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Abstract 
 
We investigate the ability of the CAPM, the Fama-French three-factor model, and the 

Carhart four-factor model to describe the average monthly stock returns on the Oslo Stock 

Exchange in the period 2009 – 2017. In addition, we test whether the observed beta 

anomaly on the Oslo Stock Exchange can be attributed constrained investors in terms of 

leverage and margin requirements, or if the beta anomaly can be attributed a demand for 

lottery-like stocks. Using a sample free of survivorship bias, we construct a market factor 

and factors related to firm size, book-to-market-value of equity, momentum, margin- and 

leverage constrained investors, and the demand for lottery stocks. We apply the portfolio 

sorts approach, as well as Fama and MacBeth (1973) regressions on portfolios formed on 

firm characteristics to estimate factor exposures and risk premia.  

From our portfolio sorts approach we find no systematic pattern in the excess returns on 

portfolios sorted on firm characteristics. The CAPM estimates insignificant market risk 

premia across all portfolio sorts. We find that the three-factor model increases the 

predictability of excess stock returns on the Oslo Stock Exchange, and produces a 

significant market risk premium and a SMB risk premium for portfolios sorted on size. 

Surprisingly, both risk premia are estimated to be negative. The three-factor model has 

trouble explaining the returns on portfolios sorted on other firm characteristics. The 

inclusion of a momentum factor does not improve the predictability signficantly, and we 

conclude that the estimated factor models explain the cross-section of excess returns on the 

Oslo Stock Exchange to a limited extent.  

We find that constrained investors in terms of leverage and margin requirements are a 

likely contributor to the beta anomaly on the Oslo Stock Exchange. Further, we find no 

evidence that a demand for lottery stocks contribute to the beta anomaly. This coincides 

with the lottery stock hypothesis, given the low ownership share of private investors on the 

Oslo Stock Exchange.   
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1. INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 
Asset pricing theory aims to explain why some assets pay higher average returns than 

other. What might seem like a relatively trivial question has dominated financial literature 

for decades, and has split research into opposing schools of thought. First, there are 

approaches that originate from the consumption-based model, asserting that stocks whose 

returns have a negative correlation with the marginal utility of consumption must offer 

higher expected returns to investors. Typically, these models attempt to identify common 

sources of risk, formally known as systematic risk factors, which correlate with asset 

returns. In contrast, advocates for the behavioral paradigm argue that asset returns cannot 

simply be explained by a set of risk factors. Rather, asset returns are determined in the 

marketplace by cognitively biased investors who make irrational decisions. 

The capital asset pricing model (CAPM) is arguably the most prominent and important 

financial model taught in finance courses, and is central in the systematic risk-based 

paradigm. The CAPM postulates that the excess return of a well-diversified portfolio is a 

function of its covariance with the market portfolio, i.e., its systematic risk. In spite of its 

prominence, early empirical research found the CAPM to be fundamentally flawed: 

Already in the early 1970’s, Jensen, Black, and Sholes (1973) found that the security 

market line was too flat. Furthermore, empirical evidence using US data showed that high-

beta stocks underperform low-beta stocks on a risk-adjusted basis (Fama & French, 1992). 

These empirical findings contradict the central prediction of the CAPM, and the 

phenomenon has been coined “the beta anomaly”. 

The beta anomaly is not confined to the United States. Frazzini and Pedersen (2014) show 

that the beta anomaly exists in 19 developed markets in the period from 1989 to 2012. In 

2018, Finn Øystein Bergh wrote an article in the Norwegian financial newspaper 

Dagens Næringsliv, where he argued that low-beta stocks on the Oslo Stock Exchange 

(OSE) had provided an annual return of 19.2% versus -8% for high-beta stocks in the 

period 2001 - 2017 (Bergh, 2018). This article serves as the main motivation for this thesis. 

In the early stages of this project, we collected data from the OSE in the period 2007 – 
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2017. Subsequently, we constructed five portfolios sorted on market beta to see whether we 

could find a similar relationship between historical returns and beta. Figure 1 shows 

average monthly return from the five portfolios in the period 2007 – 2017 plotted against 

the predicted return according to CAPM, as illustrated by the Security Market Line 

(SML)1 The figure indeed confirms that the beta anomaly was present on the OSE in 

the period. As a result, the motivation for this thesis is to identify the factors that explain 

the cross-section of returns on the OSE. Furthermore, the thesis will aim to find 

an explanation for the negative relationship between systematic market risk and returns on 

the Norwegian stock market. 

     FIGURE 1 – MONTHLY RETURNS FROM BETA-SORTED PORTFOLIOS VS. SML (2007 – 2017) 
 

 

 

 

 

 

Recently, two influential papers have attempted to explain the beta anomaly. In 

2014, Frazzini and Pedersen (2014) presented evidence that lower risk-adjusted returns for 

high-beta stocks can be explained by the fact that investors are constrained in terms of 

leverage and margin requirements. Specifically, constrained investors purchase assets 

riskier than would be optimal to achieve higher returns. They argue that the tilt towards 

high-beta assets results in a lower risk-adjusted return for these assets compared to low-

beta assets. By constructing a betting against beta (BAB) factor, defined as a portfolio 

that holds low-beta assets, leveraged to a beta of one, and that shorts high-beta assets, de-

levered to a beta of one, they achieve positive abnormal returns. With reference to the 

                                                        
1 For a detailed description of our data sample, see Section 4 – Data. For description of the portfolio 
construction, see Section 5 - Methodology  
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Arbitrage Pricing Theory (APT), they argue that the prevailing arbitrage returns imply 

that the beta anomaly is a consequence of constrained investors.  

In a more recent paper, Bali, Brown, Murray, and Tang (2017) attribute the beta anomaly 

to investors' demand for stocks with lottery-like payoffs, referred to as "lottery 

stocks". Bali et al. (2017) proxy the lottery demand by MAX, defined as the average of the 

five highest daily returns of the given stock in a given month. They demonstrate that the 

abnormal returns of a long-short beta portfolio, similar to that of Frazzini and Pedersen 

(2014), are no longer significant when the portfolio is constrained to be neutral to MAX.  

The purpose of this thesis is two-fold: first, we aim to investigate whether the cross-section 

of returns in the period 2007 – 2017 can be explained by using standard asset pricing 

models. However, as argued in subsection 6.2.2, we choose to exclude the 2007 – 2008 

period from our sample period based on our findings in the portfolio sorts approach. We 

will estimate systematic risk factors on the OSE using three asset pricing models: the 

CAPM, the Fama and French three-factor model (Fama & French, 1992), and 

the Carhart four-factor model (Carhart, 1997). Second, we will investigate whether the 

beta-anomaly on the OSE can be attributed to leverage and margin constraints, 

following Frazzini and Pedersen (2014), and/or whether the beta anomaly on the OSE can 

be attributed a demand for lottery-like stocks, following Bali et al. (2017).  

The abovementioned is synthesized into the following research questions:  

1. To what extent does the CAPM explain the cross-section of returns on the OSE in 
the period 2009 – 2017?  
 

2. To what extent does the Fama-French three-factor model explain the cross-section 
of returns on the OSE in the period 2009 – 2017?  
 

3. To what extent does the Carhart four-factor model explain the cross-section of 
returns on the OSE in the period 2009 – 2017?  
 

4. Can the beta anomaly be attributed to leverage and margin constraints with 
investors, or can it be attributed to a demand for stocks with lottery-like returns?  
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1.2 DELIMITATIONS 

In their 1992 paper, Fama and French (1992) constructed the SMB factor based on the 

empirical evidence that stocks with a small market capitalization provide higher risk-

adjusted returns than stocks with a large market capitalization. Similarly, the HML 

factor was constructed based on the empirical evidence that stocks with high book-to-

market values of equity (BM) provide higher risk-adjusted returns than stocks with low 

book-to-market values of equity. They argue that the factors represent unidentified 

systematic risks. However, there has been, and still is, considerable debate whether they 

represent systematic risk factors, or whether the difference in risk-adjusted returns can be 

attributed to investors' irrational behavior, as proposed by proponents of the behavioral 

paradigm. In this thesis, we will not discuss whether the factors do in fact represent 

systematic risks. The factors are merely constructed in an attempt to explain the cross-

section of returns on the OSE. Hence, when we refer to “risk-factors”, we do not ascribe 

the returns from the factors as a function of some systematic risk.   

Our sample does not include every stock on the OSE in the period 2007 – 2017. The reason 

for this is that various filter criteria are applied to the raw data before entering our data 

sample. For example, penny stocks, defined as stocks trading below NOK 5, and stocks 

with less than 50 yearly trading days, are excluded. For a detailed explanation of the 

sample construction, see Section 4 – Data.   
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2 LITERATURE REVIEW 

2.1 THE CONSUMPTION-BASED MODEL 
Asset pricing theories attempt to explain the prices or values of claims to uncertain 

payments. Since a low price implies a high rate of return, one may also think of the theory 

as explaining why some assets pay a higher return than others. All asset pricing theory 

stems from the concept that an asset’s price is equal to its discounted payoff. With this in 

mind, there are two distinct approaches to which assets are priced: absolute pricing and 

relative pricing. Absolute pricing bases prices on economic theory, and use fundamentals 

such as exposure towards macroeconomic risk and references of economic agents to find an 

asset’s price, irrespective of the price of other assets. Relative pricing, on the other hand, 

uses the price of other assets as a foundation for valuation. A typical relative pricing model 

is the Black-Scholes option pricing model that determines an option's price, given the price 

of an underlying stock. The CAPM and succeeding factor models, on the other hand, are 

paradigms of the absolute pricing approach.  

Factor pricing models aim to explain risk premia that can be observed in the market. The 

models can be explained by deriving insights from the consumption-based model, which 

asserts that investors have an increasing marginal utility with consumption, but at a 

decreasing rate2. Consequently, rational investors have a higher marginal utility of 

consumption in bad times than in good times. To maximize their utility, investors are 

drawn towards stocks that perform well in bad times, i.e., low beta stocks, increasing the 

price and lowering returns. Conversely, the price for stocks that have low returns in bad 

times, i.e., high beta stocks, will fall and yield higher returns. Since marginal utility is high 

when consumption is low, one expects that assets that covary with the market have lower 

prices and thereby a higher market risk premium. 

The intuition behind factor models, and how they can predict stock market returns, can be 

explained by the investors’ utility function and the basic pricing equation. To figure out 

the value of any stream of cash flows, one must determine what the cash flow is worth to a 

typical investor. Investors' utility function is defined over current and future values of 

                                                        
2The following section is taken from Cochrane (2009), chapter 1 - Consumption-based model and overview. 

(1) 
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consumption. At each point in time, an investor faces a trade-off between immediate 

consumption and investing for future consumption: 

𝑈(𝑐#, 𝑐#+1) = 𝑢(𝑐#) + 𝛽𝐸#[𝑢(𝑐#+1)]    

Where 𝑈 denotes the utility to the investor, 𝑐# and 𝑐#+1 is consumption at time 𝑡 and 𝑡 +

1, respectively. The utility function is concave and captures the fundamental desire for 

consumption and the fact that consumption in 𝑡 + 1 is uncertain. The beta is a subjective 

discount factor that captures investors’ impatience. Since investors face a trade-off 

between consumption and investment, investors will choose the optimal level of 

consumption and investment by maximizing Equation 1, subject to the budget constraint 

that increased consumption today reduces consumption tomorrow, and vice versa. 

Maximizing the utility function in Equation 1, subject to the budget constraint, yields the 

first-order condition for optimal consumption and portfolio choice: 

𝑝# = 𝐸# [𝛽
𝑢′(𝑐#+1)
𝑢′(ct)

𝑥#+1] 

Equation 2 is the basic pricing equation. Given the payoff, 𝑥# + 1 and the investor’s 

optimal consumption choice, 𝑐#, 𝑐# + 1, it gives you the expected market price, 𝑝#.  

Equation 2 is often broken up to define the stochastic discount factor, 𝑚# + 1:  

𝑚#+1 ≡ 𝛽
𝑢′(𝑐#+1)
𝑢′(𝑐#)

 

The stochastic discount factor is the stochastic variable that satisfies the basic pricing 

equation. Thus, according to the consumption-based model, there is one single stochastic 

discount factor that prices all assets. Accordingly, this satisfies the law of one price and 

implies a market free of arbitrage.  

Substituting the stochastic discount factor into Equation 3, we get that a security’s price 

can be expressed as the expected payoff from the given security, discounted with some 

discount factor, accounting for the rate at which the investor is willing to substitute 

consumption at time 𝑡 + 1 for consumption at time 𝑡:  

(3) 

) 

(2) 

) 

(1) 

) 
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𝑝# = 𝐸#(𝑚#+1𝑥#+1) 

Recognizing that the gross rate of return on a risky asset is defined as: 

1 + 𝑅#+1 ≡
𝑥#+1

𝑝#
 

The price function can be divided by 𝑝#, to obtain the Euler equation: 

1 = 𝐸#(𝑚#+1𝑅#+1) 

The Euler equation clearly shows that the returns of risky assets and consumption 

(through the ratio of marginal utilities) are related. Since both the stochastic discount 

factor and the gross rate of return are stochastic variables, the Euler equation can be 

rewritten3 4: 

1 + 𝐸#(𝑚#+1)𝐸#(𝑅#+1) + 𝐶𝑜𝑣(𝑚#+1,𝑅#+1) 

By considering a risk-free asset instead of a risky asset, Equation 7 can be rewritten. Since 

the risk-free asset offers certain returns, i.e., returns that are uncorrelated with 

consumption, the covariance between the return of the stochastic discount factor and the 

return of a risk-free asset will be zero. Hence: 

1 = 𝐸#(𝑚#+1)𝐸#(𝑅5,#+1) 

1 + 𝑅5,#+1 = 1
𝐸#(𝑚#+1)

 

By using the expression for the gross rate of return on a risk-free asset in Equation 7, and 

a simplified notation for a clear distinction between the risky and the risk-free asset, we 

get that: 

𝐸(𝑅7) − 𝑅5 = −𝑅5𝐶𝑜𝑣(𝑚, 𝑅7) 

𝐸(𝑅7) − 𝑅5 = − 1
𝐸(𝑚) 𝐶𝑜𝑣(𝑚, 𝑅7) 

                                                        
3 See Appendix 1 for details.  
4 The following section is taken from Cochrane (2009), chapter 6 – Relation between discount factors, betas, 
and mean-variance frontiers. 

(4) 

) 

(5) 

) 

(6) 

) 

(7) 

) 

(9) 

) 

(10) 

) (11) 

) 

(8) 

) 
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𝑅(𝑅7) − 𝑅5 = −
𝐶𝑜𝑣[𝑢′(𝑐#+1), 𝑅7,#+1]

𝐸[𝑢′(𝑐#+1)]
 

Equation 12 illustrates that the expected excess returns of assets will differ only because 

the covariance between of their respective returns with the marginal utility of consumption 

differs (Wälti, 2007). An asset whose return has a negative covariance with the marginal 

utility of consumption, and hence, a positive covariance with consumption, due to 

diminishing marginal utility, must necessarily offer higher expected returns for investors to 

be willing to hold this asset. 

2.2 LINEAR FACTOR MODELS 
In the consumption-based model, the stochastic discount factor is tied to the investors’ 

marginal utility associated with changes in consumption. However, these models have 

proved not to work well in practice, and the stochastic discount factor has been tied to 

other types of data.5 Linear factor models replace the consumption-based expression for 

marginal utility growth with a linear model and can be derived from Equation 6. Solving 

for the expected return, multiplying and dividing by 𝑣𝑎𝑟(𝑚) and defining 𝛼 ≡ 1
=>(?), one 

derives the expected return-beta representation:  

 

𝐸(𝑅7) = 1
𝐸(𝑚) − 𝐶𝑜𝑣(𝑚, 𝑅7)

𝐸(𝑚)  

 

𝐸(𝑅7) = 𝛼 + (𝐶𝑜𝑣(𝑚, 𝑅7)
𝑣𝑎𝑟(𝑚) ) (− 𝑣𝑎𝑟(𝑚)

𝐸(𝑚) ) 

 

𝐸(𝑅7) = 𝛼 + 𝛽7,?𝜆? 

As seen from Equation 15, factor models replace the consumption-based expression for 

marginal utility with a linear model. Here, 𝛽7,? is to be interpreted as the quantity of risk 

                                                        
5 The following section is taken from Cochrane (2009), chapter 9 – Factor pricing models 

(12) 

) 

(13) 

) 

(14) 

) 

(15) 

) 
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in each asset, and 𝜆? is the risk premium. Alternatively, one may operate with a multiple-

beta model, in which the betas are multiple regression coefficients:  

𝑚#+1 = 𝛼 + 𝛽′𝑓#+1 

Were 𝑓#+1 represent multiple factors. For the models to be effective, the factors must be 

good proxies for aggregating marginal utility growth, so that: 

𝛽
𝑢′(𝑐#+1)
𝑢′(𝑐#)

≈ 𝛼 + 𝛽′𝑓#+1 

For the factor models to aggregate marginal utility growth with investors, satisfying the 

expression above, the factors must represent certain states in the economy in which 

investors are willing to trade off average return in their portfolios to perform well in "bad 

states" of the economy. Positive expected returns are associated with positive correlation 

with consumption growth, and hence a negative correlation with marginal utility growth, 

due to diminishing marginal utility of consumption. Thus, we expect 𝜆 > 0, from Equation 

15. Although factors such as market returns, size or ratio of market-to-book value of 

equity do not measure states of the economy directly, they are factors that, according to 

the consumption-based model, aggregate the marginal utility growth of investors. Hence, 

as illustrated, all factor models are derived as specializations of the consumption-based 

model.  

Factor models and the identification of appropriate factors that explain the cross-section of 

returns have received significant attention from financial researchers, and consequently, 

been subject to considerable debate. The following section will provide a broad overview of 

the development of factor models, as well as the theoretical underpinnings and empirical 

findings of the models leading to the development of the four-factor model.  

2.3 DEVELOPMENT OF FACTOR MODELS 
Drawing on the central insights from Markowitz (1952), who asserts that investors are 

inherently risk-averse and will maximize their expected return for a given level of risk, the 

capital asset pricing model (CAPM), developed by Treynor (1961, 1962), Sharpe (1964) 

and Lintner (1965a), became the fundamental framework for explaining returns across 

(16) 

) 

(17) 

) 
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assets. Founded on a set of relatively restricting assumptions regarding market efficiency 

and investor rationality, the model attempts to explain stock market returns as a function 

of individual stocks' systematic risk. In early empirical tests of the CAPM, Lintner (1965b) 

and Douglas (1968) indeed confirmed a strong positive relationship between the cross-

section of average asset returns and market beta. However, imprecise measurements of 

market betas and inference problems related to the regression residuals, lead to improved 

testing methodologies proposed by Jensen, Black, and Scholes (1972) and Fama and 

MacBeth (1973). Also, subsequent empirical testing of Sharpe-Lintner version of the 

CAPM found the positive relationship between beta and average returns to be "too flat" 

(Fama & French, 2004). 

Starting in the late 1970s, the revised version of the CAPM was criticized by researchers, 

challenging the fundamental premise that much of the variation in expected return is only 

attributable to market beta. Basu (1977) showed that when stocks sorted on earnings-price 

ratios, future returns on high E/P-ratios are higher than predicted by the CAPM. 

Subsequent studies found that fundamental variables, such as size (Banz, 1981), debt-

equity ratios (Bhandari, 1988), and book-to-market equity ratios (Stattman, 1980; 

Rosenberg, Reid & Lanstein, 1985) explain significant variation in average returns not 

captured by their market betas. Furthermore, Jegadeesh and Titman (1993) challenge the 

efficient market hypothesis in their evidence that stocks with high short-term previous 

returns tend to have higher future returns, and vice versa, as naïve investors extrapolate 

past trends into the future.  

The synthesis of the evidence on the empirical problems of the CAPM culminates in the 

three-factor model, proposed by Fama and French (1992). In addition to the market factor 

used in the original CAPM, a size and a value factor are used to explain the cross-section 

of stock market returns. The rationale behind the model extension is that the two factors 

reflect unidentified variables that produce undiversifiable risks that are not captured by 

the market return (Fama & French, 2004). Empirical testing of the model by Fama and 

French (1993, 1996) find that the model captures much of the variation in average return 

for portfolios formed on size, book-to-market value of equity and other price ratios that 

cause problems for the CAPM (Fama & French, 2004). As such, the three-factor model is 
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widely recognized and is used in empirical research that requires a model of expected 

returns.  

Whereas the size and value factors are argued to reflect unknown systematic risks, the 

momentum effect of Jegadeesh and Titman (1993) was left unexplained and unaccounted 

for. As a response to this, Carhart (1997) proposed a four-factor model, which includes a 

momentum factor. The four-factor model noticeably reduced the average pricing errors 

relative to both the CAPM and the three-factor model. Although the four-factor model 

was proposed as an improved methodology for assessing mutual fund performance, the 

model has been used extensively to explain the cross-section of average returns on local 

stock markets and globally (Chui, Wei, & Titman, 2000; Fama & French, 2008). The 

following sections will provide a detailed review of relevant literature. 

2.3.1 PORTFOLIO SELECTION THEORY 

The CAPM and subsequent factor models build on the model of portfolio choice developed 

by Harry Markowitz (1952). Although its concepts have been criticized for capturing the 

reality only poorly, no other model for optimal portfolio choice has been widely accepted 

(Krause, 2001). Fundamental to Markowitz's portfolio theory is the mean-variance 

criterion, asserting that optimal portfolio selection depends only on two moments of the 

distribution of outcomes, namely, the mean (expected return) and variance (risk). The 

mean-variance criterion is defined as: 

𝑎7 ≽ 𝑎F ⟷
⎩{
⎨
{⎧𝑉𝑎𝑟[𝑎7] < 𝑉𝑎𝑟[𝑎F]    𝑎𝑛𝑑    𝐸(𝑎7) ≥ 𝐸(𝑎F]

  𝑜𝑟
𝑉𝑎𝑟[𝑎7] ≤ 𝑉𝑎𝑟[𝑎F]    𝑎𝑛𝑑     𝐸[𝑎7] > 𝐸[𝑎F]

 

Comparing two portfolios, 𝑎7 and 𝑎F, a necessary condition is that one would prefer 

portfolio 𝑎7 over 𝑎F when its variance is lower, and its expected return is equal or higher. 

The other necessary condition is that one would prefer portfolio 𝑎7 over 𝑎F is when its 

variance is equal or lower, and its expected return is higher. Hence, the model assumes 

investors are risk-averse, and, when choosing among portfolios, they care only about the 

mean and variance of their one-period investment return. As a result, investors choose 

"mean-variance-efficient" portfolios, so that the portfolios minimize the variance of 
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portfolio return, given the expected return, and maximize expected return, given the 

variance (Fama & French, 2004).  

To see how optimal portfolio selection is determined from a portfolio's expected return and 

variance, consider a portfolio with 𝑁 different assets where 𝑅7 is the return on the 𝑖#ℎ 

asset. Let 𝜇7 and 𝜎7 be the mean and variance, and let 𝜎7,F (=𝜌7,F𝜎7𝜎F) be the covariance 

between 𝑅7 and 𝑅F. Suppose that the relative value of the portfolio invested in asset 𝑖 is 

𝑥7. If 𝑅 is the return on the portfolio as a whole, then: 

𝜇 = 𝐸[𝑅] = ∑ 𝑥7𝜇7

Z

7=1
 

𝜎2 = 𝑉𝑎𝑟[𝑅] = ∑ 𝑥2𝜎7 
2 = ∑ ∑ 𝑥7𝑥F

Z

7=1

Z

7=1

Z

7=1
𝜎7F 

∑ 𝑥7 = 1
Z

7=1
 

𝑥7 ≥ 0, 𝑖 = 1,2 … , 𝑛 

A critical observation is that as the portfolio variance from Equation 20, unlike the 

expected return of the portfolio from Equation 19, is not a weighted average of the 

individual asset values. Furthermore, it is assumed that the relative value of the portfolio 

invested in asset 𝑥7 is larger than zero for all assets, implying no shorting of assets. Given 

the expected return and variance of asset 𝑖 and 𝑗, respectively, investors are now faced 

with an opportunity set of risky assets, depending on the relative portfolio weights (Bodie, 

Kane, & Marcus, 2014, p. 217). Subject to the mean-variance criterion, however, investors 

will only hold the mean-variance-efficient portfolio corresponding to his or her level of risk 

tolerance6 

Other than the mean-variance criterion for optimal portfolio selection, Markowitz (1952) 

also demonstrated the importance of diversification. By combining assets that have a non-

perfect correlation, one may achieve higher risk-adjusted returns. This can be seen from 

                                                        
6 See Appendix 2 for a graphical representation.  
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Equation 20, where a lover covariance between assets, ceteris paribus, result in a lower 

portfolio variance. In the extreme case where the returns of two assets are perfectly 

uncorrelated, the portfolio variance is simply the weighted average of the assets’ variance. 

To formally illustrate the diversification benefits, consider the naïve strategy in which an 

equally weighted portfolio is constructed, such that 𝑤7 = 1/𝑛 for each security. From 

Equation 20 we get that: 

𝜎2 = 1
𝑛 ∑ 1

𝑛 𝜎7
2 + ∑ ∑ 1

𝑛2 𝐶𝑜𝑣(𝑥7, 𝑥F)
Z

7=1

Z

F=1

Z

7=Z
 

Defining the average variance and average covariance as: 

�̅̅̅̅�2 = 1
𝑛 ∑ 𝜎7

2
Z

7=1
 

𝐶𝑜𝑣̅̅ ̅̅ ̅̅̅ ̅̅ ̅ = 1
𝑛(𝑛 − 1)∑ ∑ 𝐶𝑜𝑣(𝑟7, 𝑟F)

Z

7=1

Z

F=1
 

The portfolio variance can be expressed as: 

𝜎a
2 = 1

𝑛
�̅̅̅̅�2 + 𝑛 − 1

𝑛
𝐶𝑜𝑣̅̅̅ ̅̅ ̅̅̅ ̅̅ 

As seen from Equation 26, when the average covariance between assets returns is zero, 

portfolio variance can be driven to zero as 𝑛 increases. More realistically, when assets have 

a positive correlation, diversification reduces portfolio variance, although not completely 

due to the systematic risk. In the case of perfect correlation, there will be no diversification 

effect whatsoever, as all risk in the portfolio will be systematic (Bodie, Kane, & Marcus, 

2014, p. 227).   

2.3.2 SINGLE-FACTOR MODEL - CAPM 

2.3.2.1 THEORETICAL FOUNDATION 

The CAPM builds on the model of portfolio choice by Markowitz (1952), as Sharpe (1964) 

and Lintner (1965a) adds two highly restrictive, but key assumptions to the original 

(23) 

) 

(25) 

) 

(24) 
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(26) 
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model7. (1) Given the market prices, 𝑃7,#−1 , investors agree on the joint distribution of 

asset returns from 𝑡 − 1 to 𝑡. (2) There are unrestricted borrowing and lending at the risk-

free rate (Fama & French, 2004). According to the model of portfolio choice, all portfolios 

on the mean-variance efficient frontier are efficient, as they maximize expected return for a 

given level of risk. However, with the possibility of risk-free borrowing and lending, all 

mean-variance-efficient portfolios are combinations of the optimal risky portfolio and the 

risk-free rate. The optimal risky portfolio, commonly referred to as the tangency portfolio, 

is defined as the portfolio that maximizes the excess expected return per unit of risk, 

known as the Sharpe ratio. By holding various combinations of the tangency portfolio and 

the risk-free rate, investors can lever and de-lever their portfolios depending on their risk 

appetite, holding the Sharpe-ratio constant.  

