
Real Option Valuation of High Growth Tech

Firms

Agnes Malmcrona & Matilda Andersson

Master Thesis

Copenhagen Business School

MSc in Advanced Economics and Finance

Supervised by:

Kristian Miltersen

15 May 2018

Number of pages (characters): 107 (188,247)



Abstract

This study provides an improved valuation approach for high growth tech firms. We

identify the shortcomings of traditional valuation methods and discuss alternative

valuation concepts by exploring real option theory. By applying fundamental real

option techniques, we expand current valuation theory and present a new framework

for company valuation: the Extended Schwartz-Moon model. We demonstrate the

relevance and validation of the Extended Schwartz-Moon model by applying it to

Spotify in parallel to its listing. The case study provides evidence of that high growth

tech firms deserve their apparent high valuation if experiencing high enough growth

rate in key variables. The improved model thus contributes to firm valuation, both

academically and practically.
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1 Introduction

This introductory chapter aims to present the background of the study and demon-

strate its importance and relevance in today’s financial markets. The chapter

includes purpose and problem statement, as well as a motivation for how we

approach the problem. Finally, we present limitations and the outline of the study.

1.1 Background

Digitalisation, globalisation and the use of internet are all characteristics of the

modern business environment. In this new digitalised world, settings are more

uncertain compared to the pre-internet era since information, rapidly travelling

around the globe, can result in instant changes. At the same time, this creates a

possibility for firms to grow and gain grounds globally tremendously fast. Alongside

the digital globalisation, a new type of firm is emerging; disruptive high growth tech

firms which business models have its basis in the internet and are highly dependent

on flows of information (Manyika et al., 2016). These firms, such as Facebook,

Snapchat, Uber, Airbnb and Spotify grow rapidly (S&P Capital IQ, 2018) by

using technological solutions and offering innovative products and services. The

successful firms create new markets, change the way to do business within their

respective industry and receive attention in the media for their rapid growth and

influential offerings. Their high valuations are also regularly discussed (Manyika

et al., 2016); one example is Facebook that went public in 2012 with the third

highest IPO valuation in the US history (Geron, 2012). Additionally, Snapchat

went public in 2017 at a valuation of USD 24 billion, while making a loss of USD

514 million the same year (Snap Inc., 2017; Balakrishnan and Picker, 2017). The

industry recognises Snapchat’s listing, which was double and fourfold as expensive

as Facebook and Google’s listings respectively, as one the most expensive tech

IPOs in history (Shen, 2017). Most recently, Spotify went public through a direct

listing at a valuation of approximately USD 27 billion, while also making millions

of losses (NYSE, 2018; Spotify Technology S.A., 2018). Currently, there exists a

debate regarding the valuations of this new type of tech firms and whether they

are possible to justify (The Economist, 2017a).
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The private firms that succeed with their disruptive business ideas are historically

not experiencing any problems with raising additional capital (The Economist,

2017b). However, as many of the investors in high growth tech firms are employees,

institutions and funds, these firms eventually aim for giving their investors an easy

way to liquidate. On this basis, direct listings, recently initiated by Spotify, might

be trendsetting going forward; high growth tech firms commonly conduct their

businesses in controversial and ground-breaking ways and may follow Spotify’s path

(The Economist, 2018). Without need of additional capital, firms have incentives

to avoid going through the traditional initial public offering (IPO) process with

expensive bills and long lock-up periods.

In a direct listing, firms switch their private shares to public at the listing

day, which implicates that no initial share price is set; instead, the matching of

buy and sell orders received from investors prior to the listing day determine the

price. This however comes at a high risk as it can result in a volatile share price

during an initial period due to lack of liquidity, potentially resulting in abnormal

pricing. Additionally, no investment bank guarantees a floor of the price through

underwriting of shares, which also make the pricing increasingly volatile. Since no

investment bank set the IPO price, investors do not receive guidance regarding a

price range. Thus, the investors have no expert opinion to base their buy and sell

decision on (The Economist, 2018).

A problematic part of valuing this new type of firm, which often experience

negative cash flows, is the lack of an established valuation model that correctly

captures the growth opportunities these firms face. The most common valuation

model to apply in the industry is the discounted cash flow (DCF) model (Penman,

2013), which fails in several aspects when it comes to valuing high growth tech

firms. As analysts recognise this, they commonly justify a higher valuation by

using multiple and comparable valuation methods, which provide a market-based

valuation of the company rather than the intrinsic value. As the concept of this new

type of tech company is relatively new and the number of high growth tech firms is

still small, finding peers and comparable transactions is likely a difficult task. On

this basis, the valuation of these firms is as much art as science and depends to a

certain extent on the possible value you can sell a firm for than finding the intrinsic

value (Carey, 2016).
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1.2 Purpose and Contribution

We identify an absence of suitable models for valuing this emerging type of tech

firm and recognise a need for an improved valuation model determining the intrinsic

value of these firms since they continuously get more common. A way of finding

the correct value of this type of firm lies in the interest of all parties operating in

the financial markets. It can possibly justify the high valuations that high growth

tech firms receive and thereby counteract speculations regarding overvalued firms,

but also question if investors overrate the values of these firms. Additionally, an

applicable valuation method for high growth tech firms is increasingly important

for direct listings in the future, as investors lack initial shares prices to base their

investment decisions on.

Academia presents supplementary frameworks based on real option theory

that can work as substitutes to the DCF model when it fails to capture the

complete value. The theory of real options is suitable for addressing problems

such as fast changes, managerial flexibility and unpredictability that characterise

the new business environment (Schwartz and Moon, 2000; 2001). However, we

assess that real options are both hard and uncommon to apply in practical firm

valuations, even though there exist good examples in the literature. Additionally,

there are no recent attempts for applying the theory to high growth tech firms. It

is therefore relevant to evaluate whether real options are suitable for valuing these

firms and how the theory possibly overcomes the setbacks with the traditional

valuation models.

For clarification, we define the following characteristics for high growth tech

firms:

• Early stage firms, commonly experiencing negative cash flows

• Rapid growth

• Gain their main value from user subscriptions and/or their user bases

• Technological product or service

• Operating in dynamic markets with high uncertainty
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Due to the increasing importance of valuing high growth tech firms, the purpose

of this thesis is to propose a method for appropriately finding the intrinsic value

of these firms. We hope to reconcile academia and practice and reach consensus

of a suitable valuation method by presenting a model that is easily applicable in

practice, whilst having a stable theoretical base.

To demonstrate the important contribution of a new valuation method, we

perform a case study on the latest listing of a high growth tech firm: Spotify. We

conduct this study in parallel to the listing process and hope to contribute with

both an intrinsic value of a firm and a practical demonstration of how to value

these firms in the future.

1.2.1 Problem Statement

To accomplish the purpose of this study, we form the following main research ques-

tion:

• What is a suitable valuation method to determine the intrinsic value of high

growth tech firms?

Additionally, to provide an answer to the research question, we in essence answer a

secondary research question:

• Why are traditional valuation methods not suitable for high growth tech firms

and how can real options improve their shortcomings?

1.3 Research Approach

In order to fulfill the purpose of this study and provide an answer to the research

question, we conduct an inductive research approach, aiming to contribute with new

insights within the theory of company valuation by using both existing academic

theory and an empirical illustration in form of a case study. A prior hypothesis

does not restrain this approach (O’Boyle et al., 2017) and we aspire to have an

explorative orientation when investigating the problem, thus the inductive research

approach is suitable for this study.
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In order to tackle the challenge of valuing high growth tech firms, we ini-

tially consult current theory and its possible limitations or contributions concerning

the problem. We evaluate traditional valuation models that practitioners commonly

apply and conduct a detailed literature review on the field of real options. We start

with an assessment of the development of the theory of real options in order to

reach an understanding regarding real option characteristics and how the theory

can contribute to the valuation of high growth tech firms. We further examine

relevant fundamental principles and explore how recent research use these principles

in valuation models.

To conduct an in-depth investigation that allows for exploring new situations

and understandings of complex problems, it is common to conduct a case study

research approach. There are no specific requirements for case studies and it is

therefore possible to design the method according to the situation in question.

However, it requires us to continuously address choices made in order to create a

well thought-out and transparent study (Meyer, 2001). We decide to use Spotify for

the case study as the company well qualifies as a representative for high growth tech

firms by fulfilling the characteristics. This increases the possibility of generalising

the applicability of the suggested method and replicate the emergent model to all

high growth tech firms.

1.4 Limitations of the Study

We start with limiting this study to the area of real options, mostly due to its

strong academic fundamentals and principles. There may exist other methods

as substitutes to the traditional models that we do not consider. Nonetheless,

we believe that the fundamental theories that real options build on can bring

important contributions to the empirical valuation scene and we thereby focus our

attention to this field.

We further limit our study to valuing one high growth tech firm since we

believe this is the best approach when taking the aim of the study into account.

Using multiple cases would be preferable in order to increase the generalisability

of the study (Meyer, 2001). However, due to the limit of scope of this study, we
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decide to thoroughly investigate only one firm since we assess that meticulousness

of one case is of higher importance than generalisability at this stage.

1.5 Disposition

We divide this study into four main parts: a description of traditional valuation

methods, a presentation of real option theory, an identification of the preferred

valuation method and a practical case study. Additionally, we provide two finalising

sections: discussion and analysis as well as conclusion.

Traditional valuation methods

The study starts with a presentation of three traditional valuation methods that

practitioners commonly apply: the DCF model, the comparable company analysis

and the precedent transaction analysis. In addition to describing the techniques,

we outline the main shortcomings of each method and specify why these methods

are inappropriate for valuing high growth tech firms.

Real options

In the second section, we aim to investigate if real options can overcome the

shortcomings of the traditional valuation methods in order to assess whether the

theory is useful for valuing high growth tech firms. We present fundamental models

and techniques within the area with the goal of investigating and illustrating the

theory’s possible contribution to the valuation of high growth tech firms. We also

present two specific company valuation models: the Schwartz-Moon model and

models using real options as add-on components to the traditional DCF model.

