
Predicting Stock Performance

Using 10-K Filings

A Natural Language Processing Approach Employing

Convolutional Neural Networks

Master’s Thesis

Kasper Regenburg Jønsson

MSc Finance and Investments

Student number: 71638

Jonas Burup Jakobsen

MSc Finance and Accounting

Student number: 41792

Supervised by

Thomas Plenborg

Thomas Riise Johansen

May 15, 2018

Characters: 137,891

Pages: 88

Abstract

This paper aims to predict company-specific performance based on the textual ele-

ments of 10-K filings. Due to their limited information processing capacity, investors

need time to incorporate the information contained within the textual content of the

10-K filings into the market. This delay generates an opportunity for the investors

to earn abnormal returns using automated text analysis. Using word embeddings

to represent the text as input to a convolutional neural network (CNN), we analyze

the text of over 29,000 10-K filings from 2010 to 2017. We find that company-specific

stock performance is predictable. Furthermore, we control the results for known risk

factors using the Fama-French 5 factor model finding that the investors are able to

generate significant risk-adjusted returns based on the classifications of the CNN.

Based on the findings, we propose several implications. Firstly, we confirm that the

textual elements of the 10-K filings contain information which the investors currently

do not fully utilize. Secondly, we contribute to the validity of using deep learning

models when predicting company-specific performance. Lastly, we provide a prac-

tical tool for the investors, the regulatory entities, and the respective company to

analyze the textual elements of the 10-K filings.

iii

Contents

Abstract iii

1 Introduction 1

1.1 Hypothesis . 3

1.2 Scope . 4

1.3 Structure of the Paper . 5

2 Literature Review 7

2.1 Introduction . 7

2.2 Purposes . 8

2.2.1 Fraud detection . 8

2.2.2 Bankruptcy detection . 9

2.2.3 Stock Performance . 9

2.3 Textual Measures . 10

2.3.1 Readability . 10

2.3.2 Sentiment . 12

2.4 Text Sources . 16

2.5 Model Use . 17

2.6 Key Takeaways . 18

3 Research Design 21

3.1 Datasets . 21

3.1.1 Loughran and McDonald . 21

3.1.2 CRSP . 22

3.2 Methodology . 22

v

vi Contents

3.2.1 Prediction Model . 22

3.2.2 Research Structure . 23

3.2.3 Tools and Software . 23

3.3 Data Processing . 24

3.3.1 Processing the Textual Elements of Annual Reports 25

3.3.2 Cleaning Data . 26

3.3.3 Tokenization and Word Vector Representation 27

3.3.4 Padding . 29

3.3.5 Matching Ticker and CIK . 30

3.3.6 Calculating Stock Returns . 31

3.3.7 Separating Returns into Portfolios 32

3.3.8 Splitting the Data for Training, Validation and Test 33

3.4 The Theoretical Foundation . 34

3.4.1 Neural Networks . 35

3.4.2 Convolutional Neural Network 36

3.4.3 Training the Network . 38

4 Experiments and Results 41

4.1 Experiments . 41

4.1.1 Training Process of the Base-Case Algorithm 41

4.1.2 Settings of the Base-Case Model 43

4.1.3 Optimization Experiments . 47

4.1.4 Evaluation of the Experiments 47

4.2 Results . 49

4.2.1 Absolute Performance . 50

4.2.2 Abnormal Performance . 52

4.2.3 Confusion Matrices . 54

5 Discussion 59

5.1 Predictive Power over Time . 59

5.2 Bankruptcies . 60

5.3 Trainable Word Embeddings . 61

5.4 Dealing with a Black Box . 62

Contents vii

5.5 Other Factors . 62

6 Conclusion 65

6.1 Contributions and Implications . 65

6.2 Future Research . 67

Bibliography 69

A A Basic Guide to Convolutional Neural Networks 75

A.1 Neural Networks . 75

A.1.1 Neurons . 77

A.1.2 Activation Functions . 77

A.1.3 Layers . 79

A.1.4 Training the Network . 79

A.1.5 Loss Functions . 79

A.1.6 Backpropagation . 80

A.1.7 Optimizers . 81

A.1.8 Learning Rate . 82

A.1.9 Overfitting and Regularization 83

A.1.10 Random Initialization of Weights 84

A.2 Convolutional Neural Network . 84

A.2.1 Inspiration from Vision . 84

A.2.2 Convolutional Layers . 85

A.2.3 Pooling Layers . 86

A.2.4 Flattening Layer . 87

A.2.5 Softmax . 87

A.2.6 Putting the Parts Together . 88

A.2.7 Convolutional Neural Network in Natural Language Processing 89

Chapter 1

Introduction

The annual report has been shown to be one of the most important external doc-

uments of a company (P. Hájek and Olej 2013). It is a vital tool which helps the

management communicate the strategy and financial performance of the company,

which serves as the foundation for investor valuations. However, the information

content of the reports does not seem to be efficiently incorporated by the financial

market. Ball and Brown (1968) and Bernard and Thomas (1989) showed how the

market deviates from the fundamental value of stocks following an earnings an-

nouncement. Discarding the assumption that investors have unlimited information

processing capacity can aid in explaining this apparent flaw in the market efficiency

hypothesis (Engelberg 2008). As a result, it takes time for agents to incorporate the

information of the annual report in the stock price. This delayed response to the in-

formation is important to examine, because it creates an opportunity for investors to

earn abnormal returns (Fortuny et al. 2014). In this paper, we examine whether it is

possible to predict company-specific performance by processing the textual informa-

tion. In order to do this, we implement a deep learning algorithm to create a model

that can analyze the textual elements in annual reports instantly and subsequently

classify the company in one of five portfolios based on their expected performance.

An annual report contains a mix of hard information, defined as the account-

ing information (the numbers), and soft information, defined as the text. Following

this definition, the hard information is easy to compare across firms (e.g. $8 divi-

1

2 Chapter 1. Introduction

dends versus $12) and regardless of who collects it. Soft information is not as easily

comparable across firms and the meaning depends on who collects the data (e.g.

"risk of business has increased" is an ambiguous statement and will be interpreted

differently) (Engelberg 2008). As a result, the hard information in the reports is incor-

porated into the stock prices much quicker than the soft information. In accounting,

researchers have used several different methods to try to quantify the soft informa-

tion enabling the prediction of company performance. The most popular methods

involve the creation of parameters to measure one or more aspects of the text, such

as readability, length, and sentiment. The first paper to link linguistic features of the

annual report to company performance was Li (2008). Li finds evidence of a negative

correlation between readability (measured with the Fog Index score) and company

performance. Lang and Stice-Lawrence (2015) find that changes in length, boilerplat-

ing1, and comparability in annual reports are correlated with economic outcomes of

companies. These studies, among others, indicate that the soft information in annual

reports indeed can be used for predicting company performance.

However, these methods of analyzing text are vulnerable due to their simple con-

structions. For example, the very popular Bag of Words model does not take the order

of the words into account. The sentence "although the year was not good, we did

meet our targets" would be classified the same way as "although the year was good,

we did not meet our targets", which is highly problematic. The difference between

the two sentences would not be caught by the simple approaches but it is vital to

the investors. Moreover, when it comes to sentiment, the most common method

used is classifying texts based on a chosen dictionary of words manually assigned

to pre-defined categories2 (Loughran and McDonald 2016). Obviously, one must

consider the possible bias of the author, and their preconceptions of the meaning of

certain words, but also take into account the general changes in language and its

uses. Fortunately, more advanced techniques, like Word2Vec and GloVe, have been

developed to quantify the soft information. The idea behind these methods is that

individual words are represented numerically by vectors that have been trained on

1A measure describing how much text was reused from the previous annual report
2The most used categories are Positive and Negative

1.1. Hypothesis 3

large amounts of textual data (e.g. the Wikipedia website). This allows the repre-

sentations to contain very specific and fine-grained aspects of language (Pennington,

Socher, and Manning 2014). The representations have proven successful in other

Natural Language Processing tasks (NLP), however, their application in accounting

research has been sparse. One of the main reasons is that they are not well-suited to

use as input in the classic prediction models, such as simple regressions.

Advancements in the field of machine learning and deep learning has made the

utilization of more complex inputs, such as word vectors, viable. In combining tex-

tual analysis (hereunder NLP), deep learning, and stock prediction, researchers have

primarily analyzed financial news and social media posts. For example, Pinheiro

and Dras (2017) and Ding et al. (2015) used financial news to predict stock returns

using a recurrent neural network (RNN) and convolutional neural network (CNN),

respectively, with promising results. They use text directly without any intermediate

measure of sentiment or readability. Kraus and Feuerriegel (2017) analyzed the Ger-

man equivalent to 8-K reports using GloVe to represent the text. They used multiple

variants of RNNs to predict the direction of company-specific stock prices with a

high accuracy. These results both inspired us to use deep learning in combination

with textual analysis, as well as contribute to the validity of the methods. However,

to the best of our knowledge, no one has yet attempted to predict company-specific

performance based on the soft information of annual reports by use of these tech-

niques. For this reason, we propose and test the following hypothesis.

1.1 Hypothesis

Hypothesis: Firm-specific stock performance is predictable by analyzing the tex-

tual elements of annual reports through natural language processing with deep

learning using a convolutional neural network.

4 Chapter 1. Introduction

1.2 Scope

We limit the geographical scope of this research paper to stocks listed exclusively

on the US stock market seeing as training a convolutional neural network requires a

vast amount of data. The US has the longest and most consistent data track record

with comprehensive data registration from 1994 and forward (SEC 2010), in addition

to the more than 5.500 listed companies. This well-documented track record makes

it the ideal market for the data requirements of the implemented model.

In addition, only publicly traded companies will be included in the analysis of

this research paper. In order to evaluate the quality of our predictions, we need to be

able to match a specific company report to the stock’s following price development

to see how the market reacted to that specific report. Looking at the requirements

which make a company need to publicly file annual reports (SEC 2013), it is clear

that some private companies are required to report these documents as well. Since

the private companies do not have any public performance record, it is not possible

to implement them in the model.

Furthermore, we have chosen only to use annual reports as our text source. As

mentioned, annual reports are the fundamental public disclosure of companies’ eco-

nomic and financial position. The reports are required by law to be reported at

specific intervals and with a given content and structure. Opposite to 10-Qs, 10-

K filings are required to be audited and they contain a much more comprehensive

overview of the company and its performance. The additional soft information in

the annual reports makes them ideal for our research purposes, since our proposed

model can leverage the extra text to create better pattern recognition.

1.3. Structure of the Paper 5

1.3 Structure of the Paper

This paper intends to follow the format and approach of a scientific paper. Therefore,

we organize the remainder of the paper as illustrated in figure 1.1.

Figure 1.1: Project structure

1. Introduction 2. Literature review 3. Research design

4. Experiments
and results

5. Discussion6. Conclusion

In chapter 2 we examine the previous works in the field’s relevant to the research

hypothesis. We confirm that the hypothesis is worth pursuing and that our combi-

nation of methods is a novel approach. In chapter 3 we present the overall research

design of the paper. We describe the data sources used, the research methodology,

and how we process the data. A short introduction to neural networks and convo-

lutional neural networks is included to give a basic understanding of the presented

learning algorithm. Furthermore, we refer to appendix A for a comprehensive expla-

nation of the neural network theory needed to fully understand the inner workings

of our proposed model. Although the comprehensive explanation has been placed

in the appendix to keep a steady flow, it is an integral part of the paper. In chapter

4 we present our base-case model, our optimization process, and the results of the

best performing model. In chapter 5 we discuss the key methodological elements

of the paper and how they influence the results. Finally, in chapter 6 we summarize

the final results, we discuss the implications of the results, and propose avenues in

which to explore for future research.

Chapter 2

Literature Review

2.1 Introduction

A review of the related literature is relevant to help answer the research questions as

it serves multiple purposes. Firstly, it serves as a sanity check, whether the desired

topic is something worth pursuing. We show that there is a plethora of research in

the field of textual analysis with an accounting perspective, including using NLP and

machine learning. Secondly, it ensures that we are not trying repeat work that has

already done. We found examples of our methods being used separately but none in

the exact combination we employ. Lastly, it serves as a guideline of what is already

understood about the subject, best practices, and what is possible or impossible.

Table 2.1: Article selection overview

Process Remaining articles

Extraction from Scopus 1840

Articles not cited 889

Irrelevant titles 194

Irrelevant abstracts 81

Table 2.1 shows the process of selecting the relevant articles. We use Scopus as the

main article database as it has some attractive features, such as advanced query

search and drill-down tools. The first step is to create a search query to locate the

papers that could be relevant to this paper, resulting in 1840 matches. The authors,

7

8 Chapter 2. Literature Review

titles, publishers, abstracts, and number of times cites were extracted from Scopus.

As a proxy for research quality, articles from 2016 and older which were not cited at

least once a year since they were published were excluded. This narrowed the pool

down to 889 articles. Subsequently, articles with titles not relevant were removed

(e.g. neural networks used in medical diagnostics) resulting in 194 articles. The final

sorting was made based on the articles’ abstracts, removing all irrelevant to this pa-

per, finalizing the search to 81 articles. Acknowledging that this structured approach

potentially left out relevant material, any articles cited in the 81 papers that seem rel-

evant are also included. We show an overview table of the mentioned articles at the

end of the literature review in table 2.2 and 2.3.

The rest of the chapter is structured the following way: firstly, we present the

main three prediction goals of analyzing text in accounting. Afterward, we highlight

the different methods of analyzing text. Following this, we point out the different

sources of text used in the literature and, lastly, present the models used.

2.2 Purposes

Prediction of corporate events (fraud detection and bankruptcy detection) and index

or stock performance are the three main prediction objectives, which prior literature

has focused on in accounting (Amani and Fadlalla 2017). Textual analysis has also

been used for various retrospective applications such as monitoring the quality of

historical accounting data and inventory optimization (Amani and Fadlalla 2017),

but since none of the retrospective objectives are the focus of this paper, they are

omitted from the literature review.

2.2.1 Fraud detection

Detecting fraudulent behavior of a company has always been a difficult challenge

due to the lack of universal indicators (Goel and Uzuner 2016). Even if such uni-

versal indicators existed, companies would know how to construct their disclosures

to avoid being investigated, making effective detection impossible. Despite the lack

of indicators, researchers in accounting have found some interesting results from

2.2. Purposes 9

analyzing text. Humpherys et al. (2011) are able to predict fraudulent disclosures

with a 67.3% accuracy, testing multiple prediction models based on 202 manage-

ment discussion and analysis sections (MD&A) of annual reports. They create eight

categories (e.g. specificity, complexity, uncertainty etc.) and calculate several ratios

based on the frequency of the words belonging to the respective categories finding

that the fraudulent texts have distinct linguistic cues. Similar results are found in

a recent study by Goel and Uzuner (2016). They employ a more advanced method

for analyzing the text based on the software Diction as well as a more advanced

prediction model based on machine learning (Support Vector Machine) achieving an

impressive 81.8% accuracy on their best model.

2.2.2 Bankruptcy detection

Early detection of bankruptcy is very valuable for all stakeholders, thus attracting

researchers. Cecchini et al. (2010) develop custom dictionaries from MD&A sections

of 10-K filings, which show significant prediction power of up to 80% accuracy. From

this, they conclude that the soft information in the annual reports contains valuable

information in excess of what is reflected in the financial statements. Hájek and Olej

(2013) use a finance-specific dictionary to create sentiment measures as inputs to

both Neural Networks and Support Vector Machine (SVM). They find that models

with both the sentiment measures and financial ratios have 1-3% better accuracy in

comparison to models based solely on financial ratios, adding to the idea that the

text contains valuable information.

2.2.3 Stock Performance

Predicting stock performance is most often the purpose of textual analysis in ac-

counting (Colm and Sha 2014). Generally, stock performance is predicted in one of

two ways: as a specific return (i.e. X%) or as one category (e.g. positive/negative,

buy/hold/sell).

Price et al. (2012) analyzes conference calls with a dictionary approach and tries

to predict the cumulative absolute return (CAR) following the conference calls. (P.

Hájek, Olej, and R. Myšková 2013) also predicts specific stock returns. They use a

10 Chapter 2. Literature Review

mix of textual and numeric inputs in their model, finding that the non-linear models

performed much better than the base-case linear model.

Kraus and Feuerriegel (2017) predict the direction of absolute and abnormal re-

turns of stock performance where up (1) is positive performance and down (0) is

negative performance using an advanced deep learning model. Khedre et al. (2017)

also try to predict the direction of stock performance. Hájek and Boháčová (2016)

compare the classification ability of some of the simpler machine learning models

(e.g. Naïve Bayes and Support Vector Machine) with the more advanced neural

networks, finding best performance with the advanced models.

2.3 Textual Measures

As mentioned earlier, researchers have created several measures to quantify the in-

formation that is expressed in the text. These measures are then used as quantitative

inputs to the respective prediction models. As a result, the text itself is not the input.

The most commonly used measures are readability and sentiment (Loughran and

McDonald 2016). Others do not calculate any textual measures but instead use more

complex numerical representation as input for the prediction objective.

2.3.1 Readability

The most commonly used measure for estimating readability is the Gunning Fog

index. It is a score based on average sentence length and number of complex words

(words with more than two syllables) that is used to estimate the number of years of

formal education a person needs to comprehend a piece of text on a first reading.