With complete agreement about the distributions of returns, all investors necessarily 

combine the same risky portfolio with the risk-free rate. In short, the CAPM assumptions 

imply that the market portfolio, 𝑀 , must be the portfolio where the efficient frontier 

tangents the minimum variance frontier, if the market is to clear8. Hence, the optimal 

portfolio must be the value-weighted market portfolio of risky assets.  

The Sharpe-Lintner version of the CAPM turns the algebraic statement on asset weights 

in mean-variance-efficient portfolios, into a testable prediction about the relationship 

between risk and expected return (Fama & French, 2004). Specifically, the Sharpe-Lintner 

CAPM asserts that: 

𝐸(𝑅7) = 𝑟5 + 𝛽7[𝐸(𝑟? − 𝑟5)] 

Where 𝐸[𝑟7] is the expected return on the 𝑖!" asset, 𝑟5 is the risk-free rate of return, 𝐸[𝑟?] 

is the expected return of the market portfolio, and 𝛽7 identifies the exposure of a given 

security to the market. 𝛽# is defined as: 

𝛽7 = 𝐶𝑜𝑣(𝑅7, 𝑅?)
𝜎?

2  

                                                        
7 See Appendix 3 for assumptions of the CAPM 
8 See Appendix 4 for a graphical representation.  
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The CAPM asserts that the expected return of a given asset is equal to risk-free rate, plus 

a risk market premium. The risk premium is the asset's market beta times the premium 

per unit of beta risk. Hence, with reference to the consumption-based model and Equation 

17, assets’ sensitivity to the changes in the excess return of the market portfolio represents 

a state where investors are willing to give up expected return for increased marginal utility 

of consumption.  

2.3.2.2  DEVELOPMENTS IN METHODOLOGY AND EMPIRICAL RESULTS 

The early cross-sectional regression tests focus on the Sharpe-Lintner model's predictions 

about the intercept and slope in the relation between expected return and market beta. 

The first methodologically satisfactory testing of the CAPM was proposed by Jensen, 

Black, and Scholes (1972). Tests before this involved regressing the cross-section of returns 

on estimates of individual asset betas. However, it quickly became apparent that beta 

estimates for individual securities are imprecise, creating measurement errors when they 

are used to explain average returns. Blume (1970), Friend and Blume (1970), and Jensen, 

Black and Scholes (1972) recognized the benefits of working with diversified portfolios, 

rather than individual securities, to reduce the measurement error. The methodology is 

based on a two-stage model starting with a time-series regression: 

𝑅7,# − 𝑟5 = 𝛼7 + 𝛽7(𝑅? − 𝑟5) + 𝜖7,# 

In a first pass, Equation 29 is run as a time-series of each stock's monthly excess returns 

against the excess market return in the same month. Jensen, Black, and Scholes (1972) 

formed ten decile portfolios from the lowest beta to the highest beta stocks. Necessarily, if 

the CAPM explains individual asset returns, it also explains portfolio returns. Since the 

CAPM asserts that the market risk premium fully explains assets' excess returns, a well-

specified model implies an intercept (𝑎7) indistinguishable from zero, as well as 𝐸(𝜖7) = 0 

and 𝐶𝑜𝑣(𝜖7, 𝑅?) = 0. 

The second pass regression was run as a single cross-section of the excess portfolio returns 

on the portfolio estimates from Equation 29. Hence: 

(𝑅a − 𝑟5) = 𝛾0 + 𝛾1𝛽i + 𝜖a (30) 

) 

(29) 
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The model predicts that the intercept in these regressions is the risk-free rate, and the 

coefficient on beta is the expected return on the market in excess of the risk-free rate. 

Thus, if Equation 29 is well-specified, the intercept 𝛾0 should be statistically 

indistinguishable from zero, and the coefficient 𝛾0 on 𝛽j 's should identify the excess 

market return, (𝑅? − 𝑟5).  

Interestingly, Jensen, Black, and Scholes (1972), along with Douglas (1968), Miller and 

Scholes (1972), Blume and Friend (1973) and Fama and MacBeth (1973), consistently 

found negative intercepts for the high-beta portfolios, and positive intercepts for the low-

beta portfolios in the time-series regressions. In the cross-sectional regressions, the 

intercept was found to be positive, and the slope too low relative the CAPM's predictions. 

Both pass regressions thus contradicted the CAPM. The lack of empirical evidence for the 

CAPM has significant implications; if the market does not appropriately reward systematic 

market risk, markets cannot be held rational. Given the validity of the results, no investor 

would invest in high-beta stocks, but rather invest it in the lowest beta stocks and lever 

the portfolio using the risk-free rate to achieve a similar market exposure (Black, 1993). In 

recent years, the contradicting relationship between beta and expected return has been 

dubbed the "beta anomaly". 

As an attempt to explain the beta anomaly, Black (1972) develops an alternative version 

of the Sharpe-Lintner CAPM. He argues that the assumption of unrestricted borrowing 

and lending is unrealistic, and shows that the market portfolio is mean-variance efficient 

when one assumes unrestricted short sales of risky assets. Under the new assumption, 

investors can short assets to obtain a zero-beta portfolio, i.e., a portfolio that is unaffected 

by market portfolio, similarly as with the risk-free rate, but with a higher return. 

Formally, the CAPM can be rewritten: 

𝐸(𝑅7) = 𝐸(𝑅k) + 𝛽7[𝐸(𝑅?) − 𝐸(𝑅k)] 

Where 𝑅k is postulated as representing the return on a portfolio that has zero covariance 

with the return on the market portfolio. Black’s version of the CAPM potentially solves 

the issues in the early cross-sectional tests, since 𝑅k > 𝑟5  would adjust the intercepts and 

explain the lower slopes of the cross-sectional regressions (Dempsey, 2013). Following the 

(31) 
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cross-sectional methodology of Black, Jensen, and Scholes, the first pass time-series 

regression equation can be rewritten to express the excess return: 

𝑅7,# = 𝑅k + 𝛽7(𝑅? − 𝑅k) + 𝜖7 

𝑅7 − 𝑟5 = (𝑅k − 𝑟5)(1 − 𝛽7) + 𝛽F(𝑅? − 𝑟5) + 𝜖7 

As seen from Equation 33, the first pass regression prediction of 𝑎j  is now consistent with 

a higher intercept for high-beta assets and vice versa for low-beta assets. Additionally, the 

second pass cross-section regression now predicts: 

𝛾0 = (𝑅k − 𝑟5) and 𝛾1 = 𝑅? − 𝑅k 

which is consistent with a positive intercept and a slope that understates the excess 

market return. As a result, early empirical testing provided a consensus that Black's 

version of the CAPM gave a good description of expected returns (Fama & French, 2004). 

In their highly influential article, Fama and MacBeth (1973) provided a methodological 

framework that built on the two pass methodology of Black, Jensen, and Scholes (1972). 

Instead of performing a single time-series regression on each asset before sorting into 

portfolios, they estimate month-by-month regressions of monthly returns on betas, often 

referred to as "rolling regressions". Researchers had observed common sources of variation 

in the regression residuals, i.e., common sources of unsystematic risk, such as industry 

effects. The Fama and MacBeth methodology addresses the inference problem, as the 

residual correlations are captured via repeated sampling of the regression coefficients 

(Fama & French, 2004). A detailed description of the Fama and MacBeth (1973) 

methodology can be found in Section 5 – Methodology.  

2.3.2.3 EMPIRICAL TESTING OF THE CAPM ON THE OSLO STOCK EXCHANGE 

To our knowledge, few comprehensive studies have conducted empirical testing of the 

CAPM on OSE. Næs, Skjeltorp, and Ødegaard (2007) and Ødegaard (2016a) have 

performed extensive empirical testing of single- and multifactor models on the OSE. Using 

data from 1980 – 2006, Næs, Skjeltorp, and Ødegaard (2007) estimate the CAPM on beta-

sorted portfolios, as well as portfolios sorted on anomalies variables, such as market 

(32) 

) (33) 

) 

(34) 

) 



 
 

 24 

capitalization, relative spread, the book-to-market value of equity, and momentum 

following the methodology of Fama and MacBeth (1973). The results from the first pass 

time-series regressions show some consistency with prior empirical tests, mentioned in 

subsection 2.3.2.2, as the intercepts are negative for the high-beta portfolios and positive 

for the low-beta portfolios. However, neither of the intercepts except one are 

distinguishable from zero. The second pass cross-sectional regressions indicate a significant 

risk premium for the beta portfolios with an insignificant intercept, concluding that the 

CAPM is a relatively well-specified model explaining the excess returns of beta sorted 

portfolios. However, the model does not perform well on portfolios sorted on market 

capitalization, liquidity, or market-to-book equity. 

Ødegaard (2016a) uses a similar methodology as Næs, Skjeltorp, and Ødegaard (2007), but 

with an updated dataset from 1980-2016. The second pass cross-sectional regressions on 

beta-sorted portfolios show an insignificant alpha term, but also an insignificant coefficient 

on the risk premium at the 5% level. 

A recent Master’s thesis (Korneliussen & Rasmussen, 2014) use the similar methodology, 

but monthly data from 1991-2010, and finds significant risk premia on portfolios sorted on 

beta, the book-to-market value of equity, and momentum. However, the intercepts for all 

portfolios are highly significant. Hence, the thesis concludes that the CAPM is an 

inadequate model for the Norwegian stock market.   

2.3.2.4 CRITIQUE OF THE CAPM 

Despite the fact that Black's version of the CAPM performed well in explaining excess 

average returns on beta-sorted portfolios, the CAPM rests on unrealistic assumptions. 

First, the assumption that all investors have homogeneous expectations in regards to 

expected returns and variances is untrue. Second, unrestricted borrowing and lending at 

the same risk-free rate in the Sharpe-Lintner version of the CAPM is a simplification of 

reality. Unrestricted shorting of risky assets in Sharpe's version is not less of a 

simplification. Perhaps the most famous critique of the CAPM was promoted in Roll's 

(1977) influential article, where he argues that any proxy of the market portfolio is 

inadequate, as the true market portfolio would include every asset in every market, 

including commodities, collectibles, and human capital. 
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Many economic models are founded on simplistic, and even unrealistic assumptions. Thus, 

it was not until researchers started regressing certain factors against portfolios sorted firm 

characteristics that it became evident that much of the variation in expected stock returns 

was unrelated to market beta (Fama & French, 2004). Basu (1977) was the first to show 

that when portfolios are sorted on earnings-price ratios, as opposed to market beta, future 

returns on higher E/P stocks are higher than predicted with CAPM. Banz (1981) sorts 

portfolios on market capitalization and find that average returns on small stocks are higher 

than predicted by CAPM. Statman (1980) and Rosenberg, Reid, and Lanstein (1985) 

proves that stocks with high book-to-market equity ratios have high average returns that 

are not captured by their betas. Bhandari (1988) finds that portfolios sorted on debt-

equity ratios are associated with returns higher returns than explained by CAPM. These 

CAPM anomalies (referred simply to as anomalies henceforth) led to a general 

acknowledgment among researchers and practitioners that the CAPM was empirically 

flawed. The failure of the CAPM led to a consensus that there are factors other than the 

market factor that drives average asset returns. 

2.3.3 MULTI-FACTOR MODELS - ARBITRAGE PRICING THEORY 

In an attempt to provide a model that describes asset's expected returns as a function of 

factors other than the market factor, Ross (1976) developed the Arbitrage Pricing Model 

(APT). The APT is an equilibrium model relying on the law of one price and no arbitrage, 

and is based on the idea that an assets' return can be predicted from the several common 

risk factors (Szylar, 2013). The CAPM postulates that all investors will hold the market 

portfolio due to the relationship between risk and return. APT, on the other hand, 

postulates that asset prices, and therefore also asset returns, are set by market participants 

immediately responding to arbitrage opportunities. The APT asserts that an asset’s excess 

returns can be described as: 

𝑅7 = 𝐸(𝑅7) + ∑ 𝛽7,l𝐹l + 𝜖7 

Where 𝐸(𝑅7) is the expected excess return, 𝐹7 are factors, 𝛽7,𝑘 is the factor loading or 

measure of the sensitivity of the 𝑖!" asset to factor 𝑘, and 𝜖7 represents the residuals, i.e., 

the unsystematic risk. As seen from Equation 35, the realized excess return of an asset is 
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its expected excess return, plus the sensitivity to some unanticipated factors. Unlike the 

CAPM, the APT does not specify which factors that affect the assets' returns and gives no 

guidance where to look for such factors. However, the influence of a factor cannot be 

diversifiable, and hence, they must be systematic risk factors that affect a large number of 

assets (Szylar, 2013).  

2.3.4 FAMA-FRENCH THREE-FACTOR MODEL 

In 1992, Fama and French (1992) realized the necessity of retaining a risk-based model for 

asset pricing. In the absence of such a model, the market could not be deemed rational. 

Fama and French (1992) argue that many of the observed anomalies in reference to 

CAPM are systematic risk factors that could be captured in a three-factor model, based on 

the APT-framework of Ross (1973). Specifically, the model asserts that the return on a 

portfolio in excess of the risk-free rate is explained by the sensitivity of its returns to three 

factors: (a) the excess return on a broad market portfolio; (b) the difference between the 

return on a portfolio of small firm stocks and the return on a portfolio of large firm stocks, 

denoted as the SMB (small minus big) factor, and (c) the difference between the return on 

a portfolio of high-book to-market stocks and the return on a portfolio of low-book-to-

market stocks, denoted as the HML (high minus low) factor. Thus: 

𝐸(𝑅7) − 𝑟5 = 𝑏7[𝐸(𝑅?) − 𝑟5] + 𝑠7𝐸(𝑅qrs) + ℎ7(𝑅urv) 

Where 𝐸(𝑅?) − 𝑟5 , 𝐸(𝑅qrs) and 𝐸(𝑅urv) are the expected risk premia, and the factor 

loadings, 𝑏7, 𝑠7 and ℎ7, are the slopes of the times-series regression: 

𝑅7 − 𝑟5 = 𝛼7 + 𝑏7(𝑅? − 𝑟5) + 𝑠7𝑅qrs + ℎ7𝑅urv + 𝜖7 

In their study, Fama & French (1993) perform time-series regressions on 25 double-sorted 

portfolios depending on the assets' size and book-to-market ratios. To illustrate the 

model's performance improvement, they first perform the CAPM regression from Equation 

29 and find that the market factor explains (as measured by the 𝑅2-statistic) between 0.61 

and 0.92 percent of the portfolios’ excess returns. After including the SMB and the HML 

factor, using Equation 37, they find that the factors combined explain between 0.83 and 

0.97 percent of the variation in the portfolios’ excess returns. Furthermore, the intercepts 
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of the three-factor model are comparatively lower, most being insignificant. Similar results 

are reproduced in Fama and French (1996) and Fama and French (1998), where the latter 

investigate international markets to exclude the possibility of sampling error and to prove 

generalization. Interestingly, however, Fama and French (1992) find that the beta anomaly 

is present in the multi-factor context as well. In fact, they find that the relationship 

between beta and expected return is even flatter after controlling for size and book-to-

market characteristics. In spite of this, the empirical success of the three-factor model has 

led to the model being widely used in empirical research that requires a model of expected 

returns and is generally preferred over CAPM (Fama & French, 2004). 

Regardless of its ability to explain stock returns, the empirical motivation of the three-

factor model is not all clear. As opposed to the market factor, the SMB and HML factors 

are not motivated by predictions of about state variables of concern to investors. Fama 

and French (1993) are convinced the SMB and HML are proxies for yet unknown more-

fundamental variables but fail to identify what those are. They do, however, point out 

that firms with high book-to-market equity ratio are more likely to be in financial distress, 

and small stocks may be more sensitive to changes in business conditions (Bodie, Kane, & 

Marcus, 2014). From a theoretical perspective, the uncertainty in regards to the 

fundamental source of systematic risk is the main shortcoming of the three-factor model 

(Fama and French, 2004).  

The inability to identify the source of the systematic risk implies that one cannot rule out 

the possibility that the factors merely capture irrational market behavior. This is the view 

of the behavioralists, who argue that sorting firms on book-to-market ratios exposes 

investor overreaction to good and bad times. Proponents of this view are De Bondt and 

Thaler (1985), who find evidence supporting what Basu (1977) refers to as the "price-ratio" 

hypothesis: that stocks with a low P/E earn larger risk-adjusted returns than high P/E 

stocks, with the explanation that that firms with very low P/E are thought to be 

temporarily undervalued by the market, and subsequently yield higher returns. 

Lakonishok, Shleifer, and Vishny (1994) extend this notion, and find it likely that the 

higher risk-adjusted returns associated high-BM stocks compared to low-BM stocks, is a 

result of investors consistently overestimating the future growth rate of low-BM stocks, 
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referred to "glamour stocks", relative to high-BM stocks, referred to as "value-stocks" 

(Lakonishok, Shleifer, & Vishny, 1994). Whether value strategies have produced higher 

returns because they are relatively underpriced or because value stocks underperform in 

bad states of the world when the marginal utility of consumption is high (i.e., stocks with 

higher systematic risk), is difficult to test. When empirical tests reject the CAPM or the 

three-factor model, one cannot say whether the problem is the assumption that prices are 

rational, as expressed by the behavioralists, or if the assumptions of the models are 

violated (Fama & French, 2004). 

Given the publicity of the BM anomaly, one would expect the higher risk-adjusted returns 

to be "arbitraged away", if it does not represent a systematic risk. However, Shleifer and 

Vishny (1997) show that the volatility of a long-short portfolio based on BM can be high 

enough to deter arbitrage activity. To maximize trading profits, the investor must trade 

the most volatile stocks because the BM anomaly is largest for stocks with the highest 

idiosyncratic volatility. Furthermore, the BM anomaly only offer stable and higher risk-

adjusted returns over a holding period of three to five years. Due to the high idiosyncratic 

volatility and the long holding periods required to earn arbitrage returns, Shleifer and 

Vishny (1997) argue that the BM anomaly will not fully be arbitraged away. 

2.3.5 CARHART FOUR-FACTOR MODEL 

Based on the abovementioned arguments, proponents of risk-based asset pricing models 

have been able to justify the rational market expectation. However, they have trouble 

explaining the "momentum effect". In their influential article, Jegadeesh and Titman 

(1993) provide evidence that simple strategies where stocks are ranked based on their past 

3-12 months cumulative return, predict relative performance over the next 3-12 months. 

That is, recent winners will continue to be winners over the next 3-12 months, and recent 

losers will continue to be losers over the next 3-12 months. They find that the most 

successful strategy selects stocks based on their returns over the previous 12 months, and 

then hold the portfolio for three months. After 12 months, mean reversion becomes strong, 

and the portfolios experience negative abnormal returns (Jegadeesh & Titman, 1993). 

Based on the findings in Jegadeesh and Titman (1993), Carhart (1997) constructs a four-

factor model by extending the Fama – French three-factor model with an additional factor, 
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PR1YR, that captures the momentum effect. Jegadeesh (1990) and Lo and MacKinaly 

(1990) demonstrate how there is a significant one-month reversal in returns. Hence, the 

factor PR1YR is constructed as average return from the stocks with the highest 30 percent 

eleven-month returns lagged one month, minus the equally-weighted average of firms with 

the lowest 30 percent eleven-month returns lagged one month (Carhart, 1997). The four-

factor model can be expressed as: 

𝐸(𝑅7) − 𝑟5 = 𝑏7[𝐸(𝑅?) − 𝑟5] + 𝑠7𝐸(𝑅qrs) + ℎ7𝐸(𝐻𝑀𝐿) + 𝑝7𝐸(𝑃𝑅1𝑌𝑅) 

Where PR1YR is the difference in the average return of past winners and losers, and the 

other factors and factor loadings is the same as in Equation 36. The time-series equation is 

therefore: 

𝑅7 − 𝑟5 = 𝛼 + 𝛽7(𝑅? − 𝑟5) + 𝑠7𝑆𝑀𝐵 + ℎ7𝐻𝑀𝐿 + 𝑝7𝑃𝑅1𝑌𝑅 + 𝜖7 

Carhart (1997) tests both the CAPM and his four-factor model on ten portfolios ranked on 

the cumulative one-year returns, lagged one month. He finds that the CAPM does not 

explain the excess return from the portfolios, while the four-factor model accounts for 

almost all of the cross-sectional variation in the expected return (Carhart, 1997). 

The literature on the momentum effect is vast. Lakonishok, Shleifer, Thaler, and Vishny 

(1991) attribute the effect to what they refer to as "window dressing". This is when fund 

managers get rid of underperforming stocks prior presentation of progress reports on their 

portfolios to clients, to avoid defending a stock's presence in the portfolio. Because fund 

managers typically are evaluated against a benchmark index, they may alter their 

portfolios at the end of given period to impress sponsors. Lakonishok, Shleifer, and Vishny 

(1992) argue that this helps to sustain the momentum effect. 

Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1988) and 

Hong and Stein (1999) present behavioral models based on the idea that momentum 

profits arise because of inherent biases in the way that investors interpret information. 

Grundy and Martin (2001) show how the profitability of momentum strategies reflects 

momentum in the idiosyncratic component of returns. George and Hwang (2004) state that 

a significant portion of the momentum effect can be obtained by using the 52-week high 

(39) 

) 

(38) 
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price. Irrespective of the fundamental cause of the momentum effect, it represents a 

substantial threat to the notion of market rationality and efficiency, as the efficient market 

hypothesis asserts that in the weak form of market efficiency, past price movements do not 

affect stock prices (Fama, 1965a, 1995; Samuelson (1965). The extent to which behavioral 

financial theories have become increasingly popular for explaining stock market 

phenomena, as well as the broad adoption of Carhart's four-factor model in explaining 

asset's expected returns, indicate that the market may not be assumed to be entirely 

rational.  

2.3.6 EMPIRICAL RESEARCH EXPLAINING THE BETA ANOMALY 

The beta anomaly, first documented by Jensen, Black, and Scholes (1972), and later 

confirmed in multi-factor models (Reinganum, 1981; Stambaugh, 1982; Lakonishok & 

Shapiro, 1986; Fama & French, 1993, 1996), has been shown renewed interest by 

researchers in recent years. Research by Black (1993), Haugen and Baker (1991; 1996), 

Falkenstein (1994), and more recently, Clarke de Silva and Thorley (2010) and Baker, 

Bradly, and Wurgler (2011) have found evidence of a negative relation between market 

beta and expected return. Using US data from 1968-2012, Baker, Bradly, and Taliaferro 

(2014) find that a $1.00 investment in a low-beta sorted portfolio in 1968 compounds to 

$81.66. The same investment in a high-beta portfolio compounds to only $9.76. 

A growing number of papers have attempted to explain the beta anomaly, and 

explanations have emphasized a combination of behavioral demand and limits to arbitrage, 

including limited borrowing capacity and the delegation of stock selection (Baker, Bradly, 

and Taliaferro, 2014). In a recent influential article, Frazzini and Pedersen (2014) present 

evidence that the lower risk-adjusted returns for high-beta stocks can be explained by the 

fact that investors are constrained in regards to leverage and margin requirements. Instead 

of buying low-beta assets and subsequently levering the portfolio to obtain a higher return, 

constrained investors purchase assets riskier than would be optimal to achieve higher 

returns. They argue that the tilt towards high-beta assets suggests that high-beta assets 

require a lower risk-adjusted return than low-beta assets. By constructing as betting 

against beta (BAB) factor, defined as a portfolio that holds low-beta assets, leveraged to a 
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beta of one, and that shorts high-beta assets, de-levered to a beta of one, they obtain 

abnormal returns.  

Bali, et al. (2017) attribute the beta anomaly to investors' demand for stocks with lottery-

like payoffs, referred to as "lottery stocks". Analogous to actual lotteries, investors may be 

fully aware that stocks with lottery-like characteristics have negative expected payoffs, but 

nonetheless, they may exhibit a preference for lottery stocks, as a remote chance of 

winning can be considered better than no chance of winning at all (Kumar, 2009). Hence, 

the demand for lottery stocks is consistent with the cumulative prospect theory of Tversky 

and Kahneman (1992), asserting that people make decisions based on the potential value 

of losses and gains, rather than the outcome. 

Specifically, the rationale of Bali et al. (2017) is that lottery investors generate demand for 

stocks with high probabilities of large short-term up movements in the stock price. Such 

stocks generally have a higher covariance with the overall market, and hence a relatively 

large market beta. The lottery demand for such stocks puts a disproportionately large 

price pressure on high-beta stocks relative to low-beta stocks, resulting in lower future 

returns. This price pressure generates a positive alpha and a slope less than the market 

risk premium for the SML. Hence, their hypothesis disregard Black's (1972) version of the 

CAPM, as well as Frazzini and Pedersen's (2014) betting against beta theory. 

Bali et al. (2017) proxy the lottery demand with the factor MAX, defined as the average of 

the five highest daily returns of a given stock in a given month. They demonstrate that the 

abnormal returns of the long-short beta portfolio, similar to that of Frazzini and Pedersen 

(2014), are no longer significant when the portfolio is constrained to be neutral to MAX. 

They also use time-series regressions that indicate a positive and significant relation 

between beta and stock returns when MAX is included in a four-factor model. 

Furthermore, they create a factor, FMAX, by first sorting stocks into two portfolios based 

on market capitalization, before independently sorting all stocks in the sample based on 

ascending sort of MAX, generating a total of 6 portfolios. By including the FMAX factor 

in the regressions, they find that the BAB factor no longer generates positive abnormal 

returns, as the returns generated by the BAB is captured by FMAX in the factor model. 
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Interestingly, they observe that the lottery demand is only prominent among private 

investors but not among institutional investors.   

3 CHARACTERISTICS OF THE OSLO STOCK EXCHANGE  
In this section, we give the reader a brief introduction to the Oslo Stock Exchange (OSE) 

by providing some descriptive measures. The empirical results in this thesis are directly 

affected by the characteristics of the stocks listed on OSE, and we therefore believe that 

interpretation of our results requires a contextual understanding. 