Identification of Valuation Method

In the third section, we recognise the advantages and shortcomings of presented

valuation methods in order to identify a suitable valuation approach for high

growth tech firms.

Case study

In the forth section, we intend to apply the knowledge and techniques developed

in the previous sections to a real-world case. We present the valuation method we

believe is suitable for valuing high growth tech firms: the Extended Schwartz-Moon
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model. We apply this approach to Spotify and thus continue with a presentation of

the firm and the industry. Finally, we present the result and conduct a sensitivity

analysis.

Analysis and discussion

In the fifth section, we discusses and analyses the results and findings of the study.

Conclusions

The concluding section provides final remarks and further identifies limitations as

well as suggestions for future research.
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2 Traditional Valuation Methods

In this section, we present traditional valuation methods that practitioners com-

monly use for firm valuations. We further discuss shortcomings with these methods

in regard to high growth tech firms.

2.1 The Discounted Cash Flow Model

One of the most well-known models within capital budgeting decisions and firm

valuation is the DCF model. The finance industry uses the model widely, presum-

ably because of its easy concept and independence of accounting rules (Penman,

2013).

The DCF model applies net present value (NPV) techniques and calculates

the intrinsic value of a firm. The method estimates future free cash flows (FCFs)

as well as a terminal value and applies discounting techniques to acquire total

firm value. It commonly risk-adjusts the FCFs in the denominator, using a

firm-specific discount rate, ρw, that originates from the weighted average cost of

capital (WACC), denoted with subscript w, of the firm. The resulting valuation

formula is (Penman, 2013):

EV0 =
FCF1

ρw
+
FCF2

ρ2
w

+ ...+
FCFT
ρTw

+
TVT
ρTw

(1)

where FCFt = Ct − It. The model adjusts cash flows from operations downwards

for investments and the resulting FCFs is thereby the amount available for investors

after making necessary investments in order to grow the business. In other words,

the model treats investments as value losses since they reduces the cash available

for investors. Investments in earlier years decrease FCFs but increase the cash from

operations in the future (Brealey et al., 2011).

To make predictions about future FCFs, it is necessary to use historical fi-

nancial data of the firm. There is no consensus regarding how many forecasting

periods to use in the model, but a general rule is to set the terminal value from the

point in time where it is reasonable to assume that the firm continues to grow at a
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constant long-run growth rate. The forecasts can have its basis in both historical

patterns and analysts’ forecasts, but the model requires precise estimations of each

proceeding FCF (Penman, 2013). In practice, predictions are difficult, especially

for start-ups with both limited historical data and publicly available information.

Normally, high growth tech firms have negative FCFs in early years, which also

obstruct the forecasts. The future is often highly uncertain for these disruptive

firms since the industries can be both new and changing. This results in aggravation

of the forecasting of precise FCFs.

The terminal value component consists of the value generated after the ex-

plicit forecast period, starting in time T . By adding this perpetual component, the

model does not require additional explicit forecasts of FCFs, which estimation is

even harder farther ahead in time. The terminal value follows the Gordon growth

formula (Penman, 2013):

TVT =
FCFT (1 + g)

ρw − g
(2)

where g is the long-term growth rate of the firm. The growth rate is a crucial

parameter in the model since most of the value in general comes from the terminal

value. By increasing the long-run growth rate marginally, the value of the firm can

increase substantially. Analysts that subjectively estimate this rate can therefore

easily affect and adjust the valuation (Penman, 2013). A common growth rate to

apply is the long-term growth rate of gross domestic product (GDP) in the industry

together with inflation (Koller et al., 2005).

Koller et al. (2005) estimate that 56% to 125% of high growth tech firms’

value originates from the terminal value, which they partly explain by the model’s

treatment of capital expenditures as value losses. The fact that the majority of the

value derives from the terminal component illustrates that it is possible to question

whether the DCF is suitable for valuing these firms.
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Figure 1 summarises the valuation process of how to obtain the enterprise value

(EV) of the firm.

Figure 1: The DCF Model

The figure provides an illustration of the DCF model’s procedure, which involves es-
timations of FCFs and terminal value, as well as discounting of the components to
present time by using the firm-specific WACC. This yields the EV of the firm.

2.1.1 Weighted Average Cost of Capital

A common way to estimate the firm’s cost of capital, the discount rate, is by using

the WACC. The WACC is a composition of the cost of equity and the cost of debt

to create consistency between the components of the WACC and the FCFs. The

formula for the after-tax WACC is (Brealey et al., 2011):

ρw =
E

(E +D)
rE +

D

(E +D)
rD(1− τC) (3)

where E is the market value of equity, D is market value of debt and τC is the

tax rate. Koller et al. (2005) argue that the yield on the firm’s long-term debt

gives an estimation of the cost of debt, rD. For determining the cost of equity, rE ,

a common method is the capital asset pricing model (CAPM) as it estimates the

expected return on the firm’s stock (Koller et al., 2005; Brealey et al., 2011). The

CAPM requires identification of the risk-free rate, the firm’s beta as well as the

market risk premium. The resulting formula for the cost of equity is:
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rE = rf + βE(rM − rf ) (4)

where rf is the risk-free rate, βE is the beta of the firm and rM is the market return.

The beta of the firm has its base in the covariance between the market return and

the return of the firm. If valuing private a firm, this parameter is problematic to

estimate as it is impossible to imply it from the stock of the firm. In that case, the

model suggests using a publicly traded twin security as a proxy. This is in many

cases hard to obtain as well, as there might be a lack of identical firms trading in

the market. As a result, the CAPM is difficult to apply (Koller et al., 2005; Brealey

et al., 2011). Additionally, a private firm may be subject to more risks than the

just systematic market risk, and the CAPM, not accounting for these, generally

works improperly for a private firm (Fabiozzo, 2016). Hull (2012) suggests several

ways to estimate the risk-free rate, including using long-term government bonds or

swap rates.

2.1.2 Shortcomings

Even though the industry regularly uses the DCF model, academics have long

criticised its suitability under certain circumstances. Koller et al. (2005) emphasise

the efficiency of the model, but further point out that its result depends heavily

on subjective underlying forecasts. When these are hard to estimate, the valuation

becomes less precise. MacMillan and Van Putten (2004) and Schulmerich (2010)

share this view and argue that the DCF model only works well if a firm’s cash

flows are predictable and forecasts are not uncertain. When it is neccessary to

base the future of a firm on numerous subjective assumptions, the DCF model can

lead to inaccurate and unreliable results. Additionally, for a firm that is subject

to high uncertainty, the method adjusts for risk by assuming a higher discount

rate, which normally results in undervaluation. Since high growth tech firms are

disruptive innovators, there is high uncertainty regarding their future cash flows.

This indicates that the model is especially hard to apply on these firms and thus

may result in inaccurate results.
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Furthermore, in a highly uncertainty and unpredictable environment, managerial

flexibility is of high importance (Trigeorgis, 1996). MacMillan et al. (2006) argue

that the DCF model cannot properly value investments in this setting as the

model ignores managerial flexibility. The managers ability to adjust their decisions

contingent on additional information received as time passes is not possible to

accurately value by using the model. For high growth tech firms and start-ups, this

flexibility is of extra importance. If introducing a new product or disrupting an

existing industry with digital solutions, it is necessary to adjust investments and

strategies when receiving more information regarding outcomes and competitors.

Since the DCF model ignores this flexibility, it likely leads to undervaluation of this

type of firm.

Amram and Kulatilaka (2000) argue that the DCF model is not the best ap-

proach for a firm having negative cash flows as the main part of the value originates

from the terminal value. Negative cash flows are a common feature for high growth

tech firms that typically invest heavily in an early stage to have the opportunity to

realise their potential in the future. In order to value these type of firms, Amram and

Kulatilaka (2000) argue that there is a need for other methods than the DCF model.

In conclusion, high growth tech firms have many of the characteristics that

the traditional DCF model cannot take into account. These disruptive firms

change rapidly, making their future increasingly unpredictable, which obstructs

the precision of forecasts of future FCFs. In addition, the majority of the value

originates from the terminal value. In order to correctly value these firms, it is also

important to take managerial flexibility into account, which the model fails to do.

2.2 Comparable Company and Precedent Transaction Analysis

The comparable company valuation and the precedent transaction valuation

approaches are market-based valuation methods with basis in the arbitrage pricing

principle, claiming that substitute investments should trade at the same price

(Meitner, 2006). The valuation models are especially valuable as complements to

the DCF model and may increase the accuracy of the valuation of a company but

can also independently value a firm. If applying the methods correctly, they enable

comparison between industry peers and precedent transactions, and thereby assess
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whether a strategic position of a firm should be better or worse than that of the

comparable object. This knowledge conveys value when there is high uncertainty

regarding estimations of FCFs (Koller et al., 2005).

In a comparable company analysis, it is necessary to identify a peer group of

firms with common characteristics and calculate the average of specified key ratios

for these firms to conduct the valuation. Common multiple ratios in theoretical

descriptions are price per earnings (P/E) and price per sales (P/sales) (Saputro

and Hartono, 2017; Brealey et al., 2011; Koller et al., 2005). On the contrary,

practitioners commonly use enterprise value multiples of earnings before interest

and taxes (EBIT) and sales, such as EV/EBIT and EV/sales, as these metrics are

independent of capital structure (Trainer, 2016). A precedent transaction analysis

identifies the same multiples but uses previous similar transactions instead of

comparable firms.

The most crucial part of a comparable company or precedent transaction

valuation is the identification a suitable peer group. Firms in general differ

in several ways, such as business model, financial characteristics, drivers of

performance, capital structure and risks; finding identical or very similar firms

can therefore be challenging. Using an industry average for the analysis ignore

these important firm specific factors but can give a good starting point for

identifying suitable comparable firms. After establishing the multiples, it is

essential to understand why the multiples are different from firm to firm. This

yields an understanding of competitive advantages, efficiency and economics of

scale across firms. When obtaining this understanding, it is feasible to estimate

the multiple a firm should trade at in comparison to other firms (Koller at al., 2005).

Furthermore, it may be challenging to distinguish which multiple to choose

for a particular valuation, since different characteristics affect multiples differently.

