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Abstract

For decades scholars and practitioners have tried to create trading strategies that “beat the

market”. A more recent addition to the numerous trading strategies trying to create abnormal

profits are the so-called quantitative trading strategies based on algorithmic trading.

Through an empirical study, this paper is investigating whether some of the most commonly

used machine learning classification algorithms including k-NN, Random Forest and Naive Bayes

Classifier are able to generate abnormal returns by exploiting time-series patterns.

The thesis is firstly presenting the results of 16 momentum portfolios, constructed from

stocks listed on NYSE from January 1993 to December 2016, based on Jegadeesh and Titman

(1993)’s framework. The results presented are in favor of the existence of momentum, as the

momentum portfolios realize significant abnormal returns. Our findings therefore support that

it is possible to generate abnormal returns based on time-series patterns.

Secondly, a training protocol is conducted where the stocks listed on NYSE from December

1925 to December 2016 are labelled with a class to separate the 25% best- and worst performing

stocks each month. The algorithms are then trained on data from December 1925 to December

1992 to predict whether a stock is a ”loser”, ”winner” or ”neutral” stock based on its returns in

the previous 12 months.

Finally, the algorithms’ prediction abilities are tested on the same data-set applied for the

momentum strategies. The thesis presents the results of 4 long-short equally weighted portfolios

for each classification algorithm over 1-, 3-, 6- and 9-month holding periods. Of the investigated

algorithms it is concluded that Random Forest is the best algorithm to predict winners and

losers using time-series recognition. Its long-short portfolio with a holding period of 1-month

yielded an average monthly return of 0.96% and a Sharpe ratio of 0.91. Moreover, our findings

show that the portfolio generated a significant Jensen’s alpha, which could not be explained by

the additional three factors included in Carhart (1997)’s four factor model. The results from

Carhart’s four factor model, indicated that both the winner and loser portfolio mainly con-

sisted of small stocks however. The results of a further investigation show, that the long-short

portfolio with a holding period of 1 month still yielded abnormal returns when Random Forest

was restricted to pick stocks with a market-cap above the 30%-percentile, which increases the

robustness of our results.

The thesis concludes that it is possible to apply machine learning algorithms to generate abnor-

mal returns based on historical return data only. However, due to the low prediction accuracy,

combined with the fact that the advanced algorithms are ’black boxes’, it is also concluded that

it would require further research and tests of the algorithms before it would be realistic to apply

them for portfolio management.
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1 Background

The following section will first briefly present the background of machine learning and explain its

relevance in trading financial assets. Then, we will go through the two most widely acknowledged

approaches to asset management, technical- and fundamental analysis, and explain why this

thesis is applying ”technical”-data only. The objective of the paper will hereafter be formalized

to research questions. Lastly, the scope & limitations of this paper will be discussed.

1.1 Motivation & Context

Machine learning is a research field that is combining artificial intelligence (AI) with statistics

and computer science. The technology is widely applicable both in everyday life and for com-

mercial use. Today machine learning can mostly be applied for very specific tasks, but it has

a large potential. With a market projected to reach $70 billion by 2020 artificial intelligence is

going to transform the world as we know it (PWC, 2017; Müller & Guido, 2017).

Machine learning based trading strategies is an area of extensively research and development

for portfolio managers and trading companies. Internationally the use of machine learning has

already been implemented in a variety of financial institutions, not only doing back-office tasks,

but also for trading and portfolio management. Among asset managers, machine learning is

mostly used by ’quant funds’ - hedge funds that rely heavily on algorithmic trading. A unit

applying machine learning and AI (usually referred to as a ”AI unit”) tends to be a part of a

larger team to support with the portfolio construction under an asset managers supervision, and

only a small fraction of the trades are estimated to be driven by machine learning, even in the

’quant funds’ (Financial Stability Board, 2017).

According to the Financial Stability Board, machine learning and AI based portfolio man-

agement companies manage $10 billion in assets, but are growing rapidly. In Denmark the most

notable implementation of machine learning was conducted by the asset management company

Maj Invest back in 2012. The machine learning algorithm called SinAI was based on the Neural

Networks algorithm, which should predict 30 stocks for a long position and 30 stocks to short

with a holding period of 3 years. SinAI was shut down in 2014 however, as the long portfolio

had gained 40% over 2 years, but the short position had gained 50% which meant a total loss of

10% for the investors (Finanswatch, 2014). Kurt Kara, Head of Global Value Equities at Maj

Invest does not seem to have lost faith in artificial intelligence however. In March 2017 Kara

stated that portfolio management in the future will be about who can understand and leverage

artificial intelligence (Financial Stability Board, 2017; Kara, 2011).

This paper aims to investigate whether machine learning can generate abnormal returns by

exploiting time series patterns, which we will show exists through the well-known ’momentum’-

factor first shown by Jegadeesh and Titman (1993).
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1.2 Technical & Fundamental Analysis

Trading strategies that “beat the market” can be traced back to the beginning of trading in

financial assets. Asset managers may use several methods to obtain abnormal profits, but the

approaches to systematic investing are usually divided into two categories: Fundamental anal-

ysis and technical analysis (Pedersen, 2015).

One of the most extensively researched topic in academic literature is whether time-series

patterns can be exploited to create trading strategies with abnormal profits. The term for pre-

dicting stock performance based on historical return data is technical analysis. One of the most

well-known trading strategies based on technical analysis are the momentum trading strategies,

which are strategies taking a long position in the past winners and shorting the past losers.

This paper will investigate the momentum trading strategies, and implement the framework in

a machine learning setting. Hence, the inputs of the algorithms will be based on what would be

characterized as ’technical’ inputs. Technical analysis usually also involves studying volatility,

high/lows, moving averages, spreads, etc., which we will not investigate (Pedersen, 2015).

Trading based on fundamental analysis is the term for the deciding to long or short stocks

based on the profitability and growth prospects of each company to its value. For the funda-

mental analysis to be complete it requires analysis of quality of the company’s management,

assessment of the reliability of accounting numbers, analyzing the growth prospects of the value

drivers, and an valuation by estimating the future cash-flows (Pedersen, 2015).

1.3 Research questions

The overall aim of this paper is to investigate the possibility of applying machine learning to

exploit time-series patterns in order to generate abnormal profits.

More specifically the following research questions will be examined:

• Does the well-known momentum strategies provide evidence of the ability to generate

abnormal returns through analysis of time series patterns?

• Can machine learning algorithms be trained to predict under- and overperforming stocks,

only by the stocks’ return data of the past 12 months?

• Can trading strategies constructed from machine learning models generate abnormal re-

turns that cannot be explained by well-known factors?

1.4 Scope & Limitations

Since the above research questions could be answered in several ways, it has been necessary to

limit the scope of the paper.
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Data:

The investment universe is limited to stocks listed on NYSE in the time period of January

1993 to December 2016. Most scholars usually include NYSE together with AMEX and NAS-

DAQ, but a combination of computational time of the algorithms and the fact that our primary

econometric tool Stata has a limit of maximum 32762 variables, made us limit the investment

universe to only include stocks listed on NYSE. Note that due to the fact that the momentum

strategies with a 12 month formation- and holding period need 24 months lagged return data,

we denote the sample period as (end of) December 1994 to (end of) December 2016 for both

the momentum and the machine-learning based strategies.

Learning algorithms:

Numerous machine learning algorithms exist that could help answering the research questions.

In this thesis we will only include the following:

• k-Nearest Neighbors (k-NN)

• Decision Tree

• Naive Bayes Classifier

• Random Forest

The reasoning for using the above algorithms is explained in section 4.

Algorithm inputs:

As discussed in section 1.2, there are several approaches to make effective use of available data to

identify new signals on price movements. However, this thesis is concentrated around technical

data, as the algorithms will be limited to make predictions of a stock’s class only based on its

return data the previous 12 months.

In this paper we have used unprocessed data, as the tested algorithms are not very sensitive to

the data-properties, and because we only use one type of data. Pre-processing of data typically

includes normalizing and re-sampling data. Normalization and re-sampling the data might have

increased the performance of the algorithms as later discussed in section 11.2 (Müller & Guido,

2017).

Risk-adjustment & test specifications:

The machine learning based trading strategies are tested on slightly different market models

compared to the momentum trading strategies as we add a momentum factor to the Fama

and French (1992)’s three factor model, following Carhart (1997)’s four factor model. As the

interpretation of the two factor models are almost the same, we omit reporting the results of

regressing the machine learning based portfolios on Fama French’s three-factor model.

Throughout section 10 we apply ”prediction accuracy” as the measurement for sensitivity-

testing the machine learning models’ specifications. Better measurements could be applied, such

as the 3x3 confusion matrix, or optimally by constructing portfolios for each test specification.

Due to the time-constraints this was not feasible, but could be interesting for further research.
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2 Related Research

This section will firstly review the most notable literature written about one of the most widely

debated trading strategies since it was first shown by Jegadeesh and Titman (1993), namely the

momentum strategy. Secondly, we present a review of related research of machine learning in

trading financial assets and where this study fits in the academic discussion.

2.1 Momentum Strategy

Since the early times of trading, scholars have researched relative strength strategies buying past

winners and selling past losers. Levy (1967) argued that a trading strategy that buys stocks

with prices significantly higher than the average prices over the previous 27 weeks generated

significant abnormal returns. However, Jensen and Bennington (1970) back-tested the strategy

and found that it did not consistently outperform a buy and hold strategy outside of Levy’s

the sample period. Jensen and Bennington (1970) thus argued that Levy’s findings were a re-

sult of sample selection bias (Levy, 1967; Jensen & Benington, 1970; Jegadeesh & Titman, 1993).

More recently, Jegadeesh and Titman (1993) presented trading strategies based on buying stocks,

which have performed well in the past and shorting stocks that have performed poorly in the

same preceding period. More specifically, they presented results showing that stocks listed on

the New York Stock Exchange and American Stock Exchange in the sample period of 1965 to

1989, which had experienced high returns over the past one to four quarters on average per-

formed better in the following 1 to 4 quarters than the stocks that had obtained low returns,

which made it possible to create long-short trading strategies yielding abnormal returns. They

applied overlapping holding periods and rebalanced the portfolios every month to maintain

equally weighted portfolios. Jegadeesh and Titman (1993) presented results showing that 15 of

the 16 long-short trading strategies yielded returns significantly different from zero. Moreover,

they presented the results of regressing the momentum portfolio with a 6-month formation- and

holding-period on CAPM. The portfolio generated a significant Jensen’s alpha of 0.95% and

a negative beta of -0.08. Jegadeesh & Titman concluded that the profitability of the trading

strategies were related to market underreaction to firm-specific information. These results have

been well accepted, but the interpretation of the evidence and the source of the profits have

been widely debated (Jegadeesh & Titman, 1993).

Following the findings of Jegadeesh and Titman (1993), Conrad and Kaul (1998) analyzed 8

momentum trading strategies, longing past winners and shorting past losers, with equally long

formation- and holding periods between 1 week and 36 months in different time periods within

1926 and 1989 using NYSE & AMEX stock data. In total 55 out of 120 of their long-short trad-

ing strategies yielded statistical significant profits. The results they presented supported the

findings of Jegadeesh and Titman (1993), as they showed that the momentum strategy often

yielded a significant return with a holding period between 3 to 12 month, except from 1926 to
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1947. However, Conrad and Kaul (1998) argued that it is important to decompose the profits

of the trading strategies, since trading strategies based on time-series patterns are based on the

premise that stocks do not follow random walks. Conrad and Kaul (1998) claimed that trading

based on past performance of the stock contains two components. The first part comes as a re-

sult of time series patterns in returns and the second part is from cross-sectional variation in the

mean returns. They argued that if the source of the momentum strategies profit is in the cross-

sectional component, the profit would arise even if stock prices were completely unpredictable

and follow a random walk, because the momentum strategy on average is buying stocks with

high-mean returns and selling stocks with low mean returns. Hence the cross-sectional spread

would ensure the momentum strategy to be profitable on average even when the stocks follow

a random walk. The results of decomposing the profits showed that cross-sectional variation

in mean returns was an important source of the profitability and they could not reject that it

explains the momentum strategy. Conrad and Kaul (1998) hence claimed that the findings sug-

gested that the profitability of the momentum effect was not induced by market inefficiencies.

However, their study is based on a strong assumption that means are stationary (Conrad &

Kaul, 1998).

Jegadeesh and Titman (2001) re-investigated the momentum strategies. Firstly, they addressed

the results of Conrad and Kaul (1998) together with alternative interpretations of the momen-

tum strategies that had emerged after the publication. The most notable interpretation of

Jegadeesh and Titman (1993)’s results was based on behavioral models, which were interpreting

the abnormal returns as a product of inherent biases in the way investors interpret information.

The behavioral models were implying that the momentum strategies works because of delayed

overreactions, which eventually would be reversed. Jegadeesh and Titman (2001) thus argued

that Conrad and Kaul (1998) and the behavioral models were making contradicting explana-

tions of the momentum strategies: The behavioral models predicted that the stock price should

revert back to its fundamental value implying that the returns should be negative after the hold-

ing period, while the hypothesis of Conrad and Kaul (1998) would imply that the momentum

strategies yielded positive returns on average in any period after the formation. Jegadeesh and

Titman (2001) found that the momentum strategies worked with a holding period up until 12

months, but from 13 to 60 months after the formation, the returns were negative on average.

Jegadeesh and Titman (2001) thus argued that this result was consistent with the behavioral

models but conflicting with Conrad and Kaul (1998)’s hypothesis.

Secondly, Jegadeesh and Titman (2001) addressed the critique from Fama and French (1996)

among others, who stated that the results could be due to data snooping. Jegadeesh and Tit-

man (2001) showed that the momentum strategies worked out-of-sample in the sample period

between 1982 and 1998, which indicated that the initial results of Jegadeesh and Titman (1993)

were not due to datasnooping.

Thirdly, Jegadeesh and Titman (2001) addressed the critics stating that the momentum portfo-

lios were not properly risk-adjusted as the momentum strategies were merely a result of taking

more risk. To address this issue they applied Capital Asset Pricing Model (CAPM) and Fama
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and French (1992)’s three-factor model on the momentum strategy with a formation- and hold-

ing period of 6 months in order to risk-adjust the returns. The results indicated that both the

winner- and loser portfolio had a market beta above 1, but that the loser had a higher market

beta, which implied that the momentum portfolio had a negative market beta. The results of

regressing the portfolios on Fama-French’s three factor indicated that both the loser- and the

winner portfolios consisted mainly of small stocks, but that the loser portfolio was loading more

on the size factor. Moreover, the loser portfolio was also loading more on the High-Minus-Low

factor, which implied that the momentum portfolio had a negative loading on all three factors.

Most importantly, they showed that both the CAPM alpha and the Fama French alpha of the

momentum portfolio were significantly different from zero. Hence, the results they presented

indicated that the profit of the momentum strategy were robust to risk-adjustments (Jegadeesh

& Titman, 2001).

One of the most recent publications investigating the momentum trading strategy is by Asness,

Moskowitz, and Pedersen (2013), who examined both momentum and value strategies, and even

more interestingly, investigated them jointly. Asness et al. (2013) claimed to find consistent

evidence of abnormal returns on value and momentum strategies in 8 different geographies, not

only in common stocks as is usually the subject of studies, but also in government bonds and

commodities. An interesting finding, which also will be discussed in section 8.3, is that they

consistently found a negative correlation between value- and momentum strategies. Moreover,

they showed that longing both the momentum- and value strategies increased the abnormal re-

turns, compared to investing in either strategy individually. They found however, that liquidity

can partially explain the abnormal returns of the momentum and value trading strategies jointly

(Asness et al., 2013).

Daniel and Moskowitz (2015) presented results which shows that momentum portfolios usually

experience large drawdowns when the market rebounds after a crisis, and that these momentum

”crashes” has happened almost consistently since 1927.

2.2 Trading with Machine Learning

Huerta, Elkan, and Corbacho (2011) presented pioneering results of machine learning algorithms’

ability to successfully predict under- and overperforming stocks. They trained a Support Vec-

tor Machine-algorithm to identify the 25% highest and 25% lowest performing stocks in terms

of volatility adjusted returns based on a set of technical and fundamental features. Next, they

tested the algorithm once per month to try to predict the winners and losers of the next 91 days.

They then created a long-short investment strategy, longing the predicted winners and shorting

the predicted losers every month with a holding period of 91 days in the sample period from

1981 to 2010. The results they presented show that the trading strategy generated a significant

yearly Jensen’s alpha of 14.86% and a Sharpe ratio of 2.06 (Huerta et al., 2011).
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An increasing trend within the research field is to try unconventional inputs for the machine

learning algorithms. Recently machine learning algorithms’ ability to predict under- and over-

performing stocks from sentiment analysis has been an extensively researched topic, following

the findings of Bollen and Mao (2011). They investigated whether Twitter sentiment analysis of

a company could be applied to identify if its stock price would increase or decrease in value the

following day. The sample period was February 28th 2008 to December 19th 2008 and included

the constituents of the Dow Jones Industrial Average. They applied two sentiment algorithms,

namely OpinionFinder and Google-Profile of Mood States (GPOMS) to label the sentiments

of the companies investigated. If the company investigated was referred to in a Tweet, the

sentiment would be categorized in one of six categories: ”Happy”, ”Calm”, ”Alert”, ”Vital”,

”Sure” and ”kind”. The algorithms have restrictions, so only sentences formulated in certain

ways would be included to avoid spam and misinterpretation. The algorithms would then iden-

tify buzz-words and label it in one of the six categories. So for instance if a Tweet stated ”I’m

loving the new Coca Cola Light”, it would recognize the buzz-word ”Loving”, and classify the

tweet as ”Happy” for the Coca Cola stock. They would then count the frequency of the different

”moods” and collect them over time. They then trained a Neural Networks algorithm using the

six categories as inputs to predict whether the next day’s stock price would go up or down in

the period, and used the 19 days in December as the test period. The results Bollen and Mao

(2011) presented indicated a high correlation between the sentiment on Twitter and the stock

development, with a prediction accuracy of 86.7% (Bollen & Mao, 2011).

Imandoust and Bolandraftar (2014) showed that the Decision Tree algorithm could predict

stock index directions with a high prediction accuracy based on technical and fundamental in-

puts jointly. In the paper they presented the results of the Decision Tree, Random Forest,

and Naive Bayes Classifier algorithms’ ability to predict the direction of the daily stock market

index movements of Tehran Stock Exchange (TSE) based on ’technical’-, ’fundamental’-, and

’technical & fundamental jointly’ inputs, in the sample period of April 2007 to March 2012.

The results indicated that the best prediction accuracy is achieved by combining technical and

fundamental data. Moreover, they showed that the Decision Tree model outperformed Random

Forest and Naive Bayes Classifier in terms of prediction accuracy. The Decision Tree had an

accuracy of 80.08%, whereas Random Forest and Naive Bayes Classifier obtained an accuracy

of respectively 78.81% and 73.84%. It should be noted that a prediction accuracy of 73.84% is

still considered to be high however (Imandoust & Bolandraftar, 2014; Müller & Guido, 2017).

The application of machine learning in stock prediction is still a limited field of research,

but is vastly growing due to more powerful computers. This paper will, like Imandoust and

Bolandraftar (2014), compare several machine learning algorithms. However, this paper will

focus on machine learning algorithms’ ability to predict under- and over-performing stocks and

unlike other studies, we will test whether the abnormal returns can be captured by well-known

factors (Brynjolfsson & Mcafee, 2017).
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3 Momentum and the Efficient Market Hypothesis

The purpose of this paper is to find and exploit systematic time-series anomalies within the

stock market, which means that we implicitly are looking for results that are contradicting the

efficient market hypothesis (EMH), as the efficient market is defined as a market where security

prices always ‘fully reflect’ all available information. The paper will refrain from answering

whether the market is efficient or not however, as we do not know if the market models we apply

capture all the risk-premiums in the market, which is known as the joint hypothesis problem

(Fama, 1970; Campbell et al., 2011; Pedersen, 2015).

In this section we will firstly describe the efficient market hypothesis, followed by a discussion

of the most notable stock price development models. Thereafter, we briefly describe some of

the most acknowledged explanations of the existence of the momentum effect. Lastly, we will

describe two extensions to the momentum strategy.

3.1 Efficient Market Hypothesis

Even though Jegadeesh and Titman (1993, 2001)’s findings were considered to be a strong

challenge to the highly regarded efficient market hypothesis (EMH), many still believe that the

hypothesis holds (Cuthbertson & Nitzsche, 2004).

