑉𝐵𝑗
)

−𝑥𝑗

 

 

DC are a firm’s expected costs of financial distress. The subindustry specific LGD is multiplied 

with the present value of a firm’s asset value when hitting the default barrier. Thus, even though 

LGD and T are estimated on a subindustry level, we can obtain expected costs of financial distress 
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on firm-level. The further away the asset value is from the default barrier, the lower the expected 

distress costs. If a firm defaults, the magnitude of the expected distress cost, i.e. the fraction of 

asset value lost, is solely determined by the LGD.  

 

5.4 Implementation of distress costs into the measure for systemic expected shortfall 

After obtaining market implied estimates for a firm’s expected costs of financial distress, our goal 

is to implement them in Acharya et al.’s (2016) measure for the systemic expected shortfall. The 

term that needs to be estimated is  ∆𝑖. Equation 4 is inserted again for convenience: 

 

∆𝑖=  
𝐸[𝐷𝐶𝑖 ∣∣ 𝑊1 < 𝑧𝐴 ] −  𝑘𝐸[𝐷𝐶𝑖 ∣∣ 𝐼5% ]

𝑤0
𝑖

−
(𝑘 − 1)(𝑓𝑖 − 𝑏𝑖)

𝑤0
𝑖

 

 

The main part of  ∆𝑖 is 
𝐸[𝐷𝐶𝑖∣∣

∣𝑊1 < 𝑧𝐴 ]− 𝑘𝐸[𝐷𝐶𝑖∣∣
∣𝐼5% ]

𝑤0
𝑖 , which is the difference between the 

expected costs of financial distress during a crisis and the present value of distress costs measured 

during the 5% worst market days of a year translated to crisis returns (excess cost of financial 

distress) as a proportion of equity capital. The expected distress costs during a crisis are not known. 

Furthermore, we do not know k. Therefore, as a proxy of ∆𝑖 we will use the estimated cost of 

financial distress during the 5% worst market days of a year as a proportion of the firm’s equity.  

 

(17) 𝐷𝐶5%,𝐸
𝑖 =   (

1

#𝑑𝑎𝑦𝑠
 ∑ 𝐷𝐶𝑡

𝑖
𝑡:𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑖𝑡𝑠 5% 𝑡𝑎𝑖𝑙 )

1

𝑤0
𝑖  

 

where 𝐷𝐶𝑡
𝑖 are company i’s CDS-implied distress costs on day t and 𝑤0

𝑖  is firm i’s market value of 

equity on the last day of our sampling period.  
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To better understand what equation (16) refers to, we plot expected distress costs from the period 

of June 2006 to June 2007 as a proportion of equity capital against the market return for Fannie 

Mae. 

 

Figure 8: Illustration of the Calculation of 𝑫𝑪𝟓%,𝑬
𝒊  

 

 

The red data points to the left of the dotted line represent expected distress costs to equity during 

the 5 % worst market days. By averaging these red data points we obtain 𝐷𝐶5%,𝐸
𝑖 .  

If we assume that the expected costs of financial distress are within a similar range for all 

companies, the difference of 𝐸[𝐷𝐶𝑖 ∣∣ 𝑊1 < 𝑧𝐴 ] and 𝐸[ 𝐷𝐶𝑖 ∣∣ 𝐼5% ] should explain a firm’s 

systemic expected shortfall to the same extent as just 𝐸[𝐷𝐶𝑖 ∣∣ 𝐼5% ] should with a reverse sign. A 

larger  ∆𝑖 implies a larger difference between the distress costs during a crisis and the amount, we 

would estimate through the multiplication of 𝐸[𝐷𝐶𝑖 ∣∣ 𝐼5% ] with k. Therefore, when only 

implementing 
𝐸[𝐷𝐶𝑖∣∣

∣𝐼5% ]

𝑤0
𝑖   we expect this term to stand in a negative relationship to SES. This can 

be also shown mathematically. The following formula shows the relationship between SES and 

the explanatory variables: 
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(18) 
𝑆𝐸𝑆𝑖

𝑤0
𝑖 =  𝑥1 + 𝑥2 +  

𝐸[DC𝑖∣∣
∣𝑊1 < 𝑧𝐴 ]
𝑤0
𝑖 − 

𝑘𝐸[DC𝑖∣∣
∣𝐼5% ]

𝑤0
𝑖 − 𝑥3 

 

where x1 is firm i’s degree of undercapitalization, x2 is firm i’s marginal expected shortfall during 

the 5% worst market days and the last three terms are the components of delta with 𝑥3 being the 

adjustment term, as shown in equations (4) and (5). We can reformulate this equation to: 

 

(19) 
𝑆𝐸𝑆𝑖

𝑤0
𝑖 − 

𝐸[DC𝑖∣∣
∣𝑊1 < 𝑧𝐴 ]
𝑤0
𝑖 =  𝑥1 + 𝑥2 − 

𝑘𝐸[DC𝑖∣∣
∣𝐼5% ]

𝑤0
𝑖 − 𝑥3 

 

The dependent variable is now firm i’s systemic expected shortfall less the present value of distress 

costs during a crisis. Holding  
𝐸[DC𝑖∣∣

∣𝑊1 < 𝑧𝐴 ]

𝑤0
𝑖  , 𝑥1, 𝑥2 and 𝑥3 constant, the larger  

𝐸[DC𝑖∣∣
∣𝐼5% ]

𝑤0
𝑖  is, 

the smaller will the term on the right-hand side of the equation be because of the negative sign. To 

satisfy the equation, the left-hand side must be smaller, or more negative, as well. Because we hold 

the expected distress costs during a crisis constant, this is only satisfied if  
𝑆𝐸𝑆𝑖

𝑤0
𝑖   becomes more 

negative, i.e. that the systemic expected shortfall increases. 
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6 Empirical Analysis 

6.1 Data 

To examine the predictive power of excess costs of financial distress and the extended estimation 

of Acharya et al.’s (2016) measure for a bank’s systemic expected shortfall (SES), our sample 

period comprises the pre-crisis time between June 2006 and June 2007, which is the same period 

as the authors use. Our estimators are compared to the realized return during the crisis, which 

Acharya et al. (2016) compress to the period from July 2007 through December 2008.  

Acharya et al. (2016) use a sample of 102 US bank holding companies (BHCs), all U.S. financial 

companies with a market capitalization above $5 billion as of June 2007. We exclude ten of these 

102 companies in our analysis due to lack of data availability20 and thus obtain a remaining sample 

of 94 U.S. financial companies.  

Table 1 shows the BHCs included in our analysis and their subindustry. 

We use two sources for retrieving data. To allow for comparability of our results to those of 

Acharya et al. (2016), we use the same data as the authors do. To determine the 5% worst days in 

the sample period, we use the value weighted index from the Center for Research in Security Prices 

(CRSP). The marginal expected shortfall (MES) in the sample period as well as the systemic 

expected shortfall (SES) during the crisis are based on equity prices from the same data source. 

Book value of assets and book value of equity used in the calculation of their quasi-leverage 

measure are retrieved from the CRSP – Compustat merged data base.  

  

                                                 
20 The eight companies we excluded are: Compass Bancshares Inc., Lorrilard Inc. (former Loews), T Rowe Price 

Group, Eaton Vance Corp., Edwards AG Inc., CBOT Holdings Inc., Intercontinental Exchange Inc., NYSE group 

Inc.. 
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Table 1 Financial Institutions in the Sample according to Sub-Industry 

This table presents the names of the financial institutions according to their sub-industry.  

  

Broker-dealer Depository Insurance Non-depository 
BEAR STEARNS COMPANIES 

INC B B & T CORP A F LA C INC ALLTEL CORP 

E TRADE FINANCIAL CORP BANK NEW YORK INC AETNA INC NEW 

AMERICAN CAPITAL 

STRATEGIES LTD 

GOLDMAN SACHS GROUP INC BANK OF AMERICA CORP ALLSTATE CORP AMERICAN EXPRESS CO 

LEHMAN BROTHERS 

HOLDINGS INC CITIGROUP INC 

AMBAC FINANCIAL 

GROUP INC 

AMERIPRISE FINANCIAL 

INC 

MERRILL LYNCH & CO INC COMERICA INC 

AMERICAN 

INTERNATIONAL GROUP BLACKROCK INC 

MORGAN STANLEY DEAN 

WITTER & CO COMMERCE BANCORP INC NJ AON CORP 

C B RICHARD ELLIS GROUP 

INC 

NYMEX HOLDINGS INC HUDSON CITY BANCORP INC ASSURANT INC C I T GROUP INC NEW 

SCHWAB CHARLES CORP 

NEW 

HUNTINGTON BANCSHARES 

INC BERKLEYWR CORP 

CAPITAL ONE FINANCIAL 

CORP 

  JPMORGAN CHASE & CO 

BERKSHIRE HATHAWAY 

INC DEL(A) 

CHICAGO MERCANTILE 

EXCH HLDG INC 

  KEYCORP NEW 

BERKSHIRE HATHAWAY 

INC DEL(B) 

FEDERAL HOME LOAN 

MORTGAGE CORP 

  M & T BANK CORP C I G N A CORP 
FEDERAL NATIONAL 
MORTGAGE ASSN 

  MARSHALL & ILSLEY CORP C N A FINANCIAL CORP 

FIDELITY NATIONAL INFO 

SVCS INC 

  NATIONAL CITY CORP CHUBB CORP FIFTH THIRD BANCORP 

  
NEW YORK COMMUNITY 

BANCORP INC 

CINCINNATI FINANCIAL 

CORP FRANKLIN RESOURCES INC 

  NORTHERN TRUST CORP 
COUNTRYWIDE 
FINANCIAL CORP JANUS CAP GROUP INC 

  
P N C FINANCIAL SERVICES 

GRP INC 

COVENTRY HEALTH 

CARE INC LEGG MASON INC 

  
PEOPLES UNITED FINANCIAL 

INC 

FIDELITY NATIONAL FINL 

INC NEW 

LEUCADIA NATIONAL 

CORP 

  
REGIONS FINANCIAL CORP 

NEW 

GENWORTH FINANCIAL 

INC MASTERCARD INC 

  SOVEREIGN BANCORP INC 

HARTFORD FINANCIAL 

SVCS GROUP IN 

S E I INVESTMENTS 

COMPANY 

  STATE STREET CORP HEALTH NET INC S LM CORP 

  SUNTRUST BANKS INC HUMANA INC 
T D AMERITRADE HOLDING 
CORP 

  SYNOVUS FINANCIAL CORP 

LINCOLN NATIONAL 

CORP IN UNION PACIFIC CORP 

  U S BANCORP DEL LOEWS CORP1   

  UNIONBANCAL CORP M B I A INC   

  WACHOVIA CORP 2ND NEW 

MARSH & MCLENNAN 

COS INC   

  WASHINGTON MUTUAL INC METLIFE INC   

  WELLS FARGO & CO NEW 

PRINCIPAL FINANCIAL 

GROUP INC   

  WESTERN UNION CO PROGRESSIVE CORP OH   

  ZIONS BANCORP PRUDENTIAL FINANCIAL   

    SAFECO CORP   

    TORCHMARK CORP   

    TRAVELERS COMPANIES    

    UNITEDHEALTH GROUP   

    UNUM GROUP   

    WELLPOINT INC   
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We use two sources for retrieving data. To allow for comparability of our results to those of 

Acharya et al. (2016), we use the same data as the authors do. To determine the 5% worst days in 

the sample period, we use the value weighted index from the Center for Research in Security Prices 

(CRSP). The marginal expected shortfall (MES) in the sample period as well as the systemic 

expected shortfall (SES) during the crisis are based on equity prices from the same data source. 

Book value of assets and book value of equity used in the calculation of their quasi-leverage 

measure are retrieved from the CRSP – Compustat merged data base.  

We retrieve total debt values, dividend yields, market capitalizations and the risk-free rate from 

Thompson-Reuters Datastream for the estimation of the firm value components within the Leland 

and Toft (1996).  

The annual interest rate paid on a bond is the coupon expressed as a percentage of the face value. 

We approximate coupons by multiplying the principal debt value with the yield of the ‘Bank of 

America Merrill Lynch U.S. Financial Bond Index’. This index tracks the bond yields of major 

US financial firms. This is done because of limitations of data availability and because of 

Datastream’s definition of interest expenses. 

We use the yield on 3-month Treasury bills as the risk-free rate. We approximate dividends by 

multiplying the dividend yield with the market value of equity. We calculate the asset payout as 

the sum of dividends and the coupon paid on debt.  

The sub-sample used in the CDS calibration is a subset of the 102 firms which have CDS contracts 

outstanding. Of the 102 firms, 40 have CDS contracts outstanding. Of these 40 institutions, six are 

classified as Broker-Dealers, six as depositories, eight companies as Non-depositories and 20 as 

insurance companies21. We use credit default swaps with a maturity of 5 years as suggested by 

Reneby et al. (2005) from MarkIt through CRSP. 

                                                 
21 We have swapped Charles Schwab as Broker-Dealer and Janus capital group is a non-depository as correctly stated 

in Appendix A of Acharya et. al (2016) 
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6.2 Descriptive Statistics 

 

6.2.1 Parameter Estimates 

We use the approach described in the previous section to find optimal parameters of loss given 

default (LGD) and time to maturity (T) for the subindustries: depositories, non-depositories, 

insurance firms and broker-dealers. The estimated parameters can be seen in the following table: 

 

Table 2: Parameter estimates 

This table shows the debt maturity, the loss given default, the RMSE and the number of firm for each sub 

industry. The sub industries are "Broker-dealers", "Depositories", "Non-depositories" (also called "Other") and 

"Insurance".  

  Debt Maturity Loss Given Default RMSE #Firms 

Broker-dealer 4.43 32.74% 0.5928 6 

Depositories 4.95 41.39% 0.2389 6 

Non-depositories 5.23 39.92% 0.6492 8 

Insurance 6.4 37.77% 0.2937 20 

 

Table (2) presents the estimated parameters for time to maturity, loss given default per subgroup, 

the RMSE obtained in the calibration procedure, and the number of firms within each subgroup. 

As can be seen, the estimated values for loss given default are in the range of 32% - 42%. 

Depository institutions show the highest LGD, Broker Dealers the lowest. Time to maturities range 

from 4 to 7 years. Broker dealers have the liability structure with the shortest time to maturity, 

while insurance companies have the longest.  

The values we obtained for loss given default are higher than seen in previous literature. In 

particular Andrade and Kaplan (1998) find maximum LGD’s of 23% (they call it ex-post distress 

costs, but this is equivalent to loss given default) and many other studies, as Almeida and Philippon 

(2007) and Elkhami, Erricson and Pearson (2009) rely on these LGD values to estimate expected 

distress costs. The average debt-to-assets ratio in Andrade and Kaplan (1998) is 0.95. The same 

ratio in our sample is much lower. Davidenko, Strebulaev and Zhao (2012) find that the actual 
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costs of default are lower for highly-levered firms, which would explain why our LGD estimates 

are higher. This argument also applies to the CDS-implied LGD estimates of Breitkopf and Elsas 

(2012). They find LGD values ranging from 32.75% to 75.25% in their sample on European Non-

financial companies, which most likely have a lower debt-to-assets ratio. Our estimates are in the 

lower-end of this range. 

Our RMSE values are also at the lower end compared to Breitkopf and Elsas (2012). The RMSE 

estimates vary from 0.2937 to 0.6492 whereas in Breitkopf and Elsas they vary from 0.2 to 1.2.  

We can think of two reasons why our estimates diverge from estimates obtained by Breitkopf and 

Elsas (2012). First, our estimates are obtained on a sub-industry level, whereas Breitkopf and Elsas 

(2012) obtain them on an industry level. Homogeneity is likely to reduce the RMSE as firms within 

one subindustry are likely to have more similar debt maturities and losses given default than firms 

within a whole industry. Secondly, our calibration period is half as long as that Breitkopf and Elsas 

(2012). Shortening the calibration period also reduces RMSE.  

Our CDS-implied time to maturity of debt is smaller than the findings of Breitkopf and Elsas 

(2012). The values they found for T range from 5.9 to 9.5 years. In our sample, only insurance 

companies have a maturity structure which is covered by this range. It is intuitive that our obtained 

values for T are smaller, as banks rely more on short term financing than companies in other 

industries do.  

 

6.2.2 Expected Costs of Financial Distress 

We translate the sub-industry specific parameters to expected distress costs, tax shield and the 

unlevered asset value for all companies in our sample.  

To get a feeling for the size of expected distress costs, we show summary statistics for distress 

costs in proportion to asset value in the table below. Although our variable of interest is the ratio 

of expected distress costs to equity capital, the relation to asset value is more intuitive considering 

the meaning for the company. Furthermore, this ratio can be compared to values of expected 

distress costs found in other studies.  
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Table 3: Summary Statistics for Tax Shield, Expected Distress Costs and Unlevered Asset Value 

This table presents the descriptive statistics of tax shield, distress costs and asset value for 94 U.S. financial firms. 

Tax shield and distress costs are shown as a proportion of unlevered asset value. 

  Min 5% Quantile Median Mean 95% Quantile Max 

Distress costs 0.00 0.00% 1.87% 5.11% 19.85% 27.47% 

Tax Shield 0.00 0.71% 5.92% 6.21% 13.19% 16.33% 

Unl. asset value ($million) 4,188           5,685    24,840    103,396        605,397  1,000,395  

 

Table (3) shows summary statistics of expected costs of financial distress as a percentage of asset 

value for our sample of 94 US bank holding companies for the period from June 2006 through 

June 2007. The average value for the expected distress costs is 5.11%, the median is 1.8%. The 

distribution is therefore skewed, with very high values pushing the average up. Five percent of all 

distress costs are above 19.85%. To get a better picture of this variable, we plot the distribution as 

shown in Figure (9) 

 

Figure 9: Distribution of 𝑫𝑪𝟓%,𝑽
𝒊  

 

Figure (9) shows the distribution of expected distress costs as a proportion of unlevered asset value 

for the 94 companies in our sample. As can be seen there are many banks that have very small 

expected distress costs with values slightly above zero.  Most banks have expected distress costs 
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in the range of 0% to approximately 8%. However, the as can be seen in the graph there are some 

companies with expected distress costs that exceed this range.  

The five companies with the highest distress costs are the Federal National Mortgage Association 

(Fannie Mae, 27.47%), the Federal Home Loan Mortgage Association (Freddie Mac, 25.42%), 

CIT group (22.18%), Bear Stearns (20.47%) and Lehman Brothers (20.00%). This result is 

remarkable because all five companies either went bankrupt or had to be bailed out during the 

crisis. Fannie Mae and Freddie Mac were taken over by the US government in 2008, Bear Stearns 

has been taken over by JPMorgan Chase, Lehman Brother collapsed in 2008 and CIT group filed 

for bankruptcy in 2009 (Acharya et al., 2016). T-Rowe, Eaton Vance, N Y S E and Intercontinental 

Exchange have the lowest ratios of expected distress costs to unlevered asset value, around 0% for 

all companies. T Rowe had no liquidity problems, they were even able to hire more employees 

during the crises (T Rowe, Financial Report 2008).  

Acharya et al. (2016) do not scale a bank’s expected costs of financial distress with the unlevered 

asset value, rather they use a bank’s market capitalization to account for firm size. The following 

table shows summary statistics for the costs of financial distress as a percentage of market 

capitalization measured in the period from June 2006 through June 2007. 

 

Table 4: Summary Statistics of Expected Distress Costs to Market Capitalization 

This table presents the descriptive statistics of distress costs to market capitalization and the market 

capitalization of 94 firms. The market capitalization is in $ millions. 

  Min 5% Quantile Median Mean 95% Quantile Max 

DC to Market cap 0.00 0.00 0.03 0.31 1.59 4.87 

 

Table (4) presents the summary statistics for our sample of 94 US financial firms. On average, 

BHC’s costs of financial distress exceed market capitalization by two times (2.98). The median is 

much lower than the average with a value of 0.57. 50% of the companies in the sample exceed the 

median by to a large extent.  
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Table 5: Five Firms with the Largest 𝑫𝑪𝟓%,𝑬
𝒊  

This table presents the names of the five firms with the largest 𝐷𝐶5%,𝐸
𝑖

 

Firm 𝐷𝐶5%,𝐸
𝑖

 

Freddie Mac 4.68 

Fannie Mae 4.25 

Freddie Mac 4.68 

Bear Stearns 2.45 

Lehman Brothers 1.95 

 

Table (5) shows the average expected distress costs during the 5% worst market days in the pre-

crisis year as a proportion of market capitalization as of end of June 2007. Freddie Mac and Fannie 

Mae show the largest ratios with values of 4.68 and 4.25 respectively. These numbers mean, that 

the present value of financial distress costs exceed equity value nearly five times. On the third 

place is the Bear Stearns which also has been bailed out in 2008, on the fourth place is Lehman 

Brothers, a bank that has been acquired by Bank of America during the financial crisis. 

6.2.3 Expected Costs of Financial Distress during the 5% Worst Market Days 

We turn now to the measure that we take as a proxy for a bank’s excess costs of financial distress 

namely the expected costs of financial distress when the market is in its 5% quantile in our sample 

period as a percentage of market capitalization. We furthermore extend the analysis to the other 

explanatory variables of SES, namely MES and leverage. MES, as outlined in section 3 is a bank’s 

marginal expected shortfall when the market is in its 5% worst days of a year. To calculate this 

term, Acharya et al. (2016) use the following formula: 

 

(20) 𝑀𝐸𝑆5%
𝑖 =  

1

#𝑑𝑎𝑦𝑠
 ∑ 𝑅𝑡

𝑖
𝑡:𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑖𝑡𝑠 5% 𝑡𝑎𝑖𝑙  

 

As can be seen in equation (17), MES is the weighted average of the returns during the 5% worst 

market day. Because market value of assets and debt is usually not available in databanks, Acharya 

et al. (2016) approximate market-valued leverage (LVG) through the following term: 
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(21) 𝐿𝑉𝐺𝑖 =  
𝑞𝑢𝑎𝑠𝑖−𝑚𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡𝑠𝑖

𝑚𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦𝑖
= 

𝑏𝑜𝑜𝑘 𝑎𝑠𝑠𝑒𝑡𝑠𝑖−𝑏𝑜𝑜𝑘 𝑒𝑞𝑢𝑖𝑡𝑦𝑖+𝑚𝑎𝑟𝑘𝑒𝑡 𝑒𝑞𝑢𝑖𝑡𝑦𝑖

𝑚𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦𝑖
 

 

We estimate MES in the pre-crisis year and LVG as of June 2007 for the companies in our sample. 

The following table summarizes the estimates of 𝐷𝐶5%,𝐸
𝑖  for the 94 firms in our sample. Besides 

the summary statistics on 𝐷𝐶5%,𝐸
𝑖 , we show summary statistics for the empirical measures of MES 

and excess ex-ante leverage of a bank. 

 

Table 6: Descriptive Statistics 

This table presents the descriptive statistics for MES, LVG and 𝐷𝐶5%,𝐸
𝑖

. Panel A shows the minimum and the 

maximum, the mean and the median and the 5%, 95% quantile respectively. Panel B provides a t-test, with t-

stastics, p-value and a 95% confidence interval for 𝐷𝐶5%,𝐸
𝑖

. 

Panel A               

  Min 5%Quantile Median   Mean 95% Quantile Max 

𝐷𝐶5%,𝐸
𝑖

 0.00 0.00 0.03   0.32 1.68 4.68 

MES 0.39 0.88 1.47   1.63 2.82 3.36 

LVG 1.01 1.12 4.52   5.24 13.89 25.62 

                

Panel B T-statistics P-value 95% Confidence Interval     

𝐷𝐶5%,𝐸
𝑖

 4.03 0.00 0.16 - 0.47     

 

Panel A presents summary statistics for 𝐷𝐶5%,𝐸
𝑖 , MES and LVG, the three explanatory variables of 

systemic expected shortfall. Panel B shows the t-values and p-values of the statistical test whether 

the average 𝐷𝐶5%,𝐸
𝑖   is statistically different from zero.  

The mean value of 𝐷𝐶5%,𝐸
𝑖  is 0.32 for the 94 companies. With a value of 0.03, the median is very 

low compared to the mean value. As already observed in the section above, the distribution of 

𝐷𝐶5%,𝐸
𝑖  is skewed. 50% of the companies have very high 𝐷𝐶5%,𝐸

𝑖  in relation to the remaining 50% 

in the sample as it pulls up the average. 5% of companies have values above 1.68. This is extremely 

high when compared to the average value as it is 500% above it. 
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Acharya et al. (2016) argued, that 𝐷𝐶5%,𝐸
𝑖  is on average around zero. The results of the significance 

test in Panel B show that this value is actually significantly different from zero. The p-value is 

zero, the average value is highly significant. This finding confirms our assumption as outlined in 

section (4). 

 

Figure 10: Distribution of DC/equity 

 

Figure 10 shows a graphical presentation of the distribution of 𝐷𝐶5%,𝐸
𝑖 . The values are heavily 

concentrated around zero with a few firms above one. 