For example, capital structure and non-operating gains and losses affect the P/E

multiple and possibly make it artificially high. If the future of a firm is highly

uncertain, it is preferable to switch to a multiple based on sales or earnings before

interest, taxes, depreciation and amortisation (EBITDA), if positive. Otherwise,

only including firms with positive profits in the peer group will incorrectly affect the

multiple, resulting in overestimated values. Important to recognise is however that
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the farther down the income statement, the more similarities should exist between a

firm and its peers (Koller et al., 2005; Trainer, 2016; Pearl and Rosenbaum, 2009).

2.2.1 Shortcomings

One distinct disadvantage with the comparable valuation approaches is the difficulty

of finding peer firms and similar precedent transactions. Kim and Ritter (1999)

emphasise that the variation can be large enough to justify almost any price when

using P/E multiples from comparable transactions to value a firm going public.

We assess this as a problem especially for high growth tech firms in the start-up

scene. A high multiple in one transaction can justify similar valuations for other

firms, without having substantial basis in valuation theory. Kim and Ritter (1999)

further identify that practitioners using the comparable method have room for

manipulation of the valuation. If finding a hyped deal, they have the opportunity

to pick high multiples in order to justify a high price. This could possibly drive

up prices in general and potentially create overpriced industries. Kim and Ritter

(1999) also find that young firms going public have substantial valuation errors

when applying the techniques since valuable growth options likely exist, which are

difficult to capture in the current valuation. For high growth tech firms, this is a

common feature.

In summary, we thus consider that the comparable valuation methods, that

work best in combination with the DCF model, on their own would provide

speculative values for high growth tech firms since the identification of peers and

precedent transactions tends to be especially challenging for this type of firm. With

these shortcomings in mind, we believe that comparable valuations are of little use

in this context and further assess that instead of relying on subjectively chosen

multiples, there exists a need for finding a rigid valuation method with reliance on

the intrinsic value.
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3 Real Options

The following section aims to give an overview of the development of the real option

theory and the previous research within the area. Further, the section presents

fundamental principles and pricing methods within the subject, and how to apply

these in company valuation.

3.1 Introduction to Real Option Theory

The foundation of real options closely relates to the theory of financial options. In

the 1970s, Black and Scholes (1973) and Merton (1973) pioneer financial option

pricing with their path-breaking papers “The Pricing of Options and Corporate

Liabilities” and “Theory of Rational Option Pricing”. They thereby form the

basis for the quantitative roots of real options and introduce the development of

the Black-Scholes model, the first widely used pricing formula for determining

the fair value of a European option, which is only exercisable at the expiration

date. Cox, Ross and Rubenstein (1979) further develop a simplified pricing model

for financial options. Their binomial approach to derive the options fair value,

based on arbitrage pricing, provides a valuation method for discrete time, in which

the Black-Scholes model works as the limiting case. Following the publication

of these two fundamental theories, the development in academia continues with

more specific, financial options models. For example, Margrabe (1978) provides

an extension of Black and Scholes’s (1973) work by developing a framework for

valuing an option exchanging one risky asset for another. Geske (1978) further

presents a theory for pricing options on options, so called compound options, based

on the assumption that the variance of the rate of return, in comparison to the

Black-Scholes model, is not constant but rather a function of the level of the stock

price. Carr (1988) integrates the work of Margrabe (1978) and Geske (1978) and

develops a valuation formula for a “compound exchange option”, which at exercise

delivers one asset in exchange for another.

Further, Cox and Ross (1976) play important roles in the advance of new,

highly important disciplines, which originate from the well-known Modigliani-Miller

theorems and the derivation of the Black-Scholes model from 1973. In contrast to

Black and Scholes (1973), assuming that the underlying asset follows the log-normal
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diffusion process, Cox and Ross (1976) contribute to academia by presenting an

option pricing formula that directly connects to other stochastic underlying

processes. They develop the concept of risk-neutral valuation by showing that it

is possible to replicate an option using traded assets and further show that the

price of the option is independent of investors’ preferences and capital-market

equilibrium. This enables applications of the important risk-neutrality assumption,

implicating that the discounting of the future cash flows uses the risk-free interest

rate, independent of the riskiness of the asset.

Myers coins the term real options in 1977 when publishing the article “De-

terminants of Corporate Borrowing”, in which he investigates why tax advantage

of debt does not result in all firms borrowing “as much as possible” in order to

exploit the tax shield it generates. He describes firms as ongoing concerns that

make investments in projects with positive NPV; a part of the value of a firm thus

originates from the option to make these investments and this value depends on

whether it is optimal to exercise the option. Myers (1977) further states that the

exercise decision is contingent on the financing opportunities available and that a

firm with risky debt might pass on investments that could increase the value of

the firm. Hence, the decision of raising debt relies on the trade-off between the

tax advantage and the future investment strategy, yielding an explanation for why

firms do not fully exploit the available tax-shield. Thereby, the value of a firm is

the sum of the market value of assets already in place and the NPV of the firm’s

option to make future investments. The standard discounted cash flow techniques

understate this value since these methods ignore the value of future growth. Thus,

Myers (1977) emphasises growth options, which the traditional models ignore, to

be a crucial part in company valuation.

Another important contribution to the theory of real options is Mason and

Merton’s (1985) application of risk-neutrality concepts similar to Cox and Ross’s

(1976) ideas. In their article, “The Role of Contingent Claims Analysis in Corporate

Finance”, they use contingent claims analysis (CCA) to value an asset which payoff

depends on the value of another asset, such as an option. The technique is based

on the fact that a firm’s debt and equity can imitate the payoff of options and they

emphasise that CCA is a well-suited method for valuing managerial flexibility in

projects. Mason and Merton (1985) further describe that CCA enables valuation
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of non-traded real assets by identifying a twin security, i.e. a perfectly correlated

traded asset. According to the arbitrage argument, the price of an option on a

non-traded security must be the same as the price of an option on an identical

traded security. Thus, it is possible to value options on non-traded assets as well,

which is an important finding as real options usually are non-traded. Mason and

Merton (1985) thereby make the important contribution that it is possible to value

real and financial options similarly since the interest lies in pricing real options as

if they trade in the market.

The development of the real option theory continues further with a focus on

quantitative techniques and closed-form solutions for specific types of real options,

referred to as analytical methods. McDonald and Siegel (1985) use real options

theorems to value a firm that has a costless possibility of temporarily shutting

down production if the variable cost exceeds the revenue from a product. Kester

(1984) investigates a firm’s growth possibilities by using real growth options,

similar to the theory Myers (1977) describes. In order to make the real option

theory improvingly applicable to actual budgeting decisions, Trigeorgis (1993a)

investigates more complex and integrated options. He recognises that in practice,

firms have interacting options to defer, abandon, contract, expand or switch.

Interactive options may significantly differ in value together and separately and his

findings make it possible to more precisely value options in practical situations.

Kogut and Kulatilaka (1994) value the flexibility that exist in multinational

corporations to coordinate plants and production globally. They recognise that

the ability to switch and organise recourses internationally creates real option value.

The analytical models provide closed-form solution for specific, simplified

empirical capital budgeting problems. However, the methods are specific and

challenging to apply to more complex options. All models require composition of

the partial differential equation with the underlying stochastic process. Therefore,

if valuing multiple, interacting real options, there is a need for other methods. For

such situations, there commonly exist a lack of analytical solutions and difficulties

in deriving partial differential equations. However, the development of several

numerical techniques, many based on risk-neutral valuation, makes it possible

to handle this type of option valuation. It is possible to divide these numerical

valuation techniques into two subgroups: (i) direct approximation of underlying
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stochastic processes, and (ii) approximation of the resulting partial differential

equation (Trigeorgis, 1993b). The first category, including for example the im-

portant Monte Carlo simulation method developed by Boyle (1976), is generally

more intuitive. The Monte Carlo simulation process, involving the risk-neutrality

assumptions, determines an option’s price by simulating returns on an underlying

asset. According to Boyle (1976), this method has a clear advantage in specialised

situations, for example when continuous and jump processes (a mixture of stochastic

processes) at the same time generate the underlying asset’s return, which in general

give rise to a mixed partial differential equation. Two other important methods

are the binomial lattice approach, that Cox, Ross and Rubenstein (1979) develop,

and the log-transformed binomial method, that Trigeorgis (1991) introduces. The

binomial lattice allows for modelling of possible future paths of projects and can

thereby take contingent decisions into account. Trigeorgis’s (1991) model allows

for valuation of investments with multiple types of real options and captures the

interaction between them. Examples of approaches that approximate the stochastic

differential equation are numerical integration as well as explicit and implicit

difference methods.

A shortcoming of the real option pricing methods before the 1990s is the

weak connection between academia and practice. Trigeorgis creates the first link

between academia and practice in 1996 when publishing the book “Real Options”.

Similarly, Copeland and Antikarov (2003) present a guide for real options valuation

in practice aimed for corporate finance professionals, which compared to Trigeorgis

(1996), takes a less quantitative approach.

Schwartz and Moon (2000) make an important contribution with their model

aimed for valuing internet firms, such as eBay and Amazon, by using capital

budgeting techniques and real option theory. They justify the apparent high

valuations of internet firms at the time of the dot-com bubble with high growth in

revenues in combination with high volatility in key variables. The model includes

two stochastic variables, revenues and growth in revenues, and by conducting

Monte Carlo simulations, they model random future paths of a firm to capture

the uncertainty in these variables. Schwartz and Moon (2000) apply their model

to Amazon and estimate the value of the firm by discounting the cash flows

under the equivalent martingale measure, implying the possibility of using the
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risk-free rate for discounting. In 2001, Schwartz and Moon present an improved

model in which they advance a firm’s cost structure by introducing an additional

stochastic variable: variables costs. The new variable captures the uncertainty

regarding competition and future prices, which are crucial factors for firms

the model aims to value. Klobucnik and Sievers (2013) are the ones to firstly

apply Schwartz and Moon’s (2001) model cross-sectional using around 30,000 US

firm quarterly observations. They conclude that the model is suitable for high

growth tech firms and that it yields accurate results compared to sales multiples.