3.1 DEVELOPMENT OF THE OSLO STOCK EXCHANGE 

The OSE has grown rapidly during the last decades. Figure 2 shows the market value of 

the Oslo All-Share Index (OSEAX) from 1996 to April 2018. In 1996, the total market 

value of the listed stocks was 275 billion NOK. On April 17th, 2018, the total market 

value is 2.461 billion NOK. The average company market value has risen from 1.96 billion 

NOK in 1996, to 12 billion in 2018. From 2003 to 2007, the market capitalization on the 

OSE increased by a factor of five, reaching a total market capitalization of 2.200 billion 

NOK in July 2007. However, as with other stock markets, the OSE was hit hard during 

the financial crisis. Compared to the late 2007-early 2008 market capitalization, the OSE 

lost more than half of its value in 2008. Despite relatively volatile market conditions in the 

years succeeding the crisis, the OSE has gained significant value in the last decade, and 

the capitalization reached pre-crisis levels late 2017.  
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Figure 2 - Market value of the OESEAX (Oslo All-Share Index) 1996 - 2007

(Oslo Stock Exchange Information Services, 2018) 
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To judge the relative importance of the stock market in the Norwegian economy, Figure 3 

shows the total market value of companies at the OSE as a fraction of annual GDP of 

Norway. Between 1996 and 2003, the market capitalization of the OSEAX relative to the 

GDP was relatively stable at around 40%. However, in the years leading up to the crisis, 

the relative market capitalization of the OSE to GDP rose to approximately 90%. In 2008, 

this number fell to 36%, but has since then increased to 75% in 2017. To provide some 

context, Table 1 shows the same ratio for comparable countries at year-end in 2017. Since 

the Norwegian GDP is heavily affected by revenues from oil-related activities, the  

measure has been calculated without taking this activity into account. As from the Table 

1, the Norwegian stock market relative to GDP is signficantly smaller than for comparable 

countries, even after we adjust for oil-related activities.  
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Figure 3 - Market capitalization of the OSEAX relative to GDP 1996 - 2017   

Table 1 - Comparison of market value-to-GDP 
    
Country Market value-to-GDP 
Norway 74.67 % 
Norway (less oil sector) 87.33 % 
Sweden 144.30 % 
Denmark 126.33 % 
Finland 99.82 % 
US 139.69 % 
UK 109.72 % 
    

(Oslo Stock Exchange Information Services, 2018; SSB, 2018) 

(SSB, 2018; Ceicdata.com, 2017) 
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3.2 COMPANY SIZE AND SECTOR ALLOCATION 

A distinct feature of the OSE is that it has always been dominated by a few, large 

companies. In 1980, Norsk Hydro constituted in excess of 50% of the total market 

capitalization at OSE. However, this percentage gradually declined during the 1990's and 

in the beginning of the new millennium (Ødegaard, 2015). In 2001, the national oil and gas 

company Statoil went public, and became the largest company on OSE measured by 

market capitalization, constituting 23.7% of the total market capitalization. In 2006, 

Statoil, Norsk Hydro, Telenor and DNB were the four largest companies on OSE, and 

constituted an aggregate of 60.8% of the total market capitalization (Ødegaard, 2015). As 

of April 15th 2018, their combined market capitalization has fallen to 48.3%.  

Table 2           Sector allocation on the OSEAX  
        

Sector Relative size Number of companies 
Average market value 

(millions) 
Consumer Discretionary 2.85 % 9 8,277.64 
Consumer Staples 11.77 % 11 27,917.93 
Energy 37.46 % 50 19,550.53 
Equity Certificate 2.59 % 21 3,221.45 
Financials 14.92 % 14 27,803.27 
Health Care 0.34 % 8 1,097.25 
Industrials 6.77 % 34 5,193.15 
Information Technology 2.48 % 25 2,590.18 
Materials 8.41 % 8 27,445.06 
Real Estate 1.76 % 6 7,665.34 
Telecommunications 9.92 % 2 129,425.76 
Utilities 0.73 % 3 6332.31 
        

 

The sector allocation9 on the OSE has changed significantly during the last decades. In 

terms of number of companies, the industrial and financial sector dominated the OSE up 

until 1990 (Ødegaard, 2015). Since then, there has been a significant increase in energy 

companies (50) and information technology companies (25), as seen from Table 2. 

Considering the market capitalization, it can be seen from Figure 4 that the energy sector 

                                                        
9 The sector allocation follows the CIGS standard (Global Industry Classification Standard) developed by 
Morgan Stanley Capital International (MSCI) and Standard & Poor.  

(Oslo Børs, 2018c) 
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is highly represented on the OSE with a weight of 37.5% as of April 30th, 2018. The vast 

majority of these companies are engaged in various parts of the oil and gas value chain. 

The financial sector (the sector excludes local savings banks issuing equity certificates, as 

indicated by Table 2) is the second largest sector in terms of market value, constituting 

almost 15% of the value on OSE. Interestingly, whereas the information technology sector 

is highly represented in terms of numbers of companies, the average market capitalization 

is only 2.5 billion, which is only bigger than real estate, utilities, and healthcare. Note that 

in the telecommunications sector, the average market capitalization is biased by Telenor 

being one of the two companies in the sector. 

FIGURE 4 – SECTORS ON THE OSLO STOCK EXCHANGE MEASURED BY MARKET VALUE 

 

 

3.3 INSTITUTIONAL VS. HOUSEHOLD OWNERSHIP 

There are some characteristics in regards to the ownership structure that distinguishes the 

OSE from other comparable stock exchanges. Notably, as seen from the Figure 5, the 

government and municipal ownership in listed stocks is high at 33.5%. Foreign investors 

currently own 33.2%, which is significant, but is in line with other comparable European 

stock markets (Morrow Sodali, 2014; Deutsche Bundesbank, 2014; "Share capital 

decreased", 2017; Danmarks Nationalbank, 2017). More interestingly, compared to other 

Nordic stock exchanges, Norwegian households' ownership percentage of listed equities is 

 (Oslo Børs, 2018b; Oslo Børs, 2018c) 
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low at 3.84%. As a comparison, Danish and Swedish households' ownership percentage 

were 12% and 11%, respectively in 2017 (Danmarks Nationalbank, 2017; "Share capital 

decreased", 2017). In the US, this number is estimated to be 37%, as of 2016 (Bryan, 

2016).  

                             FIGURE 5 – OWNERSHIP STRUCTURE AT THE OSLO STOCK EXCHANGE 

 

 

4 DATA  
In this section, we give a detailed description of our data sample. We begin by describing 

the data sources used in the data collection and provide an overview of the raw data used 

to construct our sample. Numerous adjustments to the raw data have been made and will 

be described in detail. 

4.1 DATA SOURCE SELECTION 

The prevalence of studies applying multi-factor models has resulted in a large number of 

publicly available datasets across different stock exchanges. For example, Kenneth 

French’s database contains factor-based data for numerous factor models. The return data 

is available for both US, European, Asian and other global stock markets (French, 2018). 

However, the database does not provide raw data, and it is therefore not possible to 

(Oslo Børs, 2018d) 
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extract data on securities listed on OSE. As a result, the data is not applicable to our 

study. 

More relevant to this paper, we find the CCRS-DFB Risk Factor Database (2014), which 

contains factor-based data on OSE from 1987 to 2012. Similarly, Ødegaard (2016b) 

provides extensive data on factors for the OSE from 1980 to 2016. An obvious problem 

regarding these datasets is their timespan, which does not match our period of interest. 

Further, the datasets do not include all the factors relevant to this paper, such as BAB 

and MAX. A possible solution to this problem is to apply the existing factors and 

supplement the dataset with factors constructed from other data sources. However, the 

underlying assumptions for factor construction can vary considerably between different 

datasets, and consequently, the choice of data provider can lead to different model 

outcomes (Brückner, Lehmann, Schmidt, & Stehle, 2015). Furthermore, examining existing 

datasets that have already been used for empirical testing would result in a limited 

contribution to the existing literature. As such, we conclude that it is most beneficial for 

our study to use one single data provider and to construct the factors from raw data. This 

ensures that the same set of assumptions are used for each factor at each time-period. 

4.2 SAMPLE CONSTRUCTION 

Our primary data source is Wharton Research Data Services. We download two datasets 

from the Compustat global database, one containing all available daily observations of 

security data and one containing all available accounting data on OSE. Because our beta 

estimates require 36 lagged values of monthly returns, the security data ranges from 

December 2003 to December 2017. The accounting sample only requires one lagged value 

of annually reported data and starts one year prior to our time-period of interest in 2006. 

An overview of the variables in the datasets can be found in Table 3.  
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Table 3 Overview and description of variables 
used for sample construction 

  

Variable  Content 
Common ID Variables   

datadate Date 
        conm Company name 
        gvkey Global Company Key 
        exchg Stock exchange code 
        fic Incorporation country code 

Security Variables   
        prrcd Daily Close Price 
        iid Issue ID 
        Currcd Currency Code Daily 
        ajexdi Adjustment factor 
        cshoc Shares Outstanding 
        cshtrd Trading Volume Daily 
        sic Standard Industry Classification Code 
        tpci Issue Type Daily 
Accounting variables   

        Currcd Currency code 
        fyear Fiscal Year 
        fyr Fiscal Year-end Month 
        at Total Assets 
        seq Stockholders’ Equity 
        it Total Liabilities 

     txditc Deferred Taxes and Investment Tax 
Credit 

 

After extracting end-of-month observations, the security dataset has 35,509 monthly 

observations on 403 different companies, while the accounting dataset has 3,217 yearly 

observations on 341 different companies. The dataset is free from survivorship-bias, since it 

includes all stocks, both active and inactive, during the period. To make the data usable 

for our analysis, we adjust the datasets by adding filters and calculate new variables from 

the raw data. After the filters are applied, the two files are merged, ensuring that we only 

keep companies that are present in both datasets. As seen from Table 4, the filters 

significantly reduce the number of observations. However, the adjustments will reduce the 

risk of biases in our dataset, and filtering of the raw data is considered to be beneficial to 

our analysis. All of the appropriate adjustments will be further discussed in the following 

subsection. 
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4.2.1 EXTRACT END-OF-MONTH OBSERVATIONS 

The security data in Compustat’s global database is only available in daily observations. 

We will follow the general practice of testing multi-factors on monthly stock returns and 

convert the data by subtracting the end-of-month observations. The observations are 

identified by constructing a variable Last day, LD, that is equal to the difference between 

the numeric value of 𝑀𝑜𝑛𝑡ℎ|  and 𝑀𝑜𝑛𝑡ℎ|+1. The variable is subjected to the constraint 

𝐶𝑜𝑚𝑝𝑎𝑛𝑦?iZ#ℎ>
= 𝑐𝑜𝑚𝑝𝑎𝑛𝑦?iZ#ℎ>+1

. By creating a subset of our security data where 𝐿𝐷 ≠

0, we are left with the last observation of each month for every company. Our dataset 

contains several cases where the last observation for a company in a given month deviates 

considerably from the previous official trading day that month. The missing values occur 

whenever a company is not traded during the last days of the month. As we later will 

Table 4 Filtering, adjustments and merging of the datasets 

Panel A: Security data Observations Companies 
 number diff number 

Compustat file          35,509              403  
Day > 25           34,402      -1,107             400  
No financial firms          30,364      -4,038             343  
Trading days ≥ 50           28,800      -1,554             332  
Return calculation          27,614      -1,186             332  
Price > 5 NOK and market 
cap > 30 mill NOK 21,420     -6,194             319  
Exclusion of zero-returns 20,838   -582            318  
        
Panel B: Accounting data Observations Companies 

 number diff number 
Compustat file 3,217  341 
Omit BE ≤ 0 3,144 -73 340 
     
Panel C: Merged file Observations Companies 

 number diff number 
Merged with 𝑀𝐸#  1,713  291 
Merged with ME 𝜏 − 1  1,625 -88 275 

    
Match with return data 15,246   252 
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calculate monthly returns, keeping mid-month or start-of-month observations would leave 

us with different return intervals, which are incomparable to other security returns, as well 

as the risk-free investment. Because the inclusion of such returns could bias our results, we 

will restrict our dataset only to include end-of-month observations. Nevertheless, because 

missing prices might be due to national holidays or insufficient reporting, we will allow our 

observations to deviate to some extent from the last trading day of the month. More 

precisely, we accept every observation that falls on the 26th or later. We see a clear break 

in our observations on this day of the month, and the filter thus ensures relatively equal 

return intervals without excluding a large number of observations. From Table 4, it can be 

seen that the filter reduces the number of observations by 1,107 and the number of 

companies by three.  

4.2.2 PENNY STOCKS AND MICRO-CAPS 

Securities of extremely low value, referred to as penny stocks henceforth, can be a source 

of bias in our returns. The intuition is that even a small movement in the price of such 

securities can result in very high returns. This is misleading when the returns reflect 

minimal price fluctuations. The OSE already has rules stating that a company with a 

consistent share price below 1 NOK over a period of six months will be delisted (Oslo 

Børs, 2018). However, we will apply a more conservative filter criterion by excluding all 

stocks with a share price of less than 5 NOK. We will also disregard securities with a 

market capitalization of less than 30 million NOK, referred to as microcaps. Exclusion of 

both penny stocks and micro-caps is standard in financial literature. Table 4 shows that 

6.194 observations and 13 companies are excluded when the penny stock filter is applied to 

the dataset. 

4.2.3 OPERATIONAL VS. FINANCIAL FIRMS 

When we construct factors that aim to explain the relationship between different risk 

factors and security returns, it is essential that the measured risk is directly comparable 

across all companies. Taking the above into consideration, Fama and French (1992) 

exclude all financial firms from their analysis, arguing that the leverage of non-financial 

firms and financial firms are incomparable. For non-financial firms, a high leverage level 

typically translates into a state of financial distress. Contrary to non-financial firms, a high 
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leverage is normal for financial firms. Hence, including financial firms in our data sample 

may bias our estimates. Barber and Lyon (1997) test a hold-out sample of financial firms’ 

relation to firm size, book-to-market ratios, and security returns. They document that 

financial and non-financial firms have very similar return patterns. As such, we have 

decided to include most financial firms in our dataset. We will, however, exclude all equity 

certificates issued by the savings banks. The main difference between equity certificates 

and ordinary shares lies in the owners' rights to the bank's assets and influence over the 

bank’s governing bodies. Profits are distributed proportionally on the basis of ownership 

stake and the bank’s other capital. At a limited company, losses hit shareholder’s equity 

directly. At a saving bank, losses are first absorbed by the primary capital and 

equalization reserve, and the equity certificate capital is at risk only if the primary capital 

is exhausted (Sparebankforeningen, 2015). As a result, the equity in a savings bank is not 

distributed symmetrically with respect to profits and losses. Because the risk 

characteristics of the equity certificates differ from ordinary shares, we will disregard these 

going forward. All other financial firms are included in the sample.  

4.2.4 ILLIQUID STOCKS 

Our dataset contains a number of stocks that are rarely traded. These illiquid stocks 

cannot easily be sold without a loss in value, translating into a higher risk for illiquid 

stocks, compared to liquid stocks. As a result, the future returns of illiquid stocks have 

been hypothesized to be higher (Amihud, 2002). The hypothesis is backed up by several 

studies. For example, Marcelo and Quirós (2005) find that expected market illiquidity 

positively affects ex-ante stock returns on the Spanish stock market. To omit illiquidity 

risk from his dataset, Ødegaard (2015) adds a filter excluding observations associated with 

fewer than 20 yearly trading days. We will be more conservative and construct a filter that 

excludes observations with less than 50 trading days, in line with more recent studies of 

the OSE (Korneliussen & Rasmussen, 2014). The filter is constructed by first making a 

new binary variable, 𝑡𝑟𝑎𝑑𝑒#, which equals 1 if the security was traded at 𝑑𝑎𝑦# and 0 if it 

did not occur any trade that day. Next, the trading days are summed by company and 

year. Lastly, we subset the security data by excluding observations associated with fewer 
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than 50 yearly trading days. From Table 4, we can see that 1,554 observations and 11 

companies are excluded from the sample. 

4.2.5 COMMON AND PREFERRED STOCK 

In Norway, preferred stocks are rare but we do find some companies with class A and class 

B shares. After reading the annual reports of these companies, we find that they define the 

security classes differently. The majority of the class A shares are referred to as common 

shares, while most of the class B shares are described as either a series of common stocks 

or as shares with restricted dividend and/or voting rights. However, in some cases, class B 

shares are classified as common stocks, while class A shares are subjected to restrictions. 

Further, Compustat defines all Norwegian securities as common stock. The combination of 

ambiguous share classifications and the lack of information makes it difficult to establish a 

clear exclusion rule. Going forward, we will therefore treat all stocks as common stock.   

4.2.6 CALCULATION OF RETURNS 

Compustat does not provide return calculations in its global database. Therefore, we 

calculate the returns using a price variable and an adjustment factor variable. From the 

moment a company is listed, corporate actions can be issued by the company that affect 

the stock price. However, this does not represent a change in the fundamental value of the 

company. An example of a corporate action is stock splits, where a company divides its 

existing shares into multiple shares to boost the liquidity of the stock. This would decrease 

the value of each share, and an unadjusted price would result in substantial negative 

returns. The adjustment factor adjusts for the stocks splits, providing investors with a 

more accurate evaluation of a stock's return. Similarly, the adjustment factor also adjusts 

stock prices for dividends. The adjustment factor takes a value of 1 if no dividends or 

splits have occurred and a value of > 0 in the years leading up to a capital movement, if 

any are present in the time series. The adjusted price can be written as:  

𝑎𝑑𝑗. 𝑃 = ( 𝑝#
7

𝑎𝑑𝑗#
7) 

Another concern in the return calculation is whether to use simple (arithmetic) or 

logarithmic returns. While logarithmic returns have several beneficial properties, such as 
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time additiviness, the method is not always appropriate. Most relevant to this paper, 

logarithmic returns are not asset additive. That is, the weighted average of logarithmic 

returns of individual stocks in a portfolio is not equal to the portfolio return. Simple 

returns, on the other hand, are asset additive but not time additive. Our desired variables 

will be the weighted return of a large number of securities, and as such, we will compute 

the returns as simple returns. The adjusted returns can be written as:  

𝑟#
7 = 𝑎𝑑𝑗. 𝑃#

7 − 𝑎𝑑𝑗. 𝑃#−1
7

𝑎𝑑𝑗. 𝑃#−1
7  

In cases where an adjusted price observation is missing, a return calculation is not 

computable. These return observations will be excluded from our sample, decreasing the 

number of observations by 1,186 as seen from Table 4. There is, however, no reduction in 

the number of companies in the sample.  

4.2.7 EXCLUSION OF ZERO-RETURN OBSERVATIONS 

The distribution of returns on OSE from December 2003 to December 2017 is shown in 

Figure 6. Immediately, we see a disproportionally high number of stocks with returns 

precisely equal to 0.00%. A return of 0.00% would only occur if the adjusted price of the 

stock did not move during the return interval. A non-changing price could be due to a low 

trading volume from illiquid stocks. However, the returns are calculated after the 

implementation of a trading filter, and we would therefore not expect such a high 

percentage of zero-returns. Looking through our data sample, we find that observations 

associated with zero-returns are also missing other variable values. Additionally, when we 

compare a random sample of zero-returns with corresponding returns from other data 

sources, we find that the vast majority of returns are in fact different from zero. It is 

therefore our understanding that the majority of the zero-returns stems from insufficient 

reporting. The inclusion of these returns would bias our returns towards zero, and we 

argue that although the exclusion of zero-returns would affect some returns that are in fact 

not due to insufficient reporting, the negative consequences of including the returns are far 

greater than the consequences of excluding them. Figure 6 shows the distribution of 

returns before and after we remove all zero-returns.  
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FIGURE 6 – ORIGINAL VS. ADJUSTED SAMPLE DISTRIBUTION OF RETURNS  

The black line in the return distribution of the adjusted sample shows a normal distribution for a 
sample with the same mean and standard deviation as the adjusted sample. Both samples have a 
bell-shaped distribution, but the adjusted sample has a higher kurtosis, and is somewhat skewed. 
Not surprisingly, the Jarque-Bera test rejects the null hypothesis of normally distributed returns, 
with a P-value of < 2.2e-16.   
 

 

Table 5 shows the distribution characteristics of both the original and adjusted sample. 

Because the difference between the samples is the exclusion of zero-returns, the only key 

figure we would expect to change significantly is the mean. As seen from the table, the 

original and the adjusted sample have similar characteristics, and as expected, the 

adjusted sample has a slightly higher mean.   

The max return observation of almost 360 percent raises some questions in regards to 

outliers’ effect on our results. From one perspective, the outliers could potentially distort 

the analysis and bias our estimates upwards, decreasing the predictive power of our 

models. On the other hand, asset pricing models should optimally be able to price all 

assets in the economy, and investors might be especially interested in the extreme cases. 

Additionally, the exclusion of these returns could potentially bias our MAX-factor, which 

is based on the extreme daily returns. Lastly, we consider the tails of the distribution to be 

relatively thin and the outliers’ effect on the overall conclusion to be minimal. Taking the 
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aforementioned into consideration, we decide not to exclude any of the extreme values in 

this paper. 

Table 5 Comparison of the characteristics of the sample 
distribution of returns 

    

  Original sample 
Adjusted 
sample 

Min -90.43 % -90.43 % 
Mean 1.23 % 1.27 % 
Max 357.97 % 357.97 % 
Std 14.37 % 14.57 % 

Kurtosis 61.5 59.74 
Skewness 3.74 3.68 

        
 

4.2.8 FIRMS WITH NEGATIVE BOOK VALUE OF EQUITY 

We find 73 observations in our sample with a book value of equity (BE) below or equal to 

zero. Practically speaking, a firm’s limited liability structure imply that shareholders' 

equity can never be negative, making negative values of BE challenging to interpret. 

Consequently, many practitioners exclude negative BE-firms, arguing that they have a 

high default risk (Brown & Li, 2008). In line with Fama and French (1992), we choose to 

exclude negative BE-observations from our sample, reducing it with one firm and 73 

observations.  

4.2.9 EXCHANGE RATES 

Since our security data only contains stocks listed on OSE, all asset prices from Compustat 

are reported in NOK. Compustat’s accounting data, on the other hand, is denoted in the 

local currency of the country where each firm has its primary operations. Thus, our 

accounting data comes with fiscal numbers reported in 10 different currencies, listed in 

Table 6. 
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To make the accounting data comparable, we convert the foreign currencies to NOK by 

matching the reported numbers with the end-of-month exchange rates obtained from 

Thomson Reuters Datastream database. If the exchange rate between a given currency and 

NOK is not available in Datastream, we will first convert the data into USD before we 

convert it to NOK.  

4.2.10 MARKET PORTFOLIO AND THE RISK-FREE RATE 

We use Oslo Stock Exchange All-Share Index (OSEAX) as a proxy for the market factor. 

The OSEAX is the value-weighted portfolio consisting of all shares listed on OSE. The 

monthly Return Index (RI) is obtained from Datastream. Similarly to our adjusted stock 

prices, the index is adjusted for stock splits and dividends. In line with previous research 

by Ødegaard (2016b), we use the 30-days Norwegian Interbank Offered Rate (NIBOR) as 

a proxy for the monthly risk-free return. Since the interest rate is reported as the effective 

annual interest rate, we divide it by 12 to get the monthly risk-free rate.  

 

 

 

 

Table 6 
List of currencies used to report 

accounting data 

   
Currency code Currency 

AUD Australian Dollar 
AED United Arab Emirates Dirham 
CAD Canadian Dollar 
DKK Danish Krone 
EUR Euro 
GBP British Pound 
INR Indian Rupee 
NOK Norwegian Krone 
SEK Swedish Krone 
USD US dollar 
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5 METHODOLOGY 

5.1 IDENTIFYING ANOMALIES 

Two approaches are commonly used to identify CAPM anomalies. The first approach 

examines returns on sets of portfolios formed from sorts on anomaly variables. The second 

approach use anomaly variables to explain the cross-section of average returns, as done in 

Fama and MacBeth (1973). In this thesis, we apply both methodologies to investigate 

what drives the average returns on the OSE. The first part of the methodology section will 

explain the fundamental difference between the two approaches, as well as our rationale 

for applying both.  

5.1.1 PORTFOLIO SORTS APPROACH 

Portfolio sorts are now the dominant approach in finance to establish and test for 

systematic cross-sectional patterns in expected stock returns related to firm or stock 

characteristics (Timmermann, 2007). The standard approach is to sort stocks into multiple 

portfolios at some formation date and study the patterns emerging in the average returns 

over the subsequent holding period, going from the “low” end to the “high” end of the 

portfolios ranked on the variable(s) of interest. The main benefit of the portfolio sorts 

approach is that it provides a simple picture of how returns vary across the spectrum of 

the anomaly variable (Fama & French, 2008). 

Although the portfolio sorts approach is a powerful methodology for observing the 

relationship between expected returns and anomaly variables, the approach have a main 

shortcoming. The approach is inconvenient for drawing inferences about which variables 

have unique information about average returns. For example, suppose that stocks are 

sorted into three portfolios depending on their market capitalization, where “small”, 

“medium”, and “large” stocks have the expected returns 1%, 1.2% and 0.8%, respectively, 

per month. It is common to focus on the "hedge portfolio" return obtained from a long-

short position in the two extreme quantile portfolios, in this case the small and large 

portfolio. For creating trading strategies, assuming that a long-short position in the 

portfolios is possible, the methodology is useful. However, from the abovementioned 

example, a comparison only between the top and the bottom portfolio would lead to the 
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conclusion that small firms earn a higher return than large firms, ignoring the middle 

portfolio. Furthermore, even when a monotonic relationship between the portfolios and 

returns is detected, the portfolio sorts approach does not allow for testing of the cross-

sectional pattern in expected returns.  

However, the simplicity of the portfolio sorts approach enables us to get an overview of the 

relationship between a stock's characteristics and its expected returns. We will therefore 

apply the portfolio sorts approach as a preliminary analysis.  

5.1.2 CROSS-SECTIONAL REGRESSIONS 

After having established the relationship between portfolios sorted on anomaly variables 

and their expected returns in the preliminary analysis, we conduct formal testing using 

time-series- and cross-sectional regressions. As briefly discussed in the literature review 

Section 2.3.2.2, Jensen, Black, and Scholes (1972) and Fama and MacBeth (1973) propose 

two distinct approaches for cross-sectional testing. In financial research, the Fama and 

MacBeth (1973) methodology is generally considered superior, as potential cross-sectional 

dependence in the regression residuals are mitigated by allowing estimations of beta to 

vary. Hence, we apply this methodology in the second part of our analysis.  

The benefit of using cross-sectional regressions is that the regression slopes provide direct 

estimates of marginal effects from the anomaly variable on the expected returns. 

Furthermore, simple diagnostics on the regression residuals allow us to judge whether the 

relationships between anomaly variables and expected returns, implied by the regression 

slopes, are apparent across the full range of variables (Fama & French, 2008). Thus, the 

cross-sectional regressions enable us to test whether deviations from monotonic patterns in 

the portfolio sorts approach constitute significant evidence against monotonicity. 

Furthermore, having estimated the relevant factor exposures (coefficient estimates), the 

methodology allows for direct estimates of the magnitude of the factors.  

The Fama and MacBeth (1973) methodology is a two pass procedure. In the first pass 

regression, each portfolio's return is regressed against one or more factors to determine the 

magnitude of the factor exposure. For 𝑛 portfolio returns and 𝑚 factors, the factor 
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exposures, 𝛽Z,��
, are obtained by calculating 𝑛 regressions on 𝑚 factors. The number of 

regressions equals the number of portfolios one is testing: 

𝑅1,# = 𝛼1 + 𝛽1,�1
𝐹1,# + 𝛽1,�2

𝐹2,# + ⋯ + 𝛽1,��
𝐹?,# + 𝜖1,# 

𝑅2,# = 𝛼2 + 𝛽2,�1
𝐹1,# + 𝛽2,�2

𝐹2,# + ⋯ + 𝛽2,��
𝐹?,# + 𝜖2,# 

               ⋮ 

𝑅Z,# = 𝛼Z + 𝛽Z,�1
𝐹1,# + 𝛽Z,�2

𝐹2,# + ⋯ + 𝛽Z,��
𝐹?,# + 𝜖Z,# 

The time-series regressions estimate to what extent each portfolio's return is affected by 

each factor. The estimated factor exposures from the first pass regressions are then used in 

the second pass regressions to calculate the factor risk premia.  

The second step is to compute 𝑇  cross-sectional regressions on the returns of 𝑛 portfolios, 

using the estimated factor exposures, 𝛽7̂𝐹?, from the first step as explanatory variables. 