The first and very influential paper on readability and company performance is

Li (2008). Li finds a significant negative correlation between earnings and the Fog

index score of annual reports (i.e. firms with annual reports scoring a high fog in-

dex have lower earnings). Although the result is interesting, the real impact of the

study is that Li was the first to link linguistic features of the annual report to actual

firm performance (Loughran and McDonald 2016). The same negative correlation

2.3. Textual Measures 11

can be seen when looking at analysts’ forecasts. Lehavy, Li, and Merkel (2011) find

forecast accuracy to be better and analyst dispersion to be lower for companies with

annual reports that have lower Fog index scores. Lo, Ramos and Rogo (2017) offer

an alternative link between Fog index scores and performance. They confirm their

hypothesis that firms that have managed earnings to beat their benchmark (often

last year’s performance) have more complex disclosures. This indicates that the re-

lationship found by Li (2008) and others is not necessarily linear but non-monotonic

around the benchmark.

Despite the widespread use of the Fog index in accounting literature, it has some

fundamental flaws as pointed out by Loughran and McDonald (2014a). Annual re-

ports contain many multi-syllable words that the Fog index scores as complex but

would be easily understood by investors. For example, the most common ’complex’

words in annual reports include words such as company, financial, management, and

customer (Loughran and McDonald 2016). Obviously, these words can easily be com-

prehended by investors. Another issue with the Fog index is the fact that the words

in a sentence can be rearranged so it makes no sense, while still obtaining the same

score by the Fog index.

As an alternative measure of readability, Loughran and McDonald (2014a) sug-

gest using the natural log of gross 10-K filing file size. They find a significant pos-

itive correlation between their alternative measure (the log file size as a proxy for

complexity) and stock return volatility, earnings surprises and analyst dispersion

(Loughran and McDonald 2014a). Although arguably better and easier to imple-

ment, the proposed alternative measure is not perfect either. Certain events have

previously shown to affect corporate disclosures such as the Enron accounting scan-

dal (Loughran and McDonald 2016). Loughran and McDonald (2016) argue that

researchers, in general, should shy away from using readability and instead focus on

the broader topic of information complexity.

12 Chapter 2. Literature Review

2.3.2 Sentiment

Instead of focusing on how readable a piece of text is, sentiment analysis tries to

extract the tone of the text. There are two well-established methods of sentiment

analysis in the literature: the bag-of-words/dictionary approach and the machine-

learning approach (Colm and Sha 2014). Both methods try to capture the sentimental

level of the text.

Bag-of-Words

In the bag-of-words model text (e.g. sentences, paragraphs or documents) is repre-

sented by vectors based on word frequencies. Hence, a piece of text is represented

by a list (vector) of the count of each word in the text. Comparing two of these vec-

tors indicates how similar the texts they represent are; if they have roughly the same

distribution of words, the texts are supposedly similar in meaning. Obviously, some

words appear very frequently (e.g. the, and, to etc.) and yet they add little meaning

to the text. To account for this, the term frequencies are often adjusted by the inverse

frequencies in other documents. That is, the less the term appears in other docu-

ments in the entire corpus, the more relevant it is to the text’s specific topic. This

method is known as TF-IDF (term frequency-inverse document frequency).

Dictionary Approach

The widely used dictionary approach is, in its essence, a bag-of-words approach

where the words that are counted have been narrowed down by manually creating a

dictionary of words that reflect the sentiment the user wants to analyze. The words

are often chosen to have a common theme such as positive, negative, uncertainty,

etc. A score for each text can then be generated. Usually, the sum of the category or

net sentiment (e.g. positive minus negative word count) is calculated. This enables

the user to measure and compare texts based on the scores.

The earliest research on sentiment analysis in accounting is based on the Har-

vard General Inquirer Word Lists (GI) (Colm and Sha 2014). The dictionary contains

182 categories (or themes) with the negative category being the largest with 2291

2.3. Textual Measures 13

words3. Tetlock (2007) links the tone based on the GI word lists of the Wall Street

Journal’s "Abreast of the Market" to daily stock market levels. He finds that high

media pessimism results in downward pressure on the stock prices. He also finds

that unusually high or low pessimism results in high trading volumes. Although

Tetlock (2007) inspired subsequent research on sentiment tone on stock market per-

formance, his results are not consistent across other types of text inputs. Li (2010)

analyzes the tone of MD&A sections of annual reports using three different common

English dictionaries (including the GI) and finds that using the dictionaries could

not predict future performance. He concluded: "This result suggests that these dic-

tionaries might not work well for analyzing corporate filings" (F. Li 2010, p. 1050).

Henry (2010) was the first to create a finance-specific dictionary. Henry finds

that investors’ reactions are affected by the tone in earnings press releases. Albeit

the novel approach, the dictionary is very short (85 negative and 105 positive) and

has left out somewhat obvious words such as loss, impairment, gain and advantage.

Adding to the argument that domain-specific dictionaries are necessary, Loughran

and McDonald (2011) (hereafter L&M) show that 73.8% of all the words listed as neg-

ative in the Harvard GI dictionary are not considered negative in a financial context.

This is both a problem with general terms such as cost, capital and liability as well as

sector-specific words such as cancer and mine which are common words in the biotech

and mining industry, respectively. As an alternative, L&M develops six word lists

covering the categories of negative, positive, litigious, uncertainty, strong modal, and

weak modal. The word lists are created by examining the 5% most common words

in their dataset of 10-K filings from 1994 to 2008 (Loughran and McDonald 2011).

As a comparison to Henry’s negative word list, L&M’s contains 2337 words, making

it considerably more detailed. L&M shows how their new word lists outperformed

the commonly used Harvard GI in every aspect. Hence, it comes as no surprise that

L&M’s finance-specific word lists have become predominant in recent studies (Colm

and Sha 2014). The following studies have used the L&M dictionary to analyze the

sentiment of text in order to predict stock performance: Myšková et al. (2018), Hájek

3More information can be found at http://www.wjh.harvard.edu/~inquirer/3JMoreInfo.html

14 Chapter 2. Literature Review

et al. (2016), Ahmad et al. (2016), Chen et al. (2014), Li et al. (2014), Hájek and Olej

(2013), and Hájek et al. (2013).

Although the dictionary approaches have shown great results, they have also

been criticized for their simplicity. First, they are subject to the creator’s subjective

presumptions of what words belong to which category. This is particularly true

for homophones which can have significantly different meaning depending on the

context. Second, they do not take the words’ context into account. When calculating

the scores for each text, the composition of the text is not considered. As mentioned

earlier, the sentences "although the year was good, we did not meet our targets" and

"although the year was not good, we did meet our targets" are scored the same by the

dictionary approach. Despite these drawbacks, it is still a very popular method. One

of the explanations to this could be that it is very simple to implement compared to

the machine learning approaches (Colm and Sha 2014).

Machine Learning

In addition to the models described above, researchers have developed more ad-

vanced methods of assigning a sentiment score to a piece of text based on machine

learning. These techniques rely on statistical inference to infer the meaning of text (F.

Li 2010). The most common model used is the Naïve Bayes (NB) model (Loughran

and McDonald 2016). The model is trained using supervising learning. That is,

a fraction of the corpus is manually labeled in categories (e.g. positive, negative,

bullish, bearish, etc.). This input (text) – output (category) data is then used to train

the model, so it learns to recognize the patterns of the chosen categories. Afterward,

the model can be used to categorize the rest of the corpus. Sentiment features can

then be calculated and used as input for predictive models.

Antweiler and Frank (2004) were the first to use NB to classify text in finance.

They measure the sentiment of Yahoo! Finance and Raging Bull4 messages to pre-

dict stock performance and trading volume. They find that the messages help predict

4Yahoo! Finance and Raging Bull are two social media platforms for sharing content related to
investing.

2.3. Textual Measures 15

volatility, trading volume and stock returns. Despite stock returns being significant,

they are economically too small to be profitable after trading costs. Sprenger et al.

(2014) also use NB to classify roughly 250,000 tweets as bullish or bearish from the

social media Twitter. Their more recent results confirm the result of Antweiler and

Frank (2004) in that there is valuable information in the microblogging community

that is not fully incorporated into the market. Li (2010) also uses NB to classify an-

nual reports in four tones: positive, negative, neutral and uncertain. He manually

labels 30,000 observations to be able to train his NB model. He finds that based on

the MD&A section of annual reports, the tone is positively associated with future

earnings.

The NB is very effective for large corpora of text and eliminates the subjective

elements of the researcher once the model has been trained. However, the model

has some disadvantages. First, the manual labeling of the training data is prone to

errors made by the labeler. Second, the results are hard to recreate by others since

the initial variables of the model are set randomly. Lastly, one of the assumptions of

the model is that words are conditionally independent (i.e. the probability of each

word appearing in a sentence is not affected by which words are in the sentence).

This is obviously a rough assumption but empirically it does not seem to influence

the model (F. Li 2010).

Word Embeddings

Instead of calculating a measure based on some aspect of the text, word embeddings

have the meaning of the text embedded in their numerical representation (Penning-

ton, Socher, and Manning 2014). The embeddings are trained without any interfer-

ence from the user (i.e. unsupervised learning), eliminating any risk of introducing

bias. This way of representing text have shown impressive results on word analogy

tests, word similarity tests, and information retrieval tasks (Pennington, Socher, and

Manning 2014). Word embeddings have also shown to improve prediction results in

accounting literature (Kraus and Feuerriegel 2017). Sohangir et al. (2018) argue that

word embeddings work well with Convolutional Neural Networks, although they

do not specifically predict company performance.

16 Chapter 2. Literature Review

2.4 Text Sources

Three main categories of text sources have been analyzed in the literature: financial

news (e.g. The Wall Street Journal, Reuters, analyst reports, etc.), social media (e.g.

Twitter, Yahoo! Finance blogs, SeekingAlpha, etc.) and corporate announcements,

including annual reports (Kraus and Feuerriegel 2017) (Nardo, Petracco-Giudici, and

Naltsidis 2016) (Colm and Sha 2014) (F. Li 2010). All three types have shown signifi-

cant results in predicting stock performance.

As mentioned earlier, Tetlock (2007) was one of the first and very influential stud-

ies using financial news from The Wall Street Journal. Ahmad et al. (2016) use over

5.1 million news articles to study how the time-varying nature of firm-specific re-

turns. They find that the tone of news periodically affects company-specific returns.

However, they highlight two interesting points: first, they find that companies have

longer periods of time where the sentiment of the media has no effect on stock re-

turns. Additionally, when the sentiment does impact returns, they are sometimes

quickly reversed indicating that the sentiment information was just noise. Other

times, the impact lasts, implying that the information is fundamentally relevant for

the company. They conclude that when the returns are lasting, it is not necessarily

because of inefficient markets but because it takes time for investors to process the

soft information in the news.

Social media posts have also been linked to stock return. Antweiler and Frank

(2004) and Sprenger et al. (2014), as mentioned earlier, analyze posts on social media

platforms. Chen et al. (2014) use almost 100,000 posts from the investment forum

SeekingAlpha to predict stock returns and find significant results even after control-

ling for other sources e.g. financial analyst reports and newspaper articles.

As pointed out above, Li (2008) was the first to link linguistic features of annual

reports to stock performance. Li’s paper sparked the interest of many researchers

to analyze annual reports. Li (2010) looked at the forward-looking statements (FLS)

in the MD&A section of annual reports where he associates better performance, less

2.5. Model Use 17

return volatility and lower accruals to positive FLS. Loughran and McDonald (2014)

argue that the MD&A sections in some reports have been spread out in the relevant

other sections of the 10-K filing and that you should look at the entire document as

in the case of Hájek and Olej (2013), and Hájek et al. (2013). The two papers ana-

lyze the text in annual reports to predict stock performance and financial distress,

respectively.

Lang and Stice-Lawrence (2015) took another approach and tested how account-

ing quality in annual reports has developed. They test how length, boilerplating,

and comparability has changed over time and concluded that the overall quality has

gone up measured by more disclosure, less boilerplating, and greater comparability.

Contrary results are presented by Dyer et al. (2017) who find negative development

in length, readability, redundancy, boilerplate, specificity, and the ratio of hard and

soft information. The differing conclusions can partly be explained by the way the

development was analyzed. Lang and Stice-Lawrence (2015) use relatively simple

measures whereas Dyer et al. (2017) use a more advanced technique called Latent

Dirichlet Allocation (LDA) as well as a five times larger data pool. Using LDA,

they find that the majority of the development is caused by three new mandatory

requirements: fair value disclosure, internal control disclosure, and risk factor dis-

closure. All things equal, this increased length, readability etc. makes it harder to

process the soft information in the annual reports, thereby, increasing the potential

for automated text analysis as we are proposing in this paper.

2.5 Model Use

A number of models have been used in prior literature to predict stock prices rang-

ing from the simple linear models to the very complex deep learning models. Wis-

niewski and Yekini (2015) analyze UK annual reports with a dictionary approach and

use the dictionary scores as inputs to a linear model. They find that the themes of

activity and realism predict increasing stock price. Sprenger et al. (2014) use machine

learning to classify Twitter messages and a subsequent simple linear regression to

predict stock returns. Venturing into machine learning territory, Qiu et al. (2014)

18 Chapter 2. Literature Review

and Wu et al. (2014) both use SVM to predict stock performance from 10-K filings

and financial news, respectively. Using only time-series data as input, Rather et al.

(2015) combine both a linear model with a Recurrent Neural Network (RNN) and

find improved prediction performance, showing promising results for the more ad-

vanced neural networks. Instead of using textual inputs, Dingli and Fournier (2017)

use multiple numerical inputs (e.g. historical prices, currency exchange rates, in-

dices, etc.) with a CNN to predict stock prices. To accompany the way input data

must be structured for CNNs, they arrange it in an 8x8 matrix with each value cor-

responding to an input parameter. They are able to predict the next month’s price

direction (up/down) with 65% accuracy.

Although they do not predict stock performance, Sohangir et al. (2018) use Con-

volutional Neural Network (CNNs). They show that CNNs are better at classifying

the sentiment of stock related text pieces from the social media StockTwits. They

combine the CNN with word embeddings and argue that this combination work

very well together because the CNN considers the order of the words which the vec-

tor representations ignore as a result of the way they are trained. The fact that they

find CNNs to be best at predicting sentiment also indicates that the network ’un-

derstands’ the text better than other methods. Kraus and Feuerriegel (2017) apply

a different type of deep learning model called recurrent neural network with long

short-term memory layers (RNN LSTM) to predict stock returns on corporate 8-K

filings in the Germany stock market.

2.6 Key Takeaways

We see the development of textual analysis in accounting going towards more ad-

vanced machine learning methods, including neural networks. This development

has been fueled by the continuous improvement of natural language processing

methods, new types of prediction models as well as an increasing amount of textual

data to be used for training the complex models. We wish to follow this development

and therefore construct the following research design.

2.6. Key Takeaways 19

Table 2.2: Overview of articles used in the literature review

A
ut

ho
r

Ye
ar

Pu
rp

os
e

O
bj

ec
t

an
al

yz
ed

Te
xt

ua
lm

ea
su

re
Pr

ed
ic

ti
on

m
od

el

A
hm

ad
et

al
.

20
16

St
oc

k
pe

rf
or

m
an

ce
Fi

na
nc

ia
ln

ew
s

D
ic

ti
on

ar
y

Ve
ct

or
au

to
re

gr
es

si
ve

(V
A

R
)

A
nt

w
ei

le
r

an
d

Fr
an

k
20

04
St

oc
k

pe
rf

or
m

an
ce

So
ci

al
m

ed
ia

po
st

s
Se

nt
im

en
t

(w
it

h
N

B)
Si

m
pl

e
re

gr
es

si
on

C
ec

ch
in

ie
t

al
.

20
10

Ba
nk

ru
pt

cy
de

te
ct

io
n

M
D

&
A

D
ic

ti
on

ar
y

SV
M

C
he

n
et

al
.

20
14

St
oc

k
pe

rf
or

m
an

ce
So

ci
al

m
ed

ia
po

st
s

D
ic

ti
on

ar
y

Si
m

pl
e

re
gr

es
si

on
D

in
gl

ia
nd

Fo
ur

ni
er

20
17

St
oc

k
pe

rf
or

m
an

ce
N

um
er

ic
al

da
ta

on
ly

-
C

N
N

D
ye

r
et

al
.

20
17

D
ev

el
op

m
en

t
of

10
-K

fil
in

gs
10

-K
M

ul
ti

pl
e

m
ea

su
re

s
-

Fa
rz

an
eh

an
d

Fa
dl

al
la

20
17

Li
te

ra
tu

re
re

vi
ew

-
-

-
G

oe
lS

.,
U

zu
ne

r
O

.
20

16
Fr

au
d

de
te

ct
io

n
M

D
&

A
D

ic
ti

on
ar

y
SV

M
H

áj
ek

an
d

Bo
há

čo
vá

20
16

St
oc

k
pe

rf
or

m
an

ce
10

-K
D

ic
ti

on
ar

y
M

ul
ti

pl
e

m
od

el
s

H
áj

ek
an

d
O

le
j

20
13

Ba
nk

ru
pt

cy
de

te
ct

io
n

10
-K

D
ic

ti
on

ar
y

SV
M

H
áj

ek
et

al
.