To test the cross-sectional explanatory power of the three variables on a financial company’s 

systemic expected shortfall, Acharya et al. (2016) use different approaches. They identify three 

measures that are related to systemic shortfall. The three measures are: (i) a firm’s equity returns 

during the financial crisis, where they define the crisis as the period between July 2007 and 

December 2008 (realized SES), (ii) the SCAP capital shortfall and (iii) credit default swaps during 

the crisis. They use these measures, which are basically ex-post measures of shortfalls during a 

crisis and regress them on MES and LVG, measured ex-ante to test the predictive power.  

We extend their analysis of measures (i) and (ii) with 𝐷𝐶5%,𝐸
𝑖  and test, whether this measure can 

explain capital shortfalls during the crisis. Before we turn to the results, we will first take a look at 

the measures that we later use to test the explanatory power of 𝐷𝐶5%,𝐸
𝑖 . These are realized SES and 

SCAP shortfalls. 
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6.3 Realized Equity Returns during the Crisis 

The first term Acharya et al. (2016) use to test the predictive power of their SES measure is a 

firm’s realized equity return from July 2007 till December 2008. As the authors, we refer to this 

term as realized SES. Using realized SES as a measure of a bank’s contribution to systemic risk, 

Acharya et al. (2016) indirectly assume that a financial firm’s contribution to systemic risk is 

proportional to a firm’s equity performance during the crisis. In Table t we show company specific 

values for realized SES, MES, LVG, 𝐷𝐶5%,𝐸
𝑖 . Furthermore the table includes two columns called 

Rank A and Rank DC which we explain as follows.  

Acharya et al. (2016) generate a scale, which ranks companies according to both MES, and LVG, 

They do this because, according to their model, it is not only one of the two variables that explains 

realized SES, but both variables together. The ranking comes from a cross sectional regression of 

realized SES on MES, the quasi leverage ratio LVG and industry specific dummies as shown in 

equation (21). 

 

(22) 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝐸𝑆𝑖 =  𝛽0 + 𝛽𝑀𝐸𝑆𝑀𝐸𝑆5%
𝑖 + 𝛽𝐿𝑉𝐺𝐿𝑉𝐺

𝑖 + 𝛽𝑂𝑂𝑡ℎ𝑒𝑟
𝑖 +

𝛽𝐼𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒
𝑖 + 𝛽𝐵𝐷𝐵𝑟𝑜𝑘𝑒𝑟 − 𝑑𝑒𝑎𝑙𝑒𝑟

𝑖 + 𝑢𝑖 

 

The dummies Other, Insurance and Broker-dealer are added to the regression to take into account 

sub-industry specific variation in equity returns. The regression yields the coefficients on the 

variables 𝛽𝑀𝐸𝑆 and  𝛽𝐿𝑉𝐺 . These are then multiplied with the respective values for MES and LVG 

for each company, which gives 𝑅𝑎𝑛𝑘𝐴.  

Our rank, 𝑅𝑎𝑛𝑘𝐷𝐶 works in the same way, we just add the new variable 𝐷𝐶5%
𝑖  to the regressors, 

as in equation (22): 

 

(23) 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝐸𝑆𝑖 =  𝛽0 + 𝛽𝑀𝐸𝑆𝑀𝐸𝑆5%
𝑖 + 𝛽𝐿𝑉𝐺𝐿𝑉𝐺

𝑖 + 𝛽𝐷𝐶𝐷𝐶5%,𝐸
𝑖 + 𝛽𝑂𝑂𝑡ℎ𝑒𝑟

𝑖 +

𝛽𝐼𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒
𝑖 + 𝛽𝐵𝐷𝐵𝑟𝑜𝑘𝑒𝑟 − 𝑑𝑒𝑎𝑙𝑒𝑟

𝑖 + 𝑢𝑖 
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The following table presents the company specific input values for our empirical tests. 

 

Table 7: Systemic risk ranking of financial firms during June 2006 to June 2007 

CompName RealizesSES MES QuasiLVG 𝑹𝒂𝒏𝒌𝑨 TA ME DC/Equity 𝑹𝒂𝒏𝒌𝑫𝑪 

         

Bear Stearns Companies Inc -93.28 3.15 25.62 1 423.30 16.66 2.45 1 

Federal Home Loan Mortgage Corp -98.75 1.36 21.00 2 821.67 40.16 4.68 2 

Federal National Mortgage Assn -98.78 2.25 14.00 3 857.80 63.57 4.26 3 

Lehman Brothers Holdings Inc -99.82 2.83 15.83 4 605.86 39.51 1.95 4 

C I T Group Inc New -91.08 2.45 8.45 8 85.16 10.52 1.77 5 

Ameriprise Financial Inc -62.41 2.68 7.72 7 108.13 14.95 0.00 6 

Merrill Lynch & Co Inc -85.21 2.64 15.32 5 1076.32 72.56 1.65 7 

Countrywide Financial Corp -87.46 2.09 10.39 6 216.82 21.57 1.40 8 

Morgan Stanley Dean Witter & Co -76.21 2.72 14.14 9 1199.99 88.40 1.08 9 

Metlife Inc -44.06 1.52 11.85 10 552.56 47.82 0.01 10 

Hartford Financial Svcs Grp Inc -82.02 1.46 11.48 11 345.65 31.19 0.00 11 

Principal Financial Group Inc -59.75 1.71 10.15 12 150.76 15.61 0.00 12 

Lincoln National Corp -72.08 1.59 10.15 13 187.65 19.21 0.02 13 

Prudential Financial Inc -67.16 1.43 10.75 14 461.81 45.02 0.08 14 

Goldman Sachs Group Inc -60.59 2.64 11.25 15 943.20 88.54 1.29 15 

C B Richard Ellis Group Inc -88.16 2.84 1.55 24 5.95 8.35 0.03 16 

E Trade Financial Corp -94.79 3.29 7.24 21 62.98 9.39 0.22 17 

Jpmorgan Chase & Co -31.48 1.93 9.09 17 1458.04 165.51 0.44 18 

T D Ameritrade Holding Corp -28.75 2.43 2.40 26 18.53 11.92 0.01 19 

Genworth Financial Inc -91.43 1.59 7.62 18 111.94 14.96 0.04 20 

Sovereign Bancorp Inc -85.77 1.95 8.34 20 82.74 10.11 0.39 21 

M B I A Inc -93.34 1.84 5.47 25 43.15 8.14 0.96 22 

Washington Mutual Inc -99.61 1.80 8.67 23 312.22 37.63 0.51 23 

Citigroup Inc -85.86 1.66 9.25 22 2220.87 253.70 0.60 24 

American Capital Strategies Ltd -91.08 2.15 1.73 34 12.15 7.75 0.09 25 

Janus Cap Group Inc -71.12 2.23 1.34 36 3.76 5.16 0.01 26 

Legg Mason Inc -76.98 2.19 1.25 40 10.08 12.97 0.01 27 

Franklin Resources Inc -51.23 2.20 1.08 41 9.62 33.07 0.00 28 

Unumprovident Corp -27.21 1.46 5.99 27 52.07 8.95 0.02 29 

Fifth Third Bancorp -77.61 1.29 5.33 30 101.39 21.30 0.12 30 

S L M Corp -84.54 0.92 6.40 33 132.80 23.69 1.27 31 

State Street Corp -41.07 2.12 5.54 28 112.27 23.01 0.04 32 

Capital One Financial Corp -57.90 1.28 4.70 38 145.94 32.60 0.65 33 

Berkley W R Corp -3.57 1.95 3.07 31 16.63 6.32 0.00 34 

S E I Investments Company -45.61 2.00 1.08 52 1.12 5.69 0.00 35 

National City Corp -94.28 1.48 7.70 29 140.64 19.18 0.22 36 

Blackrock Inc -12.07 1.83 1.60 55 21.99 18.18 0.00 37 

Bank Of America Corp -68.05 1.44 7.46 32 1534.36 216.96 0.48 38 

American Express Co -69.00 1.56 2.70 53 134.37 72.66 0.07 39 

Leucadia National Corp -43.54 1.80 1.28 61 6.38 7.63 0.00 40 

Comerica Inc -63.00 1.55 6.77 35 58.57 9.27 0.15 41 

Wachovia Corp 2nd New -88.34 1.31 7.64 37 719.92 98.06 0.34 42 

Loews Corp -44.08 1.63 3.28 45 79.54 27.38 0.00 43 

C I G N A Corp -67.69 1.54 3.50 46 41.53 15.03 0.00 44 

Bank New York Inc -29.05 1.90 4.64 47 126.33 31.43 0.07 45 

Keycorp New -73.09 1.31 7.41 39 94.08 13.47 0.16 46 
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Table 7 ctd.         

CompName RealizesSES MES QuasiLVG 𝑹𝒂𝒏𝒌𝑨 TA ME DC/Equity 𝑹𝒂𝒏𝒌𝑫𝑪 

         

C N A Financial Corp -64.73 1.22 4.92 43 60.74 12.95 0.00 47 

Union Pacific Corp -15.14 1.58 1.70 66 37.30 31.03 0.00 48 

Commerce Bancorp Inc -4.42 1.26 7.40 42 48.18 7.08 0.00 49 

Huntington Bancshares Inc -62.50 1.27 7.23 44 36.42 5.35 0.22 50 

Northern Trust Corp -16.84 1.75 4.92 50 59.61 14.14 0.03 51 

Fidelity National Info Svcs Inc -46.19 1.54 1.42 75 7.80 10.45 0.02 52 

Allstate Corp -43.63 1.10 4.72 54 160.54 37.36 0.00 53 

Unionbancal Corp 29.14 1.22 6.88 51 53.17 8.25 0.06 54 

Hudson City Bancorp Inc 35.63 1.26 6.39 57 39.69 6.50 0.63 55 

Assurant Inc -47.98 1.18 4.08 59 25.77 7.13 0.00 56 

M & T Bank Corp -43.46 1.49 5.47 58 57.87 11.57 0.13 57 

Ambac Financial Group Inc -98.47 1.45 2.69 64 21.06 8.89 0.04 58 

Chicago Mercantile Exch Hldg Inc -59.88 1.47 1.19 80 5.30 18.64 0.00 59 

St Paul Travelers Cos Inc -12.32 1.26 3.54 63 115.36 35.52 0.00 60 

American International Group Inc -97.70 0.71 6.12 56 1033.87 181.67 0.07 61 

Aetna Inc New -42.17 1.45 2.58 65 49.57 25.31 0.01 62 

B B & T Corp -26.22 1.30 6.15 60 127.58 22.43 0.13 63 

Safeco Corp 13.56 1.42 2.51 68 13.97 6.61 0.00 64 

Chubb Corp -2.25 1.36 2.74 67 51.73 21.74 0.00 65 

Regions Financial Corp New -73.55 1.27 6.06 62 137.62 23.33 0.13 66 

Progressive Corp Oh -31.52 1.51 1.89 74 21.07 17.42 0.00 67 

Mastercard Inc -13.49 1.27 1.21 85 5.61 13.23 0.00 68 

Humana Inc -38.79 1.40 1.97 76 13.33 10.24 0.01 69 

Wells Fargo & Co New -10.88 1.34 5.17 71 539.87 118.08 0.12 70 

Suntrust Banks Inc -62.60 1.08 6.35 69 180.31 30.58 0.04 71 

P N C Financial Services Grp Inc -27.35 1.24 5.50 72 125.65 24.69 0.13 72 

Western Union Co -30.84 2.10 1.34 84 5.33 16.09 0.01 73 

Torchmark Corp -32.18 1.15 2.85 77 15.10 6.40 0.00 74 

Aon Corp 9.48 1.20 2.55 79 24.79 12.51 0.00 75 

Zions Bancorporation -66.42 1.02 6.26 73 48.69 8.31 0.12 76 

Cincinnati Financial Corp -28.29 1.17 2.53 81 18.26 7.46 0.00 77 

Marshall & Ilsley Corp -60.34 1.20 5.20 78 58.30 12.34 0.11 78 

Alltel Corp 5.98 1.08 1.25 89 

1 

7.44 23.23 0.09 79 

Schwab Charles Corp New -15.95 2.57 2.71 88 49.00 25.69 0.00 80 

New York Community Bancorp Inc -23.11 0.92 5.81 82 29.62 5.33 0.43 81 

Aflac Inc -8.52 0.85 3.07 86 60.11 25.14 0.00 82 

Fidelity National Title Gp Inc -16.80 1.09 1.73 87 7.37 5.25 0.01 83 

Health Net Inc -79.37 1.04 1.47 92 4.73 5.93 0.00 84 

Synovus Financial Corp -36.53 1.12 3.92 90 33.22 10.04 0.00 85 

Coventry Health Care Inc -74.19 0.99 1.39 95 6.41 9.01 0.00 86 

Marsh & Mclennan Cos Inc -17.94 0.92 1.67 94 17.19 17.15 0.01 87 

Berkshire Hathaway Inc Del B -10.85 0.39 4.12 91 269.05 49.29 0.08 88 

U S Bancorp Del -17.56 0.88 4.55 93 222.53 57.29 0.12 89 

Wellpoint Inc -47.22 0.88 1.60 96 54.19 48.99 0.00 90 

Nymex Holdings Inc -34.46 2.47 1.23 99 3.53 11.57 0.00 91 

Peoples Bank Bridgeport 5.77 1.16 2.75 97 13.82 5.33 0.00 92 

Unitedhealth Group Inc -47.94 0.72 1.47 98 53.15 68.53 0.00 93 

Berkshire Hathaway Inc Del -11.76 0.41 2.29 91 269.05 119.00 0.00 94 

         

Rank correlation: 0.98 
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Table (7) presents realized SES, MES, LVG , 𝑅𝑎𝑛𝑘𝐴 , total book value of assets as of June 2006, 

market equity of June 2006, 𝐷𝐶5%,𝐸
𝑖 , 𝑅𝑎𝑛𝑘𝐷𝐶 for the 94 companies in our sample. It is an extension 

of Appendix C in Acharya et al. (2016) with our estimated variables of interest 𝐷𝐶5%,𝐸
𝑖  , and our 

rank, 𝑅𝑎𝑛𝑘𝐷𝐶.  

The values are sorted according to 𝑅𝑎𝑛𝑘𝐷𝐶. Both ranking scales provide very similar evaluations, 

they have a correlation of 0.98 which means they are close to being perfectly correlated. The ten 

companies ranked 1-10 in 𝑅𝑎𝑛𝑘𝐴 are the same as the companies on the first ten positions of 

𝑅𝑎𝑛𝑘𝐷𝐶, but in a slightly different order. In both measures, Bear Stearns, the Federal Home Loan 

Mortgage Association (Freddie Mac) and Federal National Mortgage Association (Fannie Mae) 

are ranked first, second and third. Acharya et al. (2016) already noticed, Bear Stearns, ranked first, 

has the highest quasi leverage ratio (LVG) as of June 2007 and third highest marginal expected 

shortfall during the 5% worst market days (MES). It was one of the first failing firms in the 

financial crisis. The authors furthermore notice, Freddie Mac and Fannie Mae, although ranked 

second and third, do not have a very high value for MES but a comparatively high leverage ratio 

(they also were under the failing companies during the crisis). They conclude, that it is not only 

MES on a stand-alone basis that explains bad future performance, but rather a combination of MES 

and LVG (note that the authors did not account for distress costs in their empirical study). Freddie 

Mac, ranked second in both ranking scales, also has the second largest LVG (21) and a MES of 

1.36.  

However, Fannie Mae, on the third place, has only the 6th highest leverage and 17th highest MES. 

Fannie Mae, just like Freddie Mac, had financial difficulties during the crisis and had to be bailed 

out. Being ranked third therefore seems plausible, but cannot be explained by highest leverage or 

MES values. In turn, Fannie Mae had the second largest ratio of distress costs during the 5% worst 

market days to equity. This explains the high position in the ranking scales. 

As already mentioned, the correlation between the two ranks is very high. If the rankings are so 

similar, one could ask whether the incorporation of distress costs adds much value. Possibly, the 

ranking does not change much when incorporating 𝐷𝐶5%,𝐸 but the example with Fannie Mae 

shows, that it might still explain some of the scaling. Looking at the three companies ranked third, 

all of them are also ranked 1-3 in terms of 𝐷𝐶5%,𝐸 with ratios of 2.45, 4.68 and 4.25 respectively.  
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Another company, CIT Group, is ranked 7th in 𝑅𝑎𝑛𝑘𝐴 and 6th in 𝑅𝑎𝑛𝑘𝐷𝐶. 𝑅𝑎𝑛𝑘𝐴 does not consider 

distress costs, CIT Group’s quasi-leverage is only 14th largest with a value of 9.25 and its MES is 

13th largest with a value of 2.45%. Still the firm is ranked in the Top 10, which, when looking at 

the highly negative realized SES, is not surprising. CIT also received financial support from the 

government. When looking at 𝐷𝐶5%,𝐸, CIT Group has the third largest value. As is the case for 

Fannie Mae, the large proportion of distress costs is one possible explanation for the high ranking 

of CIT group. 

These numbers suggest, that it might be indeed the combination of three variables, MES, LVG and 

𝐷𝐶5%,𝐸,  that together explain bad crisis performance. Especially looking at Fannie Mae and CIT 

group highlights the potential relevance of including 𝐷𝐶5%,𝐸. 

The similarity of the rankings suggests, that 𝐷𝐶5%,𝐸 has a high correlation with at least one of the 

other two explanatory variables. In the following we show the correlation matrix for realized SES, 

MES, LVG and 𝐷𝐶5%,𝐸. 

 

Table 8: Correlation Matrix 

This table shows the correlation between measures of systemic risk and realized SES. Included in the table are 

LVG, MES and 𝐷𝐶5%,𝐸 

  Realized SES MES LVG 𝐷𝐶5%,𝐸 

Realized SES 1.00 -0.31 -0.47 -0.41 

MES   1.00 0.24 0.33 

LVG     1.00 0.73 

DC       1.00 

 

When taking a quick look at the correlation matrix in Table 8, we observe that the variable that 

has the highest correlation with realized SES is leverage. MES has the lowest correlation with 

realized SES. Leverage and 𝐷𝐶5%,𝐸 have a relatively high correlation coefficient of 0.73. This 

might explain the similarities between 𝑅𝑎𝑛𝑘𝐴 and 𝑅𝑎𝑛𝑘𝐷𝐶.  
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6.4 Capital Shortfalls assessed in SCAP 

As the second assessment of systemic risk, Acharya et al. (2016) examine the explanatory power 

of their SES measure on the 2009 performed SCAP regulatory stress test. The authors claim, that 

the regulators’ profound analysis of bank data in a hypothetical stress scenario relates to their SES 

measure and that “regulators are essentially computing systemic risk”.  

Table 9 presents SCAP results as of April 2009 and the three explanatory variables of the 

theoretical measure for a bank’s capital shortfall due to systemic risk for 18 banks that participated 

in the test22. MES is measured from April 2008 through March 2009, quasi-leverage LVG is 

measured as of the first quarter of 2009. 𝐷𝐶5%,𝐸is measured between April 2008 and March 2009. 

Table 9 presents the correlation matrix between different systemic risk variables both from the 

SCAP and from Acharya. 

 

Table 9: SCAP Panel 

Bank Name SCAP 

Shortfall 

Tier1 Tier 

comm 

Scap / 

Tier1 

Scap / 

tier1comm 

MES LVG 𝑫𝑪𝟓%,𝑬 

        

Regions Financial Corp New 2.5 12.1 7.6 20.66% 32.89% 14.8 44.4 3.33 

Bank of America Corp 33.9 173.2 75 19.57% 45.20% 15.1 50.4 94.42 

Wells Fargo & Co New 13.7 86.4 34 15.86% 40.29% 10.6 20.6 30.32 

Keycorp New 1.8 11.6 6 15.52% 30.00% 15.4 24.4 2.94 

Suntrust Banks Inc 2.2 17.6 9.4 12.50% 23.40% 12.9 39.9 4.42 

Fifth Third Bancorp 1.1 11.9 4.9 9.24% 22.45% 14.4 67.2 2.38 

Citigroup Inc 5.5 118.8 23 4.63% 23.91% 15 127 91.35 

Morgan Stanley Dean Witter & Co 1.8 47.2 18 3.81% 10.00% 15.2 25.4 29.88 

P N C Financial Services Grp Inc 0.6 24.1 12 2.49% 5.00% 10.6 21.6 5.74 

American Express Co 0 10.1 10 0.00% 0.00% 9.75 7.8 8.86 

B B & T Corp 0 13.4 7.8 0.00% 0.00% 9.57 14.8 3.74 

Bank New York Inc 0 15.4 11 0.00% 0.00% 11.1 6.46 2.31 

Capital One Financial Corp 0 16.8 12 0.00% 0.00% 10.5 33.1 17.53 

Goldman Sachs Group Inc 0 55.9 34 0.00% 0.00% 9.97 18.9 39.80 

Jpmorgan Chase & Co 0 136.2 87 0.00% 0.00% 10.5 20.4 77.79 

Metlife Inc 0 30.1 28 0.00% 0.00% 10.3 26.1 1.81 

State Street Corp 0 14.1 11 0.00% 0.00% 14.8 10.8 3.98 

U S Bancorp Del 0 24.4 12 0.00% 0.00% 8.54 10.5 9.99 

 

                                                 
22 Note that one financial company that participated in the SCAP has been left out in this sample. This company is 

General Motors Acceptance Corporation (GMAC), which had a SCAP shortfall of $11.5 billion. 
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As we mentioned in section 5.3 ten banks failed the test. This can be seen in the table. The banks 

that have SCAP shortfalls above zero, are those banks that failed the test. We now look at the 

correlations between the shortfall measures and the three explanatory variables.  

 

Table 10: SCAP Correlation Matrix 

  Scap / Tier1 Scap / tier1comm MES LVG 𝑫𝑪𝟓%,𝑬 

Scap / Tier1 1.00 0.95 0.59 0.32 0.14 

Scap / Tier1comm   1.00 0.62 0.48 0.32 

MES     1.00 0.54 0.21 

LVG       1.00 0.52 

𝐷𝐶5%,𝐸          1.00 

 

The correlations between LVG and the SCAP shortfall ratios, as well as the correlations between 

𝐷𝐶5%,𝐸 and the SCAP shortfall ratios are lower than the correlations between each of the two 

variables with realized SES, as can be seen in Table 10. The correlations between 𝐷𝐶5%,𝐸 and the 

two SCAP shortfall ratios are rather weak with 0.14 and 0.32 respectively. In contrast, MES has a 

relatively high correlation with SCAP/Tier 1 capital (0.59) and with SCAP/Tier 1 common equity 

(0.62).  

We note that the correlations between MES, LVG and 𝐷𝐶5%,𝐸 are different than in Table 8. The 

reason is that the sample is much smaller, it includes only 18 companies in contrast to the 94 

companies in the full sample. Furthermore, the measurement period is different. 
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7 Results 

7.1 Regressing Realized SES on Expected Distress Cost to Equity 

We now present results for the regression of the realized equity returns during the crisis measured 

between July 2007 and December 2008 (realized SES) on MES, LVG and 𝐷𝐶5%,𝐸 for the 94 U.S. 

financial companies with a market capitalization above $5 billion as of June 2007. We regress 

realized SES on each variable in isolation and on different combinations with only two of them, 

i.e. on MES and LVG, on MES an 𝐷𝐶5%,𝐸 and on LVG and 𝐷𝐶5%,𝐸. Each regression furthermore 

contains sub-industry specific dummies. The full regression, i.e. including all three explanatory 

variables plus the dummies has the following form: 

 

(1) 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝐸𝑆𝑖 =  𝛽0 + 𝛽𝑀𝐸𝑆𝑀𝐸𝑆5%
𝑖 + 𝛽𝐿𝑉𝐺𝐿𝑉𝐺

𝑖 + 𝛽𝐷𝐶𝐷𝐶5%,𝐸
𝑖 + 𝛽𝑂𝑂𝑡ℎ𝑒𝑟 +

𝛽𝐼𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒
𝑖 + 𝛽𝐵𝐷𝐵𝑟𝑜𝑘𝑒𝑟

𝑖 − 𝑑𝑒𝑎𝑙𝑒𝑟𝑠𝑖 + 𝑢𝑖 

 

We have seen in the previous section that for some BHCs, 𝐷𝐶5%,𝐸 seems to explain realized SES. 

The BHCs with the highest ratios also experience large declines in equity returns during the crisis. 

However, we have also seen that more than 50% of the companies have very low ratios. Still, we 

expect 𝐷𝐶5%,𝐸 to explain realized SES to some extent.  

Table (11) summarizes the results of the cross-sectional OLS regression with Newey-West 

estimated error terms of the returns during the crisis on the explanatory variables MES, LVG and 

𝐷𝐶5%. Adjusted R-squared values are taken from simple OLS-regressions.  
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Table 11: Regression Results 

This table contains the results of the cross-sectional regression analysis of individual BHC stocks returns (Realized 

SES) in the period 01-07-2007 to 31-12-2008 on systemic risk measures in the period from 01-06-2006 to 29-06-

2007. The dummies "Other", Insurance" and "Broker-dealers" are sub-industry specific dummies. Model (i) to (iii) 

include only one of the explanatory variables, whereas model (v) and (vi) combines 𝐷𝐶5%,𝐸 with LVG and MES. 