The goal of the second pass regressions is to establish whether a larger factor exposure 

leads to a higher return. The cross-sectional regressions can be written as:  

𝑅7,1 = 𝑎1 + 𝛾1,1𝛽7̂,�1
+ 𝛾1,2𝛽7̂,�2

+ ⋯ + 𝛾1,?𝛽7̂,��
+ 𝜖7,1 

𝑅7,2 = 𝛼2 + 𝛾2,1𝛽7̂,�1
+ 𝛾2,2𝛽7̂,�2

+ ⋯ + 𝛾2,?𝛽7̂,��
+ 𝜖7,2 

               ⋮ 

𝑅7,� = 𝛼� + 𝛾Z,1𝛽7̂,�1
+ 𝛾Z,2𝛽7̂,�2

+ ⋯ + 𝛾Z,?𝛽7̂,��
+ 𝜖7,�  

As seen from Equation 41, the beta estimates found in Equation 40, 𝛽7̂,��
, remain 

constant, while the portfolio returns vary in each time period, 𝑇 . The 𝛾7.�  terms are the 

regression coefficients. Fama and MacBeth (1973) suggest that the estimated intercept and 

factor risk premium for a given factor is the average of the cross-sectional regression 

estimates: 

𝛼7̂ = 1
𝑇 ∑ 𝛼7̂,#,                

�

#=1
𝛾̂ = 1

𝑇 ∑ 𝛾̂#
�

#=1
 

Furthermore, they suggest using the time-series variance of the coefficients from the cross-

sectional regressions as standard errors to test the statistical significance of the coefficients:  

(40) 

) 

(41) 

) 

(42) 

) 
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𝜎2(𝛼7̂) = 1
𝑇 2 ∑(𝛼7̂,# − 𝛼7̂)2,           

�

#=1
𝜎2(𝛾̂) = 1

𝑇 ∑(𝛾̂# − 𝛾̂)2
�

#=1
 

5.2 CONSTRUCTION OF TESTING PORTFOLIOS 
In the following section, we provide definitions of the sorting variables, as well as an 

overview of the portfolio dynamics in terms of portfolio construction and rebalancing.  

5.2.1 SORTING OF TESTING PORTFOLIOS 

Widespread in financial research is to sort stocks into portfolios, as opposed to conduct 

tests on individual stocks. As previously mentioned in the literature review Section 2.3.2.2, 

beta estimates on portfolios are considered more precise than estimates on individual 

securities. Furthermore, double sorts, and more recently, triple sorts on firm characteristics 

are frequently used in financial literature. The benefit of multiple sorting procedures is the 

ability to isolate the effect of one characteristic from others, as this provides portfolios 

consisting of stocks with similar characteristics. The drawback from sorting on multiple 

firm characteristics is that the number of portfolios increase exponentially for each sorting, 

significantly reducing the number of stocks in each portfolio. Considering the restricted 

number of stocks in our sample, we stick with single sorted testing portfolios, although we 

are aware that results might be biased in the presence of factor correlation.  

5.2.2 SORTING VARIABLES 

5.2.2.1 BETA  

Beta is defined as the covariance between the return of the 𝑖#ℎ security and the return of 

the market portfolio, divided by variance of the market portfolio: 

𝛽7# = 𝐶𝑜𝑣(𝑅7#, 𝑅?#)
𝑉𝑎𝑟(𝑅?#)

 

There are several considerations that must be made when we estimate beta. First, the 

frequency at which the returns are measured must be specified. Second, the time period 

over which betas are estimated must established. Finally, the market portfolio must be 

defined.  

 

(43) 

) 

(44) 

) 
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1) Specifying the return frequency 

Specifying the frequency of which of returns are calculated in the estimation of beta is of 

importance, as a stock’s beta varies across return frequencies. Lately, measuring a 

security’s instantaneous and time-varying riskiness has increased in importance, due to the 

increase in high-frequency trading and the reduction in investment horizons (Gilbert, 

Hrdlica, Kalodimos, and Siegel, 2014). Hence, literature has explicitly derived the potential 

for using more finely sampled realized returns to measure beta (Andersen et al., 2006). 

Return frequencies of only 30 minutes as proposed by Cenesizoglu, Liu, Reeves, and Wu 

(2014) contrasts earlier papers, where beta estimations are based on monthly return 

frequencies (Fama & French, 1992, Fama & MacBeth, 1973). A relatively recent paper by 

Gilbert et al. (2014) investigates the difference between high frequency (daily) and low 

frequency (quarterly) market betas. Their research shows that the frequency dependence of 

betas is associated with firm- and industry-level proxies of opacity. Here, opacity should be 

understood as the uncertainty about the effect of systematic news on firm value. 

Specifically, opaque firms have high-frequency betas that are smaller than their low-

frequency betas, while the opposite is true for transparent firms. They conclude that asset 

pricing models that might be appropriate at low frequencies will not price assets correctly 

when applied at high frequencies, as the effect of opacity-induced uncertainty is not 

captured by betas.  

Bearing this in mind, the market betas are calculated using monthly returns as opposed to 

daily returns to avoid the downward bias in beta estimates, which coincides with the 

earlier asset pricing papers. Using longer return frequencies such as quarterly returns 

would significantly reduce the number of observations in the beta estimations, and is 

therefore found to be suboptimal compared to using monthly returns.  

2) Specifying the time frame for beta calculation 

Beta estimates will vary depending on the time frame of the beta calculation. Specification 

of an appropriate time frame is therefore of importance and involves a tradeoff: by going 

further back in time, we get the advantage of getting more observations in the estimation. 

This could however be offset by the fact that firms have changed its characteristics in 
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terms of business mix and leverage (Damodaran, 1999). Critically, increasing the time 

frame will reduce the number of beta estimates in our sample, as this requires additional 

historical returns that may not be available. Taking this into account, we argue that an 

adequate time frame for beta estimation is 36 months. Furthermore, we estimate betas 

every month using rolling regressions to mitigate potential cross-sectional dependence in 

the regression residuals.  

3) Specifying the market portfolio 

In practice, no indices are adequate as proxies for the market portfolio (see Roll’s critique 

in literature review Section 2.3.2.4). Optimally, our proxy for the market portfolio should 

include all fixed income and real assets. However, in line with previous academic research, 

we choose an index composed of all the listed shares on the OSE. Specifically, we use the 

return from the OSEAX, which is a value-weighted index adjusted for corporate actions.  

To conclude, betas are estimated every month from monthly observations based on three 

years (36 months) of data using the excess returns from the OSEAX as a proxy for the 

market portfolio.  

5.2.2.2 SIZE 

Size is defined as the market capitalization of the 𝑖#ℎ firm at the end of each June of year 

𝑡:  

𝑚𝑎𝑟𝑘𝑒𝑡 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛7,# = 𝑠ℎ𝑎𝑟𝑒 𝑝𝑟𝑖𝑐𝑒7,# × 𝑛𝑜. 𝑠ℎ𝑎𝑟𝑒𝑠 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔7,#  

5.2.2.3 BOOK-TO-MARKET VALUE OF EQUITY 

Book-to-market value (BM) of equity is defined as the ratio of a firm’s book value of 

equity at the end of fiscal year 𝑡 − 1 and its market value of equity at the end of December 

𝑡 − 1: 

𝐵𝐸
𝑀𝐸#

= 𝑏𝑜𝑜𝑘 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦#−1
𝑚𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦���−1

 

Where the market value of equity is the same as market capitalization as in Equation 45 

and the book value of equity is calculated as:   

(45) 

) 

(46) 

) 
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𝐵𝑜𝑜𝑘 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦# = 𝑠𝑡𝑜𝑐𝑘ℎ𝑜𝑙𝑑𝑒𝑟𝑠’ 𝑒𝑞𝑢𝑖𝑡𝑦# + 𝑑𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑡𝑎𝑥𝑒𝑠# − 𝑏𝑜𝑜𝑘 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑠𝑡𝑜𝑐𝑘# 

The use of December market equity is objectionable for firms that do not end their fiscal 

year in December, because the accounting variable in the numerator of a ratio does not 

correspond with the market value in the denominator. However, Fama and French (1992) 

find that excluding stocks that do not end their fiscal year in December result in similar 

results as when they are included. Since most listed companies on the OSE end their fiscal 

year in December, we assume that inclusion of stocks with irregular fiscal years will not 

significantly alter our results. Hence, we make no exclusions or adjustments on the basis of 

this.  

5.2.2.4 MOMENTUM 

A stock's momentum is defined as the cumulative return from month 𝑡 − 12 to 𝑡 − 2. The 

momentum factor is measured as the cumulative return from May in the previous year, to 

June in the current year:   

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚# = 𝑃#−1 − 𝑃#−13
𝑃#−13

 

5.2.2.5 MAX 

MAX is defined as the average of the five highest daily returns in month 𝑡 − 1 for a given 

stock. The variable is constructed to capture the demand for lottery stocks.  

5.2.3 PORTFOLIO DYNAMICS 

Rebalancing of the portfolios occur either monthly or yearly, depending on the nature of 

the sorting variable. The portfolios sorted on size, value and momentum are rebalanced on 

a yearly basis, while the portfolios sorted on beta and MAX are rebalanced monthly.  

5.2.3.1 YEARLY REBALANCING  

The dynamics of the yearly rebalanced portfolios are illustrated in Figure 7. The portfolios 

sorted on BM are based on a company’s book value of equity from the previous fiscal year 

and the market value of equity at the end of December 𝑡 − 1. The reason for the time lag 

between measuring the ratio of book-to-market equity and portfolio rebalancing is to avoid 

using information that may not have been publicly available at the time, known as “look-

(47) 

) 
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ahead bias”. Portfolios sorted on size, on the other hand, use the market value of equity at 

the end of June in year 𝑡.  

Portfolios sorted on the 12-month price momentum use the price 13 months and 1 month 

prior to the portfolio rebalancing date. As mentioned in literature review Section 2.3.5., 

momentum is lagged one period to avoid the reversion of returns in 𝑡 − 1, which is 

standard in financial literature. Hence, portfolios sorted on the 12-month momentum is 

based on its price from June from the previous year, 𝑡 − 1, and the price from May in year 

𝑡 to calculate the cumulative return over the period.  

At the end of June each year, five portfolios for each sorting variable is constructed. The 

excess return from July to June in 𝑡 + 1 is tracked, before the portfolios again are 

rebalanced into five new portfolios.   

FIGURE 7 – CONSTRUCTION OF PORTFOLIOS SORTED ON BM, SIZE, AND MOMENTUM 

 

5.2.3.2  MONTHLY REBALANCING  

The portfolios sorted on beta and MAX are rebalanced monthly, and the portfolio 

dynamics are illustrated in Figure 8. At the end of each month, five portfolios for each of 

the two sorting variables are constructed. The returns of the portfolios are subsequently 

tracked, before the portfolios again are rebalanced into 5 new portfolios. 
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FIGURE 8 – CONSTRUCTION OF PORTFOLIOS SORTED BETA AND MAX  

 

 

5.2.3.3  PORTFOLIO WEIGHTING 

It is common to form equally-weighted quantile portfolios on the variable of interest. A 

potential problem with equally-weighted portfolios occurs if the distribution of the stocks’ 

market capitalization is positively skewed. With a positively skewed sample, the average 

returns will be dominated by smaller stocks (Fama & French, 2008). A potential solution 

to this problem is to use value-weighted portfolio returns. However, a similar issue would 

occur here, if the distribution of the stocks' market capitalization is negatively skewed. 

With a negatively skewed sample, the average returns will be dominated by larger stocks. 

A double sorting procedure using the market capitalization along with a second firm 

characteristic would allow us examine the average returns from separate sorts of small and 

big stocks. However, as discussed in the methodology subsection 5.2.1, we have chosen not 

do so because the average number of stocks in each portfolio would be too low. In 

subsection 3.2, we found that the Norwegian stock market is dominated by a few large 

stocks. We therefore argue that sorting the testing portfolios based on their market 

capitalization would neglect the small sized stocks to such an extent that it would not 

serve the purpose of this thesis. While aware of the pitfalls of sorting the testing portfolios 

on an equally-weighted basis, we believe that this allows for a better understanding of 

what drives the returns on the OSE. The expected returns of the testing portfolios are 

therefore calculated on an equally-weighted basis:  

𝑟j ,# = 1
𝑛 ∑(𝑟7,# − 𝑟5)

Z

7=1
 (48) 

) 
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5.3 CONSTRUCTION OF FACTOR MIMICKING PORTFOLIOS 

Having constructed the portfolios whose returns are to be explained, we now turn to the 

factor-mimicking portfolios. In addition to the market factor outlined in the previous 

section, we construct four additional factors.  

5.3.1 SMB AND HML 

The construction of SMB and HML follows the methodology of Fama and French (1992). 

We create six portfolios sorted on the size and BM, as they are defined in subsection 

5.2.2.2 and 5.2.2.3.  

In June of each year t , all stocks in our filtered sample are allocated into two portfolios, 

small (S) or big (B), based on whether their market capitalization is higher or lower than 

the median market capitalization.  

Independently, the stocks are also allocated into three BM portfolios based on the 

breakpoints for the bottom 30% (Low), middle 40% (Medium), and top 30% (High). 

Similarly to the testing portfolios sorted BM from the previous section, the book value of 

equity is measured at the fiscal year ending in the calendar year 𝑡 − 1. The market 

capitalization is correspondingly measured in December 𝑡 − 1. Firms with negative BE are 

excluded from the sort.  

Six portfolios are defined from the intersection of the two size portfolios and the three 

value portfolios, as seen from Figure 9. For example, the stocks allocated to the B/H 

portfolio have a BM in the top 30% and a market capitalization higher than the median. 

The six portfolios serve as the basis for the factor mimicking portfolios. The monthly 

value-weighted returns are calculated for each of the six portfolios from July in year 𝑡 to 

June in year 𝑡 + 1, before the portfolios are rebalanced. If companies are delisted during 

the year, the total number of stocks in each portfolio will vary over the period. If 

companies are listed after June in year 𝑡, they will not be included before portfolio 

rebalancing in June year 𝑡 + 1. The SMB factor mimicking portfolio is calculated on a 

monthly basis, defined as the difference between the average value-weighted returns of the 

three small-stock portfolios and the average value-weighted returns of the three big-stock 

portfolios, as seen from Equation 49. Likewise, the HML factor mimicking portfolio is 
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calculated as the difference between the average value weighted returns from the two high-

BM portfolios and the average value-weighted returns from the two low-BM portfolios, as 

seen from Equation 50.   

FIGURE 9 – CONSTRUCTION OF THE SMB AND HML FACTOR 

 

𝑆𝑀𝐵 = (𝑆/𝐻 + 𝑆/𝑀 + 𝑆/𝐿)/3 − (𝐵/𝐻 + 𝐵/𝑀 + 𝐵/𝐿)/3 

𝐻𝑀𝐿 = (𝑆/𝐻 + 𝐵/𝐻)/2 − (𝑆/𝐿 + 𝐵/𝐿)/2 

5.3.2 PR1YR 

We follow Carhart (1997) when we construct the PR1YR factor, which captures the one-

year momentum anomaly documented by Jegadeesh and Titman (1993). The PR1YR is 

the return on a value-weighted, zero-investment, factor mimicking portfolio. Each month, 

𝑡, we divide stocks into portfolios based on the 30th and 70th percentiles of the lagged 

momentum returns of all the stocks in our sample. Hence, for portfolios formed at the end 

of month 𝑡 − 1, we calculate the stock's cumulative return for month 𝑡 − 12 to month 𝑡 −

2, to avoid the reversal in short-term returns in 𝑡 − 1, as discussed in the literature review 

section 2.3.5. To be included in the portfolio for month 𝑡, a stock must therefore have a 

price at the end of month 𝑡 − 13, as well as consecutive monthly returns from 𝑡 − 12 to 𝑡 −

2, subject to our filter criterion.  

For both the top and bottom quantile portfolio sorted on their lagged cumulative return, 

the value-weighted average portfolio return is calculated in month 𝑡. Since the PR1YR 

factor mimicking portfolio is defined as long position in the previous winners and a short 

position in the previous losers, the average return from the momentum strategy is 

calculated as the average value-weighted return of the winner portfolio minus the average 

value-weighted return of the loser portfolio, each month. At the end of month 𝑡, the 

portfolios are rebalanced using the same procedure.  

(49) 

50 (50) 

) 
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5.3.3 BETTING AGAINST BETA 

To investigate whether the presence of the beta anomaly on the OSE can be attributed 

funding frictions, we create a betting against beta (BAB) factor, following Frazzini and 

Pedersen (2014). A BAB factor is a portfolio that holds low-beta assets, leveraged to a 

beta of 1, and that shorts high beta assets, de-levered to a beta of 1. In effect, the portfolio 

is market neutral with a beta of zero.  

To construct the BAB factor, we run monthly rolling regressions using 36 months of data 

to obtain beta estimates for each stock for each month, as outlined in the methodology 

section 5.2.2.1. This is the same procedure used in the paper by Frazzini and Pedersen 

(2014), although they estimate their betas using daily return frequencies, and not monthly 

(see the methodology section 5.2.2.1 for justification). To reduce the influence of outliers, 

we shrink the time-series estimate of beta (𝛽7
�q), toward the cross-sectional mean (𝛽�q): 

𝛽7̂ = 𝑤7(𝛽7̂
�q + (1 − 𝑤7)𝛽�̂q 

We set 𝑤 = 0.6 and 𝛽�q = 1 for all periods and across all assets, following Frazzini and 

Pedersen (2014). The shrinkage factor does not affect how securities are sorted into 

portfolios, since the common shrinkage does not change the ranks of the security betas. 

However, the amount of shrinkage affects the construction of the BAB portfolios since the 

estimated betas are used to scale the long and short sides of the portfolios, as seen from 

Equation 55 

To construct each portfolio, all securities are ranked in ascending order on the basis of 

their estimated shrunken betas. The ranked securities are assigned to one of two portfolios: 

low-beta and high-beta. The low (high) beta portfolio is comprised of all stocks with a beta 

below (above) the median of the ascending beta estimates. In each portfolio, securities are 

weighted by the rank of their betas. Specifically, this means that the lower-beta securities 

have larger weights in the low-beta portfolio and higher-beta securities have larger weights 

in the high-beta portfolio. The portfolios are rebalanced every month. 

Formally, let 𝑣 denote the 𝑛 × 1 vector of beta ranks 𝑣7 = 𝑟𝑎𝑛𝑘(𝛽7#) at portfolio formation, 

and let 𝑣 ̅ = 1�
′ �
Z  be the average rank of all the assets where 𝑛 is the total number of assets 

(51) 

) 

(53) 
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and 1Z is a vector of ones with the dimension 𝑛 × 1. Given these definitions, the vectors of 

individual asset weights can be written as: 

𝑤v = − 1
𝑘 min(0, 𝑣 − 𝑣)̅ 

𝑤u = 1
𝑘 max (0, 𝑣 − 𝑣)̅ 

Where 𝑘 is a normalizing constant that assures that the sum of weights in each portfolio is 

equal to one, hence 𝑘 = 1�
′ |�−�|̅

2 .  

For matters of simplification, consider the following example. In the case of 𝑛 = 7 and 

after ordering the betas so that 𝛽1 < 𝛽2 < 𝛽3 < 𝛽4 < 𝛽5 < 𝛽6 < 𝛽7 , the variables take the 

following values: 

 

The process ensures that both the low-beta portfolio and the high-beta portfolio is 

weighted to have betas equal to one with the following characteristics: 

𝑟#+1
v = 𝑟′#+1𝑤v, 𝑟#+1

u = 𝑟′#+1𝑤u, 𝛽#
v = 𝛽′#𝑤v, 𝑑𝑑𝑑𝑑𝑎𝑛𝑑       𝛽#

u = 𝛽′#𝑤u   

Having constructed the two portfolios, the BAB factor is created as a long-short 

combinations of the portfolios – the low beta portfolio is the long position while the high 

beta portfolio is sold short. Since both portfolios have a beta of one, the BAB factor is 

market neutral. The BAB factor is calculated as the average excess return from the low-

beta portfolio minus the average excess return of the high-beta portfolio: 

𝑟#+1
s�s = 1

𝛽#+1
v (𝑟#+1

v − 𝑟5) − 1
𝛽#+1

u (𝑟#+1
u − 𝑟5) 

(52) 

) 

(54) 

) 

(55) 

) 

(53) 

) 
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5.3.4 FMAX 

To investigate the contrarian hypothesis that the prevalence of the beta anomaly on the 

OSE can be attributed the demand for lottery stocks, we create the factor FMAX, 

following Bali et al. (2017).  

At the end of each month 𝑡, we sort all stocks into two groups based on the market 

capitalization, with the median as the breakpoint. Subsequently, we sort all stocks in our 

sample into three groups based on an ascending sort of MAX, as defined in the 

methodology section 5.2.2.5. Using the same factor creation technique as with the HML 

and SMB, we construct six portfolios in the intersection of the two market capitalization-

based groups and the three MAX groups. As seen from Figure 10 and Equation 56, the 

FMAX factor return in month 𝑡 + 1 is the average return of the two value-weighted high-

MAX portfolios minus the two value-weighted low-MAX portfolios. As such, the FMAX 

factor portfolio is designed to capture returns associated with lottery demand, while 

maintaining neutrality to market capitalization.  

FIGURE 10 – CONSTRUCTION OF THE FMAX FACTOR 

 

𝐹𝑀𝐴𝑋 = (𝑆/𝐻 + 𝐵/𝐻)/2 − (𝑆/𝐿 + 𝐵/𝐿)/2 

 

 

 

 

 

 

(56) 

) 
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6 ANALYSIS 
In this section we present the empirical evidence from the investigation of OSE. As 

mentioned in the methodology section, we begin by presenting our findings from the 

portfolio sorts approach. This involves analyzing the average returns from portfolios sorted 

firm characteristics to get an overview of what drives the returns on OSE. Furthermore, 

we present the excess returns associated with a long/short trading strategy in the top and 

bottom quintile portfolios and its statistical significance. From here, we move on to the 

time-series regressions and Fama and MacBeth (1973) cross-sectional regressions. Here, we 

estimate the direct marginal effects from our constructed factors on the portfolio sorts, as 

well as the estimated size of the risk premia. Finally, we analyze to whether the beta 

anomaly on the Norwegian stock market can attributed leverage and margin constraints 

with investors, as postulated by Frazzini and Pedersen (2014) or a demand for lottery 

stocks, as postulated by Bali et al. (2017). For all the statistical tests in the analysis, we 

operate with a significance level of 5%.  

6.1 PORTFOLIO SORTS 

6.1.1 PORTFOLIOS SORTED ON BETA 

At the end of each month 𝑡, we form five portfolios sorted on the individual securities' beta 

estimates. The portfolio return for each quintile portfolio is subsequently tracked, before 

the portfolios are rebalanced at the end of the month with updated beta estimates.  

Table 7 shows the average monthly returns over the time period 2007 – 2017 for portfolios 

sorted on beta, where portfolio 1 is the low-beta portfolio and portfolio 5 is the high-beta 

portfolio. To illustrate the effect of large stocks, Panel A and Panel B shows the equally-

weighted and value-weighted portfolio returns, respectively. The average beta of the two 

extreme portfolios varies significantly when we compare the equally-weighted and the 

value-weighted portfolios: Portfolio 1 has an average beta of 0.08 versus 0.21 and portfolio 

5 has an average beta of 1.69 versus 1.48. Thus, the larger stocks in terms of market 

capitalization allocated in the low-beta portfolios typically have a higher beta than the 

smaller stocks. Conversely, the larger stocks allocated in the high-beta portfolios typically 

have a lower beta than the smaller stocks.  
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No monotonic relationship can be observed between the average portfolio beta and average 

monthly excess return, regardless of whether the returns are equally-weighted or value-

weighted. This also applies when we consider the median return. Considering the equally-

weighted returns in Panel A, the low-beta portfolio yields an average monthly excess 

return of 0.53%, compared to a return of -0.13% for the high-beta portfolio. The returns 

from all the portfolios move in opposite directions with increasing average betas, indicating 

no obvious relationship between systematic market risk and return. The value-weighted 

portfolios exhibit the same pattern in returns; the small-beta portfolio yields an average 

monthly excess return of 1.24%, compared to a return of 0.6% in the high-beta portfolio. 

Based on our data, there seem to be no relationship between securities' systematic market 

risk and return, which contradicts the CAPM. Hence, we expect that the CAPM will 

explain little of the variation in portfolio returns in the cross-sectional regressions later in 

the analysis.  

Table 8 shows the average monthly excess returns per period for portfolio 1 and 5, as well 

as the returns from a long high-beta/short low-beta trading strategy and its associated t-

values. Unsurprisingly, both the equally weighted and the value-weighted returns for the 

extreme portfolios are highly negative in the 2007 - 2008 period, due to the financial crisis. 

For both the equally-weighted and value-weighted portfolios, the long/short portfolio 

yields positive returns from 2007 – 2010. However, the returns are not found to be 

statistically significant. In the 2011 - 2016 period, the long/short portfolios yield negative 

excess returns, although statistically insignificant at the 5% level for both the value-

weighted and equally-weighted portfolio. The beta anomaly is present when high-beta 

stocks underperform low-beta stocks on a risk-adjusted basis. The results from Table 7 and 

Table 8 indicate that investors in high-beta stocks are not adequately compensated for the 

systematic market risk they undertake. Hence, the beta-anomaly seems to be present in 

our sample of Norwegian stocks. 

The dominance of a few, large stocks, as documented in the characteristics of the OSE  

Section 3.2, is likely to have significant impact on our results. Going forward, we sort 

portfolios an equally-weighted basis, and hence report equally-weighted returns. As 

discussed in the methodology Section 5.2.3.3, there are both pros and cons associated with 
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using value-weighted and equally-weighted returns. Although many of the small stocks will 

be assigned higher weights than their market capitalization imply, we argue that equally-

weighted portfolios will provide a better understanding of what drives the returns on the 

OSE. For the interested reader, value-weighted portfolios and their associated returns can 

be found in Appendix 5 – 8.   