The efficient market hypothesis is based on the idea that all traders are rational. The rational

traders incorporate any information that is relevant to the price of the assets and adjust the

prices accordingly. Hence, by this definition only new and unanticipated information can cause

stock prices to change, which would make it impossible to create abnormal profits from trading

on time-series patterns (Cuthbertson & Nitzsche, 2004). Thus, according to the efficient market

hypothesis, trading strategies based on time-series patterns should not yield abnormal returns

sustainably, as the efficient market hypothesis implies that the forecast errors of the stock prices

should be zero on average (Cuthbertson & Nitzsche, 2004):

εt+1 = Pt+1 − Et(Pt+1) = 0 (1)

Moreover, the forecast errors should be uncorrelated with the information available at time t or

earlier, known as rational expectations (Cuthbertson & Nitzsche, 2004):

E(Pt+1 − Et(Pt+1)) = E(εt+1) = 0 (2)

If the momentum trading strategies yield abnormal returns because of time-series patterns it

implies that the error term εt of the forecasts are positively serially correlated, as it means that

the expected returns are affected by the past returns. This is clearly a violation of the Efficient

Market Hypothesis, as it violates both equation (1) and (2) (Cuthbertson & Nitzsche, 2004).
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3.2 Stock Price Development models

3.2.1 Martingale

A Martingale is defined as a stochastic variable where the best forecast of all future values

Xt+j are equal to the current value Xt, conditioned on the available information up to time t

(Cuthbertson & Nitzsche, 2004):

E[Xt | Ωt] = Xt (3)

This implies a “fair game”, which is also called as a martingale difference:

E[Xt+1 −Xt | Ωt] = 0 (4)

If expected stock returns are significantly different from zero, it conflicts with the condition of

the martingale, that the expected price changes are zero based on the current information set

up to time t as stated above. This can be shown mathematically:

E[E[Pt+1]− Pt | Pt, Pt−1, . . . ] = 0 (5)

(Martingale)

E[E[Pt+1]− Pt | Pt, Pt−1, . . . ] 6= 0 (6)

(Expected price changes are different from zero)

3.2.2 Random Walk Hypothesis

If the following equation holds true, stocks are said to follow a random walk with a drift µ:

(Cuthbertson & Nitzsche, 2004):

Xt+1 = µ+Xt + εt+1 (7)

Xt+1 is a martingale and the Xt+1 −Xt is a fair game when µ = 0. The εt+1 is an identically

and independently distributed random variable (iid) with the following properties (Cuthbertson

& Nitzsche, 2004):

Et[εt+1] = 0 , Et[εmεs | Xt] =

[
σ2

0

]
for

m = s

m 6= s
(8)

The random walk hypothesis is more restrictive than a martingale, as a martingale is not re-

stricting higher conditional moments i.e. σ2 to be statistically independent, and because the

martingale is only restricting the εm and εs to be uncorrelated linearly, where the random walk

is restricting εt and εs to be uncorrelated both linearly and non-linearly.
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3.3 Behavioral Finance

The market can only be proclaimed to be inefficient relative to a specific risk-adjustment model,

which aims to capture the movements of the stocks. However, as we will see later on, the models

are not describing the real world perfectly and thus, there will always be residuals from the mod-

els. If these residuals have a systematic pattern it is typically classified as anomalies. Behavioral

finance try to explain these anomalies by some variety of irrationality or non-standard prefer-

ences. It is important to emphasize that this paper is not trying to explain why the momentum

effect exists, but in the following subsection we will briefly go through the most acknowledged

explanations of the momentum effect (Cuthbertson & Nitzsche, 2004).

Numerous scholars have sought to explain the momentum anomaly. Most of them tend to

be based on psychological factors, stating that investors make systematic mistakes. One of the

most persistent explanations is that investors are underreacting to news such as earnings an-

nouncements, and overreacting when there is a series of good and bad news (Barberis et al.,

1997).

Another interesting theory was developed by Hong and Stein (1999), who stated that the market

contains two types of agents, “news-watchers” and “momentum traders”. They claimed that

news-watchers use fundamentals news about cash-flows and the momentum-traders base their

decision on past returns. The underlying argument is that the news-watchers are processing the

information with delays, which means that prices underreact to news, which momentum-traders

can gain on by trend-chasing (Hong & Stein, 1999; Pedersen, 2015).

Fama and French (1996) argued that the overreaction hypothesis explained in 3.4 can be cap-

tured by their three-factor model, as they claimed that the abnormal returns of Bondt and

Thaler (1985)’s contrarian strategies disappear when adding the two factors. But the two ad-

ditional factors were not able to explain the abnormal returns found by Jegadeesh and Titman

(1993), and thus not the underreaction explanation. Fama (1997) argued however, that the

overreaction and underreaction explanations are not actually contradicting the efficient market

hypothesis, based on two arguments: First, he argued that if underreaction is about as frequent

as overreaction and the split is random, they are consistent with the efficient market hypothesis.

Second, even if the anomalies are so large that it cannot be attributed to chance, the anomalies

are still sensitive to methodology, as they tend to disappear when different models are applied

to test for expected returns (Fama & French, 1996; Fama, 1997).

Lastly, some authors claim that other types of irrational investor behavior can explain the

momentum effect, such as overconfidence and biased self-attribution. One of the most note-

worthy is by Daniel, Hirshleifer, and Subrahmanyam (1998), who claimed to find evidence for

overconfidence, which implies that traders attribute the ex-post short-term ‘winners’ that they

have picked to be a result of superior trading skills and ex-post ‘losers’ to be a matter of bad
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luck. This overconfidence is pushing the prices above the fundamental value, as the investors will

purchase more ’winners’. Eventually rational traders will see this diversion between the actual

price and the fundamental price, and the gains of the winners will be reversed (Cuthbertson &

Nitzsche, 2004; Daniel et al., 1998).

3.4 Extensions of the momentum trading strategy

The literature suggests several approaches to improve the momentum trading strategies. In this

sub-section we will briefly explain the most noteworthy extensions to the momentum strategies.

3.4.1 The January effect

In the literature there exists several examples of calendar anomalies, such as the (in)famous

Monday effect, day-of-the-week effect and January effect. The January effect is originally re-

ferring to the fact that returns in January historically have been unusually high (Fama, 1991).

However, in this context the January effect is referring to the fact that winners historically have

outperformed losers except for January where losers have outperformed winners on average, first

observed by Jegadeesh and Titman (1993). This is a quite interesting observation, as it suggests

that momentum strategies will perform better from February to December. The January effect

will not be investigated in this paper (Jegadeesh & Titman, 1993; Cuthbertson & Nitzsche,

2004).

3.4.2 Mean reversion

Contrarian strategies, where you short past winners and long past losers, has been a very debated

topic since Bondt and Thaler (1985) found that shorting the losers and longing the winners of

the past 3- to 5- years, would generate abnormal returns in the subsequent 3-5 years. Moreover,

Bondt and Thaler (1985) created an overreaction-hypothesis as an explanation for their findings.

There has been extensive evidence against the long term contrarian strategies however. Zarowin

(1990) found no evidence for the long-term contrarian strategy, but found that it was due to

the size effect. Moreover, as noted earlier, Fama and French (1996) found that the three-factor

model captured the long-term contrarian strategy.

Abnormal returns based on weekly- and monthly mean reversion was later found by Conrad

and Kaul (1998) however. This result has caused scholars to skip a week or a month between

formation- and holding period to increase the performance of the momentum effect e.g. French

(2017)’s momentum portfolio, which we will discuss later is skipping the first month after forma-

tion. This paper tested whether skipping one month between the formation period and holding

period made the momentum trading strategies perform better, reported in in appendix C. The

results indicate that higher abnormal returns could be obtained by skipping a month, but will

not be investigated further as we follow the framework of Jegadeesh and Titman (1993) (Bondt

& Thaler, 1985; Zarowin, 1990; Jegadeesh & Titman, 1993; French, 2017).
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4 Theoretical Framework of Machine-Learning

A common view in the portfolio management industry is that for machine learning to be an

effective tool, the traders need to have an understanding of the algorithms. Moreover, many

funds state that they are not yet comfortable fully automating trading management if they do

not understand how a particular prediction is made (Financial Stability Board, 2017).

In this section we will introduce the concepts of machine learning followed by an overview of

the supervised machine learning algorithms applied in this paper.

4.1 The concepts of machine learning

4.1.1 Training & testing data

Before implementing any trading strategy it is essential to test whether the trading strategy

works. It is not any different for machine learning-based trading strategies. Unfortunately, it

is not possible to use the same data applied to train the algorithm to evaluate the success of

it, since the machine learning algorithms will always remember the whole data set of which it

was trained and thus, for any point in time it will always be able to predict the correct result.

Hence, to see if the algorithm will generalize well, we need a data set to train the algorithm,

denoted as a training set, and a data set to assess the performance of the algorithm, denoted

as a test set, which has data the algorithm has not seen before. The decision of where to split

between the training set and the test set is somewhat arbitrary, but most scholars appear to

use a test set, which constitutes 25% of the data (Müller & Guido, 2017). It is important that

the data of the test set consists of the same type of input as the training set. In this thesis the

inputs (features) xj are continuous numbers: xj ∈ R, and the classes yn are discrete numbers:

y ∈ Y = 1, 2, . . . , n where n denotes the number of classes.

4.1.2 Supervised Learning

There are overall two categories of machine learning, supervised- and unsupervised. Supervised

learning is the most widely used and in general the most successful type of machine learning

(Müller & Guido, 2017). It is also the type of machine learning that will be applied in this paper.

Supervised learning refers to the fact that the person training the algorithm acts as a ”teacher”

for the algorithm by initially feeding the algorithm with both the inputs and correct output for

each data point in the training set. The test set is unsupervised however, as the algorithm will

receive input data only. Instead, the algorithm finds similarities between the inputs given and

what it has learned in the training set to eventually make a prediction of the class label.

4.1.3 Unsupervised Learning

With unsupervised learning, the algorithm is not given any output to validate the prediction

success in the training set. The algorithm is simply given the input data, and asked to find pat-

terns in the data, which best separates the outputs (Hastie et al., 2017). Unsupervised learning
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is way beyond the scope of this paper, and will thus only be touched briefly. The difference

between unsupervised learning and supervised learning is illustrated below.

Figure 1: The figure displays the difference between unsupervised problems (left) and supervised problems
(right). In the supervised problem, the algorithm will receive the information of the class labels initially
in the training set, and can then decide which function separates them best. In the unsupervised problem,
the algorithm first has to make a hypothesis of what class label the data points belong to only from the
input data

4.1.4 Classification

There are overall two types of supervised machine learning problems. Classification- and regres-

sion problems. For regression problems, the goal is to predict a real number. Hence, if the aim

of this paper were to predict the exact stock returns, it would be a regression problem. We are

not interested in predicting the exact returns however, only whether the stocks are generating a

high or low return in the respective period. More specifically the aim of this paper is to identify

the underperforming and overperforming stocks every month, and separate them from the rest

of the stocks. For a classification problem, the goal is to predict the class label from a choice

of pre-defined classes. This is thus a classification problem. The possible outputs, which we

have denoted winner-, loser- and neutral stocks are called classes. Every stock at a given time t

belongs to one of these three classes, so this is a three-class classification problem. The winner

stocks are labelled (y=1), neutral are labelled as (y=0), and loser stocks are labelled (y=2).

The problem in this thesis is thus a supervised classification problem, as opposed to a regression

problem (Müller & Guido, 2017).

4.1.5 Generalization, overfitting and underfitting

As discussed in section 4.1.1, the goal of supervised learning is to train a machine learning

algorithm on training data, which enables the algorithm to predict on new, unseen data. If

the algorithm is able to predict accurately on new unseen data, the model is said to generalize

well. To optimize the ability to generalize, two pitfalls related to each other need to be avoided,

namely overfitting and underfitting (Müller & Guido, 2017).

An algorithm can be trained based on many inputs and many sets of rules, which implies that
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we build a very complex machine learning model. On the other hand we can also train the

algorithm with very few inputs and restrict it to limit the predictions on fewer rules, which will

make the model less complex. If we make the model too complex, it is called overfitting. It

happens if a model is fitted too closely to the properties of the training set and creates a model

that works perfectly for the training set, but is not able to generalize. On the other hand if the

model is too simple the model will not capture the heterogeneity in the data, and the model will

do badly not only on the new data but also on the training set. Choosing a model too simplistic

is called underfitting. In conclusion the more complex the model is, the better it will be able to

predict the training data, but if it gets too complex it will be focusing on the individual data

points in the training set, and will not create rules that can be generalized to new data. The

trade-off is illustrated below (Müller & Guido, 2017).

Figure 2: Illustrative example of the trade off between model complexity and accuracy. prediction accuracy
is on the y-axis, and complexity is on the x-axis

4.1.6 Decision boundary

In supervised classification problems the algorithm is receiving both the inputs and outputs in

the training set, from which the algorithm creates a function that best divides the classes. This

function is called a decision boundary. The function can also be seen as the hypothesis that

the algorithm is making. Intuitively the decision boundary is the “line” where the algorithm

divides the inputs. The decision boundary can take many forms as the hypothesis can vary from

a linear hypothesis to a non-linear hypothesis based on higher dimensions of the inputs, as seen

in figure 3. For the algorithm to be able to make the best possible hypothesis, the correct inputs

needs to be selected (Müller & Guido, 2017).
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Figure 3: The figure displays a two-dimensional example of how decision boundaries can take different
forms, depending on the classification problem. The dark blue line is the decision boundaries which is
linear in the graph to the left and a circle in the graph to the right.

4.2 Supervised Machine Learning models

The purpose of this subsection is to provide an overview of how the algorithms included in this

thesis work, and to examine the strengths and weaknesses of each algorithm. The following

algorithms are investigated in the thesis:

• K-Nearest Neighbors (k-NN)

• Naive Bayes Classifiers

• Decision tree

• Random Forest

We will also briefly describe Support Vector Machines and Neural Networks, as these are state

of the art machine learning algorithms, which were out of scope as described in section 1.4.

4.2.1 K-Nearest Neighbors Classifier

The k-Nearest Neighbors Classifier (k-NN) algorithm is one of the most simple machine learning

algorithms. Storing the training set is all it requires to build the model. To make a prediction in

the test set, the algorithm finds the closest data points in the training set, the nearest neighbors,

and then label the class of the datapoint in the test set based on the majority of the nearest

neighbors’ class labels.

The k-NN algorithm’s standard setting is to only consider one nearest neighbor from the train-

ing set, but the model can be extended to k number of neighbors however. When adding more

neighbors to the model, the model is using a voting technique to assign the label of the unknown

test point. This is illustrated in figure 4. In this paper, the k-NN algorithm counts the number

of known loser-, neutral- and winner stocks data points closest to a data point in the test set,

and then simply assigns the class that is most frequent (Scikit-Learn, 2017a).
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Figure 4: The figure displays a two-dimensional example of how k-Nearest Neighbor with 3 neighbors
assigns the class label to the test data points. The triangles are the unknown data points in the test set,
and the color represent the class they are labelled

The fewer the neighbors the more the k-NN model will follow the training data. Hence,

adding more neighbors will lead to a more smooth decision boundary. A smoother model implies

a less complex model. This can be illustrated by the two most extreme cases of the k-NN

classifier: If the number of neighbors is set to the amount of data points in the training set,

all predictions in the test set would be the same, because each test point would have all the

training set’s data points as neighbors, and thus it would simply predict the most frequent class

in the training set. The other extreme case is using only a single neighbor where the prediction

on the training set will be perfect. Going back to the under-fitting over-fitting discussion, it is

important to emphasize that adding more neighbors makes the model simpler, which most likely

will make the accuracy drop in the training set, however it does not necessarily mean that the

prediction accuracy in the test set drops (Müller & Guido, 2017).

4.2.1.1 Parameters

The most important parameters to adjust for the k-Nearest Neighbors Classifier are quite ob-

vious: How to measure the distance between the data points and the number of neighbors. In

practice using a small number of neighbors works well, but it is necessary to do sensitive tests

of the parameter. Choosing the right distance of the neighbors is beyond the scope of this pa-

per. We apply the Euclidean distance, which is the standard setting. The distance function of

Euclidean distance is
√

Σ(x− y)2, which is an ordinary straight line distance between the data

points. In a two-dimensional setting with a training-point (q1,q2) and a test point (p1,p2) the

Euclidean distance would be
√

((q1 − p1)2 + (q2 − p2)2) (Scikit-Learn, 2017a; Müller & Guido,

2017).
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4.2.1.2 Strengths & weaknesses

The strengths of k-NN is that the model is easy to understand and despite its simplicity, k-NN

has proven successful in a number of real-world application (Müller & Guido, 2017; Scikit-Learn,

2017a). As the k-NN model is a non-parametric model it is often successful where the decision

boundary is very irregular. The drawbacks of the model is that it can be very slow if the training

set is large either because there are a large number of features or because there are many data

points. This is especially a big drawback when it comes to trading stocks where timing can be

crucial. The model will be applied as the baseline, before getting involved with more advanced

machine learning algorithms (Scikit-Learn, 2017a; Müller & Guido, 2017).

4.2.2 Naive Bayes Classifier

Naive Bayes Classifier is a well known algorithm in the machine learning community, and is

recognized as a simple but effective algorithm. As discussed in section 4, Imandoust and Bolan-

draftar (2014) found that Naive Bayes Classifier were able to predict the stock movements with

a high prediction accuracy (Imandoust & Bolandraftar, 2014).

Naive Bayes Classifier is based on Bayes’ theorem with the “naive” assumption of independence

between every pair of features. Bayes Theorem states the following (Scikit-Learn, 2017b):

P (y | x) =
(P (x | y)P (y))

P (x)
(9)

The P (y | x) is known as posterior probability. Posterior probability is the probability that

it is the class yn, after receiving the data of the dependent features xj . In other words, the

Naive Bayes Classifier algorithm, will pick the class which has obtained the highest posterior

probability given the features it receives. This can be calculated using the naive assumption

explained above, P (xj | y, x1, . . . , xn) = P (xj | y), which makes it possible to reduce the function

to (Scikit-Learn, 2017b):

ŷ = arg maxP (Y )
∏

P (xj | y) (10)

Where P(Y) is the relative frequency of class y in the training set, and P (xj | y) is the proba-

bility of getting the value of the feature conditioned on it belonging to class y.

To get a better understanding of the algorithm an illustrative example is provided:

The goal is to predict whether a stock will generate a high return (=1) or not (=0) in time t+1.

Suppose the following is the training set:

rt−1 High Neutral Low High High Low Neutral Neutral High Low

rt 1 1 0 1 0 0 1 0 1 1

There are 10 stocks in total, rt−1 is the input and represents the return of the previous

month. rt represents the output, which can be either 1 or 0. If rt=1, the return in the current

month was high, if rt=0, the return was not high.
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We then create statistics of each classes:

High rt Not high rt total

High rt−1 3 1 4

Neutral rt−1 2 1 3

Low rt−1 1 2 3

total 6 4 10

which means

High rt Not high rt P (x)

High rt−1 3 1 0.4

Neutral rt−1 2 1 0.3

Low rt−1 1 2 0.3

P (Y ) 0.6 0.4

Suppose the return in time t was low, and we now want to predict whether the return in

t + 1 is going to be high or not. Then it would be possible using equation (9) to calculate the

probability of getting a high return applying Naive Bayes Theorem:

P (high rt+1 | lowrt) = P (lowrt−1 | high rt) ∗
High rt
Lowrt−1

P(Lowt−1| Hight)=(1/6)=16.67%, P(Hight)=60% and P(Low)=30%. Which then means that

the probability is: 16.67%∗ 60%30% = 33.33%. With the same logic you can calculate the probability

of the class being ”not high” in t+ 1, which in this example would be 37.50%. Hence the Naive

Bayes Classifier would predict the stock to generate a ”not high” return in t+ 1.

In this paper the algorithm will be given several features, so the algorithm is picking the class

with the highest product of the features’ conditional probabilities
∏
P (xj | y), multiplied with

the relative frequency of the class P (Yn) as we can see from equation (10).

4.2.2.1 Parameters

Naive Bayes Classifier can be set to different distribution functions. In this paper, Gaussian

distribution will be applied as our inputs will be continuous data (Müller & Guido, 2017). The

likelihood of getting a feature value conditioned that it belong to a class is calculated as the

following (Scikit-Learn, 2017b):

P (xi | Y ) =
1√

2 ∗ π ∗ σ2y
∗ e

xi−µy
2∗σ2y (11)

Where π is pi, and σ2 is the variance of the features that belongs to the class. µ is the average

value of the features of the class. All the statistics are collected in the training-set

4.2.2.2 Strengths & weaknesses

Naive Bayes Classifier is fast in training and relatively intuitive to understand. The model is
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very “naive” however, and the assumptions are usually violated. The model works very well

in many settings, and as earlier discussed, Imandoust and Bolandraftar (2014) found that the

algorithm could predict stock index movements with a high prediction accuracy (Scikit-Learn,

2017b; Müller & Guido, 2017).

4.2.3 Decision tree

The decision tree algorithm was first introduced by Breiman, Friedman, Stone, and Olshen

(1984), and has been used for numerous applications since. In section 4 we described that

Imandoust and Bolandraftar (2014) found results, which indicated that the decision tree algo-

rithm could predict stock index movements very accurately.

The decision tree algorithm can be boiled down to a hierarchy of if- & else statements, which

means that understanding the decision tree algorithm’s reasoning is easy. As illustrated in figure

5 below, the algorithm uses a set of binary rules to identify the class. Each node in the tree

represents a threshold that eventually will lead to a terminal node called a leaf, which contains

a class. In the machine learning context, the thresholds are called (split) tests (Müller & Guido,

2017; Scikit-Learn, 2017c).