Lastly, model (vii) combines all three independent variables. 

***, **, * indicates significance at the 1, 5 and 10 % level, respectively. Error terms are NeweyWest.    

Models (i)   (ii)   (iii)   (iv)   (v)   (vi)   (vii)   

Intercept -0.12   -0.19 ** -0.54 *** 0.02   -0.11   -0.20 ** 0.01   

MES -0.22 ***         -0.16 *** -0.21 ***     -0.17 ** 

LVG     -0.04 ***     -0.04 ***     -0.04 *** -0.03 *** 

DC         -0.17 ***     -0.15 ***  0.00   -0.02   

                              

Other -0.06   -0.23 ** 0.18 * -0.16   0.04  -0.19 ** -0.11   

Insurance -0.05   -0.08   0.14   -0.10   -0.08   -0.09   -0.11   

Broker-dealers 0.03   -0.06   0.04   0.14 * 0.23   0.00   0.20 * 

                              

Adj. R2 0.10   0.24   0.18   0.27   0.20   0.22   0.26   

AIC 56.87   40.96   48.87   38.19   48.27   45.08   42.08   

Nobs 94   94   94   94   94   94   94   

 

The estimated coefficients of the regression as shown in regression equation (1) are shown in 

model (vii). This is the regression of realized SES on all three theoretically motivated explanatory 

variables of a firm’s contribution to systemic risk: the marginal risk contribution (MES), its quasi-

leverage (LVG) and distress costs when the market is in its 5% tail as a percentage of equity capital 

(𝐷𝐶5%,𝐸).  

As can be seen, all coefficients are negative. This means that the higher MES, LVG or 𝐷𝐶5%,𝐸, the 

more negative are realized equity returns on average. However, in model (vii) the coefficient 

on 𝐷𝐶5%,𝐸 , 𝛽𝐷𝐶, is not significantly different from zero. In contrast, the coefficients on MES and 

LVG are. 

In turn, 𝛽𝐷𝐶 is significant in regression models (iii) and (v), that is in all models where we leave 

out quasi leverage. As can be seen in Table 7, the correlation between 𝐷𝐶5%,𝐸 and LVG is quite 

high with a value of 0.73. This indicates, that quasi-leverage explains a large part of the variation 

in realized SES that is also explained by 𝛽𝐷𝐶. The adjusted R-squared is comparatively low, when 

excluding MES and LVG. In regression model (vii), it has a value of 0.26, whereas the value is 
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only 0.18 when regressing on 𝐷𝐶5%,𝐸 alone, 0.2 when regressing on 𝐷𝐶5%,𝐸 and MES and 0.22 

when regressing realized SES on 𝐷𝐶5%,𝐸 and LVG. 

In all presented regressions, the estimated coefficients on leverage and MES are highly significant. 

Model (iv) shows the coefficients with MES, LVG and the subindustry specific dummies as the 

regressors, as in Acharya et al. (2016) thus leaving out 𝐷𝐶5%,𝐸  23. As can be seen by comparing 

column (iv) with column (vii), 𝛽𝑀𝐸𝑆 and  𝛽𝐿𝑉𝐺  do not change much when including 𝐷𝐶5%,𝐸. 

Leaving out one explanatory variable in a regression model usually results in biased coefficients 

if the omitted variable is correlated with one of the regressors or when it has a significant effect on 

the dependent variable. Therefore, as we have seen that 𝐷𝐶5%,𝐸 and LVG have a high correlation, 

it seems likely that 𝐷𝐶5%,𝐸 does not have explanatory power.  

When comparing adjusted R-squared values of models (iv) and (vii), they are slightly lower when 

including 𝐷𝐶5%,𝐸. This indicates that this model does not explain realized SES better than model 

(iv). This further indicates that our proxy measure for Acharya et al.’s excess costs of financial 

distress does not add any value to the empirical measure of SES.  

We furthermore compute the Akaike Information Critereon (AIC), which is a measure for a 

model’s goodness of fit. It enables comparison between models (Stock & Watson, 2012). The 

smaller AIC, the better is the model. In our regressions, AIC increases when including our 

estimator for distress costs.  

This finding is surprising because 𝐷𝐶5%,𝐸 has the theoretical justification for being one component 

of a bank’s systemic expected shortfall. Furthermore, the companies with the highest values of 

𝐷𝐶5%,𝐸 experienced large declines in equity values during the crisis.  

We further investigate the relationship between equity returns during July 2007 and December 

2008 and a firm’s expected distress costs during the 5% worst market days in the pre-crisis year to 

equity capital (𝐷𝐶5%,𝐸). Therefore, we plot the two variables against each other. 

                                                 
23 Note that the estimated coefficients are slightly different from the estimates in Acharya et al. (2016) due to reduced 

sample and because of the small differences in some of the values  
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Figure 11: Relationship between Realizes SES and 𝑫𝑪𝟓%,𝑬  

 

At a first glance, our proxy for excess distress costs, does not seem to be indicative for equity 

returns during the crisis.  

For firms with a high ratio of distress costs during the 5% worst market days to market equity as 

of end-June, the relationship seems to hold. For example, Fannie Mae and Freddie Mac show the 

highest ratio and are among the firms with the most negative realized crisis returns. Bear Stearns, 

CIT and Merrill Lynch have slightly lower but still high values of 𝐷𝐶5%,𝐸 and experience large, 

but less severe stock price declines.  

However, when looking at companies with low 𝐷𝐶5%,𝐸, there does not seem to be a relationship. 

For these firms we see both, very negative but also positive values for realized SES. It seems as 

some of the companies that experience the largest stock price declines during the crisis have very 

small expected distress costs in the pre-crisis year. One example for these companies is the 

insurance company, American International Group (AIG). This company has 𝐷𝐶5%,𝐸 of 0.07 but 

realized equity returns of -97.7% between July 2007 and December 2008. This company had to be 

bailed out by receiving financial support from the Federal Reserve and the U.S. government of 

$170 billion (see Mishkin, 2011, pp.54). 

We already noticed from Table 7, that a large part of the 94 financial institutions in our sample 

have low 𝐷𝐶5%,𝐸. Particularly, we noticed that 50% of the ratios are below 0.03. Furthermore, we 

noticed, that the correlation between realized SES and 𝐷𝐶5%,𝐸 is -0.41 (see Table 8). 
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It might be possible that 𝐷𝐶5%,𝐸 only indicates a firm’s systemic risk contribution if the ratio is 

particularly high. With other words, the ratio might have a significant predictive power for realized 

SES if it is above a certain threshold, otherwise not. When looking at Figure 9 it might be possible 

that this threshold is the median value of 𝐷𝐶5%,𝐸, which is 0.03. 

To test whether this is the case, we make a second set of regressions, where we exclude all 

companies with 𝐷𝐶5%,𝐸below the median. The regressions have the same form as before that can 

be extracted from regression equation (1) just for a reduced sample of 47 financial firms. 

 

Table 12: Stock returns, risk of banks and systemic risk contribution, above median 

This table contains the results of the cross-sectional regression analysis of individual BHC stocks returns (Realized 

SES) in the period 01-07-2007 to 31-12-2008 on systemic risk measures in the period from 01-06-2006 to 29-06-

2007 for BHCs above the median of 𝐷𝐶5%,𝐸 (median = 0.03). The dummies "Other", "Insurance" and "Broker-

dealers" are sub-industry specific dummies. Model (i), (ii) and (iv) are the original regressions as in Acharya et al 

(2016). Model (iii) has 𝐷𝐶5%,𝐸 as the sole explanatory variable, whereas model (v) and (vi) combines 𝐷𝐶5%,𝐸 with 

LVG and MES. Lastly, model (vii) combines all three independent variables.  

  
***, **, * indicates significance at the 1, 5 and 10 % level, respectively. Error terms are NeweyWest. 

Models (i)   (ii)   (iii)   (iv)   (v)   (vi)   (vii)   
Intercept -0.11   -0.31 *** -0.45 *** 0.02   -0.11   -0.27 *** 0.07   

MES -0.26 **         -0.24 ** -0.24 **     -0.24 ** 

LVG     -0.03 **     -0.02 ***     -0.03 ** -0.03 ** 

DC         -0.09 **     -0.07 ** 0.03   0.05   

                              

Other -0.20 * -0.27 ** -0.18   -0.20 ** -0.13   -0.31 ** -0.25 ** 

Insurance -0.32 *** -0.30 *** -0.29 *** -0.32 *** -0.31 *** -0.31 ** -0.33 *** 

Broker-dealers 0.00   -0.16   -0.27 *** 0.16   0.06   -0.15   0.18   

                              

Adj. R2  0.24    0.21    0.18   0.29   0.26   0.20   0.28   

AIC 29.42   31.35   33.27   27.17   29.22   33.24   29.91   

Nobs 47   47   47   47   47   47   47   

 

Table (12) shows regression results for the regression of realized SES on different combinations 

of MES, LVG and 𝐷𝐶5%,𝐸 for all companies with 𝐷𝐶5%,𝐸 above the median 0.03. The results are 

very similar to those of the full sample regression in Table (11). As before, 𝛽𝐷𝐶 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 is 

only significant when excluding LVG from the set of regressors.  
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We can see in regression model (vii) that when regressing all theoretical components of systemic 

expected shortfall and the sub-industry specific dummies, 𝛽𝐷𝐶 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛  is also not significant 

but the coefficients on MES and LVG are.  

Adjusted R-squared values slightly increase compared to the full-sample regressions in Table 11. 

This increase is very small, e.g. from 0.26 to 0.28 in models (vii). Therefore, we conclude that 

separating the sample into two subgroups and analyzing the relationship for companies with 

𝐷𝐶5%,𝐸 above median does not add further value. 𝐷𝐶5%,𝐸 does not seem to explain realized crisis 

returns. 

 

7.2 Regression on SCAP results 

To further investigate the predictive power of expected distress costs during the 5% worst market 

days to equity as a theoretical measure for systemic risk, we now turn to the 2009 SCAP results as 

an approximation for the systemic shortfall.  

As before, we vary the composition of the regressors by considering all possible combinations of 

MES, LVG and 𝐷𝐶5%,𝐸. In accordance with Acharya et al. (2016), we do not include sub-industry 

specific dummies.  

The full regression, i.e. including all three explanatory variables plus the dummies now takes the 

following form: 

 

(1) 
𝑆𝐶𝐴𝑃 𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙𝑠𝑖

𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖
=  𝛽0 + 𝛽𝑀𝐸𝑆𝑀𝐸𝑆5%

𝑖 + 𝛽𝐿𝑉𝐺𝐿𝑉𝐺
𝑖 + 𝛽𝐷𝐶𝐷𝐶5%,𝐸

𝑖 + 𝑢𝑖 

 

Thus, we replicate the regressions in Acharya et al. (2016) with SCAP shortfall as a percentage of 

Tier 1 capital (Panel A) and Tier 1 common equity (Panel B) and extend their analysis with our 

variable, 𝐷𝐶5%,𝐸. The regression results can be viewed in Table 13. 
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Table 13:  Regression on SCAP shortfalls: 

Panel A contains the results of the cross-sectional regression with the dependent variable being SCAP 

shortfall/Tier1. In Panel B the dependent variable is SCAP shortfall/Tier1comm. Systemic risk measures are 

from the period from 01-04-2008 to 31-03-2009. LVG is as of first quarter 2009. The dummies "Other", 

"Insurance" and "Broker-dealers" are sub-industry specific dummies. Model (i), (ii) and (iv) are the original 

regressions as in Acharya (2016). Model (iii) has 𝐷𝐶5%,𝐸 as the sole explanatory variable, whereas model (v) and 

(vi) combines 𝐷𝐶5%,𝐸 with LVG and MES. Lastly, model (vii) combines all three independent variables.  

 

***, **, * indicates significance at the 1, 5 and 10 % level, respectively. Error terms are NeweyWest. 

  

Panel A: Dependent variable is SCAP shortfall/Tier1    

Models (I)   (II)   (III)   (IV)   (V)   (VI)   (VII)   

Intercept -16.71 ** 3.14   4.98 ** -16.77 ** -16.68 ** 3.18   -16.88 ** 

MES 1.85 ***         1.86 ** 1.84 ***     1.87 ** 

LVG     0.08       0.00       0.09   0.00   

DC         0.03       0.00   -0.01   0.01   

                              

Adj. R2 0.31   0.04   0,00   0.27   0.27   0.00   0.22   

AIC 
121.21   127.18   128.70 

  
123.21 

  
123.20 

  
129.16 

  

125.2

0   

No. Obs 18   18   18   18   18   18   18   

                              

Panel B: Dependent variable is SCAP shortfall/Tier1comm        

Models (I)   (II)   (III)   (IV)   (V)   (VI)   (VII)   

Intercept -36.17 *** 4.40   9.05   -30.82 ** -35.20 *** 4.12   -32.20 ** 

MES 4.04 ***         3.29 ** 3.76 ***     3.38 ** 

LVG     0.27 **     0.12       0.24 * 0.07   

DC         0.16       0.10   0.05   0.07   

                              

Adj. R2 0.34   0.18   0.05   0.33   0.34   0.14   0.30   

AIC 147.42   151.22   154.00   148.46   148.28   153.06   150.0   

No. Obs 18   18   18   18   18   18   18   

 

As can be seen in regression models (i) – (vii), the coefficient on 𝐷𝐶5%,𝐸 is not significantly 

different from zero in any of the regression models. We notice, that the only significant coefficient 

is 𝛽𝑀𝐸𝑆. This coefficient is significant in all regression models. In Panel A, when regressing SCAP 

shortfall as a percentage of Tier 1 capital, MES is the only variable that has explanatory power.  

The coefficient on MES seems to be robust vis-à-vis the composition of the explanatory variables, 

as it does not change much when adding more explanatory variables. For example, in regression 

(vii), the estimated coefficient has a value of 1.87, meaning that an increase in MES of 0.1, the 

SCAP/Tier1 ratio increases by 1.87. The fact that the coefficient is approximately constant means 
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that LVG and 𝐷𝐶5%,𝐸 are either uncorrelated with MES (which is not the case) and/or that they 

really have no explanatory power.  

Adjusted R-squared values are very low, in Panel A even close to zero, when not including MES 

to the set of regressors. The largest values for the adjusted R-squared, 0.27, are obtained in 

regressions (iv) and (v), when regressing SCAP results on MES and either LVG or 𝐷𝐶5%,𝐸. When 

regressing on the full set of explanatory variables in Panel A, R-squared drops to 0.22.  

The regression results in Panel B are very similar with the difference that LVG has significant 

explanatory power on a stand-alone basis (ii) or when additionally including 𝐷𝐶5%,𝐸 (vi), but not 

in conjunction with MES.  

As in the previous regressions, our variable 𝐷𝐶5%,𝐸 does not seem to add any value to explaining 

SCAP shortfalls. However, in contrast to the previous regressions, LVG does not seem to add any 

value either. This is surprising because, as shown in Table (11), 𝛽𝐿𝑉𝐺seemed to be a very important 

factor in explaining realized SES. Under the assumption, that aggregated SCAP shortfalls do 

illustrate systemic risk, as argued by Acharya et al. (2016), it is surprising that the coefficient on 

LVG is not statistically significant. 

One disadvantage of regressing SCAP shortfalls is the small sample size. The sample only contains 

18 companies. For cross-sectional OLS regressions, a small sample size is problematic because 

the sample standard deviation becomes very large. This does not necessarily change the coefficient 

estimates, but it does change the statistical significance (see Wooldrige, 2009). 

It is also possible, that SCAP shortfalls are not a good measure to take as a proxy for systemic 

expected shortfall. We argued in section 2.3 that the assumption that the individual default risks 

of banks add up to systemic risk is flawed. Therefore, SCAP shortfalls/Regulatory Capital is not 

necessarily the right approximation for a company’s systemic expected shortfall.  

However, according to Acharya et al. (2016), a bank’s overall risk has two components, the 

individual risk and the systemic risk contribution. Thereby, SES is just an additional component 

besides a financial firm’s individual default risk (ES). Thus, what SCAP shortfall measures is 

exactly the individual risk and not the contribution to systemic risk, SES. 
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7.3 Regressing Realized SES on Expected Distress Costs to Asset Value 

We have seen in the previous section that expected distress costs during the 5% worst market days 

as a proportion of equity capital do statistically not explain crisis returns when including leverage 

as an explanatory variable. Although this is the theoretically motivated proxy measure, this 

measure might not be the right scaling factor for firm size to use when being interested in the pure 

effect of distress costs. 

What is of interest in the model is the effect of expected costs of financial distress on a bank’s 

systemic risk contribution. But the absolute amount of expected distress costs is not of much use 

because larger firms will naturally have larger distress costs, although in both cases maybe only 

20% of assets will be lost in case of a default due to financial distress, no matter what. Therefore, 

it is reasonable to account for firm size by scaling expected distress costs by a number that 

determines firm size. 

As we are only interested in accounting for firm size, the scaling factor should only contain 

information about size. However, using equity capital contains information about a company’s 

leverage.  

To understand why, consider a simple example that stands in context with the Trade-Off theory. 

Firm X must decide how to finance the assets worth 100. In this example, Firm X has two options. 

Either it uses only equity capital, or it takes on debt worth 10 and finances the rest with equity 

capital. In the first option, if fully equity financed, the firm value is 100. Logically, equity is worth 

100 as well and debt is worth 0.  

100 is therefore the value of unlevered assets, equity, and the value of the whole firm.  

In the second option, Firm X would raise debt with a face value of 10. In this example, unlevered 

assets are still worth 100 but through tax benefits of debt and the present value of distress costs, 

the firm value changes. In our example, firm value increases to 101.5, equity value decreases to 

91.1 and the market value of debt is 10.4.  

The two cases are outlined in the following table: 
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Table 14: Example 

 
Option 1 Option 2 

Firm Value 100 101.5 

Unlevered Assets V 100 100 

Equity value 100 91.1 

Debt value 0 10.4 

 

In our case, the capital structures of the companies in the sample are already set. Still, when scaling 

by equity capital, the capital structure will be reflected in the ratio. If all companies in the sample 

had the proportions of debt and equity capital, scaling by equity capital would be reasonable. 

However, scaling by equity does not only control for firm size, but also for leverage.  

This is possibly also the explanation why we found the coefficient on  𝐷𝐶5% insignificant when 

adding leverage as an explanatory variable, but significant when regressing without leverage. This 

is because, as just outlined, 𝐷𝐶5%,𝐸 captures the same cross-sectional variation as does leverage.  

To counter this problem, we change the proxy measure of a bank’s excess costs of financial 

distress. We are still interested in scaling expected distress costs during the 5% worst market days 

by firm size. For this purpose, we scale the expected distress costs with the unlevered asset value. 

The unlevered asset value, or V as in the Leland and Toft (1996) framework is the firm value if 

the company was 100% equity financed.  

Our new proxy measure for a bank’s excess costs of financial distress now takes the following 

form: 

 

(24) 𝐷𝐶5%,𝑉
𝑖 =  (

1

#𝑑𝑎𝑦𝑠
 ∑ 𝐷𝐶𝑡

𝑖
𝑡:𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑖𝑡𝑠 5% 𝑡𝑎𝑖𝑙 )

1

𝑉0
𝑖 

 

where 𝑉0
𝑖 is bank i’s unlevered asset value as of end of June 2007. To test, whether our new proxy 

measure for excess costs of financial distress does a better job in describing realized equity returns 

during the crisis, we repeat the previous regression of realized equity returns during July 2007 – 
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December 2008 on the three theoretical components of systemic expected shortfall MES, LVG and 

𝐷𝐶5%,𝑉
𝑖  for the 94 bank-holding companies in our sample. The new regression equation has the 

following form: 

 

(25) 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝐸𝑆𝑖 =  𝛽0 + 𝛽𝑀𝐸𝑆𝑀𝐸𝑆5%
𝑖 + 𝛽𝐿𝑉𝐺𝐿𝑉𝐺

𝑖 + 𝛽𝐷𝐶,𝑉𝐷𝐶5%,𝑉
𝑖 +

 𝛽𝑂𝑂𝑡ℎ𝑒𝑟
𝑖 + 𝛽𝐼𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒

𝑖 + 𝛽𝐵𝐷𝐵𝑟𝑜𝑘𝑒𝑟 − 𝑑𝑒𝑎𝑙𝑒𝑟𝑠
𝑖 + 𝑢𝑖 

 

Before showing the regression results, we plot 𝐷𝐶5%,𝑉
𝑖  against realized equity return during the 

crises. This plot can be seen in Figure (12). 

 

Figure 12: Relationship between Realized SES and 𝑫𝑪𝟓%,𝑽
𝒊  

 

 

At a first glance, 𝐷𝐶5%,𝑉
𝑖  seem to explain realized SES much better than the previous measure, 

distress costs during the 5% worst market days as a proportion of market value of equity as of June 

2007. Figure (12) shows that a higher value of  𝐷𝐶5%,𝑉
𝑖  measured in the pre-crisis year has better 

explanatory power for more negative equity returns during the crisis. For example, the graph 

illustrates that Freddie Mac, Fannie Mae, Lehman Brothers, CIT are among the firms with the 



72 

 

highest proportion of distress costs and also among the firms with the most negative equity returns. 

Furthermore, none of the firms with the lowest realized returns during the crisis have their distress 

costs to equity in the lowest spectrum.  

To get a clearer picture of the relationship between realized SES and  𝐷𝐶5%,𝑉
𝑖 , we look at the 

estimated coefficients that result from estimating the parameters in equation (24). As in the 

previous regressions, we look at different combinations of the regressors. Table (16) presents the 

results. 

 

Table 15: Stock returns, DC scaled by assets as a systemic risk contribution variable 

 

In contrast to previous results, the estimated coefficient on our proxy for a bank’s excess costs of 

financial distress is always highly significant on at least a 1% confidence level. The coefficient on 

𝐷𝐶5%,𝑉
𝑖   is still negative in all regression models, as before. The larger the fraction of expected 

distress costs during the 5% worst market days to unlevered asset value, the lower the observed 

equity returns during the crisis. The coefficient on 𝐷𝐶5%,𝑉
𝑖  is -0.02.  

This table contains the results of the cross-sectional regression analysis of individual BHC’s stocks returns (Realized 

SES) in the period 01-07-2007 to 31-12-2008 on systemic risk measures in the period from 01-06-2006 to 29-06-

2007. The dummies "Other", "Insurance" and "Broker-dealers" are sub-industry specific dummies. Model (i), (ii) and 

(iv) are the original regressions as. Model (iii) has  𝐷𝐶5%,𝑉
𝑖  as the sole explanatory variable, whereas model (v) and 

(vi) combines 𝐷𝐶5%,𝑉
𝑖  with LVG and MES. Lastly, model (vii) combines all three independent variables.  

 

***, **, * indicates significance at the 1, 5 and 10 % level, respectively. Error terms are NeweyWest. 

Models (i)   (ii)   (iii)   (iv)   (v)   (vi)   (vii)   
Intercept -0.12   -0.19 *** -0.26 *** 0.02   0.01   -0.19 *** 0.03   

MES -0.22 ***         -0.16 ** -0.19 ***     -0.17 ** 

LVG     -0.04 ***     -0.04 ***     -0.02 ** -0.02 ** 

DC         -0.03 ***     -0.03 *** -0.02 *** -0.02 *** 

                              

Other -0.06   -0.23 *** -0.17 ** -0.16 ** -0.08   -0.21 *** -0.13 * 

Insurance -0.05   -0.08   -0.14 * -0.10   -0.16 ** -0.13   -0.15 * 

Broker-dealer 0.03   -0.06   -0.12   0.14   0.14   -0.05   0.16   

                              

Adj. R2 0.10   0.24   0.24   0.27   0.29   0.27   0.31   

AIC 56.87   40.96   41.41   38.19   35.97   38.04   34.25   

No. Obs 94   94   94   94   94   94   94   
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Beyond that, 𝛽𝑀𝐸𝑆 and 𝛽𝐿𝑉𝐺  are also statistically significant in all models (i) to (vii). This result is 

in line with the theoretical measure for the systemic expected shortfall.  

In addition to 𝛽𝐷𝐶,𝑉 , the coefficients on MES and LVG are also negative, as in the previous 

regressions. This corresponds to our expectations of the relationship between the variables and 

realized SES. 

When comparing regression model (vii) that is the regression output of realized SES on all three 

components of the theoretical SES measure with regression (v) that leaves out 𝐷𝐶5%,𝑉
𝑖  (as in 

Acharya et al., 2016), we observe that adjusted R-squared increases from 0.27 to 0.31. 

Furthermore, model (vii) has the highest value for adjusted R-squared of all models.  

When comparing the adjusted R-squared values of regression models (vii) in Table 11 where we 

regress on 𝐷𝐶5%,𝐸, the R-squared values here are also higher. We conclude that of all regressions 

conducted so far, this is the one that fits realized equity returns during the crisis best. The standard 

error for distress costs to assets is much smaller than the corresponding one for distress costs to 

equity (0.0053 against 0.0457). This might be the reason why distress costs to assets are 

statistically significant and distress costs to equity are not.  