20
13

St
oc

k
pe

rf
or

m
an

ce
10

-K
D

ic
ti

on
ar

y
N

eu
ra

ln
et

w
or

k
an

d
SV

R
H

en
ry

20
08

St
oc

k
pe

rf
or

m
an

ce
Ea

rn
in

gs
pr

es
s

re
al

ea
se

s
D

ic
ti

on
ar

y
Si

m
pl

e
re

gr
es

si
on

H
um

ph
er

ys
et

al
.

20
11

Fr
au

d
de

te
ct

io
n

M
D

&
A

D
ic

ti
on

ar
y

M
ul

ti
pl

e
m

od
el

s
K

ea
rn

ey
an

d
Li

u
20

14
Li

te
ra

tu
re

re
vi

ew
-

-
-

K
he

dr
et

al
.

20
17

St
oc

k
pe

rf
or

m
an

ce
Fi

na
nc

ia
ln

ew
s

Se
nt

im
en

t
K

-n
ea

re
st

ne
ig

hb
or

s

K
ra

us
an

d
Fe

ue
rr

ie
ge

l
20

17
St

oc
k

pe
rf

or
m

an
ce

G
er

m
an

co
rp

or
at

e
an

no
un

ce
m

en
ts

W
or

d
em

be
dd

in
gs

R
N

N
(L

ST
M

)

La
ng

an
d

St
ic

e
20

15
D

ev
el

op
m

en
t

of
10

-K
fil

in
gs

10
-K

M
ul

ti
pl

e
m

ea
su

re
s

-
Le

ha
vy

et
al

.
20

11
A

na
ly

st
fo

re
ca

st
ac

cu
ra

cy
10

-K
Fo

g-
in

de
x

Si
m

pl
e

re
gr

es
si

on

20 Chapter 2. Literature Review

Table 2.3: Cont. overview of articles used in the literature review

A
ut

ho
r

Ye
ar

Pu
rp

os
e

O
bj

ec
t

an
al

yz
ed

Te
xt

ua
lm

ea
su

re
Pr

ed
ic

ti
on

m
od

el
Li

20
08

St
oc

k
pe

rf
or

m
an

ce
10

-K
Fo

g-
in

de
x

Si
m

pl
e

re
gr

es
si

on
Li

20
10

St
oc

k
pe

rf
or

m
an

ce
M

D
&

A
Se

nt
im

en
t

(w
it

h
N

B)
N

aï
ve

Ba
ye

s
Li

et
al

.
20

14
St

oc
k

pe
rf

or
m

an
ce

Fi
na

nc
ia

ln
ew

s
D

ic
ti

on
ar

y
SV

M
Lo

et
al

.
20

17
Ea

rn
in

gs
m

an
na

ge
m

en
t

M
D

&
A

Fo
g-

in
de

x
Si

m
pl

e
re

gr
es

si
on

Lo
ug

hr
an

an
d

M
cD

on
al

d
20

16
Li

te
ra

tu
re

re
vi

ew
-

-
-

Lo
ug

hr
an

an
d

M
cD

on
al

d
20

11
Pr

op
os

es
a

fin
an

ce
-s

pe
ci

fic
di

ct
io

na
ry

-
-

-

Lo
ug

hr
an

an
d

M
cD

on
al

d
20

14
Pr

op
os

es
ne

w
re

ad
ab

ili
ty

m
ea

su
re

-
-

-

M
yš

ko
vá

et
al

.
20

18
St

oc
k

pe
rf

or
m

an
ce

Fi
na

nc
ia

ln
ew

s
D

ic
ti

on
ar

y
M

ul
ti

pl
e

m
od

el
s

N
ar

do
et

al
.

20
16

Li
te

ra
tu

re
re

vi
ew

-
-

-

Pe
nn

in
gt

on
et

al
.

20
14

Pr
op

os
es

th
e

G
lo

Ve
w

or
d

em
be

dd
in

g
al

go
ri

th
m

-
-

-

Pr
ic

e
et

al
.

20
12

St
oc

k
pe

rf
or

m
an

ce
C

on
fe

re
nc

e
ca

lls
D

ic
ti

on
ar

y
Si

m
pl

e
re

gr
es

si
on

Q
iu

et
al

.
20

14
St

oc
k

pe
rf

or
m

an
ce

10
-K

Si
m

pl
e

Ba
g

of
w

or
ds

SV
M

R
at

he
r

et
al

.
20

15
St

oc
k

pe
rf

or
m

an
ce

N
um

er
ic

al
da

ta
on

ly
-

R
N

N

So
ha

ng
ir

et
al

.
20

18
Te

st
cl

as
si

fic
at

io
n

ab
ili

ty
of

de
ep

le
ar

ni
ng

m
od

el
s

So
ci

al
m

ed
ia

po
st

s
W

or
d

em
be

dd
in

gs
M

ul
ti

pl
e

m
od

el
s

Sp
re

ng
er

et
al

.
20

14
St

oc
k

pe
rf

or
m

an
ce

So
ci

al
m

ed
ia

po
st

s
Se

nt
im

en
t

(w
it

h
N

B)
Si

m
pl

e
re

gr
es

si
on

Te
tl

oc
k

20
07

St
oc

k
pe

rf
or

m
an

ce
Fi

na
nc

ia
ln

ew
s

D
ic

ti
on

ar
y

Si
m

pl
e

re
gr

es
si

on
W

is
ni

ew
sk

ia
nd

Ye
ki

ni
20

15
St

oc
k

pe
rf

or
m

an
ce

10
-K

D
ic

ti
on

ar
y

Si
m

pl
e

re
gr

es
si

on
W

u
et

al
.

20
14

St
oc

k
pe

rf
or

m
an

ce
So

ci
al

m
ed

ia
po

st
s

C
ha

ra
ct

er
em

be
dd

in
gs

SV
M

Chapter 3

Research Design

In this chapter, we present the data sources, methodology, and the theoretical frame-

work used to answer our research hypothesis. The data section describes the data

sources and any preprocessing of the data. Hereafter we present our methodology,

where we explain how we use a convolutional neural network to predict firm-specific

stock performance. Following this is an explanation how we further process the data,

ensuring that it is in the correct format for our learning algorithm. Finally, we include

a presentation of the theory of neural networks, convolutional neural networks, and

how they are trained.

3.1 Datasets

Convolutional neural networks (CNNs) require that the input data is labeled with

associated output in order to be trained. The input variables consist of annual re-

ports gathered from a preprocessed dataset published by Loughran and McDonald

(2018) and we use stock returns as our associated output. As stock performance, we

calculate absolute and abnormal returns on specific stocks using CRSP stock data.

To join the two datasets, we use data from Compustat.

3.1.1 Loughran and McDonald

Similar to Hájek and Olej (2013), and Hájek et al. (2013), we use the textual elements

of annual reports of publicly traded companies in the US. Additionally, we use an-

21

22 Chapter 3. Research Design

nual reports from 2010 to 2017 as the input to the CNN. Loughran and McDonald

collected the 10-K filings (annual reports) from the US Securities and Exchange Com-

mission’s Electronic Data Gathering, Analysis, and Retrieval system (SEC EDGAR)

and McDonald has made this data set available for researchers (McDonald 2018).

They process the text by removing XML data format tags which include text format-

ting and markup tagged elements (e.g. XBRL and HTML tags). Also, they removed

tables, excess lines, and any non-character objects. Non-character objects include

pictures, other file formats, and characters not included in ISO-8859-1.

The processed data from Loughran and McDonald ranges from 1994 to 2017 and

consists of 1,029,938 annual and quarterly reports. They split annual and quarterly

forms into one of three categories: regular forms, amended forms, and forms stating

a change in fiscal year (McDonald 2018). We only include 10-K filings in this paper as

they are the initial reports evaluated by stakeholders and therefore what the market

price reactions reflect. By excluding all other reports than the 10-Ks filing, we get a

total of 175,965 reports.

3.1.2 CRSP

The CRSP data set is a widely accepted data set used in the academic world for stock

information analysis. The data set contains returns including dividend for all traded

shares on all stock exchanges in the US.

3.2 Methodology

This section describes the model and methods used to answer our research hypoth-

esis. We first present the proposed prediction model. Next, we describe the overall

steps taken and which tools we used to conduct the research.

3.2.1 Prediction Model

Like Sohangir et al. (2018), we use a convolutional neural network and similar to

Kraus and Feuerriegel (2017) we use it to predict stock performance. Based on the

textual elements of the annual reports, the network is constructed to classify each

3.2. Methodology 23

company in one of five portfolios according to how the model predicts their future

stock performance will be.

The convolutional neural network is a learning algorithm that can be used both

for supervised and unsupervised learning. We train the network with supervised

learning and, subsequently, use it as a model to classify how companies will per-

form on the stock market. Supervised learning is when an algorithm is trained by

feeding it with both input and output data, opposite to unsupervised learning where

the algorithm only takes in an input (Bishop 2006). After the training process, the

algorithm becomes a model.

3.2.2 Research Structure

The preparation of our data is the first step towards answering our research hy-

pothesis. This process involves cleaning and processing the data. Subsequently

we train our convolutional neural network by taking the textual part from a com-

pany’s annual report as input and its future stock performance, separated into port-

folios, as output. Using a trial and error approach, we identify and train a base-case

model. Afterward, we attempt to optimize the performance of the base-case model

by structuring nine tests by tweaking the settings of the model individually and

then merge the best settings in a combined experiment. Based on the experiments,

we select the model with the best performance and report its results thus answer-

ing our hypothesis. To test the robustness of the results, we additionally control for

the well-known Fama-French 5-factor model. This additional control also helps us

determine whether we generalize patterns already found in previous studies. The

specific methodology of the experiments, how we evaluate the experiments, and the

results will be explained in their respective sections.

3.2.3 Tools and Software

We structure and train our Convolutional Neural Network (CNN) with the program-

ming language Python using the Keras toolkit with TensorFlow as backend. To do

this, we use over 4,000 lines of self-written agile and dynamic code to both clean

and process the data, and to further structure and run the learning algorithm. The

24 Chapter 3. Research Design

size of the code is equivalent to 180 pages of text and took more than 800 hours to

write. The code is disclosed on the following website: https://www.dropbox.com/

sh/4pgyhjoge48alok/AAC8w2IAu07rvQa04eCG2s3Ja?dl=0

3.3 Data Processing

In this section, we explain how we process the textual Elements of annual reports

and the stock returns. The process is illustrated in figure 3.1.

Figure 3.1: Overview of the data processing

Loughran and

McDonald reports

Report cleaning

Tokenization and

word embeddings

CRSP stock data

Match ticker and CIK

Calculate returns

Separate returns

into portfolios
Padding

Join reports with

each portfolio

Split data into train,

cross-val, and test

Firstly, we separate all words so that each report is represented by a long list of

words. Secondly, we show how we a pre-trained word embedding to replace each

word in the list with a vector representation of the given word and, thus, each report

is represented by a matrix of quantified word features. Thirdly, we describe the

https://www.dropbox.com/sh/4pgyhjoge48alok/AAC8w2IAu07rvQa04eCG2s3Ja?dl=0
https://www.dropbox.com/sh/4pgyhjoge48alok/AAC8w2IAu07rvQa04eCG2s3Ja?dl=0

3.3. Data Processing 25

process of padding the text to standardize its format, which is the last step of our

text processing. After this, we explain the process of preparing the stock data. This

process includes matching the ticker and CIK values, explaining how we calculate

the returns, how we assign a portfolio to each company, and how we join the text

and the assigned portfolio number together.

3.3.1 Processing the Textual Elements of Annual Reports

From the Loughran and McDonald data set, we excluded all non-10-K filings re-

turning a set of 175,965 reports. Some of the remaining companies are not publicly

traded, as they are private companies that the SEC still require to file the 10-K filing

(SEC 2013). In order to filter out the private companies, we use the described CRSP

data set. In accordance, we assume companies not in the CRSP dataset are not pub-

licly traded companies. In order to validate this assumption, we look at a random

sample of 50 reports. No public companies are found in the sample, thereby con-

firming our assumption. We, therefore, remove all companies that do not exist in the

CRSP dataset, returning a total of 105,824 reports ranging from 1994 to 2017. Figure

3.2 shows the development in the number of 10-K filings and the average number of

words in each filling in the aforementioned time period.

Figure 3.2: Development in the number of reports and the average number of words per report

1993 1996 1999 2002 2005 2008 2011 2014 2017
1,000

2,000

3,000

4,000

5,000

Year

N
um

be
r

of
re

po
rt

s

20,000

30,000

40,000

50,000
A

ve
ra

ge
nu

m
be

r
of

w
or

ds
pe

r
re

po
rtAvg. # of words

26 Chapter 3. Research Design

Since 2007, a steady increase in the average number of words is noticed, which con-

firms the findings of Dyer et al. (2017). Furthermore, this tendency is viewed as a

positive development for the proposed research model as it proves more difficult for

the investors to comprehend the text.

To get a homogeneous input, we choose to narrow down the timespan of the data

to 2010-2017. It is desirable that the text in the annual reports be as homogeneous as

possible so that the model training becomes as efficient as possible. Historically, new

regulatory requirements have been implemented on a continuous basis (Bommarito

II and Katz 2017). This means that the regulatory adjustments required by SEC or

other regulatory agencies have not previously been clustered in large reforms. These

individual new requirements have a large impact on the way businesses report their

10-K filings (e.g. the implementation of SFAS 157 on Fair Value Measurement or

Item 1a on business risk) (Dyer, Lang, and Stice-Lawrence 2017). For the input data

not to be majorly affected by such a new requirement, we follow Bommarito et al.

(2017). They view regulatory references as a proxy for annual report complexity.

They find that the regulatory requirements and the lengths of the 10-K filings have

changed over the last three decades, however, the number of words and regulatory

references per filing has reached a status quo between 2010 and 2011. Thus, we limit

our data set to only contain reports from 2010 and onwards, resulting in a total of

37,274 reports.

3.3.2 Cleaning Data

To ensure the quality of the data, we took random samples of 50 reports to look

for potential improvements. Based on these samples we made the following correc-

tions to the original data set to remove any elements that could create noise for the

learning algorithm:

• Most of the reports had page numberings in different forms (e.g. standard

numbers or roman numerals), which in a digital form of the reports appear as

a number on a separate line. We remove the empty lines, the page numbers,

and any other characters surrounding the page numbers.

3.3. Data Processing 27

• We remove all tabulating characters. Tabulates are often used in the table of

contents of the reports and to structure other tables throughout the reports.

Loughran and McDonald have removed all of the tables, however, some of the

tabulating characters remained.

• We further removed all appearances of the word "PART" in upper case and sub-

sequent numbering. Companies use "PART" as an indicator for the beginning

of a new section.

• We remove all HTML tagging used by Loughran and McDonald to indicate the

header of a report and any exhibits.

• We remove several words that create noise (e.g. the, for, in, a, etc.)

3.3.3 Tokenization and Word Vector Representation

After the above cleaning, we tokenize each word for each report. Tokenizing is the

task of separating each element of a sentence into individual items. If we use the

following sentence as an example: "The cat sat on the red mat", we would get a list

of ["The", "cat", "sat", "on", "the", "red", "mat"] by tokenizing the text. This process is

a necessary step towards preparing the text for the correct format, which is required

for the convolutional neural network.

At this point, each report has been transformed from one long text document

to a long list of the separate words of the reports. As mentioned in the literature

review, quantifying the information contained in the text is a difficult task. The stan-

dard approach of creating a measure of sentiment (either by a dictionary or machine

learning approach) is not well-suited for the learning algorithm in this paper. In-

stead, we follow the method of Collobert et al. (2011) and Kim et al. (2014) who

use multiple word features represented as word-specific vectors. By replacing words

with quantifiable features of the word, a machine can process the meaning of the

word. Mikolov et al. (2013) present two unsupervised methods to efficiently train

word vector representations using either the continuous bag-of-word model (CBOW)

or the skip-gram model. The CBOW model tries to predict a center word depending

28 Chapter 3. Research Design

on the surrounding words whereas the skip-gram model tries to predict the sur-

rounding words based on a given center word. From Mikolov’s skip-gram model,

Pennington et al. (2014) presented GloVe, an improved method to efficiently train

word vector representations. We use the GloVe word vector representations in our

convolutional neural network. In order for vector representations to be considered

good measures for a text, Schnabel et al. (2015) argue that word representation must

mirror the linguistic relationship between the words in vector space. The GloVe

vector representations have shown to be able to correctly recognize complex word

analogies from the words’ Euclidean distance (i.e. the distance between vectors).

For example, the relationship "a king is to a man as a queen is to a woman" is

encoded in the operation king − man + woman = queen. Similarly, the operation

Paris − France + Poland = Warsaw has shown to be true. These examples indicate

that a deeper relationship between the words is understood and encoded in the word

embeddings.

For our purpose, we use word vectors that have been pre-trained on 6 billion

words from Wikipedia with a vocabulary of the 400,000 most frequent words. Each

word is represented by a 300-dimensional vector which has shown to be the optimal

dimensions (Pennington, Socher, and Manning 2014). To prepare the input for the

CNN, we substitute each word with its vector representation, thereby creating an

n × 300-dimensional matrix where n is the number of words extracted from each

report. Revisiting the short sentence from earlier and representing each word with a

horizontal vector of five variables we get the structure in figure 3.3.