The key takeaway from the paper by Klobucnik and Sievers (2013) is however

that the Schwartz-Moon model is able to identify over- and undervalued markets,

which makes it useful when forming trading strategies and detecting pricing bubbles.

Another development within the field of real options is valuation models us-

ing the DCF model and real options as complements. MacMillan and Van Putten

(2004) develop a framework in which real options work as add-on components to the

DCF model and thereby captures the high reward potential in growth options and

managerial flexibility that the DCF model by its own fails to recognise. Similarly,

Trigeorgis and Ioulianou (2013) suggest changing the terminal value calculations in

the traditional DCF model to a real option-based term since this better captures

the growth opportunities facing firms.

3.2 Classifications of Real Options

In order to simplify the identification and analysis of a company’s operating and

strategic flexibility and available real options, Kodukula and Papudesu (2006) and

Copeland and Antikarov (2001) divide real options into two main types; simple

and advanced options. Koller et al. (2005) do not make the same distinction, but

present similar option types. Simple options give the holder the right but not the

obligation to abandon, expand, contract or defer a project and thus provide the

holder with potential upside while limiting the downside. Advanced real options

deal with compound and switching options, as well as rainbow options. Trigeorgis

(1993b; 2005) further classify corporate growth options and multiple interacting

options into the category. Table 1 and Table 2 summarise the different classifications

within simple and advanced options respectively.
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Table 1: Simple Options

Option to aban-
don

This option shares the same characteristics as a put
option on a stock and is useful if a project performs
poorly. The exercise value is the expected liquidation
value of the project and the option becomes valuable
in case the project value falls below the liquidation
value.

Option to expand
or contract

The option to expand provides the opportunity to
scale a project and is comparable to a call option on
a stock. The option holder has the flexibility, but not
the obligation, to make follow-on investments or ac-
celerate the utilisation of resources. Conversely, the
option to contract scalability is equivalent to a put
option on a stock, and the holder of such option thus
has the opportunity to scale down operations.

Option to defer

This option is comparable to a call option on a stock.
By paying beforehand, the owner has the opportunity
to postpone the usage of the option until the timing
fits. The cost of using the options is equal to the
exercise price and the owner exercises the option if
the opportunity cost of deferring is too high.

Sources: Kodukula and Papudesu (2006), Copeland and Antikarov (2001) and Koller et al.
(2005). The table provides an overview as well as explanations of different simple options.
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Table 2: Advanced Options

Option to switch

This option allows the holder to switch back and forth
among alternatives, for example changing output mix
of a production facility or exiting and re-entering an
industry.

Compound op-
tion

This option is an option on options and the holder gen-
erates new options when exercising existing ones. A
compound option is either simultaneous or sequential.
The first type constitutes options that are possible to
use in parallel. The latter refers to staged investments,
implicating that the option holder in each stage has
the opportunity to continue investing in the project
or to abandon the project.

Rainbow option

A rainbow option depends on several underlying assets
and multiple sources of uncertainty affect its value.
Many real-world applications require a real option val-
uation method that can handle this type of option,
since it covers a wide and important range of deci-
sions. Practical examples of the rainbow option refer
to research and development (R&D) and new product
developments.

Multiple interact-
ing option

This option contains a collection of different options.
In combination, the value of the collection may dif-
fer from the sum of the options, which is why owners
of the options should consider them as one multiple
interactive option rather than single options.

Corporate growth
option

A growth option gives the possibility to unlock future
opportunities and is a type of expansion option. In
general, early investments such as R&D or a strate-
gic acquisition can link interrelated projects together,
resulting in for example accesses to new markets or
strengthening of strategic positions. The value origi-
nates from future growth opportunities instead of di-
rect cash flows, making the structure similar to com-
pound options. This option is common in strategic
industries, such as high tech or R&D heavy industries.

Sources: Kodukula and Papudesu (2006), Copeland and Antikarov (2001), Koller et al.
(2005) and Trigeorgis (1993b; 2005). The table provides an overview as well as explanations
of different advanced options.
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3.3 Fundamental Real Option Theory

To give an improved understanding of how company valuation techniques can

incorporate real options, we investigate fundamental methods for option pricing. As

real and financial options closely relate, most of the presented theory is applicable

to both option types. However, our focus throughout the section is to give a full

representation of the real option theory.

3.3.1 The Black-Scholes Model

The Black-Scholes model has its basis in the concept of no arbitrage, meaning that

two portfolios or assets with the same payoff should have identical prices in order

for the market to be arbitrage free. The logic is that, if there exist arbitrage op-

portunities, investors take positions to exploit these, resulting in the opportunities

being “arbitraged away”. The model is valid under the following conditions (Black

and Scholes, 1973; Hull, 2012):

• There are no transaction costs or differential taxes

• Borrowing and lending, at the same rate of interest, are unrestricted

• The short-term risk-free rate of interest is known and constant through time

• Short sales, with full use of proceeds, are unrestricted

• Trading takes place continuously in time

• The movement of the stock price can be described by a diffusion-type process

Below follow the abbreviations used in the model (Black and Scholes, 1973; Hull,

2012):

α Expected return of the underlying stock per unit time
σ Standard deviation of the return of the stock per unit time
dz Gauss-Wiener process
C The price of the call option
t A general time
T Time to expiration
r Risk-free interest rate
K Exercise price
S Price of underlying asset
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The stock price of the underlying asset follows the process (Black and Scholes, 1973):

dS = αSdt+ σdz (5)

The derivation of the model originates from the partial differential equation (Hull,

2012):

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2
− rC = 0 (6)

The formula implies that it is possible to perfectly hedge the option by buying and

selling the underlying asset. The equation has several solutions and to obtain the

pricing formula that Black and Scholes (1973) derive, it is necessary to set specific

boundary conditions. For a call options, these conditions are:

C(S, 0) = max(S −K, 0) (7)

C(0, T ) = 0 (8)

C(S, T )

S
→ 1 as S→∞ (9)

The partial differential equation in combination with the boundary conditions gen-

erates the perfect hedge of the option, implying what price the option must have.

Thereby, the resulting pricing formula for call options is:

C(S, T,K) = S0N(d1)−Ke−rTN(d2) (10)

where N(•) is the cumulative normal distribution function and:

d1 =
log(S0

K ) + (r + 1
2σ

2)T

σ
√
T

(11)
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d2 =
log(S0

K ) + (r − 1
2σ

2)T

σ
√
T

(12)

One explanation for the success of the model is that all input parameters are

directly observable in the market, yielding an easily applicable model to European

options. The formula uses the important principles of risk-neutral valuation when

applying the partial differential equation, which yields prices that are independent

of investors’ unobservable risk preferences. Important to notice is however that the

model only is applicable to European options since it cannot account for possible

early exercise of American options, which are exercisable at any time (Hull, 2012).

In some cases, it is feasible to value real options by using the Black-Scholes

model. Borison and Triantis (2001) state that the model can give an approximate

solution to simple real options with similar payoff structure as financial options.

These real options only include one investment decision, at a certain point in time,

and can for example be an option to defer an investment (call) and an option to

abandon a project (put). Arnold (2014) supports this view, pointing out that the

model works for simple options that do not interact with other options. However,

the input parameters are different; the exercise price is the investment and the

features of the investment replace the characteristics of the underlying stock. It is

also important that the assumptions of the Black-Scholes model are valid, which is

rarely the case in practice for real options. Real options are generally more complex,

resulting in the model being inapplicable. Because of these shortcomings, it is not

common to use the model in the area of real options, but it still provides important

insights and path-breaking findings that are important when investigating pricing

models for real options (Arnold, 2014; Borison and Triantis, 2001).

3.3.2 Decision Tree Analysis

Decision tree analysis (DTA) is a technique that captures value arising from

managerial flexibility. It is especially suitable for projects in which there is a

need of taking multiple contingent decisions in particular points in time into

consideration and when uncertainty decreases over time (Trigeorgis, 1996). Instead

of using a fixed pre-determined path, as done in the DCF model, DTA allows the

future to consist of many possible outcomes and is thus able to capture flexibility.
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The method models different paths using a contingent decision tree, where each

node reflects available decisions, their costs or payoffs and the different outcomes

resulting from each decision. The final nodes display all possible finite values of the

project, dependent on the chosen paths. Additionally, the model assigns physical

probabilities to each possible path. The discount factor, depending on the riskiness

of the project, discounts all the modelled expected cash flows, which yields an

expected value of each path. Decision makers can finally intuitively choose the

path with the highest NVP. Figure 2 gives an illustrative example of a DTA process.

Figure 2: Decision Tree

The figure provides an illustrative example of a typical project in which it is possible
to take multiple investment decisions, represented by A and B, into account. The
outcomes are contingent on the decisions and the value of the project thereby depends
on the chosen path.

Furthermore, Papudesu and Kodukula (2006) present DTA as a substitute to the

DCF model since it creates a complex setup, more similar to real cases. They

emphasise, in accordance with Schulmerich (2010), the importance of the model’s

possibility to take flexibility of managers’ actions into account when valuing a

project. This increases the accuracy of the valuation compared to a traditional

NPV analysis of projects and firms.

According to Schulmerich (2010) and Trigeorgis (1996), DTA is further use-

ful when valuing simpler real options. In this case, the payoff in each node depends

on both the expected value from that decision and the possible real option value.

For example, in case of an abandonment option, the decision in each node depends

on both the value of continuing the project and the possible salvage value of

abandoning the project: the holder of the option chooses the alternative with the
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highest expected payoff. In this case, the value of the option originates from the

fact that managers can abandon the project if the conditions turn out to be worse

than originally estimated. In this case, DTA yields two different NPVs for the

project; static NPV and strategic NPV. The former NPV is the value from the

project without considering the real option, while the latter is the NPV of also

including the real option, consisting of the value of the choice between continuing

or abandoning the project and receiving the salvage value. The difference between

the two gives the option premium.