When further comparing the coefficient on 𝐷𝐶5%,𝑉
𝑖  from regression (vii) to the coefficient on 

𝐷𝐶5%,𝐸 from regression mode (vii) in Table 11, we find that the coefficients have the same value 

in both regressions, namely -0.02. Holding the denominator (unlevered asset value or market value 

of equity) constant, both variables therefore have the same effect on realized SES. However, the 

difference is that the coefficient on 𝐷𝐶5%,𝐸 is not statistically significant. We therefore address the 

question, whether the variables are economically significant. Wooldridge (2012) argues that 

statistical significance depends exclusively on the size of the T-Statistics whereas economic 

significance is determined by size and sign of the coefficient estimates. 

Given the coefficients, we are also interested in how much of an increase in the variable is required 

to produce a 1%-decrease in predicted SES. We find that it would require an increase of 0.61 in 

distress costs to equity to produce a 1%-decrease in predicted SES. This increase can come in the 

form of an increase in distress costs or a decrease in market value of equity. For distress costs to 

assets this would correspond to a 0.61% increase in distress costs to assets.  
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7.4 Robustness check 

In the previous section, we assessed the predictive power of distress costs/assets to indicate a 

systemic short-fall in equity capital.  We now want to test, how much time in advance SES has 

predictive power. As Acharya et al. (2016) state, if there was significant time-series variation in 

distress costs to assets, the optimal taxation policy of the regulator would be much harder to 

implement. Therefore, it is in our interest to see how early 𝐷𝐶5%,𝑉
𝑖  can explain the cross section of 

realized equity returns during the financial crises. 

For this purpose, we plot 𝐷𝐶5%,𝑉
𝑖  measured between June 2005 to 30th of June 2006 against 𝐷𝐶5%,𝑉

𝑖  

from the period of June 2006 to 30th of June 2007 for our sample of U.S. BHC’s. The resulting 

plot can be seen in Figure 13.  

 

Figure 13: Stability of 𝑫𝑪𝟓%,𝑽
𝒊  Over Time 

 

The plot shows distress costs during the 5% worst market days as a proportion of assets seem to 

be highly related between the two one-year periods. This relationship seems to hold especially for 
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firms that have very high distress costs relative to assets (above 10 % of assets) but also for firms 

with distress costs close to zero.  

Acharya et al. (2016) find that the explanatory power of MES declines the longer the time 

difference between sample time and crisis (Acharya et al, 2016, pp 27). Regarding expected 

distress costs, we have mixed expectations as some firms change from having relatively low 

distress costs to high and vice versa.  

To test the explanatory power of the SES measure in the year before the prior-crisis year, we 

compute combinations of MES, LVG and 𝐷𝐶5%,𝑉
𝑖  for 1st of June 2005 to 30th of June 2006 and 

make a cross-sectional regression with equity returns during the crisis (realized SES) on the three 

variables. We then do the same again just with combinations of MES, LVG and 𝐷𝐶5%,𝑉
𝑖  in the 

period from 03-01-2005 to 03-01-2006. The regression outputs can be seen in Table 17.  

 

Table 16: Regression Results 

This table contains the results of the cross-sectional regression analysis of individual BHC stocks returns (Realized 

SES) in the period 01-07-2007 to 31-12-2008. The dummies "Other", "Insurance" and "Broker-dealers" are sub-industry 

specific dummies. Model (i), (ii) (iiI)and (iv) are MES, LVG and 𝐷𝐶5%,z 𝑉
𝑖 Model (v) to (viii) MES, LVG and 𝐷𝐶5%,𝑉

𝑖 are 

different combination in the period from 03-01-2005 to 03-01-2006.  

 

***, **, * indicates significance at the 1, 5 and 10 % level, respectively. Error terms are NeweyWest. 

June 2005 – June 2006 January 2005 – January 2006 

Models (i)   (ii)   (iii)   (iv)   (v)   (vi)   (vii)   (viii)   

Intercept -0.02   0.01   0.01   0.17   -0.22 *** 0.26 * -0.07   -0.10   

MES -0.15   -0.15 *     -0.16 * 0.07   0.18       0.07   

LVG -0.04 ***     -0.04 *** -0.04 *** -0.04 ***     -0.04 *** -0.03 *** 

DC     -0.03 ** -0.40 ** -0.02 **     -0.02 ** -0.02   -0.02   

                                  

Other -0.27 ** -0.27 ** 0.10 *** -0.37 *** -0.31 *** -0.30 ** -0.34 *** -0.36 *** 

Insurance -0.08   -0.18 * -0.18   -0.19 * -0.06   -0.11   -0.12   -0.12   

Broker-

dealer 
0.11 

  -0.27 * 
-0.18 

  
0.00 

  
-0.11 

  -0.50 *** 
-0.17 

  
-0.21 

  

                                  

Adj. R2 0.20   0.12   0.22   0.23   0.17   0.10   0.19   0.18   

AIC 44.87   52.32   42.57   42.13   45.54   51.83   43.58   45.24   

No. Obs 85   85   85   85   85   85   85   85   
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We observe several things from Table 17. First, in accordance with the observations of Acharya 

et al. (2016), when regressing realized SES on MES and LVG, we see that MES does not have 

explanatory power. Regressing on all SES components in the period from June 2005 to June 2006 

as seen in regression (iv), all components are highly significant. Combining all three components 

gives the highest adjusted R-squared, this model has the highest overall explanatory power. In (vi), 

adjusted R-squared is at least 1% larger than in the alternative regressions for the same period. 

Second, we see that all coefficients have a negative sign for the period from June 2005 to June 

2006. The economic interpretation of this is simple. It implies that lower equity returns during a 

crisis are related to a higher marginal expected shortfall, higher quasi-leverage ratio and to a higher 

proportion of distress costs. This is consistent with our previous findings. 

It is not surprising, that the expected costs of financial distress as a proportion of assets do explain 

crisis returns, even when measured two years prior to the crisis. As we have seen in Figure 13, 

expected distress costs seem to be relatively stable.  

In the period from January 2005 to January 2006 we observe that the coefficient on distress costs 

to assets is no longer significant for the full model (viii). It still has the same sign and the same 

magnitude and thus the same economic significance. MES is not significant in any model in this 

period which is not surprising because returns in the past are less and less correlated with future 

returns. Acharya goes on and tries different weighting schemes on MES. We will not do something 

similar here as we are not working with returns. We also notice that the adjusted R-squared drops 

and AIC increases, which indicates less explanatory power of the model. Despite that, LVG still 

retains certain characteristics that gives it explanatory power for realized SES well ahead in time. 

We conclude that 𝐷𝐶5%,𝑉
𝑖  is just as robust and stabile, if not more, than MES is. This is natural as 

expected costs of financial distress do not change much in the short run. On a longer time horizon, 

it is more likely that  𝐷𝐶5%,𝑉
𝑖  changes as the capital structure of the BHC change. 

To summarize, we find that the expected cost of financial distress to equity does not explain returns 

during the crisis nor has it any explanatory power in explaining the outcome of the 2009 SCAP 

stress test. This is even though it is the closest measure to the theoretical measure proposed by 

Archarya et al. (2016). We argue that distress costs to equity might be a bad scaling factor when 

accounting for firm size as it seems like it explains the same cross sectional variation as leverage 
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does. We further find that when changing the scaling to unlevered asset value, distress costs have 

significant explanatory power even when accounted for leverage.  

 

8 Discussion   

 

8.1 Implications to Practice 

The predictive power we found for distress costs regarding systemic expected shortfall suggests 

potential implications in banking regulation and stress testing.  

Supervisory institutions constantly work on the enhancement of prevailing banking regulation. 

Most currently, Basel III foresees for example the gradual implementation of a minimum leverage 

ratio. This regulatory leverage ratio imposes banks to hold a minimum of 3% Tier 1 common 

equity capital of total ‘on and off’ balance sheet assets. We have seen that leverage ratio has a 

significant relationship with crisis returns, in this context it is reasonable to impose a minimum 

standard because banks do not have incentives to hold the economically optimal leverage. The 

intention behind a leverage ratio is good. However, it is, as other regulatory capital ratios, based 

on book values and therefore sensitive to the same shortfalls as book-ratios in general.  

Expected distress costs, however, are more difficult to regulate because, in contrast to leverage, 

they are much more difficult to estimate ex-ante.  

The results show that market based measures can indicate capital shortfalls in a crisis. In this 

context, MES, leverage and distress costs could be implemented in the current stress testing 

procedures. 

Based on MES and on historical correlations between a bank’s market equity and the market index, 

Acharya et al. (2014) develop an alternative stress test called the V-lab stress test. The V-lab stress 

tests basically measures the decline in a firm’s equity prices after a large decline in stock price 

indices (which is the stress scenario). They use MES to compute a risk weight (V-lab risk weight), 

which they use to weigh total assets with.  



78 

 

The higher the risk weight, the more risky is the bank ex-ante. In the stress tests, the stressed equity 

capital needs to exceed a fraction of the “market risk-weighted” assets.  

The V-lab stress test has the advantage that, in contrast to the current regulatory stress tests, it 

relies on publicly available data and is very easy to implement. Including expected distress costs 

in the V-lab stress test could possibly provide more precise estimates of the shortfalls in a crisis.  

For example, expected distress costs could be added to the amount of assets that are weighted with 

the V-lab risk weight. 

However, as Acharya et al. (2014) state, the V-lab stress test should not replace current regulatory 

stress tests as they provide valuable information through the disclosure of bank data and results 

for regulators and the market. The V-lab (or similar) stress tests should rather be used as a 

complementary.  

 

8.2 Limitations 

Our analysis is limited to a sample of 94 US. Bank holding companies. In order to make a more 

general statement about the relationships between crisis performance and MES, LVG and expected 

distress costs, it might be necessary to extend the sample and to apply the same approach to other 

countries. 

Furthermore, the estimation procedure used to obtain market-implied estimated for expected costs 

of financial distress is only valid in connection with the assumptions underlying the Leland and 

Toft (1996) framework. This model is not necessarily the right model for estimating firm value 

components. The model captures important features of the Trade-Off theory but it also misses out 

on other ideas. For example, as Breitkopf and Elsas (2012) state, one of the missing features is that 

is does not incorporate Jensen’s disciplining effect of debt.  

The calibration procedure we applied as proposed by Breitkopf and Elsas (2012) is both very time-

consuming and requires a large amount of data. Therefore, we derived only one average parameter 

of T and LGD each over a period of 2,5 years for each subindustry. This implies the assumption 

that these parameters are constant over those 2,5 years. However, the asset and debt composition 

of a financial institution is most likely not constant for such a long time period. Consequently, 



79 

 

LGD and T change over time. Thus, using smaller time frames for the estimation of theses 

parameters will result in more precise estimates and results. 

Furthermore, we approximated the asset payout ratio by a weighted average of interest expenses 

and dividends. One could hence argue that we are missing out on potential payouts that could 

influence the calibration procedure. 

 

9 Conclusion  

 

Current regulation and supervisory stress tests aim at ensuring systemic stability and to prevent 

another crisis. Their current procedure has several weaknesses, most importantly that they do not 

account for systemic risk. Acharya et al. (2016) developed a theoretical measure of a bank’s 

contribution to systemic risk (SES) that has three components: the marginal expected shortfall 

(MES), leverage and excess distress costs. In their empirical implementation, the authors leave out 

the estimation of excess distress costs.  

In this thesis, we developed an empirical measure for a bank’s excess costs of financial distress 

that we can use to extend the empirical measure for systemic expected shortfall (SES). We obtain 

market-implied values for expected distress costs using an estimation procedure proposed by 

Breitkopf and Elsas (2012). Their estimation procedure uses the relationships between corporate 

securities in the structural model framework of Leland and Toft (1996) and publicly available stock 

price and CDS data.  

We find that on average, the expected costs of financial distress are in fact significantly different 

from zero in non-crisis times. Furthermore, we find that the ratio of expected distress costs to 

equity capital, the firm size scaling factor proposed by Acharya et al. (2016), does explain crisis 

returns on a stand-alone basis, but not in conjunction with leverage. We further find that when 

changing the scaling factor from equity capital to unlevered asset value, the term is highly 

significant. 
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We consider several robustness checks where we examine how much in advance crisis returns can 

be predicted. Like leverage, the expected distress costs explain crisis returns even if measured two 

years before the crisis. However, when going further back, the explanatory power disappears.  

Therefore, distress costs could be used to extend alternative stress tests such as the V-Lab stress 

test.  



81 

 

10 List of Literature  

 

Clark and Ryu. https://www.federalreserve.gov/bankinforeg/ccar-and-stress-testing-as-

complementary-supervisory-tools.htm 

Press Release of the Federal Reserve from website, 

https://www.federalreserve.gov/newsevents/pressreleases/bcreg20091109a.htm, 15.08.2017 

Acharya, V., Pedersen, L., Philippon, T., Richardson, M., 2016, “Measuring Systemic Risk”, 

Review of Financial Studies, Vol. 30, pages 2-47. 

 

Acharya, V, Robert Engle and Diane Pierret (2014), “Testing macroprudential stress tests: The 

risk of regulatory risk weights”, Journal of Monetary Economics, Vol. 65, pages 36–53. 

Acharya, V. Schnabl, P. and Suarez, G., 2013 “Securitization without risk transfer”, Journal of 

Financial Economics, Vol. 107, pages 515–36  

Admati, A., DeMarzo, P., Hellwig, M., Pfleiderer, P., 2013, “The Leverage Ratchet Effect”, 

Working Paper, Stanford Graduate School of Business. 

 

Almeida, Hetor, and Thomas Phillipon, 2007, “The Risk-Adjusted Cost of Financial Distress”, 

Journal of Finance, Vol. 62, pages 2557–2586. 

Acharya, V and Yorulmazer, T, 2008, ‘Information contagion and bank herding’, Journal of 

Money, Credit and Banking, Vol. 40, No. 1, pages 215–31.  

Andrade, Gregor, and Steven Kaplan, 1998, “How costly is financial (not economic) distress? 

Evidence from highly leveraged transactions that become distressed”, Journal of Finance, 

Vol. 53, pages 1443–1493. 

Basel Committee on Bank Supervision, 1999 “Credit Risk Modelling: Current Practices and 

Applications,” Technical Report, Bank for International Settlements.  

Basel Committee on Bank Supervision, 1988 “International Convergence of Capital 

Measurement and Capital Standards” Basel. 

Basel Committee on Bank Supervision, 1999 “Amendment to the Capital Accord to incorporate 

market risks” Bank for International Settlements. 

Basel Committee on Bank Supervision, 2011 “Basel III: A global regulatory framework for more 

resilient banks and banking systems” Bank for International Settlements. 

Elsas, R., Breitkopf, N., 2012, “From Underleverage to Excess Debt: The Changing Environment 

of Corporate Debt”, Working Paper, Ludwig-Maximilians-Universität, Munich. 

 

Fama, E., 1969, “Efficient Capital Markets, A Review of Theory and Empirical Work”, Journal 



82 

 

of finance, Vol. 25, No. 2, 383 - 417. 

Federal Register September 25, 2006, p. 55833   

Fischer, E., Heinkel, R., Zechner, J., 1989, “Optimal Dynamic Capital Structure Choice: Theory 

and Tests”, Journal of Finance, Vol. 44, 19-40. 

Flannery, Mark J., Kwan, Simon H., Nimalendran, M., 2010. “The 2007–09 Financial Crisis and 

Bank Opaqueness”. Working Paper Series, Federal Reserve Bank of San Francisco. 

Flannery, Mark J., 2014, “Maintaining Adequate Bank Capital”, Journal of Money, Credit and 

Banking, Supplement to Vol. 46, No. 1  

Gordy, M.B. (2003), “A Risk-Factor Model Foundation For Ratings-Based Bank Capital Rules”, 

Journal of Financial Intermediation, Vol. 12. 

Gorton, G and Metrick, A (2012), “Securitized banking and the run on repo”, Journal of 

Financial Economics, Vol. 104, No. 3, pages 425–51. 

Gros, D., Alcidi, C., 2010, “The Crisis and the Real Economy”, Intereconomics, 4-10. 

Hoshi, T. and Kashyap Anil K., 2010 “Will the U.S. bank recapitalization succeed? Eight lessons 

from Japan”, Journal of Financial Economics, Volume 97, Issue 3 

Jones, David, 2000 “Emerging problems with the Basel Capital Accord: Regulatory capital 

arbitrage and related issues,” Journal of Banking and Finance, Vol. 24, pages 35–58. 

Kaufman, George, 2014, “Too big to fail in banking: What does it mean?” , Journal of Financial 

Stability, Vol. 13,  pages 214–23.   

Leland H., 1994, “Corporate debt value, bond covenants, and optimal capital structure”, Journal 

of Finance, Vol. 49, pages 1213-52. 

 

Leland, H., Toft, K.B., 1996, “Optimal capital structure, endogenous bankruptcy, and the term 

structure of credit spreads”, Journal of Finance, Vol. 51, 987–1019. 

 

Mishkin, F., 2011, Over the Cliff: From the Subprime to the Global Financial Crisis, Journal of 

Economic Perspectives 25, 49-70  

Myers, S., 1984, “The Capital Structure Puzzle”, Journal of Finance, Vol. 39, 575-92. 

OECD Report, 2009, The Financial Crisis: Reform and Exit Strategies, September, OECD, Paris, 

available at www.oecd.org/dataoecd/55/47/43091457.pdf 

Reinhart, C., Rogoff, K., 2008, “Is the 2007 U.S. Sub-prime Financial Crisis so Different? An 

International Historical Comparison”, American Economic Review, Vol. 98, 339-344. 

 

Zijun Liu, Stephanie Quiet, Benedict Roth, 2015, “Banking sector interconnectedness: what is it, 

how can we measure it and why does it matter?“ Bank of England Quarterly Bulletin 2015 Q2 



83 

 

11 Appendix 

 

11.1 Appendix A – The solution of the Leland and Toft model 

The Value of the firm when the tax shield is lost prior to bankruptcy (𝑉𝐵 ≤ 𝑉𝑇), where 𝑉𝑇 defines 

that asset value at which the tax shield is lost and is calculated as: 𝑉𝑇 =
𝐶

𝛿
.  There is two 

scenarios besides the one described in the main body of the theses, where the tax shield at 

bankruptcy (𝑉𝑇 ≤ 𝑉𝐵 < 𝑉). One where the tax shield is already lost 𝑉𝐵 < 𝑉 ≤ 𝑉𝑇 and one where 

it is not lost yet, but if the assets value drops it is lost before bankruptcy. This can be summarized 

using the following equations: 

 

𝑣(𝑉; 𝑉𝐵) =

{
  
 

  
 𝑉 +

𝜏𝐶

𝑟
[1 − (

𝑉

𝑉𝐵
)
−𝑥

] − 𝛼𝑉𝐵 (
𝑉

𝑉𝐵
)
−𝑥

,    𝑉𝑇 ≤ 𝑉𝐵 < 𝑉

𝑉 +
𝜏𝐶

𝑟

𝑥

𝑥 + 1
 
1

𝑉𝑇
𝑉 −

𝜏𝐶

𝑟

𝑥

𝑥 + 1
 
𝑉𝐵
𝑥+1

𝑉𝑇
𝑉−𝑥 − 𝛼𝑉𝐵 (

𝑉

𝑉𝐵
)
−𝑥

,   𝑉𝐵 < 𝑉 ≤ 𝑉𝑇

𝑉 +
𝜏𝐶

𝑟
−
𝜏𝐶

𝑟

𝑥

𝑥 + 1
 
1

𝑉𝑇
(𝑉𝐵

𝑥+1 +
𝑉𝑇
𝑥+1

𝑥
)𝑉−𝑥 − 𝛼𝑉𝐵 (

𝑉

𝑉𝐵
)
−𝑥

,    𝑉𝐵 < 𝑉𝑇 < 𝑉

 

 

The asset value for where it is optimal to declare bankruptcy for the firm owners, also depend 

upon whether the tax shield is lost before bankruptcy. The LT model has two cases, one where it 

is the tax shield is lost at bankruptcy, which can be found in the main body of the text. If the tax 

shield is lost before bankruptcy   𝑉𝐵 ≤ 𝑉𝑇 this will influence the optimal default decision by the 

firm owners. This can be summarized through the following equations:  

𝑉𝐵 =

{
  
 

  
 
                  

(
𝐶
𝑟)(

𝐴
𝑟𝑇 − 𝐵) −

𝐴𝑃
𝑟𝑇 −

𝜏𝐶𝑥
𝑟

1 + 𝛼𝑥 − (1 − 𝛼)𝐵
 ,     𝑉𝑇 < 𝑉𝐵,      

(
𝐶
𝑟) (

𝐴
𝑟𝑇 − 𝐵) −

𝐴𝑃
𝑟𝑇 −

𝜏𝐶𝑥
𝑟

1 + 𝑥 (
𝜏𝐶
𝑟𝑉𝑇

+ 𝛼) − (1 − 𝛼)𝐵
 ,      𝑉𝐵 ≤ 𝑉𝑇 ,      

 

The auxiliary quantities in the model is defined as 



84 

 

𝑎 =  
𝑟 − 𝛿 −

1
2 𝜎

2

𝜎2
 

𝑧 =  
√(𝑎𝜎2)2 + 2𝑟𝜎2

𝜎2
 

𝑥 = 𝑎 + 𝑧 

𝐴 = 2𝑎𝑒−𝑟𝑇𝑁(𝑎𝜎√𝑇) − 2𝑧𝑁(𝑧𝜎√𝑇) −
2

𝜎√𝑇
𝑛(𝑧𝜎√𝑇) +

2𝑒−𝑟𝑇

𝜎√𝑇
𝑛(𝑎𝜎√𝑇) + (𝑧 − 𝑎) 

𝐵 =  − (2𝑧 +
2

𝑧𝜎2𝑇
)𝑁(𝑧𝜎√𝑇) −

2

𝜎√𝑇
𝑛(𝑧𝜎√𝑇) + (𝑧 − 𝑎) +

1

𝑧𝜎2𝑇
 

I(T) =
1

𝑟𝑇
(𝐺(𝑇) − 𝑒−𝑟𝑇𝐹(𝑇)) 

J(T) =
1

zσ√𝑇
(− (

V

VB
)
−a+z 

N(q1(T)) ∗ q1(T) + (
V

VB
)
−a−z

N(q2(T)) ∗ q2(T))  

 

where 𝐹(𝑇), 𝐺(𝑇), 𝑞1, 𝑞2, ℎ2, ℎ1 𝑎𝑛𝑑 b is defined as: 

𝐹(𝑡) = 𝑁(ℎ1(𝑡)) + (
𝑉

𝑉𝐵
)
−2𝑎

𝑁(ℎ2(𝑡) 

𝐺(𝑡) = (
𝑉

𝑉𝐵
)
−𝑎+𝑧

𝑁(𝑞1(𝑡)) + (
𝑉

𝑉𝐵
)
−𝑎−𝑧

𝑁(𝑞2(𝑡)) 

𝑏 = ln (
𝑉

𝑉𝐵
)  

ℎ1(𝑡) =
(−𝑏 − 𝑎𝛼2𝑡)

𝜎√𝑡
 

ℎ2(𝑡) =
(−𝑏 + 𝑎𝛼2𝑡)

𝜎√𝑡
 

𝑞1(𝑡) =
(−𝑏 − 𝑧𝛼2𝑡)

𝜎√𝑡
 

𝑞2(𝑡) =
(−𝑏 + 𝑧𝛼2𝑡)

𝜎√𝑡
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11.2 Appendix B – Reneby, Ericsson and Wang bond valuation formulae 

Using proposition 1 in Reneby, Ericsson and Wang, the value of a coupon bond with M coupons 

paid out times {ti ∶ i = 1…M } is: 

𝐶𝐵(𝑉, 𝑡) = ∑ 𝑐 ∗ 𝐻(𝑉, 𝑡; 𝑡𝑖)

𝑀−1

𝑖

 

= (𝑐 + 𝑃) ∗ 𝐻(𝑉, 𝑡; 𝑇) 

=  𝜓𝑃 ∗  𝐺(𝑉, 𝑡; 𝑇) 

For the Credit default swap spread: 

First we define 𝐺(𝑉, 𝑡) as a dollar-in-default claim: 

𝐺(𝑉, 𝑡) = (
𝑉

𝑉𝐵
)
−𝜃

 

where 

𝜃 =
√(ℎ𝐵)2 + 2𝑟 + ℎ𝐵

𝜎
 

And  

ℎ𝐵 =  
𝑟 − 𝛿 − 𝛼 − 0.5𝜎2

𝜎
 

Then we can define a dollar-in-default claim with maturity 𝐺(𝑉, 𝑡, 𝑇) as the value of a claim paying 

off $1 in default if it occurs before T. We can define the binary option as 𝐻(𝑉, 𝑡, 𝑇∗) as the claim 

of paying off $1 at T if default has not occurred before T. 