Figure 3.3: Words represented as vectors

3.3. Data Processing 29

While all the values in the example matrix are arbitrary numbers between 0 and 1,

these word vectors ’stacked’ in a matrix serve as the input to a convolutional neural

network.

3.3.4 Padding

One commonly known challenge in quantitative textual analyses is dealing with

differences in sentence length (Collobert et al. 2011). This constitutes a challenge

since convolutional neural networks require input to be the same dimensions for

each sample. A very popular solution is to pad the input text. Padding is the

process of modifying the textual input to fit specific predefined borders/format. In

our case, padding works in two ways:

1. If an annual report is shorter than the set maximum number of characters,

the padding adds zero vectors until the text fits the specified requirements.

Featured in figure 3.4 is an illustration of this process.

Figure 3.4: Padding example

2. If an annual report is longer than the set maximum number of characters,

the padding removes the excess text from the report (i.e. if a report contains

100,000 words and the limit is 80,000, the last 20,000 characters are not included

as input).

The number of words we extract from each report (i.e. the dimensions of the input)

has an impact on the number of parameters the learning algorithm must train. For

every extra word included, the learning algorithm gets approximately one extra pa-

rameter in our base algorithm. Hence, it is desirable to reduce the number of input

30 Chapter 3. Research Design

words. Extracting too few words, however, can lead to important meaning being

excluded from the reports. Figure 3.5 shows a function of how many percentages of

our input, which should not have any words removed (y-axis) as a function of how

many words we extract (x-axis).

Figure 3.5: Accumulated reports over number of words per report

0

20
,0

00

40
,0

00

60
,0

00

80
,0

00

10
0,

00
0

12
0,

00
0

14
0,

00
0

16
0,

00
0

18
0,

00
0

20
0,

00
0

22
0,

00
0

0%

20%

40%

60%

80%

100%

Number of words

%
of

re
po

rt
s

no
t

cu
t

of
f

As a compromise between computational efficiency and input quality, we choose

to extract the first 63,000 words of each report. This limits the number of reports

that require text to be reduced to 20% and includes 92.2% of all words across the

entire corpus. As a result, we lose minimal meaning while keeping the number of

parameters in our model within a reasonable range.

3.3.5 Matching Ticker and CIK

A direct link cannot be made directly between the company-specific identification

number in the annual reports (CIK codes) and the identification numbers in the

CRSP dataset (ticker). In an effort to overcome this, we gather data from Compustat,

which enables us to match the SEC CIK codes with their respective ticker. The Com-

pustat data also contains a time variable that eliminates the problem of companies

which change their ticker.

3.3. Data Processing 31

In order to calculate stock performance, we collect stock prices and returns from

CRSP on all exchange-traded stocks in the US from 2010 to 2017. As mentioned ear-

lier, companies that are not included in the CRSP database are excluded. However,

companies that have previous records but are not currently trading should also be

discarded because they are not a part of the available market. Therefore, we discard

annual reports if we do not have any stock data at the time of release of their 10-K

filings. This narrows the total number of observations from 37,274 to 29,304. In ad-

dition, we conduct an additional manual check of 50 reports that were discarded to

make sure no actively traded companies were removed by mistake. The excluded

cases consist of companies that have gone private, declared bankrupt, buyouts, and

other delisted companies that all still report 10-K filings. Thus, we assess that no

companies which are publicly traded were removed.

3.3.6 Calculating Stock Returns

We measure stock performance as the absolute return of a given performance period.

Based on daily observations, we calculate the return using equation 3.1:

rperiod =
N

∏
t=1

(1 + rt)− 1 (3.1)

Where rperiod is the total return for the selected prediction period. We chose 60 days5

as previous studies have used this time frame to examine the lag of information ab-

sorption as pointed out by (Price et al. 2012). If t denotes the day a report is released,

we predict performance from t + 2 to t + 62 days after the release of a report. We

choose t + 2 so there is ample time for the hard information to be absorbed by the

market. One could argue for using t + 1 instead, however, in the case of a report

being released after trading hours, we would be using the return from t to t + 1,

which is not desired. In addition, we test for t + 32 and t + 92 days as well to see if

the time frame makes a difference. The distribution of all the 60 days stock returns

included in the input is presented in figure 3.6.

5equivalent to 41 trading days

32 Chapter 3. Research Design

Figure 3.6: Distribution of 60 days returns

−
10

0%

−
50

% 0% 50
%

10
0%

15
0%

20
0%

25
0%

30
0%

35
0%

40
0%

45
0%

0

1,000

2,000

3,000

4,000

Return

N
um

be
r

of
ob

se
rv

at
io

ns

As expected, the distribution of the actual returns is right-skewed. As the reader may

notice, we do not have any observations of –100% return (i.e. company bankrupt-

cies). The CRSP dataset has no clear indication of bankruptcy. We, therefore, exclude

reports from companies in our training set who declare bankruptcy within the pe-

riod we calculate the stock performance. Excluding the samples has no significant

effect on the training process and from the discussion in chapter 5, we argue that it

has no significant impact on the results.

3.3.7 Separating Returns into Portfolios

As mentioned in the literature review, two general ways of predicting stock per-

formance exist: by absolute stock return or by category. Historically, convolutional

neural networks have been used for classification tasks and following this, the model

implemented in this paper is trained to classify reports into portfolios based on the

company’s stock performance. The model will be able to analyze the text of a report

and assign it to the correct portfolio from 1 to 5, where we expect the returns to in-

crease with the portfolio numbers. We have chosen five portfolios as a compromise

of two conflicting factors.

3.3. Data Processing 33

On one hand, increasing the number of portfolios (e.g. to 10) helps us improve

two things: 1) it makes it possible for the model to differentiate performance more

finely and thereby better detect the best/worst performers. 2) it makes it easier to

test whether or not the best performing companies are ’rewarded’ for having higher

risks relative to the others (i.e. does the risk of the companies in the portfolios in-

crease with the portfolio number, indicating that we predict risk and not abnormal

returns). On the other hand, increasing the number of portfolios punishes the train-

ing of the learning algorithm. When training the model, there is no indicator of the

magnitude of the degree of a wrong guess. If the actual portfolio for a given obser-

vation is portfolio 5, the algorithm is punished equally if it guesses portfolio 4 as if

it guesses portfolio 1. As a result, the weights are adjusted equally even though a

smaller adjustment would be optimal if the model is very close to the true value as

opposed to being far off. Thus, increasing the number of portfolios could lead to the

model over-adjusting its weights even though it is recognizing patterns correctly.

The thresholds of the five portfolios (i.e. the values that guide which portfolio

number a predicted value should be assigned to) are recalculated on a quarterly

basis. This time frame is chosen in order to make sure that a company’s performance

is compared to companies that also released a 10-K filing in the same period. Thus,

we avoid that all reports from a specific quarter with, for instance, good market

conditions ending up in one portfolio and vice versa. To calculate the thresholds, we

sort all the returns observations in a quarter. We then set the threshold values to the

20th percentile values to ensure that 1/5 of the values end up in each portfolio.

3.3.8 Splitting the Data for Training, Validation and Test

At this point, we a have complete data set of 29,304 reports which each consists of

a 63,000 x 300 matrix with a corresponding portfolio classification. As a standard

machine learning practice, we split up our dataset into three parts: a training set, a

cross-validation set, and a test set (holdout set). The training set is used in the train-

ing phase to adjust the weights of the model. The cross-validation set is analyzed

to correct the model’s settings as to improve the model and ensure that model does

34 Chapter 3. Research Design

not overfit to the training data. As the settings are set based on the results of the

cross-validation set, we may also overfit the cross-validation set. We, therefore, use

the holdout set to test how the model performs on unfamiliar data.

Typically, the total data set is shuffled randomly and then the splits are made

based on the entire dataset. However, shuffling before splitting the data will ignore

the chronological order which poses a problem when dealing with time-series data

(Kraus and Feuerriegel 2017). For example, if the model had been trained on reports

from 2017, where many companies reported a big drop in oil prices, and the model

subsequently had to predict a report for an oil-dependent company in 2015, it would

have the unfair advantage of being able to look into the future. As a result, the model

would perform very well, although that kind of setting would never be possible in

the real world. Thus, we aim for a more realistic research setup and choose to order

our data in chronological order. From this argument, we use reports released from

2010 Q1 to 2016 Q3 as our training set and the reports from 2017 Q1 through 2017 Q3

are equally split in the cross-validation and test set. We leave out 2016 Q4 as many

of the calculated stock performance of the Q4 reports depend on stock changes in

2017 Q1. We further remove 2017 Q4 reports because we do not have stock data

from 2018 Q1. Additionally, we want each portfolio in the cross-validation and test

set to have an equal number of observations in each portfolio in order to avoid any

skewed distributions in the observed data. To do this, we shuffle the 2017 data, split

them equally into the five portfolios, and randomly select half from each portfolio

to use as cross-validation set and test set, respectively. Throughout the optimization

process, we do not test the models on the holdout set and we, therefore, avoid any

bias in the optimization process.

3.4 The Theoretical Foundation

This section first covers the structure of neural network learning algorithms and

building on this understanding, we then present the structure of convolutional neu-

ral networks. Based on the structures, we present how the networks are trained. We

further refer to the appendix A where we have included a more in-depth explanation

3.4. The Theoretical Foundation 35

of neural networks and convolutional neural network. We highly recommend any

readers with no or little knowledge of the topic to also read this in order to get a

more comprehensive understanding of the different terms and processes used in the

field of neural network. The theory refers to Goodfellow et al. (2016) and Bishop’s

(2006) books on the field.

3.4.1 Neural Networks

Artificial Neural Networks (ANNs) or simply Neural networks (NNs) build on the

understanding of the human brain (McCulloch and Pitts 1943) and they have the

ability to find complex patterns in data by imitating logical operations (Bishop 2006).

NNs consist of neurons which are structured in dense layers. Neurons are informa-

tion processing units that receive an input, processes the input, and then passes on

an output. Neurons are connected to every other neuron in the neighboring layers

by connection weights. An illustration of a neural network is shown in figure 3.7,

with a flow from left to right.

Figure 3.7: Example of a neural network

x1

x2

x3

Output

Hidden

layer

Input

layer

Output

layer

The circles indicate the neurons and the lines represent the connection weights. The

first layer from the left is the input layer followed by a hidden layer and the output

layer. A neural network with more than one hidden layer is a deep structured net-

36 Chapter 3. Research Design

work, wherefrom the term deep learning derives. The neurons in the input layer do

not process the input while neurons in the following dense layers contain activation

functions. An activation transforms an input (from a previous neuron) into a non-

linear output. We use an activation function called Rectified Linear Unit (ReLU) in

our learning algorithms. ReLU evaluates a single value and returns the value if it is

positive and zero if it is negative.

The output is then passed on to the next layer. All values going into a neuron

are first multiplied by the connection weights and then summed together. Figure 3.8

shows how a neuron receives inputs from multiple neurons, transforms the inputs,

and outputs a single value.

Figure 3.8: A close-up illustration of a neuron

x1 w1 Σ f y
Output

1 w0

x2 w2

Weights

Inputs

A constant of one is also inserted into the neuron. The constant multiplied with a

bias weight constitutes the bias of the activation function.

The whole process from input to the final output can be written as a function,

which takes in an input vector xxx and a weight tensor WWW (multidimensional matrix)

which holds all weights in the network. The function then outputs YYY, which in our

case is the predicted portfolio.

f (xxx,WWW) = YYY (3.2)

3.4.2 Convolutional Neural Network

Convolutional neural networks (CNNs) is a special type of neural networks. A CNN

can like the simple neural network, be represented by the same function as equation

3.4. The Theoretical Foundation 37

3.2. A neural network becomes a convolutional network when it has at least one

convolutional layer. CNNs have proven to be effective in classifying sequential text

inputs with different lengths together with word embeddings (Kim 2014). They get

their name from using convolutional layers.

Figure 3.9: A convolutional neural network for sentence classification

A CNN is shown in figure 3.9. The left-most matrix is the textual input. The rows

correspond to the input words and the values in the columns are the numerical rep-

resentations of the words as previously illustrated. The convolutional layer processes

the input of the layer by applying a filter which is used to ’scan’ the input. The con-

volutional layer applies the filter with a given receptive area size (i.e. filter size),

which iterates through the input matrix from top to bottom. In the shown example

the red filter size represents a receptive area size of two. On the first iteration, the

network reads the words "The" and "cat". If the filter moves one word each iteration,

the second iteration reads the words "cat" and "sat". Thus, the filter may overlap the

input (i.e. the word "cat" overlaps the two iterations). A filter creates an output of the

previous layer which is called a feature map. A convolutional layer may have several

filters. Each filter focuses on different characteristics of the input (e.g. specific word

use, the general tone of the text, etc.)6. A pooling layer often follows a convolutional

layer. Opposite to the convolutional layer, the filter of the pooling layer does not

6These patterns are hard to decipher because of the complexity of the model.

38 Chapter 3. Research Design

overlap to make sure that the feature maps are only ’scanned’ once. The pooling

layer compresses the input by selecting only the most important information to be

used in the next layer of the model. As a result, the computational load becomes

much lighter. We use the standard max pooling operation as the pooling function

which outputs the max value (i.e. the most important) in the receptive area. A CNN

often has several sets of convolutional and pooling layers. The layers of convolu-

tion and pooling find and compresses patterns in the input across several words.

To combine the structural information with logical operations, convolutional neural

networks have one (or more) regular dense layers after the last pooling layer. To

go from a multidimensional pooling layer to a dense layer, we use a flattening layer

which takes the neurons in the pooling layers (which are in the format of a matrix)

and vectorizes them. The convolutional neural network concludes in a dense layer

that has as many neurons as the number of outcomes (in our case five outcomes).

3.4.3 Training the Network

A neural network is a learning algorithm prior to and during its training. After the

algorithm has been trained, it can be used as a model. We use our convolutional

neural network as a classifier as we train it to classify a given annual report into a

portfolio based on the expected stock performance. Compared to the simpler linear

algorithms (e.g. the linear regression), neural networks require a significantly larger

amount of data because the models have significantly more parameters that need to

be tuned.

A neural network is trained by optimizing the generalization of the relationship

between the xxx and YYY in the function f (xxx,WWW) = YYY. By changing the weights (WWW), the

learning algorithm learns to recognize patterns in xxx that can explain YYY. Optimizing

a network requires two methods: 1) a method to measure how ’badly’ the network

performs and 2) a function to determine how much the weights should be changed.

The first part is called the loss function and, as the name indicates, it calculates

the loss of the network function previously mentioned in equation 3.2. Given we

have a sample consisting of a pair of input and actual output, we use the inputs

3.4. The Theoretical Foundation 39

to calculate the predicted output of the function. The loss function then returns a

value of the difference between the predicted output and the actual output. High

differences in the predicted and the actual output equal a large loss value and vice

versa.

The second method uses the loss to determine how much the weights of the net-

work should be changed. This method is called an optimizer which mainly uses the

partial derivatives of the calculated loss with respect to each weight in the network in

order to adjust the weights. In other words, it uses the marginal error of each weight

to adjust that individual weight. Thus, the more a single weight contributed to the

overall error, the more it gets adjusted. To efficiently calculate the partial derivatives,

we use a method called backpropagation (Rumelhart, Hinton, and Williams 1986),

which is thoroughly explained in appendix A.

Changing the weights based on the partial derivatives may cause over-adjustments

to the weights and therefore make the network perform worse than prior to the

weight update. The weight changes are therefore multiplied by a dampening con-

stant. The constant is called the learning rate as it adjusts the learning from each

sample and thus prevents the updates from over-adjusting.

Neural networks may have several million weights and only half as many training

samples. A network with many weights relative to the number of training examples

has an increased risk of overfitting since each weight can potentially adapt to a sin-

gle training sample. Dropout and L2 are two regularization methods which prevent

the network’s weights to adjust to a single set of input and output. Dropout ran-

domly deactivates neurons in a layer at a given dropout rate, making it impossible

for weights to adapt to a single sample. The L2 or Tikhonov regularization pun-

ishes extreme weight values by adding the square of the weights to the loss function.

Weights are then exponentially punished as the absolute value of the weights in-

creases.

40 Chapter 3. Research Design

Depending on the optimizer, the algorithm uses one or more samples before it

updates the weights. A network’s batch-size determines the number of samples

included before each update to the weights is calculated. A batch-size of five means

that five reports are run through the training process before the weights are updated.

When the learning algorithm trains, it iterates over the training data set, one batch

at a time. A learning algorithm often iterates more than once over the entire training

set before reaching a local or global optimal point. Moreover, an epoch is defined

as one iteration of the entire training data. Multiple epochs are often used to allow

the model to fine-tune its parameters. Adding dropout and regularization cannot

completely prevent a neural network from overfitting if the algorithm is trained over

many epochs. To stop the network from overfitting, we include an early stopping

mechanism which stops the training process after a given number of epochs if the

model’s performance on the cross-validation data set does not improve.

Chapter 4

Experiments and Results

In this chapter, we present the optimization process and the final results. Firstly, we

present the training process and settings of the base-case model. Secondly, we at-

tempt to optimize the base-case model by varying four selected settings. Each of the

settings are then tested with two new variations while keeping all other parameters

from the base-case model constant, resulting in eight new variations of the base-case

model. Based on the result of these experiments, we try to combine the settings

of the best performing models in a single model. Lastly, we present the results of

the best performing model, out of the ten models, and compare it to the base-case

model.