Figure 5: Illustration of how supervised problems can be solved with decision trees

The optimal tree would maximize the information at every single node simultaneously, but

there is not a known method for a global optimal decision tree. Instead, the method is to start

at the top node, also called the root, and optimize the information at every node individually.

This recursive process is eventually creating a tree of binary tests. The process is repeated until

all the features in the training set are classified, and each leaf only contains a single class. A

leaf that only contains features of one class is called pure (Müller & Guido, 2017). Once the

tree has been set up, a data point in the test set can be predicted by starting at the root of the

decision tree and traverse the tree until a leaf is reached. The data point will then be labelled

with the class of the leaf.

4.2.3.1 Parameters

Building a decision tree where all leafs are pure will most likely imply a too complex model,
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which will be 100% accurate when applied on the training set. There are several ways to prevent

overfitting. The most common ones are called pre-pruning and post-pruning. Post-pruning is

where you make the decision where to stop the tree after the tree has been fully grown. The

decision is based on the amount of marginal information gained from the extra node. If the

nodes contain little to no information you simply remove them. Pre-pruning is where you decide

beforehand when to stop the creations of more nodes. Pre-pruning can be constructed in many

different ways. In this paper we will only pre-prun by limiting the maximum depth of the tree,

which means that only a limited number of consecutive tests can be conducted. If the decision

tree is pruned, the leafs might not be pure, and instead the majority class in the leaf will be the

determinant of the data point’s class (Müller & Guido, 2017; Scikit-Learn, 2017c).

4.2.3.2 Strength & weaknesses of decision trees

The advantage of the decision tree algorithm is that the model is easy to visualize and can be

interpreted by people with little statistical knowledge. Moreover, the algorithm is not affected by

the type of data it is given, (binary, continuous, etc.), and no normalization or standardization of

the data is necessary. The largest drawback is that the decision tree is usually overfitting, even

with the pre-pruning tool. However, as already mentioned, Imandoust and Bolandraftar (2014)

found that the decision tree showed promising results for predicting the stock index movements

(Müller & Guido, 2017; Scikit-Learn, 2017c).

The results of the Decision Tree will only be documented in appendix E, as the trading strategies

showed no sign of significance whatsoever, and as we will go through next, Random Forest

provides a better alternative.

4.2.4 Random Forest

As discussed above, the decision tree algorithm has a tendency to overfit the training data. To

address this problem the Random Forest algorithm was introduced by Breiman (2001). The

main idea is to build several decision trees, which all perform very well but also overfit on part

of the data. Random Forest is as the name implies, injecting randomness into the tree building

process to ensure each tree is different. This is done in two ways; by bootstrapping the data, and

by randomizing the available features in each split test. Thus, to build a trading strategy based

on Random Forest, the first decision you take is the number of bootstrapped datasets you want

create, which is the equivalent to deciding how many decision trees to build. By bootstrapping

the training set Breiman (2001) showed that the decision trees were overfitting in different ways,

which implied that the overfitting could be reduced by averaging their results while still retaining

the performance of the decision trees (Breiman, 2001). Bootstrapping is a technique where

new data-sets are created by randomly drawing datapoints with replacement. The advantage

compared to e.g. Monte Carlo simulations is that it does not assume normal distribution. This

is important because stock returns more often have ‘fat tails’, meaning that they usually have a

kurtosis >3, moreover individual return data is often positively skewed (Munk, 2016). Results

from bootstrapping are still limited to a specific model, null hypothesis and sample size however,

and it can therefore be hard to generalize from (Cuthbertson & Nitzsche, 2004). Random Forest
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has proven to be able to generalize well using the bootstrapping technique in this paper however,

which we will see in section 10.

The second decision you need to take is the amount of features the algorithm will have available

at every node. Random Forest will then choose the best possible test among the subsets of

features, randomly given at every node.

When all the trees are created, a data point’s class can be predicted by starting at the root of

each tree in the Forest and traverse the trees until a leaf is reached in each tree. All trees are

given an equal vote for the final classification of the data point. The class that has received

the majority of the votes is then going to be the class that the Random Forest algorithm will

predict the data point to be (Müller & Guido, 2017; Breiman, 2001).

4.2.4.1 Parameters

The two most important parameters to adjust are firstly the number of random features that the

algorithm is given for each node (maximum features) and secondly the number of decision trees

(n estimators). The former is important to adjust because it affects the amount of randomness:

If we let the number of features be equivalent to the total set of features, no randomness will be

injected in the feature selecting and only the bootstrapping process will differentiate the decision

trees. On the contrary, if the number of features to choose from are set to 1, the algorithm has

no choice, and can only search for the highest information gained from the feature that was

randomly selected. Hence, a higher number of features will imply higher similarities between

the trees, and a lower number of feature will mean more different decision trees. With few

number of features, the trees might grow very deep in order to be able to fit the data reasonable

(Müller & Guido, 2017).

4.2.4.2 Strengths & Weaknesses

The Random Forest algorithm is among the most popular machine learning algorithms. It is

powerful, and has the advantages of the Decision Tree, but is less biased towards overfitting.

The downside is that it is much less intuitive. It is a lot harder to understand Random Forest

compared to the decision tree algorithm, since there are several trees, which also grow much

deeper. Moreover, with large data samples it takes a lot of computational power and can be

time consuming (Müller & Guido, 2017).

4.2.5 Kernelized Support Vector Machines (SVM)

Kernelized Support Vector Machine algorithm (SVM) is out of scope for this paper, but we

will briefly describe the algorithm, since Huerta et al. (2011) showed that attractive investment

strategies could be created by using SVM to predict stocks as discussed in section 2.

SVM is an algorithm that is able to make non-linear decision boundaries, by using the higher

dimensions of the features, where the decision boundary can be linear. This is called ”kernel-

izing”. There are several ways to create these high dimensional spaces; one of them is called

the polynomial kernel, which computes a limited number of possible polynomials of the fea-

tures: x2j , x
3
j , . . . , x

c
j . When the SVM has found the dimensions that best divides the classes,
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the algorithm is ranking the data points after how important they are to represent the decision

boundary between the classes. The most important data points are the ones that are on the

frontier between the two classes. These data points are called the support vectors. When the

SVM is predicting the new data point’s class, it measures the distance to each of the support

vectors, and label the data point based on the length to the support vectors and the importance

of them (Müller & Guido, 2017).

Looking at figure 3 again, the decision boundary to the right is possible to create with the

SVM algorithm, which would look somewhat like the gray square in figure 6 below, using higher

dimensions of the features (Müller & Guido, 2017).

Figure 6: The illustration is displaying how the decision boundary of the figure to the right in figure 3
might look like in a higher dimension.

4.2.5.1 Strengths & Weaknesses

Compared to the models we test in this paper, the Kernelized Support Vector Machine is more

powerful, and the decision boundaries are also much more complex. This is a strength, but

also a weakness: The algorithm uses more time to calculate and obtain more memory usage

than the models tested in the paper. SVM also requires pre-processing of the data and the

parameters usually need excessive tuning. Lastly, the algorithm is a black-box, which is a

significant drawback for portfolio management, which we mentioned in the beginning of the

section. SVM was initially thought to be applied in this paper, as it is one of the most advanced

machine learning models available. However, the computation time took more than 7 days, where

the algorithm was stopped as it would compromise the rest of the paper (Financial Stability

Board, 2017; Müller & Guido, 2017).
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4.2.6 Neural Networks

Neural Networks is out of scope of this paper, as discussed in section 1.4, but will briefly be

described since the algorithm is considered state-of-the-art, and is probably the most famous

machine learning algorithm. Neural Networks has shown some very promising results of predict-

ing stock index movements as discussed in section 2, and the machine learning algorithm that

the asset management fund Maj Invest A/S implemented was also based on Neural Networks

(Finanswatch, 2014).

The idea of Neural Networks is to mimic the learning patterns of a brain. The obvious ad-

vantage of Neural Networks is that it is capable of building extremely complex models. There

are drawbacks of the algorithm however: A model build on Neural Networks is usually a black

box. Hence, it is very hard to understand which assumptions the model bases its predictions

on, as the algorithm uses the inputs in interaction with each other using many hidden layers.

Moreover, it requires extensively pre-processing of the data, as the algorithm works best with

standardized data, where all the data have the same properties (Müller & Guido, 2017).
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5 Applied Risk-adjustment Models

To risk-adjust the trading-strategies several asset-pricing models are applied. In this section the

models used to evaluate the performance of the trading strategies will be explained. Firstly, we

review the standard Sharpe-Lintner CAPM, followed by the Fama-French three-factor model.

Lastly we will go through Carhart’s four-factor model, which the machine-learning based training

strategies will be regressed on instead of the Fama-French three-factor model as discussed in

section 1.4.

5.1 Sharpe-Lintner CAPM

The Sharpe-Lintner Capital Asset Pricing Model (CAPM) can be expressed as the following:

(Ri − rf )t = αi + βim(Ri − rf )t + εit (12)

Where βim = cov(ri,rm)
var(rm) . The αi represents Jensen’s alpha, and is by definition assumed to be

equal to zero. Hence, βim is the only explanatory variable for the returns according to the CAPM.

As beta represents the covariance between the asset returns and the market returns, stocks with

high covariance with the market will be expected to generate higher returns compared to stocks

with less covariance with the market (Campbell et al., 2011). If αi > 0 on a significant level, the

asset i realizes an abnormal return relative to CAPM. Note that when we regress the long-short

portfolios we do not subtract the risk-free rate as it is implied that it is done for both the long

and the short strategy, which will equal each other out. This applies for all market models

(Cuthbertson & Nitzsche, 2004).

5.2 Fama-French three-factor model

Fama and French (1992)’s three-factor model is in Fama and French (1996)’s paper used to test

several anomalies found in the literature. As discussed in section 3.3 the three-factor model

could not explain the findings of Jegadeesh and Titman (1993), but it is still a relevant model

as Fama and French (1996) claimed it captures much of the cross-sectional variation in average

stock returns (Fama & French, 1996). Moreover, applying it can help decomposing the trading

strategies. The equation used for later regressions is the following:

(Ri − rf )t = αi + βi,m(Rm −Rf )t + si ∗ SMBt + hi ∗HML+ εit (13)

The three-factor model suggests that the return of any asset i can be explained by the market

beta explained in section 5.1, and two other factors, namely the Small-Minus-Big (SMB) and

High-Minus-Low (HML) factors. More specifically, SMB and HML are supposed to capture

the abnormal profit that can be obtained by respectively buying small market cap stocks and

selling big market cap stocks documented by Banz (1981), and buying stocks with a high book-

to-market value while going short in stocks with a low book-to-market value documented by

L. K. C. Chan, Hamao, and Lakonishok (1991) (Fama & French, 1992).
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Moreover, Fama and French (1992) also claimed that the three-factor model is capturing other

documented anomalies, including variables such as E/P and leverage. Thus, by adding these

factors to the CAPM, Fama and French (1992) argued that a better measure of a portfolio’s

returns is obtained. Fama-French’s three-factor model implies, as the Sharpe-Lintner CAPM,

that αi = 0, and that αi > 0 represents an abnormal return of asset i. A further explanation of

the construction of the factor-mimicking portfolios applied is explained in section 7.2.

5.3 Carhart’s four-factor model

Carhart (1997) claimed to explain the abnormal returns of many mutual funds with a four-

factor model. The model is simply an extension to the Fama French three-factor model that we

described above, adding a factor mimicking portfolio based on Jegadeesh and Titman (1993)’s

findings of momentum. The model will only be applied on the machine learning portfolios to

investigate whether the models are picking stocks based on the momentum effect. Carhart

(1997)’s four-factor model is expressed as the following:

(Ri − rf )t = αi + βim(Rm −Rf )t + si ∗ SMBt + hi ∗HMLt + pi,t ∗ PR1Y Rt + εit (14)

As with the other risk-adjustment models, alpha is assumed to be zero, αi = 0. The construction

of the momentum factor will be explained further in the section 9.

5.4 Underlying assumptions of the OLS estimator

As described above, the performance of the trading strategies will be tested using linear re-

gressions. In order for any ordinary least squares (OLS) regression to be unbiased, following

assumptions need to hold (Brooks, 2011):

• The variance of the error terms are constant σ2, meaning no heteroscedacity

• The error terms are independently distributed, meaning no autocorrelation in the error

terms cov(εi, εj) = 0, or between the error term and the independent variable cov(εt, xt)

• The error terms are normally distributed with a mean equal zero: εt = N(0, σ2)

If the above assumptions hold true, it implies that E[α̂] = α and E[β̂] = β (Brooks, 2011).
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6 Validity & Reliability of Data

Validity in a quantitative study can be defined as the collected data’s degree of relevance for

answering the research question (Andersen, 2013).

The collected data for all the trading strategies is assessed to be highly relevant, as it was

collected solely for the purpose of answering the research question. The constituents of the

data sample might influence the validity however. NYSE consists of a large fraction of small

stocks, which implies that the machine learning algorithms will be trained mainly to predict

time-series patterns of small stocks. This could potentially reduce the validity if it implies that

the algorithms will be more likely to label the small stocks as winners and losers, and large cap

stocks as neutral stocks. If this is true, the trading strategies might become unprofitable net of

transaction costs. This will be discussed further in section 10.4.

It should also be noted that Python was applied for the machine learning part of the thesis, with

the ”Scikit-Learn” module. Scikit-Learn is a Python module that has a wide range of state-of-

the art machine learning algorithms, but the algorithms are created with a general purpose, and

is hence not created with the purpose of stock trading.

Lastly we note that we use overlap of our portfolios, which means that the error terms of the

regressions will be serially correlated. This could be affecting the validity of the results. We

will assume for the rest of this paper that the standard assumptions of the OLS estimator holds

however (Cuthbertson & Nitzsche, 2004).

Reliability is referring to the completeness of data and how precise the concept is measured,

including whether the results can been affected by coincidences (Andersen, 2013).

The reliability of the data is assessed to be high, as it was extracted from CRSP, a highly reliable

source used by many acknowledged scholars. Moreover, several of the most significant biases has

been sought to be avoided. Firstly, it is not possible to see a price, and then decide to trade on

it, hence we used the ”holding period return” provided by CRSP instead of calculating returns

from price data. Secondly, we have included companies, which are not listed today to avoid

survivorship bias. Moreover, if a stock was delisted in the month we constructed the portfolio

or in the holding period, the stock was still included in the portfolio, as we would not know that

the company would be delisted at the time it was constructed. This potential bias is referred

to as a look-ahead-bias, which we also have tried to avoid, by only including stocks at the time

they were listed and it was possible to trade them. Lastly, the issue of delisting was handled by

using the ”delisting return” if a stock was delisted. This return takes account of both delisting

because of a merger, which would be known beforehand, and a bankruptcy, which might have

stopped all trading of a stock immediately. However, two issues could potentially be addressed.

Firstly, the constituents in the data slightly changed, depending on the data-collecting method.

Secondly, some manual data-cleaning had to be done, which could cause some minor mistakes

(Jegadeesh & Titman, 1993; Fama & French, 1996; Pedersen, 2015; Munk, 2016).
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7 Data & Methodology of Momentum Strategies

The following section is reviewing the investment universe, followed by a description of how

Fama-French’s High-Minus-Low and Small-Minus-Big portfolios were constructed. After review-

ing the data, we explain the methodology step-by-step to test the existence of the momentum

effect first found by Jegadeesh and Titman (1993). Lastly we will discuss how to interpret the

results.

7.1 Data

7.1.1 Investment Universe - Momentum

Firstly, monthly return data was gathered from Center for Research in Security Prices (CRSP)

using Wharton Research Data Services. More precisely, we collected the ’adjusted monthly hold-

ing period return’ data for all common stocks listed on New York Stock Exchange (NYSE) from

January 1993 to end of December 2016, which included 6357 stocks in total. NYSE data was

used due to several reasons: Firstly, the data could be extracted from a reliable source, namely

CRSP, and required an insignificant amount of manual cleaning, which is especially important

because we are testing the machine learning algorithms on the same data as the momentum

portfolios, and clean data is essential in a machine learning setting, which we will explain in

section 9.1. Secondly, a robust data-sample could be obtained only using NYSE. thirdly, CRSP

has NYSE data available from 1925, which also is important for the tests of the machine learning

algorithms. Fourthly, numerous scholars use NYSE data at least as a part of their data sample.

Other stock exchanges could have been included as well, but as discussed in 1.4, it would also

have had several drawbacks.

The actual test period of the momentum portfolios will be from end of December 1994, ex-

actly 24 months after January 1993, because 12 months of formation returns are needed, and

subsequently a 12 month holding period is required to test the 12 month formation- and holding

period portfolios. Moreover, we want all the trading strategies in the paper to be tested on the

exact same sample period to increase the comparability of the results. Hence, end of Decem-

ber 1994 to end of December 2016 will be denoted as the sample period for all trading strategies.

When regressing the portfolio on CAPM, the value-weighted monthly returns of S&P 500, ex-

tracted from CRSP, is applied as the market return. The S&P 500 is the leading stock index in

the US, which captures the 500 largest stocks listed on NYSE or NASDAQ, and is often used

as a proxy for the market return (Munk, 2016).
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Figure 7: The return of the 1-month Treasury Bill over time

The risk-free return data is the interest rate on the 1-month Treasury Bill also extracted

from CRSP, de-annualized using the formula (1 + rf )1/12 − 1. This is the same proxy for the

risk-free rate as in Jegadeesh and Titman (1993). French (2017) also uses the 1-month Treasury

Bill as the proxy for the risk-free rate (French, 2017; Jegadeesh & Titman, 1993).

7.1.2 Fama French Data

Fama-French’s three factors were collected on French (2017)’s webpage, instead of creating the

portfolios ourselves in order to increase the validity. This subsection will describe how French

(2017) constructed the three factors, which follows the methodology reported in Fama and

French (1993).

French (2017) has included all common stocks listed on NYSE, AMEX and NASDAQ, however

all financial companies are excluded since high leverage is not necessarily a sign of financial

distress, which it typically indicates for non-financial companies (Fama & French, 1993).

The HML factor is relying on fundamental data of the companies. To ensure that the companies’

fundamentals were publicly available for the respective returns, the SMB and HML factor-returns

were calculated from July in time t to June in t+1. The following is a step-by-step description

of how the HML and SMB factor-returns were created (Fama & French, 1993):

• The stocks were firstly divided into two groups in the end of June each year, based on

their market value of equity (ME). As shown in figure 8, the median of the included stocks’

market value of equity was set as the threshold, creating two segments, namely “Small”

stocks and “Big” stocks.

• Simultaneously, the stocks were broken into three segments based on the their book-to-

market value BE
ME . More specifically, the stocks were ranked in the end of Junet each year,

based on the book value of equity (BE) in the end of December in t−1 over the market value

of equity in the end of June in t. The return data was excluded from the period if the book

value of equity data was not available at December in t-1. The stocks were then divided into

three segments based on their book-to-market value with the 30% percentile as the lower

threshold, and 70% percentile as the upper threshold. The stocks with a book-to-market

value below the 30% percentile were classified as “Growth” stocks, the stocks with a book-

to-market value between the two thresholds were classified as “Neutral” stocks, and the
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stocks with a book-to-market value above the top 30% percentile were classified as “Value”

stocks. It is noteworthy that Fama and French (1993) mentions that the thresholds are

arbitrary, and there has been no attempt to optimize them (Fama & French, 1993).

• All the stocks were then divided into 6 portfolios since the stocks would either be “Big” or

“Small” while simultaneously be “Growth”, “Neutral” or “Value” stocks, as illustrated in

figure 8 below. The value-weighted portfolios were created each year in the end of June:

wjt =
MVj,Julyt

MVportfolio,Julyt
, which implies that the six portfolios were rebalanced once per year.

Figure 8: The figure displays how the stocks are divided into six value-weighted portfolios each year in
the end of June. The two horizontal lines are the 30% and 70% percentile of the BE/ME, and the center
vertical line is the median ME of the included stocks.

• From the six portfolios, the Small-Minus-Big (SMB) and High-Minus-Low (HML) portfo-

lios were then calculated:

The SMB portfolio was calculated as the average return of the three ”Small” portfolios

minus the average return of the three ”Big” portfolios each month.

SMB = 1/3(SmallV alue+ SmallNeutral + SmallGrowth)

−1/3(BigV alue+BigNeutral +BigGrowth)
(15)

The High-Minus-Low factor portfolio was calculated as the average return of the two

”Value” portfolios minus the average return of the two ”Growth” portfolios each month.

HML = 1/2 ∗ (SmallV alue+BigV alue)− 1/2 ∗ (SmallGrowth+BigGrowth) (16)

Regressing the three factors, revealed that the average excess market return (rm − rf ) had an

average monthly return of 0.63% in the sample period, which is relative close to the excess return

of the S&P 500 in the same period of 0.68%. The HML portfolio had an average monthly return

of 0.26%. The SMB had an average monthly return of 0.15%. Both SMB and HML yielded

insignificant abnormal returns when regressed on CAPM in the sample period.
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7.2 Methodology

The momentum strategies are strategies of buying past winners and short-selling past losers,

which we in this paper denote as WML momentum portfolios.