To do so, the probabilities of the “survival event” (T ≰ 𝑻) at t are estimates using lemma 1 (see 

Reneby et Al., 2005 for further details) under the probability measures 𝑄𝑚: 𝑚 = {𝐵, 𝐺} are 

𝑄𝑚(T ≰ 𝑻) = 𝛷 (𝑘𝑚 (
𝑉

𝑉𝐵
)) − (

𝑉

𝑉𝐵
)
−
2
𝜎
ℎ𝑚

𝛷(𝑘𝑚 (
𝑉𝐵
𝑉
)) 
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where  

𝑘𝑚(𝑥) =
ln(𝑥)

𝜎√𝑇 − 𝑡
+ ℎ𝑚√𝑇 − 𝑡 

ℎ𝐺 = ℎ𝐵 − 𝜃 ∗ 𝜎 = −√(ℎ𝐵)2 + 2𝑟 

where 𝛷(𝑘) denotes the cumulative standard normal distribution function.  

Then we can define the price of the binary option as: 

𝐻(𝑉, 𝑡, 𝑇∗) = 𝑒−𝑟(𝑇−𝑡) ∗ 𝑄𝐵  

And the price of a dollar in default claim with maturity T: 

𝐺(𝑉, 𝑡, 𝑇) = 𝐺(𝑉, 𝑡) ∗ (1 − 𝑄𝐺) 

  

  



87 

 

11.3  Appendix C – derivations of MES and tau 

Before explaining the derivation of the optimal tax and MES, we will state the banks incentives 

and the setting in the economic model.  

The economy has N financial Firms, indexed by i = 1, ..N and 2 periods, t = 0, 1. Each bank decide 

how much  𝑥𝑗
𝑖 to invest in each available asset j = 1, ..J, acquiring total assets: 

𝑎𝑖 = ∑ 𝑥𝑗
𝑖𝐽

𝑗=1       (1) 

 Which can be financed with debt or equity. Initial endowment �̅�0
𝑖  and equity capital 𝑤0

𝑖  and the 

bank can raise debt 𝑏𝑖 which imply the following budget constrant: 

 𝑤0
𝑖 + 𝑏𝑖 = 𝑎𝑖       (2) 

At time t=1 asset j pays of 𝑟𝑗
𝑖 per dollar invested for bank i.  

The total income for bank i at time t = 1 is then 𝑦𝑖 =  �̂�𝑖 − 𝜑𝑖 

where  𝜑𝑖 is the cost of financial distress and �̂�𝑖 is pre-distress income: 

   �̂�𝑖 = ∑ 𝑥𝑗
𝑖𝑟𝑗
𝑖𝐽

𝑗=1       (3) 

 

The cost of financial distress depend on income and on the face value 𝑓𝑖 of outstanding debt: 

 𝜑𝑖 =  𝛷(�̂�𝑖 , 𝑓𝑖  )    (4) 

 

𝛼𝑖 is the fraction of the debt that is implicitly or explicitly guaranteed by the government. The face 

value is set so that the debt holders break even: 

𝑏𝑖 = 𝛼𝑖𝑓𝑖 + (1 − 𝛼𝑖) 𝐸[min (𝑓𝑖 , 𝑦𝑖)]   (5) 

The net worth of the bank at time 1 is then 

𝑤𝑖
𝑖 = �̂�𝑖 − 𝜑𝑖 − 𝑓𝑖                 (6) 

The bank is then optimizing: 
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max
𝑤0
𝑖 ,𝑏𝑖,{𝑥𝑗

𝑖}
𝑗

c ∗ (�̅�0 − 𝑤0
𝑖 − 𝜏0) + 𝐸[𝑢(1[𝑤1𝑖>0]

x 𝑤1
𝑖)]             (7) 

Under the constraints of equation (2) to (6).   

The optimal tax policy of the regulator has two terms. The tax is dependent on expected shortfall 

of the firm and the systemic expected shortfall of the firm. His main problem is finding the optimal 

policy that proctects the ecnomy the best from systemic risk and makes the debt insurance program 

efficient. In the model, banks chose their leverage and allocate their assets and then pay taxes. So 

the optimal tax policy is dependent on the choices the banks makes.   

Derivation of proposition 1 

The regulators problem in equation (1) in the main body of the theses is derived in the following 

manner.  

Using the definition of tau i in equation (14), the bank's problem is:  

max
𝑤0
𝑖 ,𝑏𝑖,{𝑥𝑗

𝑖}
𝑗

c ∗  (�̅�0 −𝑤0
𝑖 − 𝜏0) + 𝐸[𝑢(1[𝑤1𝑖>0]

x 𝑤1
𝑖)] − 𝛼𝑖𝑔 ∗  𝑝𝑟(𝑤1

𝑖 < 0)𝐸𝑆𝑖 

−𝑒 ∗  𝑝𝑟(𝑤1 < 𝑧𝐴)𝑆𝐸𝑆𝑖 

The first two terms represents the sum of utilities of the bank i which the banks optimizes. The 

third part represents the expected cost of the debt insurance program and the fourth part represents 

the cost of the externality of financial cost that the bank places on the economy.  

 

Using equation (12) and (13), this becomes 

 

max
𝑤0
𝑖 ,𝑏𝑖,{𝑥𝑗

𝑖}
𝑗

c ∗ (�̅�0 − 𝑤0
𝑖 − 𝜏0) + 𝐸[𝑢(1[𝑤1𝑖>0]

x 𝑤1
𝑖)] 

+𝐸[𝛼𝑖𝑔11
[𝑤1
𝑖 <0]

𝑤1
𝑖 + 𝑒1[𝑤1<𝑧𝐴] x 𝑤1

𝑖] 

The set of programmes for i = 1,…,N is equivalent to the planners program and the budget 

constrain can be adjusted with tau_ 0  
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Derivation of proposition 2 

Derivation of proposition 2, equity value satisfies: 𝑤1
𝑖 −𝑤0

𝑖 = ∑ 𝑟𝑗
𝑖 𝑥𝑗

𝑖 −𝜑𝑖 − 𝑓𝑖 −𝑤0
𝑖𝐽

𝑗=1 . This 

allows Acharya et al to write: 

𝑀𝐸𝑆5%
𝑖 =∑

𝑥𝑗
𝑖

𝑤0
𝑖
 𝐸[− 𝑟𝑗

𝑖| 𝐼5%] +
𝐸[𝜑𝑖|𝐼5%]

𝑤0
𝑖

+
𝑓𝑖 − 𝑏𝑖

𝑤0
𝑖

𝐽

𝑗=1

 

In the expectations we have 𝐸[− 𝑟𝑗
𝑖| 𝐼5%] = 𝛽𝑖,𝑗

𝜁

𝜁−1
𝜀�̅�
% and therefore 𝐸[− 𝑟𝑗

𝑖| 𝑤1
𝑖 < 𝑧𝐴] =

𝑘𝐸[− 𝑟𝑗
𝑖| 𝐼5%]. Using the definition of SES the Authors write: 

1 +
𝑆𝐸𝑆𝑖

𝑤0
=
𝑧𝑎𝑖

𝑤0
𝑖
− 𝐸 [

𝑤1
𝑖

𝑤0
𝑖 − 1|𝑤1

𝑖 < 𝑧𝐴]

=
𝑧𝑎𝑖

𝑤0
𝑖
+
𝑥𝑗
𝑖

𝑤0
𝑖
 ∑𝐸[− 𝑟𝑗

𝑖|𝑤1
𝑖 < 𝑧𝐴]

𝐽

𝑗=1

+
𝐸[𝜑𝑖|𝑤1

𝑖 < 𝑧𝐴]

𝑤0
𝑖

+
𝑓𝑖 − 𝑏𝑖

𝑤0
𝑖

 

Hence under the powerlaw assumption: 

1 +
𝑆𝐸𝑆𝑖

𝑤0
− 𝑘 ∗ 𝑀𝐸𝑆𝑖 =

𝑧𝑎𝑖

𝑤0
𝑖
+
𝐸[𝜑𝑖|𝑤1 < 𝑧𝐴] − 𝐸[𝜑𝑖|𝐼5%]

𝑤0
+ (1 − 𝑘)

𝑓𝑖 − 𝑏𝑖

𝑤0
𝑖
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11.4 Appendix D – R-code 

# Assetgrid Data sorting code 

rm(list = ls()) #remove everything 

setwd("C:/Users/…") #Set working directory  

install.packages("lubridate") #install packages 

library(readxl) 

library(lubridate) 

 

#First we make a function that insert columns specific places in a matrix/dataframe.  

append_col <- function(x, cols, after=length(x)) { 

  x <- as.data.frame(x) 

  if (is.character(after)) { 

    ind <- which(colnames(x) == after) 

    if (any(is.null(ind))) stop(after, "not found in colnames(x)\n") 

  } else if (is.numeric(after)) { 

    ind <- after 

  } 

  stopifnot(all(ind <= ncol(x))) 

  cbind(x, cols)[, append(1:ncol(x), ncol(x) + 1:length(cols), after=ind)] } 

 

#Load data 

df1 <- as.data.frame(read.csv('Brokerdealerdata.csv', header=TRUE, stringsAsFactors=FALSE)) 

df2 <- as.data.frame(read.csv('Depositorydata.csv', header=TRUE, stringsAsFactors=FALSE)) 

df3 <- as.data.frame(read.csv('Otherdata.csv', header=TRUE, stringsAsFactors=FALSE)) 

df4 <- as.data.frame(read.csv('Insurancedata.csv', header=TRUE, stringsAsFactors=FALSE)) 

df1 <- df1[-1,] 

df2 <- df2[-1,] 

df3 <- df3[-1,] 

df4 <- df4[-1,] 

df <- cbind(df1,df2[,4:21],df3[,4:27],df4[,4:63]) #Cbind every dataset together 
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debt <- grepl("TOTAL.DEBT", colnames(df)) #which columns contains debt values.  

debt <- which(debt == "TRUE") #only true 

#adjusting total debt to same millions like equity 

for (i in 1:length(debt)){ 

  df[,(debt[i])] <- ifelse(!is.na( df[,(debt[i])]), as.numeric( df[,(debt[i])])/1000, 0) 

  df[,(debt[i]+1)] <- ifelse(!is.na( df[,(debt[i]+1)]), as.numeric( df[,(debt[i]+1)])/100, 0)  } 

 

#adjusting iboxx and risk free to percentages 

df[,2]<-as.numeric(df[,2])/100 

df[,3]<-as.numeric(df[,3])/100 

 

#calculating coupons 

for (i in length(debt):1){ 

  y <- debt[i] 

  df <- append_col(df, 0,y)  } 

Coupons <- grepl("cols", colnames(df)) 

Coupons <- which(Coupons == "TRUE") 

#calculating coupons 

for (i in 1:length(Coupons)){ 

  df[,(Coupons[i])] <- as.numeric(df[,(Coupons[i]-1)])*as.numeric(df[,3])  } 

     

#calculating pay out rations 

DY <- grepl("DIVIDEND.YIELD", colnames(df)) 

DY <- which(DY == "TRUE") 

for (i in 1:length(DY)){ #length(debt) 

  C <- ifelse(!is.na( df[,(DY[i]-1)]),  df[,(DY[i]-1)], 0) 

  dy <- ifelse(!is.na( df[,(DY[i])]),  df[,(DY[i])], 0) 

  MV <- ifelse(!is.na( df[,(DY[i]-3)]),  df[,(DY[i]-3)], 0) 

  P <- ifelse(!is.na( df[,(DY[i]-2)]),  df[,(DY[i]-2)], 0) 

  delta <- (as.numeric(C)+as.numeric(dy)*as.numeric(MV))/(as.numeric(P)+as.numeric(MV)) 

   

  df[,(DY[i])] <- delta } 
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#naming everything 

names <-  grepl("col", colnames(df)) 

names <- which(names == "TRUE") 

colnames(df)[names] <- "C" 

DY <- grepl("DIVIDEND.YIELD", colnames(df)) 

DY <- which(DY == "TRUE") 

colnames(df)[DY] <- "delta" 

#Fixing dates 

dates <- as.numeric(df[,1]) 

df[,1] <- as.Date(dates, origin="1899-12-30") 

#Write file 

write.csv(df, "Data_sort.csv", row.names = FALSE) 

 

# CDS Data sorting code 

 

#This sorting procedure is repeated for each sub-industry 

rm(list = ls()) 

sort <- as.data.frame(read.csv('Data_sort.csv', header=TRUE, stringsAsFactors=FALSE)) 

dates <- sort[,1]   

#Load CDS data 

#df1 <- as.data.frame(read.csv('Brokerdealer_CDS.csv', header=TRUE, stringsAsFactors=FALSE)) 

#df1 <- as.data.frame(read.csv('Depository_CDS.csv', header=TRUE, stringsAsFactors=FALSE)) 

#df1 <- as.data.frame(read.csv('Other_CDS.csv', header=TRUE, stringsAsFactors=FALSE)) 

df1 <- as.data.frame(read.csv('Insurance_CDS.csv', header=TRUE, stringsAsFactors=FALSE)) 

redcode <- df1[!duplicated(df1[,1]),1] 

Names <- df1[!duplicated(df1[,1]),6] 

names <- df1[!duplicated(df1[,6]),6]  #firm names 

df <- as.data.frame(matrix(0,nrow <- length(dates),ncol <- (length(names))+1)) 

df[,1] <- dates 

#The date format is really awkward and needs to be fixed as R cannot recognize it as dates. 

colnames(df)[2:(length(names)+1)] <- names[1:length(names)] #give names to columns 
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old <- df1[,2] 

n <- 5 

step1 <- paste(substr(old, 1, n-1), "/", substr(old, n, nchar(old)), sep = "") 

n <- 8 

step2 <- paste(substr(step1, 1, n-1), "/", substr(step1, n, nchar(step1)), sep = "") 

dates2 <- as.Date(step2) 

dates3 <- strftime(dates2,"%m/%d/%Y") 

df1[,2] <- dates3 

 

#Assigning names to out put matrix and filling in  CDS spread data 

for ( i in 1:length(names)){ 

    col <- which(colnames(df)==names[i]) 

  for ( j in 1:dim(df)[1]){ 

    rows <- which(names[i] == df1[,6]) 

  row <- which(df1[rows,2] == df[j,1]) 

  rows[row] 

  if(length(row)==0){next} 

    df1[which(names[i] == df1[row,6]),8] 

  df[j,col] <- df1[rows[row],8]  }  } 

 

#Making sure that every column sits like the balance sheet data 

sequencer <- seq(4, length(sort),4)     

colnames(sort)[ sequencer] 

df_final <- as.data.frame(matrix(0,nrow <- length(dates),ncol <- (length(names))+1)) 

colnames(df_final)[2:(length(names)+1)] <- colnames(sort)[kk[21:40]] 

 

#Broker-Dealer 

df_final <- df 

#Other 

df_final[,1]<-df[,1] 

df_final[,2]<-df[,8] 

df_final[,3]<-df[,4] 

df_final[,4]<-df[,6] 
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df_final[,5]<-df[,3] 

df_final[,6]<-df[,2] 

df_final[,7]<-df[,5] 

df_final[,6]<-df[,9] 

df_final[,9]<-df[,7] 

#Depository 

df_final[,1]<-df[,1] 

df_final[,2]<-df[,5] 

df_final[,3]<-df[,3] 

df_final[,4]<-df[,6] 

df_final[,5]<-df[,2] 

df_final[,6]<-df[,5] 

df_final[,7]<-df[,7] 

 

#Insurance 

df_final[,1]<-df[,1] 

df_final[,2]<-df[,10] 

df_final[,3]<-df[,6] 

df_final[,4]<-df[,12] 

df_final[,5]<-df[,2] 

df_final[,6]<-df[,5] 

df_final[,7]<-df[,16] 

df_final[,8]<-df[,17] 

df_final[,9]<-df[,15] 

df_final[,10]<-df[,3] 

df_final[,11]<-df[,11] 

df_final[,12]<-df[,20] 

df_final[,13]<-df[,9] 

df_final[,14]<-df[,21] 

df_final[,15]<-df[,18] 

df_final[,16]<-df[,8] 

df_final[,17]<-df[,14] 

df_final[,18]<-df[,19] 
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df_final[,19]<-df[,4] 

df_final[,20]<-df[,7] 

df_final[,21]<-df[,13] 

 

#write.csv(df_final, "Brokerdealer_CDS_sort.csv", row.names = FALSE)   

#write.csv(df_final, "Depository_CDS_sort.csv", row.names = FALSE)   

#write.csv(df_final, "Other_CDS_sort.csv", row.names = FALSE)   

#write.csv(df_final, "Insurance_CDS_sort.csv", row.names = FALSE)   

 

setwd("C:/Users/heinr/Dropbox/My Theses/Estimating Distress costs/Params/CDS") 

#cbind 

df1 <- as.data.frame(read.csv('Brokerdealer_CDS_sort.csv', header=TRUE, stringsAsFactors=FALSE)) 

df2 <- as.data.frame(read.csv('Depository_CDS_sort.csv', header=TRUE, stringsAsFactors=FALSE)) 

df3 <- as.data.frame(read.csv('Other_CDS_sort.csv', header=TRUE, stringsAsFactors=FALSE)) 

df4 <- as.data.frame(read.csv('Insurance_CDS_sort.csv', header=TRUE, stringsAsFactors=FALSE)) 

df <- cbind(df1,df2[,2:dim(df2)[2]],df3[,2:dim(df3)[2]],df4[,2:dim(df4)[2]]) #Cbind every dataset together 

#Final CDS file 

write.csv(df, "CDS_sort.csv", row.names = FALSE)  

 

# Leland and Toft functions 

 

PV <- function(V,V_B,r,delta,sigma) {  

# Present value of $1 with infinite horizon at first passage 

 V_B[V_B<=0] <- 0 

ifelse(V_B > V, V <- V_B, V <- V ) 

ratio <- V/V_B 

sigma2 <- sigma^2 

a <- (r - delta - 0.5*sigma2)/sigma2 

z <- sqrt((a*sigma2)^2 + 2*r*sigma2)/sigma2 

x <- a + z  

pv <- (ratio)^(-x) 

return(pv) } 
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barrierEq11 <- function(t,C,P,alpha,r,delta,sigma,tau){ 

 #Equation 11 

sigma2 <- sigma^2 

a <- (r - delta - 0.5*sigma2)/sigma2 

z <- sqrt((a*sigma2)^2 + 2*r*sigma2)/sigma2 

V_T <- C/delta 

x <- a + z   

ert <- exp(-r*t) 

   

A <- 2*a*ert* pnorm(a*sigma*sqrt(t)) - 2 * z * pnorm(z*sigma*sqrt(t)) -  

    (2/(sigma*sqrt(t))) * dnorm(z*sigma*sqrt(t)) + (2*ert)/(sigma*sqrt(t)) * dnorm(a*sigma*sqrt(t)) +  

    (z - a) 

   

B <- -(2*z + 2/(z*sigma2*t)) * pnorm(z*sigma*sqrt(t)) - 2/(sigma*sqrt(t)) * dnorm(z*sigma*sqrt(t)) + 

    (z - a) + 1/(z*sigma2*t) 

   

numerator = (C/r)*(A/(r*t)-B) - A*P/(r*t) - tau*C*x/r 

denom = 1 + alpha*x - (1-alpha)*B 

V_B = numerator/denom 

return(V_B)   } 

 

barrierB1 <- function(t,C,P,alpha,r,delta,sigma,tau){ 

  #V_B from appendix (B1) 

  sigma2 <- sigma^2 

  a <- (r - delta - 0.5*sigma2)/sigma2 

  z <- sqrt((a*sigma2)^2 + 2*r*sigma2)/sigma2 

  V_T <- C/delta 

  x <- a + z  

 

  ert <- exp(-r*t)  

  A <- 2*a*ert* pnorm(a*sigma*sqrt(t)) - 2 * z * pnorm(z*sigma*sqrt(t)) -  

    (2/(sigma*sqrt(t))) * dnorm(z*sigma*sqrt(t)) + (2*ert)/(sigma*sqrt(t)) * dnorm(a*sigma*sqrt(t)) +  
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    (z - a) 

   

  B <- -(2*z + 2/(z*sigma2*t)) * pnorm(z*sigma*sqrt(t)) - 2/(sigma*sqrt(t)) * dnorm(z*sigma*sqrt(t)) + 

    (z - a) + 1/(z*sigma2*t) 

   

  numerator <- (((C / r) * (A / (r * t) - B)) - ((A * P) / (r * t))) 

  denom <- (1 + x * (((tau * C) / (r * V_T)) + alpha) - (1 - alpha) * B) 

  V_B <- numerator/denom 

  return(V_B)    } 

optimbarrier <- function(t,C,P,alpha,r,delta,sigma,tau, V){ 

  #optimal default barrier  

  V_B <- barrierEq11(t,C,P,alpha,r,delta,sigma,tau) 

  V_T = C/delta 

ifelse(V_T > V_B, V_B <- barrierB1(t,C,P,alpha,r,delta,sigma,tau), V_B <- 

barrierEq11(t,C,P,alpha,r,delta,sigma,tau) )  

return(V_B)   } 

 

firmeq8 <- function(t,C,P,alpha,r,delta,sigma,tau, V, V_B){ 

  sigma2 <- sigma^2 

  a <- (r - delta - 0.5*sigma2)/sigma2 

  z <- sqrt((a*sigma2)^2 + 2*r*sigma2)/sigma2 

  V_T <- C/delta 

  pv <- PV(V,V_B,r,delta,sigma) 

  x <- a + z 

  TS <- (tau*C)/r*(1-pv) #Tax shield 

  BC <- alpha*pmin(V_B,V)*pv #Distress costs 

  v <- V + TS - BC   

return(v)} 

 

 

firmB1 <- function(t,C,P,alpha,r,delta,sigma,tau, V, V_B){ 

#Firm value equation found in Appendix B of Leland and Toft 

  sigma2 <- sigma^2 

  a <- (r - delta - 0.5*sigma2)/sigma2 
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  z <- sqrt((a*sigma2)^2 + 2*r*sigma2)/sigma2 

  x <- a + z 

  V_T <- C/delta 

   

  A1 <- ((tau*C)/r)*(x/(x+1))*1/V_T 

  A2 <- -((tau*C)/r)*(x/(x+1))*(((V_B)^(x+1))/V_T) 

  B2 <- -((tau*C)/r)*(x/(x+1))*(1/V_T)*((V_B^(x+1)+(1/x)*(V_T^(x+1)))) 

  pv <- PV(V,V_B,r,delta,sigma)  

  ifelse(V_T > V, TS <- V*A1+A2*(V)^(-x),TS <- ((tau*C)/r)+B2*(V^(-x))) #Tax shield 

  BC <- alpha*pmin(V_B,V)*pv #Distress costs 

  v <- V + TS - BC 

return(v)} 

 

marketdebt <- function(t,C,P,alpha,r,delta,sigma,tau, V, V_B){ 

  #Market value of debt 

  sigma2 <- sigma^2 

  a <- (r - delta - 0.5*sigma2)/sigma2 

  z <- sqrt((a*sigma2)^2 + 2*r*sigma2)/sigma2 

  x <- a + z 

  V_B[V_B<=0] <- 0.00001 

  ifelse(V_B > V, V <- V_B, V <- V ) 

    ratio <- V/V_B 

  ratio[is.na(ratio)] <- 1 

  b = log(ratio) 

  q_1 <- as.numeric(-b - z * (sigma2) * t) / (sigma * sqrt(t)) 

  q_2 <- as.numeric(-b + z * (sigma2) * t) / (sigma * sqrt(t)) 

  h_1 <- as.numeric(-b - a * (sigma2) * t) / (sigma * sqrt(t)) 

  h_2 <- as.numeric(-b + a * (sigma2) * t) / (sigma * sqrt(t)) 

  Ft <- pnorm(h_1) + (V / V_B) ^ (-2 * a) * pnorm(h_2) 

  Gt <- (V / V_B) ^ (-a + z) * pnorm(q_1) +(V / V_B) ^ (-a - z) * pnorm(q_2) 

  It <- (1 / (r* t)) * (Gt - exp(-r * t) * Ft) 

  Jt <- (1 / (z * sigma * sqrt(t))) * ((-(V / V_B) ^ (-a + z) * pnorm(q_1) * q_1+ (V / V_B) ^ (-a - z) * pnorm(q_2) * 

q_2))  

  marketdebt = C/r  + (P-C /r) * 
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    (((1 - exp(-r * t)) / (t * r))  - It) + ((1 - alpha) * pmin(V_B,V) - C / r) * Jt 

  return(marketdebt)   } 

 

optimFirm <- function(t,C,P,alpha,r,delta,sigma,tau, V, V_B){ 

  V_T = C/delta #Coupons / asset pay out ratio 

  ifelse(V_T > V_B, v <- firmB1(t,C,P,alpha,r,delta,sigma,tau, V, V_B), v <- firmeq8(t,C,P,alpha,r,delta,sigma,tau, 

V, V_B)  ) 

  return(v)  } 

 

 

 

equity <- function(t,C,P,alpha,r,delta,sigma,tau, V, V_B){ 

#Equity pricing function from Leland and Toft 

  D <- marketdebt(t,C,P,alpha,r,delta,sigma,tau, V, V_B) 

  v <- optimFirm(t,C,P,alpha,r,delta,sigma,tau, V, V_B) 

  e <- v-D 

  return(e) } 

 