4.1 Experiments

4.1.1 Training Process of the Base-Case Algorithm

As suggested by Collobert (2011), our approach to finding the base model has been

rather experimental by implementing a trial-and-error approach. Thus, in the pro-

cess of the finding of a base-case learning algorithm, we had two objectives: 1) to

get an accuracy score on the validation data above 20%, 2) to prevent the algorithm

from overfitting the training data. In order to check if the model’s training pro-

cess runs as intended, we plot the model’s accuracy and loss as a function of the

number of epochs run. We plot both the model performance on the training and

cross-validation data.

41

42 Chapter 4. Experiments and Results

Figure 4.1: Training process accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12

22%

24%

26%

28%

30%

Epochs

A
cc

ur
ac

y

Training
Cross-validation

Figure 4.2: Training process loss

0 1 2 3 4 5 6 7 8 9 10 11 12
1.54

1.56

1.58

1.6

1.62

1.64

1.66

Epochs

Lo
ss

Training
Cross-validation

In figure 4.1 and 4.2 we present the accuracy score and loss, respectively for

the base-case model. The accuracy score on the training and cross-validation data

increases and sequentially stagnates. The performance is significantly above 20%,

4.1. Experiments 43

thus, our first objective has been achieved. To make sure we achieved our second

objective, we look at both the accuracy and the loss graphs. The validation accuracy

hits its maximum at the seventh epoch and then stagnates while the training accuracy

continues to increase. The pattern is a classic sign of a learning algorithm which

begins to overfit the parameters to the training data. Similar to the findings in the

accuracy graph, we see that the loss of the cross-validation set starts to increase at

the seventh epoch while the loss of the training data still decreases. In order to

avoid this overfitting, we apply an early stopping-function which stops the training

if the validations accuracy does not reach a new maximum after five epochs. Thus,

stopping early prevented the model from overfitting and the second goal of the

training was achieved.

4.1.2 Settings of the Base-Case Model

In this section, we specify the settings of our base-case convolutional neural net-

work based on the training process in the previous section. The base-case model is

illustrated in figure 4.3 and has the following settings:

• One input layer

• Four convolutional layers each followed by a max pooling layer.

• 64 filters for each convolutional layer and therefore 64 feature maps. Picking

more than 64 feature maps increases the number of trainable parameters while

decreasing the number of feature maps potentially limiting the algorithm from

finding complex patterns.

• A receptive area of five for both the convolutional and max pooling layers. The

convolutional, thus, covers five words per iteration of which the max pooling

layer then extrapolates the most important features from the five words.

• To go from a multidimensional layer to a dense layer, we use a flattening layer

between the last pooling layer and the first dense layer.

• We end the network with three dense layers where the final dense layer is the

output layer. The output layer has five neurons, each one corresponding to one

of the portfolios.

44 Chapter 4. Experiments and Results

• 100 neurons for each of the two hidden dense layers.

• A learning rate of 0.0005 to avoid the weight changes from becoming too large.

• A dropout rate of 15% following each pair of convolutional and max pooling

layer, meaning we randomly disable 15% of all neurons from the output of the

pooling layers.

• A dropout rate of 50% and a receptive area size of 35 in the last max pooling

layer. By heavily compressing the last convolutional layer, we ensure opti-

mized feature filtering from the prior layers, while substantially decreasing the

number of trainable parameters.

• A regularization term is added to the loss function to likewise prevent the

model from overfitting. We use the L2 parameter regularization presented in

the theory section, where we use a regularization constant of 0.0002. Setting

the regularization constant too high, however, would make the model unable

to adjust the weights properly and no patterns would then be detected.

• A batch-size of 10. This is the number of reports passed into the network before

updating the weights. We choose 10, as we find that changes to the weights,

based on individual reports, generate noise rather than generalizations. On the

contrary, passing all the training samples in the model for each update would

be computationally inefficient.

• An optimizer called ADAM7. The optimization algorithm uses the first-order

derivative to update the weights. The optimizer used is rather complex, and

it has an adaptive learning rate while it reduces the learning variance of the

weight changes. (Kingma and Ba 2014). ADAM proves to be much more

efficient than other optimizers on batch-sizes under 50.

• Padding with a maximum of 63,000 words, as explained in the methodology.

• Rectified Linear Unit (ReLu) as our activation function. As mentioned in the

theory section, ReLu is widely used and has proven effective when used in

CNNs for NLP tasks (Kim 2014).

7ADAM is a combination of the optimizers Momentum and RMSProp

4.1. Experiments 45

• An early stopping-mechanism with a patience of five epochs. The model stops

training if it sees a stagnation or a reduction in the performance on the cross

validation set for five consecutive epochs.

• The categorical cross-entropy loss function which equals the average log-loss

of all the outcomes.

46 Chapter 4. Experiments and Results

Figure 4.3: Illustration of the base-case model

4.1. Experiments 47

4.1.3 Optimization Experiments

We select the following four model settings for testing: Number of layers, number

of feature maps, portfolio return time period, and receptive size of the convolutional

and pooling layer. We test two variations of each setting. For a comprehensive

overview of the tested variations, see table 4.1:

Table 4.1: Overview of model settings

Parameter
Settings

Small-scale Base-case Big-scale
Sets of convolutional layers 3 4 5
Number of feature maps 32 64 96
Receptive size 3 5 7
Number of days predicted 30 60 90
Number of dense layers - 2 -
Neurons in each dense layer - 100 -
Dropout rate - 0.15 -
Regularization constant - 0.0002 -
Optimizer - ADAM -
Batch-size - 10 -
Padding (words) - 63,000 -
Activation function - ReLu -
Early stopping (number of epochs) - 5 -
Loss function - Cross-entropy -

"-" indicates no changes to settings

Testing two different variations for all the settings would be the optimal optimization

method to find the best model, however, it would require us to make over 20 different

models. To keep the number of models within a reasonable range, we have selected

the four parameters which create the biggest changes to the overall structure of

the model. Additionally, as mentioned earlier, some of the parameters, such as the

optimizer and activation function, have been proven to work well with our choice

of model and are therefore not tested. The number of words in our padding was

chosen based on the analysis of the distribution of words so this parameter is not

tested either.

4.1.4 Evaluation of the Experiments

This subsection covers the evaluation method for choosing the settings for the combi-

nation model, followed by the results of the experiments (including the combination

48 Chapter 4. Experiments and Results

model). We use accuracy expressed in equation 4.1 as our evaluation measure for

the experiments and use the measure to decide which combination of parameters

we should use in our combined learning algorithm. We only change the settings if

the experimental model performs better than the base-case model. If not, we keep

the settings of the base-case model. We finally identify the model with the overall

highest accuracy and report the final results for this model.

Accuracy =
Number o f true positives

Total number o f predictions
(4.1)

The measure can be misleading if the distribution of outcomes is not even. By split-

ting both the training and the validation data equally into each portfolio we get a

uniform distribution of observations in each portfolio, eliminating this problem. We,

therefore, expect a 20% accuracy if we find no predictive information in the textual

elements of the annual reports. In table 4.2 we present the accuracy score for the all

the test models.

Table 4.2: Accuracy of the experiments in %

Parameter
Settings

Small-scale Base-case Big-scale
Sets of convolutional layers 28.9 28.0 25.9
Number of feature maps 26.2 28.0 26.7
Receptive size 28.2 28.0 28.1
Number of days predicted 27.6 28.0 25.0

Changing the number of feature maps did not improve the accuracy of the model.

As mentioned earlier, the number of feature maps decides how many patterns the

model examines. Reducing the number of feature maps can cause the model to

contain too few filters to generalize the patterns. Contrarily, increasing the number

of feature maps can cause the model to contain too many parameters, and thereby

reducing performance. Moreover, changing the number of days predicted did not

improve the accuracy either. If we only predict from the second day to 30 days after

the release of the annual reports, it is very likely that the investors have not fully

incorporated the information into the market. Similarly, increasing the period may

allow subsequent information to be released (e.g. a 10-Q report), thus making the

information in the annual report less relevant.

4.2. Results 49

Thus, the only two models which outperformed the base-case model were the

small-scale versions of the number of layers and receptive size settings. Table 4.3

presents the characteristics of the combined model.

Table 4.3: Settings of the combined model

Parameter Combined model
Sets of convolutional layers 3
Number of feature maps 64
Receptive size 3
Number of days predicted 60

The combined model achieves an accuracy of 26.9%. Comparing this score to the

accuracies presented in table 4.2, it is clear that combining the best performing fea-

tures of the tested models did not improve the performance. Thus, optimization of

the base-case model is not a simple case of combining the top performers. The inher-

ently complex and non-linear structure of the learning algorithm causes unintended

interactions that decrease the accuracy of the combination model (Goodfellow, Ben-

gio, and Courville 2016).

Based on the accuracy scores presented in this section, we identify the three-

layered model with an accuracy of 28.9% on the validation set as performing the

best, out of the ten tested models.

4.2 Results

In this section, we present the performance of the three-layer model and compare it

to the base-case model. First, we present the average return for each of the portfolios

for each quarter and the weighted return over the three quarters. Acknowledging

that these returns are not adjusted for risk, we later control for the well-known Fama-

French 5-factor model. We then look at the confusion matrices of the two models to

get a deeper understanding of the prediction distributions.

50 Chapter 4. Experiments and Results

An important thing to note is the fact that we now move from the optimization

process, where the cross-validation data is analyzed, to the presentation of the results

which is based on the test data. In addition, we ask the reader to recall that we only

report on the first three quarters in 2017 since we do not have the complete actual

performance of all the reports released in 2017 Q4 and, thus, cannot confirm our

predictions for these reports.

4.2.1 Absolute Performance

In table 4.4, we see that the classifications of the three-layer correctly capture the

actual weighted returns over the three quarters. By testing the weighted returns

in a cross-sectional regression against the portfolios, we find that the three-layer

model significantly predicts the company-specific stock performance and we, there-

fore, accept our research hypothesis. By testing whether the portfolio number can

significantly explain the weighted return, as seen in equation 4.2, we find that the

resulting coefficient is significant at a 5% confidence level.

RPF = c + x · PF (4.2)

Where RPF is the portfolio return, c is the constant and x is the coefficient for the

portfolio number, PF.

Table 4.4: Average return per portfolio in %

Base-case Three-layer

Portfolio Q1 Q2 Q3
Weighted

return
Q1 Q2 Q3

Weighted
return

1 -1.13 -1.49 5.85 -0.67 -3.82 -1.71 3.16 -3.18
2 1.41 1.46 4.07 1.60 0.30 1.38 11.42 1.16
3 0.61 -1.27 3.56 0.69 1.13 -0.90 2.60 1.09
4 0.60 5.93 2.52 1.10 0.38 8.83 3.49 1.18
5 -2.57 -3.88 6.52 -2.03 1.94 -0.45 6.65 2.11

The weighted return is calculated based on the assumption that you would invest

the same amount in each company. The weighted returns show what one would

generate over the full period from buying the stocks from a given portfolio two days

after their 10-K filing dates and holding the given shares for 60 days.

4.2. Results 51

The three-layer model generates an increasing weighted average return over the

portfolios from 1 to 5, where portfolios 2 through 4 have near identical returns.

Additionally, the model’s ability to capture the tails of the weighted returns for

portfolio 1 and 5 is excellent as the returns diverge from the rest.

Figure 4.4: Weighted return over portfolio number

1 2 3 4 5

−3%

−2%

−1%

0%

1%

2%

Portfolio

A
ve

ra
ge

re
tu

rn

Three-layer
Base-case

Comparing the results to the base-case model, there are no clear similarities in figure

4.4. The returns of the base-case model do not increase with the portfolio number

and it predicts neither the tails correctly (portfolio 1 and 5), nor the middle consis-

tently, for either of the quarters or the weighted return. Had you, hypothetically,

invested an equal amount in each company in the three periods, the total return

for portfolio 5 would have been –2.03%, as shown by the weighted return. Thus,

even though the model correctly classified 26.1% of all reports, the misclassified re-

ports seem to disturb the overall performance of the individual portfolios to a point

where no economic reasoning can be derived, when looking at the raw returns. In

subsection 4.2.3 the confusion matrices will increase the understanding of the results.

Both models seem to struggle with the reports in Q2 and Q3. For both models,

the returns vary significantly between the portfolios in a manner which is differ-

52 Chapter 4. Experiments and Results

ent from the linear relationship we expect. The behavior of the models could be

explained by looking at the distribution of the time in which the 10-K filings are

released. 86% of them are released in Q1 whereas the rest are evenly split between

Q2 and Q3 (i.e. 7% in each). This means that out of the total attention an investor

must give the analysis of the 10-K filings, 86% must be placed in Q1. However, the

assumption that investors have unlimited information processing capacity is unre-

alistic (DellaVigna and Pollet 2009). For example, Dellavigna and Pollet (2009) find

that it is possible to generate abnormal returns based on investors’ inattention to

earnings releases on Fridays supposedly because the investors are distracted by the

impending weekend. Thus, it may appear that the amount of information to be pro-

cessed in Q1 is too large for the investors. As a result, generating returns is easier

in Q1. The amount of information to be processed is significantly lower in Q2 and

Q3 and the information of the released 10-K filings is thus absorbed in the market

faster, reducing the potential for generating returns.

4.2.2 Abnormal Performance

Even though the three-layer model shows significant results, we cannot yet deter-

mine whether the model mimics known risk factors. For example, if companies

classified in portfolio 1 and 5 have high systematic risk, we would just be model-

ing the market beta. In order for the patterns of the classification to be unique, we

must exclude any effects of known factors. Using the Fama-French 5-factor model,

we calculate the company-specific abnormal returns. When adjusting for risk, we

determine whether the information captured by the model is unique and thereby

the robustness of the model. To adjust the company-specific returns, we subtract

the expected returns calculated with the Fama and French 5-factor model (Fama and

French 2015). Fama and French show that the size, value, profitability, and invest-

ment patterns of a firm explain the company-specific returns. Each factor contains

a premium and a company-specific beta value. Fama and French present the factors

in a single equation which equals the expected company-specific return, Rit at time

t:

Rit = ai + RFt + bi(RMt − RFt) + siSMBt + hi HMLt + riRMWt + ciCMAt + eit (4.3)

4.2. Results 53

Where the upper-case letters represent the premia generated from being exposed to

the given factors and bi, si, hi, ri, ci are the beta values of the premia. RMt − RFt is the

market premium, where RFt represents the risk-free rate at time t. The remaining

four factors are as follows: SMB (Small-Minus-Big) explains how the company size

affects the return, HML (High-Minus-Low) explains how the book-to-market ratio

affects the return, RMW (Robust-Minus-Weak) explains how the profitability affect

the return, and CMA (Conservative-Minus-Aggressive) explains how the investment

patterns of a given company affect the return. Furthermore, ai or α is the abnormal

returns and eit is the idiosyncratic risk which can be diversified. It is a common goal

among investors to generate a positive α, as the investors are then able to overper-

form the benchmark.

We retrieved the daily five factors from Fama and French’s website (French 2018)

and calculate the betas based on returns one year prior through to the day before

the filing. The 5-factor premia are calculated during the same period as the actual

return (60 days).

Table 4.5: Average abnormal return per portfolio in %

Base-case Three-layer

Portfolio Q1 Q2 Q3
Weighted

return
Q1 Q2 Q3

Weighted
return

1 -0.62 -2.80 0.82 -0.67 -4.05 -3.80 -1.11 -3.83
2 4.38 -0.79 1.04 3.80 2.17 -0.03 7.67 2.41
3 3.99 -1.49 -0.71 3.28 3.67 -2.84 -1.31 2.87
4 3.02 -1.13 -5.50 2.14 4.01 3.47 -2.60 3.51
5 6.15 -7.17 -1.90 4.68 5.89 -1.85 1.03 5.02

Subtracting the expected return and the risk-free rate from the realized return, we

get the abnormal returns presented in table 4.5. For the three-layer model, we see

that the weighted abnormal returns develop linearly over the portfolios from 1 to 5.

Testing the significance of the development in a cross-sectional regression over the

portfolios, we see a strong connection between the predicted portfolio number and

the actual abnormal returns generated. Our presented three-layer model is, there-

fore, also significantly able to predict abnormal stock performance. We thus capture

information not included in the Fama-French 5-factor model.

54 Chapter 4. Experiments and Results

When adjusting for risks, it is seen in figure 4.5 that the performance of the

base-case model improves too. The weighted return for portfolio 5 has particularly

improved from –2.03% to 4.68%. However, the base-case model struggles somewhat

with ordering portfolio 2 to 4 correctly.

Figure 4.5: Weighted abnormal return over portfolio number

1 2 3 4 5

−4%

−2%

0%

2%

4%

Portfolio

A
ve

ra
ge

ab
no

rm
al

re
tu

rn

Three-layer
Base-case

4.2.3 Confusion Matrices

In order to get a better understanding of the above results, we take a deeper look

at how the model classified the reports in the different portfolios. To do this, we

construct the confusion matrices for the two models. The distribution of correct and

incorrect predictions can aid us in seeing more clearly why the models performed

the way they did. We perform a chi-square test of independence to determine if the

classification distributions of the models are significantly different from a random

classification distribution. We further use the binomial distribution test to see if the

accuracy of each predicted portfolio is significantly greater from the benchmark of

20%.