We will follow the framework of Jegadeesh and Titman (1993), which means that sixteen WML

momentum portfolios will be created, based on the returns in the past 1, 2, 3 and 4 quarters,

and with holding periods of 1, 2, 3 and 4 quarters. The following subsection is a step-by-step

description of the research design following the methodology of Jegadeesh and Titman (1993).

Firstly, the arithmetic returns were converted into log-returns to create the rolling formation

period returns, since accumulating log-returns over a period can be done by summation (Munk,

2016):

rlogi,t = ln(1 + r,ti) (17)

Secondly, we defined a formation period of J months. At the beginning of each month, the

log-returns of the past J-month were summed together, creating rolling returns over the past

J-periods:

rlogJ = ΣJ
m=1r

log
i,t (18)

Thirdly, the monthly returns (equation 19) and the rolling returns of the formation-periods

(equation 20) were converted back to arithmetic returns as the conversion into log-returns only

was done to calculate the rolling returns of the formation periods:

rarithmetic
i,t = er

log
i,t − 1 (19)

rarithmetic
J,t = er

log
J,t − 1 (20)

In the rest of the paper arithmetic returns will be applied, as the results will be more comparable

to the academic literature.

Fourthly, all available stocks were ranked each month, based on their cumulative return in

the past J months. The stocks were then segmented into two categories, ”past losers” and ”past

winners”: Past losers were the 10% worst performing stocks in the past J months, and the past

winners were the 10% best performing stocks in the past J months. Which again is a replication

of the methodology of Jegadeesh and Titman (1993). Moreover, to be included in the holding

period at time t, the stocks were required to have return data in the whole formation period.

Fifthly, an equally weighted portfolio of the ”past winners” and an equally weighted portfo-

lio consisting of the ”past losers” were constructed each month, still following the framework

of Jegadeesh and Titman (1993). It should be noted however, that we would typically obtain

better diversification using different set of portfolio weights. In addition, everything else equal,
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an equally weighted portfolio consists of a larger fraction of small-cap stocks compared to a value

weighted portfolio. This might influence an equally weighted portfolio to obtain higher returns

than a value weighted portfolio would have, as small stocks are usually more volatile and will

thus have higher expected returns (Munk, 2016). We will capture this effect by regressing on

Fama-French’s three-factor model however.

Lastly, the long-short WML momentum portfolios were created by buying the ”past winners”

portfolio, and short-selling the portfolio containing the ”past losers” each month, with a holding

period of K months. This means that we were using overlapping holding periods, and the WML

momentum portfolios each month consisted of a series of K long and short positions. Hence,

each portfolio cohort is assigned equal weights, 1/K. In example, it means that the WML mo-

mentum portfolios in time t, consist of the stocks selected in the current month, as well as the

previous K-1 months. In the next month, t+1, a new long-short portfolio will be created and

the stocks that were selected in time (t+1 – K) are closed out. Still following the methodology

of Jegadeesh and Titman (1993), we rebalanced every month to maintain equal weights.

7.3 Risk adjustment

A significant alpha when regressing a trading strategy on a model, can be a result of abnormal

returns or due to an incorrect model, this is called the joint hypothesis problem as already

discussed in section 3. To lower the risk of concluding based on an incorrect model, we will

test the portfolios using several models. In the following subsection we will describe how to

interpret the results reported in the next section. We focus on the 16 long-short trading strategies

described above and a critical value of 5% (Cuthbertson & Nitzsche, 2004).

7.3.1 No risk-adjustment & Sharpe Ratio

Firstly, the returns of the WML momentum portfolios will be analyzed from a reward-to-

variability, (µi vs. σ2i ), perspective. The first results reported are the average monthly return of

the WML momentum portfolios with the belonging t-statistics (Cuthbertson & Nitzsche, 2004):

SEi =
σi√
Ti

(21)

ti =
r̂i − 0

SE(r̂i)
(22)

(In other words, a two-sided t-test). The null hypothesis H0, is that the returns are equal to

zero, H0 : r̂i = 0, and the alternative hypothesis is that the returns are significantly different

from zero, H1 : r̂i 6= 0. To be significantly different from zero, r̂i 6= 0 the t-statistics need to

exceed the critical value. As we have 276 observations in the sample period, the critical value

of a student’s t-distribution is 1.97.
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In addition, we will apply the popular Sharpe ratio, which is the ratio of the risk-premium

measured as E[ri]− rf divided with the standard deviation (Munk, 2016):

SR =
E[ri]− rf

σri
(23)

(For the long-short strategies we do not subtract the risk-free rate however). The ratio measures

the reward per unit of risk, and one of the advantages of Sharpe ratio, is that it is unaffected

of how much the trading strategy is leveraged, opposed to the alphas (Pedersen, 2015). On

the other hand Munk (2016) claims that there are some issues with the underlying assumptions

of Sharpe ratio: The first assumption is that we initially hold a riskless asset. The second

underlying assumption is that we are considering mutually exclusive zero-investment strategies,

which are financed by borrowing i.e. going short in the risk-free rate. The issue in this context

is that our trading strategies are not mutually exclusive and that we are not going short in the

risk-free rate. However, it is widely used to compare ‘active’ trading strategies, and the results

will therefore be reported. For the rf in equation (23) we use the average risk-free rate of 2016

(Munk, 2016).

7.3.2 CAPM

Originally, Jegadeesh and Titman (1993) claimed proof of the momentum effect on the basis of

the Sharpe-Lintner CAPM, as they argued that the momentum trading strategies were yielding

abnormal returns while at the same time having a negative post-ranking betas. They claimed

that it implied that the abnormal profits were not due to higher expected returns of the stocks

as result of taking more risk (Jegadeesh & Titman, 1993).

To test whether the WML momentum portfolios obtains abnormal returns in our sample period,

we will perform the OLS-regression already introduced:

rA,t = αA + βA(rm,t − rf,t) + εA,t

Where rA,t represents the returns of the WML momentum portfolios.

The momentum portfolios are zero-cost portfolios, which means that the long position in the

past winner portfolio is financed by the short position in the past loser portfolio. It is important

to note that the momentum portfolio is “free” to enter (excluding the transaction cost) but is

not a riskless investment.

The null-hypothesis, is that the Jensen’s alpha is 0, H0: αA = 0 and the alternative hypothesis

is that alpha is significantly different from zero, H1: αA 6= 0. Under the null-hypothesis the

ratio of α, to its standard error is distributed as a t-distribution (K. Chan, 1988):

ti =
(αA − 0)

SE(αA)

As for the basic returns, a t-statistic is significant if it exceeds the critical value of 1.97.
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7.3.3 Fama-French three-factor Model

To help us overcome the joint hypothesis problem, we also regress the trading strategies on

Fama-French’s three-factor model already introduced (Cuthbertson & Nitzsche, 2004):

rA,t = αA + βA(rm,t − rf,t) + si ∗ SMBt + hi ∗HMLt + εA,t

As with the CAPM we use a two-sided t-test with the null-hypothesis H0 : αA = 0 and similarly

with the alternative hyptohesis H1 : αA 6= 0. As with the former risk-adjustment the significance

level can be formulated with the two-sided t-test as:

ti =
(αA − 0)

SE(αA)

And again the t-statistic is significant if it exceeds the critical value of 1.97
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8 Results - Momentum strategies

In the following section we will firstly present the results of the WML momentum portfolios

and discuss the implications of them in order to find out if our results provides evidence that

it is possible to generate abnormal profits based on time-series patterns. Next, we will discuss

data snooping to address the critique from Fama and French (1996). Lastly, we will discuss the

transaction costs and risks associated with following a momentum-based trading strategy.

8.1 Momentum results - No risk-adjustments

Table 1 reports the monthly returns of the 16 long-short WML momentum strategies, with the

belonging t-statistics in the sample period of December 1994 to December 2016. J denotes the

formation period, and K denotes the holding period.

The results reported in table 1 shows that all the momentum strategies yielded positive returns,

in consistence with the findings of Jegadeesh and Titman (1993). It is interesting however,

that none of the WML momentum returns had a t-statistic above the critical value of 1.97. The

results in table 1 indicates that the WML momentum strategies are not very sensitive to changes

in the specifications, but the best trading-strategy appears to be the strategy with a 6-month

formation period and a holding period of 9 months (6/9).

J K= 3 6 9 12

3 0.0039 0.0039 0.0038 0.0035

(1.09) (1.24) (1.35) (1.50)

6 0.0064 0.0060 0.0053 0.0036

(1.48) (1.53) (1.58) (1.23)

9 0.0069 0.0061 0.0043 0.0026

(1.47) (1.45) (1.17) (0.80)

12 0.0061 0.0038 0.0024 0.0011

(1.3) (0.91) (0.64) (0.33)

Table 1: The table reports the monthly returns for the 16 long-short ”WML” momentum portfolios based
on the past 3, 6, 9 or 12 months and held 3, 6, 9 or 12 months with the belonging t-statistics. The
portfolios are equally weighted portfolios of the 10% best performing stocks over the formation period
minus the 10% worst performing stocks in the same formation period. J denotes the formation period,
and K represents the holding period

This is confirmed by the results reported in table 2, which is showing that the 6/9 trading

strategy was also the one generating the highest Sharpe ratio, with an annualized Sharpe ratio

of 0.35. This is not a very impressive Sharpe ratio compared to the S&P 500 index, which

generated an annualized Sharpe ratio of 0.57 in the same period, hence from this perspective it

is not a very attractive investment strategy. However, as Jegadeesh and Titman (1993, 2001)

showed, the market beta of the momentum portfolios are usually negative, so it will be interesting
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to investigate whether the trading strategies yielded significant alphas when we regressed the

trading strategies on CAPM.

J K= 3 6 9 12

3 0.24 0.27 0.29 0.32

6 0.33 0.34 0.35 0.27

9 0.32 0.32 0.26 0.17

12 0.29 0.20 0.14 0.07

Table 2: The table reports the annualized Sharpe ratio of the 16 long-short WML momentum portfolios.
Again J denotes the length of the formation period and K denotes the length of the holding period.

8.2 Momentum results - CAPM

Table 3 below, reports the results of regressing the 16 WML momentum portfolios on CAPM.

The WML momentum strategy with a 6 month formation period and 3 month holding period

(6/3) yielded the most significant alpha, therefore we will discuss on the basis of the 6/3 WML

momentum strategy.

J K= 3 6 9 12

3 α3,K 0.0078 0.0069 0.0062 0.0053

(2.40) (2.34) (2.35) (2.38)

β3,K -0.5846 -0.4419 -0.3616 -0.2720

(-7.73) (-6.47) (-5.88) (-5.26)

6 α6,K 0.0106 0.0093 0.0078 0.0056

(2.62) (2.47) (2.38) (1.98)

β6,K -0.6234 -0.4821 -0.3678 -0.2987

( -6.62) (-5.55) (-4.84) (-4.54)

9 α9,K 0.0112 0.0093 0.0069 0.0046

(2.5) (2.29) (1.92) (1.47)

β9,K -0.6316 -0.4708 -0.3776 -0.3037

(-6.09) (-5.00) (-4.53) (-4.15)

12 α12,K 0.0010 0.0069 0.0049 0.0031

(2.23) (1.70) (1.33) (0.96)

β12,K -0.5754 -0.4584 -0.3635 -0.2997

(-5.55) (-4.84) (-4.30) (-3.97)

Table 3: The table reports the 16 long-short Past Winner Minus Past Loser (WML) momentum portfolios’
monthly Jensen’s alpha and market beta with the belonging t-statistics. J represents the formation period,
and K represents the holding period

Looking at table 3, the first thing that might jump to the eye is that the monthly alpha of
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all the WML momentum portfolios are positive and almost all of them are significant. This is

a bit surprising keeping the results of the previous subsection in mind. The explanation is that

the WML momentum portfolios had a very negative correlation with the market return. The

market beta of the 16 (Past) Winner Minus (Past) Loser (WML) momentum portfolios varied

from -0.27 to -0.63. These findings were first assumed to be an error in terms of methodology,

as the betas of the WML momentum portfolios in the sample periods of Jegadeesh and Titman

(1993, 2001) were negative in general, but close to zero. To test whether the results were an

outcome of a mistake, we performed three tests:

Firstly, we repeated the methodology on another test-sample, namely the data sample used

in Jegadeesh and Titman (1993), where we obtained the same results as Jegadeesh and Titman

(1993), which are reported in appendix A. Secondly, we checked that we obtained the same

results regressing the excess returns of the (past) winner and (past) loser portfolios on CAPM

individually, and then subtract the loser from the winner. This yielded the same result in the

end. Thirdly, a ’benchmark’ was performed, where we regressed French (2017)’s momentum

portfolio on CAPM in the same sample period. See section 9.2 for an explanation of how French

(2017) constructed his WML momentum portfolio. French (2017)’s momentum portfolio had a

negative beta of -0.32 (French, 2017). Hence, our findings indicate that the market beta of the

WML momentum portfolios indeed are significantly negative in the sample period. This finding

is also consistent with the findings of Daniel and Moskowitz (2015), who reported that the WML

momentum portfolio, constructed almost the same way as French (2017)’s momentum portfolio,

had an average market beta of -0.58 from 1927 to 2013 (Daniel & Moskowitz, 2015).

To find out why the momentum portfolios were yielding a negative beta, the momentum port-

folios were decomposed in (past) winners and (past) losers - this is documented in appendix B.

The findings were quite interesting: The market beta βm of the winner portfolios were in general

around 1, whereas the loser portfolios’ market beta in general were in the space between 1.30 to

1.60, which implies that the loser portfolio is the predominant source of the negative market beta.

Daniel and Moskowitz (2015) reported results, which indicated that the momentum strate-

gies experience significant declines after crises, and noted that the return of the loser portfolios

had realized a gain of 163% in the three-month period of March-May 2009, in the aftermath of

the financial crisis, where the winner portfolio only had a gain of 8% in the same period. In

addition Daniel and Moskowitz (2015) found that the loser portfolio throughout history con-

sistently obtains higher returns than the winner portfolio when the market rebounds. Daniel

and Moskowitz (2015) claimed that these ”momentum crashes”, seemed to at least partially

explained the high loser-beta (Daniel & Moskowitz, 2015).

Similar results could be obtained from our return data; the loser portfolio with 6 month forma-

tion and 3 month holding period (6/3) had a gain of 154.82% where the 6/3 winner portfolio

only obtained a gain of 10.25% in the 3 month period of March-May 2009.

The momentum crash is also very easy to spot on figure 9, which shows the cumulative returns of
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the 6/3 WML momentum portfolio in the sample period on a logarithmic scale. The WML mo-

mentum strategies generated negative returns in almost every month in 2009, and only started

to consistently generate positive returns in February 2010. Looking at figure 9 again, it is clear

that the predominant source of the crash comes from the loser portfolio. It can also be seen

that the WML momentum portfolio was performing very well up until the financial crisis, but

the momentum crash has erased much of the cumulative gain.

The crash following the dot-com bubble was also extreme, as the return of the 6/3 WML mo-

mentum portfolio in January 2001 alone was -40.84%. The difference between the momentum

crash in 2001 and in 2009, besides the scale of the crash, is that the WML momentum strate-

gies returned to performing well after the momentum crash in 2001, but the WML momentum

strategies generated far smaller returns from 2010 to 2017, than they did before the financial

crisis. There are different reasons for why this could be; one reason, could be that investors have

become aware of the momentum effect, which might influence the profitability of the strategy

as we will discuss further in section 8.5.

Figure 9: The figure displays the development of the WML momentum portfolio with a formation period
of 6 months and a holding period of 3 months against S&P 500 in the sample period

The momentum portfolios’ significant negative market betas could imply that the momen-

tum portfolios typically have performed very well when the market has performed poor, which

could be very attractive if the investor is preferring market neutral portfolios (Pedersen, 2015).

Therefore we further investigated the market beta of the 6/3 WML momentum portfolio over

time with a rolling window of 24 months, which can be seen in figure 10. The figure shows that

the correlation between the momentum and the market is varying drastic over time. Moreover,

it appears that the beta is positive in bull markets, but negative in bear markets, which is very

attractive from a hedging perspective. However, it is also clear that the market betas remain

negative in the post crisis period of time, which is consistent with the fact that momentum

performs very badly when the market rebounds after a crisis (Daniel & Moskowitz, 2015).
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Figure 10: The figure displays the rolling market beta of the (6/3) momentum trading strategy with a 24
months rolling window

Daniel and Moskowitz (2015) also investigated whether the momentum portfolio could be

hedged by creating a trading strategy where they longed both momentum and the market from

1927 to 2013. They concluded that this strategy would indeed hedge the underperformance of

the market returns in the bear markets to some extend, because the market beta of momentum

is negative in bear markets. However, they also found that the trading strategy underperforms

on longer term compared to the market return (Daniel & Moskowitz, 2015).

The results reported in figure 11 and table 4 are the results of going long in the market port-

folio and in the 6/3 WML momentum portfolio. The hedged portfolio performed better than

the WML momentum portfolio and market portfolio did alone, which can be seen in figure 11.

One could potentially jump to the conclusion that our results are contradicting the findings of

Daniel and Moskowitz (2015), but as we have a relatively short sample period with two crises

in it, our findings are not directly comparable. The hedged WML momentum portfolio yielded

an average monthly return of 1.51%, and had a Sharpe ratio of 0.85. Moreover, the hedged

momentum portfolios generated a significant monthly alpha of 1.26%, and only had a market

beta of 0.38. However the hedged momentum portfolio still had a loss of 46.91% in April 2009,

which indicates that the loss of the momentum ”crash” was not hedged very well, which is also

clear from figure 11.

Figure 11: The figure displays the cumulative return
of the hedged (6/3) momentum portfolios compared
to the unhedged momentum portfolio and S&P 500

WML hedged

r 0.0151

(3.65)

SR 0.85

α 0.0126

(3.08)

β 0.3769

(3.98)

Table 4: This table presents the characteristics of
the hedged (6/3) WML momentum’s monthly re-
turn, Sharpe Ratio and CAPM results

These findings indicates that longing the WML momentum trading strategies together with
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a long position in the market could be an attractive trading strategy, however with some draw-

backs. This will be discussed further in section 8.5 (Daniel & Moskowitz, 2015).

8.3 Momentum results - Fama-French three-factor model

The objective of regressing on Fama-French’s three-factor model was to determine whether the

significant alphas of the WML momentum portfolios could be explained by well-known factors.

This subsection will first briefly discuss the characteristics of the Small-Minus-Big (SMB) and

High-Minus-Low (HML) factors, followed by a discussion of the results of regressing the WML

momentum portfolios on Fama-French’s three-factor model, reported in table 5 and 6.

As mentioned in section 7.1.2 the HML and SMB factors did not yield significant alphas in

the sample period. Especially the SMB factor seems to have performed bad in the sample

period. This could potentially be explained by the fact that there has been two crises in the

relatively short period of time, as small stocks usually have a higher beta and thus tend to per-

form worse when the market is stressed. This hypothesis was first confirmed by looking at the

data, in which the SMB portfolio yielded negative returns around the dot-com bubble in 2000

with as extreme returns as three month in a row of -16.88%, -7.75% and -5.51% from March

to May. However, the SMB portfolio actually performed well through-out the financial crisis in

2008. So a further investigation showed that the bad performance is simply due to overall low

returns in the sample period.

An investigation of the HML portfolio revealed that the portfolio performed extremely well

around the dot-com bubble, which is logical since that tech-companies typically would be growth

companies with a low book-to-market value. The investigation also showed that HML has only

generated an average monthly return of 0.06% since 2010. The fact that the HML portfolio has

performed badly in recent years is not surprising considering that tech companies (which the

US equity market has many of) have performed well, such as Netflix, Facebook, Amazon and

Activision, moreover bio-tech companies have also performed well relative to the market the

past decade, which are also most often characterized as growth companies. Nevertheless, the

lack of abnormal returns might indicate that Fama & French would most likely not have found

that they were anomalies if they had based their research on recent data.

The fact that both the SMB and HML have performed poorly in the sample period could be an

expression of the fact that well known factors might stop working as trading strategies, because

investors become aware of them and start to trade based on the factors, which will erase the

abnormal profits that can be gained from the strategies. This will be discussed further in section

8.5.
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Table 5 reports the monthly alpha of the 16 WML momentum portfolios when regressed on

Fama-French’s three factor model with the belonging t-statistics. As with the other tables, J

represents the length of the formation period, and K represents the length of the holding period.

J K= 3 6 9 12

3 0.0081 0.0074 0.0069 0.0062

(2.45) (2.49) (2.61) (2.81)

6 0.0114 0.0104 0.0091 0.0070

(2.81) (2.77) (2.83) (2.56)

9 0.0127 0.0110 0.0087 0.0065

(2.87) (2.77) (2.52) (2.17)

12 0.0120 0.0091 0.0071 0.0053

(2.76) (2.32) (2.05) (1.76)

Table 5: The table reports the 16 portfolios’ monthly Fama French 3-factor alphas with belonging t-
statistics in the sample period of December 1994 to December 2016. J represents the formation period,
and K represents the holding period

The monthly alphas reported in table 5, indicate that the abnormal returns became slightly

more significant when tested on the Fama & French three-factor model compared to CAPM,

consistent with the findings of Jegadeesh and Titman (2001). It was now the 9/3 WML mo-

mentum portfolio that yielded the most significant alpha, which is due to a more negative factor

loading on the HML & SMB factors than the 6/3 WML momentum portfolio, which can be seen

in table 6.