CDSvalue <- function(t, C, P, alpha, r, delta, sigma, tau, V, V_B){ 

#Calc the CDS value from Reneby and Wang 

  V_B[V_B<=0] <- 0.00001 

  ifelse(V_B > V, V <- V_B, V <- V ) 

  ratio <- V/V_B 

  ratio[is.na(ratio)]<-1 

  sigma2 = sigma^2 

  Psi <- 1-alpha 

  HB <- (r-delta - alpha-0.5*sigma2)/sigma 

  HG <- -sqrt((HB ^ 2) + 2 * r) 

  theta <- (sqrt(((HB) ^ 2) + 2 * r) + HB) / (sigma) 

  gat <- ((V / V_B) ^ (-theta)) 

  Y1<- log(ratio)/(sigma*sqrt(t)) + HB*sqrt(t) 

  Y2<- log(ratio)/(sigma*sqrt(t)) + HG*sqrt(t) 

  Y3<- log(1/ratio)/(sigma*sqrt(t)) + HB*sqrt(t) 

  Y4<- log(1/ratio)/(sigma*sqrt(t)) + HG*sqrt(t) 
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  QB <- pnorm(Y1)-((ratio)^(-(2/sigma)*HB))*pnorm(Y3) 

  QG <- pnorm(Y2)-((ratio)^(-(2/sigma)*HG))*pnorm(Y4) 

  Hfunc <- exp(-r*t)* QB            #Down and out binary option 

  Gfunc <- gat*(1-QG)               #Dollar in default claim with maturity t 

    nom <- (r*(P-Psi*P)*Gfunc) 

  denom <- (1 - Hfunc - Gfunc)  

  Q <- nom/denom 

  Q <- ifelse(is.nan(Q), 1,  Q ) 

  return(Q) } 

 

CDSspread <- function(t, C, P, alpha, r, delta, sigma, tau, V, V_B){ 

#Calc. the implied CDS spread from LT model  

 V_B[V_B<=0] <- 0 

  ifelse(V_B > V, V <- V_B, V <- V ) 

  Q <- CDSvalue (t, C, P, alpha, r, delta, sigma, tau, V, V_B) 

  Spread <- Q/P/100 

  return(Spread) } 

 

Volatility <- function(X){ 

#Calculates the volatility of a time series of 250 observations 

vlogreturn <- c()  #calculate log return  

  vlogreturn <- log(X[(2:length(X))]/X[1:(length(X)-1)]) 

  #mean <- mean(vlogreturn) 

  #sigma <- sqrt(sum((vlogreturn-mean)^2)) 

  sigma <-  sd(vlogreturn, na.rm = TRUE)*sqrt(250)  

return(sigma)} 

 

impliedAsset <- function(t,C,P,alpha,r,delta,sigma,tau, target){ 

  #Implies the asset value from the target (observed) equity value  

  ifelse(is.na(C) | is.na(target) | is.na(P),Ubound <- NA, Ubound <-(target+P)*2) 

  Lbound <- rep(0,length(Ubound)) 

  V <- (Ubound+Lbound) 
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  repeat{ 

    if(any(is.na(Ubound))){break} 

    V_B <- optimbarrier(t,C,P, alpha, r, delta,sigma, tau,V) 

    e <- equity(t,C,P,alpha,r,delta,sigma,tau, V, V_B) 

    cond <- abs(target - e) 

    cond2 <- ifelse(cond < 10, "YES", "NO") 

    ifelse(e[cond2 == "NO"] > target[cond2 == "NO"], Ubound[cond2 == "NO"] <- (Ubound[cond2 == 

"NO"]+Lbound[cond2 == "NO"])/2, Lbound[cond2 == "NO"] <- (Ubound[cond2 == "NO"]+Lbound[cond2 == 

"NO"])/2) 

    V[cond2 == "NO"] <- Ubound[cond2 == "NO"]+Lbound[cond2 == "NO"]   

    if(all(Ubound[cond2 == "NO"]==Lbound[cond2 == "NO"])){break} 

    if(all(cond2 == "YES")){break}  } 

  ifelse(is.na(Ubound),V <-NA, V<-V) 

  return(V)  } 

 

impliedVol <- function(t,C,P,alpha,r,delta,tau, target, V){ 

#only for assessing smoothness 

V_target <- target + P 

high = 2 

low = 0 

  repeat{ 

    if((high - low)<0.0001){break} 

    sigma <- (high+low)/2 

    V <- impliedAsset(t,C,P,alpha,r,delta,sigma,tau, target) 

    if(V<V_target ){high <-(high+low)/2 

    }else{low  <-(high+low)/2     }   } 

  sigma <- (high+low)/2 

  return(sigma) } 

 

# Assessing the smoothness of Leland and Toft functions 

 

#This code is repeated first for LGD then for Debt maturity 

tau <- 0.25  
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r <- 0.025 

delta <- 0.07 

P <- 750  

C <- P*0.05  

target <- (1000-P) 

t <- 5 

alpha <- 0.3 

vttm <- seq(3,9,((9-3)/100)) 

valpha <- seq(0.1,0.70,(0.7-0.1)/100) 

y1 <- c() 

y2 <- c() 

for (j in 1:101){ 

t <- vttm[j] 

#alpha <- valpha[j] 

y1[j] <-  impliedAsset(t,C,P,alpha,r,delta,0.25,tau, target) 

y2[j] <- impliedVol(t,C,P,alpha,r,delta,tau, target, (P+target))  } 

X <- vttm #for assessing debt maturity 

#X <- valpha #for assessing LGD 

library (ggplot2) 

Z <- as.data.frame(cbind(X,y1,y2)) 

g<-ggplot(Z, aes(X,y2))+geom_line(color="firebrick",size=1.25)+ 

  theme(plot.background = element_rect(fill = 'white'))+ 

  theme(panel.background = element_rect(fill = 'grey90')) 

 

# for assessing LGD 

#g<-g+labs(x="Loss Given Default", y=expression(paste("Volatility ( ", "sigma", " )")), 

# title="Figure 6: Asset Volatility in LGD ")+ 

#  theme(text=element_text(family = "Times New Roman",size = 10)) 

#g<-g+labs(x="Loss Given Default", y="Asset Value",title="Figure 5: Asset Volatility in LGD ")+ 

#  theme(text=element_text(family = "Times New Roman",size = 10)) 

 

# for assessing debt maturity 

g<-g+labs(x="Debt Maturity", y=expression(paste("Volatility ( ", "sigma", " )")), 
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title="Figure 8: Asset volatility in debt maturity")+ 

  theme(text=element_text(family = "Times New Roman",size = 10)) 

g<-g+labs(x="Debt Maturity", y="Asset Value",title="Figure 7: Asset value in debt maturity ")+ 

  theme(text=element_text(family = "Times New Roman",size = 10)) 

#g <- g+xlim(c(2.9,9.1))#+ ylim(c(0.25,0.45)) 

#g <- g+xlim(c(0.099,0.711))#+ ylim(c(0.25,0.45)) 

g 

ggsave("whateverplotwehave.png", width = 5, height = 3) 

 

# Producing grids containing LGD and T 

 

rm(list=ls()) 

setwd("C:/Users/… ") #set working directory to where balance sheet data are 

library(doParallel) 

library(foreach)   

#run all Leland and Toft functions again so that they are loaded, then load data 

df <- read.csv('Data_sort.csv', header=TRUE, stringsAsFactors=FALSE) 

df <- as.data.frame(df) 

df <- df[complete.cases(df[,2]),] 

cols <- grepl("TOTAL.DEBT", colnames(df)) 

cols <- which(cols == "TRUE") 

hh <- seq(1,length(cols)*2,2) 

results <- array(data = NA, dim = c(5,4,(dim(df)[1]-783),length(cols)*2))  #5 x LGD, 5 x ttm, cols of dataset, rows of 

#dataset 

vres <- vector(length=250) 

valpha <- c(0.10, 0.25, 0.40, 0.55, 0.70 ) #five LGDs 

vttm <- c(3, 5, 7, 9) #four maturities 

tau <- 0.25 #Tax rate 

 

for (X in 1:5){ #Loop around LGD 

alpha <- valpha[X] 

for (Y in 1:4){ #Loop around debt maturity 

t <- vttm[Y]  
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for (u in 1:length(cols)){  

w <- as.numeric(cols[u])  

no_cores <- detectCores() 

cl <- makeCluster(no_cores) 

registerDoParallel(cl) 

matrix = foreach(d = 784:1695, .combine=rbind) %dopar% { 

c(d,d) 

sigma = 0.05 #Assign some value to sigma #1695 

Newsigma = 0.5 #This is the scripts first guess of asset volatility.  

repeat { 

    if(abs(sum(sigma-Newsigma))<0.02){break} 

     sigma = Newsigma  

    for(j in ((d-250):d)){   

    target <- df[j,(w-1)] 

    r <- df[j,2] 

    C <- df[j,(w+1)] 

    delta <- df[j,(w+2)] 

    P <- df[j,(w)] 

    vres[j-d+250] <- impliedAsset(t, C, P, alpha, r, delta, sigma, tau, target)  } 

    Newsigma <- Volatility(vres) 

    if(is.na(Newsigma)){break} 

    if(Newsigma<0.04){break} } 

return(c(vres[250],sigma)) 

}#for loop with d 

results[X,Y,, hh[u]] <-  matrix[,1] #Asset  

results[X,Y,,(hh[u]+1)] <-  matrix[,2]#Volatility  

stopCluster(cl)  

registerDoSEQ() 

}#Firms 

save(results, file = "GridParameter.RData", envir = .GlobalEnv) # Save results continuously  

}#ttm 

}#alpha 
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# Root square mean error functions 

#This function enables interpolation  

# If we don’t know how the LT functions behave, then we cannot do this 

contfunction <- function(pars, Firm){ 

#Firm is column number that the Firm is sitting in 

#  pars <- c(0.8, 1)  

alpha  <- pars[1] 

t  <- pars[2] 

#alpha weights 

  if( alpha > 0.1 && alpha <= 0.25){ 

    y1 = (alpha-0.1)/(0.25-0.1) #weight on 0.25 alpha array / weight on upper array / on x +1 

    y2 = 1-y1 #weight on 0.1 alpha array / weight on upper array / on x 

    x1 = 1   } 

  if( alpha > 0.25 && alpha <= 0.4){ 

    y1 = (alpha-0.25)/(0.4-0.25) 

    y2 = 1-y1 

    x1 = 2  } 

  if( alpha > 0.4 && alpha <= 0.55){   

    y1 = (alpha-0.4)/(0.55-0.4) 

    y2 = 1-y1 

    x1 = 3  } 

  if( alpha > 0.55 && alpha <= 0.7){ 

    y1 = (alpha-0.55)/(0.7-0.55) 

    y2 = 1-y1 

    x1 = 4  } 

  if( alpha > 0.7){   

    y1 = 1 

    y2 = 1-y1 

    x1 = 4  } 

  if( alpha <= 0.1 ){ 

    y1 = 0 

    y2 = 1-y1 
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    x1 = 1} 

if( t > 3 && t <= 5){ 

    y21 = (t-3)/(5-3) #weight on 5 time array / weight on upper array / on z +1 

    y22 = 1-y21 

    z1 = 1  } 

  if( t > 5 && t <= 7){ 

    y21 = (t-5)/(7-5) 

    y22 = 1-y21 

    z1 = 2  } 

  if( t > 7 && t <= 9){  

    y21 = (t-7)/(9-7) 

    y22 = 1-y21 

    z1 = 3  } 

  if( t > 9 ){     

    y21 = 1 

    y22 = 1-y21 

    z1 = 3  } 

  if( t <= 3 ){ 

    y21 = 0 

    y22 = 1-y21 

    z1 = 1  } 

#Simple vector calculations in R 

  #1-4 time-to-maturity 

  V1 = results[x1,z1,,Firm]*y22 

  V2 = results[x1,(z1+1),,Firm]*y21 

  V3 = results[(x1+1),z1,,Firm]*y22 

  V4 = results[(x1+1),(z1+1),,Firm]*y21   

  #5-6 alpha 

  V5 = (V1+V2)*y2 

  V6 = (V3+V4)*y1  

  #result – output vector 

  V_final = V5+V6 

return(V_final) } 
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RMSE1 <- function(pars){ 

#This function shows how it is done for broker-dealers. One can easily modify it for other industries.  

# We have RMSE2, RMSE3 and RMSE4, i.e. one for each industry, only one is shown. 

alpha <- pars[1] 

t <- pars[2] 

tau = 0.25 

ifelse(alpha < 0.1, alpha <- 0.1, alpha <- alpha)  

ifelse(alpha > 0.7, alpha <- 0.7, alpha <- alpha)  

ifelse(t < 3, t <- 3, t <- t)  

ifelse(t > 9, t <- 9, t <- t)  

input <- seq(1,80,2) 

library(lubridate)  

CDSt <- 5 

RMSE <- c() 

for (i in 1:6){ #vary per industry 7-13 = depositors, 14-20 = non-depositors, 21-40 = insurance 

Firm <- i 

startdate <- which(df2$Name == "06/01/2006") 

cols1 <- grepl("TOTAL.DEBT", colnames(df2)) 

cols1 <- which(cols1 == "TRUE") 

debtcol <- cols1[Firm] # need to define "cols" again 

P <- df2[startdate:(dim(df2)[1]),debtcol] #Also need new df 

C <- df2[startdate:(dim(df2)[1]),(debtcol+1)] 

r <- df2[startdate:(dim(df2)[1]),2] 

delta <- df2[startdate:(dim(df2)[1]),(debtcol+2)] 

S_act <- df1[startdate:(dim(df1)[1]),Firm +1] 

Stock <- contfunction(pars, input[Firm]) 

Stock <- Stock[(length(Stock)-length(P)-250):(length(Stock)-length(P))] 

ret <- Stock[2:251]/Stock[1:250]-1 

startSP500 <- which(SP500$Name == "06/01/2006") 

MKT <- as.numeric(SP500[(startSP500-250):startSP500,3]) 

MKTret <- MKT[2:251]/MKT [1:250]-1 

rf <- df2[(startdate-250):(startdate -1),2] 
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ExMKTret <- MKTret - rf 

Exret <- ret#-rf #NEEEDS TO CHANGE for julia regress 

Beta <- lm(Exret ~ ExMKTret -1 ) 

Assetbeta <- Beta$coefficients 

rm (Stock,ret,  MKT , MKTret, Beta ) 

MKTret <- as.numeric(SP500[(startSP500:dim(SP500)[1]),3]) 

MKTret <- MKTret[1:(length(MKTret)-1)]/MKTret[2:(length(MKTret))]-1 

NewMKTret <- as.numeric(SP500[(startSP500-1):(dim(SP500)[1]),3]) 

MKTret <- NewMKTret[2:length(NewMKTret)]/NewMKTret[1:(length(NewMKTret)-1)]-1 

mu <- r+as.numeric(Assetbeta)*(MKTret-r) 

V <- contfunction(pars, input[Firm]) 

V <- V[(length(V)-length(P)+1):912] 

sigma <- contfunction(pars,(input[Firm]+1)) 

sigma <- sigma[(length(sigma)-length(P)+1):912] 

V_B <-  optimbarrier(CDSt,C,P,alpha,r,delta,sigma,tau, V) #Default barrier 

S_LT <- CDSspread(CDSt, C, P, alpha, r, delta, sigma, tau, V, V_B) #LT CDS spread 

sigma2 <- sigma*sigma 

dates <- as.Date(df1[startdate:(dim(df1)[1]),1], "%m/%d/%Y" ) 

DD <- (log(V/pmin(V_B,V))+((mu-0.5*(sigma2))*t))/(sigma*sqrt(t)) #mu = rf+Assetbeta*(rm -rf) 

vS_LT <- c() 

vS_act <- c() 

vS_DD <- c() 

d = 4 

end <- ifelse(d < 4, 1, d-4) 

for (d in 1:length(V)){  

  if (is.na(S_act[d])){next} 

  vS_act[d] <- ifelse(wday(dates[d], label=TRUE) == "Fri", mean(S_act[d:end], na.rm = TRUE), NA) #S_act 

  vS_LT[d] <- ifelse(wday(dates[d], label=TRUE) == "Fri", mean(S_LT[d:end], na.rm = TRUE), NA) #S_LT 

  vS_DD[d] <- ifelse(wday(dates[d], label=TRUE) == "Fri",mean(DD[d:end], na.rm = TRUE), NA) #DD 

   

  vS_LT[d] <- ifelse(is.na(vS_act[d]) | is.na(vS_DD[d]) |vS_act[d] < 0.0001, NA, vS_LT[d] )# #Only S_Lt when S_act 

and DD is present 

  vS_DD[d] <- ifelse(is.na(vS_act[d]) |vS_act[d] < 0.0001, NA, vS_DD[d] ) #Only DD when S_act is present 

  vS_act[d] <- ifelse(is.na(vS_DD[d])|vS_act[d] < 0.0001 , NA, vS_act[d] ) #Only S_act when DD is present } 
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vS_act <- vS_act[!is.na(vS_act)] 

vS_LT <- vS_LT[!is.na(vS_LT)] 

vS_DD <- vS_DD[!is.na(vS_DD)] 

RMSE1 <- vS_LT - vS_act 

RMSE2 <- RMSE1 ^2 

RMSE3 <- RMSE2/abs(vS_DD) 

RMSE4 <- sum(RMSE3) 

RMSE5 <- sqrt(RMSE4) 

RMSE[i] <- RMSE5 } 

RMSE <- sum(RMSE, na.rm = TRUE) 

 return(RMSE)  } 

## 

#produce RSME surface plot 

f.name <- "Figure 9: RMSE function" 

x1 <- seq(0.1, 0.7, length = 30) 

x2 <- seq(3, 9, length = 30) 

X <- as.matrix(expand.grid(x1, x2)) 

colnames(X) <- c("LGD", "T") 

library(doParallel) 

library(foreach) 

no_cores <- detectCores() 

cl <- makeCluster(no_cores) 

registerDoParallel(cl) 

matrix = foreach(d = 1:900, .combine=rbind) %dopar% { 

  c(d) 

pars <- c(X[d,1],X[d,2])   

res <-  RMSE1(pars) #change i to 1:40 

return(c(res))   

} 

stopCluster(cl)  

registerDoSEQ() 

y <- matrix 
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# put X and y values in a data.frame for plotting 

df <- data.frame(X, y) 

# plot the function 

library(lattice) # use the lattice package 

wireframe(y ~ LGD * T # y, x1, and x2 axes to plot 

          , data = df # data.frame with values to plot 

          , main = f.name # name the plot 

          , shade = TRUE # make it pretty 

          , scales = list(arrows = FALSE) # include axis ticks 

          , screen = list(z = -50, x = -70) # view position   ) 

 

# Optimization procedure 

#This code find the optimal T and LGD from the produced grids and CDS data. 

rm(list=ls()) 

#optimization procedure! 

setwd("C:/Users/… ") 

library(readxl) 

load("C:/Users/heinr/…/GridParameter_final.RData") #load grids 

df1 <-  as.data.frame(read.csv('CDS_sort.csv', header=TRUE, stringsAsFactors=FALSE)) 

df2 <-  as.data.frame(read.csv('Data_sort.csv', header=TRUE, stringsAsFactors=FALSE)) 

SP500 <- as.data.frame( read_excel('Market.xlsx')) 

SP500 <- SP500[-1,] 

dates2 <- as.Date(as.numeric(SP500[,1]), origin = "1899-12-30") 

SP500[,1] <- strftime(dates2,"%m/%d/%Y") 

params_new <- matrix(data = NA, ncol = 3, nrow = 4) 

colnames(params_new) <- c("time-to-maturity","LGD","RMSE") 

rownames(params_new) <- c("BrokerDealer","Depository", "Non-depository", "Insurance") 

library(doParallel) 

library(foreach) 

#use simulated annealing for each industry to find optimal values. Maxit is number of iterations. As R does 2 guesses 

#per iteration, this corresponds to 2000 guesses. We compute 50 LGDs and Ts per subindustry and take the average. 

for (n in 1:4){ 

    if(n==1){ 
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    no_cores <- detectCores() 

    cl <- makeCluster(no_cores) 

    registerDoParallel(cl) 

      matrix1 = foreach(d = 1:50, .combine=rbind) %dopar% { 

      c(d,d) 

      params <- optim(p = c(0.7,5.5), fn = RMSE1, method = "SANN", control = list(maxit = 1000))  

      alpha <- params$par[1] 

      t <- params$par[2] 

      ifelse(alpha < 0.1, alpha <- 0.1, alpha <- alpha)  

      ifelse(alpha > 0.7, alpha <- 0.7, alpha <- alpha)  

      ifelse(t < 3, t <- 3, t <- t)  

      ifelse(t > 9, t <- 9, t <- t)  

      return(c(alpha,t))} 

    stopCluster(cl)  

    registerDoSEQ() 

    alpha <- mean(matrix1[,1]) 

    t <- mean(matrix1[,2]) 

    params_new[n,2] <- round(alpha,4) 

    params_new[n,1] <- round(t,4)  

    write.csv(params_new, "params_new.csv", row.names = FALSE) } 

   

  if(n==2){ 

    no_cores <- detectCores() 

    cl <- makeCluster(no_cores) 

    registerDoParallel(cl) 

    matrix2 = foreach(d = 1:50, .combine=rbind) %dopar% { 

      c(d,d) 

      params <- optim(p = c(0.40,5), fn = RMSE2, method = "SANN", control = list(maxit = 1000))  

      alpha <- params$par[1] 

      t <- params$par[2] 

      ifelse(alpha < 0.1, alpha <- 0.1, alpha <- alpha)  

      ifelse(alpha > 0.7, alpha <- 0.7, alpha <- alpha)  

      ifelse(t < 3, t <- 3, t <- t)  
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      ifelse(t > 9, t <- 9, t <- t)  

      return(c(alpha,t))}    

    stopCluster(cl)  

    registerDoSEQ() 

    alpha <- mean(matrix2[,1]) 

    t <- mean(matrix2[,2]) 

    params_new[n,2] <- round(alpha,4) 

    params_new[n,1] <- round(t,4)  

    write.csv(params_new, "params_new.csv", row.names = FALSE)  }  

  if(n==3){ 

    no_cores <- detectCores() 

    cl <- makeCluster(no_cores) 

    registerDoParallel(cl) 

    matrix3 = foreach(d = 1:50, .combine=rbind) %dopar% { 

      c(d,d) 

      params <- optim(p = c(0.40,5), fn = RMSE3, method = "SANN", control = list(maxit = 1000))  

      alpha <- params$par[1] 

      t <- params$par[2] 

      ifelse(alpha < 0.1, alpha <- 0.1, alpha <- alpha)  

      ifelse(alpha > 0.7, alpha <- 0.7, alpha <- alpha)  

      ifelse(t < 3, t <- 3, t <- t)  

      ifelse(t > 9, t <- 9, t <- t)  

      return(c(alpha,t))} 

    stopCluster(cl)  

    registerDoSEQ() 

    alpha <- mean(matrix3[,1]) 

    t <- mean(matrix3[,2]) 

    params_new[n,2] <- round(alpha,4) 

    params_new[n,1] <- round(t,4)  

    write.csv(params_new, "params_new.csv", row.names = FALSE)  }  

  if(n==4){ 

    no_cores <- detectCores() 

    cl <- makeCluster(no_cores) 
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    registerDoParallel(cl) 

    matrix4 = foreach(d = 1:50, .combine=rbind) %dopar% { 

      c(d,d) 

      params <- optim(p = c(0.40,5), fn = RMSE4, method = "SANN", control = list(maxit = 1000))  

      alpha <- params$par[1] 

      t <- params$par[2] 

      ifelse(alpha < 0.1, alpha <- 0.1, alpha <- alpha)  

      ifelse(alpha > 0.7, alpha <- 0.7, alpha <- alpha)  

      ifelse(t < 3, t <- 3, t <- t)  

      ifelse(t > 9, t <- 9, t <- t)  

      return(c(alpha,t))} 

    stopCluster(cl)  

    registerDoSEQ() 

    alpha <- mean(matrix4[,1]) 

    t <- mean(matrix4[,2]) 

    params_new[n,2] <- round(alpha,4) 

    params_new[n,1] <- round(t,4)  

    write.csv(params_new, "params_new.csv", row.names = FALSE)  } } 

 

# Estimate distress costs 

#Estimate Asset value, distress costs and tax shield for all firms 

rm(list=ls()) 

setwd("C:/Users…/Params/Opti") 

params <- read.csv("Params_Final.csv") #load T and LGD 

setwd("C:/Users/all balalnce sheet date ") #Values for all firms with industry LGD and T 

library(doParallel) 

library(foreach) 

#load data 

df <- read.csv("Final_sort.csv",header=TRUE, stringsAsFactors=FALSE) 

df <- as.data.frame(df) 

 

df <- df[complete.cases(df[,2]),] 

cols <- grepl("TOTAL.DEBT", colnames(df)) 
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cols <- which(cols == "TRUE") 

End <- which(df[,1] == "2007-06-29") 

Start <- which(df[,1] == "2004-06-01") 

dates <- df[(Start:End),1] 

hh <- as.integer(seq(1,length(cols)*3,3)) 

Estimates <- as.data.frame(matrix(data = NA, nrow = End-Start+1, ncol = length(cols)*3)) #make data frame for our 