Value of real option = option premium

Option premium = strategic NPV - static NPV

For many projects, especially high-risk projects with uncertain cash flows, the NPV

may be low or even negative. Because of this, managers might pass on value-adding

projects. High growth tech firms usually have negative cash flows in earlier years,

while also having a huge growth potential. Only considering the static NPV results

in considerable undervaluation of these firms, which illustrates the importance of

real options in valuation schemes (Schulmerich, 2010).

Even though DTA is able to capture the value of flexibility of investments

by modelling discrete points in time for managerial decisions by using option

payoffs, the method also contains significant shortcoming. Since the model requires

modelling of expected cash flows from each decision, it is difficult to apply practi-

cally when decisions and scenarios are uncertain or complex. The method further

requires physical probabilities for every different outcome, which are unobservable

and therefore subjectively estimated. This results in sensitive valuations that are

easy to influence (Schulmerich, 2010; Trigeorgis, 1996; Papudesu and Kodukula,

2006).

Another limitation with DTA is that the method assumes “high” and “low”,

and possibly “median” outcome values from each decision. These values are hard

to accurately estimate and simplifications of practice since there possibly exist

a continuous number of possible outcomes. The model also has discrete time

steps, which is not a precise reflection of the real world, where managers can take

decisions on continuous basis rather than at a predetermined time (Trigeorgis, 1996).
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Schulmerich (2010) also points out that the model assumes a constant dis-

count factor, even though the uncertainty in reality decreases as time passes and

the project reveals more information. The discount factor is hard to estimate

accurately and affect the result extensively. A decreasing discount rate across the

tree can partially solve this problem, but Schulmerich (2010) still emphasises that

there exists no consensus regarding how to find an appropriate discount rate. The

model is therefore hard to implement on practical complex cases. High growth tech

firms commonly experience high uncertainty regarding the future, which results in a

high discount rate if applying DTA in the valuation, even though these firms might

deserve a lower discount rate as time passes and uncertainty decreases. Discounting

all cash flows with a constantly high discount rate thus results in undervaluation of

these firms.

3.3.3 Contingent Claims Analysis

DTA is complicated to apply even in simple situations, as it requires subjective

estimates of probabilities, and does not incorporate a varying discount factor.

Schulmerich (2010) presents CCA, based on the suggestions made by Mason

and Merton (1985), as an improved method that can solve these shortcomings.

CCA converts physical probabilities into risk-adjusted probabilities, allowing for

the usage of a constant, risk-free interest rate as discount rate, independently of

projects’ risk structure.

CCA originates from financial option theory and has its base in fundamental

principles, such as no arbitrage, and is applicable to real options. This, the method

enables pricing of an option by replicating its payoff and risk characteristic by

using an identical security and risk-free bonds. This makes CCA applicable to both

private and trading assets (Dixit and Pindyck, 1994). Since identifal payoffs should

yield the same price according to no arbitrage, it is possible to find the value of the

option from the formed replicating portfolio (Trigeorgis, 1996).
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The pricing techniques of CCA use the following abbrevations (Schulmerich, 2010;

Trigeorgis, 1996):

F Contingent claim
Vi Value of n underlying assets or state variables
αi Expected growth rate of Vi
σi Standard deviation of Vi
dzi Differentials of Brownian motion processes (mean 0 and variance dt)
t Time
µj Return offered by Fj
si The component of asset Fj ’s standard deviation attributed to variable Vi
r Risk-free return

The underlying assets follow a diffusion process:

dVi
Vi

= αidt+ σidzi (13)

Apart from the assumptions in the Black-Scholes model, CCA also assumes that the

financial markets are complete with n + 1 traded assets, which prices, Fj , depend

on the prices of the underlying assets, Vi, and time, t. In a complete market, it is

feasible to replicate all contingent assets. Equation 14 defines the diffusion process,

found by using the extended form of Ito’s lemma:

dFj
Fj

= µjdt+
∑

i
sidzi (14)

where

µj =

1
2

∑
i,k ρikσiσkViVk

∂2F
∂Vi∂Vk

+
∑

i αiVi
∂F
∂Vi
− ∂F

∂τ

Fj
(15)

si =

(
∂F
∂Vi

Vi

Fj

)
σi (16)
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By investing a weight, ωj , in each security, Fj , it is possible to create a risk-free

hedge portfolio over any interval dt. How much to invest in each asset depends on

the stochastic part of the equation, (
dFj
Fj

), and the goal is to eliminate this part in

order to make the portfolio free of risk. Since a risk-free portfolio should only earn

the risk-free rate according to no arbitrage, it results in the asset pricing model:

µj − r =
∑

i
λisi (17)

where λi = (µj − r)/σi is the market price of risk. As real options do not trade in

the market, this is found by using an identical traded security.

Finally, by substituting Equation 15 and Equation 16 into Equation 17 it is

possible to obtain the fundamental partial differential equation for CCA:

1

2

∑
i,k
ρikσiσkViVk

∂2F

∂Vi∂Vk
+
∑

i
(αi − λiσi)Vi

∂F

∂Vi
− ∂F

∂τ
− rF + d = 0 (18)

where d is the total payoff from the option before exercise. Similar to the

Black-Scholes model, it is necessary to impose particular boundary conditions in

order to value different real options. The important take away for this derivation is

that it is possible to value any contingent claim, with a value dependent only on n

underlying assets and time t, by using this partial differential equation (Trigeorgis,

1996).

Furthermore, for an illustrative purpose, we present a one-period case, as-

suming that a project, V , and its twin security, S, follow the paths that Figure 3

displays. q and 1 − q reflect the physical probabilities (Schulmerich, 2010). It

is of high importance to identify a twin security with the same risk structure as

the project when applying CCA. This is often a challenging task, especially when

applying CCA to real options as only limited data is available (Schulmerich, 2010).
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Figure 3: Project and Twin Security

Source: Schulmerich (2010). The figure illustrates the payoff structure of a project,
V, and its twin security, S. q and 1− q represent physical probabilities.

The pricing of a contingent claim requires replication of the equity value, E, which

should perfectly correlate with the movements of both the project and the twin

security. To conduct the replication, it is necessary to invest N shares in the

twin security financed by shorting B amount in the risk-free rate. The replicating

portfolio should yield exactly the same payoff as the real option, independently of

what state of the world that becomes true (Schulmerich, 2010). Figure 4 illustrates

the replicating portfolio.

Figure 4: The Replicating Portfolio

Source: Schulmerich (2010). The figure illustrates the payoff structure of the repli-
cating portfolio formed by investing N shares in the twin security and borrowing B
amount of the risk-free rate.

To recognise how many shares of the twin security to buy and how many risk-free

bonds to short, it is crucial to solve for n and B. This gives the solution of the

replicating portfolio. The equations follow:
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n =
E+ − E−

S+ − S−
(19)

B =
E+S− − E−S+

(S+ − S−)(1 + r)
=
NS− − E−

1 + r
(20)

E =
pE+ + (1− p)E−

1 + r
(21)

where p and (1− p) are risk-neutral probabilities. The equation for p is:

p =
(1 + r)S − S−

S+ − S−
=

(1 + r)− d
u− d

(22)

where

u = eσ
√

∆T (23)

d =
1

u
(24)

where u and d represent the up and down movements. The method eliminates

the risk related to project when forming a replicating portfolio since the strategy

ensures cash flows independently of the state of the world. This enables switching

from physical to risk-neutral probabilities, which are higher for unfavourable states

and lower for favourable states. By doing this, CCA looks at the world as if

all agents are risk-neutral and therefore does not require any return above the

risk-free rate, which is commonly referred to as the certainty equivalent approach

(Schulmerich, 2010). Resulting, the risk-neutral probabilities depend only on the

risk-free rate and the up and down movements and thus allow for discounting

using the risk-free rate since cash flows under the certainty equivalent measure

are independent of risk. Because of this, the present value of the cash flows are

the same under both measures, even if applying different discount rates (Copeland

and Antikarov, 2003). The process eliminates the problem of finding the correct
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discount factor and is therefore an important contribution of CCA.

Another clear advantage with CCA is the possibility of identifying the value

of a real option without recognising specific cash flows, which makes CCA theo-

retically preferred over DTA. However, the model is not applicable if the required

input parameters are unavailable. It is for example difficult to identify an identical

security trading in the market; when valuing a private firm in a new industry, this

is commonly challenging to find (Koller et al., 2005).

3.3.4 Binomial Lattice

The binomial lattice approach is a numerical real option valuation method that

approximate the underlying stochastic process. The approximation uses binomial

or trinomial trees and has its starting point in the current value. In comparison to a

Monto Carlo approach, presented in the next section, the binomial lattice approach

is more suitable for valuing American options since it easily can take early exercise

into account (Schulmerich, 2010).

Cox, Ross and Rubenstein’s paper from 1979, “Option Pricing: A Simplified

Approach”, is as an important building block for the lattice approach. Having

its basis in Cox and Ross’s earlier work that introduce option pricing based on

replicating portfolios and risk-neutral valuation, their binomial tree approach is a

breakthrough in option pricing in discrete time and today the most classical tool

for option pricing of this type.

The model’s derivation is almost identical to the ones for CCA in Section 3.3.3

Contingent Claims Analysis. Thus, we do not go into detail regarding its deriva-

tions. The main difference is however that Cox, Ross and Rubenstein (1979) use

continuously compounded rates rather than discrete. Hence, the risk-free return,

r, exchanges for er. Additionally, n shares of the underlying stock and a ∆t-year

bond B create the replicating portfolio E.

Further, in order to allow for stochastic risk-free interest rates, e.g. rates de-

pending on a varying rather than flat term structure, it is possible to modify the

model of Cox, Ross and Rubenstein’s (1979). The modified model, in comparison to
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the basic model, thus has a time subscript on the risk-free rate and the risk-neutral

probabilities (Schulmerich, 2010).

Baduns (2013) intuitively explains how to apply the binomial lattice approach. He

argues that for a simple real option, it is necessary to model one lattice for the

underlying asset, or a twin security, and one for the option itself. Risk-neutral

probabilities and the up and down movements provides the first lattice, while

backwards induction derives the latter, which Figure 5 illustrates.