Table 7  Monthly excess returns from portfolios sorted on beta (2007 - 2017) 
                    
Panel A                                         Equally-weighted portfolios 
                    
    Portfolio returns Number of stocks 

Portfolio Average beta Mean (Std) Min  Med Max Min Med Max 
Portfolio 1  0.08  0.53 (4.43) -21.01 0.52 11.38 11 15 21 
Portfolio 2 0.53  0.17 (5.89) -26.18 0.55 18.65 10 15 20 
Portfolio 3 0.79  0.45 (6.04) -28.29 0.74 14.42 10 15 20 
Portfolio 4 1.08  0.04 (6.45) -28.94 0.17 14.70 10 15 20 
Portfolio 5 1.69  -0.13 (8.20) -33.92 -0.18 18.23 11 15 21 
                    

 

 

Panel B                                         Value-weighted portfolios 
                    
    Portfolio returns Number of stocks 

Portfolio Average beta Mean (Std) Min Med Max Min Med Max 
Portfolio 1 0.21  1.24 (5.96) -18.77 1.42 20.95 11 15 21 
Portfolio 2 0.59  0.40 (7.64) -37.95 0.95 34.76 10 15 20 
Portfolio 3 0.77  0.36 (5.74) -25.53 0.88 15.05 10 15 20 
Portfolio 4 1.13  0.98 (6.86) -29.12 1.04 22.51 10 15 20 
Portfolio 5 1.48  0.60 (8.04) -37.99 0.35 20.30 11 15 21 

 
Returns are percentage monthly excess returns. Returns are calculated as simple returns and are  
not annualized. Beta estimates are calculated every month using 36 months of historical returns. 
Historical returns from 2005 - 2015 are used in beta calculation. 
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Table 8 Monthly excess return from a long-short position in beta portfolios (2007 – 2017) 
                  
  Equally-weighted portfolios Value-weighted portfolios 
                  

Year PF 1 PF 5 Diff t: Diff = 0 PF 1 PF 5 Diff t: Diff = 0 
2007 - 2008 -3.62 -3.52 0.10 (0.07) -2.39 -2.16 0.23 (0.11) 
2009 - 2010 2.78 4.10 1.31 (0.93) 2.49 4.49 2.00 (1.16) 
2011 - 2012 0.98 -1.55 -2.53   (-1.88)* 1.47 -0.92 -2.39    (-2.00)* 
2013 - 2014 1.02 -0.74 -1.76   (-1.94)* 2.34 0.75 -1.59   (-1.56) 
2015 - 2016 1.59 0.56 -1.03  (-0.79) 2.75 0.60 -2.15   (-1.64) 

2017 0.28 0.90 0.62 (0.27) 0.33 1.08 0.75  (0.42) 
Full sample 0.53 -0.13 -0.66   (-1.15) 1.24 0.60 -0.64   (-1.00) 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 
 

6.1.2 PORTFOLIOS SORTED ON SIZE 

Banz (1981) was the first to document that firms with a smaller market capitalization offer 

higher risk-adjusted returns than those with a higher market capitalization. Fama and 

French (1993) argue that this is due to a common source of risk. To investigate whether 

the stocks at the OSE exhibit similar return characteristics, we sort stocks into portfolios 

based on their market capitalization, as described in the methodology section 5.2.2.2  

Table 9 shows the average monthly excess returns on portfolios sorted on size. The average 

size of the stocks in portfolio 5 is almost 83 billion NOK, compared to only 438 million 

NOK for the stocks in portfolio 1. This emphasizes that there are a few large stocks that 

dominate the OSE. There is no monotonic relationship between the average size and the 

returns, as portfolio 2 provides a significantly lower return than portfolio 3.  

Table 10 shows the average monthly excess return for portfolio 1 and 5 per period, as well 

as the returns from long big-size/short small-size stocks. For the full period, the trading 

strategy would yield negative excess returns. However, none of the t-statistics indicates 

that the returns from the trading strategy is statistically distinguishable from zero. From 

Table 10, we see that the low monthly returns to a large extent can be attributed the 

period 2007 – 2008.  
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Table 9 Monthly excess returns from portfolios sorted on size (2007 - 2017) 
                    
    Portfolio returns Number of stocks 

Portfolio 
Average size 
(millions) Mean (Std) Min Med Max Min Med Max 

Portfolio 1 438.07 0.81 (6.61) -22.06 0.26 36.34 6 14 20 
Portfolio 2 1,458.22 -0.45 (6.61) -27.33 -0.44 21.16 7 13 20 
Portfolio 3 3,971.08 0.16 (5.82) -25.87 0.61 17.59 10 14 19 
Portfolio 4 9,248.04 0.10 (6.18) -32.16 0.22 18.54 9 14 20 
Portfolio 5 82,849.73 0.11 (7.07) -29.66 0.07 18.04 9 15 20 

 

Returns are percentage monthly excess returns. Returns are calculated as simple returns and are 
not annualized. Portfolios are sorted based the market capitalization at the end of June each year, 
and the monthly returns are subsequently tracked, before the portfolios are rebalanced in June 𝑡 +
1. The returns are equally-weighted. 
 

 

Table 10  Monthly excess returns from a long-short position in size portfolios (2007 – 2017) 
          

Year Portfolio 1 Portfolio 5 Diff t-test: Diff = 0 
2007 - 2008 -4.91 -5.24 -0.33 (-0.20) 
2009 - 2010 4.01 3.11 -0.91 (-0.36) 
2011 - 2012 0.91 -0.27 -1.18 (-1.06) 
2013 - 2014 0.74 0.08 -0.66 (-0.77) 
2015 - 2016 1.62 0.87 -0.75 (-0.87) 

2017 1.31 1.39 0.08 (-0.06) 
Full sample 0.81 0.11 -0.70 (-1.12) 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 
 

6.1.3 PORTFOLIOS SORTED ON BM  

The value anomaly has been found in numerous studies, and asserts that stocks with a 

high ratio of book-to-market value of equity offer higher risk-adjusted returns than stocks 

with a low ratio book-to-market value of equity. To investigate whether high-BM stocks 

are associated with higher excess returns, we construct 5 portfolios sorted on BM, as 

described in the methodology section 5.2.2.3  

Table 11 shows the average monthly excess returns on 5 portfolios sorted on BM. The 

average BM spans from 0.25 for the lowest BM portfolio to 2.13 for the highest BM 
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portfolio. As seen from the table, no monotonic relationship can be observed between BM 

and average returns: portfolio 1 has an average monthly excess return of 0.01%, and the 

subsequent portfolio returns move in opposite directions with ascending values of BM.  

Table 12 shows the average monthly excess return on the high BM portfolios and low BM 

portfolios per period, as well as the average monthly excess returns from a long high-BM – 

short low-BM trading strategy and its associated t-statistic. There does not seem to be 

systematic pattern of positive or negative returns, which contradicts the value anomaly. 

However, the returns are not found to be statistically significant. Based on our findings 

summarized in Table 11 and Table 12, we do not expect that the HML factor will explain 

a significant portion of the variation in the cross-section of returns. Again, we see that the 

low returns can be attributed the crisis period from 2007 to 2008. 

Table 11 Excess monthly returns from portfolios sorted on BM (2007 - 2017) 
                    
  Portfolio returns Number of stocks 

Portfolio Average BM Mean (Std) Min Med Max Min Med Max 
Portfolio 1  0.25  0.01 (6.32) -31.36 0.11 16.92 10 14 20 
Portfolio 2 0.48  0.62 (6.00) -29.70 1.03 14.74 8 14 20 
Portfolio 3 0.74  0.17 (5.36) -22.87 0.46 13.39 8 14 19 
Portfolio 4 1.08  0.04 (6.29) -28.71 0.39 17.68 10 14 20 
Portfolio 5 2.13  -0.17 (7.11) -21.14 -0.24 22.85 4 14 20 

 
Returns are percentage monthly excess returns. Returns are calculated as simple returns and are 
not annualized. Portfolios are sorted based on the ratio of the book value of equity at fiscal 
yearend and the market capitalization at December 𝑡 − 1, at the end of June in year 𝑡. The 
monthly returns are subsequently tracked, before the portfolios are rebalanced in June 𝑡 + 1. The 
returns are equally-weighted. 
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Table 12 Monthly excess returns from a long-short position in BM portfolios (2007 – 2017) 
          

Year Portfolio 1 Portfolio 5 Diff t-test: Diff = 0 
2007 - 2008 -5.61 -6.61 -1.00 (-0.73) 
2009 - 2010 2.70 3.25 0.55 (0.44) 
2011 - 2012 -0.56 -0.30 0.26 (0.27) 
2013 - 2014 0.93 0.54 -0.39 (-0.48) 
2015 - 2016 0.99 -0.10 -1.09 (-0.87) 

2017 0.37 1.38 1.01 (0.75) 
Full sample 0.01 -0.17 -0.18 (-0.37) 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 
 

6.1.4 PORTFOLIOS SORTED ON MOMENTUM 

Studies have shown that stocks that have performed well over the past 12 months offer 

higher returns than stocks that have performed poorly over the same period. To 

investigate whether the momentum effect is prevalent among the stocks on the OSE, we 

construct 5 portfolios based on the 12-month cumulative return, as described in the 

methodology section 5.2.2.4.  

Table 13 shows the average monthly excess returns on portfolios sorted on momentum, 

where portfolio 1 contains stocks that have performed poorly over the last year, and 

portfolio 5 contains stocks that have the highest performance over the same period. No 

monotonic relationship can be observed between the momentum portfolios and average 

monthly excess returns, as the returns from portfolio 3 is lower than portfolio 2.  

As seen from Table 14, a momentum effect cannot be found on the OSE: A trading 

strategy where one shorts the portfolio containing the worst-performing stocks and takes a 

long position in a portfolio containing the best-performing stocks over the past year, have 

provided an average monthly excess return of 0.96% from 2007 – 2017. However, this 

result is significant at the 10% level, which is below our significance threshold. In the 2007 

– 2008 and 2011 – 2012 period, the trading strategy yields negative returns, although not 

statistically significant. Based on our findings summarized in Table 14 and Table 13, we 
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do not expect that the factor PR1YR will capture a large proportion of the variation in 

the cross-section of returns.  

Table 13 Monthly excess returns from portfolios sorted on momentum (2007 - 2017) 
                    
  Portfolio returns Stocks 

Portfolio Average cum. return Mean (Std) Min Med Max Min Med Max 
Portfolio 1  -16.66  -0.20 (7.31) -22.27 -0.11 15.53 7 14 20 
Portfolio 2 -2.53  0.03 (5.67) -26.16 0.09 14.39 8 14 20 
Portfolio 3 5.42  -0.06 (5.89) -26.74 0.43 14.25 10 15 19 
Portfolio 4 15.80  0.17 (6.01) -25.68 0.79 20.30 8 14 20 
Portfolio 5 54.20  0.76 (6.90) -32.73 1.37 20.73 9 14 20 

 
Returns are percentage monthly excess returns. Returns are calculated as simple returns and are 
not annualized. Portfolios are sorted based on the cumulative return from 𝑡 − 12 to 𝑡 − 2, where 𝑡 
refers to the first month holding the portfolio (July). The monthly returns are subsequently 
tracked, before the portfolios are rebalanced in June the following year. The returns are equally-
weighted.  
 
 

Table 14 Monthly excess returns from a long-short position in momentum portfolios 
 (2007 – 2017) 

          
Year Portfolio 1 Portfolio 5 Diff t-test: Diff = 0 

2007 - 2008 -4.92 -6.33 -1.41 (-1.06) 
2009 - 2010 2.96 4.04 1.07 (0.79) 
2011 - 2012 0.40 -0.03 -0.42 (-0.42) 
2013 - 2014 0.22 1.21 0.99 (1.06) 
2015 - 2016 -0.05 2.54 2.59  (1.86)* 

2017 -1.80 1.96 3.76 (1.62) 
Full sample -0.20 0.76 0.96  (1.77)* 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 
 

6.1.5 PORTFOLIOS SORTED ON MAX 

Bali et al. (2017) argue that the beta anomaly can be explained by private investors’ 

demand for lottery-like stocks. To get an impression of how lottery stocks perform, we first 

sort stocks into quintile portfolios based on the average 5-day average of the previous 

month’s highest returns, MAX, as described in the methodology Section 5.2.2.5 
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Table 15 shows the average monthly excess return on portfolios sorted on MAX. Portfolio 

1 contains stocks that have provided the lowest MAX with 1.65%, and portfolio 5 contains 

the stocks that have provided the highest MAX with 8.91%. No monotonic relationship 

can be observed between the portfolios sorted on MAX and their subsequent monthly 

returns, as the monthly returns change directions for ascending levels MAX.  

Table 16 shows the average monthly return on the two extreme quintile portfolios per 

period, as well as the average return for a trading strategy, where a long position is taken 

in the high-MAX portfolio and the short position is taken in the low-MAX portfolio and 

its corresponding t-statistic. There seems to be no systematic pattern in the returns for the 

long/short trading strategy across the periods, and neither of the returns are 

distinguishable from zero. For the full period, the average monthly excess return is slightly 

positive, again contradicting the lottery-stock hypothesis, despite not being statistically 

significant.  

Table 15 Monthly excess returns from portfolios sorted on MAX (2007 - 2017) 
                    
  Portfolio returns Number of stocks 

Portfolio Avg. High return Mean (Std) Min Med Max Min Med Max 
Portfolio 1  1.65  0.31 (5.02) -22.81 0.60 14.33 11 15 21 
Portfolio 2 2.82  0.05 (6.04) -24.66 0.15 21.18 10 15 20 
Portfolio 3 3.72  0.12 (6.51) -30.41 0.36 20.28 10 15 20 
Portfolio 4 4.97  0.21 (6.42) -28.06 0.19 17.51 10 15 20 
Portfolio 5 8.91  0.37 (6.75) -28.40 0.63 18.41 11 15 21 

 
Returns are percentage monthly excess returns. Returns are calculated as simple returns and are 
not annualized. Portfolios are sorted based on the highest average 5-day return. The return in the 
subsequent month is calculated, before the portfolios are rebalanced at the end of the next month. 
The returns are equally-weighted. 
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Table 16 Monthly excess returns from a long-short position in MAX portfolios 
 (2007 – 2017) 

          
Year Portfolio 1 Portfolio 5 Diff t-test: Diff = 0 

2007 - 2008 -2.96 -3.36 -0.40 (-0.41) 
2009 - 2010 3.66 2.39 -1.27 (-0.92) 
2011 - 2012 -1.12 0.82 1.94  (1.72)* 
2013 - 2014 0.29 1.03 0.74 (0.86) 
2015 - 2016 1.06 1.23 0.17 (0.17) 

2017 1.54 -0.12 -1.66 (-1.40) 
Full sample 0.31 0.37 0.06 (0.14) 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 
 

6.2 FAMA AND MACBETH REGRESSIONS 

In the following section, we will present the results from our time-series- and cross-

sectional regressions, using the Fama and MacBeth (1973) methodology. We start by 

estimating the CAPM for portfolios sorted on firm characteristics, before we move on to 

the Fama-French three-factor model, and the Carhart four-factor model. The asset pricing 

models are estimated on the same equally-weighted portfolios as in the previous section, 

namely, portfolios sorted on beta, size, value, momentum and MAX. However, although 

not included in the thesis, we have also estimated all models on a value-weighted basis, 

which the interested reader can find in the Appendix 10 - 33. In the last section, we test 

whether the beta anomaly can be attributed to margin- and leverage constrained investors 

or a demand for lottery stocks.  

6.2.1 FACTOR CHARACTERISTICS 

Summary statistics for the factor mimicking portfolios are reported in Table 17. All factors 

have provided positive monthly excess returns over the period. The SMB factor provides 

the highest monthly returns of 1.30% monthly, and they are highly significant. 

Interestingly, the FMAX factor provides significant positive returns of 0.99%, 

contradictory to the theory, indicating that the lottery stock effect is not prevalent on the 

OSE.   
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The cross-correlation between the factors imply that multicollinearity will not 

substantially affect the estimated factor loadings: the highest cross-correlation is found 

between the market factor, MKT, and FMAX and is 0.36. This indicate that the factors, if 

found to be statistically significant across assets, will not explain the same variation in 

returns. 

Table 17 Factor returns and cross-correlations (2007 - 2017) 
                    
  Returns Cross-correlations 

                    
  Mean (Std.) t-test: Diff = 0  SMB HML MKT PR1YR FMAX BAB 

SMB 1.30 3.67     4.07*** 1.00 0.33 -0.18 -0.09 0.18 0.28 
HML 0.40 5.62 0.82 0.33 1.00 -0.12 -0.09 0.07 0.11 
MKT 0.25 5.81 0.49 -0.18 -0.12 1.00 -0.24 0.36 0.05 

PR1YR 0.31 7.13 0.50 -0.09 -0.09 -0.24 1.00 -0.27 0.09 
FMAX 0.99 5.19    2.20** 0.18 0.07 0.36 -0.27 1.00 -0.17 
BAB 0.91 5.78   1.81* 0.28 0.11 0.05 0.09 -0.17 1.00 

 
Returns are percentage monthly excess returns. Returns are calculated as simple value-weighted 
returns and are not annualized. SMB and HML are the Fama and French (1992) factor that mimic 
size and value. MKT is the excess returns from the OSEAX-index. PR1YR is Carhart (1997) factor 
that mimic a 12-month momentum pricing strategy. FMAX is the Bali et al. (2017) representing 
the demand for lottery-like stocks. BAB is the betting against beta factor proposed by Frazzini and 
Pedersen (2014). The right-hand side of the table show the cross-correlations between the factors 
over the whole period. Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*"  
 
 

6.2.2 EXCLUSION OF 2007 – 2008 OBSERVATIONS 

From the previous section, where we analyzed the returns from portfolio sorts, we saw that 

the extreme portfolios provided substantial negative returns during in the period 2007 – 

2008. Of course, this was due to the financial crisis that hit global markets. The period was 

characterized by extreme risk aversion and the lack of liquidity, and we therefore expect 

the factor portfolios to behave differently than during the bull-market from 2009 until 

present. To illustrate this, Table 18 shows the same summary statistics as Table 17, but 

from 2009 – 2017. When excluding the crisis years, the returns from the MKT and BAB 

factor become statistically significant at the 5% level. The factor cross-correlations do not 

change significantly when comparing the two periods.  
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Table 18 Factor returns and cross-correlations (2009 - 2017) 
                    
  Returns Cross-correlations 

                    
  Mean (Std.) t-test: Diff = 0  SMB HML MARKET PR1YR MAX BAB 

SMB 1.50 (3.62)     4.32*** 1.00 0.34 -0.15 -0.06 0.16 0.26 
HML 0.52 (5.55) 0.97 0.34 1.00 0.07 -0.12 0.15 0.08 
MKT 0.98 (4.08)     2.49*** -0.15 0.07 1.00 -0.26 0.40 -0.08 

PR1YR 0.34 (7.25) 0.49 -0.06 -0.12 -0.26 1.00 -0.23 0.08 
MAX 1.08 (5.22)    2.15** 0.16 0.15 0.40 -0.23 1.00 -0.21 
BAB 1.76 (5.72)     3.19*** 0.26 0.08 -0.08 0.08 -0.21 1.00 

 
The table is the same as Table 17, but calculated for the period 2009 – 2017. Significance codes:  
P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 
 

We realize that due to our relatively short sample period, returns from 2007 – 2008 period 

are likely to affect our analysis to such the extent that it becomes difficult specify a model 

that adequately captures the variation in portfolio returns. Based on the abovementioned, 

we have chosen to exclude the first two years of our sample period when performing the 

cross-sectional analysis. We believe that the loss of observations can be justified by the 

increased reliability of our results. Hence, all our cross-sectional regression will use 

historical data from the period 2009 – 2017.  

Since we now use historical data from 2009 – 2017, we examine whether the beta anomaly 

is present in the new data sample. In Figure 11, the average monthly return from five 

equally-weighted portfolios sorted on beta is shown together with the security market line 

(SML). The figure shows that portfolio 1, 2 and 3 provide returns substantially higher 

than predicted by the CAPM. Conversely, portfolio 4 and 5 provide returns substantially 

lower than predicted by the CAPM . In other words, for the high-beta portfolios, investors 

are not adequately compensated for the systematic risk they undertake, and the beta 

anomaly is evidently present on the OSE between 2009 and 2017. Hence, our motivation to 

identify other systematic risk factors and the origin of the beta anomaly persevere.   
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FIGURE 11 - MONTHLY RETURNS OF BETA-SORTED PORTFOLIOS VS. SML (2009 – 2017) 

 

6.2.3 ESTIMATION OF THE CAPM 

We begin by estimating the CAPM parameters to assess whether the excess market return 

alone can explain the cross-section of returns in our sample, and whether the market risk 

premium has been priced on the OSE. As explained in the methodology section, we apply 

the Fama and MacBeth (1973) methodology. First, we run five time-series regressions from 

2009 – 2017 on the five portfolios sorted on firm characteristics. Next, the beta estimates 

obtained from the time-series regressions are used as explanatory variables in 108 monthly 

cross-sectional regressions, to obtain the estimated risk premia. The model is considered to 

be well-specified if the estimated intercept from the cross-sectional regression is 

statistically indistinguishable from zero, and the risk premium is statistically significant. 

All the time-series regression output can be found in the Appendices. However, since the 

second step cross-sectional regressions amount to a total 540 outputs, we decided not to 

include these in the Appendix.  

6.2.3.1 ESTIMATION OF THE CAPM FOR BETA-SORTED PORTFOLIOS 

Table 19 shows the parameter estimations from the CAPM regressions on five beta-sorted 

portfolios in the period 2009 – 2017. Panel A shows the intercepts and factor exposures for 

the portfolios sorted on beta, and Panel B shows the average coefficients from the cross-

sectional regression, equivalent to the estimated risk premia. The full regression output can 

be found in Appendix 9, along with the same regressions with value-weighted portfolios in 

Appendix 10. Concentrating on Panel A, it can be seen that one of the alpha estimates are 
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significantly different from zero at the 5% level. As expected, the average market factor 

exposure increases monotonically 0.46 for portfolio 1 to 1.41 for portfolio 5. The excess 

market return is only able to explain 0.28% of the variation of the lowest beta portfolio, 

but increases for portfolios with ascending betas.  

Estimation of the risk premia can be seen from Panel B. Clearly, the model is not well-

specified, as the average alpha estimate from the cross-sectional regressions is statistically 

significant at the 1% level. The market risk premium is found to be negative, but not 

statistically significant.  

Table 19 Estimation of the CAPM for portfolios sorted on beta (2009 - 2017) 
        
Panel A Time-series regression exposure estimates 
        

Portfolio 𝛼 ̂ 𝛽r̂¡�  Adjusted 𝑅2 
Low beta     0.010*** 0.464*** 0.281 

2 0.004 0.783*** 0.442 
3 0.004 0.953*** 0.595 
4 -0.003 1.106*** 0.631 

High beta -0.008* 1.411*** 0.616 
 
Panel A shows the results from the time-series regression using Equation 40. The portfolios are pre-
sorted on 36-month beta estimates and rebalanced monthly. Constants that are significantly 
different from zero at a 5% level indicate a wrongly specified model. The adjusted R2 is an 
indicator of the goodness of fit, and is the proportion of the variance in the dependent variable 
that is predictable from the independent variable(s), adjusted for the increase in 𝑅2 with increasing 
independent variables.  
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 
 

Panel B Estimation of risk premia 
      
Coefficient Risk premium T-statistic 
  𝛼 ̂ 0.0190     (3.80)*** 
  𝛾̂r¡�  -0.0090 (-1.39) 
  
Panel B shows the estimated risk premia for the intercept and 
each risk factor using Equation 41. If the model is true, the 
intercept, 𝛼,̂ is zero. The factor, 𝛾̂7, is priced if it is statistically 
signficant at the 5% level.  
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6.2.3.2 ESTIMATION OF THE CAPM FOR BM- AND SIZE-SORTED PORTFOLIOS 

We now turn to estimating CAPM on portfolios sorted on firm characteristics other than 

beta. Table 20 summarizes the regression output from the first-pass time-series regression 

and second-pass cross-sectional regression for portfolios sorted on both BM and size. The 

regression output can be found in Appendix 11 and 13. For all portfolios sorted on BM 

and size, the market factor exposures from the time-series regressions are statistically 

significant, and with good dispersion. The intercepts are statistically indistinguishable from 

zero for all BM portfolios, except for portfolio 2. As seen from the adjusted 𝑅2s, the 

market risk factor is able to explain between 0.46% and 0.57% of the portfolio returns, 

depending on the portfolio. For the size-sorted portfolios, the market factor exposure 

increases monotonically with size, indicating that the larger-sized portfolios contain stocks 

with higher betas. Portfolio 1 has an alpha significantly different from zero, indicating that 

the CAPM is inadequate for explaining the portfolio returns. Furthermore, the adjusted 

𝑅2 increases with portfolio size. 

Turning to Panel B and the estimated risk premia, the average cross-sectional intercept is 

indistinguishable from zero for the portfolios sorted on BM. However, the market factor is 

estimated to -0.0025 and is not statistically significant, indicating that market risk is not a 

priced factor, contradictory to the CAPM. For the size-sorted portfolios, the average alpha 

is statistically significant at the 10% level, and therefore not considered to be a priced risk 

factor. Furthermore, the market risk premium is not found to be significant.   
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Table 20 Estimation of the CAPM for portfolios sorted on BM and size (2009 - 2017) 
                
Panel A Factor exposures for BM Factor exposures for size 
                

Portfolio 𝛼 ̂ 𝛽r̂¡�  
Adjusted 

𝑅2 Portfolio 𝛼 ̂ 𝛽r̂¡�   
Adjusted 

𝑅2 
Low BM 0.001 0.897*** 0.564 Low size    0.011** 0.627*** 0.168 

2    0.007** 0.911*** 0.565 2 -0.002 0.778*** 0.321 
3 0.001 0.774*** 0.506 3 0.002 0.825*** 0.443 
4 -0.002 1.001*** 0.570 4 0.000 0.979*** 0.644 

High BM -0.001 1.063*** 0.458 High size -0.003 1.298*** 0.840 
 
Panel A shows the results from the time-series regression using Equation 40. In the left side of the 
panel, portfolios pre-sorted on BM are used as dependent variable in the time-series. In the right 
side of the panel, portfolios pre-sorted on size are used as dependent variable in the time-series 
regression. Constants that are significantly different from zero at a 5% level indicate a wrongly 
specified model. The adjusted 𝑅2 is an indicator of the goodness of fit, and is the proportion of the 
variance in the dependent variable that is predictable from the independent variable(s), adjusted 
for the increase in R2 with increasing independent variables. Significance codes: P < 0.01 "***", P 
< 0.05 "**", P < 0.1 "*" . 
 
 

Panel B Risk premia for portfolios sorted on BM and size 
            

Sort: BM Sort: size 
            
Coefficient Risk premium T-statistic Coefficient Risk premium T-statistic 

𝛼 ̂ 0.0126 (0.84) 𝛼 ̂ 0.0158     (1.76)* 
𝛾̂r¡�  -0.0025 (-0.15) 𝛾̂r¡�  -0.0059    (-0.64) 

 
Panel B shows the estimated risk premium for the intercept and each risk factor using Equation 
41. If the model is true, the intercept, 𝛼,̂ is zero. The factor, 𝛾̂7, is priced if it is statistically 
signficant at the 5% level.  
 
 

6.2.3.3 ESTIMATION OF THE CAPM FOR MOMENTUM- AND MAX-SORTED PORTFOLIOS 

Finally, we estimate the CAPM on portfolios sorted on momentum and MAX. Table 21 

summarizes the results from both regressions, and the full regression output can be found 

in Appendix 15 and 17. Similarly, as with the CAPM estimation on the other 

characteristics, the market factor exposures are found to be significantly different from 

zero for all momentum- and MAX-sorted portfolios. For the portfolios sorted on 

momentum, the alpha for portfolio 5 is significantly different from zero, indicating a 
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wrongly specified model. For the portfolios sorted on MAX, on the other hand, there are 

no significant intercepts.  

Considering the estimated risk premia for the portfolios sorted on momentum from Panel 

B, market risk is not a priced factor, and the significant alpha suggests that a considerable 

part of the cross-sectional returns remain unexplained. For MAX, both the alpha and the 

market risk premium is found to be insignificant.  