#output 

colnames(Estimates)[hh] <- colnames(df)[(cols-1)] 

cols <- grepl("MARKET", colnames(Estimates)) 

cols <- which(cols == "TRUE") 

colnames(Estimates)[cols+1] <- "Distress cost" 

colnames(Estimates)[cols+2] <- "Tax shield" 

#Needed for procedure 

cols <- grepl("TOTAL.DEBT", colnames(df)) 

cols <- which(cols == "TRUE") 

vres <- vector(length=250) 

tau <- 0.25 #Tax rate 

 

#Go on and calculate it 

for (u in 1: length(cols) { # 

w <- as.numeric(cols[u])  

if(u <= 10){ 

  alpha <- params[1,2] 

  t <- params[1,1] }  

if(u > 10 && u <=39){ 

  alpha <- params[2,2] 

  t <- params[2,1] }  

if(u > 39 && u<=65){ 

  alpha <- params[3,2] 

  t <- params[3,1] }  

if(u > 65){ 

  alpha <- params[4,2] 

  t <- params[4,1] }  

no_cores <- detectCores() 
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cl <- makeCluster(no_cores) 

registerDoParallel(cl) 

matrix = foreach(d = Start:End, .combine=rbind) %dopar% { 

c(d,d,d) 

sigma = 0.05 #Assigne some value to sigma 

Newsigma = 1 #This is the scripts first guess of asset volatilty. A larger number is preferable otherwise the code may 

abort. 

repeat { 

    if(is.na(df[d,(w)]) | any(is.na(df[d:(d-250),(w-1)]))){break}     

    if(any(df[(d:(d-250)),(w)] < 0.01)){break}  

    if(abs(sum(sigma-Newsigma))<0.02){break} 

    sigma = Newsigma  

    for(j in ((d-250):d)){   

    target <- df[j,(w-1)] 

    r <- df[j,2] 

    C <- df[j,(w+1)] 

    delta <- df[j,(w+2)] 

    P <- df[j,(w)] 

    vres[j-d+250] <- impliedAsset(t, C, P, alpha, r, delta, sigma, tau, target)  }    

    Newsigma <- Volatility(vres) 

    if(is.na(Newsigma)){break} 

    if(Newsigma<0.04){break}} 

if(is.na(df[d,(w-1)]) | is.na(df[d,(w)]) | (df[d,(w)]) < 0.01 | any(df[(d:(d-250)),(w)] < 0.01)){ 

  V <- "NA" 

  DC <- "NA" 

  TS <- "NA"  }  

else{ 

  r <- df[d,2] 

  C <- df[d,(w+1)] 

  delta <- df[d,(w+2)] 

  P <- df[d,(w)] 

  V <- vres[250] 

  V_B <- optimbarrier(t,C,P, alpha, r, delta, sigma, tau, V) 

  DC <- alpha*pmin(V_B,V)* PV(V, V_B, r, delta, sigma ) 
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  v <- optimFirm(t,C,P,alpha,r,delta,sigma,tau, V, V_B) 

  TS <- v-V+DC } 

return (c(V,TS, DC)) 

}#for loop with d 

stopCluster(cl)  

registerDoSEQ() 

Estimates[,(hh[u])] <- matrix[,1] 

Estimates[,(hh[u]+1)] <- matrix[,2] 

Estimates[,(hh[u]+2)] <- matrix[,3] 

write.csv(Estimates, "Distresscost_Finalversion.csv") 

}#Firms 

Matrix <- cbind(dates,Estimates) 

write.csv(Matrix, "Distresscost_Finalversion2.csv") 

 

# MES, LVG and Distress costs to asset/Equity, distress costs changes 

#This code calculates MES, LVG, Distress costs to asset and distress to equity.  

rm(list=ls()) 

setwd("C:/Users/…/AcharyaReplication/MeasuringSystemicRisk/Data new") 

install.packages("readxl") 

library(readxl) 

wrdsTCKR <- read.table("codelist.txt", header = FALSE) 

bookdatawrds <- read_excel("Compustat book data.xlsx", col_names = TRUE) 

stockdatawrds <- read_excel("CRSP StockReturns.xlsx", col_names = TRUE) 

Mktdata <- read_excel("CRSP Market Index.xlsx", col_names = TRUE) 

CompListAcharya <- read_excel("Company list Acharya et al..xlsx", col_names = TRUE) 

Mktdiscrete <- as.matrix(as.numeric(unlist(Mktdata[,4])))       #Output returns are discretely compounded 

Mktdate <- as.matrix(as.Date(unlist(Mktdata[,9]),origin = "1899-12-30")) 

#create Market vector logreturns 

Mktidx <- as.matrix(Mktdata[,5])    

Mktlog <- as.matrix(log(Mktidx[2:nrow(Mktidx),]/Mktidx[1:(nrow(Mktidx)-1),])) 

# Date Logret DiscrRet 

Mktret <- cbind(Mktdate[2:nrow(Mktdate),], Mktlog, Mktdiscrete[2:nrow(Mktdiscrete)]) 

#Bookdata ticker 
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CompNames <- bookdatawrds[,9] 

#Report, Ticker, Total Assets, Book Equity, Comp Names                  bookdatawords[,13] contains calendar quarter, 

[,14] fiscal 

Bookdata <- cbind(bookdatawrds[,14], bookdatawrds[,9], bookdatawrds[,15], bookdatawrds[,16], 

bookdatawrds[,11]) 

#Stock price data(stocks)     Date, Ticker, Stockprice, MCAP, Comp Names, Permno, discr.Ret 

Stockprice <- as.matrix(stockdatawrds[,5]) 

Mcap <- as.matrix(Stockprice*stockdatawrds[,6])/1000      #/1000 damit gleiche Einheit wie bookdata 

StockDate <- as.matrix(as.Date(unlist(stockdatawrds[,11]), origin = "1899-12-30")) 

stocks <- cbind(StockDate,stockdatawrds[,3], Stockprice, Mcap, stockdatawrds[,4], stockdatawrds[,1], 

stockdatawrds[,7]) 

stocks[which(stocks[,6]==83443),5] <- "BERKSHIRE HATHAWAY INC DEL B" 

stocks[which(stocks[,6]==89303),5] <- "LORRILARD INC" 

 

 

### Check if Data is right 

Bookcheck <- which(Bookdata[,1]=='2007Q2') 

Bookcheck <- Bookdata[Bookcheck,] 

Equitycheck <- which(stocks[,1]==as.numeric(as.Date("2007-06-29"))) 

Equitycheck <- stocks[Equitycheck,] 

 

Acharyalist <- CompListAcharya[,2:6] 

 

# match with “Acharyalist” 

wo <- as.matrix(match(unlist(Acharyalist[,2]), Bookcheck[,2])) 

Bookmatched <- Bookcheck[wo,] 

Bookmatched[which(is.na(wo)),] <- 

tail(Bookdata[which(Bookdata[,2]==as.character(Acharyalist[which(is.na(wo)),2])),],1)#-----------eventuell 

funtioniert das Einfuegen nicht mit mehreren NA's 

Matched <- cbind(Bookmatched, Acharyalist) 

 

wo1 <- as.matrix(match(Equitycheck[,6], Matched[,9]))    #match Equity und Buchdaten nach [,2] ist Ticker, [,5] ist 

company name 

Bookcheckmatched <- Matched[wo1,] 
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# PERIOD BookTicker TotalAssets BookEquity Name PERMNO Date, Ticker, Stockprice, MCAP, Comp Names, 

#Permno, discr.Ret, SIC   

Totalcheck <- cbind(Bookcheckmatched[,1:5], Bookcheckmatched[,9], Equitycheck, Bookcheckmatched[,10]) 

Totalcheck <- as.matrix(Totalcheck[complete.cases(Totalcheck),]) 

TotalcheckMcap <- as.matrix(as.numeric(Totalcheck[,10])) 

 

QuasiLvgcheck <- as.matrix((as.numeric(Totalcheck[,3])-

as.numeric(Totalcheck[,4])+TotalcheckMcap)/TotalcheckMcap) 

QuasiLvgcheck <- cbind(Totalcheck[,11], QuasiLvgcheck) 

 

#Period BookTicker Permno Companyname TotalAssets, BookEquity, MarketEquity, Quasilvg, SIC 

TotalcheckEnd <- cbind(Totalcheck[,1],Totalcheck[,2], Totalcheck[,6], Totalcheck[,5], 

Totalcheck[,3],Totalcheck[,4],Totalcheck[,10], QuasiLvgcheck[,2], Totalcheck[,14]) 

 

CompaniesSample <- as.matrix(unique(CompNames, FALSE)) 

CompTckr <- bookdatawrds[,9] 

UniqueTckr <- as.matrix(unique(CompTckr, FALSE)) 

 

MktRetPreCrisis <- Mktret[Mktret[,1]>=as.numeric(as.Date("2006-06-01")) & Mktret[,1]< 

as.numeric(as.Date("2007-07-01")),]  #Ret im passenden Zeitfenster 

FiveperworstMkt <- subset(MktRetPreCrisis, MktRetPreCrisis[,2] < quantile(MktRetPreCrisis[,2],0.05)) 

 

#---------------- #Example ICE -------------------------------------------------------------------- 

BearStocks <- which(stocks[,2]=="ICE") 

BearStocks <- as.matrix(stocks[BearStocks,]) 

# BearStocks <- cbind(as.numeric(BearStocks[,1]), BearStocks[,2], as.numeric(BearStocks[,3])) 

BeardiscRet <- as.matrix(as.numeric(BearStocks[,7])) 

# Date Price 

BearStocks <- cbind(as.numeric(BearStocks[,1]), as.numeric(BearStocks[,3])) ## matrix does not function well when  

#the vector contrains strings 

BearlogRet <- as.matrix(log(BearStocks[2:nrow(BearStocks),2] / BearStocks[1:(nrow(BearStocks)-1),2])) 

BearlogRetDiv <- log(BeardiscRet+1) 

# Date Price logRet discRet 

BearStocks <- cbind(BearStocks, BearlogRetDiv, BeardiscRet) 
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BearRealizedSES <- BearStocks[BearStocks[,1]>=as.numeric(as.Date("2007-07-02")) & 

BearStocks[,1]<=as.numeric(as.Date("2008-12-31")), ] 

BearRealizedSES <- BearRealizedSES[complete.cases(BearRealizedSES),] 

BearRealizedSES <- as.numeric(exp(sum(BearRealizedSES[,3]))-1) 

 

BearBook <- which(Bookdata[,2]=='ICE') 

BearBook <- Bookdata[BearBook,] 

 

BearStockMkt <- as.matrix(match(BearStocks[,1], FiveperworstMkt[,1])) 

BearStockMkt2 <- as.matrix(match(FiveperworstMkt[,1], BearStocks[,1])) 

BearStockMkt <- as.matrix(BearStockMkt[!is.na(BearStockMkt)]) 

BearStockMkt2 <- as.matrix(BearStockMkt2[!is.na(BearStockMkt2)]) 

BearStocks <- BearStocks[BearStockMkt2,]  #kann zu BearStocks ueberschrieben werden, falls jetzt richtiges 

Ergebnis 

BearMkt <- FiveperworstMkt[BearStockMkt,] 

# Date Price logRet discRet logMkt 

FiveperworstBearRet <- as.matrix(cbind(BearStocks, BearMkt[,2])) 

MESBear = mean(FiveperworstBearRet[,4]) # Ergebnis evtl falsch weil log returns? Ja, richtig mit discrete returns 

 

##---------------------------------------------------------------------------------------------------------------------------- 

#matching with the permno identifier 

CompSampleStocks <- as.matrix(as.numeric(unique(stocks[,6], FALSE))) 

xxx <- read_excel("Company list Acharya et al..xlsx", col_names = TRUE) 

Permno <- as.matrix(xxx[,5]) 

Permnomatch <- as.matrix(match(CompSampleStocks[,1], Permno))   #Die Variablen aus CompSampleStocks, wo 

sind sie in Permno 

Permnomatch2 <- as.matrix(match(Permno, CompSampleStocks[,1])) 

Permnomatch <- as.matrix(which(is.na(Permnomatch))) 

Permnomatch <- as.matrix(CompSampleStocks[Permnomatch,])    # Permnos of CompanySampleStocks which are 

not in the Acharya list 

Permnomatch2 <- as.matrix(which(is.na(Permnomatch2))) 

Permnomatch2 <- as.matrix(xxx[Permnomatch2,]) 

#93150 is CIT group,  -> Everything checks out 

 

#---- MES Table--------------------------------------------------------------------------------------------------------------- 
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#Ticker CompName MES RealizedSES 

MES = matrix(0, nrow = nrow(CompSampleStocks),5) 

#RealizedSES = CompName RealizedSES 

RealizedSes = matrix(0, nrow = nrow(CompSampleStocks),2) 

AvgLoss <- matrix(0, nrow = nrow(CompSampleStocks),2) 

Versuch <- matrix(0, nrow = 30, 1) 

   

for(i in 1:102){ 

   #Date, Ticker, Stockprice, MCAP, CompNames, Permno, discr.Ret, changeMCAP, Logrets 

  UniqueCompStocks <- which(stocks[,6]==CompSampleStocks[i,1]) 

  UniqueCompStocks <- stocks[UniqueCompStocks,] 

  UniquePrice <- as.matrix(as.numeric(UniqueCompStocks[,3])) 

  UniquediscRet <- as.matrix(as.numeric(UniqueCompStocks[,7])) 

  UniqueCompLog <- as.matrix(log(UniquediscRet+1)) 

  UniqueChangeMCAP <- as.matrix(as.numeric(UniqueCompStocks[2:nrow(UniqueCompStocks),4]) - 

as.numeric(UniqueCompStocks[1:nrow(UniqueCompStocks)-1,4])) 

  UniqueCompStocks <- as.matrix(cbind(UniqueCompStocks, rbind(0, UniqueChangeMCAP),UniqueCompLog)) 

    #Determine Realizes SES 

  UniqueRealizedSES <- UniqueCompStocks[UniqueCompStocks[,1]>=as.numeric(as.Date("2007-07-02"))& 

UniqueCompStocks[,1]<=as.numeric(as.Date("2008-12-31")),] 

  UniqueRealizedSES <- as.numeric(UniqueRealizedSES[complete.cases(UniqueRealizedSES),9]) 

  UniqueRealizedSES <- as.numeric(exp(sum(UniqueRealizedSES))-1) 

   

    UniquematchMkt <- as.matrix(match(UniqueCompStocks[,1], FiveperworstMkt[,1])) 

  UniquematchMkt2 <- as.matrix(match(FiveperworstMkt[,1], UniqueCompStocks[,1])) 

  UniquematchMkt <- as.matrix(UniquematchMkt[!is.na(UniquematchMkt)]) 

  UniquematchMkt2 <- as.matrix(UniquematchMkt2[!is.na(UniquematchMkt2)]) 

    UniqueCompStocks <- UniqueCompStocks[UniquematchMkt2,] 

  UniqueMkt <- FiveperworstMkt[UniquematchMkt,] 

   

   FiveperworstTotal <- as.matrix(cbind(as.numeric(UniqueCompStocks[,7]),as.numeric(UniqueCompStocks[,8]), 

UniqueMkt[,2])) 

   

  #MES[i,] <- UniqueCompStocks[3,]    nur fuer test 
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    #Permno CompName MES RealizedSES AvgLoss 

  MES[i,] <- cbind(UniqueCompStocks[1,6], UniqueCompStocks[1,5], mean(FiveperworstTotal[,1]), 

UniqueRealizedSES, mean(FiveperworstTotal[,2]) ) 

  RealizedSes[i,] <- cbind(UniqueCompStocks[1,5],UniqueRealizedSES) 

  AvgLoss[i,] <- cbind(UniqueCompStocks[1,5], mean(FiveperworstTotal[,2])) 

    #Versuch <- cbind(Versuch, FiveperworstTotal[,8]) 

} #End of MES loop 

 

#Avg Contribution 

AvgContribution <- cbind(AvgLoss[,1],matrix(0, nrow = nrow(AvgLoss),1)) 

AvgContribution2 <- as.matrix(as.numeric(AvgLoss[,2])) 

bb <- as.matrix(AvgContribution2[!is.nan(AvgContribution2),1]) 

bb <- as.matrix(sum(bb[,1])) 

for (i in 1:nrow(AvgContribution2)){ 

  AvgContribution[i,2] <- ifelse(is.nan(AvgContribution2[i,1]), NaN, AvgContribution2[i,1]/bb) } 

 

colnames(MES) <- c("Permno", "CompName", "MES", "RealizedSES", "AvgLoss") 

colnames(AvgContribution) <- c("CompName", "AvgContribution") 

colnames(TotalcheckEnd) <- c("Period", "BookTckr", "Permno", "CompName", "TotalAssets", "BookEquity", 

"MarketEquity", "QuasiLVG", "SIC") 

 

MES <- cbind(MES, AvgContribution) 

AppendixB <- match(MES[,1], TotalcheckEnd[,3]) 

AppendixB <- TotalcheckEnd[AppendixB,] 

AppendixB <- cbind(AppendixB, MES) 

AppendixB <- AppendixB[complete.cases(AppendixB),] 

 

SICCodes <- as.numeric(AppendixB[,9]) 

 

DummyBroker <- as.matrix(as.numeric(SICCodes==6211)) 

#colnames(DummyBroker) <- c("DummyBroker") 

DummyInsurance <- as.matrix(as.numeric(SICCodes==63 | SICCodes==64)) 

#colnames(DummyInsurance) <- c("DummyInsurance") 

DummyOther <- as.matrix(as.numeric(SICCodes==61| SICCodes==62| SICCodes==65| SICCodes==67)) 
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#colnames(DummyOther) <- c("DummyOther") 

#AppendixB <- cbind(AppendixB, DummyBroker, DummyInsurance, DummyOther) 

FittedRealizedSES <- as.matrix(0.02 + 0.15*as.numeric(AppendixB[,12])*100 - 0.04*as.numeric(AppendixB[,8]) - 

0.1145*DummyOther - 0.1017*DummyInsurance + 0.16*DummyBroker) 

FittedRealizedSES <- cbind(AppendixB[,4], FittedRealizedSES) 

#colnames(FittedRealizedSES) <- c("CompName", "FittedSES") 

FittedRank <- as.matrix(FittedRealizedSES[order(as.numeric(FittedRealizedSES[,2])),]) 

FittedRank <- cbind(FittedRank, 1:nrow(FittedRank))   

colnames(FittedRank) <- c("CompName", "FittedSES", "FittedRank") 

gg <- as.matrix(match(AppendixB[,4], FittedRank[,1])) 

FittedRank <- FittedRank[gg,] 

AppendixB <- cbind(AppendixB, FittedRank[,3]) 

AppendixB <- cbind(AppendixB[,11],AppendixB[,9],  round(as.numeric(AppendixB[,13])*100,2), 

round(as.numeric(AppendixB[,12])*-100,2), AppendixB[,14], AppendixB[,16], 

round(as.numeric(AppendixB[,8]),2), AppendixB[,17], AppendixB[,5], AppendixB[,7]) 

AppendixBsorted <- AppendixB[order(as.numeric(AppendixB[,4]),decreasing = TRUE),] 

colnames(AppendixBsorted) <- c("CompName","Sic", "RealizesSES", "MES", "AvgLoss", "AvgContribution", 

"QuasiLVG", "Rank", "TA", "ME") 

 

#AppendixBsorted contains the original MES and LVG analysis of Acharya et al (2016). 

#Now we add distress costs 

 

##----------------------------------Distress costs---------------------------------------------------------------- 

CalResults <- read_excel("Calibration results excel.xlsx",  col_names = TRUE, na = "NA") #short sample that is 

#needed to do the regressions 

CalResults2 <- read.csv("Distresscost_Finalversion2.csv", row.names = 1) #This longer sample is needed to do 

#robustness check 

reducer1 <- which( CalResults2[,1] == "2005-01-03") #"2005-01-03" or 2005-06-01 

reducer2 <- which( CalResults2[,1] == "2006-01-03") #"2006-01-03" or 2006-06-29 

CalResults2 <- CalResults2 [reducer1:reducer2,] 

CalResultsNoDate <- CalResults[,3:ncol(CalResults)] #For other period 

DCDate <- as.matrix(as.Date(unlist(CalResults[,2]),origin = "1899-12-30"))#changed for new period 

n <- as.numeric(ncol(CalResultsNoDate)/3) 

options(scipen=999) # to get rid of scientific notation 

 

#For original period 
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V <- data.matrix(CalResultsNoDate[,seq(1,ncol(CalResultsNoDate),3) ]) #Unlevered asset value 

TS <- CalResultsNoDate[,seq(3,ncol(CalResultsNoDate),3) ] #Tax shield 

DCabs <- data.matrix(CalResultsNoDate[,seq(2,ncol(CalResultsNoDate),3) ]) #Raw distress costs 

DC <-  DCabs/V 

namer <- seq(2, 301, 3) #For naming the long sample with correct labels 

CompNames <- as.matrix(colnames(V)) 

##------------------------------------------------ 

#For robustness analysis these values are used 

colnames(CalResults2)[namer] <- CompNames #Assigning right values for my little sample 

V <- data.matrix(CalResults2[,seq(2,ncol(CalResults2),3) ]) #Unlevered asset value 

TS <- data.matrix(CalResults2[,seq(4,ncol(CalResults2),3) ])#Tax shield 

DCabs <- data.matrix(CalResults2[,seq(3,ncol(CalResults2),3) ]) #Raw distress costs 

DC <-  DCabs/V 

DCDate <- as.matrix(as.Date(unlist(CalResults2[,1]),origin = "1899-12-30"))#changed for new period 

##------------------------------------------------ 

 

DCmitDate <- as.matrix(cbind(DCDate, DC)) #fixing dates 

colnames(DCmitDate) <- c("Date",CompNames) #naming column with dates 

AvDC <- as.matrix(colMeans(DC, na.rm = TRUE)) #Average DC/unlevered asset value 

rownames(AvDC)<- CompNames #naming Distress cost 

highestDC <- round(subset(AvDC, AvDC[,1] > quantile(AvDC[,1], 0.95, na.rm = TRUE)),4) #Fix it  

colnames(highestDC) <- "Distress Cost / Asset" 

quantile(AvDC,0.95,na.rm = TRUE ) 

quantile(AvDC,0.05,na.rm = TRUE ) 

mean(AvDC,na.rm = TRUE ) 

median(AvDC,na.rm = TRUE ) 

min(AvDC,na.rm = TRUE ) 

max(AvDC,na.rm = TRUE ) 

 

#----------------------------------------------------- Makes distributional plots---------------------------- 

#do it for one and thereafter change to other variable of interest 

x <- AvDC  

h<-hist(x, breaks=10, col="red", xlab="DC / Equity",  
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        main="Figure 11: Histogram of DC/Equity distribution", family = "Times New Roman")  

xfit<-seq(min(x,na.rm = TRUE),max(x,na.rm = TRUE),length=100)  

yfit<-dnorm(xfit,mean=mean(x,na.rm = TRUE),sd=sd(x,na.rm = TRUE))  

yfit <- yfit*diff(h$mids[1:2])*length(x)  

lines(xfit, yfit, col="blue", lwd=2)#+  theme(text=element_text(family = "Times New Roman",size = 10)) 

setwd("C:/Users/heinr/Dropbox/My Theses/Estimating Distress costs/Smoothplots") 

ggsave("Figure10.png", width = 5, height = 3) #Save it 

 

#-------------Merging with Acharya----------------------------------------------------- 

 

matchMkt2DC <- as.matrix(match(FiveperworstMkt[,1], DCmitDate[,1])) #Matching 

matchMkt2DC <- as.matrix(matchMkt2DC[!is.na(matchMkt2DC)])#Matching 

DCMES <- DCmitDate[matchMkt2DC,] 

AvDCMES <- as.matrix(colMeans(DCMES[,2:ncol(DCMES)])) #Final MES for Distress costs 

rownames(AvDCMES)<- CompNames 

highestDCMES <- subset(AvDCMES, AvDCMES[,1] > quantile(AvDC[,1], 0.95, na.rm=TRUE)) 

lowestDCMES <- subset(AvDCMES, AvDCMES[,1] < quantile(AvDC[,1], 0.05, na.rm=TRUE)) 

 

 

#-------------Match with Equity Acharya------------------------------------------------ 

StocksCols <- matrix(0, nrow = nrow(DCmitDate),n) 

DCmitDateName <- rbind(cbind("Date", t(CompNames)), DCmitDate) 

for(i in 1:n){ 

  #Date, Ticker, Stockprice, MCAP, CompNames, Permno, discr.Ret, changeMCAP, Logrets 

  UniqueCompStocksDC <- which(stocks[,5]==CompNames[i,1]) 

  PermnoDCmatch <- unique(stocks[UniqueCompStocksDC,6]) 

   UniqueCompStocksDC_new <- which(stocks[,6]==PermnoDCmatch) 

  UniqueCompStocksDC <- stocks[UniqueCompStocksDC_new,] 

    

  UniqueMCAP <- as.matrix(as.numeric(UniqueCompStocksDC[,4])) 