Figure 5: Binomial Lattices

Source: Baduns (2013). The figure gives an illustration of binomial lattices for both
an underlying asset and a real option.

Strengths of the binomial lattice model are its simple intuition and flexibility when

it comes to managing different stochastic processes and multiple options. However,

the method yields the option value for only one single underlying asset, thus it is

necessary to carry out the pricing procedure several times when there exist many

starting values. The model is in other words time consuming, especially when

determining whole option value distributions (Schulmerich, 2010). In order to

find an efficient model, applicable on complex, potentially interacting investments,

Trigeorgis (1991) develops an extension of Cox, Ross and Rubenstein’s (1979)

model: the log-transformed binomial tree approach. Trigeorgis’s (1991) method

thus allows for valuing projects involving multiple real options and tries to reach

consistency between the discrete and the continuous time approach.

Similar to CCA, a shortcoming with the binomial lattices is the difficulty of

identifying a traded twin security. Both Copeland and Anikarov (2003) and Dixit
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and Pindyck (1994) point out that projects with an aim to develop new products,

such as R&D ventures, are hard to replicate since they are unrelated to existing

assets. In that case, the assumption that an asset is possible to span in the market

does not hold. To overcome this issue, Copeland and Antikarov (2003) suggest

applying the Marketed Asset Disclaimer (MAD) assumption. They argue that the

NPV of the project itself can replace the twin security when infeasible since the

project and the real option should perfectly correlate. The MAD assumption is

especially valuable for the high growth tech firms since they commonly introduce

new innovative products that are not possible to find traded in the market.

3.3.5 Monte Carlo Analysis

Monte Carlo is a numerical method that directly approximates an option’s underly-

ing stochastic process and relies on the risk-neutrality concept (Geske and Shastri,

1985). Equation 25 presents the stochastic differential equation that describes the

path of the underlying asset for time t ≥ 0, St. α is the instantaneous return and σ

the instantaneous standard deviation of the underlying asset. The random variable

dzt is normally distributed and has a variance of dt (Schulmerich, 2010).

dSt = αStdt+ σStdzt (25)

The goal of the Monte Carlo simulation is to create sample paths for the underlying

asset for each point in time t for a specific time interval up to time T , with N subin-

tervals with the step size of ∆s=T/N . The method calculates the path iteratively

from a starting value, S0 . One possible function for the iterations is the Euler

scheme:

Si+1 = Si + αSi∆s + σSi∆zi i = 0, 1, ..., N (26)

When simulating the path, the subsequent steps that the process requires to price

the option depends on both option type and its pricing function. For example,

a European call with maturity T and exercise price X uses the pricing function:

Pj = max(ST − X, 0), where index j reflects the price of the jth simulated path.

The method is in other words conducting the simulation A times independently and
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thereby generates as many number of prices, Pj . The mean of the prices constitutes

the option valuation at time T :

z =

A∑
j=1

Pj (27)

The present value of z under the risk-neutral measure, ze−rT , finally gives the

Monte Carlo option price (Schulmerich, 2010).

The aim of the Monte Carlo simulation is traditionally to price European

options since it suits “one-off” situations (Boyle, 1976). If applying Monte Carlo to

American options, it requires N lognormal distribution approximations, compared

to only one at time T for the European options. Therefore, the method requires a

full set of simulated paths conditional on the starting point. This enables pricing

of multiple options with different characteristics but at the same time, it makes the

Monte Carlo process less efficient (Geske and Shastri, 1985). However, there exists

attempts for overcoming this shortcoming, which the improvement of Monte Carlo

for American options presented by Longstaff and Schwartz (2001) is an example of.

Advantages of using Monte Carlo are its simplicity and its ability to handle

different complex processes of the underlying asset, involving for example continu-

ous and jump processes at the same time. This type of process combination results

in mixed partial differential equations, which without the Monte Carlo approach

are difficult to solve. The method can also value many types of real options and

allows for flexibility regarding the distribution that generates the returns of the

underlying asset. This is possible because there is no requirement for closed form

solutions for the underlying asset (Boyle, 1976). Furthermore, the Monte Carlo

approach is useful when valuing real options which decisions are contingent over

time, as the method takes path-dependency into account (Borison and Triantis,

2001).
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3.4 Real Options in Company Valuation

In the previous sections, we presented the most well-known methods and models

for option pricing, with a focus on real options. In this section, we present company

valuation models that use these basic principles, with a focus on their applicability

to high growth tech firms.

3.4.1 The Schwartz-Moon Model

Schwartz and Moon (2000; 2001) develop a pricing model with basis in real

option theory in order to price internet firms. When writing their article, internet

firms received a lot of attention for their apparent high valuations. The aim of

the model was thus to capture the high growth potential these firms experience

that traditional models fails to count for. Schwartz and Moon (2000) show that

high valuations are justifiable in case firms experience high enough growth rates

and volatilities in key variables. An important assumption in the model is that

the exceptional high growth rates of internet firms converge towards a long-run

industry level, partly due to competition. A clear advantage with the model, in

comparison to the DCF model, is its independence of subjective forecasts. Instead,

the Schwartz-Moon model rely on current characteristics and long-term levels and

simulates the paths in between by using the Monte Carlo approach, described in

Section 3.3.5 Monte Carlo Analysis. Additionally, the model applies the concept of

the certainty equivalent and thereby adjust the cash flows for risk before discounting

with the risk-free rate.

The model developed in 2000 has two sources of uncertainty: changes in rev-

enues, R(t), and the expected growth rate in revenues, µ(t). In the revisited model

from 2001, Schwartz and Moon introduce an additional stochastic variable: variable

cost fraction, γ(t). The variable cost variable aims for capturing that most internet

firms are not making a profit in the beginning, hence the costs should be able to

decrease over time in order for firms to become profitable. All stochastic variables

follow a mean reverting process. Additionally, the model has three deterministic,

path dependent variables: available cash, X(t), loss-carry-forward, L(t), and

property, plant and equipment, PPE(t).
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Schwartz and Moon (2000; 2001) initially derive the model in continuous

time and later approximate it in discrete time. The dynamics of a firm’s revenues

follows the stochastic differential equation:

dR(t)

R(t)
= µ(t)dt+ σ(t)dz1 (28)

where µ(t) is the expected growth rate in revenue at time t (the drift), σ(t) is its

volatility and z1 captures unexpected changes in the growth rate and follows a

Brownian motion process.

The expected growth rate converges to the common long-run industry level,

by stochastically following:

dµ(t) = κ(µ̄− µ(t))dt+ η(t)dz2 (29)

where η(t) is the volatility of expected growth in revenues and κ is the mean-

reversion coefficient of the stochastic process, affecting how fast the firm converges

to the long-term growth level. Schwartz and Moon (2000; 2001) define the

half-life of any deviations from the long-run growth rate as ln(2)/κ. Equation 29

further reveals that the initially high growth rates that internet firms experience

stochastically decrease towards a long-run industry standard, µ̄. The revenue

dynamics enable these firms to sustain high growth in the near future while at

the same time stochastically mean reverting towards more reasonable levels in the

long-run. As previously mentioned, Schwartz and Moon (2000; 2001) justify this

process by assuming that in the long-run, firms cannot grow faster than the overall

industry or economy.

The unanticipated changes in revenues also converge to a deterministic long-

run average, σ̄, while the drift converge deterministically to zero.

dσ(t) = κ1(σ̄ − σ(t))dt (30)
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dη(t) = −κ2η(t)dt (31)

To determine costs, Schwartz and Moon (2001) use Equation 32 that captures un-

certainty regarding factors such as future prices, competitors and technological de-

velopments, which all affect the costs of the firm.

Cost(t) = γ(t)R(t) + F (32)

F reflects fixed costs and γ(t) determines variable costs, estimated as a fraction of

revenue. This new feature is of particular importance for early stage companies

operating in new industries or introducing new products or services since their costs

are hard to predict. The dynamics also capture that unprofitable firms need to

improve their cost structures in order to become profitable and sustain operations

in the long-run.

Variable costs follow the stochastic differential equation:

dγ(t) = κ3(γ̄ − γ(t))dt+ ϕ(t)dz3 (33)

where κ3 represents the mean-reversion coefficient for variable costs and ϕ(t) is the

volatility of variable costs. The half-life of the deviations is still ln(2)/κ3, and reflects

how fast the variable costs convert to the long-run level, γ̄. The unanticipated

changes converge to the long-run level, ϕ̄, by following:

dϕ(t) = κ4(ϕ̄− ϕ(t))dt (34)

The Brownian motions, z1, z2 and z3 may all correlate:

dz1dz2 = ρ12dt (35)

dz1dz3 = ρ13dt (36)
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dz2dz3 = ρ23dt (37)

This reveals that the drift and the unanticipated changes in the growth rate of

revenues may correlate and that both revenue and growth rates in revenue may

correlate with unanticipated changes in variables costs in the model.

The following equation gives the net income after tax:

Y (t) = (R(t)− Cost(t)−Dep(t))(1− τC) (38)

where τC is the tax rate of the firm and Dep(t) is the depreciation rate. If net

income is negative or if the firm has accumulated loss-carry-forward, the tax is not

applicable. Hence, the loss-carry-forward is central for net income and follows the

dynamics below:

dL(t) = −Y (t)dt if L(t) > 0 (39)

dL(t) = Max[−Y (t)dt, 0] if L(t) = 0 (40)

Equation 39 and Equation 40 demonstrate that the loss-carry forward increases

if the firm makes a loss and is otherwise unaffected. The loss-carry forward is an

important feature particularly for early stage firms since they commonly make a

loss in their early years. By including these dynamics, the model captures how

firms can decrease their taxes by using accumulated loss-carry-forward.

Moreover, the accumulated property, plant and equipment is dependent on

capital expenditures as well as depreciation and follows the dynamics:

dP (t) = [Capex(t)−Dep(t)]dt (41)
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The level of the item property, plant and equipment determines depreciation and

revenue govern capital expenditures:

Capex(t) = CX(t) for t ≤ t̄ (42)

Capex(t) = CR ∗R(t) for t ≥ t̄ (43)

Dep(t) = DR ∗ P (t) (44)

where CX(t) is planned capital expenditures and CR is capital expenditures as

fraction of revenue, R(t). Planned capital expenditures is known up to a specific

time period, t̄, and afterwards constitutes a fraction of revenue. DR represents

depreciation as a fraction of property, plant and equipment.