Table 6 documents the 16 WML momentum trading strategies’ market beta and their load-

ing on the two additional factors, namely the High-Minus-Low (HML) and the Small-Minus-Big

(SMB) factors.

J K= 3 6 9 12

Rm-rf HML SMB Rm-rf HML SMB Rm-rf HML SMB Rm-rf HML SMB

3 -0.5656 -0.1662 0.0167 -0.4331 -0.2227 -0.0006 -0.3551 -0.2614 -0.0524 -0.2695 -0.2888 -0.0896

(-7.45) (-1.53) (0.16) (-6.37) (-2.28) (-0.01) (-5.84) (-3.00) (-0.64) (-5.35) (-4.00) (-1.32)

6 -0.6117 -0.3383 -0.0291 -0.4762 -0.389 -0.0887 -0.3662 -0.4282 -0.1404 -0.2994 -0.4458 -0.1680

(-6.53) (-2.52) (-0.23) (-5.56) (-3.17) (-0.77) (-4.95) (-4.03) (-1.41) (-4.75) (-4.93) (-1.9)

9 -0.6249 -0.5305 -0.1425 -0.4706 -0.5620 -0.1877 -0.3805 -0.5827 -0.2167 -0.3080 -0.5812 -0.2368

(-6.15) (-3.64) (-1.04) (-5.16) (-4.30) (-1.82) (-4.78) (-5.10) (-2.02) (-4.48) (-5.89) (-2.56)

12 -0.576 -0.6622 -0.2244 -0.4633 -0.6875 -0.2505 -0.3694 -0.6842 -0.2787 -0.3058 -0.6678 -0.2926

(-5.76) (-4.61) (-1.67) (-5.14) (-5.32) (-2.07) (-4.66) (-6.01) (-2.61) (-4.39) (-6.68) (-3.12)

Table 6: the table reports the result of regressing the 16 long-short WML momentum portfolio’s on Fama-
French’s three factors. J represents the formation period, and K represents the holding period

Again, and not surprisingly, the WML momentum portfolios had significantly negative mar-

ket betas. For a further discussion of the portfolios’ market beta see section 8.2.
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As stated above, the abnormal returns of the WML momentum portfolios became more sig-

nificant when regressed on the three-factor model, which seems to be at least partially explained

by the fact that the WML momentum trading strategies consistently had a negative loading on

the HML factor - significantly negative in 15 out of the 16 trading strategies. This indicates

that the WML momentum portfolios on average are long in growth stocks and short in value

stocks. The fact that the correlation with the HML factor was negative is not very surprising

as value strategies typically buy long term past losers and sell long term past winners (Fama &

French, 1996; Bondt & Thaler, 1987). Moreover, as mentioned in section 2, Asness et al. (2013)

found that the momentum strategy consistently had a negative correlation with HML through-

out time. Asness et al. (2013) therefore tested the HML and momentum strategies together

on several markets and found that the HML and momentum portfolios yielded better returns

jointly compared to applying them as two separate strategies. As we will discuss in section 11.2,

the HML factor could therefore be useful for improving the machine learning algorithms, but

joint portfolios of HML and momentum will not be investigated in this paper (Asness et al.,

2013).

The WML momentum portfolios’ slope on the SMB factor was most frequently negative, con-

sistent with Jegadeesh and Titman (2001)’s findings, and significantly negative for 6 of the

strategies. This result was a bit surprising as it was expected that the correlation would be pos-

itive, since smaller stocks in general tend to perform better (Fama & French, 1996). Moreover,

the portfolios were created with equal weights, which means that the WML momentum portfo-

lios has a larger fraction of small cap stocks compared to applying value weighted portfolios, as

explained in section 7.2. But as it turned out, the WML portfolios had a negative correlation

with the SMB factor in general, which implies that the momentum strategies on average is long

in larger stocks and short in smaller stocks in terms of market cap.

Looking at the winner and loser portfolios individually, reported in appendix B, both of them

loaded significantly on the SMB factor however. The loser portfolios’ slope on the SMB fac-

tor was around 0.6 to 0.7 where the the winner portfolios had a slope on SMB approximately

between 0.4 to 0.5. The findings indicate that size in interaction with the momentum strate-

gies could increase the prediction abilities of the machine learning algorithms, but will not be

investigated further in this paper.
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8.4 Data snooping

Fama and French (1996) stated that they were reluctant to add the momentum factor to their

three-factor model even though the three factor model could not capture the momentum effect,

and even stated that the reason that the momentum strategies yielded abnormal returns might

be ”a spurious result of data snooping” (Fama & French, 1996).

Data snooping is the term for trying different model specifications out, and apply the infor-

mation obtained, to guide towards a certain result that is desired (Cuthbertson & Nitzsche,

2004). As Munk (2016) states it: ”If you look long enough for a pattern, you will see one”.

Campbell et al. (2011) however argues that datasnooping biases are almost impossible to avoid

since economics is non-experimental, and it therefore is not possible to run a new experiment to

create new original data (Campbell et al., 2011). In the following we will discuss the sensitivity

of the momentum-based strategies and the opportunity of data-snooping.

The best way to see if a trading strategy generating abnormal returns is due to data snooping

is to apply it on a different data set e.g on a different market or in the same market but at a

different time period. The trading strategies need to work out-of-sample after the publication

of the trading strategies as well (Munk, 2016).

In section 8.2 we found that the abnormal returns of the momentum strategies were signifi-

cant, which is consistent with previous findings in the literature (Jegadeesh & Titman, 1993,

2001; Daniel & Moskowitz, 2015; Asness et al., 2013). Hence, the results indicate that the ab-

normal returns found by Jegadeesh and Titman (1993, 2001) are not a matter of data snooping.

Moreover, the momentum strategies’ test-statistics were not very sensitive to changes in the

length of formation and holding period as 11 of the 16 reported portfolios yielded significant

Jensen’s alpha, which could not be explained by adding the HML and SMB factor. Thus, the re-

sults documented in this paper indicates that the abnormal returns of the momentum strategies

are most likely not a matter of data snooping.
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8.5 Momentum as a trading strategy

The results reported in the previous subsections indicated that momentum-based strategies can

generate significant abnormal returns. This subsection will discuss the feasibility of implement-

ing a momentum based trading strategy from the perspective of a hedge fund. Firstly, we will

discuss the associated transaction costs, followed by a discussion of the implied risks, and lastly

we will discuss the hedged momentum strategy.

If a trading strategy appears to be profitable, the next thing a hedge-fund would do, would

be to consider whether the strategy would survive transaction costs (Pedersen, 2015).

The momentum-based trading strategies reported in this paper require a lot of trading activity

compared to a buy-and-hold strategy, as the strategies imply both longing and shorting between

200 and 300 stocks, which can be seen in figure 12. Hence, the associated trading costs would

most likely be high, which means that the net profit of the momentum-based strategies would

be lower. It is not the large portfolio sizes in itself that would be critical for a large hedge fund,

it might even be an advantage that the portfolios are large, as it would imply that the market

impact, everything else equal, would be smaller. However the amount of stocks, which would

be needed to be replaced each month is important in terms of transaction cost. If we follow the

trading strategies exactly as Jegadeesh and Titman (1993) suggests, we would have to adjust

between 400 and 600 positions each months because the portfolios are rebalanced monthly to

remain equally weighted portfolios. This would not be implemented in practice, as it would

lead to a large turnover. Instead a hedge fund would most likely try to construct portfolios and

rebalance them after what would maximize the performance after transactions costs. This could

be an interesting topic for further research (Pedersen, 2015).

Another potential issue is related to the fact that the strategies might involve trading illiquid

assets, since both the loser and winner loaded significantly on the SMB factor. This is a poten-

tial issue for two closely related reasons: Firstly, it means that it might be hard to sell the assets

exactly when the trading strategy is requiring you to do it, and secondly the market impact

costs will be larger when trading illiquid stocks - this is especially a problem for large investors,

which are usually taking relatively large positions. Thus, it could be interesting to see whether

the trading strategies would work on a data-sample excluding small-cap stocks (Pedersen, 2015).

Figure 12: portfolio size of the winner and loser portfolios over time (10% of the stocks listed on NYSE)
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As we saw in section 8.2, there can be large risks involved with following a momentum-

based strategy blindly. If a hedge fund experienced a similar decline to the momentum crash

in 2009, it would be devastating, as investors of hedge funds require that they make money in

any environment (hence the ”hedge”). Daniel and Moskowitz (2015) argued however, that the

momentum crashes are cyclical and therefore predictable, which means that a hedge fund could

stop following the strategy when a bubble has burst. This could be feasible in practice to some

extend, since the momentum crashes happen when the markets are recovering, and according to

Pedersen (2015), some hedge funds actually follow this strategy to some extend. It is important

to note however, that as there only has been a limited number of crisis throughout the years,

there is only limited data to support this (Pedersen, 2015; Daniel & Moskowitz, 2015).

Another risk of following a momentum-based trading strategy is related to the fact that momen-

tum does not seem to have the same strong positive trend it had before the financial crisis. This

could just be because the post-crisis period is a short period of time, which can potentially be

regarded as an “unusual” time period, but there is the risk that the low returns of momentum is

because the public has become aware of the momentum effect. When the public become aware

of a systematic mispricing of assets, it is likely that rational investors will try to take advantage

of it by longing (shorting) the undervalued (overvalued) assets. If enough investors do so, the

mispricing disappears (Munk, 2016).

Lastly there is the risk of taking short positions. When shorting assets there is a risk of ”buy-

ins”, which is when the lender wants the assets back early, which typically happens in times

where it is not very attractive to close the short position (Pedersen, 2015).

In section 8.2 we argued that momentum strategies could be profitably hedged with a long

position in the market, since the momentum-based trading strategies had a significantly negative

market beta, which indicated that they generate positive returns in bear markets and negative

returns in bull markets. The hedged 6/3 WML momentum portfolio seemed as an attractive in-

vestment strategy, as it obtained a high Sharpe-ratio of 0.85 and a significant monthly abnormal

return of 1.26% together with a beta of only 0.38, which is documented in table 4 and figure 11.

However, the trading costs and risks associated with momentum-based trading strategies might

cause the hedged portfolio to be less profitable net of transaction costs. Moreover, investors

would still have punished a hedge fund hard in the aftermath of the crisis, if it had followed

the hedged momentum strategy, since the hedged portfolio still had a severe loss in 2009 as a

consequence of the momentum crash.

Overall the results were in favor of the hypothesis that abnormal returns can be generated

from time-series data. Now it is interesting to see whether the machine-learning algorithms are

able to exploit time-series patterns to generate abnormal returns as well. The machine learning

algorithms will only be feeded with a stock’s returns of the past 12 months, and will be tested

in the same sample period as the momentum strategies, which will make the trading strategies

comparable.
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9 Data & Methodology of Machine Learning Strategies

In the previous section we found that the momentum strategies could yield significant alphas

when regressed on CAPM and Fama French’s three-factor model. In continuation of these

findings we expect the machine learning models to identify overperforming and underperforming

stocks based only on time series patterns. This section will first justify and describe the data

applied for the machine learning based trading strategies, followed by an explanation of how

the momentum factor was constructed, which we use in Carhart’s four-factor model. When we

have described the data we will explain how we constructed the trading strategies. Lastly we

will describe how we will evaluate the algorithms’ performance.

9.1 Data

9.1.1 Justification of the inputs

There are many examples of literature that claim that stocks are not statistically independent.

The most well-known theories proclaim that auto-correlation of stocks is negative on very short

term (1 week to 1 month), and is positive on medium run (3 months to 12 months), and negative

on long run (12 month to 36 months) (Munk, 2016; Jegadeesh & Titman, 1993, 2001; Bondt &

Thaler, 1985, 1987; Campbell et al., 2011). In the previous section we presented results, which

indicated that the momentum based strategies generate abnormal returns on medium run, which

implies that stock returns have predictable time-series patterns to some extend. In this section

we will try to exploit this predictability, by using machine learning algorithms. Therefore, the

classification algorithms will receive a stock’s past returns lagged 1 to 12 months as the features

each month, which means that the algorithms will have the same underlying data to pick stocks

from as the momentum-based trading strategies.

9.1.2 Training Data

The data in the training set was return data of common stocks listed on New York Stock

Exchange (NYSE) from December 1925 to December 1992, and includes 4325 stocks. The data-

collection procedure was the same as described in section 7.1, where we also argued that NYSE

data was collected because it includes a lot of stocks and the data was of high quality, which is

very important in this context, as it can have enormous effect on the performance of the machine

learning models (Müller & Guido, 2017).

9.1.3 Test Data

The investment universe was exactly the same as we used for the momentum strategies to make

all the trading strategies comparable. This means that the sample period was from December

1994 to December 2016 based on stocks listed on NYSE. See section 7.1 for a further explanation

of the test set. The decision of this exact sample period was not completely arbitrary, as it means
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that the test set will make up approximately (25%) of the available time period on CRSP, which

is the most common split between training- and test-sets, as discussed in section 4.

9.1.4 Construction of the momentum factor

French (2017)’s momentum-portfolio was applied as the momentum factor, which is constructed

using almost the same methodology as Carhart (1997). The methodology deviates slightly from

Carhart (1997) however, as French (2017) creates six value-weighted portfolios:

• The stocks were firstly divided into two categories each month, based on the median mar-

ket value of equity, categorizing the stocks as either ”Big” or ”Small”.

• Simultaneously, three segments were created each month, based on the aggregated returns

in the formation period (t-12 to t-2): The 30% best stocks were categorized as ”High”,

the 30% worst stocks as ”Low”, and the 40% stocks in-between as ”Neutral”.

• In total 6 value weighted portfolios could then be constructed, as a stock could either be

”Big” or ”Small”, while simultaneously ”Low”, ”Neutral” or ”High” each month.

• The momentum portfolio was then constructed by estimating the average of the two ”High”

portfolios minus the average of the two ”Low” portfolios each month (French, 2017):

MOM = 1/2(Small High + Big High)− 1/2(Small Low + Big Low) (24)

9.2 Machine Learning - Methodology

9.2.1 Labelling

For a supervised machine learning algorithm to learn, the algorithm needs to receive the output

data initially, as discussed in section 4. Hence, we labelled the stocks in the following way:

Firstly all available stocks were ranked each month in both ascending and descending order.

First in descending order to create winners such that:

rt,1 < rt,2 < rt,3 would imply ranks of crt,1 = 3, crt,2 = 2, crt,3 = 1 in time t (25)

Where crt,i represents the rank of a stock i in descending order in time t.

Afterwards the losers were created by ranking the stocks each month in ascending order:

rt,1 < rt,2 < rt,3 would imply ranks of zrt,1 = 1, zrt,2 = 2, zrt,3 = 3 in time t (26)

Where zrt,i represents the rank of a stock i in ascending order in time t.
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Each stock was then labelled:

yt,i =

{1 if 1 ≤ cri,t ≤ qt
2 if 1 ≤ zri,t ≤ qt
0 otherwise

(27)

Where qt represents 25% of the N available stocks at time t . ”Winners” were labelled yt,i=1,

”Losers” were labelled yt,i=2 and ”Neutral” were labelled yt,i=0. Hence, we trained the machine

learning algorithms to predict the 25% worst and best stocks. This process was done for both

the training set and the test set. The reason for using 25% as the threshold was to some extend

arbitrary. The reason for not setting it to 10% was because it would increase the risk of making

false conclusions due to an imbalanced dataset: The two most common mistakes are called a

false positive (type I error) and a false negative (type II error). An example of the former is if a

stock is labelled by the algorithm as a ”winner”, but is actually a ”neutral” stock. The latter is

if the stock actually is a ”winner” but is labelled as a ”neutral” stock. We want to avoid both

types of errors, but especially type I errors.

If the threshold was set to 10% of N, it would imply a high probability of type II errors, as an

algorithm could predict with 80% accuracy on average only by randomly guessing on ”Neutral”.

This error was lowered by using 25% of N instead, which is the same methodology as Huerta et

al. (2011) (Huerta et al., 2011).

9.2.2 Setting up the data

After having labelled the stocks in both the training and test set, the data needed to be set-up

to be applicable in a machine-learning context:

Firstly, all the returns were lagged 1 to 12 months to create the input data. See section 9.1 for

a further discussion of this.

Secondly, the data was reshaped. The most intuitive way of understanding the data, is to think

of it as a table. Each row is a data point, which has a label (the output, denoted as ”Y”), while

the columns to the right of the label are the features (the input).

An illustrative snapshot of the data representation could look like the following:

Y RL1 RL2 ... RL12

0 0.007 0.006 ... 0.003

1 −0.021 0.018 ... −0.012

0 0.047 0.086 ... 0.001

2 −0.042 0.001 ... 0.003

This was done for both the training set and the test set. However, the machine learning

model was ’told’ which is which, so it only received the output Y in the training set. For a stock

to be included in time t, we required the stock to have return data in the previous 12 months.

This was required both in the training and the test set.

After the data had been set-up, the machine learning models were ready to be tested.
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9.2.3 Construction of portfolios

When a machine learning algorithm had made its predictions of the winners and losers in the

sample period, long-short trading strategies were created, buying the machine learning algo-

rithm’s predicted winners and short-selling the predicted losers each month. For the machine-

learning based trading strategies we used holding periods of 1, 3, 6 and 9 month, which means

that in total 4 long-short trading strategies were created for each algorithm. The trading strate-

gies with 12 month holding periods were omitted, because the algorithms were only trained

to predict the monthly winners. As with the momentum-based portfolios we used overlapping

holding periods. Moreover, we rebalanced the portfolios monthly to maintain equally weighted

portfolios.

9.2.4 Model evaluation

Each machine learning model was evaluated in two overall categories: How accurately it pre-

dicted, and more importantly how its trading strategies performed using the same risk-adjustments

as discussed in section 7.2, except that Fama-French’s three factor model was replaced with

Carhart’s four factor model.

9.2.4.1 Accuracy

In section 10 we will refer to ”accuracy” or ”prediction accuracy” quite often. This is the most

widely applied measurement within the machine-learning universe to find out if an algorithm is

performing well. Accuracy is just the term for the relative frequency of the correct predictions

in the test set. In this context accuracy is not a good measurement, and will only be used as

an indicative tool, as it does not unveil how often we predict loser stocks to be winner stocks

and vice versa. To get a more granular view of the prediction accuracy, we also report a 3x3

confusion matrix, which can give us a better understanding of this. The confusion matrix does

still not tell us whether the trading strategies are yielding abnormal returns however, which

is the main focus of the paper. Hence, we will focus more on the performance of the trading

strategies (Hastie et al., 2017).

9.2.4.2 Risk-adjustment of the trading strategies

We will only explain how to interpret the results of Carhart’s four factor model, as we have

already explained the other models in section 7.3.

To test whether the abnormal returns were explained by well-known factors including the mo-

mentum factor, we regressed the trading strategies on the following (Carhart, 1997):

rA,t = αA + βA,m ∗ (rmt − rft) + si ∗ SMBt + hi ∗HMLt + o ∗MOM + εA,t

The null-hypothesis of the model is that alpha is zero, αA = 0. If αA > 0 on a significant level,

the trading strategy is earning abnormal returns. The critical value of the t-statistic is still 1.97.
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10 Results - Machine Learning strategies

In the previous section we described the methodology to create the machine-learning based

trading strategies. This section will report the results and evaluate each machine learning

algorithm’s ability to predict under- and over-performing stock. In the end of the section we

will discuss the feasibility of implementing the algorithm-based trading strategies in a real-world

setting.

10.1 K-Nearest Neighbor

The first machine learning algorithm tested was the k-Nearest Neighbor algorithm (k-NN). Be-

fore we could create the trading strategies based on k-NN, we needed to decide how many

”Neighbors” were optimal to apply. Looking at figure 13 below, it is clear to see that the

prediction accuracy of k-NN increased when we applied more neighbors in the model specifica-

tions. But as noted earlier, accuracy is not a very good measurement of how well the model is

stock-picking. The fact that the prediction accuracy is below 50% means that we cannot know

whether the model is actually predicting the ”losers” and ”winners” better when adding more

neighbors, which is what we are interested in, or whether it is just classifying more and more of

the stocks to be ”neutral stocks”. The latter would imply that at a certain level the accuracy

would be 50%, but the model would just predict that we should never invest as all stocks will be

classified as ”neutral”. Hence, choosing the number of neighbors in the model could not only be

based on the highest possible prediction accuracy. Instead it was chosen more or less arbitrarily

based on the guidelines from the literature (Müller & Guido, 2017).

Figure 13: The figure displays the prediction accuracy of the k-Nearest-Neighbor on the y-axis and number
of neighbors on the x-axis.