Table 21 Estimation of the CAPM for portfolios sorted on momentum and MAX (2009 - 2017) 
                
Panel A Factor exposures for momentum Factor exposures for MAX 

               

Portfolio 𝛼 ̂ 𝛽r̂¡�   
Adjusted 

𝑅2 Portfolio 𝛼 ̂ 𝛽r̂¡�    
Adjusted 

𝑅2 
Low mom -0.006 1.246*** 0.553 Low MAX 0.003 0.728*** 0.461 

2 -0.001 0.885*** 0.597 2 -0.001 1.003*** 0.625 
3 -0.001 0.793*** 0.451 3 0.002 0.974*** 0.541 
4 0.002 0.919*** 0.606 4 0.000 1.032*** 0.560 

High mom    0.011** 0.859*** 0.401 High MAX 0.002 0.974*** 0.487 
 
Panel A shows the results from the time-series regression using Equation 40. In the left side of the 
panel, portfolios pre-sorted on momentum are used as dependent variable in the time-series. In the 
right side of the panel, portfolios pre-sorted on MAX are used as dependent variable in the time-
series regression. Constants that are significantly different from zero at a 5% level indicate a 
wrongly specified model. The adjusted R2 is an indicator of the goodness of fit, and is the 
proportion of the variance in the dependent variable that is predictable from the independent 
variable(s), adjusted for the increase in R2 with increasing independent variables.  
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 

 

Panel B Risk premia for portfolios sorted on momentum and MAX 
            

Sort: momentum Sort: MAX 
            
Coefficient Risk premium T-statistic Coefficient Risk premium T-statistic 

𝛼 ̂ 0.0218    (2.03)** 𝛼 ̂ 0.0105  (0.99) 
𝛾̂r¡�  -0.0122 (-1.02) 𝛾̂r¡�  0.0001 (0.01) 

 
Panel B shows the estimated risk premium for the intercept and each risk factor using Equation 
41. If the model is true, the intercept, 𝛼,̂ is zero. The factor, 𝛾̂7, is priced if it is statistically 
signficant at the 5% level. 
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6.2.4 SUMMARY OF THE CAPM ESTIMATIONS 

Table 22 summarizes our findings from the estimation of the CAPM on portfolios sorted 

on various characteristics. As earlier mentioned, the model is well-specified if the alpha 

terms are insignificant at the 5% level, and the estimated market risk premium is 

statistically significant. From Table 22 it can be seen that the alpha term is only 

indistinguishable from zero at the 5% level for portfolios sorted on BM, MAX, and size. In 

terms of the market risk premium, the coefficients indicate that investors are negatively 

compensated for market risk exposure, which supports our previous findings that the beta 

anomaly is present on the OSE. Importantly, however, the market risk premium is not a 

priced risk factor across assets, as none of the coefficients are statistically significant.  

To conclude, our findings indicate that the CAPM is an inadequate model for explaining 

the cross-section of returns on the OSE in the period 2009 – 2017.  

Table 22 Summary of intercept and risk premia from the CAPM estimations (2009 – 2017) 
          

Portfolio sorts 
  

𝛼 ̂ T-statistic 
  

𝛾̂r¡�  T-statistic 
Beta 0.0190     (3.80)*** -0.0090 (-1.39) 
BM 0.0126 (0.84) -0.0025 (-0.15) 
Size 0.0158   (1.76)* -0.0059 (-0.64) 
Momentum 0.0218     (2.03)** -0.0122 (-1.02) 
MAX 0.0105 (0.99)  0.0001 (0.01) 

 

 

6.2.5 ESTIMATION OF THE FAMA-FRENCH THREE-FACTOR MODEL 

Next, we will extend the CAPM to include the SMB and HML factors, as proposed by 

Fama and French (1992). Previous studies on both international markets and the OSE 

have concluded that the three-factor model describes more of the variation in excess stock 

returns. The following section will test whether this is true for the OSE in the period 2009 

- 2017. Similarly as with the CAPM estimations, we follow the Fama and Macbeth (1973) 

methodology with two step regressions to assess the factor premiums for portfolios sorted 

on five different criterions.  
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6.2.5.1 ESTIMATION OF THE THREE-FACTOR MODEL FOR BETA-SORTED PORTFOLIOS 

Table 23 summarizes the estimation of the three-factor model on portfolios sorted on beta. 

The full regression output can be found in Appendix 19. The output in Panel A from 

Table 23 shows that the market factor exposures are significant and, not surprisingly, 

increasing in beta. Similarly, the SMB-exposures are significant for all beta-sorted 

portfolios. The SMB exposures are relatively similar across all portfolios, pointing towards 

an even size-distribution. Beta-portfolio 1, 2, 3 and 4 all have insignificant exposures to 

HML and do not seem to be dominated by either high-BM or low-BM stocks. Portfolio 5, 

on the other hand, has significant and positive HML exposure, indicating an overweight of 

high-BM stocks. The adjusted 𝑅2s are monotonically increasing in beta and, generally 

speaking, marginally higher than for the CAPM estimation on beta-sorted portfolios. The 

intercepts are significant for portfolio 4 and 5 and generally higher for the low beta 

portfolios. However, we do not find that any of the factor exposures explain the variation 

in excess returns, translating into insignificant risk premia for all factor exposures, 

including alpha, as seen from Panel B.    

Table 23 Estimation of the three-factor model for portfolios sorted on beta (2009 - 2017) 

            
Panel A Factor exposures for portfolios sorted on beta 

            
Portfolio 𝛼 ̂ 𝛽r̂¡�  𝛽q̂rs 𝛽ûrv Adjusted R2 
Low beta 0.003 0.518*** 0.421*** 0.028 0.470 

2 -0.004 0.845*** 0.471*** 0.009 0.562 
3 -0.004 1.023*** 0.478*** -0.065 0.694 
4     -0.010*** 1.160*** 0.404*** 0.001 0.691 

High beta     -0.015*** 1.445*** 0.388***    0.181** 0.684 
 
Panel A shows the results from the time-series regression using Equation 40. The portfolios are pre-
sorted on 36-month beta estimates and rebalanced monthly. Constants that are significantly 
different from zero at a 5% level indicate a wrongly specified model. The adjusted R2 is an 
indicator of the goodness of fit, and is the proportion of the variance in the dependent variable 
that is predictable from the independent variable(s), adjusted for the increase in R2 with increasing 
independent variables.  
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
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6.2.5.2 ESTIMATION OF THE THREE-FACTOR MODEL FOR BM- AND SIZE-SORTED 

PORTFOLIOS 

Table 24 summarizes the estimation of the three-factor model on portfolios sorted on BM 

and size. The full regression output can be seen in Appendix 21 and 23. As seen from 

Panel A, the market risk exposures and the exposures to SMB are significant on 1% level 

for the BM-sorted portfolios. The companies on OSE seem to be relatively equally 

distributed across the BM-portfolios, with respect to size. The HML exposures are 

significant for all portfolios, except portfolio 2, and almost monotonically increasing for the 

BM-sorted portfolios. Interestingly, the regressions produces significant alphas for portfolio 

4 and 5 when we include SMB and HML. Further, we find the adjusted 𝑅2s to be 

relatively high for all portfolios, ranging from 0.62 to 0.69, which is clearly higher than the 

corresponding values for the CAPM estimations. Nevertheless, we do not find any of the 

factor risk premia to be significantly different from zero when sorted on BM, as seen from 

Panel C.  

As seen from Panel B, the market factor exposure is significant for all size-sorted 

portfolios, and the exposure is almost monotonically increasing. In other words, large-size 

portfolios have an overweight of high-beta stocks, while the low-size portfolios have an 

overweight of low-beta stocks. We also find the SMB-factor to be significant on a 1% level 

for all portfolios, except for portfolio 5. Unsurprisingly, the exposures are monotonically 

decreasing with size. Only one portfolio has significant exposures to HML above the 5% 

Panel B Estimation of risk premia 
      
Coefficient Risk premium T-statistic 

𝛼 ̂ 0.0038 (0.16) 
𝛾̂r¡�  -0.0075 (-1.21) 
𝛾̂qrs 0.0328 (0.62) 
𝛾̂urv 0.0002 (0.01) 

 
Panel B shows the estimated risk premium for the 
intercept and each risk factor using Equation 41. 
If the model is true, the intercept, 𝛼,̂ is zero. The 
factor, 𝛾̂7, is priced if it is statistically signficant 
at the 5% level.     
      



 
 

 81 

level, namely portfolio 3. The insignificant exposures of the remaining portfolios indicate 

that size-portfolios are without clear BM-characteristics. Further, we only find two 

significant intercepts in portfolio 2 and portfolio 3. The adjusted 𝑅2s are significantly 

higher than for the CAPM estimations and monotonically increasing with size. This is not 

surprising, given that the constructed factors are value-weighted and that the large stocks 

therefore will dominate them. 

As seen from Panel C, the estimated risk premia are found to be significant for both the 

market factor and SMB. Further, we estimate a significant alpha risk premium. 

Surprisingly, the risk premium for SMB is found to be negative and significant for size-

sorted portfolios, which is contradictory to the theory. Still, compared to the CAPM, the 

three-factor model with portfolios sorted on size seems to be a better fit. 

Table 24 Estimation of the three-factor model for portfolios sorted on BM and size (2009 - 
2017) 

            
Panel A Factor exposures for portfolios sorted on BM 

            
Portfolio 𝛼 ̂ 𝛽r̂¡�  𝛽q̂rs 𝛽ûrv Adjusted 𝑅2 
Low BM -0.004 0.957*** 0.350*** -0.134** 0.619 

2 0.000 0.979*** 0.444***    -0.094* 0.650 
3 -0.005 0.839*** 0.377***   -0.142*** 0.585 
4    -0.008** 1.026*** 0.331***    0.197*** 0.686 

High BM     -0.012*** 1.113*** 0.578***    0.264*** 0.664 
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Panel B Factor exposures for portfolios sorted on size (2009 - 2017) 

            
Portfolio 𝛼 ̂ 𝛽r̂¡�  𝛽q̂rs 𝛽ûrv Adjusted 𝑅2 
Low size 0.000 0.734***       0.717*** -0.107 0.313 

2     -0.016*** 0.905***       0.860*** -0.120* 0.59 
3   -0.008** 0.880***       0.527***     0.157*** 0.655 
4 -0.004 1.012***       0.246*** -0.004 0.669 

High size -0.002 1.284***  -0.058 0.067 0.841 
 
Panel A and B shows the results from the time-series regression using Equation 40. In Panel A, 
portfolios pre-sorted on BM are used as dependent variable in the time-series. In Panel B, 
portfolios pre-sorted on size are used as dependent variable in the time-series regression. Constants 
that are significantly different from zero at a 5% level indicate a wrongly specified model. The 
adjusted R2 is an indicator of the goodness of fit, and is the proportion of the variance in the 
dependent variable that is predictable from the independent variable(s), adjusted for the increase 
in R2 with increasing independent variables. Significance codes: P < 0.01 "***", P < 0.05 "**", P < 
0.1 "*" . 
 
 

Panel C Risk premia for portfolios sorted on BM and size 
            

Sort: BM Sort: size 
       
Coefficient Risk premium T-statistic Coefficient Risk 

premium 
T-statistic 

𝛼 ̂ -0.0235   (-0.87) 𝛼 ̂ 0.0573   (2.59)** 
𝛾̂r¡�  0.0313  (1.03) 𝛾̂r¡�  -0.0385    (-2.05)** 
𝛾̂qrs 0.0080  (0.47) 𝛾̂qrs -0.0213    (-2.05)** 
𝛾̂urv -0.0217   (-1.50) 𝛾̂urv -0.0164 (-0.93) 

 
Panel C shows the estimated risk premium for the intercept and each risk factor using Equation 
41. If the model is true, the intercept, 𝛼,̂ is zero. The factor, 𝛾̂7, is priced if it is statistically 
signficant at the 5% level. Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 

 

6.2.5.3 ESTIMATION OF THE THREE-FACTOR MODEL FOR MOMENTUM- AND MAX-SORTED 

PORTFOLIOS 

Table 25 summarizes the estimation of the three-factor model on portfolios sorted on 

momentum and MAX. The regression output can be found from Appendix 25 and 27. As 

seen from Panel A, all momentum portfolios have a significant exposure to the market 

factor and SMB in the three-factor model. The market capitalization of the stocks seems to 
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be equally distributed across the portfolios, except for portfolio 4, which has a surprisingly 

low exposure to SMB. The model estimates three significant intercepts and the adjusted 

𝑅2s are higher for all portfolios compared to the CAPM estimations.  

As seen from Panel C, the market factor risk premium and the risk premium for SMB are 

not significant in the three-factor model. However, the market does compensate for 

exposure to the HML factor. Lastly, we find the alpha risk premium to be positive and 

significant.  

Panel B shows the factor exposures of portfolios sorted on MAX. Similar to the CAPM 

estimation on MAX-sorted portfolios, we find the exposures to the market factor to be 

significantly different from zero for all portfolios in the three-factor models. All portfolios 

have a significant exposure to SMB, but we do not find any of the portfolios to have a 

significant exposure to HML. We estimate one significant intercept and the adjusted 𝑅2s 

have increased significantly from the CAPM estimation. However, we do not find any 

significant risk premia for portfolios sorted on MAX.  

Table 25 Estimation of the three-factor model for portfolios sorted on momentum and 
MAX (2009 - 2017) 

            
Panel A Factor exposures for portfolios sorted on momentum 
            

Portfolio 𝛼 ̂ 𝛽r̂¡�  𝛽q̂rs 𝛽ûrv Adjusted R2 
Low mom     -0.015*** 1.314*** 0.521*** 0.023 0.625 

2    -0.007** 0.939*** 0.392*** -0.014 0.679 
3    -0.008** 0.852*** 0.432*** -0.009 0.544 
4 -0.001 0.942***        0.174** -0.000 0.615 

High mom  0.002 0.926*** 0.547*** 0.065 0.541 
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Panel B Factor exposures for portfolios sorted on MAX 
            

Portfolio 𝛼 ̂ 𝛽r̂¡�  𝛽q̂rs 𝛽ûrv Adjusted R2 
Low MAX -0.003 0.785*** 0.386*** -0.054 0.543 

2    -0.007** 1.048*** 0.393*** 0.073 0.716 
3  -0.006* 1.032*** 0.470*** 0.042 0.645 
4  -0.007* 1.086*** 0.438*** 0.043 0.643 

High MAX -0.006 1.034*** 0.488*** 0.052 0.588 
 
Panel A and B shows the results from the time-series regression using Equation 40. In Panel A, 
portfolios pre-sorted on momentum are used as dependent variable in the time-series regression. In 
Panel B, portfolios pre-sorted on MAX are used as dependent variable in the time-series regression. 
Constants that are significantly different from zero at a 5% level indicate a wrongly specified 
model. The adjusted R2 is an indicator of the goodness of fit, and is the proportion of the variance 
in the dependent variable that is predictable from the independent variable(s), adjusted for the 
increase in R2 with increasing independent variables. Significance codes: P < 0.01 "***", P < 0.05 
"**", P < 0.1 "*" . 
 

Panel C Risk premia for portfolios sorted on momentum and MAX 
            

Sort: momentum Sort: MAX 
            
Coefficient Risk premium T-statistic Coefficient Risk premium T-statistic 

𝛼 ̂ 0.0277     (2.26)** 𝛼 ̂ 0.0021  (0.08) 
𝛾̂r¡�  -0.0154  (-1.30) 𝛾̂r¡�  -0.0033  (-0.09) 
𝛾̂qrs -0.0105 (-0.82) 𝛾̂qrs 0.0275 (0.64) 
𝛾̂urv 0.1784     (2.76)*** 𝛾̂urv -0.0045  (-0.05) 

 
Panel C shows the estimated risk premium for the intercept and each risk factor using Equation 
41. If the model is true, the intercept, 𝛼,̂ is zero. The factor, 𝛾̂7, is priced if it is statistically 
signficant at the 5% level. Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 
 

6.2.6 COMPARISON OF THE THREE-FACTOR MODEL TO THE CAPM 

Table 26 compares the risk premia found in the CAPM and three-factor model. The table 

shows that exposures to the market factor are uncompensated for all sorts in the CAPM. 

Similarly, all three-factor models report insignificant risk premia for the market factor. The 

CAPM estimates significant alphas for portfolios sorted on beta and momentum, but 

insignificant alphas for the remaining portfolios. The results indicate ambiguous return 

characteristics and that the market risk factors are unable to explain the variation in 
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returns for the portfolios. When we include SMB and HML as explanatory variables, we 

see that the three-factor model estimates significant risk premia for some portfolio sorts. 

Interestingly, the alpha of the size-sorted portfolios becomes significant and the alpha of 

the beta-sorted portfolios becomes insignificant. In total, our model still has problems 

explaining the variation in returns for most portfolio sorts, and hence, we cannot claim a 

good model specification. Nevertheless, taking the above into consideration, we argue that 

the three-factor model explain the variation in excess stock returns on OSE better than the 

CAPM model. 

Table 26 Comparison between estimated risk premia for CAPM and three-factor model 
    
  Three-factor model CAPM 
Portfolio sorts 𝛼 ̂ 𝛾̂r¡�  𝛾̂qrs 𝛾̂urv 𝛼 ̂ 𝛾̂r¡�  

Beta 0.0038 -0.0075 0.0328 0.0002 0.0190 -0.0090 
t-stat (0.16) (-1.21) (0.62) (0.01)   (3.80)*** (-1.39) 
BM -0.0235 0.0313 0.0080 -0.0217 0.0126 -0.0025 

t-stat (-0.87) (1.03) (0.47) (-1.50) (0.84) (-0.15) 
Size 0.0573 -0.0385 -0.0213 -0.0164 0.0158 -0.0059 

t-stat (2.59)**  (-2.05)**  (-2.05)** (-0.93) (1.76)* (-0.64) 
MOM 0.0277 -0.0154 -0.0105 0.1784 0.0218 -0.0122 
t-stat (2.26)** (-1.30) -0.82   (2.76)***  (2.03)** (-1.02) 
MAX 0.0021 -0.0033 0.0275 -0.0045 0.0105 0.0001 
t-stat (0.08) (-0.09) (0.64) (-0.05) (0.99) (0.01) 

 

 

6.2.7 ESTIMATION OF THE FOUR – FACTOR MODEL 

We will now expand our model to include Carhart’s momentum factor, PR1YR, to 

evaluate whether the momentum factor is a priced risk factor on the OSE. The 

methodology is the same as in the previous sections, where we sort on beta, size, BM, 

momentum and MAX and run two step regressions according to Fama and MacBeth 

(1973). We will not show the regression output, but the statistics for the estimated risk 

premia are summarized in Table 27 and compared to the three-factor risk premia. For the 

interested reader, the full regression output from the first step regressions can be found in 

Appendix 29 – 33. 
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As with the three-factor model, the first-step regressions for all sorts have significant 

exposures to the market factor. Further, all portfolios except size-portfolio 4 and 

momentum-portfolio 4 have significant exposures to SMB. Considering the HML-factor, we 

find significant exposures for all BM-sorted portfolios, except for portfolio 2. We also find 

significant exposures for size-portfolio 3 and beta-portfolio 5, while significant exposures for 

momentum and max-sorted portfolios are absent in our sample. PR1YR exposures are 

significant for momentum-portfolio 1 and 5, and MAX-portfolio 3. Lastly, we still estimate 

several significant intercepts across all sorts. The adjusted 𝑅2s are not significantly 

different from that of the three-factor model.  

Table 27 shows the estimated risk premia for the three-factor regressions and four-factor 

regressions. Comparing the alphas of the two models, we notice that the alpha of the 

portfolios sorted on momentum and size turns insignificant when we include the 

momentum factor. In fact, we have no significant alpha risk premia above the 5% level 

when we extend the model with PR1YR. Further, we find the PR1YR factor risk premia 

to be insignificant for all portfolio-sorts. Additionally, SMB and market factor exposures 

are no longer compensated with size-sorted portfolios in the four-factor model. Momentum-

sorted portfolios have a significant HML-risk premium when we include PR1YR, and the 

MAX-sorted portfolios are still not compensated for any of the risk exposures. 

It is difficult to determine the best model. On the one hand, the four-factor model has no 

significant alphas. On the other hand, we only find one significant risk premium when we 

extend the model. Because the contribution of the PR1YR factor is close to non-existent 

and the risk premia no longer explains the variation in excess returns across sorted 

portfolios when we include the factor, it is our understanding that the three-factor model is 

slightly better. However, as noted in the evaluation of the three-factor model, neither of 

the model specifications we have presented so far are able to explain the returns to a 

satisfactory level. 
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Table 27 Comparison between estimated risk premia for three- and four-factor model 

        

 Four-factor model  Three-factor models 
Sorts 𝛼̂ 𝛾̂r¡�  𝛾̂qrs 𝛾̂urv 𝛾̂j¢1£¢ 𝛼̂ 𝛾̂r¡�  𝛾̂qrs 𝛾̂urv 
Beta -0.0177 -0.0115 0.0908 0.0010 -0.0651 0.0038 -0.0075 0.0328 0.0002 
t-stat (-0.51) (-1.70)* (1.08) (0.04) (-0.90) (0.16) (-1.21) (0.62) (0.01) 
BM -0.0668 0.0832 -0.0092 -0.0275 0.0390 -0.0235 0.0313 0.0080 -0.0217 

t-stat (-1.80)* (1.89)* (-0.43) (-1.84)* (1.16) (-0.87) (1.03) (0.47) (-1.50) 
Size 0.0216 -0.0110 0.0006 -0.0556 -0.1283 0.0573 -0.0385 -0.0213 -0.0164 

t-stat (0.89) (-0.57) (0.04) (-1.48) (-1.28) (2.59)** (-2.05)** (-2.05)** (-0.93) 
Mom 0.0556 -0.0519 0.0050 0.2770 -0.0772 0.0277 -0.0154 -0.0105 0.1784 
t-stat (1.56) (-1.20) (0.28) (1.97)** (-1.01) (2.26)** (-1.30) -0.82 (2.76)*** 
MAX 0.0028 -0.0042 0.0280 -0.0047 -0.0038 0.0021 -0.0033 0.0275 -0.0045 
t-stat (0.10) (-0.11) (0.65) (-0.05) (-0.17) (0.08) (-0.09) (0.64) (-0.05) 

 
6.2.8 BETTING AGAINST BETA 

In this section, we will test whether the beta anomaly on OSE can be explained by 

Frazzini and Pedersen’s (2014) betting against beta factor. As previously mentioned, 

Frazzini and Pedersen (2014) argue that the beta anomaly is attributable to leverage and 

margin constraints with investors. They theorize that investors with limited access to 

leverage tend to overweigh risky securities in their portfolio, pushing prices of high-beta 

stocks upwards and reducing future returns. In our analysis, we will first compare alphas 

from regressions specified by the CAPM, the three-factor model, and the four-factor model 

on beta-sorted portfolios. Next we will compare the sharp ratios of the portfolios and 

conclude whether the capital market line (CML) holds on the OSE. Lastly, we will run the 

same regressions on the BAB-factor and examine if unconstrained investors can bet against 

beta and earn abnormal returns.  
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Table 28 Alpha estimates for portfolios sorted on five beta-sorted portfolios and the 
BAB-factor 

              

  Portfolios sorted on beta and BAB 

  1 2 3 4 5 BAB 
Excess Return 1.45 1.13 1.32 0.74 0.63 1.76 

CAPM 𝛼     0.010*** 0.004 0.004 -0.003   -0.008*    0.019*** 
3-factor 𝛼 0.003 -0.004 -0.004      -0.010***      -0.015***  0.012** 
4-factor 𝛼 0.003 -0.005 -0.004      -0.010***      -0.014***  0.011** 

 
Std.  3.53 4.78 5.03 5.67 7.32 5.72 

Sharpe ratio 0.41 0.24 0.26 0.13 0.09 0.31 
 
       

In Table 28, we have summarized the Sharpe ratios and the estimated alphas from the 

CAPM-, the three-factor model-, and the four-factor model regressions on five beta-sorted 

portfolios, as well as the BAB factor. The table shows almost monotonically decreasing 

Sharpe ratios with beta, confirming that low-beta stocks earn higher risk adjusted returns 

than high-beta stocks. The findings does not only confirm the relative flatness of the CML 

on OSE; the CML appears to have a negative slope. We can see that the alphas for all 

regressions are almost monotonically decreasing with beta, although they are not all 

statistically significant. We should be cautious when we draw inferences from insignificant 

alphas. Nevertheless, the low-beta stocks are generally found to have alphas that are 

indistinguishable from zero and the high-beta stocks have increasingly negative and 

significant alphas. In other words, having accounted for the systematic risk exposures, the 

high-beta stocks experience significant negative abnormal returns, while the low-beta 

stocks experience insignificant abnormal returns. Our findings therefore indicate that the 

high-beta portfolios earn lower risk-adjusted returns.  

The far right column in Table 28 reports the excess return and alphas for the BAB factor. 

That is, a long leveraged low-beta stocks and short de-leveraged high-beta stocks portfolio 

constituting a market neutral portfolio. The portfolio earns significant CAPM abnormal 

returns of 1.9% on average. Further, the portfolio earns significant abnormal returns of 

1.2% and 1.1% for the three-factor and four-factor model, respectively. The results imply 

that an unconstrained investor could exploit the arbitrage opportunity and earn positive 
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returns on a market neutral portfolio. Thus, if agents on OSE were unconstrained with 

respect to leverage and margin, we would expect that the abnormal returns would be 

arbitraged away and our alphas to be insignificant. Hence, our findings indicate that 

leverage and margin constraints can be the source of the beta-anomaly at OSE.  

6.2.9 LOTTERY STOCK DEMAND 

Bali et al. (2017) argue that the demand for lottery stocks explains the beta anomaly. The 

theory states that investors generate demand for stocks with high probabilities of large 

short-term up moves in the stock price, putting a price pressure on high-beta stocks and 

reducing future returns. To test this hypothesis on the OSE, we conduct a bivariate 

portfolio analysis where we first sort stocks on MAX and subsequently on beta. This is 

done on a monthly basis and the monthly excess returns of the portfolios are compared. By 

double sorting stocks into bivariate portfolios, we control for MAX-characteristics, which 

allows us to examine the relationship between excess returns and betas without the 

influence of a demand for lottery stocks. Hence, if the demand for lottery stocks triggers 

the beta anomaly, we would expect beta portfolios within each MAX portfolio to have 

increasing excess returns in beta. Next, we will extend the four-factor model to include the 

FMAX factor, and regress it on the BAB factor. If the demand for lottery stocks explains 

the abnormal returns achieved by the BAB-factor in the four-factor model, the BAB factor 

should have a significant exposure to the FMAX-factor and the alpha of the extended four-

factor model should be insignificant.  

Table 29 summarizes the average monthly excess return for each double sorted portfolio 

from 2009 to 2017. The table shows that portfolios sorted on beta are without any clear 

return characteristics. The low-beta portfolios still earn higher returns compared to the 

high-beta portfolios on average. In fact, the average return is almost monotonically 

decreasing in beta. Clearly, the beta anomaly is still persistent after controlling for MAX-

characteristics. As explained in the methodology section 5.2.1, a double sorting procedure 

result in a limited number of stocks in each portfolio. As a result, the minimum number of 

companies for our double sorted portfolios is only three companies, and we are therefore 

cautious to draw any inferences on the basis of the bivariate analysis.  
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In order to evaluate the effect of lottery stock demand without being subjected to the 

biases that might occur due to small portfolio sizes, we will apply the factor models and 

use the BAB factor as the dependent variable. The factor exposures are presented in Table 

30. As seen from the far-right column, the BAB factor has a significant exposure to 

FMAX. However, the portfolio still earns significant abnormal returns of 1.2%. As earlier 

mentioned, the persistence of the significant alpha term indicates that the demand for 

lottery stocks does not explain the abnormal returns from the BAB factor in the four-

factor model. Consequently, we cannot conclude that lottery demand explains the beta 

anomaly on Oslo Stock Exchange. This is, however, not surprising, as Bali et al. (2017) 

found private and institutional investors have different behavioral characteristics, and that 

the demand for lottery stocks is only present for private investors. In Section 3.3, we found 

that private investors only hold 3.84% of the total value on the OSE. Thus, if we had 

found that the demand for lottery stocks is a determinant of excess returns on OSE, the 

results would have pointed towards somewhat irrational trading from larger institutional 

investors. Furthermore, from the analysis of portfolio sorts, we found that high MAX-

stocks have significant and positive returns the following month. As such, if lottery 

demand is tilted towards high-beta stocks, we would expect high beta stocks to have larger 

excess returns compared to low-beta stocks and the beta anomaly to be non-existent.  