Taking all derived dynamics together, the amount of cash available develops

according to:

dX(t) = [rX(t) + Y (t) +Dep(t)− Capex(t)]dt (45)

The cash available earns untaxed interest, which makes the valuation independent

of when cash flow allocations occur to the owners. The risk-free rate accumulates

the cash flows up to time T , when the owners receive the remaining cash and the

firm no longer grows at the exceptional high rate. This yields the same result as

discounting the cash flows under the equivalent martingale measure at the time

they occur. Further, the model assumes that the firms does not pay any dividends.

Furthermore, the model accounts for that the firm can reach a negative level

of cash without going bankrupt by taking new financing opportunities into con-

sideration. To capture this, Schwartz and Moon (2001) assume that the firm can

reach a pre-decided negative level of cash, X∗, without going bankrupt. If reaching

a level beneath this, the firm goes bankrupt.
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The firm value in the Schwartz-Moon model consists of two components, the out-

standing cash balance at time T and an on-going part, commonly referred to as

terminal value. A multiple, M , of EBITDA determines the last part, as commonly

done among professionals (Schwartz and Moon, 2000; 2001). The function for the

present value of the firm is:

V (0) = EQ[X(T ) +M(R(T )− Cost(T ))]e−rT (46)

where EQ is the equivalent martingale measure, indicating that the model uses the

risk-neutral measure to discount the expected value of the firm.

The model simulates available revenues and costs up to the pre-determined

time period, T . The simulated values, dependent on their previous paths, deter-

mine the value of the firm for every given simulation. Hence, the procedure yields

as many firm values as simulations and the average of these represents the value of

the firm.

As previously mentioned, the model constitutes three stochastic variables:

changes in revenue, expected rate of growth in revenues and variable costs. The

revenue changes are the only uncertainty generating a risk premium, while the

other two stochastic processes have identical true and risk-adjusted processes. The

resulting risk-adjusted process for the change in revenues is:

dR(t)

R(t)
= [µ(t)− λ(t)]dt+ σ(t)dz1 (47)

where λ(t) is the time-dependent risk-adjustment. Schwartz and Moon (2001) in-

fer the risk premium from the beta of the firm’s stock by using Equation 48 and

Equation 49.

λ(t) = βR(rM − r) (48)

βS =
RSR
S

λ(t)

rM − r
(49)
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where βR is the beta for revenues, βS is the beta for the stock, SR is the derivation of

the stock price with respect to revenues and rM is the return of the market portfolio.

Schwartz and Moon (2001) further set λ(t) to λ̄σ(t) when implementing the

model with the motivation that the beta of revenues and the risk premium is

proportional and the volatility of growth in revenues changes with time.

In order to calculate the price of the firm at per share basis, Schwartz and

Moon (2001) adjust the number of outstanding shares for employee stock options

and convertible bonds. If the firm does not go bankrupt, these types of shares

adjust to common shares. To get a fair estimation of the transactions with

shareholders, it is necessary to estimate the cash flows available to shareholders

after the conversion since this increases the total value of the firm. Schwartz and

Moon (2001) calculate this by adding the payments from the exercise price of the

share options and subtracting the principal and coupon payments of the bonds.

Furthermore, Schwartz and Moon (2000; 2001) describe how to solve the model

using discrete time since the input data, collected from quarterly or annual reports,

is in discrete time. In the application, they also assume that all mean-revering

coefficients, κ, are equal. The resulting risk-adjusted processes in discrete time are:

R(t+ ∆t) = R(t)e(µ(t)−λ̄σ(t)−σ(t)
2

2
)∆t+σ(t)

√
∆tε1 (50)

µ(t+ ∆t) = e−κ∆tµ(t) + (1− e−κ∆t)µ̄+

√
1− e−2κ∆t

2κ
η(t)ε2 (51)

γ(t+ ∆t) = e−κ∆tγ(t) + (1− e−κ∆t)γ̄ +

√
1− e−2κ∆t

2κ
ϕ(t)ε3 (52)

where

σ(t) = σ0e
−κt + σ̄(1− e−κt) (53)
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η(t) = η0e
−κt (54)

ϕ(t) = ϕ0e
−κt + ϕ̄(1− e−κt) (55)

The variables ε1, ε2 and ε3 are standard correlated normal variates.

In the long-run, the revenue dynamics converge to:

dR(∞)

R(∞)
= µ̄dt+ σ̄dz1 (56)

As previously mentioned, Schwartz and Moon (2000; 2001) estimate the stochastic

processes by using Monte Carlo simulations since it can capture the path-

dependency of the variables. This enables estimations of all possible paths of the

firm, taking uncertainty regarding the cost structure and the growth in revenues

into account.

In the case of valuing high growth tech firms, the Schwartz-Moon model

seems highly appropriate mainly because it enables modelling of many different

scenarios. The process enables the valuation of these firms without the need of

specifically estimating unpredictable and uncertain cash flows. It also captures that

the path for these firms are hard to know beforehand, which is one of the reasons for

why the DCF model is inappropriate. High growth tech firms face a high up-side,

but at the same time a substantial risk of going bankrupt. By incorporating both

the potential upside and the high risk, the model can capture these features in a

way the DCF model fails to do. Additionally, high growth tech firms commonly

rely on improving their cost structure while revenues rapidly grow in order to

become profitable in the future. The Schwartz-Moon model captures both fea-

tures by stochastically estimating growth in revenues and the variable costs fraction.

3.4.1.1 Estimations of Parameters

The model, as most valuation models, is highly dependent on the input parameters.

It is therefore necessary to estimate them carefully. This section presents the
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methods that Schwartz and Moon (2000; 2001) suggest, together with estimation

procedures in other applications of the model.

Revenue and Growth in Revenues Dynamics

The income statement of the firm in question identifies initial revenue, R0, which

is the starting point of the simulation of the stochastic revenue process. With the

purpose of estimating the initial volatility of revenues, σ0, Schwartz and Moon

(2000; 2001) suggest calculating the change in revenues over the past recent years

and use the standard deviation of these changes as a proxy. Klobucnik and Sievers

(2013) use the same approach. This method is problematic if valuing start-ups or

private firms since these firms commonly have limited amount of historical data

publicly available.

To obtain the long-term volatility of revenues, σ̄, Schwartz and Moon (2001),

Klobucnik and Sievers (2013) and Doffou (2015) assume that the initial volatility

is halved in the long-run. Schwartz and Moon (2000) instead suggest estimating

the variable from a mature company operating in the same industry. This is

problematic if the industry is fairly new and there are no mature companies

established yet.

Growth rate in revenues is the second stochastic process that the Schwartz-

Moon model simulates. Schwartz and Moon (2000; 2001) estimate the initial

expected growth rate, µ0, by using both historical growth rates and analysts’

forecasts for the following year. Klobucnik and Sievers (2013) address that forecasts

are hard to find when valuing young, private tech firms and that the method is not

applicable when there is a limitation of available information. Instead, they rely

solely on past income statements for the calculation of the initial growth rate, even

though it might not represent the best proxy for the future. Additionally, Trueman

et al. (2001) show that analysts’ forecasts highly depend on already realised rev-

enues, hence the importance of analysts’ reports is low for estimating future growth.

The long-term growth in revenues, µ̄, is a critical parameter. Schwartz and

Moon (2000) estimate the parameter by looking at a stable company in the same

industry. As mentioned before, this is difficult in younger industries containing few

mature companies. Klobucnik and Sievers (2013) instead suggest the usage of the
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long-term average annual inflation rate. Another common long-run growth level in

valuation models is nominal GDP growth (Koller et al., 2005).

For the initial volatility of expected growth rate in revenues, η0, Schwartz and Moon

(2000; 2001) and Doffou (2015) suggest estimating the variable from the stock price

of the firm. Clearly, this method is not applicable when valuing a private firm.

Therefore, Klobucnik and Sievers (2013) propose using an AR(1) regression on the

growth rates in revenues, for which the standard deviation of the residuals equals the

initial volatility. As before, this is problematic if there is only limited data available.

The long-term volatility in growth rate of revenues, η̄, converges to 0 according to

Schwartz and Moon (2000; 2001). When the firm reaches the constant long-run

growth level at time T , there is no volatility as no uncertainty exposes future growth.

Variable Costs Dynamics

The variable costs fraction is the last stochastic variable in the model. Schwartz

and Moon (2001) suggest usage of a regression of cash costs on revenues in order

to determine both initial variable costs fraction, γ0, and fixed costs, F . The

regression intercept reflects the fixed costs while the regression beta represents the

variable costs, expressed as a fraction of revenue. Klobucnik and Sievers (2013)

oppose this method since it may lead to unrealistic estimates. For young tech firms

making losses, the regression commonly yields a negative intercept, suggesting

negative fixed costs, and an extreme slope. In these situations, Klobucnik and

Sievers (2013) suggest calculating the average of the sum of variable costs and

fixed costs as a fraction of revenue over the preceding years. This simplification

relies on the assumption of that fixed costs grow proportional to sales, which they

acknowledge as a weakness, but still an improved estimation compared to assuming

independence from growth as Schwartz and Moon (2001) do.

For the long-term variable costs ratio, γ̄, Klobucnik and Sievers (2013) cal-

culate the median of variable costs fraction over a long time-period for mature firms

within the same industry. As previously discussed, this approach is problematic

when an industry absences mature firms. Schwartz and Moon (2001) assume an

unchanged variable costs fraction in the long-run. This is not a realistic assumption

for early stage firms that often are unprofitable in the beginning and dependent on
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increasing its efficiency going forward.

For the initial volatility of variable costs, ϕ0, Schwartz and Moon (2001) use

the standard deviation from the regression of costs on revenues. This approach

is suitable only if the regression yields reasonable results. Klobucnik and Sievers

(2013) thus use the standard deviations of the residuals from the AR(1) regression

on the cost ratios used to obtain the initial variable costs.