According to Müller and Guido (2017) the best model specification of k-NN in general is

between 1 and 10 neighbors. It is clear to see from figure 13 that the incremental prediction

power for each neighbors added is declining. Because the incremental prediction power when

adding more than 6 neighbors were below 1%, we chose to apply 6 neighbours in the finale

model to create the trading strategies from. Further tests could be conducted to find the best

test-specification, which could be interesting for further research. See a further discussion of
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this in section 1.4.

The prediction accuracy of the 6-NN was only 47.3%. To get a more granular understanding

of the accuracy, we created an extended 3x3 confusion matrix:

Predicted Winner Predicted Neutral Predicted Loser

Winner 3.23% 18.27% 3.28%

Neutral 5.15% 40.69% 4.72%

Loser 3.29% 17.98% 3.38%

Table 7: The table reports k-NN’s 3x3 confusion matrix, which is the relative frequency of each outcome

From table 7 it is clear that the winner portfolio consists of many loser stocks, and vice

versa. Moreover, both portfolios consist of a large fraction of ”neutral” stocks. This is the type

I error, that we wanted to avoid. Hence, the accuracy results did not lead to high expectations

of abnormal returns.

The discussion of k-NN’s trading strategies will be based on the Winner-Minus-Loser (WML)

portfolio with a three-month holding period, firstly because it is the trading strategy yielding

the most interesting results, and secondly because the results of the four holding periods are

very similar.

Table 8 reports the average monthly returns of the trading strategies created from k-NN’s

predictions with the belonging t-statistics.

Holding period= 1 3 6 9

winner 0.0117 0.0118 0.0115 0.0114

(3.49) (3.59) (3.55) (3.50)

loser 0.0110 0.0109 0.0110 0.0109

(3.02) (3.01) (3.09) (3.10)

WML 0.0007 0.0009 0.0004 0.0005

(0.96) (1.64) (0.97) (1.45)

Table 8: The table reports the monthly returns of the portfolios created by 6-NN’s stock predictions with
the belonging t-statistics. The sample period is December 1994 to December 2016. WML is the long-short
strategy and stands for Winner-Minus-Loser

The results show that the long-short WML portfolio with a three-month holding period ob-

tained the highest average monthly returns of (only) 0.09%. The results reported in table 8

indicate that the 3-month winner portfolio was generating very profitable returns, with an av-

erage monthly return of 1.18%. Hence, the source of the low performance of the WML portfolio
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was the high returns of the loser portfolio, which generated a monthly return of 1.09%.

Holding period= 1 3 6 9

WML Sharpe ratio 0.20 0.35 0.21 0.31

Table 9: The table reports the annualized Sharpe Ratios of the 4 Winner-Minus-Loser (WML) trading
strategies created from the 6-NN algorithm in the sample period of December 1994 to December 2016

Interestingly and a bit surprisingly, table 9 shows that the 3-month WML portfolio had a

Sharpe-ratio of 0.35, which is as high as the best momentum WML portfolio’s Sharpe ratio.

This indicates that the portfolio had a very low standard deviation, considering the fact that

the monthly returns were very low. It is important to note that it is not possible that the winner

and loser portfolios consist of the same stocks at the same time, but looking at figure 14 it seems

as if the portfolios have the same characteristics. To investigate this further we regressed the

winner portfolio on the loser portfolio. This resulted in a r2 of 0.985, which indicates that the

portfolios are highly correlated.

Figure 14: The figure shows 6-Nearest Neighbors’s 3-month trading strategy’s cumulative returns in the
test period. Note that it is log-scale and the risk-free rate is added to the Winner-Minus-Loser portfolio

Looking at the initial results presented above one might jump to the conclusion that it would

be optimal to just create a long-only trading strategy, or short the market return. Shorting the

market return is usually easier and cheaper than shorting a loser portfolio of 300 stocks. Shorting

the market is also a way to avoid the risk of ”buy-ins” as discussed in section 8.2. However,

when we regressed the portfolios using CAPM reported in table 10 below, it becomes clear that

the winner portfolio had a high covariance with the market, which implied that the alpha of the

winner portfolio became insignificant when regressed on CAPM.
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Table 10 reports the results of regressing the portfolios on CAPM, with the belonging t-

statistics.

Holding Period Winner Loser WML

α1,p 0.0024 0.0013 0.0012
1 (1.33) (0.56) (1.60)

β1,p 1.0802 1.1479 -0.0677
(25.67) (24.09) (-4.00)

α3,p 0.0027 0.0011 0.0015
3 (1.50) (0.56) (3.16)

β3,p 1.0615 1.1573 -0.0958
(25.73) (24.84) (-8.49)

α6,p 0.0023 0.0014 0.0009
6 (1.32) (0.69) (2.42)

β6,p 1.0582 1.1355 -0.0773
(25.96) (24.7) (-8.53)

α9,p 0.0023 0.0014 0.0010
6 (1.32) (0.61) (2.92)

β9,p 1.0540 1.1173 -0.0634
(25.99) (24.73) (-8.37)

Table 10: The table reports Jensen’s alpha and CAPM beta of the portfolios based on 6-Nearest Neighbors’
stock predictions with the belonging t-statistics in the sample period of December 1994 to December 2016.
WML (Winners-Minus-Loser) is the long-short portfolio.

Interestingly, the abnormal returns of the WML portfolios were significant for the holding

periods of 3 to 9 months. Especially the trading strategy with a holding period of 3 months,

which generated a monthly alpha of 0.15% with a belonging t-statistic of 3.16, which is a more

significant Jensen’s alpha than the most significant momentum portfolio’s Jensen’s alpha. The

reason for this is firstly that the returns of the WML portfolio were positive almost indepen-

dently of the state of the market, which is documented in figure 14, and secondly because the

loser portfolio was yielding lower returns than the winner portfolio but had a higher market beta,

resulting in a negative market beta for the WML portfolio. The fact that the WML portfolio

had positive returns almost independently of the market conditions, makes it appear to be a

low-risk investment. If we suppose that the risk really is low, an investor can apply leverage to

the investment to make the portfolio attractive, assuming that the investor can do it at no cost.

This will be discussed further in section 10.4.
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Table 11 below reports the results of regressing the portfolios on Carhart’s four factor model,

with the belonging t-statistics.

Holding Period αk,p Market HML SMB MOM

winner 0.0023 0.9756 0.4234 0.4469 -0.2134
(2.2) (38.18) (11.93) (13.73) (-9.91)

1 loser 0.0014 1.0200 0.4376 0.5164 -0.2584
(1.12) (34.49) (10.65) (13.71) (-10.37)

WML 0.0010 -0.0443 -0.0142 -0.0695 0.0450
(1.33) (-2.56) (-0.59) (-3.15) (3.08)

winner 0.0026 0.9584 0.4220 0.4381 -0.2130
(2.53) (38.97) (12.35) (13.98) (-10.28)

3 loser 0.0012 1.0304 0.4523 0.5225 -0.2594
(1.09) (38.84) (12.27) (15.46) (-11.6)

WML 0.0014 -0.0720 -0.0303 -0.0844 0.0464
(3.16) (-6.85) (-2.07) (-9.01) (5.23)

winner 0.0022 0.9567 0.4260 0.4385 -0.2087
(2.23) (40.22) (12.89) (14.47) (-10.41)

6 loser 0.0015 1.0063 0.4376 0.5158 -0.2651
(1.42) (38.7) (12.12) (15.57) (-12.1)

WML 0.0007 -0.0495 -0.0116 -0.0773 0.0565
(2.06) (-6.41) (-1.08) (-7.86) (8.67)

winner 0.0022 0.9526 0.4269 0.4370 -0.2086
(2.24) (40.51) (13.07) (14.59) (-10.52)

9 loser 0.0014 0.9937 0.4390 0.5106 -0.2536
(1.36) (39.16) (12.45) (15.79) (-11.86)

WML 0.0008 -0.0411 -0.0121 -0.0736 0.0450
(2.9) (-6.57) (-1.39) (-9.24) (8.54)

Table 11: The table reports the results of regressing the ’6-Nearest Neighbors’ trading strategies on
Carhart’s four factor model, with belonging t-statistics. The sample period is December 1994 to December
2016. WML stands for ’Winner-Minus-Loser’ and are the long-short portfolios.

From the results of regressing the portfolios on Carhart (1997)’s four factors reported in table

11, it is clear that both the winner and loser portfolios were positively correlated with both the

HML and SMB factors. The trading strategy yielding the most significant abnormal return was

still the WML portfolio with a holding period of three months. The portfolio’s loser and winner

portfolio loaded significantly on both the HML- and SMB factors. The loser portfolio seems to

be loading slightly more on both factors however, which means that the WML portfolio had a

negative factor loading on both HML and SMB.

More surprisingly, both the winner and loser portfolio were negative correlated with the mo-

mentum factor. Considering the fact that the algorithm only received historical return data as

the input, the expectation was that the algorithm would pick winner stocks that would correlate

positively with the momentum portfolio. However, having the loading on the other three factors

reported in table 11 in mind, the negative correlation makes sense: Both the winner and loser
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portfolio had a high market beta, whereas the momentum strategies had a significant negative

market beta. Moreover, both the winner and loser had a positive correlation with the HML

factor, which momentum had a negative correlation with. The winner portfolio had a slightly

less negative loading on the momentum factor, which influenced the WML to have positive fac-

tor loading on momentum. The fact that all of the WML portfolios still generated a significant

alpha except the 1-month holding period, implies that the well-known factors cannot explain

the abnormal returns of the WML portfolios created by the k-NN algorithm.

In conclusion the WML trading strategy with a three-month holding period, was clearly the

best trading strategy of the four strategies. It was the one yielding the highest Sharpe-ratio,

and most significant abnormal returns when regressed on both CAPM and Carhart (1997)’s four

factor model. Hence, the results indicates that it is possible to generate a positive significant

abnormal returns from machine learning algorithms, so now it will be interesting to see whether

the more complicated algorithms will perform better. The usage of the algorithm in a real

investment framework will be discussed in section 10.4.

10.2 Naive Bayes Classifier

Naive Bayes Classifier was the best performing algorithm in terms of accuracy, with an accuracy

of 51.6%, which is still not very impressive. However, as argued in section 9.2.4 the accuracy

alone is not a very good measurement of an algorithm’s ability to predict winner and losers.

We therefore created a 3x3 confusion matrix to further investigate Naive Bayes Classifier’s

predictions:

Predicted Winner Predicted Neutral Predicted Loser

Winner 0.59% 18.80% 5.39%

Neutral 0.63% 45.12% 4.83%

Loser 0.57% 18.21% 5.88%

Table 12: The table reports Naive Bayes 3x3 confusion matrix. The matrix indicates the relative frequency
of the outcomes

From the confusion matrix it is clear to see that the Naive Bayes Classifier is having a large

fraction of loser stocks in the winner portfolios and vice versa. This implies that the algorithm

has predicted many false positives, which is related to the type I error. The confusion matrix

does not tell whether trading strategies from the model obtain abnormal returns, but it is indi-

cating that the Naive Bayes Classifier has not been able to distinguish successfully between the

classes.
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Table 13 displays the monthly returns of the trading strategies based on the Naive Bayes

Classifier’s predictions, together with the t-statistics.

Holding period= 1 3 6 9

winner 0.0138 0.0089 0.0087 0.0088

(3.35) (2.29) (2.28) (2.33)

loser 0.0115 0.0116 0.0116 0.0116

(2.36) (2.41) (2.46) (2.52)

WML 0.0023 -0.0027 -0.0029 -0.0028

(0.94) (-1.31) (-1.60) (-1.70)

Table 13: The table report Naive Bayes Classifier’s portfolios’ monthly returns with the belonging t-
statistics in the sample period of December 1994 to December 2016

The results indicate that the winner portfolio generated high returns, but unfortunately so

did the loser portfolio, which was the same problem as with the k-NN algorithm, as discussed

in the previous subsection. This is confirmed by looking at figure 15, which shows the cumula-

tive returns of the 1-month WML trading strategy: The winner portfolio was performing very

well on average, but so was the loser portfolio, which means that the WML portfolio was only

generating modest returns. The only WML trading strategy with a positive return was the 1

month holding period WML portfolio, which generated a monthly return of 0.23%, hence this

is the only trading strategy that will be discussed.

Figure 15: The figure displays the cumulative return of Naive Bayes Classifier’s 1 month trading strategy
against S&P 500 on a logarithmic scale. The WML is added with the risk-free rate

Table 14 reports the Sharpe-ratio of the 4 long-short trading strategies.

Holding period= 1 3 6 9

WML Sharpe ratio 0.20 -0.28 -0.33 -0.36

Table 14: The table report Naive Bayes Classifier’s annualized Sharpe Ratio of the Winners-Minus-Loser
portfolios in the sample period of December 1994 to December 2016
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The WML trading strategy with a holding period of 1 month had a Sharpe ratio of 0.20,

which is worse than the Sharpe ratio of the k-NN WML portfolio with a three-month holding

period and only a little higher than the 9/12 WML momentum trading strategy, which was the

fourth worst WML momentum trading strategy out of the 16 WML momentum trading strate-

gies. From this perspective, the trading strategy created by the Naive Bayes Classifier does not

appear very attractive. However, as it has been seen before, the picture might change when we

risk-adjust with CAPM.

Table 15 reports the results of regressing the trading strategies on CAPM with the belong

t-statistics.

Holding Period Winner Loser WML

α1,p 0.0039 -0.0003 0.0042
1 (1.41) (-0.11) (1.8)

β1,p 1.1830 1.4673 -0.2843
(18.53) (20.6) (-5.25)

α3,p -0.0010 -0.0001 -0.0009
3 (-0.44) (-0.04) (-0.46)

β3,p 1.1852 1.4465 -0.2613
(21.44) (20.59) (-5.75)

α6,p -0.0012 0.0001 -0.0012
6 (-0.5) (0.03) (-0.71)

β6,p 1.1634 1.4133 -0.2499
(21.73) (20.59) (-6.17)

α9,p -0.0010 0.0003 -0.0013
6 (-0.46) (0.1) (-0.84)

β9,p 1.1661 1.3850 -0.2189
(22.29) (20.68) (-6.00)

Table 15: The table report the Jensen’s alpha and the CAPM beta of the trading strategies based on Naive
Bayes Classifier’s stock predictions with the belonging t-statistics. WML stands for Winners Minus Loser,
and is the long-short portfolios.

The loser portfolio with a holding period of 1 month had a beta of 1.47 and the winner

portfolio only had a beta of 1.18, which implied that the market beta of the WML portfolio had

a significant negative beta of -0.28. This was not enough to yield significant abnormal returns,

as the monthly Jensen’s alpha of the 1-month WML only was 0.42% with a t-statistic of 1.8,

which was not very surprising considering the prior findings.
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Table 16 reports the results of regressing the trading strategies on Carhart (1997)’s four

factor model.

Holding Period αk,p Market HML SMB MOM

winner 0.0024 1.1484 0.4607 0.4456 -0.0234
(0.99) (19.63) (5.67) (5.98) (-0.47)

1 loser -0.0000 1.2765 0.5321 0.8422 -0.3767
(-0.00) (28.35) (8.51) (14.68) (-9.93)

WML 0.0024 -0.1282 -0.0714 -0.3966 0.3533
(1.23) (-2.7) (-1.08) (-6.57) (8.84)

winner -0.0025 1.1419 0.4649 0.5045 -0.0353
(-1.32) (24.98) (7.32) (8.66) (-0.92)

3 loser 0.0003 1.2543 0.5317 0.8266 -0.3840
(0.14) (28.55) (8.71) (14.77) (-10.37)

WML -0.0028 -0.1124 -0.0668 -0.3221 0.3487
(-1.78) (-3.00) (-1.28) (-6.75) (11.04)

winner -0.0022 1.094 0.4398 0.5380 -0.0927
(-1.24) (25.8) (7.47) (9.97) (-2.59)

6 loser 0.0005 1.2258 0.5267 0.8107 -0.3768
(0.26) (28.85) (8.92) (14.98) (-10.52)

WML -0.0026 -0.1323 -0.0869 -0.2727 0.2841
(-1.83) (-3.82) (-1.81) (-6.18) (9.73)

winner -0.0016 1.0741 0.3937 0.5430 -0.1459
(-0.94) (26.81) (7.07) (10.64) (-4.32)

9 loser 0.0007 1.2010 0.5121 0.7929 -0.3689
(0.38) (29.09) (8.93) (15.08) (-10.6)

WML -0.0022 -0.1269 -0.1184 -0.2499 0.2229
(-1.66) (-3.94) (-2.65) (-6.09) (8.21)

Table 16: The table reports the results of regressing Naive Bayes Classifier’s portfolios on Carhart’s
four factor model in the sample period of December 1994 to December 2016. WML are the long-short
Winners-Minus-Losers trading strategies.

The results reported in table 16, shows that the abnormal returns of the 1-month WML

portfolio was still insignificant when regressed on Carhart’s four factor model. It is noteworthy,

even though it is not reported in the paper that the alpha actually was significant when applying

Fama-French’s 3-factors, but adding the momentum factor made the alpha insignificant again.

From table 16 we can also see that both the winner and loser portfolios had a positive factor

loading on the HML and SMB factor, but the winner had a lower factor loading than the loser

portfolio, which means that the WML portfolio had a negative correlation with both HML and

SMB. The alpha of the 1-month WML portfolio became less significant when regressed on the

Carhart’s four factor model however, as the portfolio had a significant positive loading on the

momentum factor. The fact that the trading strategy had a positive correlation with momen-

tum was not very surprising in itself, as the expectation was that the model should learn the
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time-series patterns that we found in section 8 to some extend. It was surprising however, to

see that the WML portfolio only had a positive slope on the momentum factor because the loser

portfolio had a more negative slope than the winner, and not because the winner had a positive

momentum slope. The winner’s negative factor loading was not significant however.

Looking at figure 16 it seems as if the Naive Bayes Classifier assigned a higher probability of

being a loser stock if the past return has had a high volatility, as the portfolio size of the loser

increased rapidly around the two large crisis. This might also explain why the loser portfolio

had such a positive correlation with the SMB factor, as smaller stocks tend to be more volatile

in general. Moreover, the loser portfolio was significantly larger through-out the whole sample

period. This could indicate that Naive Bayes Classifier predicted that a stock was likely to be a

loser stock if the returns had been negative in the previous 12 month, but that positive returns in

the previous months not necessarily made a stock likely to be a winner. This is consistent with

the results of table 16, where we saw that the loser portfolio was loading significantly negative

on the momentum factor.

Figure 16: Number of stocks included in Naive Bayes Classifier’s winner and loser portfolio in the test
period

Overall the trading strategies created by the Naive Bayes Classifier were not very attractive,

as none of them turned out to yield significant returns. Looking at figure 15 again, the problem

did not seem to be due to any particular event, it just seems as if the loser portfolio is overall

performing too well. As it was already disclosed, the decision trees did not yield any significance

either, but luckily the Random Forest algorithm created some very interesting results which we

will go through now.
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10.3 Random Forest

Random Forest predicted the classes of the stocks with an accuracy of 51.2%, slightly worse

than Naive Bayes Classifier. It is important to emphasize again however, that we are interested

in the accuracy in terms of picking the correct winners and the correct losers only, meaning

the accuracy by itself is only indicative. Therefore we created the below 3x3 confusion matrix,

which shows the relative frequency of the 9 possible outcomes.

Predicted Winner Predicted Neutral Predicted Loser

Winner 1.08% 2.15% 2.20%

Neutral 0.90% 47.59% 2.08%

Loser 1.09% 21.06% 2.50%

Table 17: The table reports the 3x3 confusion matrix of Random Forest’s stock predictions. It shows the
relative frequency of each possible outcome.

The matrix indicates that the Random Forest model is not predicting the winner and loser

stocks very well. The algorithm seems to have predicted a large fraction of losers to be winners

and vice versa. It is important to note however, that the confusion matrix does not take two

very important factors into account when trading stocks:

Firstly, the matrix does not say anything about the timing of picking the winners and losers.

When creating long-short strategies, it is not critical that the algorithm sometimes predicts that

a loser stock is as winner, as long as the loser portfolio consists of a larger fraction of losers in

the same month and vice versa.

Secondly, the confusion matrix does not tell us how much of a ”loser” the predicted losers are,

and how much of a ”winner” the predicted winners are.

Hence, the most important results will still be the performance of the portfolios when regressed

on the market models. The results of these tests are displayed in table 20-23, which will be

discussed after the discussion of the applied specifications below.

10.3.1 Applied Parameters

n estimators was set to 200, which means that 200 bootstrapped decision trees were applied.

The general opinion about the number of decision trees is that the models only improve when

adding more trees. The reason for 200 decision trees was based on diminishing returns of adding

more trees as we see in figure 17, combined with the fact that computation time was increas-

ing exponentially. In comparison Imandoust and Bolandraftar (2014) used 100 decision trees

(Imandoust & Bolandraftar, 2014; Müller & Guido, 2017).

max features was set to the auto specification, which is the square-root of the m number

of feature
√
mfeatures. This implies that the model was randomly given 3 features per node,

which implies that the decision trees will be highly randomized as we will get further into below.
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Maximum depth was not applied, which means that the model is highly overfitting, since

it will not stop the decision tree until all the leafs are pure. Imandoust and Bolandraftar (2014)

did not prune their trees either. With 200 decision trees the accuracy on the training set was

100%. Below we will get into the effect of setting a maximum depth of the decision trees

(Imandoust & Bolandraftar, 2014).