4.2. Results 55

Table 4.6: Confusion matrix for the three-layer model

Actual
1 2 3 4 5 Total count

Pr
ed

ic
te

d

1 204 98 85 53 132 572 (31%)
2 16 35 30 29 23 133 (7%)
3 29 98 107 114 55 403 (22%)
4 10 16 21 25 12 84 (5%)
5 109 121 124 147 147 648 (35%)

368 (20%) 368 (20%) 367 (20%) 368 (20%) 369 (20%) 1,840 (100%)

The confusion matrix for the three-layer model of the test set is presented in table

4.6. Focusing on the predictions (rows), we see that the diagonal (true positive) is

the highest for all portfolios, except for the third. This means that except for portfolio

3, the most frequently guessed portfolios are the correct ones. We also see that the

majority of the reports are classified in either portfolio 1, 3 or 5. This would indi-

cate that the three-layer model has trained itself to recognize three different types

of patterns: one for bad performers, one for medium performers, and one for good

performers. The performance is excellent if we want to implement the results in a

long-short investment strategy. As Myskova et al. (2018, p.195) argues: "it is usually

more important to correctly classify firms with a high risk (class 1), rather than those

with a low risk (class 0)." In other words, we would rather be able to spot the win-

ners and losers more confidently, as compared to being more confident around the

average performing companies. The distribution of predictions helps explain how

the model performed very well when adjusting for risk factors.

56 Chapter 4. Experiments and Results

Table 4.7: Precision and sensitivity of the three-layer model in %

Precision
Exact match ± 1 portfolio Sensitivity

Pr
ed

ic
te

d

1 35.7** 79.2** 55.4**
2 26.3* 60.9 9.5
3 26.6** 79.2** 29.2**
4 29.8* 69.0* 6.8
5 22.7* 68.1** 39.8**

28.2** 28.2**
* = Significantly larger than 20% (p < 0.05)

** = Significantly larger than 20% (p < 0.01)

In table 4.7 the precision and sensitivity are presented for the three-layer model. Pre-

cision is equivalent to a portfolio-wise accuracy, which describes how many percents

of the reports that we classify in a portfolio, that are classified correctly. We signifi-

cantly outperform the benchmark of 20% in all portfolios with the three-layer model,

with a total accuracy of 28.2%. Notably, we correctly predict 35.7% of portfolio 1 and

26.6% of portfolio 3. Recognizing that missing the correct portfolio by only one is

more satisfying than by e.g. four, we look at the collective precision for ±1 portfolio

of the actual portfolio8. Here we see an impressive 79.2% precision for portfolio 1

and 3 as well as 68.1% for portfolio 5. This indicates that when we classify a specific

portfolio, we are significantly closer to the correct portfolio than randomly guessing.

Except for the ±1 precision for portfolio 2, these results are significant beyond the

5% level as tested with the binomial distribution.

Sensitivity measures how many percents of the actually observed instances of a

portfolio we correctly classify. Again, portfolio 1, 3, and 5 appear to lie significantly

above the benchmark, whereas portfolio 2 and 4 are below. The sensitivities of the

portfolios 1, 3, and 5 added together is far from the expected 60% because of the

uneven distribution of predictions. We do not see it as a weakness of the model

because, as mentioned before, we would rather have a high precision than have a

high sensitivity.

8The tails are adjusted by a factor of 1.5 to be comparable to the other portfolios

4.2. Results 57

Table 4.8: Confusion matrix for the base-case model

Actual
1 2 3 4 5 Total count

Pr
ed

ic
te

d

1 248 154 126 120 208 856 (47%)
2 36 57 57 60 56 266 (14%)
3 49 112 131 138 70 500 (27%)
4 18 29 32 34 24 137 (7%)
5 17 16 21 16 11 81 (4%)

368 (20%) 368 (20%) 367 (20%) 368 (20%) 369 (20%) 1,840 (100%)

Table 4.8 shows the confusion matrix of the base-case model. If we compare the

matrix with the three-layer’s confusion matrix, we see that the base-case classifies

significantly more reports in the low portfolio numbers than the three-layer model.

Only 11% of the reports are predicted in portfolio 4 and 5. We see almost half of the

predictions in portfolio 1.

Table 4.9: Precision and sensitivity of base model in %

Precision
Exact match ± 1 portfolio Sensitivity

Pr
ed

ic
te

d

1 29.0** 70.4** 67.4**
2 21.4 56.4 15.5
3 26.2** 76.2** 35.7**
4 24.8 65.7 9.2
5 13.6 50.0 3.0

26.1** 26.1**
* = Significantly larger than 20% (p < 0.05)

** = Significantly larger than 20% (p < 0.01)

Table 4.9 shows the precision and sensitivity of the base-case model. Here, the model

only achieves an accuracy overall of 26.1%, as compared to 28.2% of the three-layer

model. We also see that the precision of the base-case in portfolio 5 is 13.6%. The

13.6% precision explains the low returns of portfolio 5 in the absolute performance

of the base-case. Only the precision and sensitivity for portfolio 1 and 3 of the base-

case are significantly greater than the benchmark of 20%. Thus, when a report is

not classified in one of those portfolios, we cannot confirm that it is any better than

the benchmark of 20%. When comparing the precision scores to the three-layer, we

58 Chapter 4. Experiments and Results

see that all the portfolios perform worse in the base-case model. We can, therefore,

conclude that the three-layer model is superior to the base-case model in all aspects.

Chapter 5

Discussion

In this chapter, we identify and discuss five elements of the research approach which

influence the results. Firstly, we discuss possible limitations of the model as a result

of the chosen time frame of the training data. Secondly, we discuss the impact of

removing the companies which go bankrupt during the 60 days prediction period.

Thirdly, we discuss the effect of using pre-trained word embeddings. Fourthly, we

debate how the learning algorithm can be perceived as a ’black box’ and how this

affects the optimization process. Finally, we discuss the effect of other potential

factors not explained by the Fama-French 5-factor model.

5.1 Predictive Power over Time

To achieve a homogeneous sample of annual reports, we use reports from 2010 to

2017. The reason for this is to make the generalization of patterns easier for the

learning algorithm than in the scenario of varying report contents. Because of the

changing regulatory requirements, we, therefore, cannot ensure that the model’s re-

sults will be significant in the future. Examining the leading S&P500 Stock Index

(S&P500 Stock Index 2018), we also see that the market has undergone a long positive

trend since mid-2010. As a result, the model is trained in a bullish market and it is

thus difficult to determine the model’s performance in different market states. Con-

sequently, we view the limited training time period as a limitation to how well the

model can perform in the future. To overcome this limitation, we propose to train

the model continuously, which would enable the model to adapt to the regulatory

59

60 Chapter 5. Discussion

changes and different market conditions.

From the literature review, we see a trend in the research moving towards us-

ing advanced machine learning techniques to analyze elements from both corporate

information and financial news. Given this development, we cannot deny the possi-

bility that the market players adapt to the new findings. When a sufficient amount

of investors begin to trade based on new information to gain abnormal returns, they

also even out the abnormality and thus remove the opportunity to generate abnor-

mal returns in the future. On the other hand, as mentioned in the literature review,

one of the challenges with machine learning approaches is that they are hard to repli-

cate due to random initialization. Our model is trained using a learning algorithm

where the weights are randomly initialized. Therefore, building an exact replication

of our model is very difficult. As a result, the effect of others replicating the model

is somewhat mitigated.

5.2 Bankruptcies

In the dataset used to train and test the model, we exclude companies that go

bankrupt within the second to 62 days after the release of their annual reports. As

mentioned before, these companies could not be included because there was no

clear indicator for bankruptcy in the stock data from CRSP. Excluding bankruptcies

would in many cases be a significant issue for testing the efficient market hypothesis.

In 2017, 70 companies went bankrupt of which 31 are placed in our test data. Five

out of these 31 companies went bankrupt within 62 days after the release of their an-

nual report (BankruptcyData 2017). The remaining 26 companies went bankrupt

after the 62 days prediction window and are thus considered as any other company

during the period we predict. As a result, classifying these 26 reports correctly has

the same importance as predicting companies that do not go bankrupt later in the

year.

5.3. Trainable Word Embeddings 61

Since the five company filings were not included in the original test set, we man-

ually process their reports and run them through the three-layer model. We want the

model to classify them in portfolio 1, in order to reflect their bad performance. In-

deed, three of the five reports are correctly classified in portfolio 1 while the model

classifies the last two in portfolio 5. Thus, a majority of the companies which go

bankrupt during our prediction period are classified correctly. Consequently, it may

seem counterintuitive that the model predicts the remaining companies in portfo-

lio 5. However, the model may have recognized great financial distress which ei-

ther concludes in bankruptcy or results in a turnaround generating potentially high

stock returns. Seeing that only five out of the 1840 companies in the test dataset

go bankrupt and that only two are misclassified, we show that not including the

companies which go bankrupt does not have any negative effects on the results.

5.3 Trainable Word Embeddings

We replace words with their vector representation using the GloVe word embedding

trained on Wikipedia. Similar to the earlier discussed dictionaries, the quality of the

word embeddings depends on the context in which they have been trained (Huang

et al. 2012). For example, word embeddings trained with texts from physics and

chemistry will probably be ill-suited as word representations for psychology and

philosophy texts. Kim (2014) shows that CNNs improve their predictive capabilities

by letting the word embeddings be trainable. Training the embeddings while also

training the model lets the embedding become more context-specific, which in the

case of standard dictionary approaches showed improved results. This also allows

the model to be able to generate word embeddings for words not originally included

in the embedding vocabulary. Thus, letting our word embeddings be trainable could

potentially provide improved results. However, due to computational limits, this

by far exceeds what is possible with our setup. Currently, we are able to train a

maximum of approximately 10 million parameters whereas the number of trainable

parameters, including trainable word embeddings, would exceed 750 million param-

eters. Kraus and Feuerriegel (2017) find that implementing what they call transfer

learning improves their predictive accuracy. Similar to the Loughran and McDon-

62 Chapter 5. Discussion

ald finance-specific dictionary, Kraus and Feuerriegel train their own finance-specific

word embeddings with the text from US 8-K filings and subsequently use them to

analyze the German equivalent of 8-K reports. Unfortunately, they did not make the

finance-specific embeddings publicly available for us to implement.

5.4 Dealing with a Black Box

From the experiments and the tested combined model, we see that combining the

best performing settings did not result in an enhanced performance. The complex-

ity of the convolutional neural network comes at the cost of transparency making

it very difficult to measure what effect changing the settings has at a deeper level.

The non-linearity, therefore, opens for further improvement of the identified model

which may recognize other patterns not caught by our model. Thus, to fully opti-

mize our model, we should experiment with all possible combinations of settings,

including those we keep static in our experiments.

Methods for unfolding and visualizing CNNs in natural language processing

has received little attention from researchers (J. Li et al. 2015). However, highlighting

dominant text areas in the input can be done by following Östling and Grignonyte’s

(2017) approach. Highlighting the text areas which have the greatest influence on the

final classification may be useful to get a better understanding of which patterns the

model notices in different reports. The challenge, however, still lies with interpreting

the text areas which the model notices. Some may be obvious, some may be difficult

to make sense of, some may have no logical meaning, and yet some may even be

misleading. Thus, these tools also have limitations.

5.5 Other Factors

As initially stated, it takes time for investors to incorporate the soft information from

the annual reports in the stock price. Our results not only confirm this statement,

but they also offer an advantage for potential investors to overcome the delay and,

therefore, gain abnormal returns. However, we still acknowledge the fact, that other

5.5. Other Factors 63

factors could explain the results. For example, Carhart (1997) shows that the variable

momentum has explanatory power of the performance of mutual funds. Additionally,

Asness et al. (2000) find that industry measures can explain company-specific stock

returns. Controlling our results for momentum and industry factors would improve

the robustness of the results, however, doing so is outside the scope of this paper.

Additionally, we cannot exclude the option that the model significance derives from

unknown phenomena not explainable with current known factors.

Chapter 6

Conclusion

We significantly predict stock performance from analyzing textual elements of an-

nual reports in the US using a convolutional neural network. We present a three-

layered convolutional neural network which on average and portfolio-wise signifi-

cantly predicts the company-specific stock performance. By controlling for the Fama-

French 5-factor model, we show that the model captures abnormal returns over the

portfolios and that the returns steadily increase with the portfolio numbers which is

the desired performance. Thus, we confirm our research hypothesis that company-

specific performance is predictably with the proposed methodology.

However, some limitations apply to our findings. Firstly, the model has been

trained in a bullish market. As a result, we do not know how the model performs in

different market states. Secondly, because of the low transparency of the model, we

cannot determine what specific patterns the model has found. Thus, other factors

than the tested Fama-French model may describe parts of the results found by the

model. However, if the returns are not reflected through the already established

factors they may, indeed, arise from currently unknown patterns.

6.1 Contributions and Implications

The results found in this paper produce several implications. Firstly, we add to the

existing research stating that the 10-K filings contain relevant soft information which

the investors do not effectively capture. As mentioned in the literature review, Li

65

66 Chapter 6. Conclusion

(2008) was the first to show that the linguistic features of the 10-K filing have pre-

dictive power of company-specific performance which this paper supports. Based

on the absolute returns found by our model, we confirm that the information in the

reports is relevant for performance evaluation purposes. In addition, we find signif-

icant abnormal returns, thus indicating that the information in the annual reports is

not currently being fully utilized by the investors.

Secondly, we contribute to the validity of using natural language processing with

deep learning models to predict stock performance. Although some of the model

transparency is lost using the deep learning models, we find robust and significant

findings similarly to Rather et al. (2015) and Kraus and Feuerriegel (2017). Seeing

that better and more advanced model designs are continuously developed, we be-

lieve that there is an immense potential for deep learning models in accounting and

finance research.

Thirdly, we provide an evaluation tool for the stakeholders of a company. In-

vestors can benefit from the model presented in this paper by improving their capital

allocation. The respective companies can use it as a tool to gauge how the financial

markets are going to react to their 10-K filing. The regulatory entities can use it to

investigate whether new legislations will improve the quality of the information in

the 10-K filing. Thus, the model also serves as a practical tool to help improve the

utilization of the 10-K filings for the company’s stakeholders.

Lastly, our findings point to a semi-efficient version of the efficient market hy-

pothesis. Although the model is evaluated on a subset of the entire market, our

results indicate that the market is less than efficient during the second to 62 days af-

ter the release of the 10-K filing. As argued previously, one explanation to this could

be that the assumption that investors have unlimited information processing capac-

ity is unrealistic. In accordance with Dellavigna and Pollet (2009) and Engelberg

(2008), our results support the argument of limited capacity, while also giving an

effective solution to benefit from the limitation and thereby gain abnormal returns.

6.2. Future Research 67

6.2 Future Research

In the optimization section we tested how varying the number of days the model

predicts changed the model’s performance. Like Price et al. (2012), we found 60

days to be the optimal prediction period, possibly, because of the time it takes for

the market to incorporate all the information of a 10-K filing. We use reports from

2010 to 2017, however, as discussed in section 5.1, we cannot guarantee that the

model performs at the same level when the time frame is changed. Increasing the

overall time frame tests the model in two ways: 1) how it reacts to new legislation

and 2) how it reacts to changing market conditions (i.e. bullish or bearish markets).

Thus, we encourage others to thoroughly test how the model performs over a longer

time frame.

Because of the nonlinear relationship between the best performing settings found

in the optimization process, we also find it relevant for others to test a more exhaus-

tive number of settings. Seeing that combining the best individually performing

settings did not improve the performance, a combinatorial approach can be useful in

finding the ultimately best performing model. Although taking significantly more

time to complete, it yields interesting results. Firstly, the tests will reveal how well

the model can ultimately perform. Secondly, and perhaps most importantly, it may

help map out how the settings affect what patterns the model finds. In this paper, for

example, we find significantly different prediction patterns of the base-case model

and the three-layer model as a result of only changing the number of layers in the

network. Thus, the combinatorial approach may improve the understanding of the

black box by enabling the user to get a thorough overview of what patterns different

settings create.

Bibliography

Ahmad, K. et al. (2016). “Media-expressed negative tone and firm-level stock re-

turns”. In: Journal of Corporate Finance 37, pp. 152–172.

Amani, Farzaneh A. and Adam M. Fadlalla (2017). “Data mining applications in ac-

counting: A review of the literature and organizing framework”. In: International

Journal of Accounting Information Systems 24, pp. 32–58.

Antweiler, W. and M.Z. Frank (2004). “Is all that talk just noise? The information

content of Internet stock message boards”. In: Journal of Finance 59, pp. 1259–

1294.

Ball, Ray and Philip Brown (1968). “An Empirical Evaluation of Accounting Income

Numbers”. In: Journal of Accounting Research 6.2, pp. 159–178. issn: 00218456,

1475679X. url: http://www.jstor.org/stable/2490232.

BankruptcyData (2017). Bankruptcy Data. url: http://www.bankruptcydata.com/

(visited on 04/21/2018).

Bernard, Vl and Jk Thomas (1989). “Post-Earnings-Announcement Drift: Delayed

Price Response or Risk Premium?” In: Journal of Accounting Research 27, pp. 1–36.

url: https://EconPapers.repec.org/RePEc:bla:joares:v:27:y:1989:i::p:1-

36.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (Information

Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc. isbn:

0387310738.