 

 

 

Table 29 Average return for portfolios sorted on beta and MAX (2009 - 2017) 
            

  Low MAX 2 3 4 High MAX 
Low beta 1.54 0.88 1.04 0.86 1.68 

2 0.82 0.80 1.12 1.49 1.12 
3 2.29 0.89 1.22 1.39 0.78 
4 0.31 0.83 1.52 0.96 0.74 

High beta -0.34 0.57 0.19 -0.10 1.19 
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Table 30 Exposure estimates for BAB-factor 
              

Model 𝛼 𝛽r¡�  𝛽qrv 𝛽urv 𝛽j¢1£¢ 𝛽�r�� 
CAPM 0.019*** -0.112         
Three-factor model 0.012** -0.057 0.406** -0.006     
Four-factor model 0.011** -0.022 0.417** 0.001 0.074   
Four-factor model FMAX 0.012** 0.142 0.510*** 0.015 0.05 -0.320*** 

 

 

6.2.10 SUB-CONCLUSION BAB VS. MAX 

From analysis, we found that the BAB factor produces abnormal CAPM, three-factor and 

four-factor returns. The results imply that an unconstrained investor could exploit the 

arbitrage opportunity and earn positive returns on a market neutral portfolio. Thus, if 

agents on OSE were unconstrained with respect to leverage and margin, the abnormal 

returns from the BAB factor would be arbitraged away, and our results would be 

insignificant. Hence, our findings indicate that the beta anomaly at OSE can be attributed 

to leverage and margin constraints with investors. To see whether the presence of a lottery 

stock demand could explain the beta anomaly on the OSE, we performed a bivariate 

analysis and the extended four-factor model to include the FMAX factor. Our results 

showed no indications of lottery stock demand on OSE, and thus we reject the hypothesis 

that a demand for lottery stocks drives the beta anomaly. 

7 CONCLUSION  
In this thesis, we examine to what extent the CAPM, the Fama-French three-factor model, 

and the Carhart four-factor model explain the cross-section of returns on OSE in the 

period 2009 – 2017. We find that all of our constructed portfolios have significant 

exposures to the market factor in the CAPM estimations. However, the market risk premia 

are not significantly different from zero for any portfolio sort, and we conclude that the 

CAPM is not able to explain the variation in returns at OSE. Further, we find that the 

SMB factor and the HML factor increase the predictability of the model. The Fama-

French three-factor model estimates a significant market risk premium and SMB risk 

premium for portfolios sorted on size, and a significant HML risk premium for portfolios 

sorted on momentum. Surprisingly, the market- and SMB risk premia are negative for 
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portfolios on size, contradicting Fama and French (1992). We conclude that the three-

factor model explains the variation in returns on the OSE poorly, but that the model 

specification is an improvement from the CAPM. We also find that the four-factor model 

contributes minimally to our analysis. Despite the fact that we estimate insignificant alpha 

risk premia for all portfolio sorts, the four-factor model only produce one significant risk 

factor. We therefore conclude that the three-factor model has the best fit, but that the 

models explain the variation in returns on OSE to a limited extent.  

Next, we examine whether the beta anomaly can be attributed to leverage and margin 

constraints with investors or a demand for lottery stocks. After running the CAPM, the 

three-factor model and the four-factor model on a market neutral portfolio, we find that 

the beta anomaly can be attributed to leverage and margin constraint investors, who 

overweight high-beta stocks in their portfolio in order to increase their risk exposure. 

Further, we find that the demand for lottery stocks is absent on OSE, and that the BAB-

factor still earns significant abnormal returns when we control for the MAX-factor.  

7.1 IMPLICATIONS 
7.1.1 FACTOR INVESTING  

Our results deviate significantly from previous research conducted on the OSE. In part, 

this is due to choice of data sources and the filter criteria applied on the raw data, which is 

based on subjective considerations. Mainly, however, our results deviate from prior 

research due the time-period over which we estimate the various risk premia. This 

emphasizes that the correlation between asset returns and risk factors are indeed not 

constant over time. For example, contrary to our findings, Ødegaard (2016a) finds that 

when portfolios are sorted on size, HML is highly statistically significant in the period 1980 

– 1992. Despite constructing the BAB factor slightly different than we do in this paper, 

Korneliussen and Rasmussen (2014) find no evidence that constrained investors in terms of 

leverage and margin is a factor affecting the cross-section of average stock market returns 

on the OSE, using data from 1991 to 2010. Using global data, the Norwegian insurance 

company Storebrand shows how factors such as value, size, and momentum have provided 

both higher and lower excess returns, compared to a global index, over various periods 
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(Storebrand, 2016). They emphasize that the value factor, in particular, (defined as the 

Fama-French BE factor), has been performing poorly in the period 2010 – 2016.  

In recent years, systematic risk factors have received increased attention following the rise 

of so-called «smart beta» funds (Thompson, 2017). As hybrid between active and passive 

investment management, these mutual funds take a passive strategy, but use complex 

algorithms to track one or more factors in an attempt to generate higher returns. The 

passive investment component in smart-beta funds provides a cost-effective alternative to 

actively managed funds, and has subsequently become increasingly popular, also in 

Norway. According to Morningstar, Storebrand’s smart beta fund were the fourth most 

popular mutual fund Norway in 2017 (Furuseth, 2018). Despite the fact that all the smart 

beta funds on the Norwegian market are highly diversified with a global scope, we find it 

likely that the current hype of factor investing is likely to influence private investors to 

follow similar strategies on the local market. As such, our empirical findings are highly 

relevant. However, we argue that the key take-away for private investors is that the 

dynamic nature of the correlations on the stock market imply that the factors that have 

provided significant returns in the past, will not necessarily do so in subsequent periods. 

7.1.2 THE COST OF EQUITY CAPITAL 

Major corporate decisions, such as capital budgeting decisions and M&A activities, 

involves calculating the cost of equity capital. The finance literature defines the cost of 

equity capital as the expected return on a company’s stock, and standard in many 

corporate finance books is to estimate the cost of equity capital using the Sharpe-Lintner 

version of the CAPM. With the substantial attention the model receives in business 

schools, it is reasonable to assume that the model is used relatively uncritically by 

practitioners in various corporate settings as well. This is remarkable, given the lack of 

empirical evidence in support of the model. Our findings from the OSE does not only 

prove that the SML is too flat, as found in empirical research, but also that there is a 

negative relationship between systematic market risk and average return. Naturally, this 

has implications for the estimations cost of equity capital. Our findings emphasize that the 

CAPM cannot be used uncritically to calculate the cost of equity capital. According to 

PWC, practitioners in Norway used an average market risk premium of 5% in 2017 (PWC, 
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2017). Our findings from the estimated three-factor model suggests that the market risk 

premium was indistinguishable from zero for all portfolios sorts, except for size-sorted 

portfolios. Here, the market risk premium was estimated to -3.8%. Although the alpha is 

found to be significant, it seems clear that the market risk premium is greatly 

overestimated by practitioners in Norway.  

8 LIMITATIONS 
We will now discuss the most prominent limitations of our thesis. The limitations regard 

decisions that were made with respect to the model specifications and significance tests.  

In this paper, we work extensively with panel data. Because panel data residuals might be 

correlated across firms and time, estimated OLS standard errors are potentially biased 

(Petersen, 2009). In order to deal with the potential bias, we have used the Fama and 

MacBeth (1973) procedure. The procedure assumes that the estimated coefficients are 

independent of each other. However, this is not true when there are firm effects in the 

data, and the variance of our estimates will therefore be downward biased (Cochrane, 

2009). Hence, our estimates might be found to be statistically significant when, in fact, the 

assumed relation is insignificant. As such, the robustness of our findings would be 

improved by applying alternative error measurements. 

In our model estimations, we have controlled for variables that are known to predict the 

cross section of future stock returns. More specifically, we have controlled for firm 

characteristics, such as, market capitalization, BM, momentum and MAX. To some extent, 

we have also controlled for liquidity by applying a trading volume filter. However, we have 

not included measures of stock sensitivity to aggregate funding liquidity factors, as 

proposed by Frazzini and Pedersen (2014). Further, we have not included measures of risk, 

including coskewness, total skewness, downside beta and tail beta. The mentioned control 

variables and stock returns are found to have a significant relationship, and disregarding 

them could potentially distort our results and make estimates less significant. 
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9 FUTURE RESEARCH 
The results in this thesis show that the standard CAPM, the Fama and French (1992) 

three-factor and the Carhart (1997) four-factor model have problems explaining the 

variation in excess returns on the OSE in the period 2009 - 2007. The models suggest that 

size, BM and momentum are additional risk factors and that investors are compensated for 

their exposures to these. Nevertheless, our model estimations showed that, in most cases, 

investors are not compensated proportionally to their exposures. These results indicate 

that there are other risk factors on the OSE that determine the cross-section of returns. 

For example, we would expect the energy sector, with a 37,5% weight on OSE, to have a 

significant exposure to the oil price. It is reasonable to assume that investors holding these 

stocks are compensated for this exposure. We therefore encourage future studies to include 

factors that capture industry-specific risk factors that might explain more of the variation 

in returns on OSE.  

Our findings also proves that the demand for lottery stocks is unable to explain the beta 

anomaly at OSE. We concluded that the findings are inconsistent with Bali et al. (2017) 

and that the absence of lottery stock demand might be due to the low fraction of private 

investors on the OSE. However, we encourage future research papers to examine whether 

similar trading patterns are found with institutional investors. From our analysis of the 

BAB factor, we found that investors with leverage and margin constraints overweigh high-

beta stocks as an alternative to leveraging low-beta stocks, in order to increase their risk 

exposure. However, this does not necessarily imply that constrained investors are the only 

driver of the beta anomaly. For example, Christoffersen and Simutin (2017) find that 

pension plan sponsors rely heavily on benchmarking as a defensible mechanism in deciding 

which funds to keep and remove from the plan. Hence, fund managers alter their behavior 

and focus on beating the benchmark. In their pursuit to outperform the benchmark, 

leveraged-constrained fund managers overweight their portfolio with high-beta stocks 

because it will yield in expectation a return that is more likely to outperform the 

benchmark (Christoffersen & Simutin, 2017). Such findings indicate that investors are 

more risk-seeking than the CAPM assumes, and should encourage future research papers 
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to identify specific behavioral aspects of institutional investors that might drive the beta 

anomaly on the OSE.  
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APPENDICES 

Appendix 1 – Product of two stochastic variables 

For any two variables 𝑋and 𝑌  with 𝐸(𝑋) = 𝜇� and 𝐸(𝑌 ) = 𝜇£ , the covariance between 

𝑋 and 𝑌  is defined as: 

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸[(𝑋 − 𝜇�)(𝑌 − 𝜇)] 

Hence, 

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 − 𝜇�𝑌 − 𝜇£ 𝑋 + 𝜇�𝜇£  

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 − 𝜇�𝜇£ − 𝜇£ 𝜇� + 𝜇�𝜇£  

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ) 

Since 

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 ) 

Or 

𝐸(𝑋𝑌 ) = 𝐸(𝑋)𝐸(𝑌 ) + 𝐶𝑜𝑣(𝑋, 𝑌 ) 

The Euler equation  

1 = 𝐸#(𝑚#+1𝑅#+1) 

1 = 𝛽
𝑢′(𝑐#+1)
𝑢′(ct)

𝑅#+1 

Implies 

1 = 𝛽
𝑢′(𝑐#+1)
𝑢′(ct)

𝑅#+1 + 𝐶𝑜𝑣 (𝛽
𝑢′(𝑐#+1)
𝑢′(ct)

, 𝑅#+1) 

1 = 𝐸#(𝑚#+1)𝐸(𝑅#+1) + 𝐶𝑜𝑣(𝑚#+1,𝑅#+1) 

 

 



 
 

 

Appendix 2 – Markowitz’ Optimal portfolio choice  

Appendix figure 1 distinguish the “efficient frontier” of mean-variance efficient portfolios 

from other alternative portfolio sets. For any portfolio on the efficient frontier, investors 

maximize the expected return (mean) for the given level of risk (variance), in accordance 

with the mean-variance criterion. Hence, for any of the portfolios not on the efficient 

frontier, investors can always achieve a higher expected return per unit of risk, or a lower 

risk per unit of expected return. Assuming rational investors, only portfolios on the 

efficient frontier will be held.  

APPENDIX FIGURE 1 – THE EFFICIENT FRONTIER 

 

 

 

 

Appendix figure 2 illustrates how the investors’ optimal portfolio is determined. The mean-

variance criterion is not optimal in general, because it does not reflect investors’ level of 

risk aversion. The optimal risky portfolio choice for rational investors are located on the 

point where the efficient frontier is tangential to his or hers indifference curve, as 

illustrated by portfolio C. Portfolio A and B are optimal risky portfolios for investors 

exhibiting a lower and higher aversion to risk, respectively.   

 

 

 
 

 

(Krause., 2001, p. 26) 

(Krause, 2001, p. 29)  

APPENDIX FIGURE 2 – DETERMINATION OF INVESTORS’ 
OPTIMAL PORTFOLIO  



 
 

 

Appendix 3 – Assumptions of the CAPM 

 

 

 

1. One-period investment horizon. 

2. Rational, risk-averse investors. 

3. There are no taxes. 

4. There are no transaction costs and inflation. 

5. All assets are infinitely divisible. 

6. Free flow and instant availability of information. 

7. There are many investors on the market. 

8. All assets are marketable 

9. Unlimited borrowing and lending is allowed at a risk-free rate that is the same for all 
investors.  
 

10. All investors have homogenous expectations about expected returns, variances, and 
covariances of assets 
 
(Szylar, 2013, p. 101) 

Assumption 1-8 applies to Markowitz’ original model of portfolio choice, whilst assumption 

9 and 10 were included to develop the CAPM.  

 



 
 

 

Appendix 4 – Optimal Portfolio Choice under CAPM 

Appendix figure 3 illustrates how the assumptions of homogenous expectations and 

unlimited borrowing and lending leads to a new mean-variance efficient frontier. Consider 

an investor whose utility function tangents the “old” mean-variance efficient frontier at 

portfolio a, implying a relatively low aversion to risk. By holding a combination of the 

market portfolio, T, and borrowed funds at the risk-free rate, the investor can obtain a 

higher expected return than portfolio a, for the same level of risk. Since all investors have 

the same expectations of the distribution of expected return and variance, all investors will 

hold the market portfolio. 

 

 

 

 

 

 

 

 
  

Seen from Appendix figure 4, the beta of the market portfolio has a beta of 1, and there is 

a linear relation between the expected return and the relative risk of an asset. For the risk 

an investor takes he is compensated a risk premium: (𝜇a − 𝑟)/𝛽7 

 

 

 

 

(Fama & French, 2004, p. 27) 

(Krause, 2001, p. 45) 

) 

APPENDIX FIGURE 3 – MEAN-VARIANCE OPTIMAL PORTFOLIO 
WITH HOMOGENOUS EXPECTATIONS AND UNLIMITED 
SHORTING AND LENDING 

APPENDIX FIGURE 3 – RELATIONSHIP BETWEEN BETA 
AND EXPECTED RETURN 



 
 

 

Appendix 5 – Value-weighted returns from portfolios sorted on size 

(2007 – 2017) 

Appendix 
table 1 Excess monthly returns from portfolios sorted on size (2007 - 2017) 

                    
    Portfolio returns Number of stocks 

Portfolio 
Average size 
(millions) Mean (Std) Min Med Max Min Med Max 

Portfolio 1 438.07 2.26 (7.74) -22.11 1.62 31.49 6 14 20 
Portfolio 2 1,458.22 0.90 (6.82) -25.18 0.54 26.16 7 13 20 
Portfolio 3 3,971.08 1.24 (5.55) -23.87 1.71 18.77 10 14 19 
Portfolio 4 9,248.04 0.84 (5.91) -29.27 0.91 14.44 9 14 20 
Portfolio 5 82,849.73 0.41 (5.65) -21.98 0.72 13.57 9 15 20 

 
Returns are percentage monthly excess returns. Returns are calculated as simple returns and are 
not annualized. Portfolios are sorted based the market capitalization at the end of June each year, 
and the monthly returns are subsequently tracked, before the portfolios are rebalanced in June 𝑡 +
1. The returns are value-weighted. 
 

 

Appendix 
table 2 Monthly excess returns from a long-short position in size portfolios 

          
Year Portfolio 1 Portfolio 5 Diff t-test: Diff = 0 

2007 - 2008 -4.34 -3.50 0.84 (0.46) 
2009 - 2010 4.94 2.51 -2.43 (-1.36) 
2011 - 2012 1.73 -0.07 -1.80 (-1.49) 
2013 - 2014 1.93 0.77 -1.15 (-1.27) 
2015 - 2016 4.07 0.83 -3.24      (-3.06)*** 

2017 4.90 1.43 -3.47 (-1.29) 
Full sample 2.26 0.41 -1.85      (-3.04)*** 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 

 

 

 



 
 

 

Appendix 6 – Value-weighted returns from portfolios sorted on BM 

(2007 – 2017) 

Appendix 
table 3 Excess monthly returns from portfolios sorted on BM (2007 - 2017) 

                    

  Portfolio returns 
Number of 

stocks 
Portfolio Average BM Mean (Std) Min Med Max Min Med Max 

Portfolio 1  0.31  0.29 (7.25) -32.24 0.93 20.21 10 14 20 
Portfolio 2 0.56  0.39 (7.41) -33.73 0.50 21.42 8 14 20 
Portfolio 3 0.72  1.16 (5.57) -18.76 1.79 20.13 8 14 19 
Portfolio 4 0.95  0.45 (8.05) -30.99 0.32 24.84 10 14 20 
Portfolio 5 1.61  1.11 (8.70) -22.63 0.90 37.73 4 14 20 

 
Returns are percentage monthly excess returns. Returns are calculated as simple returns and are 
not annualized. Portfolios are sorted based on the ratio of the book value of equity at fiscal 
yearend and the market capitalization at December 𝑡 − 1, at the end of June in year 𝑡. The 
monthly returns are subsequently tracked, before the portfolios are rebalanced in June 𝑡 + 1. The 
returns are value-weighted. 
 

 

Appendix 
table 4 Monthly excess returns from a long-short position in BM portfolios 

          
Year Portfolio 1 Portfolio 5 Diff t-test: Diff = 0 

2007 - 2008 -4.30 -4.65 -0.35 (-0.19) 
2009 - 2010 2.78 5.53 2.74  (1.26) 
2011 - 2012 0.00 0.32 0.32 (0.21) 
2013 - 2014 0.81 1.44 0.63 (0.62) 
2015 - 2016 0.12 1.07 0.94 (0.55) 

2017 2.07 1.93 -0.14 (-0.12) 
Full sample 0.29 1.11 0.82 (1.18) 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 

 

 

 



 
 

 

Appendix 7 – Value-weighted returns from portfolios sorted on 

momentum (2007 – 2017) 

Appendix 
table 5 Monthly excess returns from portfolios sorted on momentum (2007 - 2017) 

                    
  Portfolio returns Stocks 

Portfolio Average cum. return Mean (Std) Min Med Max Min Med Max 
Portfolio 1  -9.90  0.20 (8.72) -29.58 0.52 23.04 7 14 20 
Portfolio 2 7.33  1.10 (6.13) -24.11 1.28 16.47 8 14 20 
Portfolio 3 10.32  0.40 (6.76) -23.24 0.48 16.61 10 15 19 
Portfolio 4 13.92  -0.02 (7.11) -29.42 0.12 25.00 8 14 20 
Portfolio 5 36.58  1.65 (6.99) -21.27 2.20 16.54 9 14 20 

 
Returns are percentage monthly excess returns. Returns are calculated as simple returns and are 
not annualized. Portfolios are sorted based on the cumulative return from 𝑡 − 12 to 𝑡 − 2, where 𝑡 
refers to the first month holding the portfolio (July). The monthly returns are subsequently 
tracked, before the portfolios are rebalanced in June the following year. The returns are value-
weighted.  
 

 

Appendix 
table 6 Monthly excess returns from a long-short position in momentum portfolios 

          
Year Portfolio 1 Portfolio 5 Diff t-test: Diff = 0 

2007 - 2008 -4.05 -2.32 1.73 (1.09) 
2009 - 2010 2.86 4.78 1.92 (1.44) 
2011 - 2012 0.59 -0.14 -0.73  (-0.52) 
2013 - 2014 -0.68 3.49 4.17     (2.13)** 
2015 - 2016 0.83 1.61 0.79  (0.37) 

2017 0.96 1.36 0.40  (0.17) 
Full sample 0.20 1.65 1.46     (1.98)** 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 

 

 



 
 

 

Appendix 8 – Value-weighted returns from portfolios sorted on 

MAX (2007 – 2017) 

Appendix 
tale 7 

Monthly excess returns from portfolios sorted on MAX (2007 - 2017) 

                    

  Portfolio returns 
Number of 

stocks 
Portfolio Avg. High return Mean (Std) Min Med Max Min Med Max 

Portfolio 1  1.80  0.55 (5.30) -20.16 0.47 16.24 11 15 21 
Portfolio 2 2.77  0.46 (6.48) -19.18 0.51 21.35 10 15 20 
Portfolio 3 3.65  0.25 (7.50) -34.11 0.76 18.64 10 15 20 
Portfolio 4 4.73  0.61 (7.39) -26.68 1.23 22.55 10 15 20 
Portfolio 5 7.71  1.44 (8.30) -26.63 1.81 20.45 11 15 21 

 

Returns are percentage monthly excess returns. Returns are calculated as simple returns and are 
not annualized. Portfolios are sorted based on the highest average 5-day return. The return in the 
subsequent month is calculated, before the portfolios are rebalanced at the end of the next month. 
The returns are value-weighted. 
 

 

Appendix 
table 8 Monthly excess returns from a long-short position in MAX portfolios 

          
Year Portfolio 1 Portfolio 5 Diff t-test: Diff = 0 

2007 - 2008 -1.70 -2.83 -1.13 (-0.85) 
2009 - 2010 2.01 3.99 1.99 (1.27) 
2011 - 2012 -0.74 0.79 1.53 (1.10) 
2013 - 2014 0.96 2.27 1.31 (1.07) 
2015 - 2016 1.77 2.87 1.09 (0.67) 

2017 1.49 1.61 0.12 (0.11) 
Full sample 0.55 1.44 0.88  (1.50) 

 
Significance codes: P < 0.01 "***", P < 0.05 "**", P < 0.1 "*" . 
 

 

 

 



 
 

 

Appendix 9 – CAPM regression on equally-weighted portfolios 

sorted on beta (2009 – 2017)  

Appendix table 9 Factor exposures for CAPM on portfolios sorted on beta (2009 - 
2017) 

            
  Dependent variable: 
            
  Portfolios sorted on beta 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.464*** 0.783*** 0.953*** 1.106*** 1.411*** 
  (0.071) (0.085)   (0.076)  (0.082) (0.107) 
            

Alpha 0.010*** 0.004 0.004 -0.003 -0.008* 
   (0.003) (0.004) (0.003) (0.003)  (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.288 0.447 0.599 0.635 0.62 

Adjusted R2 0.281 0.442 0.595 0.631 0.616 
Residual Std. Error. (df = 

129) 0.03 0.036 0.032 0.034 0.045 
F Statistic (df = 1; 129) 42.860*** 85.745*** 158.322*** 184.076*** 172.982*** 

            
Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 



 
 

 

Appendix 10 – CAPM regression on value-weighted portfolios sorted 

on beta (2009 – 2017) 

Appendix table 10 
Factor exposures for CAPM on portfolios sorted on beta (2009 

- 2017) 

            
  Dependent variable: 

            
  Portfolios sorted on beta 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.557*** 0.871*** 0.983*** 1.236*** 1.474*** 
  (0.106) (0.106) (0.079) (0.067) (0.078) 
            

Alpha 0.015*** 0.007 0.000 0.005* -0.002 
  (0.004) (0.004) (0.003) (0.003) (0.003) 
            
            

Observations 108 108 108 108 108 
R2 0.207 0.389 0.596 0.760 0.771 

Adjusted R2 0.199 0.383 0.592 0.758 0.769 
Residual Std. Error. (df = 129) 0.045 0.045 0.033 0.028 0.033 

F Statistic (df = 1; 129) 27.641*** 67.347*** 156.109*** 335.924*** 357.024*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

   Risk premium 
      
Coefficient Risk premium T-statistic 
  𝛼 ̂ 0.0215     (3.41)*** 
  𝛾̂r¡�  -0.0064 (-0.95) 



 
 

 

Appendix 11 – CAPM regression on equally-weighted portfolios 

sorted on BM (2009 – 2017) 

Appendix table 11 Factor exposures for CAPM on portfolios sorted on BM (2009 - 
2017) 

            
  Dependent variable: 
            
  Portfolios sorted on BM 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.897*** 0.911*** 0.774*** 1.001*** 1.063*** 
  (0.076) (0.077) (0.074) (0.084) (0.111) 
            

Alpha 0.001 0.007** 0.001 -0.002 -0.001 
  (0.003) (0.003) (0.003) (0.004) (0.005) 
            
            

Observations 108 108 108 108 108 
R2 0.568 0.569 0.511 0.574 0.463 

Adjusted R2 0.564 0.565 0.506 0.570 0.458 
Residual Std. Error. (df = 

129) 0.032 0.033 0.031 0.035 0.047 
F Statistic (df = 1; 129) 139.314*** 139.795*** 110.710*** 142.803*** 91.500*** 

            
Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 



 
 

 

Appendix 12 – CAPM regression on value-weighted portfolios sorted 

on BM (2009 – 2017) 

Appendix table 12 Factor exposures for CAPM on portfolios sorted on BM (2009 - 
2017) 

            
  Dependent variable: 
            
  Portfolios sorted on BM 

            
  (1) (2) (3) (4) (5) 
            

MKT 1.033*** 1.118*** 0.894*** 1.468*** 1.234*** 
  (0.091) (0.082) (0.069) (0.089) (0.153) 
            

Alpha 0.00 0.001 0.005* -0.002 0.009 
  (0.004) (0.003) (0.003) (0.004) (0.006) 
            
           

Observations 108 108 108 108 108 
R2 0.549 0.639 0.612 0.722 0.381 

Adjusted R2 0.545 0.635 0.608 0.719 0.375 
Residual Std. Error. (df = 129) 0.038 0.034 0.029 0.037 0.065 

F Statistic (df = 1; 129) 129.282*** 187.335*** 166.971*** 274.685*** 65.211*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 

 

   Risk premium 
      
Coefficient Risk premium T-statistic 
  𝛼 ̂ 0.0029 (0.28) 
  𝛾̂r¡�  0.0107 (1.04) 



 
 