Figure 17: The figure shows the relation between number of decision trees (x-axis) used in the Random
Forest algorithm and the accuracy of the stock prediction (y-axis). The figure clearly shows that the
incremental accuracy is declining.

In section 4.2.4 it was described that the maximum feature specification can be important

to adjust to increase the Random Forest model’s prediction accuracy. The lower the maximum

features per note, the more random the decision trees will be, but on the hand it also increases

the complexity. As an example, if it only has 1 feature to choose from, it implies that the model

cannot choose which feature has the highest explanatory power, but can only choose the best

possible threshold for the randomly selected feature. Hence, a low number of features can imply

very deep decision trees to fit the data. On the other hand, if we set the maximum feature to

12, the decision trees will always have all the features to choose from, and thus no randomness

will be injected in the feature selection, which means that the only randomness in the model

will be the bootstrapping of the return data. It is not given that a lower number of features is

better than a higher number of features or vice versa.

To see if the model could be improved compared to our initial results reported, a manual search

changing the maximum feature parameter was conducted, reported in table 18.

Maximum Features 1 2 3 4 6 9 12

Accuracy 51.13% 51.16% 51.17% 51.12% 51.10% 51.09% 51.07%

Table 18: Random Forest’s prediction accuracy based on the maximum amount of features it was given
at each node with 200 decision trees, and no maximum depth

The results of the manual search documented above shows that the optimal number of

features per node was 3 (in terms of accuracy), which was also the standard specification.

A manual search of the optimal maximum depth parameter was conducted as well, holding

the other parameters constant. The results of the search is reported below in table 19. From
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the table it can be seen that the accuracy was highest with a maximum depth of 20. 4 WML

trading strategies were therefore created based on a maximum depth=20, using the methodology

described in 9.2. The results of the pre-pruned portfolios were very comparable to the ones

reported, but were actually slightly less significant, and are thus not reported in the paper.

Maximum Depth 10 15 20 25 30 40 50

Accuracy 50.92% 51.10% 51.23% 51.22% 51.19% 51.19% 51.13%

Table 19: Random Forest’s prediction accuracy changing the maximum depth of the decision trees, with
200 decision trees, and 3 maximum features

Lastly, it should be re-emphasized that accuracy is not a very good measurement in this

context, and hence a further investigation would be necessary to conclude which specifications

are optimal, as discussed in section 1.4. However, the results reported in table 18 and 19 indicates

that the algorithm is relatively insensitive to changes in the specifications.

10.3.2 Discussion of Random Forest Results

Table 20 below reports the monthly returns of the trading strategies with the belonging t-

statistics.

Holding period= 1 3 6 9

Winner 0.0175 0.0144 0.0124 0.0116

(3.09) (2.7) (2.46) (2.39)

Loser 0.00781 0.0099 0.0108 0.0110

(1.65) (2.13) (2.33) (2.43)

WML 0.0096 0.0045 0.0017 0.0006

(4.07) (2.62) (1.26) (0.53)

Table 20: The table reports Random Forest’s monthly returns and belonging t-statistics in the sample
period Dec. 1994 to Dec. 2016. WML stands for Winners-Minus-Loser and is the long-short portfolios

The results displayed in table 20 shows that the Winner-Minus-Loser (WML) portfolio with

a 1 month holding period was generating the highest return with an average monthly return

of 0.96% in the sample period of 22 years, which is impressive. In addition, the annualized

Sharpe ratio was 0.91, reported in table 21, indicating that a high standard deviation could not

explain the high returns. From figure 18 below, it is also clear to see that the portfolio had a

low volatility, and the volatility even seems to be low through-out both of the crises.

Holding period= 1 3 6 9

WML Sharpe ratio 0.91 0.57 0.27 0.11

Table 21: The table reports the four long-short Winners-Minus-Loser (WML) portfolios’ Sharpe ratio in
the sample period December 1994 to December 2016.
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It is also clear from both table 20 and 21 that the length of the holding period and the per-

formance of Random Forest’s trading strategies has an inverse relationship. The WML portfolio

with a 3-month holding period yielded a monthly return of 0.45% with a t-statistic of 2.62, and a

Sharpe ratio of 0.57. The WML portfolios with a 6- and 9- month holding period yielded returns

insignificantly different from zero and low Sharpe-ratios. Hence, the discussion will mostly be

based on the results of the WML trading strategy with a 1-month holding period.

It is noteworthy that Random Forest’s long-short strategies are the only long-short trading

strategies generating positive returns with a significant t-statistic of all of the long-short ma-

chine learning based trading strategies tested. The source of the high returns of the WML

portfolio with a 1 month holding period appears to be partly because the winner portfolio was

doing extremely well, but also because the loser portfolio was generating far smaller returns in

comparison. However, we are more interested in the results of regressing the trading strategies

on CAPM to see if the WML portfolios actually yielded abnormal returns.

Figure 18: The figure displays the development of Random Forest’s 1 month portfolios against S&P 500
on a logarithmic scale. Note that the risk-free rate has been added to the WML portfolio

The results of regressing the portfolios on CAPM is reported in table 22 with the belonging

t-statistics. The table shows that Jensen’s alpha of the 1-month holding period trading strat-

egy was 0.80%, with a t-statistic of 3.46. This makes sense since the winner portfolio had a

positive Jensen’s alpha (although insignificant), and the loser portfolio had a negative Jensen’s

alpha (also insignificant). It is also clear from figure 18, that the winner portfolio on average

was overperforming compared to the market, while the loser was underperforming on average.

Moreover, the market beta of the WML portfolio was only 0.24, since the winner portfolio had

a market beta of 1.62 and the loser had a market beta of 1.39.
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Holding Period Winner Loser WML

α1,p 0.0045 -0.0035 0.0080
1 (1.2) (-1.14) (3.46)

β1,p 1.6233 1.3870 0.2364
(18.61) (19.26) (4.39)

α3,p 0.0019 -0.0014 0.0033
3 (0.55) (-0.47) (1.98)

β3,p 1.5545 1.3835 0.1710
(19.11) (20.12) (4.4)

α6,p 0.0005 -0.0005 0.0011
6 (0.15) (-0.19) (0.8)

β6,p 1.4715 1.3812 0.0903
(19.23) (20.54) (2.96)

α9,p -0.0000 -0.0001 0.0001
9 (-0.01) (-0.05) (0.1)

β9,p 1.4217 1.3554 0.0664
(19.64) (20.54) (2.71)

Table 22: The table report the Jensen’s alpha and the CAPM beta of the portfolios based on Random
Forest’s stock predictions with the belonging t-statistics in the sample period of December 1994 to December
2016. WML stands for Winners Minus Loser and are the ”zero-cost” portfolios.

It is noteworthy that the WML portfolios created by the predictions of Random Forest are

the first of the long-short portfolios covered in this paper which does not have a negative market

beta. The fact that the winner portfolio had such a high beta is not very surprising however,

considering the fact that the monthly return was 1.75%. Figure 18 confirms the findings, as it

shows that both the winner and the loser portfolio in general follows the market development

but are much more volatile than the market. Moreover, it is clear that the winner portfolio

consistently outperforms the loser portfolio even through times of the crises. This makes the

portfolio very attractive, as it seems to be close to market neutral.

The 3-month WML portfolio also yielded a positive significant Jensen’s alpha, but only barely

significant with a t-statistic of 1.98, and the abnormal returns were insignificant for the longer

holding periods.
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Finally, the results of regressing the portfolios on Carhart (1997)’s four factor model reported

in table 23 below were very interesting.

Holding Period αk,p Market HML SMB MOM

winner 0.0060 1.3785 0.4474 0.8044 -0.5045
(2.18) (20.58) (4.81) (9.43) (-8.94)

1 loser -0.0030 1.1927 0.5215 0.8256 -0.3956
(-1.56) (25.32) (7.97) (13.76) (-9.97)

WML 0.0091 0.1858 -0.0741 -0.0212 -0.1089
(3.86) (3.27) (-0.94) (-0.29) (-2.28)

winner 0.0037 1.2912 0.4319 0.8533 -0.5456
(1.63) (23.59) (5.68) (12.24) (-11.83)

3 loser -0.0013 1.2075 0.5327 0.8216 -0.3470
(-0.7) (27.69) (8.79) (14.79) (-9.44)

WML 0.0050 0.0837 -0.1008 0.03177 -0.1985
(3.11) (2.17) (-1.88) (0.65) (-6.1)

winner 0.0021 1.2217 0.4293 0.8308 -0.5186
(1.04) (24.68) (6.24) (13.17) (-12.43)

6 loser -0.0005 1.2139 0.5341 0.8036 -0.3275
(-0.30) (28.52) (9.03) (14.82) (-9.13)

WML 0.0027 0.0077 -0.1048 0.0272 -0.1912
(2.2) (0.26) (-2.58) (0.73) (-7.76)

winner 0.0013 1.1909 0.4340 0.8018 -0.4772
(0.69) (25.81) (6.77) (13.64) (-12.27)

9 loser -0.0002 1.1914 0.5327 0.7951 -0.3209
(-0.09) (28.83) (9.28) (15.1) (-9.21)

WML 0.0015 -0.0005 -0.0988 0.0066 -0.1563
(1.54) (-0.02) (-3.05) (0.22) (-7.97)

Table 23: The table reports the results of regressing Random Forest’s portfolios on Carhart (1997)’s
four factor model in the sample period of December 1994 to December 2016, with belonging t-statistics.
Random Forest was trained to predict monthly winners on historical return data only.

The abnormal returns of the 1- and 3-month WML portfolios could not be explained by

adding the three factors. The 1-month WML portfolio still yielded the most significant abnor-

mal return and will therefore still be the basis of the discussion going forward.

Both the 1-month winner- and the loser portfolio had a positive correlation with the HML and

SMB factor, but as the loser portfolio was loading more on both factors it implied that the WML

portfolio had a negative loading on both the SMB and HML factor. A particularly interesting

observation is that both the winner and the loser portfolio had a very high factor loading on the

SMB factor. Hence, it seems as if the algorithm has mostly identified small stocks to be both in

the winner and in the loser portfolio. It is important to note that the two portfolios’ constituents

are mutually exclusive, so it has to be different small stocks in the portfolios. The reason for the

high factor loading on the SMB factor could be because the algorithm has ’identified’ the most

volatile stocks to be the winners and loser, and as we have already mentioned, smaller stocks

64



are usually more volatile (Munk, 2016). Hence, the algorithm’s decision boundary might have

been based on extremely high (low) returns for the winner (loser) stocks. This will be discussed

further in section 10.4.

Both the winner and the loser portfolios had a significantly negative slope on the momentum

factor. At first sight it was a bit surprising that the winner’s correlation with the momentum

portfolio was very negative, however holding it together with previous findings it makes sense.

The winner portfolio had a high covariance with the market and a positive correlation with the

HML factor. Both of which the momentum portfolio had a negative correlation with.

The winner portfolio had a more negative factor loading than the loser portfolio on the momen-

tum factor, which implies that the WML portfolio also had a negative factor loading on the

momentum factor.

Figure 19: Number of stocks included in Random Forest’s winner and loser portfolio in the test period

Figure 19 shows the number of predicted winners and losers throughout the sample period.

The winner portfolio is most frequently consisting of around 60 stocks (median), which is very

few stocks compared to the momentum trading strategies. The loser portfolio is requiring more

trading: The portfolio size is most frequently around 121 (median), and is very dynamic, which

is clear from figure 19. The winner portfolio seem to be very large around the times of crises

whereas the loser portfolio seems to become extraordinary large in the aftermath of crises.

In conclusion the WML portfolios with a 1-month and 3-month holding period implemented

on the basis of the Random Forest algorithm were generating abnormal returns, which could

not be explained by well-known factors. In the following subsection it will be discussed whether

it is feasible to follow the trading strategies in practice.
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10.4 Applying machine learning for trading strategies

From the findings reported in the previous subsections it became clear that the results of apply-

ing machine learning algorithms to predict stocks based solely on time-series data turned out to

be very varying, with the Random Forest algorithm as the most successful algorithm by far.

This subsection will address the primary challenges of implementing the machine-learning based

trading strategies from the perspective of a hedge fund. More specifically, we will discuss the

transaction costs and capacity problems that might occur when following each algorithm’s trad-

ing strategy.

The 6-Nearest Neighbor performed worst in terms of accuracy with an average prediction

accuracy of 47.3%. Moreover, the confusion matrix indicated that the algorithm was unsuccess-

ful, as the matrix revealed that the algorithm had picked many ”false positive” stocks. However,

the long-short 3-month WML portfolio generated positive returns, and a statistical significant

Jensen’s alpha. The investment strategy does not seem very profitable to follow however, as it

generated very small monthly returns of 0.09% in the sample period. Especially when looking at

figure 20 below, it seems to be a complicated trading strategy to implement as it involves a lot

of trading each month, which implies that the turnover of assets are high. Hence, there will be

some trading costs from both commission and bid-ask spreads. However, for a large hedge fund

these costs would most likely be small. A large hedge fund would on the other hand take large

positions, which means it would trade for more than what is available at the bid or ask price, as

explained in section 8.5. Hence, taking transaction cost into account, the trading strategy would

most likely not generate positive returns, let alone abnormal returns. However, we also argued

that the WML portfolio appeared to be close to market neutral, which could make it an attrac-

tive investment if it is possible for the investor to leverage the portfolio costless. Leveraging the

investment is not without risks however, and with the confusion matrix in mind, it would be

hard to justify that following k-NN’s predictions indeed is a low-risk trading strategy, hence this

does not appear very appealing without further tests of the algorithm (Pedersen, 2015).

Figure 20: the figure displays the number of stocks included in 6-Nearest Neighbors’s winner and loser
portfolio in the test period
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Naive Bayes Classifier was the best performing algorithm in terms of accuracy with a

prediction accuracy of 51.6%, but as it turned out, it was the worst performing algorithm in

terms of generating abnormal returns. The only portfolio based on Naive Bayes Classifier yield-

ing a positive return was the portfolio with a one-month holding period, but the Sharpe ratio

was only 0.20, and the Jensen’s alpha was not significant. Hence, it was far from a successful

trading strategy, and should not be implemented.

Random Forest was predicting the stock classes with a prediction accuracy of 51.2%, which

meant it on average was predicting slightly worse than Naive Bayes Classifier. Moreover, the

confusion matrix indicated that the algorithm had predicted many ”false positive” stocks, which

we wanted to avoid. Nevertheless, the long-short WML trading strategies with a holding period

of 1- and 3-months were generating high monthly returns statistically different from zero, and

significant Jensen’s alphas. Moreover, regressing the portfolios on Carhart (1997)’s four factor

model could not explain the abnormal returns. Thus, the conclusion from section 10.3.2 is that

Random Forest algorithm seems to be able to create very attractive investment strategies. The

best trading strategy was the WML portfolio with a 1 month holding period, which yielded the

most significant abnormal returns and had a Sharpe ratio of 0.91. Thus, the following discus-

sion will address the issues related to following Random Forest’s stock predictions, based on the

WML portfolio with a 1-month holding period:

Firstly, figure 19 in section 10.3.2 indicates that there is a large turnover of stocks, which

will imply transaction costs in terms of both commission and bid-ask spreads, but also market

impact costs, which we will discuss further below. In addition the loser portfolio is shorting

over a thousand stocks around May 2009, which is documented in figure 19. This might not be

feasible to its full extent. Firstly, because the lender of the stocks might want to get their assets

back sooner than warranted - which is the ”buy-in” risk, also discussed in section 8.5. Secondly,

it might not be possible to short-sell all the stocks to the available bid prices at the exact time

the algorithm is dictate. On the contrary, shorting a thousand stocks is better than shorting ten

stocks in terms of market impact, as it implies smaller positions in each stocks which, everything

else equal, makes the market impact smaller.

Secondly, the winner and loser portfolios’ high factor loading on SMB makes it questionable

whether the algorithm would be able to pick stocks well based on data with larger stocks, or

if it only works because the algorithm has identified the small illiquid stocks as winners and

losers. If the latter is true, it might not be feasible to implement the strategy for a hedge

fund because the amount of stocks that can be traded at the available bid or ask price is too

small compared to what a hedge fund would need to invest (Pedersen, 2015). In other words,

market impact might make the trading strategy less profitable, and maybe even unprofitable. To

address this issue, we firstly extracted the end-of-the month price and ”shares outstanding” from

CRSP of all the stocks in the test-set, and calculated the market value of equity (ME) for each

month by saying Price ∗ # shares outstanding (divided by 1,000,000). Secondly we extracted
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the 30% ME-fractile each month from French (2017)’s web-page, which is the 30% percentile

of the market value of equity of stocks listed on New York Stock Exchange, calculated as the

end-of-the-month Price ∗# shares outstanding (divided by 1,000,000). The 30%-percentile was

chosen instead of the median to retain some robustness of the test, as Random Forest only

tend to pick between 1% and 2% of the available stocks as winners and losers, which means the

portfolios would become too small if we had used the median. The table below shows the 30%

percentile and median market value of equity in the first- and last month of the sample period

in USDm (French, 2017).

30%-percentile Median

December 1994 244.89 616.59

December 2016 1245.41 2757.86

Table 24: New York Stock Exchange’s 30% percentile and median market value of equity in USDm

The stocks that had a market cap below the 30%-percentile in time t were removed only in

time t, but still around 1500 stocks were completely removed from the data-set. The remaining

4800 stocks were then tested with Random Forest’s algorithm. The results of the 1-month WML

portfolio are reported in table 25, and all the results are fully disclosed in appendix F.

It turned out that the winner portfolio now consisted of 45 stocks on average instead of 60,

and the loser portfolio had decreased to 91 stocks from 126 on average, which shows that the

portfolio consisted of a high fraction of small cap stocks. The average monthly return of the 1-

month WML portfolio on large cap stocks was less significant, but the portfolio was still yielding

abnormal returns that could not be explained by the well-known factors, which increases the

robustness of the results and the feasibility of applying Random Forest’s long-short portfolio

with a 1-month holding period as a trading strategy.

Monthly return SR CAPM α CAPM β Carhart α Carhart β HML SMB MOM

0.0091 0.78 0.0075 0.2320 0.0084 0.1901 -0.0779 -0.0285 -0.0860

(3.48) - (2.91) (3.88) (3.21) (3.01) (-0.89) (-0.35) (-1.61)

Table 25: The table report the results of Random Forest’s 1-month WML portfolio restricted to only pick
stocks larger than the 30% percentile of NYSE-listed stocks

Lastly, and perhaps the most significant issue to address of using Random Forest is the ”black

box issue”, which is the lack of understanding the underlying assumptions that the model has

based its predictions on. As we described in section 4, many funds state that they are not yet

comfortable fully automating trading management if they do not understand how a particular

prediction is made. With the Random Forest algorithm we can obtain little information about

why the model has picked the stocks it did. It is only possible to extract what the algorithm

finds the most important features which can be seen in table 26 below, which is not telling us a

lot.
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Feature rt−1 rt−2 rt−3 rt−4 rt−5 rt−6 rt−7 rt−8 rt−9 rt−10 rt−11 rt−12

Feature Importance 8.6% 8.4% 8.4% 8.3% 8.3% 8.3% 8.3% 8.3% 8.3% 8.3% 8.3% 8.3%

Table 26: The table report the results of Random Forest’s feature importance. It can be seen it assigns
approximately the same importance to all the lagged returns.

To really interpret the model’s decision boundaries it would require analysis of all the 200

individual decision trees, and as there was no maximum depth set, the length of the trees can

be very deep. This would make the task infeasible. Hence it is a black box.

Despite this significant drawback, Random Forest clearly has some ability to predict winner

and loser stocks as it has been able to make a long-short trading strategy yielding abnormal

returns for 22 years, which cannot be explained by the most well-known factors. The combina-

tion of the black box issue and the results of the confusion matrix might make it hard to sell to

investors however.

Instead of implementing Random Forest as a fully automated operator, which substitutes the

traders it could be a complimentary tool. It could be a powerful complimentary tool for a trader

because Random Forest is not merely trying to copy the way traders think and reason, but the

algorithm is instead ”hunting” for similarities in the past 70 years, creating a set of rules to

trade upon, which are too complex for a trader to find with manual search. Hence, Random

Forest could be implemented as a tool working on the same principles as existing techniques

used in systematic investing, to identify new signals or price movements. However, it would still

require more research and tests to find the best possible indicators, as the model is not better

than the data it receives.

69



11 Conclusion and Further Implications

This section consists of three subsections. Firstly, the main findings answering the research

questions stated in section 1.3 will be concluded upon. Secondly, future work that could improve

the results will be discussed along with other relevant areas of interest, which the scope of the

thesis did not allow us to cover. Lastly, the thesis will end with final remarks of the future

application of machine learning in trading of financial assets.