Bommarito II, Michael J. and Daniel Martin Katz (2017). “Measuring and Modeling

the U.S. Regulatory Ecosystem”. In: Journal of Statistical Physics 168.5, pp. 1125–

1135. url: https://doi.org/10.1007/s10955-017-1846-3.

69

http://www.jstor.org/stable/2490232
http://www.bankruptcydata.com/
https://EconPapers.repec.org/RePEc:bla:joares:v:27:y:1989:i::p:1-36
https://EconPapers.repec.org/RePEc:bla:joares:v:27:y:1989:i::p:1-36
https://doi.org/10.1007/s10955-017-1846-3

70 Bibliography

Carhart, Mark M. (1997). “On Persistence in Mutual Fund Performance”. In: The

Journal of Finance 52.1, pp. 57–82. issn: 00221082, 15406261. url: http://www.

jstor.org/stable/2329556.

Cecchini, Mark et al. (2010). “Making words work: Using financial text as a predictor

of financial events”. In: Decision Support Systems 50, pp. 164–175.

Chen, H. et al. (2014). “Wisdom of crowds: The value of stock opinions transmitted

through social media”. In: Review of Financial Studies 27, pp. 1367–1403.

Collobert, Ronan et al. (2011). “Natural Language Processing (almost) from Scratch”.

In: 12, pp. 2493–2537.

Colm, Kearney and Liu Sha (2014). “Textual sentiment in finance: A survey of meth-

ods and models”. In: International Review of Financial Analysis 33, pp. 171–185.

DellaVigna, Stefano and Joshua M. Pollet (2009). “Investor Inattention and Friday

Earnings Announcements”. In: The Journal of Finance 64.2, pp. 709–749.

Ding, Xiao et al. (2015). Deep Learning for Event-driven Stock Prediction. Buenos Aires,

Argentina. url: http://dl.acm.org/citation.cfm?id=2832415.2832572.

Dingli, A. and K.S. Fournier (2017). “Financial time series forecasting - a deep learn-

ing approach”. In: International Journal of Machine Learning and Computing 7, pp. 118–

122.

Dyer, T., M. Lang, and L. Stice-Lawrence (2017). “The evolution of 10-K textual dis-

closure: Evidence from Latent Dirichlet Allocation”. In: Journal of Accounting and

Economics 64, pp. 221–245.

Engelberg, Joseph (2008). Costly Information Processing: Evidence from Earnings An-

nouncements. url: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=

1107998.

Fama, Eugene F. and Kenneth R. French (2015). “A five-factor asset pricing model”.

In: Journal of Financial Economics 116.1, pp. 1–22. url: https : / / EconPapers .

repec.org/RePEc:eee:jfinec:v:116:y:2015:i:1:p:1-22.

Fortuny, Enric Junqué de et al. (2014). “Evaluating and understanding text-based

stock price prediction models”. In: Information Processing and Management 50,

pp. 426–441.

French, Kenneth R. (2018). Current Research Returns. url: http://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html (visited on 04/12/2018).

http://www.jstor.org/stable/2329556
http://www.jstor.org/stable/2329556
http://dl.acm.org/citation.cfm?id=2832415.2832572
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1107998
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1107998
https://EconPapers.repec.org/RePEc:eee:jfinec:v:116:y:2015:i:1:p:1-22
https://EconPapers.repec.org/RePEc:eee:jfinec:v:116:y:2015:i:1:p:1-22
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Bibliography 71

Goel, S. and O. Uzuner (2016). “Do Sentiments Matter in Fraud Detection? Estimat-

ing Semantic Orientation of Annual Reports”. In: International Journal of Intelligent

Systems in Accounting and Finance 23, pp. 215–239.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:

//www.deeplearningbook.org. MIT Press.

Hájek, P. and J. Boháčová (2016). “Predicting abnormal bank stock returns using

textual analysis of annual reports – A neural network approach”. In: 629, pp. 67–

78.

Hájek, P. and V. Olej (2013). “Evaluating sentiment in annual reports for financial dis-

tress prediction using neural networks and support vector machines”. In: Com-

munications in Computer and Information Science 384, pp. 1–10.

Hájek, P., V. Olej, and R. Myšková (2013). “Forecasting stock prices using sentiment

information in annual reports - A neural network and support vector regression

approach”. In: WSEAS Transactions on Business and Economics 10, pp. 293–305.

Haykin, Simon (1999). Neural Networks - A comprehensive foundation. 1st ed. Hamilton,

Ontario, Canada: Pearson.

Henry, Elaine (2010). “Are Investors Influenced By How Earnings Press Releases Are

Written?” In: International Journal of Business Communication 45, pp. 363–407.

Huang, Eric H. et al. (2012). “Improving Word Representations via Global Context

and Multiple Word Prototypes”. In: Proceedings of the 50th Annual Meeting of the

Association for Computational Linguistics: Long Papers - Volume 1. ACL ’12. Jeju Is-

land, Korea: Association for Computational Linguistics, pp. 873–882. url: http:

//dl.acm.org/citation.cfm?id=2390524.2390645.

Humpherys, Sean L. et al. (2011). “Identification of fraudulent financial statements

using linguistic credibility analysis”. In: Decision Support Systems 50, pp. 585–594.

Khedr A.E. Salama S.E., Yaseen N. (2017). “Predicting stock market behavior using

data mining technique and news sentiment analysis”. In: 9, pp. 22–30.

Kim, Yoon (2014). “Convolutional Neural Networks for Sentence Classification”. In:

CoRR abs/1408.5882. url: http://arxiv.org/abs/1408.5882.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic Opti-

mization”. In: CoRR abs/1412.6980. url: http://arxiv.org/abs/1412.6980.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dl.acm.org/citation.cfm?id=2390524.2390645
http://dl.acm.org/citation.cfm?id=2390524.2390645
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1412.6980

72 Bibliography

Kraus, Mathias and Stefan Feuerriegel (2017). “Decision support from financial dis-

closures with deep neural networks and transfer learning”. In: Decision Support

Systems 104, pp. 38–48.

Lang, M. and L. Stice-Lawrence (2015). “Textual analysis and international financial

reporting: Large sample evidence”. In: Journal of Accounting and Economics 60,

pp. 110–135.

LeCun, Yann et al. (1999). “Object Recognition with Gradient-Based Learning”. In:

Shape, Contour and Grouping in Computer Vision. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 319–345. url: https://doi.org/10.1007/3-540-46805-6_19.

Lehavy, Reuven, Feng Li, and Kenneth Merkley (2011). “The Effect of Annual Report

Readability on Analyst Following and the Properties of Their Earnings Fore-

casts”. In: The Accounting Review 86, pp. 1087–1115.

Li (2008). “Annual report readability, current earnings, and earnings persistence”.

In: Journal of Accounting and Economics 45, pp. 221–247.

Li, Feng (2010). “The Information Content of Forward-Looking Statements in Cor-

porate Filings — A Naïve Bayesian Machine Learning Approach”. In: Journal of

Accounting Research 48, pp. 1049–1102.

Li, Jiwei et al. (2015). “Visualizing and Understanding Neural Models in NLP”. In:

CoRR abs/1506.01066. eprint: 1506.01066. url: http://arxiv.org/abs/1506.

01066.

Li, X. et al. (2014). “News impact on stock price return via sentiment analysis”. In:

Knowledge-Based Systems 69, pp. 14–23.

Lo, Kin, Felipe Ramos, and Rafael Rogo (2017). “Earnings management and annual

report readability”. In: Journal of Accounting and Economics 63.1, pp. 1–25.

Loughran, Tim and Bill McDonald (2011). “When Is a Liability Not a Liability? Tex-

tual Analysis, Dictionaries, and 10-Ks”. In: The Journal of Finance 66.1, pp. 35–

65. url: https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1111 / j . 1540 -

6261.2010.01625.x.

— (2014a). “Measuring readability in financial disclosures”. In: Journal of Finance 69,

pp. 1643–1661.

https://doi.org/10.1007/3-540-46805-6_19
1506.01066
http://arxiv.org/abs/1506.01066
http://arxiv.org/abs/1506.01066
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.2010.01625.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.2010.01625.x

Bibliography 73

— (2014b). “Regulation and financial disclosure: The impact of plain English”. In:

Journal of Regulatory Economics 45.1, pp. 94–113. issn: 1573-0468. url: https://

doi.org/10.1007/s11149-013-9236-5.

— (2016). “Textual Analysis in Accounting and Finance: A Survey”. In: Journal of

Accounting Research 54, pp. 1187–1230.

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the ideas imma-

nent in nervous activity”. In: Bulleting of Mathematical Biophysics 5.

McDonald, Bill (2018). Software Repository for Accounting and Finance. url: http://

sraf.nd.edu/data/.

Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases and

their Compositionality”. In: CoRR abs/1310.4546. url: http://arxiv.org/abs/

1310.4546.

Myšková, Renáta, Petr Hájek, and V. Olej (2018). “Predicting abnormal stock return

volatility using textual analysis of news - a meta-learning approach”. In: Am-

fiteatru Economic 20, pp. 185–201.

Nardo, M., M. Petracco-Giudici, and M. Naltsidis (2016). “Walking down wall street

with a tablet: A survey of stock market predictions using the web”. In: Journal of

Economic Surveys 30, pp. 356–369.

Ng, Andrew (2018). Lecture notes from Coursera course: Machine Learning.

Östling, Robert and Gintare Grigonyte (2017). “Transparent text quality assessment

with convolutional neural networks”. In: pp. 282–286.

Pennington, Jeffrey, Richard Socher, and Christoper D. Manning (2014). “Glove:

Global Vectors for Word Representation”. In: pp. 1532–1543.

Pinheiro, Leonardo Dos Santos and Mark Dras (2017). “Stock Market Prediction

with Deep Learning: A Character-based Neural Language Model for Event-based

Trading”. In: Proceedings of the Australasian Language Technology Workshop (ALTA)

27.5, pp. 6–15.

Price, S.M. et al. (2012). “Earnings conference calls and stock returns: The incremental

informativeness of textual tone”. In: 36, pp. 992–1011.

Qiu, X.Y., P. Srinivasan, and Y. Hu (2014). “Supervised learning models to predict

firm performance with annual reports: An empirical study”. In: Journal of the

American Society for Information Science and Technology 65, pp. 400–413.

https://doi.org/10.1007/s11149-013-9236-5
https://doi.org/10.1007/s11149-013-9236-5
http://sraf.nd.edu/data/
http://sraf.nd.edu/data/
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546

74 Bibliography

Rather, A.M., A. Agarwal, and V.N. Sastry (2015). “Recurrent neural network and a

hybrid model for prediction of stock returns”. In: Expert Systems with Applications

42, pp. 3234–3241.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning

representations by back-propagating errors”. In: Nature 323.6088, pp. 533–536.

url: http://dx.doi.org/10.1038/323533a0.

S. Asness, Clifford, Burt Porter, and Ross L. Stevens (2000). “Predicting Stock Returns

Using Industry-Relative Firm Characteristics”. In:

Schnabel, Tobias et al. (2015). “Evaluation methods for unsupervised word embed-

dings”. In: pp. 298–307.

SEC, ed. (2010). Important Information About EDGAR. url: https://www.sec.gov/

edgar/aboutedgar.htm (visited on 02/2018).

— (2013). The Laws That Govern the Securities Industry. url: https://www.sec.gov/

answers/about-lawsshtml.html.

Sohangir, S. et al. (2018). “Big Data: Deep Learning for financial sentiment analysis”.

In: Journal of Big Data 5.

S&P500 Stock Index (2018). url: https://finance.yahoo.com/quote/%5EGSPC?p=

%5EGSPC (visited on 05/01/2018).

Sprenger, T.O. et al. (2014). “Tweets and trades: The information content of stock

microblogs”. In: European Financial Management 20, pp. 926–957.

Tetlock, Paul C. (2007). “Giving Content to Investor Sentiment:The Role of Media in

the Stock Market”. In: The Journal of Finance 62, pp. 1139–1168.

Wisniewski, T.P. and L.S. Yekini (2015). “Stock market returns and the content of

annual report narratives”. In: Accounting Forum 39, pp. 281–294.

Wu, D.D., L. Zheng, and D.L. Olson (2014). “A decision support approach for on-

line stock forum sentiment analysis”. In: IEEE Transactions on Systems, Man, and

Cybernetics: Systems 44, pp. 1077–1087.

http://dx.doi.org/10.1038/323533a0
https://www.sec.gov/edgar/aboutedgar.htm
https://www.sec.gov/edgar/aboutedgar.htm
https://www.sec.gov/answers/about-lawsshtml.html
https://www.sec.gov/answers/about-lawsshtml.html
https://finance.yahoo.com/quote/%5EGSPC?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC?p=%5EGSPC

Appendix A

A Basic Guide to Convolutional Neu-

ral Networks

We build a convolutional neural network to predict a company’s stock performance

based on its respective annual report. To understand how a convolutional neural

network works, it is necessary to explain the basics of a simple neural network: how

they are structured and how they are trained. Afterward, we show how the convo-

lutional neural network is developed from the structure of artificial neural networks

and how CNNs can be used in natural language processing. The presentation of

artificial neural networks uses the intuition of Bishop (2006) alongside Andrew Ng’s

online Machine Learning course (Ng 2018), while the deep learning parts for the

convolutional neural network mainly refers to Ian Goodfellow et al. (2016). We pro-

vide this in-depth guide for readers not working in the field or readers without prior

knowledge of neural networks.

A.1 Neural Networks

In the endeavor of creating artificial intelligence, McCulloch and Pitts (1943) pre-

sented a method to solve logical calculus by imitating the structure of the human

brain. The human brain contains billions of cells (neurons) that are interconnected

in an extremely complex system. Specific patterns of input trigger different neu-

rons resulting in different outcomes (i.e. interpretations in the brain). McCulloch

75

76 Appendix A. A Basic Guide to Convolutional Neural Networks

and Pitts proposed the Artificial Neural Network (ANN), or simply Neural network

(NN), which is defined as:

Artificial Neural Network: “. . . a massively parallel distributed processor made

up of simple processing units, which has a natural propensity for storing experien-

tial knowledge and making it available for use.” (Haykin 1999, p. 24)

The Artificial Neural Network is the basic model of a neural network which, similar

to the brain, consists of neurons. McCulloch and Pitts, published in 1943 were many

years ahead of their time as neural networks constitute a great part of today’s Ma-

chine Learning.

Before and during the training phase, neural networks are not models but rather

learning algorithms that produce models. Like regressions, neural networks take a

set of inputs and output and generates a generalization of the relation between the

input and output.

Figure A.1: Example of a neural network

x1

x2

Output

Hidden

layer

Input

layer

Output

layer

Figure A.1 illustrates a neural network with one input layer, a hidden layer, and an

output layer. The circles represent neurons where the input layer is constituted by

the left-most neurons. The middle layer is a hidden layer with three neurons and the

output layer, to the right, consists of a single neuron.

A.1. Neural Networks 77

A.1.1 Neurons

A neuron is an information processing unit which receives an input, then processes

the input, and outputs the result. Neurons connect with other neurons through

weighted connections in a feedforward structure. Thus, all neurons in one layer con-

nect with all neurons in the next layer. Neurons do not connect with neurons in the

same layer and the output of a neuron is never sent backward in the network. The

lines in figure A.1 indicate the weighted connections.

The neurons in the input layer contain the inputs to the neural network. The

neurons in the input layers do not process their inputs, however, neurons in the

hidden layers and the output layer process their inputs by applying an activation

function.

A.1.2 Activation Functions

In figure A.2 a close-up look of a neuron shows how said neuron receives the sum-

product of the inputs (i.e. the previous neurons’ output) and their weights. The

neuron inserts the sum-product into the activation function and the activation func-

tion then outputs result z which is used as the input for the next layer.

Besides inserting the weighted inputs, the sum function also includes an addi-

tional input. The additional input has a static value of one while its weight varies.

The static value multiplied by its weight constitutes the bias of the neuron.

Figure A.2: A close-up illustration of a neuron

x1 w1 Σ f y
Output

1 w0

x2 w2

Weights

Inputs

78 Appendix A. A Basic Guide to Convolutional Neural Networks

One of the most frequently used activation functions for neural networks is the lo-

gistic function, also known as the sigmoid function which is shown in equation A.1.

f (y) =
1

1 + e−y (A.1)

The logistic function receives an input and outputs a value between 0 and 1. The

binary attributes of the logistic function make a network of logistic functions able to

imitate logical operations. Take, for example, a non-linear prediction problem where

the desired prediction is whether a company is going to perform well or poorly

the next year. We use two input variables: the company’s revenue and its costs.

When using multiple inputs, the input neurons are vectorized as x = [revenue, cost].

To illustrate the function’s attributes, we use an imaginary company called A Basic

Company (ABC). We want the activation function to be able to output a 1, when the

costs (including the bias) exceed the revenue, or 0 if the revenue exceeds the costs

(including the bias).

ABC has revenues of 100 and costs of 80. Assuming the weight associated with

the revenue input is equal to −1, the weight associated with the cost is equal to 1,

and the bias weight9 is equal to 30 the sum-product is equal to:

(−1) · 100 + 1 · 80 + 1 · 30 = 10

The output of the activation function is thus:

1
1 + e−10 ≈ 1

However, if costs decrease to 60, we get

(−1) · 100 + 1 · 60 + 1 · 30 = −10

and the result of the activation function is

1
1 + e10 ≈ 0

Thus, when the cost and bias exceed the revenues, the activation function outputs a

1 indicating a bad performance and vice versa. The output of the activation function

9Remember that the value of the bias is always equal to one

A.1. Neural Networks 79

can then be used by the subsequent layers. Other activation functions can be used to

imitate different logical operations.