 

Appendix 13 – CAPM regression on equally-weighted portfolios 

sorted on size (2009 – 2017) 

Appendix table 13 Factor exposures for CAPM on portfolios sorted on size (2009 - 
2017) 

            
  Dependent variable: 
            
  Portfolios sorted on size 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.627*** 0.778*** 0.825*** 0.979*** 1.298*** 
  (0.132) (0.108) (0.089) (0.070)  (0.055) 
            

Alpha 0.011** -0.002 0.002 0.0002 -0.003 
  (0.006) (0.005) (0.004) (0.003) (0.002) 
            
            

Observations 108 108 108 108 108 
R2 0.175 0.327 0.449 0.647 0.842 

Adjusted R2 0.168 0.321 0.443 0.644 0.840 
Residual Std. Error. (df = 129) 0.056 0.046 0.038 0.030 0.023 

F Statistic (df = 1; 129) 22.540*** 51.587*** 86.233*** 194.614*** 562.867*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 



 
 

 

Appendix 14 – CAPM regression on value-weighted portfolios sorted 

on size (2009 – 2017) 

Appendix table 14 Factor exposures for CAPM on portfolios sorted on size (2009 - 
2017) 

            
  Dependent variable: 
            
  Portfolios sorted on size 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.864*** 0.829*** 0.814*** 0.923*** 1.061*** 
  (0.153) (0.120) (0.086) (0.071) (0.024) 
            

Alpha 0.025*** 0.010* 0.012*** 0.007** 0.002 
  (0.006) (0.005) (0.004) (0.003) (0.001) 
            
            

Observations 108 108 108 108 108 
R2 0.232 0.312 0.458 0.617 0.948 

Adjusted R2 0.225 0.306 0.452 0.614 0.947 
Residual Std. Error. (df = 129) 0.064 0.051 0.036 0.030 0.010 

F Statistic (df = 1; 129) 32.009*** 48.108*** 89.401*** 170.951*** 1,931.401*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 

   Risk premium 
      
Coefficient Risk premium T-statistic 
  𝛼 ̂ -0.0480 (-3.01)*** 
  𝛾̂r¡�  0.0627 (3.94)*** 



 
 

 

Appendix 15 – CAPM regression on equally-weighted portfolios 

sorted on momentum (2009 – 2017) 

Appendix table 15 Factor exposures for CAPM on portfolios sorted on momentum 
(2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on momentum 

            
  (1) (2) (3) (4) (5) 
            

MKT 1.246*** 0.885*** 0.793*** 0.919*** 0.859*** 
  (0.108) (0.070) (0.084) (0.072) (0.101) 
            

Alpha -0.006 -0.005 -0.001 0.002 0.011** 
  (0.005) (0.003) (0.004) (0.003) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.557 0.601 0.456 0.609 0.406 

Adjusted R2 0.553 0.597 0.451 0.606 0.401 
Residual Std. Error. (df = 129) 0.046 0.030 0.036 0.030 0.043 

F Statistic (df = 1; 129) 133.411*** 159.495*** 88.747*** 165.252*** 72.571*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 



 
 

 

Appendix 16 – CAPM regression on value-weighted portfolios sorted 

on momentum (2009 – 2017) 

Appendix table 16 Factor exposures for CAPM on portfolios sorted on momentum 
(2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on momentum 

            
  (1) (2) (3) (4) (5) 
            

MKT 1.417*** 0.971*** 1.057*** 1.271*** 0.938*** 
  (0.126) (0.073) (0.078) (0.070) (0.119) 
            

Alpha -0.005 0.009*** 0.002 -0.005* 0.014*** 
  (0.005) (0.003) (0.003) (0.003) (0.005) 
            
            

Observations 108 108 108 108 108 
R2 0.544 0.624 0.635 0.756 0.368 

Adjusted R2 0.539 0.620 0.632 0.754 0.362 
Residual Std. Error. (df = 129) 0.053 0.031 0.033 0.030 0.050 

F Statistic (df = 1; 129) 126.320*** 175.688*** 184.503*** 328.417*** 61.785*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 

 

   Risk premium 
      
Coefficient Risk premium T-statistic 
  𝛼 ̂ -0.0281 (-2.19)** 
  𝛾̂r¡�  0.458 (3.34)*** 



 
 

 

Appendix 17 – CAPM regression on equally-weighted portfolios 

sorted on MAX (2009 – 2017) 

Appendix table 17 Factor exposures for CAPM on portfolios sorted on MAX (2009 - 
2017) 

            
  Dependent variable: 
            
  Portfolios sorted on MAX 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.728*** 1.003*** 0.974*** 1.032*** 0.974*** 
  (0.076) (0.075) (0.086) (0.088) (0.096) 
            

Alpha 0.003 -0.001 0.002 0.000 0.002 
  (0.003) (0.003) (0.004) (0.004) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.466 0.628 0.546 0.564 0.491 

Adjusted R2 0.461 0.625 0.541 0.560 0.487 
Residual Std. Error. (df = 129) 0.032 0.032 0.036 0.037 0.041 

F Statistic (df = 1; 129) 92.509*** 179.319*** 127.319*** 137.385*** 102.427*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 

 

 



 
 

 

Appendix 18 – CAPM regression on value-weighted portfolios sorted 

on MAX (2009 – 2017) 

Appendix table 18 
Factor exposures for CAPM on portfolios sorted on MAX (2009 - 

2017) 

            
  Dependent variable: 
            
  Portfolios sorted on MAX 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.780*** 1.125*** 1.137*** 1.242*** 1.420*** 
  (0.075) (0.086) (0.089) (0.096) (0.114) 
            

Alpha 0.003 0.001 0.002 0.002 0.010** 
  (0.003) (0.004) (0.004) (0.004) (0.005) 
            
            

Observations 108 108 108 108 108 
R2 0.506 0.619 0.608 0.612 0.593 

Adjusted R2 0.501 0.616 0.604 0.609 0.589 
Residual Std. Error. (df = 129) 0.032 0.036 0.037 0.041 0.048 

F Statistic (df = 1; 129) 108.431*** 172.491*** 164.364*** 167.418*** 154.276*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 

 

   Risk premium 
      
Coefficient Risk premium T-statistic 
  𝛼 ̂ 0.0186  (1.89)* 
  𝛾̂r¡�  -0.0067 (-0.68) 



 
 

 

Appendix 19 – Three-factor regression on equally-weighted 

portfolios sorted on beta (2009 – 2017) 

Appendix table 19 Factor exposures for three-factor model on portfolios sorted on 
beta (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on beta 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.518*** 0.845*** 1.023*** 1.160*** 1.445*** 
  (0.062) (0.076) (0.067) (0.076) (0.099) 
            

SMB 0.421*** 0.471*** 0.478*** 0.404*** 0.388*** 
  (0.074) (0.091) (0.080) (0.091) (0.119) 
            

HML 0.028 0.009 -0.065 0.001 0.181** 
  (0.048) (0.059) (0.052) (0.059) (0.077) 
            

Alpha 0.003 -0.004 -0.004 -0.010*** -0.015*** 
  (0.003) (0.003) (0.003) (0.003) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.485 0.574 0.703 0.700 0.693 

Adjusted R2 0.470 0.562 0.694 0.691 0.684 
Residual Std. Error. (df = 129) 0.026 0.032 0.028 0.032 0.041 

F Statistic (df = 1; 129) 32.643*** 46.699*** 81.940*** 80.741*** 78.220*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 



 
 

 

Appendix 20 – Three-factor regression on value-weighted portfolios 

sorted on beta (2009 – 2017) 

Appendix table 20 Factor exposures for three-factor model on portfolios sorted on 
beta (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on beta 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.603*** 0.856*** 0.995*** 1.247*** 1.466*** 
  (0.104) (0.105) (0.081) (0.069) (0.079) 
            

SMB 0.355*** 0.047 0.030 0.019 0.029 
  (0.125) (0.125) (0.096) (0.082) (0.094) 
            

HML 0.010 0.218*** -0.074 -0.086 0.118* 
  (0.081) (0.081) (0.062) (0.053) (0.061) 
            

Alpha 0.009* 0.005 -0.002 0.005* -0.003 
  (0.005) (0.005) (0.004) (0.003) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.274 0.438 0.601 0.766 0.781 

Adjusted R2 0.253 0.422 0.589 0.760 0.775 
Residual Std. Error. (df = 129) 0.043 0.043 0.033 0.028 0.033 

F Statistic (df = 1; 129) 13.056*** 27.050*** 52.215*** 113.729*** 123.919*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

Coefficient Risk premium T-statistic 
𝛼 ̂ 0.0117 (1.17) 

   𝛾̂r¡�  0.0010 (0.11) 
   𝛾̂qrs 0.0228 (1.15) 
   𝛾̂urv 0.0006 (0.04) 



 
 

 

Appendix 21 – Three-factor regression on equally-weighted 

portfolios sorted on BM (2009 – 2017) 

Appendix table 21 Factor exposures for three-factor model on portfolios sorted on 
BM (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on BM 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.957*** 0.979*** 0.839*** 1.026*** 1.113*** 
  (0.072) (0.070) (0.069) (0.073) (0.089) 
            

SMB 0.350*** 0.444*** 0.377*** 0.331*** 0.578*** 
  (0.087) (0.084) (0.082) (0.087) (0.107) 
            

HML -0.134** -0.094* -0.142*** 0.197*** 0.264*** 
  (0.056) (0.054) (0.053) (0.057) (0.069) 
            

Alpha -0.004 0.000 -0.005 -0.008** -0.012*** 
  (0.003) (0.003) (0.003) (0.003) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.630 0.660 0.597 0.694 0.673 

Adjusted R2 0.619 0.650 0.585 0.686 0.664 
Residual Std. Error. (df = 129) 0.030 0.029 0.028 0.030 0.037 

F Statistic (df = 1; 129) 58.980*** 67.249*** 51.363*** 78.759*** 71.455*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     
 

 

 

 

 



 
 

 

Appendix 22 – Three-factor regression on value-weighted portfolios 

sorted on BM (2009 – 2017) 

Appendix table 22 Factor exposures for three-factor model on portfolios sorted on 
BM (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on BM 

            
  (1) (2) (3) (4) (5) 
            

MKT 1.060*** 1.157*** 0.878*** 1.448*** 1.163*** 
  (0.085) (0.079) (0.071) (0.087) (0.102) 
            

SMB -0.016 0.126 -0.068 0.001 0.109 
  (0.101) (0.095) (0.085) (0.104) (0.122) 
            

HML -0.292*** -0.224*** 0.065 0.207*** 0.856*** 
  (0.065) (0.061) (0.055) (0.067) (0.079) 
            

Alpha 0.002 0.002 0.006* -0.003 0.003 
  (0.004) (0.004) (0.003) (0.004) (0.005) 
            
            

Observations 108 108 108 108 108 
R2 0.632 0.680 0.618 0.748 0.739 

Adjusted R2 0.622 0.671 0.606 0.741 0.732 
Residual Std. Error. (df = 129) 0.035 0.033 0.029 0.036 0.042 

F Statistic (df = 1; 129) 59.608*** 73.610*** 55.965*** 102.880*** 98.303*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     
 

 

 

 

 

Coefficient Risk premium T-statistic 
𝛼 ̂ 0.0196   (1.75)* 

   𝛾̂r¡�  -0.0061  (-0.56) 
   𝛾̂qrs 0.0112 (0.48) 
   𝛾̂urv 0.0081 (1.33) 



 
 

 

Appendix 23 – Three-factor regression on equally-weighted 

portfolios sorted on size (2009 – 2017) 

Appendix table 23 Factor exposures for three-factor model on portfolios sorted on size 
(2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on size 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.734*** 0.905*** 0.880*** 1.012*** 1.284*** 
  (0.123) (0.086) (0.071) (0.069) (0.056) 
            

SMB 0.717*** 0.860*** 0.527*** 0.246*** -0.058 
  (0.146) (0.103) (0.085) (0.083) (0.067) 
            

HML -0.107 -0.120* 0.157*** -0.004 0.067 
  (0.095) (0.066) (0.055) (0.053) (0.043) 
            

Alpha 0.0002 -0.016*** -0.008** -0.004 -0.002 
  (0.006) (0.004) (0.003) (0.003) (0.003) 
            
            

Observations 108 108 108 108 108 
R2 0.332 0.602 0.665 0.678 0.845 

Adjusted R2 0.313 0.590 0.655 0.669 0.841 
Residual Std. Error. (df = 129) 0.051 0.036 0.030 0.029 0.023 

F Statistic (df = 1; 129) 17.230*** 52.384*** 68.827*** 73.067*** 189.431*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 



 
 

 

Appendix 24 – Three-factor regression on value-weighted portfolios 

sorted on size (2009 – 2017) 

Appendix table 24 Factor exposures for three-factor model on portfolios sorted on 
size (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on size 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.980*** 0.970*** 0.856*** 0.959*** 1.043*** 
  (0.139) (0.094) (0.073) (0.069) (0.023) 
            

SMB 0.850*** 0.959*** 0.437*** 0.264*** -0.111*** 
  (0.166) (0.112) (0.087) (0.083) (0.028) 
            

HML -0.027 -0.131* 0.166*** -0.010 0.039** 
  (0.108) (0.073) (0.056) (0.053) (0.018) 
            

Alpha 0.011* -0.005 0.004 0.003 0.002* 
  (0.006) (0.004) (0.003) (0.003) (0.001) 
            
            

Observations 108 108 108 108 108 
R2 0.399 0.600 0.635 0.655 0.955 

Adjusted R2 0.382 0.588 0.624 0.645 0.954 
Residual Std. Error. (df = 129) 0.058 0.039 0.030 0.029 0.010 

F Statistic (df = 1; 129) 23.014*** 51.945*** 60.296*** 65.685*** 739.712*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     
 

 

 

 

 

Coefficient Risk premium T-statistic 
𝛼 ̂ -0.0987   (1.50) 

   𝛾̂r¡�  0.1072  (1.68) 
   𝛾̂qrs 0.0302  (2.78) 
   𝛾̂urv 0.0915 (2.12) 



 
 

 

Appendix 25 – Three-factor regression on equally-weighted 

portfolios sorted on momentum (2009 – 2017) 

Appendix table 25 Factor exposures for three-factor model on portfolios sorted on 
momentum (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on momentum 

            
  (1) (2) (3) (4) (5) 
            

MKT 1.314*** 0.939*** 0.852*** 0.942*** 0.926*** 
  (0.101) (0.064) (0.078) (0.072) (0.090) 
            

SMB 0.521*** 0.392*** 0.432*** 0.174** 0.547*** 
  (0.121) (0.076) (0.094) (0.086) (0.108) 
            

HML 0.023 -0.014 -0.009 0.000 0.065 
  (0.078) (0.049) (0.060) (0.056) (0.056) 
            

Alpha -0.015*** -0.007** -0.008** -0.001 0.002 
  (0.005) (0.003) (0.004) (0.003) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.636 0.688 0.557 0.626 0.553 

Adjusted R2 0.625 0.679 0.544 0.615 0.541 
Residual Std. Error. (df = 

129) 0.042 0.026 0.032 0.03 0.037 
F Statistic (df = 1; 129) 60.545*** 76.386*** 43.632*** 58.039*** 42.972*** 

            
Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 



 
 

 

Appendix 26 – Three-factor regression on value-weighted portfolios 

sorted on momentum (2009 – 2017) 

Appendix table 26 Factor exposures for three-factor model on portfolios sorted on 
momentum (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on momentum 

            
  (1) (2) (3) (4) (5) 
            

MARKET 1.441*** 0.959*** 1.080*** 1.272*** 0.942*** 
  (0.128) (0.075) (0.079) (0.072) (0.122) 
            

SMB 0.222 -0.027 0.168* -0.018 0.095 
  (0.153) (0.089) (0.094) (0.086) (0.145) 
            

HML 0.057 0.083 -0.011 -0.034 0.092 
  (0.099) (0.058) (0.061) (0.056) (0.094) 
            

Alpha -0.009 0.009*** -0.001 -0.005 0.012** 
  (0.006) (0.003) (0.004) (0.003) (0.005) 
            
            

Observations 108 108 108 108 108 
R2 0.558 0.631 0.647 0.757 0.381 

Adjusted R2 0.546 0.621 0.636 0.750 0.363 
Residual Std. Error. (df = 

129) 0.053 0.031 0.033 0.030 0.050 
F Statistic (df = 1; 129) 43.847*** 59.330*** 63.433*** 108.195*** 21.318*** 

            
Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

Coefficient Risk premium T-statistic 
𝛼 ̂ 0.0360   (2.20)** 

   𝛾̂r¡�  -0.0215 (-1.45) 
   𝛾̂qrs 0.0045 (0.26) 
   𝛾̂urv 0.0597  (1.82)* 



 
 

 

Appendix 27 – Three-factor regression on equally-weighted 

portfolios sorted on MAX (2009 – 2017) 

Appendix table 27 Factor exposures for three-factor model on portfolios sorted on 
MAX (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on MAX 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.785*** 1.048*** 1.032*** 1.086*** 1.034*** 
  (0.071) (0.067) (0.078) (0.081) (0.088) 
            

SMB 0.386*** 0.393*** 0.470*** 0.438*** 0.488*** 
  (0.085) (0.080) (0.093) (0.097) (0.097) 
            

HML -0.054 0.073 0.042 0.043 0.052 
  (0.055) (0.051) (0.060) (0.063) (0.068) 
            

Alpha -0.003 -0.007** -0.006* -0.007* -0.006 
  (0.003) (0.003) (0.003) (0.004) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.556 0.724 0.655 0.653 0.6 

Adjusted R2 0.543 0.716 0.645 0.643 0.588 
Residual Std. Error. (df = 129) 0.029 0.028 0.032 0.034 0.036 

F Statistic (df = 1; 129) 43.409*** 90.756*** 65.708*** 65.160*** 51.976*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     
 

 

 

 

 

 



 
 

 

Appendix 28 – Three-factor regression on value-weighted portfolios 

sorted on MAX (2009 – 2017) 

Appendix table 28 Factor exposures for three-factor model on portfolios sorted on 
MAX (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on MAX 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.797*** 1.112*** 1.140*** 1.244*** 1.444*** 
  (0.076) (0.085) (0.091) (0.097) (0.117) 
            

SMB 0.055 0.021 0.065 0.096 0.187 
  (0.091) (0.102) (0.108) (0.116) (0.139) 
            

HML -0.097 0.159** 0.055 0.110 0.015 
  (0.059) (0.066) (0.070) (0.075) (0.090) 
            

Alpha 0.002 -0.001 0.001 0.005 0.007 
  (0.003) (0.004) (0.004) (0.004) (0.005) 
            
            

Observations 108 108 108 108 108 
R2 0.518 0.644 0.613 0.627 0.601 

Adjusted R2 0.504 0.633 0.602 0.617 0.590 
Residual Std. Error. (df = 129) 0.032 0.035 0.038 0.040 0.048 

F Statistic (df = 1; 129) 37.308*** 62.619*** 55.018*** 58.383*** 52.316*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 

 

Coefficient Risk premium T-statistic 
𝛼 ̂ -0.0085   (-0.19) 

   𝛾̂r¡�  0.0195  (0.33) 
   𝛾̂qrs 0.0210  (0.10) 
   𝛾̂urv -0.0224  (-0.22) 



 
 

 

Appendix 29 – four-factor regression on equally-weighted portfolios 

sorted on beta (2009 – 2017) 

Appendix table 29 Factor exposures for four-factor model on portfolios sorted on beta 
(2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on beta 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.519*** 0.879*** 1.029*** 1.145*** 1.403*** 
  (0.065) (0.079) (0.070) (0.079) (0.102) 
            

SMB 0.422*** 0.481*** 0.480*** 0.399*** 0.375*** 
  (0.075) (0.091) (0.081) (0.091) (0.118) 
            

HML 0.028 0.016 -0.064 -0.002 0.172** 
  (0.048) (0.059) (0.052) (0.059) (0.077) 
            

PR1YR 0.003 0.071 0.012 -0.03 -0.089 
  (0.036) (0.044) (0.039) (0.044) (0.057) 
            

Alpha 0.003 -0.005 -0.004 -0.010*** -0.014*** 
  (0.003) (0.003) (0.003) (0.003) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.485 0.584 0.703 0.701 0.7 

Adjusted R2 0.465 0.568 0.691 0.689 0.688 
Residual Std. Error. (df = 

129) 0.026 0.031 0.028 0.032 0.041 
F Statistic (df = 1; 129) 24.250*** 36.208*** 60.943*** 60.371*** 60.097*** 

            
Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 



 
 

 

Appendix 30 – four-factor regression on equally-weighted portfolios 

sorted on BM (2009 – 2017) 

Appendix table 30 Factor exposures for four-factor model on portfolios sorted on 
BM (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on BM 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.932*** 0.997*** 0.871*** 1.013*** 1.086*** 
  (0.075) (0.073) (0.071) (0.076) (0.093) 
            

SMB 0.342*** 0.450*** 0.386*** 0.327*** 0.569*** 
  (0.087) (0.084) (0.082) (0.088) (0.107) 
            

HML -0.140** -0.09 -0.135** 0.194*** 0.258*** 
  (0.056) (0.055) (0.053) (0.057) (0.069) 
            

PR1YR -0.052 0.038 0.068* -0.027 -0.057 
  (0.042) (0.041) (0.039) (0.042) (0.051) 
            

Alpha -0.004 -0.0001 -0.005* -0.008** -0.011*** 
  (0.003) (0.003) (0.003) (0.003) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.635 0.663 0.608 0.696 0.677 

Adjusted R2 0.621 0.650 0.593 0.684 0.665 
Residual Std. Error. (df = 129) 0.03 0.029 0.028 0.030 0.037 

F Statistic (df = 1; 129) 44.861*** 50.600*** 39.985*** 58.840*** 54.014*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 



 
 

 

Appendix 31 – four-factor regression on equally-weighted portfolios 

sorted on size (2009 – 2017) 

Appendix table 31 Factor exposures for four-factor model on portfolios sorted on 
size (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on size 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.742*** 0.951*** 0.859*** 1.016*** 1.262*** 
  (0.128) (0.088) (0.074) (0.072) (0.058) 
            

SMB 0.720*** 0.874*** 0.521*** 0.247*** -0.065 
  (0.147) (0.102) (0.085) (0.083) (0.066) 
            

HML -0.105 -0.111* 0.153*** -0.003 0.062 
  (0.095) (0.066) (0.055) (0.054) (0.043) 
            

PR1YR 0.016 0.097* -0.044 0.008 -0.045 
  (0.071) (0.049) (0.041) (0.040) (0.032) 
            

Alpha 0.00004 -0.017*** -0.007** -0.004 -0.002 
  (0.006) (0.004) (0.003) (0.003) (0.003) 
            
            

Observations 108 108 108 108 108 
R2 0.332 0.616 0.669 0.678 0.848 

Adjusted R2 0.306 0.601 0.656 0.666 0.842 
Residual Std. Error. (df = 129) 0.051 0.035 0.03 0.029 0.023 

F Statistic (df = 1; 129) 12.818*** 41.371*** 51.983*** 54.301*** 143.863*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     
 

 

 

 



 
 

 

Appendix 32 – four-factor regression on equally-weighted portfolios 

sorted on momentum (2009 – 2017) 

Appendix table 32 Factor exposures for four-factor model on portfolios sorted on 
momentum (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on momentum 

            
  (1) (2) (3) (4) (5) 
            

MKT 1.253*** 0.919*** 0.878*** 0.920*** 0.983*** 
  (0.103) (0.066) (0.081) (0.075) (0.091) 
            

SMB 0.503*** 0.386*** 0.440*** 0.168* 0.564*** 
  (0.119) (0.076) (0.094) (0.086) (0.106) 
            

HML 0.011 -0.018 -0.004 -0.005 0.077 
  (0.077) (0.049) (0.061) (0.056) (0.068) 
            

PR1YR -0.127** -0.043 0.055 -0.047 0.121** 
  (0.057) (0.037) (0.045) (0.042) (0.051) 
            

Alpha -0.014*** -0.006** -0.008** -0.0003 0.0005 
  (0.004) (0.003) (0.004) (0.003) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.652 0.692 0.564 0.631 0.577 

Adjusted R2 0.639 0.68 0.547 0.616 0.56 
Residual Std. Error. (df = 129) 0.041 0.026 0.032 0.03 0.037 

F Statistic (df = 1; 129) 48.344*** 57.831*** 33.252*** 43.981*** 35.067*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 



 
 

 

Appendix 33 – four-factor regression on equally-weighted portfolios 

sorted on MAX (2009 – 2017) 

Appendix table 33 Factor exposures for four-factor model on portfolios sorted on 
FMAX (2009 - 2017) 

            
  Dependent variable: 
            
  Portfolios sorted on FMAX 

            
  (1) (2) (3) (4) (5) 
            

MKT 0.817*** 1.030*** 1.079*** 1.050*** 0.991*** 
  (0.073) (0.069) (0.079) (0.083) (0.090) 
            

SMB 0.396*** 0.388*** 0.484*** 0.428*** 0.475*** 
  (0.084) (0.080) (0.091) (0.096) (0.104) 
            

HML -0.047 0.069 0.052 0.035 0.043 
  (0.055) (0.052) (0.059) (0.062) (0.067) 
            

PR1YR 0.069* -0.038 0.099** -0.077 -0.090* 
  (0.041) (0.038) (0.044) (0.046) (0.050) 
            

Alpha -0.004 -0.007** -0.007** -0.006* -0.005 
  (0.003) (0.003) (0.003) (0.004) (0.004) 
            
            

Observations 108 108 108 108 108 
R2 0.568 0.726 0.671 0.662 0.612 

Adjusted R2 0.551 0.716 0.658 0.649 0.597 
Residual Std. Error. (df = 129) 0.029 0.028 0.031 0.033 0.036 

F Statistic (df = 1; 129) 33.851*** 68.297*** 52.490*** 50.372*** 40.636*** 
            

Significance codes *p<0.1; **p<0.05; ***p<0.01     

 

 

 

 

 



 
 

 

Appendix 34 – All model regressions on the BAB factor 

Appendix table 34 BAB-factor regressed against CAPM, the three-factor model, and the 
four-factor model 

          
  Dependent variable: 
          
  BAB 

          
  (1) (2) (3) (4) 
          

MKT -0.112 -0.057 -0.022 0.142 
  (0.136) (0.135) (0.140) (0.148) 
          

SMB   0.406** 0.417** 0.510*** 
    (0.162) (0.162) (0.160) 
          

HML   -0.006 0.001 0.015 
    (0.105) (0.105) (0.102) 
          

PR1YR     0.074 0.050 
      (0.078) (0.076) 
          

MAX       -0.320*** 
        (0.114) 
          

Alpha 0.019***  0.012**   0.011** 0.012** 
  (0.006) (0.006) (0.006) (0.006) 
          

Observations 108 108 108 108 
R2 0.006 0.07 0.078 0.144 

Adjusted R2 -0.003 0.043 0.042 0.102 

Residual Std. Error. 0.057 (df = 106) 0.056 (df = 104) 
0.056 (df = 

103) 
0.054 (df = 

102) 
F Statistic (df = 1; 

129) 
0.683 (df = 1; 

106) 
2.605* (df = 3; 

104) 
2.179 (df = 4; 

103) 
3.438*** (df = 

5; 102) 
          

Significance codes *p<0.1; **p<0.05; ***p<0.01   
 

 

 

 

 



 
 

 

 

 