11.1 Findings & Conclusion

Overall the results of the thesis indicate that the use of machine learning algorithms can gen-

erate abnormal returns based on time-series data, which cannot be explained by well-known

factors. However, there are some major drawbacks, which means that further research and tests

are necessary.

The results presented in section 8 were in favor of the existence of momentum, as the WML

momentum portfolios generated significant abnormal returns from December 1994 to December

2016. Hence, the results imply that abnormal profits can be realized from analyzing time-series

patterns of stock returns. However, it was also discovered that applying momentum as a trading

strategy involves risks of drawdowns in the aftermath of crises, consistent with the findings of

Daniel and Moskowitz (2015).

The results presented in section 8.2 showed that a trading strategy based on a long position

in both the long-short 6/3 WML momentum portfolio and the market portfolio performed bet-

ter than the 6/3 WML momentum and market portfolio did alone. However, we discussed in

section 8.5 that the issues of following the momentum-based trading strategies might make it

less attractive net of transaction costs.

Based on the methodology presented in 9.2, two algorithms were capable of constructing

long-short trading strategies yielding abnormal returns by only receiving a stock’s returns of

the past year, namely k-NN and Random Forest. Among the machine learning algorithms

investigated, Random Forest created the most significant abnormal returns. The long-short

WML portfolio with a 1-month holding period yielded a promising average monthly return of

0.96% and a Sharpe ratio of 0.91. Moreover, the portfolio yielded a significant Jensen’s alpha,

which could not be explained by the three additional factors of Carhart (1997)’s four factor

model.

In section 10.4 we addressed the issue that both the long and short positions of Random

Forest’s WML portfolio with a holding period of 1 month appeared to consist mainly of small

stocks. In order to help determining whether the strategy would be profitable to implement

after transactions costs, Random Forest was tested again only on stocks with a market cap

larger than the 30%-percentile. This caused the number of constituents in both the long- and

short portfolios to decrease significantly, which underlined that Random Forest indeed had been
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identifying a lot of small stocks as winner and losers. The returns of the WML portfolio were still

high with an average monthly return of 0.91% and a Sharpe ratio of 0.78 however. Moreover,

the alphas were still significant when risk-adjusting with CAPM and Carhart’s four factor model.

Lastly, it was concluded that the biggest short-coming of applying Random Forest in portfolio

management is the the lack of understanding how a particular prediction is made. The black-box

issue combined with the confusion matrix’s unfavourable results reported in table 17, makes it

seem unfeasible to fully automate the model presented in this thesis. For the algorithm to be

fully automated, it would require more research and tests. The results reported are promising

for applying machine learning in portfolio management however.

11.2 Further implications

While the thesis was limited to including time series data as the only input to the algorithms, it

could be interesting to include other types of features. There are potentially many other inputs

that could increase the performance, such as other ”technical” inputs including volatility, the

current month (due to the January effect described in section 3.4), moving averages, relative

performance tools, size (to capture the SMB factor), and a HML input. Moreover, it could be

very interesting to see the implications of incorporating fundamentals including profitability,

coverage and leverage. As an example, Huerta et al. (2011) showed that applying fundamental

and technical inputs jointly improved the results significantly on the SVM’s ability to predict

the winner and loser stocks (Huerta et al., 2011; Pedersen, 2015).

The machine learning models’ performance could also be enhanced using the same inputs,

but with a different methodology. One of the most significant issues of our methodology is the

fact that we use an imbalanced training set. A well-known method called re-sampling, could help

overcoming this problem by creating a more balanced (synthetic) training set. The most applied

method is called over-sampling where you simply create synthetic data-points by interpolating

data between several of the minority classes.

In addition it would be interesting to see if applying rolling windows of the training- and test-

windows would improve the results of Random Forest (Garćıa, 2007).

Lastly it would be interesting to look at more advanced machine learning algorithms. Support

Vector Machine (SVM) has in the literature proven to be a superior model for predicting stock

index directions and future ”winners” and ”losers” (Huerta et al., 2011; Kumar & M., 2007).

Hence, further studies could include a comparison of the SVM and Random Forest. SVM

requires a lot of pre-processing and tuning in order to perform however, and training it with a

regular computer can take several weeks in terms of computational time.
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11.3 Final remarks

The application of machine learning is growing vastly these years. More importantly, the ap-

plications of machine learning are no longer bounded to be merely repetitive tasks. Machine

learning is now capable of identifying scin cancer as well as leading dermatologists, and auto-

mated cars are already implemented around the world. Tasks that usually would be defined

as non-routine, non-repetitive tasks (Kubota, 2017). It is therefore not a question of ”if”, but

”when” and ”to which extend” fully automated machine learning trading-algorithms will be

normalized. It will require a strong track record of ”beating the market”, and as it has been

seen before in history, there can be pitfalls using algorithmic trading due to data or coding

errors. As an example quant funds lost $100 billion dollars in a week in 2007 under what seemed

to be normal market conditions, which is often referred to as a ”black swan” incident. These

black swan incidents are happening more frequently on a small scale however (Cohan, 2011).

Clifford Asness, a widely acknowledged scholar and hedge fund manager, seems to believe it is

not because of the algorithms but merely a result of...

”... a strategy getting too crowded ... and then suffering when too many try to get

out the same door”

(Cohan, 2011)

In the end, machine learning algorithms will be a part of the future in portfolio management,

but it will require as much work as ever to gain profits from algorithmic strategies. It takes

creativity to find new methods, inputs and applications, and most importantly risk management

to avoid ”black swan” incidents.
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Appendices

A Our results vs. Jegadeesh & Titman’s results

The data was in the sample period of January 1965 to December 1989, using stocks listed on

NYSE, AMEX and NASDAQ from July 1962 to December 1989.

J K= 3 6 9 12 J K= 3 6 9 12

3 0.0032 0.0058 0.0061 0.0069 3 0.0033 0.0064 0.0063 0.0067

(1.10) (2.29) (2.69) (3.53) (1.11) (2.32) (2.9) (3.50)

6 0.0084 0.0095 0.0102 0.0086 6 0.0083 0.0095 0.009 0.0089

(2.44) (3.07) (3.76) (3.36) (2.40) (3.01) (3.67) (3.47)

9 0.0109 0.0121 0.0105 0.0082 9 0.114 0.0122 0.0109 0.0084

(3.03) (3.78) (3.47) (2.89) (3.10) (3.81) (3.37) (2.98)

12 0.0131 0.0114 0.0093 0.0068 12 0.0128 0.0114 0.0085 0.0071

(3.74) (3.40) (2.95) (2.25) (3.74) (3.40) (2.95) (2.25)

Table 27: The results of testing our methodology (right) on the same data a Jegadeesh & Titman 1993
(left).
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B WML portfolios decomposed

J K= 3 6 9 12

3 winner 0.0059 0.00528 0.0049 0.0043

(2.69) (2.52) (2.52) (2.3)

loser -0.0019 -0.0017 -0.0013 -0.0010

(-0.56) (-0.51) (-0.42) (-0.34)

6 winner 0.0075 0.0064 0.0055 0.0043

(3.26) (3.02) (2.8) (2.31)

loser -0.0032 -0.0029 -0.0023 -0.0013

(-0.84) (-0.79) (-0.68) (-0.4)

9 winner 0.0074 0.0061 0.0047 0.0036

(3.3) (2.87) (2.39) (1.9)

loser -0.0038 -0.0032 -0.0022 -0.0011

(-0.93) (-0.85) (-0.6) (-0.31)

12 winner 0.0061 0.0044 0.0034 0.0026

(2.8) (2.12) (1.73) (1.39)

loser -0.0038 -0.0025 -0.0014 -0.0005

(-0.94) (-0.65) (-0.40) (-0.15)

Table 28: CAPM alpha

J K= 3 6 9 12

3 winner 0.9471 1.0055 1.0269 1.057

(18.5) (20.89) (22.76) (24.33)

loser 1.5317 1.4474 1.3885 1.3290

(19.46) (19.29) (19.27) (19.59)

6 winner 0.9481 0.9997 1.0356 1.0555

(17.9) (20.33) (22.75) (24.35)

loser 1.5715 1.4817 1.4034 1.3542

(17.71) (17.6) (17.75) (18.18)

9 winner 0.9617 1.0200 1.0477 1.0663

(18.48) (20.87) (22.81) (24.46)

loser 1.5933 1.4908 1.4253 1.3700

(16.86) (16.88) (17.11) (17.44)

12 winner 0.9891 1.0311 1.0575 1.0686

(19.48) (21.35) (23.23) (24.54)

loser 1.5645 1.490 1.4211 1.3683

(16.49) (16.67) (16.86) (17.17)

Table 29: CAPM beta
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J K= 3 6 9 12

3 winner 0.0041 0.0034 0.0032 0.0027

(2.79) (2.66) (2.75) (2.41)

loser -0.0040 -0.0039 -0.0037 -0.0034

(-1.39) (-1.46) (-1.46) (-1.49)

6 winner 0.0059 0.00498 0.0042 0.0031

(3.62) (3.33) (3.13) (2.48)

loser -0.0056 -0.0054 -0.0049 -0.0039

(-1.68) (-1.74) (-1.74) (-1.51)

9 winner 0.0062 0.0049 0.0037 0.0026

(3.63) (3.11) (2.56) (1.95)

loser -0.0065 -0.0061 -0.0050 -0.0039

(-1.85) (-1.88) (-1.69) (-1.42)

12 winner 0.0052 0.0036 0.0026 0.0019

(3.01) (2.23) (1.78) (1.33)

loser -0.0068 -0.0055 -0.0044 -0.0035

(-1.95) (-1.79) (-1.5) (-1.26)

Table 30: FF3 alpha

J K= 3 6 9 12

Market HML SMB Market HML SMB Market HML SMB Market HML SMB

3 winner 0.9225 0.4445 0.6244 0.9777 0.4336 0.6041 0.9995 0.4080 0.6231 1.0285 0.3881 0.5277

(27.6) (9.26) (13.88) (33.12) (10.23) (15.2) (36.93) (10.5) (15.36) (39.24) (10.32) (14.96)

loser 1.4881 0.6108 0.6076 1.4107 0.6563 0.6047 1.3546 0.6695 0.6123 1.2980 0.6769 0.6174

(22.37) (6.4) (6.79) (22.79) (7.38) (7.25) (23.35) (8.04) (7.84) (24.7) (8.97) (8.72)

6 winner 0.9183 0.3486 0.6153 0.9694 0.3291 0.5579 1.0047 1.0047 0.5126 1.0240 0.2828 0.4845

(24.71) (6.53) (12.3) (28.41) (6.72) (12.14) (32.6) (6.89) (12.35) (35.36) (6.8) (12.43)

loser 1.5300 0.6869 0.6444 1.4455 0.7184 0.6466 1.3709 0.7329 0.6529 1.3234 0.7286 0.6525

(20.01) (6.26) (6.26) (20.37) (7.05) (6.77) (21.21) (7.9) (7.5) (22.38) (8.58) (8.19)

9 winner 0.9310 0.2609 0.5419 0.9882 0.2444 0.4922 1.0148 0.2195 0.4661 1.0331 0.2090 0.4447

(23.86) (4.66) (10.32) (27.05) (4.66) (10.01) (30.33) (4.57) (10.35) (33.27) (4.69) (10.64)

loser 1.5559 0.7914 0.6844 1.4588 0.8064 0.6800 1.3953 0.8023 0.6828 1.3412 0.7902 0.6814

(19.21) (6.8) (6.8) (19.74) (-1.85) (6.83) (20.53) (8.22) (7.46) (21.48) (8.82) (8.11)

12 winner 0.9565 0.1919 0.4826 0.9967 0.1611 0.4541 1.0233 0.1544 0.4281 1.0350 0.1564 0.4079

(24.24) (3.39) (9.08) (26.93) (3.03) (9.12) (29.93) (3.15) (9.3) (32) (3.37) (9.37)

loser 1.5325 0.8541 0.7070 1.4600 0.8486 0.7046 1.3927 0.8386 0.7068 1.3408 0.8242 0.7005

(19.12) (7.42) (6.55) (19.77) (8.00) (7.09) (20.49) (8.6) (7.73) (21.34) (9.14) (8.28)

Table 31: FF3 factors
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C Lagged Momentum

Skipping 1 month between the formation period and holding period.

J K= 3 6 9 12

3 0.40% 0.34% 0.30% 0.26%

(1.49) (1.50) (1.48) (1.57)

6 0.61% 0.54% 0.46 0.27%

(1.69) (1.68) (1.66) (1.13)

9 0.67% 0.57% 0.38% 0.19%

(1.67) (1.62) (1.24) (0.71)

12 0.63% 0.39% 0.22% 0.07%

(1.43) (0.99) (0.64) (0.24)

Table 32: Returns of the 16 momentum portfolios lagged 1 month

D Hedged Momentum

Full results of the long position in the (6/3) trading strategy and the market

Monthly return Sharpe ratio CAPM alpha CAPM beta FF alpha FF beta HML SMB

0.0151 0.8450 0.0126 0.3769 0.0137 0.3759 -0.3099 -0.2100

(3.65) - (3.08) (3.98) (3.38) (4.03) (-2.31) (-1.67)

Table 33: Returns of the 16 momentum portfolios lagged 1 month
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E Decision Tree

E.0.0.1 No Risk-adjustment

Holding period= 1 3 6 9

winner 0.0153 0.0133 0.0106 0.0096

(2.39) (2.25) (1.93) (1.82)

loser 0.0096 0.0113 0.0116 0.0116

(1.96) (2.42) (2.56) (2.63)

WML 0.0057 0.0020 -0.0010 -0.0021

(1.64) (0.82) (-0.53) (-1.30)

Table 34: The table report Decision trees monthly returns and t-statistics in the sample period Dec. 1994
to Dec. 2016. WML stands for Winners-Minus-Loser and is the long-short portfolios

Holding period= 1 3 6 9

WML Sharpe ratio 0.36 0.18 -0.11 -0.27

Table 35: The table reports the four Decision Tree long-short (WML) portfolios’ Sharpe ratio in the
sample period December 1994 to December 2016.

E.0.0.2 CAPM

Holding Period Winner Loser WML

1 α1,p 0.0017 -0.0018 0.0036
(0.38) (-0.55) (1.03)

β1, p 1.7087 1.3926 0.3161
(15.89) (18.24) (3.96)

3 α3,p 0.0003 0.0001 0.0002
(0.07) (-0.55) (0.08)

β3, p 1.6332 1.3630 0.2701
(16.94) (19.29) (4.85)

6 α6,p -0.0017 0.0006 -0.0023
(-0.44) (0.2) (-1.2)

β6, p 1.5224 1.3382 0.1842
(17.09) (19.87) (4.21)

9 α9,p -0.0023 0.0008 -0.0031
(-0.65) (0.27) (-1.99)

β9, p 1.4710 1.3180 0.1530
(17.55) (20.31) (4.23)

Table 36: The table report the Jensen’s alpha and the CAPM beta of the portfolios based on Decision tree
with the belonging t-statistics in the sample period of December 1994 to December 2016.
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E.0.0.3 Carhart’s 4-factor

Holding Period αk,p Market HML SMB MOM

winner 0.0048 1.3656 0.3850 0.9255 -0.7130
(1.37) (16.12) (3.27) (8.58) (-9.99)

1 loser -0.0018 1.2079 0.5791 0.8727 -0.3616
(-0.8) (22.77) (7.86) (12.91) (-8.09)

WML 0.0066 0.1577 -0.1940 0.0528 -0.3514
(1.96) (1.95) (-1.73) (0.51) (-5.16)

winner 0.0032 1.2943 0.4133 0.9492 -0.7114
(1.15) (19.28) (4.43) (11.1) (-12.58)

3 loser 0.0000 1.1905 0.5736 0.8534 -0.3401
(0.15) (26.4) (9.16) (14.85) (-8.95)

WML 0.0032 0.1039 -0.1603 0.0958 -0.3713
(1.47) (1.98) (-2.2) (1.43) (-8.39)

winner 0.0006 1.2164 0.4863 0.9418 -0.6486
(0.24) (20.85) (6.00) (18.10) (-13.19)

6 loser 0.0003 1.1783 0.5688 0.8327 -0.3092
(0.19) (28.16) (9.78) (15.62) (-8.77)

WML 0.0002 0.0381 -0.0825 0.1091 -0.3394
(0.15) (0.97) (-1.52) (2.19) (-10.29)

winner -0.0006 1.1954 0.4997 0.9306 -0.5756
(-0.29) (22.15) (6.66) (13.53) (-12.65)

9 loser 0.0005 1.1644 0.5533 0.8023 -0.2956
(0.29) (29.1) (9.95) (15.74) (-8.76)

WML -0.0011 0.03104 -0.0535 0.1283 -0.2801
(-0.84) (0.97) (-1.2) (3.14) (-10.36)

Table 37: The table reports the results of regressing Decision Trees’s portfolios on Carhart (1997)’s four
factor model in the sample period of December 1994 to December 2016, with belonging t-statistics.
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F Random Forest - Large Cap

F.0.0.1 No Risk-adjustment

Holding period= 1 3 6 9

winner 0.0171 0.0142 0.0126 0.0120

(2.93) (2.59) (2.43) (2.41)

loser 0.0080 0.0097 0.0105 0.0109

(1.63) (2.03) (2.21) (2.35)

WML 0.0091 0.0045 0.0022 0.0011

(3.48) (2.44) (1.48) (0.94)

Table 38: The table report Large Cap Random Forest’s monthly returns and t-statistics in the sample
period Dec. 1994 to Dec. 2016. WML stands for Winners-Minus-Loser and is the long-short portfolios

Holding period= 1 3 6 9

Winner-Minus-Loser 0.7781 0.5317 0.3181 0.2006

Table 39: The table reports the four long-short Winners-Minus-Loser (WML) portfolios’ Sharpe ratio in
the sample period December 1994 to December 2016.

F.0.0.2 CAPM

Holding Period Winner Loser WML

1 α1,p 0.0038 -0.0037 0.0075
(0.96) (-1.18) (2.91)

β1, p 1.6774 1.4454 0.2320
(18.6) (19.69) (3.88)

3 α3,p 0.0015 -0.0020 0.0034
(0.41) (-0.65) (1.88)

β3, p 1.5859 1.4290 0.1569
(18.82) (20.45) (3.7)

6 α6,p 0.0004 -0.0011 0.0016
(0.13) (-0.38) (1.08)

β6, p 1.5103 1.4245 0.0857
(19.11) (20.85) (2.52)

9 α9,p 0.0001 -0.0006 0.0007
(0.03) (-0.19) (0.56)

β9, p 1.4643 1.3988 0.0655
(19.74) (21.08) (2.38)

Table 40: The table report the Jensen’s alpha and the CAPM beta of the portfolios based on Large Cap
Random Forest’s stock predictions with the belonging t-statistics in the sample period of December 1994
to December 2016. WML stands for Winners Minus Loser and are the ”zero-cost” portfolios.
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F.0.0.3 Carhart’s 4-factor

Holding Period αk,p Market HML SMB MOM

winner 0.0054 1.4337 0.4413 0.7618 -0.5048
(1.79) (19.82) (4.39) (8.27) (-8.28)

1 loser -0.0030 1.2436 0.5192 0.7904 -0.4188
(-1.48) (25.09) (7.5)4 (12.52) (-10.03)

WML 0.0084 0.1901 -0.0779 -0.0285 -0.0860
(3.21) (3.01) (-0.89) (-0.35) (-1.61)

winner 0.0034 1.3152 0.4524 0.8478 -0.5654
(1.39) (22.49) (5.57) (11.38) (-11.48)

3 loser -0.0016 1.2460 0.5297 0.7978 -0.3663
(-0.87) (27.29) (8.35) (13.71) (-9.52)

WML 0.0050 0.0692 -0.0773 0.0500 -0.1992
(2.84) (1.62) (-1.3) (0.92) (-5.54)

winner 0.0022 1.2521 0.4509 0.8266 -0.5402
(1.39) (23.89) (6.19) (12.38) (-12.23)

6 loser -0.0009 1.2500 0.5282 0.7821 -0.3467
(-0.51) (28.06) (8.53) (13.78) (-9.23)

WML 0.0031 0.0020 -0.0773 0.0445 -0.1935
(2.26) (0.06) (-1.68) (1.05) (-6.91)

winner 0.0016 1.2232 0.4392 0.7819 -0.5022
(0.82) (25.14) (6.5) (12.62) (-12.25)

9 loser -0.0004 1.2278 0.5206 0.7625 -0.3406
(-0.21) (28.75) (8.78) (14.02) (-9.47)

WML 0.0020 -0.0046 -0.0814 0.0194 -0.1615
(1.82) (-0.17) (-2.19) (0.57) (-7.17)

Table 41: The table reports the results of regressing Large Cap Random Forest’s portfolios on Carhart
(1997)’s four factor model in the sample period of December 1994 to December 2016, with belonging
t-statistics. Random Forest was trained to predict monthly winners on historical return data only.

G Codes

See USB stick both Stata and Python files

H Data

See USB stick
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