   MatchStockDC <- as.matrix(match(DCmitDate[,1], UniqueCompStocksDC[,1])) 

  UniqueMCAP <- UniqueMCAP[MatchStockDC,] 

   StocksCols[,i] <- UniqueMCAP   } 
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colnames(StocksCols) <- CompNames 

 

##------------------------MES distress with last day Equity----------------------------- 

#colnames(DC_corr) <- CompNames #282 last day, but changes with dataset (i.e. for robustness) 

DCraw <- DCabs #stockcols = ME, both numbers are in millions 

DCrawDate <- as.matrix(cbind(DCDate, DCraw)) 

colnames(DCrawDate) <- c("Date",CompNames) 

DCrawtoMES <- DCrawDate[matchMkt2DC,] #MES calculatation 

AvDCrawMES <- as.matrix(colMeans(DCrawtoMES[,2:ncol(DCrawtoMES)], na.rm = TRUE)) #taking average of 

5% worst market days 

AvDCMEStolastME <- AvDCrawMES/StocksCols[282,] 

highestDCraw <- subset(AvDCMEStolastME, AvDCMEStolastME[,1] > quantile(AvDCMEStolastME[,1], 

0.95,na.rm = TRUE))  

t.test(AvDCMEStolastME) 

 

##------------------------DC MEs to last V----------------------------- 

#282 last day, but changes with dataset (i.e. for robustness) 

DCV <- as.matrix(cbind(DCDate, DCabs)) 

colnames(DCV)[2:ncol(DCV)] <- CompNames 

DCV_MESday <- DCV[matchMkt2DC,] 

DC_MES <- as.matrix(colMeans(DCV_MESday[,2:ncol(DCV_MESday)],na.rm = TRUE)) 

DCMEStolastV <- as.matrix(DC_MES/V[282,]*100) 

t.test(DCMEStolastV, na.rm=TRUE) 

 

##------------------------DC MES return----------------------------- 

matchMkt3DC <- as.matrix(match(FiveperworstMkt[,1], DCmitDate[2:282,1])) #Matching 

matchMkt3DC <- as.matrix(matchMkt3DC[!is.na(matchMkt3DC)])#Matching 

w1 <- DCabs[2:dim(DCabs)[1],] 

w0 <- DCabs[1:(dim(DCabs)[1]-1),] 

DCreturn <- as.matrix(w1)/as.matrix(w0)-1 

colnames(DCreturn)<- CompNames 

DCrettoMES <- cbind(DCtoMCAPmitDate[2:282,1], DCreturn) 

DCretMES <- DCrettoMES[matchMkt3DC,] 

DCretMES_f <- as.matrix(colMeans(DCretMES[,2:ncol(DCretMES)],na.rm = TRUE))*100 
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t.test(DCretMES_f) 

 

#-------------Attach to Appendix B---------------------------- 

matchwithB <- as.matrix(match(AppendixB[,1],CompNames[,1])) #firms match firms 

CompNamesApB <- as.matrix(CompNames[matchwithB,]) 

AvDCMEStolastMEapB <- as.matrix(AvDCMEStolastME[matchwithB,])# 

AvDCMEStolastVapB <- as.matrix(DCMEStolastV[matchwithB,]) 

DCretMES_fapB <- as.matrix(DCretMES_f[matchwithB,]) 

 

AvDCtoMCAPMESApB <- cbind(CompNamesApB, AvDCMEStolastMEapB, AvDCMEStolastVapB, 

DCretMES_fapB) 

AppendixBExtended <- cbind(AppendixB, AvDCtoMCAPMESApB ) #average DC to market of , #average DC MES 

to asset value 

colnames(AppendixBExtended) <- c("CompName","Sic", "RealizesSES", "MES", "AvgLoss", 

                                 "AvgContribution", "QuasiLVG", "Rank","TA", 

                                 "ME", "CompName",  "DC / ME_last", "DC/Asset_last", "return DC MES") 

 

#-----------------------Do statistics of estimators---------------------------------------------------- 

Q = 10 #this is is distress cost to last equity for example 

median(as.numeric(AppendixBExtended[,Q]), na.rm = TRUE) 

mean(as.numeric(AppendixBExtended[,Q]), na.rm = TRUE) 

min(as.numeric(AppendixBExtended[,Q]), na.rm = TRUE) 

max(as.numeric(AppendixBExtended[,Q]), na.rm = TRUE) 

quantile(as.numeric(AppendixBExtended[,Q]), 0.05, na.rm=TRUE) 

quantile(as.numeric(AppendixBExtended[,Q]), 0.95, na.rm=TRUE) 

 

#---------------------------------reduce sample to rid of NA ----------------------------------- 

AppendixBExtended[which(AppendixBExtended[,13] == "NaN"),13] = NA 

AppendixBExtended[which(AppendixBExtended[,13] == "-Inf"),13] = NA 

reducer1 <- which(is.na(AppendixBExtended[,13])) 

AppendixBExtended_short <- AppendixBExtended[-reducer1,] 

colnames(AppendixBExtended_short) <- c("CompName","Sic", "RealizesSES", "MES", "AvgLoss", 

                                 "AvgContribution", "QuasiLVG", "Rank","TA", 

                                 "ME", "CompName",  "DC / ME_last", "DC/Asset_last", "return DC MES") 
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#--------------------------perform regressions----------------------------------------------------------- 

library(sandwich) 

library(lmtest) 

SICCodes <- as.numeric(AppendixBExtended_short [,2]) 

DummyBroker <- as.matrix(as.numeric(SICCodes==6211)) 

DummyInsurance <- as.matrix(as.numeric(SICCodes==63 | SICCodes==64)) 

DummyOther <- as.matrix(as.numeric(SICCodes==61| SICCodes==62| SICCodes==65| SICCodes==67)) 

 

#This is for Distress costs to Equity which situates in column 11, distress costs to asset in 12 and Distress cost returns 

in #column 13 

X <- cbind(as.numeric(AppendixBExtended_short [,4]), 

                      as.numeric(AppendixBExtended_short [,7]), 

                      as.numeric(AppendixBExtended_short [,11]), 

           DummyOther, DummyInsurance, DummyBroker ) 

colnames(X)<-c("MES", "LVG","DC","Dummy other", "Dummy Insurance", "Dummy Broker") 

 y <- as.matrix(as.numeric(splash2[,3])/100) 

model <- lm(y ~ X) 

AIC(model) 

summary(model) 

coeftest(model, vcov=NeweyWest(model, prewhite=FALSE)) 

 

#Fitted rank – Calculate the Model predicted SES 

 

ModelSES <- model$coefficients[1]+as.numeric(AppendixBExtended_short [,4])* 

  model$coefficients[2]+ 

  as.numeric(AppendixBExtended_short [,7])*model$coefficients[3]+ 

  as.numeric(AppendixBExtended_short [,11])*model$coefficients[4]+ 

  DummyOther*model$coefficients[5]+ 

  DummyInsurance*model$coefficients[6]+DummyBroker*model$coefficients[7] 

 

AppendixBExtended_short <- cbind(AppendixBExtended_short,ModelSES)  

#Then inserting in excel to make it nice and order it 
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# SCAP and SCAP regressions 

#This section calculates distress costs to equity and to assets performs analyzes of SCAP panel 

rm(list=ls()) 

setwd("C:/Users/heinr/…/AcharyaReplication/MeasuringSystemicRisk/Data new") 

install.packages("readxl") 

library(readxl) 

 

wrdsTCKR <- read.table("codelist.txt", header = FALSE) #original data  

bookdatawrds <- read_excel("Compustat book data.xlsx", col_names = TRUE) #original data 

stockdatawrds <- read_excel("CRSP StockReturns.xlsx", col_names = TRUE) #original data 

Mktdata <- read_excel("CRSP Market Index.xlsx", col_names = TRUE) #original data 

CompListAcharya <- read_excel("Company list Acharya et al..xlsx", col_names = TRUE) #original data 

Mktdiscrete <- as.matrix(as.numeric(unlist(Mktdata[,4])))       #Output returns are discretely compounded 

Mktdate <- as.matrix(as.Date(unlist(Mktdata[,9]),origin = "1899-12-30")) 

#create Market vector logreturns 

Mktidx <- as.matrix(Mktdata[,5])          # Mktidx <- as.matrix(Mktidx[!is.na(Mktidx)]) ----> nicht notwendig, da keine 

na's 

Mktlog <- as.matrix(log(Mktidx[2:nrow(Mktidx),]/Mktidx[1:(nrow(Mktidx)-1),])) 

# Date Logret DiscrRet 

Mktret <- cbind(Mktdate[2:nrow(Mktdate),], Mktlog, Mktdiscrete[2:nrow(Mktdiscrete)]) 

 

CompNames <- bookdatawrds[,9] 

Bookdata <- cbind(bookdatawrds[,14], bookdatawrds[,9], bookdatawrds[,15], bookdatawrds[,16], 

bookdatawrds[,11]) 

 

#Stock price data(stocks)     Date, Ticker, Stockprice, MCAP, Comp Names, Permno, discr.Ret 

Stockprice <- as.matrix(stockdatawrds[,5]) 

Mcap <- as.matrix(Stockprice*stockdatawrds[,6])/1000      #/1000 damit gleiche Einheit wie bookdata 

StockDate <- as.matrix(as.Date(unlist(stockdatawrds[,11]), origin = "1899-12-30")) 

stocks <- cbind(StockDate,stockdatawrds[,3], Stockprice, Mcap, stockdatawrds[,4], stockdatawrds[,1], 

stockdatawrds[,7]) 

 

stocks[which(stocks[,6]==83443),5] <- "BERKSHIRE HATHAWAY INC DEL B" 

stocks[which(stocks[,6]==89303),5] <- "LORRILARD INC" 
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Bookcheck <- which(Bookdata[,1]=='2007Q2') 

Bookcheck <- Bookdata[Bookcheck,] 

Equitycheck <- which(stocks[,1]==as.numeric(as.Date("2007-06-29"))) 

Equitycheck <- stocks[Equitycheck,] 

Acharyalist <- CompListAcharya[,2:6] 

# match mit Acharyalist 

wo <- as.matrix(match(unlist(Acharyalist[,2]), Bookcheck[,2])) 

Bookmatched <- Bookcheck[wo,] 

Bookmatched[which(is.na(wo)),] <- 

tail(Bookdata[which(Bookdata[,2]==as.character(Acharyalist[which(is.na(wo)),2])),],1)#-----------eventuell 

funtioniert das Einfuegen nicht mit mehreren NA's 

Matched <- cbind(Bookmatched, Acharyalist) 

 

wo1 <- as.matrix(match(Equitycheck[,6], Matched[,9]))    #match Equity und Buchdaten nach [,2] ist Ticker, [,5] ist 

company name 

Bookcheckmatched <- Matched[wo1,] 

# PERIOD BookTicker TotalAssets BookEquity Name PERMNO Date, Ticker, Stockprice, MCAP, Comp Names, 

Permno, discr.Ret, SIC   

Totalcheck <- cbind(Bookcheckmatched[,1:5], Bookcheckmatched[,9], Equitycheck, Bookcheckmatched[,10]) 

Totalcheck <- as.matrix(Totalcheck[complete.cases(Totalcheck),]) 

TotalcheckMcap <- as.matrix(as.numeric(Totalcheck[,10])) 

QuasiLvgcheck <- as.matrix((as.numeric(Totalcheck[,3])-

as.numeric(Totalcheck[,4])+TotalcheckMcap)/TotalcheckMcap) 

QuasiLvgcheck <- cbind(Totalcheck[,11], QuasiLvgcheck) 

#Period BookTicker Permno Companyname TotalAssets, BookEquity, MarketEquity, Quasilvg, SIC 

TotalcheckEnd <- cbind(Totalcheck[,1],Totalcheck[,2], Totalcheck[,6], Totalcheck[,5], 

Totalcheck[,3],Totalcheck[,4],Totalcheck[,10], QuasiLvgcheck[,2], Totalcheck[,14]) 

CompaniesSample <- as.matrix(unique(CompNames, FALSE)) 

CompTckr <- bookdatawrds[,9] 

UniqueTckr <- as.matrix(unique(CompTckr, FALSE)) 

MktRetPreCrisis <- Mktret[Mktret[,1]>=as.numeric(as.Date("2008-04-01")) & Mktret[,1]< 

as.numeric(as.Date("2009-03-31")),]  #Ret im passenden Zeitfenster 

FiveperworstMkt <- subset(MktRetPreCrisis, MktRetPreCrisis[,2] < quantile(MktRetPreCrisis[,2],0.05)) 

####### Permnomatch nur notwendig um zu checken welche Firmen fehlen 

CompSampleStocks <- as.matrix(as.numeric(unique(stocks[,6], FALSE))) 
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xxx <- read_excel("Company list Acharya et al..xlsx", col_names = TRUE) 

Permno <- as.matrix(xxx[,5]) 

Permnomatch <- as.matrix(match(CompSampleStocks[,1], Permno))   #Die Variablen aus CompSampleStocks, wo 

sind sie in Permno 

Permnomatch2 <- as.matrix(match(Permno, CompSampleStocks[,1])) 

Permnomatch <- as.matrix(which(is.na(Permnomatch))) 

Permnomatch <- as.matrix(CompSampleStocks[Permnomatch,])    # Permnos of CompanySampleStocks which are 

not in the Acharya list 

Permnomatch2 <- as.matrix(which(is.na(Permnomatch2))) 

Permnomatch2 <- as.matrix(xxx[Permnomatch2,]) 

#---- MES Table--------------------------------------------------------------------------------------------------------------- 

setwd("C:/Users/heinr/Dropbox/My Theses/FUCKSCAP") 

SCAP <- read_excel("SCAPalicious.xlsx", col_names = TRUE) 

namo <- as.matrix(SCAP[,1]) 

namo[9] <- "P N C FINANCIAL SERVICES GRP INC" 

namo[11] <- "B B & T CORP" 

#Ticker CompName MES RealizedSES 

MES = matrix(0, nrow = 18, 5) 

 

for(i in 1:18){ 

  print(i) 

  #Date, Ticker, Stockprice, MCAP, CompNames, Permno, discr.Ret, changeMCAP, Logrets 

  UniqueCompStocks <- grepl(namo[i], stocks[,5] ) 

  PermnoDCmatch <- unique(stocks[UniqueCompStocks,6]) 

  UniqueCompStocks <- which(stocks[,6]==PermnoDCmatch) 

  UniqueCompStocks <- stocks[UniqueCompStocks,] 

  UniquePrice <- as.matrix(as.numeric(UniqueCompStocks[,3])) 

  UniquediscRet <- as.matrix(as.numeric(UniqueCompStocks[,7])) 

  UniqueCompLog <- as.matrix(log(UniquediscRet+1)) 

  UniqueChangeMCAP <- as.matrix(as.numeric(UniqueCompStocks[2:nrow(UniqueCompStocks),4]) - 

as.numeric(UniqueCompStocks[1:nrow(UniqueCompStocks)-1,4])) 

  UniqueCompStocks <- as.matrix(cbind(UniqueCompStocks, rbind(0, UniqueChangeMCAP),UniqueCompLog)) 

  

  #Determine Realizes SES 
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  UniqueRealizedSES <- UniqueCompStocks[UniqueCompStocks[,1]>=as.numeric(as.Date("2007-07-02"))& 

UniqueCompStocks[,1]<=as.numeric(as.Date("2008-12-31")),] 

  UniqueRealizedSES <- as.numeric(UniqueRealizedSES[complete.cases(UniqueRealizedSES),9]) 

  UniqueRealizedSES <- as.numeric(exp(sum(UniqueRealizedSES))-1) 

  UniquematchMkt <- as.matrix(match(UniqueCompStocks[,1], FiveperworstMkt[,1])) 

  UniquematchMkt2 <- as.matrix(match(FiveperworstMkt[,1], UniqueCompStocks[,1])) 

  UniquematchMkt <- as.matrix(UniquematchMkt[!is.na(UniquematchMkt)]) 

  UniquematchMkt2 <- as.matrix(UniquematchMkt2[!is.na(UniquematchMkt2)]) 

  UniqueCompStocks <- UniqueCompStocks[UniquematchMkt2,] 

  UniqueMkt <- FiveperworstMkt[UniquematchMkt,] 

  FiveperworstTotal <- as.matrix(cbind(as.numeric(UniqueCompStocks[,7]),as.numeric(UniqueCompStocks[,8]), 

UniqueMkt[,2]))  

  #Permno CompName MES RealizedSES AvgLoss 

  MES[i,] <- cbind(UniqueCompStocks[1,6], UniqueCompStocks[1,5], mean(FiveperworstTotal[,1]), 

UniqueRealizedSES, mean(FiveperworstTotal[,2]) ) 

  #Versuch <- cbind(Versuch, FiveperworstTotal[,8]) } 

colnames(MES) <- c("Permno", "CompName", "MES", "RealizedSES", "AvgLoss") 

 

#----------------------------------- Including distress costs--------------------------------------- 

setwd("C:/Users/…/SCAP ") #set working directory directory containing SCAP and distress costs 

SCAP <- read_excel("SCAPalicious.xlsx", col_names = TRUE) 

df <- read_excel("Distresscostsresults.xlsx",  col_names = TRUE) 

DCnodates <- df[,2:55] 

SCAP <- read_excel("SCAPalicious.xlsx", col_names = TRUE) 

MktRetPreCrisis <- Mktret[Mktret[,1]>=as.numeric(as.Date("2008-04-01")) & Mktret[,1]< 

as.numeric(as.Date("2009-03-31")),]  #Ret im passenden Zeitfenster 

FiveperworstMkt <- subset(MktRetPreCrisis, MktRetPreCrisis[,2] < quantile(MktRetPreCrisis[,2],0.05)) 

critdays <- as.Date(unlist(FiveperworstMkt[,1]),origin = "1970-01-01") 

V <- data.matrix(DCnodates[,seq(1,length(DCnodates ),3)]) 

TS <- data.matrix(DCnodates[,seq(3,length(DCnodates ),3)]) 

DCabs <- data.matrix(DCnodates[,seq(2,length(DCnodates ),3)]) 

DCmitdate <- cbind(as.numeric(as.Date(unlist(df[,1]),origin = "1899-12-30")),DCabs) 

CompNames <- as.matrix(colnames(V)) 

StocksCols <- matrix(data = 0, nrow = dim(DCmitdate)[1],ncol = 18) 

 



132 

 

for(i in 1:18){ 

  #Date, Ticker, Stockprice, MCAP, CompNames, Permno, discr.Ret, changeMCAP, Logrets 

  UniqueCompStocksDC <- which(stocks[,5]==CompNames[i,1]) 

  PermnoDCmatch <- unique(stocks[UniqueCompStocksDC,6]) 

   

  UniqueCompStocksDC_new <- which(stocks[,6]==PermnoDCmatch) 

  UniqueCompStocksDC <- stocks[UniqueCompStocksDC_new,]  

  UniqueMCAP <- as.matrix(as.numeric(UniqueCompStocksDC[,4])) 

  #UniqueCompStocks <- as.matrix(cbind(UniqueCompStocks, rbind(0, UniqueChangeMCAP),UniqueCompLog)) 

  MatchStockDC <- as.matrix(match(DCmitdate[,1], UniqueCompStocksDC[,1])) 

  UniqueMCAP <- UniqueMCAP[MatchStockDC,] 

  StocksCols[,i] <- UniqueMCAP } 

criticaldays <- as.numeric(critdays) 

matchMkt2DC <- as.matrix(match(FiveperworstMkt[,1], DCmitdate[,1])) 

matchMkt2DC <- as.matrix(matchMkt2DC[!is.na(matchMkt2DC)]) 

 

 

#----------------------DC SCAP to LAST ME/V-------------------------------- 

DCraw <- DCabs #stockcols = ME, both numbers are in millions 

AvDCraw <- as.matrix(colMeans(DCraw, na.rm = TRUE)) #taking average of vector of ratios 

#rownames(AvDCtoMCAP)<- CompNames 

#highestDCraw <- subset(AvDCtoMCAP, AvDCtoMCAP[,1] > quantile(AvDCtoMCAP[,1], 0.95,na.rm = TRUE)) 

#fix that 

DCrawDate <- as.matrix(cbind(DCmitdate[,1], DCraw)) 

colnames(DCrawDate) <- c("Date",CompNames) 

DCrawtoMES <- DCrawDate[matchMkt2DC,] #MES calculatation 

AvDCrawMES <- as.matrix(colMeans(DCrawtoMES[,2:ncol(DCrawtoMES )], na.rm= TRUE)) #taking average of 

5% worst market days 

AvDCMEStolastME <- AvDCrawMES/StocksCols[261] 

AvDCMEStolastV <- AvDCrawMES/V[261] 

#Attaching SICC 

kk <- c() 

names <- as.matrix(TotalcheckEnd[,4]) 

for ( i in 1:18){ 
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kk[i] <- which( SCAP[i,1] == names ) 

} 

SICCCODES <- as.matrix(TotalcheckEnd[kk,c(4,9)]) 

AppendixC <- cbind(SCAP,AvDCMEStolastME,AvDCMEStolastV, SICCCODES) 

colnames(AppendixC)[11:12] <- c("Names", " SICCCODES ") 

 

#--------------------------------------------- 

#Regressions, with different estimators 

library(sandwich) 

library(lmtest) 

SICCodes <- as.numeric(as.matrix(AppendixC[,12])) 

DummyBroker <- as.matrix(as.numeric(SICCodes==6211)) 

DummyInsurance <- as.matrix(as.numeric(SICCodes==63 | SICCodes==64)) 

DummyOther <- as.matrix(as.numeric(SICCodes==61| SICCodes==62| SICCodes==65| SICCodes==67)) 

Dummyprob <- as.numeric(as.matrix(AppendixC[,5]))<=0 

Dummyprob <- ifelse(Dummyprob == FALSE, 1, 0) 

#our extensions 

X <- cbind(as.numeric(AppendixC[,7]), as.numeric(AppendixC[,8]) ,as.numeric(AppendixC[,10]))#, 

Dummyprob)#,as.numeric(ProbineAPP[,8]))  

#7 = MES, 8 = LVG, 10 = DC to equity, 11 = DC to asset 

y <- as.matrix(as.numeric(AppendixC[,6])*100) #SCAP/TIER1 <- 5, SCAP/TIER1comm <- 6 

options(scipen=999) 

model <- lm(y ~ X) 

AIC(model) 

summary(model) 

coeftest(model, vcov=NeweyWest(model, prewhite=FALSE)) 

#-------------------------------------------------------------------------------------- 

 

# Robustness – graphs and tables 

#Graphing 

#We made files containing distress costs to equity, MES and LVG for different time intervals 

options(scipen=999) #Get rid of scientific 

splash1 <- read.csv("20052006v2.csv", row.names= 1) #june 2005 to june 2006 
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# splash1 <- read.csv("20052006.csv", row.names= 1) #January 2005 to January 2005 

splash2 <- read.csv("20062007.csv", row.names= 1) #Original  

splash2 <- splash2[,-c(5,6,11)] #Removing contribution numbers and an column that contain firms names (which is 

#already in there) 

splash1<-splash1[-28,] 

splash1<-splash1[-86,]#86 with others 

 

jj <- c() 

for (j in 1:length(splash1[,1])){ 

print(j) 

jj[j] <- which(as.character(splash1[j,1]) == as.character(splash2[,1]))   } 

splash2 <- splash2[jj,] 

newdf <- cbind(as.matrix(splash1[,1]),as.matrix(splash1[,13]),as.matrix(splash2[,1]), 

               as.matrix(splash2[,13])) 

x <- as.numeric(newdf[,2]) 

y <- as.numeric(newdf[,4]) 

Name <- as.vector(newdf[,1]) 

ticker <- c() 

for (i in 1:81){ 

  print(i) 

  kk <- which(stocks[,5] == Name[i]) 

  kk <- kk[length(kk)] 

  ticker[i] <- unique(stockdatawrds[kk,3]) 

}#end loop 

 

ticker <- as.matrix(ticker) 

rmv <- which(ticker == "character(0)") 

ticker[rmv] <- "" 

mm <- as.data.frame(cbind(Name, ticker)) 

library(ggplot2) 

#install.packages("extrafont") 

library(extrafont) 

font_import() 

loadfonts(device = "win") 
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fonts() 

Z <- as.data.frame(cbind(x,y)) #make data in data frame to use ggplot 

#Make plot 

g<-ggplot(data = Z, aes(y <- Z[,2], x = Z[,1], color= "DC_MES/Asset_last"))+ 

  geom_point(color="firebrick",size=1) 

g <- g+geom_text(aes(label=as.character(ticker)),hjust=-0.1, vjust=0, size = 2, color = "black") 

#( ", "in %", " )") 

g<-g+labs(x=expression(paste("DC_MES/Asset_Last 03-01-2005 to 03-01-2006" )), y="DC_MES/Asset_Last 2006-

06-01 to 2007-06-30", 

          title="Figure 14: Stability of DC_MES /Asset_Last over time")+ 

  theme_bw()+ 

  theme(text=element_text(family = "Times New Roman",size = 10)) 

g <- g+stat_smooth(method="lm", se=FALSE, color = "blue", size = 0.5) 

g # show plot 
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