A.1.3 Layers

A neural network consists of layers, each containing a given number of neurons.

In figure A.1, we use three dense layers, where the middle is a hidden layer. All

layers that are not input or output layers are called hidden layers. ANNs follow a

feedforward structure which means that each layer passes its outputs to the next

layer, starting with the input layer and ending with the output layer. One iteration of

calculating the final output based on a given input is called feedforward or forward

propagation.

Altogether, a neural network can be formalized as the function:

f (xxx,WWW) = YYY (A.2)

Where xxx is the input vector and the weight tensor (multidimensional matrix), WWW,

which contains all the weights of the network. The tensor WWW can contain several

thousand connection weights depending on how complex the network is.

A.1.4 Training the Network

Training a neural network manually is a tedious process, although it has been auto-

mated by computers. Training requires sets of inputs and actual outputs (samples)

from which it optimizes the weights so the error in the calculated output compared

to the actual output is minimized. To do so, the algorithm needs a way to measure

the error of the network.

A.1.5 Loss Functions

Applying a loss function to the result enables the neural network to determine the

error of the predicted output. When calculating a forward pass in a prediction net-

work, the output ranges between 0 and 1. For example, if a network outputs a

probability of good performance of 90% for a company and the company actually

80 Appendix A. A Basic Guide to Convolutional Neural Networks

performed poorly (0%), the simplest form of loss function calculates an error of

0% − 90% = −90%.

Many loss functions exist, but the cross-entropy loss function is the most popular.

In this paper, we use categorical outcomes as output and we, therefore, use the

categorical cross-entropy loss function which is presented in formula A.3:

J(xxx,WWW, yyy) = − 1
N

N

∑
n=1

[ynlog(ŷn) + (1 − yn)log(1 − ŷn)] (A.3)

Where yn is the actual outcome and ŷn is the estimated outcome. Thus, when the

actual outcome is 1 (yn = 1), the yn · log(ŷn) part of the function is calculated, and

when the actual outcome is 0 (yn = 0), the (1 − yn) · log(1 − ŷn) part of the loss

function is calculated.

The objective of the training phase is thus to minimize the loss function by chang-

ing the weights. Continuing with the example above, if the model outputs a value of

90% and the actual outcome is that the company performs poorly (0%) we get the

following loss:

− 1
1 (0 · log(90%) + (1 − 0)log(1 − 90%) = 2.302585

The loss is deemed large. However, if the company performs well, we get:

− 1
1 (1 · log(90%) + (1 − 1)log(1 − 90%) = 0.105361

We see that the loss is substantially smaller than before because the estimate is closer

to the actual outcome.

A.1.6 Backpropagation

Adjustment of the weights is an optimization problem, where the objective is to

minimize the loss function by changing the weights of the neural network. The

partial derivatives of the loss function with respect to each of the connection weights

are the foundation of optimizing the network, as presented in formula A.4:

∂

∂WWW
J(xxx,WWW, yyy) (A.4)

A.1. Neural Networks 81

A computer can easily overcome calculating the partial derivatives of the connection

weights in our small example neural network. Some networks, however, have more

than one hundred neurons in each layer with more than 10 layers. Calculating the

derivative of each weight individually would be computationally heavy and ineffi-

cient. Rumelhart et al. (1986) show an effective way to overcome the computational

inefficiencies of the optimization task by using the advantages of the chain rule of

derivatives. The backpropagation algorithm starts with the feedforward pass where

each step in the network is calculated. In addition to calculating all the steps, the

backpropagation also calculates and stores the partial derivatives for each of the cal-

culated steps with respect to the input of each step. In other words, the network

calculates a measure which is useful when determining the error contributed by

each weight to the overall error. After all the steps are calculated, the network traces

back the error which each individual weight contributed to the total error using the

chain rule. The weights are then simultaneously adjusted in order to reduce the

loss function using an optimizer. Through this process, the error becomes smaller

and smaller which improves the performance of the learning algorithm. When the

training is completed, the model is ready to be used for predicting unfamiliar data.

A.1.7 Optimizers

An optimizer calculates the adjustment to the weights based on the partial deriva-

tives calculated with the backpropagation method. Optimizers are mathematical

algorithms which exploit the power of the derivatives to minimize or maximize an

objective. In machine learning, this objective is often to minimize the loss. Instead

of updating the weights for each training sample, multiple samples are often assem-

bled in batches where the batch-size determines the number of samples. As a result,

optimizers update the weights once it has calculated all the samples in a batch. Fur-

thermore, a single training iteration is defined as calculating one feedforward pass,

using backpropagation to calculate the partial derivatives. When all training sam-

ples in a batch have been calculated, the optimizer updates the weights. Depending

on the neural network and the task, the learning algorithm requires many epochs to

fully learn the patterns of the input. An epoch is defined as one iteration throughout

the entire training dataset.

82 Appendix A. A Basic Guide to Convolutional Neural Networks

A.1.8 Learning Rate

The changes in the weights calculated with the optimizer can in some cases become

too large. If this happens, the optimal weight values will never be computed as the

changes are too large for the fine-tuning needed to find the optimum. Figure A.3

shows a two-dimensional representation of the training loss of a network.

Figure A.3: Example of overshooting

Neural networks use a learning rate to overcome the problem of changing the weights

excessively. The learning rate is a constant which dampens the learning process.

The change to each weight is thus reduced to only take small steps towards the fi-

nal model. The learning rate is set depending on the optimization method and the

model task in general.

When initiated, models tend to be far away from the optimal point which creates

a problem when applying a learning rate. Observing that if the learning rate is

small, the model will take many small steps towards the optimal point. Also, if

the learning rate is too small, the model never comes close to the optimal weight

settings, resulting in a bad performance. However, if the learning rate is high, the

model moves towards the optimum in bigger steps, but it will eventually encounter

the problem of changing the weights too much in each iteration. Adding a decay

factor to the learning rate allows the learning rate to decrease each time the weights

are updated. Weight changes then take big steps in the beginning, however, as the

process of training proceeds the decay diminishes the learning rate.

A.1. Neural Networks 83

A.1.9 Overfitting and Regularization

Overfitting happens when the model fails to generalize the patterns in the input but

instead only adjusts to the specific training data. In machine learning, overfitting

often happens because the weights of the model take on extreme values which allows

the model to fit very specific patterns. As a result, the model performs badly when

it predicts unfamiliar data. Figure A.4 shows a model which overfits the samples.

The blue line correctly explains the relationship between every data point, however,

it would not perform well on any additional unfamiliar data points. The standard

linear regression performs significantly better at generalizing the overall trend of the

data points.

Figure A.4: Example of overfitting

Regularization is a method used to reduce the problem of overfitting. As a result,

the model’s performance of the training data may decrease, however, its accuracy

on unfamiliar data increases. Many regularization methods penalize large weights

by adding the size of the weights to the loss function. The additional loss prevents

the weights from becoming extremely large or small because the optimizer would

reduce their size in order to reduce the overall loss. By limiting the neurons to adapt

to specific training samples, the learning algorithm generalizes the training data in-

stead of overfitting the given training samples. For instance, in a case with many

features but few samples, models tend to overfit the training samples.

84 Appendix A. A Basic Guide to Convolutional Neural Networks

Instead of simply adding the weight values to the loss function, adding the

squared weights as the regularization term has advantages when combined with

the backpropagation algorithm.

J(WWW, yyy) = − 1
N

N

∑
n=1

[ynlog(ŷn + (1 − yn)(log(1 − ŷn)] +
1
2

λWWW2 (A.5)

Formula A.5 includes the L2 parameter regularization, or the Tikhonov regulariza-

tion at the end of the loss function, which is used in the network in this paper.

The λ term works similarly to the learning rate. This term regulates how much the

weights’ values should be accounted in the loss function similar to how the learning

rate regulates how much of the weight changes should be applied when optimizing

the model.

A.1.10 Random Initialization of Weights

Before training begins, it is necessary to initialize the weights of the neural network.

Setting the weights to zero makes the backpropagation produce identical changes to

all weights forcing the neurons in each layer to adapt to the same pattern. Initial-

ization of weights is, therefore, often completed by setting the weights to a random

number between −1 and 1.

A.2 Convolutional Neural Network

This section presents how a convolutional neural network develops from the under-

standing of neural networks. We demonstrate how convolutional neural networks

can be used in natural language processing.

A.2.1 Inspiration from Vision

LeCun et al. (1999) introduced convolution neural networks as a learning algorithm

able to recognize objects in images. Convolutional neural networks (CNN) are neu-

ral networks, which include convolutional layers, which compress the information

in a prior layer to the next by using filters. The filters are fitted to specific patterns

A.2. Convolutional Neural Network 85

throughout the training process of the model. Collobert et al. (2011) later found

that CNNs also perform well at semantic parsing and sentiment classification. Un-

like neural networks, convolutional neural networks may effectively process great

amounts of sequential and multidimensional information.

A.2.2 Convolutional Layers

Convolutional neural networks get their name from adding convolution layers to

a neural network. A convolutional layer is useful when input data is multidimen-

sional. For example, imagine a small image that consists of 8x8 pixels. The image

has a total of 64 pixels. The image can be represented as a matrix where each value

represents a specific pixel. The values of the matrix represent the blackness of the

pixels. A value of one represents a completely black pixel and a zero represents a

white pixel. The matrix has the same size as the image. Reshaping the matrix into a

vector removes the relationship between the pixels. Thus, using the matrix represen-

tation of an image in an artificial neural network is not possible as artificial neural

networks do not allow multidimensional inputs. Convolutional layers pose the so-

lution to this limitation of the standard neural network. In a convolutional layer, a

filter iterates over the two-dimensional input to look for specific patterns. The size

of the filter determines how big a range of inputs it examines on each iteration. In

figure A.5, the filter in blue is 3x3 pixels large and thus scans a range of nine values

of the matrix on each iteration.

Figure A.5: Example of a convolutional layer

86 Appendix A. A Basic Guide to Convolutional Neural Networks

The filter outputs a compressed version of the input called a feature map. The

feature map’s values are calculated as the sum-product of the filter values and the

input values. The values of the filter determine which patterns the filter finds, and

it is also what is being trained to detect the important patterns of the input. By

changing the filters, the network adapts to the input data by recognizing patterns

that appear in the inputs. A convolutional layer often has several filters where each

filter has a different composition. Different filters notice different features of the

images and pass these on to the next layer. The size of the filter can be changed to

fit the input images and the size of the filter is referred to as the receptive area size

of the convolutional layer.

A.2.3 Pooling Layers

Convolutional neural networks often have pooling layers after each convolutional

layer. Like the convolutional layer, the pooling layer applies its function on an area

of the previous layer one iteration at a time. Opposite to the convolutional filter layer,

the pooling layer does not overlap the input data. By not overlapping, each value

of the convolutional layer gets evaluated once to make sure only the most important

information is passed through to the next layer. Applying a receptive size of 2x2 in

the pooling filter, we get the results in figure A.6 where each color matches the input

and corresponding pooling values.

Figure A.6: Example of a max pooling layer

The max pooling function outputs the maximum value of the area for each non-

overlapping area. It compresses the input while still passing on the relevant at-

tributes of the previous layer.

A.2. Convolutional Neural Network 87

A.2.4 Flattening Layer

To make the final output of the model interpretable, the network eventually needs

to be flat like the standard neural network. A flattening layer converts a two-

dimensional matrix into a one-dimensional vector. For example, applying a flat-

tening layer to a 3x3 matrix from a previous layer transposes the matrix into a 9x1

vector as illustrated in figure A.7. The layers following a flattening layer are fully

connected layers which are the same as in an ordinary neural network, as described

earlier. The network then ends with an output layer with a number of neurons that

match the number of possible outcomes.

Figure A.7: Example of a flattening layer, softmax function, and a one-hot vector

A.2.5 Softmax

With several outcomes, we cannot use the value of the output layers as it is not a

unit of measurement which cannot be interpreted. To transform the outputs from

the final layer, we calculate the values as probabilities. To do this, we use the softmax

function as the activation function of the final layer. The softmax function transforms

the final layer’s output into a probability. Formula A.6 shows how the function is

calculated.

88 Appendix A. A Basic Guide to Convolutional Neural Networks

σ(xxxj) =
exj

∑i exi (A.6)

Other techniques for transforming multiple outcomes into a probabilistic measure

exist, but the softmax is by far the most commonly used. In figure A.7, we show

the softmax function applied to the nine neurons from the flattening layer. Usually,

the outcome with the highest probability is chosen as the output. As shown in the

figure, the softmax is represented as a vector and is transformed into a one-hot vector

where all values are zero except the predicted outcome which has the value of one.

The final one-hot vector is what is used when calculating the loss function.

A.2.6 Putting the Parts Together

Adding a convolutional layer and a pooling layer transforms the standard neural

network into a convolutional neural network. By also adding flattening layer, we

enable the model to handle classification problems. CNNs may have several sets of

convolutional and pooling layers. Figure A.8 shows the first illustration made by

LeCun et al. (1999), where an image of a hand-written letter "A" is used as input.

Figure A.8: A complete convolutional neural network

After the input layer, the next layer applies six different filters to create six feature

maps. Labeled as "subsampling", the model compresses the prior layer in a pooling

operation. After an additional set of convolution and pooling layers, the model is

flattened and it ends in a fully connected layer with 10 outcomes. By applying the

softmax function to the output layer, the network returns the probability of each

outcome.

A.2. Convolutional Neural Network 89

A.2.7 Convolutional Neural Network in Natural Language Processing

Instead of using images, Collobert et al. (2011) show a way to use text as the input

in a CNN. Revisiting the data section, where we explained how words can be rep-

resented as vectors with word embeddings. By replacing each word in a text with

a horizontal vector (the word’s embedding), we create a matrix for each text or se-

quence of words. Using the matrix as input gives the network the same capabilities

as in the previous illustration in figure A.8.

The Receptive Area and Word Embeddings

As mentioned earlier, the receptive area is the size of the area that a convolution layer

and a pooling layer examines when iterating through the previous layer. In figure

A.5 we saw how a convolutional layer examines all possible 3x3 areas of the input.

However, when working with word embeddings we want to include all columns of

the previous layer as all the numbers representing a word should be examined at the

same time. Thus, we only convolute on the input matrix in a vertical manner.

	Abstract
	Contents
	1 Introduction
	1.1 Hypothesis
	1.2 Scope
	1.3 Structure of the Paper

	2 Literature Review
	2.1 Introduction
	2.2 Purposes
	2.2.1 Fraud detection
	2.2.2 Bankruptcy detection
	2.2.3 Stock Performance

	2.3 Textual Measures
	2.3.1 Readability
	2.3.2 Sentiment

	2.4 Text Sources
	2.5 Model Use
	2.6 Key Takeaways

	3 Research Design
	3.1 Datasets
	3.1.1 Loughran and McDonald
	3.1.2 CRSP

	3.2 Methodology
	3.2.1 Prediction Model
	3.2.2 Research Structure
	3.2.3 Tools and Software

	3.3 Data Processing
	3.3.1 Processing the Textual Elements of Annual Reports
	3.3.2 Cleaning Data
	3.3.3 Tokenization and Word Vector Representation
	3.3.4 Padding
	3.3.5 Matching Ticker and CIK
	3.3.6 Calculating Stock Returns
	3.3.7 Separating Returns into Portfolios
	3.3.8 Splitting the Data for Training, Validation and Test

	3.4 The Theoretical Foundation
	3.4.1 Neural Networks
	3.4.2 Convolutional Neural Network
	3.4.3 Training the Network

	4 Experiments and Results
	4.1 Experiments
	4.1.1 Training Process of the Base-Case Algorithm
	4.1.2 Settings of the Base-Case Model
	4.1.3 Optimization Experiments
	4.1.4 Evaluation of the Experiments

	4.2 Results
	4.2.1 Absolute Performance
	4.2.2 Abnormal Performance
	4.2.3 Confusion Matrices

	5 Discussion
	5.1 Predictive Power over Time
	5.2 Bankruptcies
	5.3 Trainable Word Embeddings
	5.4 Dealing with a Black Box
	5.5 Other Factors

	6 Conclusion
	6.1 Contributions and Implications
	6.2 Future Research

	Bibliography
	A A Basic Guide to Convolutional Neural Networks
	A.1 Neural Networks
	A.1.1 Neurons
	A.1.2 Activation Functions
	A.1.3 Layers
	A.1.4 Training the Network
	A.1.5 Loss Functions
	A.1.6 Backpropagation
	A.1.7 Optimizers
	A.1.8 Learning Rate
	A.1.9 Overfitting and Regularization
	A.1.10 Random Initialization of Weights

	A.2 Convolutional Neural Network
	A.2.1 Inspiration from Vision
	A.2.2 Convolutional Layers
	A.2.3 Pooling Layers
	A.2.4 Flattening Layer
	A.2.5 Softmax
	A.2.6 Putting the Parts Together
	A.2.7 Convolutional Neural Network in Natural Language Processing