For the long-term volatility of variable costs, ϕ̄, both Schwartz and Moon

(2001) and Doffou (2015) assume that the initial volatility decreases to half in the

long run. Klobucnik and Sievers (2013) use industry medians.

Speed of adjustment, half-life and correlations

The speed of adjustment parameter, κ, reveals how fast the mean-revering processes

revert to their long-run levels. Schwartz and Moon (2001) assume that all three

mean-revering processes have the same speed of adjustment coefficient. To obtain

the variable, they use the half-life of the deviations. Doffou (2015) argue that

the half-life depends on the competitiveness of the industry and that higher

competitiveness results in a lower half-life and thereby a higher mean-reversion

coefficient.

Schwartz and Moon (2001) and Klobucnik and Sievers (2013) further assume

that the three stochastic processes do not correlate.

Risk parameters

In order to use the risk-free rate for discounting the cash flow, it is necessary to

risk adjust the cash flows in the numerator. Schwartz and Moon (2001) assume

in line with CAPM that only the covariance between revenues and the return of

the market deserves risk compensation. They assume that the other stochastic

processes are orthogonal to the market and thereby not deserving risk premiums,

thus the true and risk-adjusted processes are the same. Schwartz and Moon (2001)

and Doffou (2015) imply the market price of risk from the beta of the stock. On

the contrary, Klobucnik and Sievers (2013) associate a risk premium to all three

stochastic processes to correct for uncertainty, which may better capture the total

risk for private firms. They obtain the risk premiums by using the covariance
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between market return and each stochastic process to estimate the premiums.

Klobucnik and Sievers (2013) use the return of the Nasdaq Composite Index over a

specified period as the return on the market since they value American firms.

Simulations

To fully apply the model, Schwartz and Moon (2000) use 100,000 simulations of the

stochastic variables for a period of 25 years with quarterly steps. They point out

that the decision of the time increment depends on the availability of data. At the

end of the time horizon, they use an EBITDA multiple of 10 to capture the value of

the firm going forward from this point. In the revisited model from 2001, Schwartz

and Moon (2001) instead use yearly steps and 10,000 simulations for a period of 10

years. Again, to capture the terminal value, they use the same EBITDA multiple.

Klobucnik and Sievers (2013) also use an EBITDA multiple of 10 at the horizon of

25 years.

3.4.1.2 Shortcomings of the Schwartz-Moon Model

One shortcoming of the model is that it requires estimations of numerous input

parameters, all demanding specific approaches. This disadvantage is especially

distinct for firms with limited public information or firms that operate in new

industries. Thus, the model crucially depends on many different variables that

commonly are hard to correctly estimate. At the same time, the Schwartz-Moon

model provides a great advantage by only requiring estimations of starting points

and long-run levels. The model simulates intermediate estimations, compared

to the DCF model that requires subjective estimations of all intermediate cash flows.

Furthermore, Schwartz and Moon (2000; 2001) identify several critical pa-

rameters for the valuation result. As these variables have great impact on

the value, estimating them incorrectly can cause substantial valuation errors. It

is therefore crucial to critically evaluate the result by a thorough sensitivity analysis.

Yet another shortcoming is the model’s dependency on volatility changes.

Increasing volatility of growth rate in revenues increases the value of the firm.

Similarly, a higher volatility of variable costs, holding everything else constant,

results in higher firm value, even though the uncertainty regarding profitability
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increases substantially and can potentially result in bankruptcy. This is problematic

since higher unpredictability in costs should not increase the value of the firm to

the same extent as growth in revenue. In the case of growth rate in revenues,

increased volatility does not result in as devastating downsides and is therefore the

high potential in this variable deserve compensation in form of a higher firm value.

Doffou (2015) applies the Schwartz-Moon model to five major internet firms

as of June 5, 2014. His result shows that the model yields prices approximately 57%

to 63% below the market price, indicating that the model is not able to capture

all the value in these firms. It is however important to remember that investors’

beliefs can affect market prices, and under-pricing may not always indicate a faulty

model.

Additionally, when Schwartz and Moon (2000) apply their model to Amazon,

their estimated revenues for the future are far below the actual outcome for the

firm. Their obtained share price of USD 12.42 is substantially lower than the

market price of USD 76.13. In Schwartz and Moon’s (2001) application of the

model to eBay in 2001, the market price is 75% higher than the implied model

price. The reason for this huge difference is either that the market is overvaluing

these types of stocks, or that the model is not successful in capturing the value of

these firms.

3.4.2 Real Options as Add-on Components

An alternative way of valuing high growth tech firms is by using real options

as add-on components to the DCF model to capture the additional value that

managerial flexibility creates, and traditional models fail to capture. In academia,

it is common to describe these methods in terms of project valuation. However,

these approaches are easily applicable to company valuation as well, as a company

works as a collection of different projects.

The traditional real option valuation approaches generally treat real options

as substitutes for the DCF model. On the other hand, Trigeorgis and Ioulianou

(2013) develop a new approach of how to incorporate real options into the rigid

DCF model by modelling the growth opportunities of firms as real options. They
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suggest changing the constant growth rate in the terminal value to an option

based “present value of growth opportunities” (PVGO), since it better captures

a company’s growth prospects. Most of the value in the DCF model originates

from the terminal part, which means that the analyst should have high confidence

regarding the estimated long-term growth rate. Using PVGO instead make this

variable less sensitive to subjective estimates. Similarly, Smit and Moratis (2010)

suggest that a company’s market value consist of the NPV of its future cash flows

and the present value of its growth options, as Equation 57 reveals. The first

variable, PV relates to current assets and the latter to future strategic value.

MV = PV + PV GO (57)

To illustrate how to practically apply the model, Trigeorgis and Ioulianou (2013)

use a real-world case: the high growth tech company EchoStar Communication

Corporation. They use the binomial lattice approach to value the PVGO of three

concrete expansion options. They further compare the total company value to the

value extracted from the DCF model. Their investigation suggests that the DCF

undervalues the company due to its ignorance of flexibility. Another reason for the

undervaluation is that high growth tech firms experience higher uncertainty and

therefore use a higher discount rate, resulting in a lower valuation. The method

by Trigeorgis and Ioulianou (2013) is similar to the Schwartz-Moon model in the

sense that both models aim to capture potential growth that the DCF model fails

to value, even if applying different methods.

Furthermore, MacMillan and Van Putten (2004) claim that the DCF model

and real options should work complementary to each other rather than mutually

exclusive. They argue that the total project value is the sum of the NPV and

the value of managerial flexibility. They thereby believe that managers should

use real options as add-on components to the DCF model in order to value

projects properly. This method captures the NPV of the project and the impact

of positive potential uncertainty by the DCF and real options respectively. The

contribution of each respective part depends on the project’s uncertainty. In

case the uncertainty is high and the NPV of the project’s cash flows is negative,

almost the total project value constitutes real option value. MacMillan and Van
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Putten (2004) argue that if all the value originates from the option part and

the DCF value is negative, managers should generally avoid the project since it

is highly uncertain. However, it is important to remember that these projects

still can have high NPVs and therefore can add value to the firm. It is thus rea-

sonable to question making investments decisions solely based on this rule of thumb.

Baduns (2013) similarly recognises that real options should complement the

DCF model. He uses risk-neutral valuation and presents two approaches for “risk

stripping” a security; either adjust the cash flows, as done in the Schwartz-Moon

model, or use risk-adjusted probabilities. For the latter, Baduns (2013) recalculates

physical probabilities as risk-neutral probabilities, which enables discounting with

the risk-free rate. We present this method in detail in Section 3.3.3 Contingent

Claims Analysis. Baduns (2013) further uses binomial lattices to solve for the value

of the real option.

Baduns (2013) suggests estimating the starting value of the underlying asset

using traditional NPV techniques, which is the basis for modelling the binomial

lattice of the underlying asset. The binomial lattice of the underlying asset is in turn

the basis for the option value, which uses backwards induction to identify the value.

Baduns (2013) refers to the resulting total project value as eNPV and the difference

between the static NPV and the eNPV as the real option value. The method that

Baduns (2013) provides is consistent with Copeland and Antikarov’s (2003) MAD

assumption. However, this assumption crucially depends on NPV techniques to cor-

rectly capture the value of the underlying asset, which is possible to question. One

possible way to improve this is by using the certainty equivalent approach, which

eliminates subjective estimations of probabilities and project specific discount rates.

Furthermore, the method MacMillan and Van Putten (2004) and Baduns

(2013) present requires identification of specific real options within the firm. If

valuing private firms with limited publicly available information, real options

may be difficult to identify and the model may thus be more suitable for project

valuations carried out by operating managers rather than third-party analysts. One

can also question using the DCF model as a base, as it is hard to estimate FCFs

with precision for young and fast-growing firms operating in uncertain industries.
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3.4.2.1 The Certainty Equivalent Approach

One way to develop NPV techniques further is by using the certainty equivalent

approach to calculating the base value. The PV obtained from the two methods

are the same; the methods only differ in how to adjust the cash flows for risk.

Investors are therefore indifferent between predicted risky cash flows and their

certainty equivalent, which is the certain cash flow received if having no risk.

The method enables discounting using the risk-free rate instead of a risk-adjusted

project specific discount rate (Copeland and Antikarov, 2003).

Copeland and Antikarov (2003) argue that the certainty equivalent approach is

suitable for real option valuation using the binomial lattice approach. They recog-

nise that the risk premium in the traditional CAPM model is λ = [E(rm)− r]/σ2
m,

where σ2
m is the variance of the market return, and defines the present value using

the certainty equivalent as:

PV =
E(FCF )− λCOV (FCF, rm)

1 + r
(58)

where rm is the return on the market portfolio and r is the risk-free rate.

Hence, the method adjusts the expected FCFs for risk in form of the covariance

between the FCFs and the rate of return on the market. Using this approach,

there is no longer a need for estimating individual discount rates depending

on the riskiness of the project. The method instead risk-adjusts in the numer-

ator and enables discounting with the risk-free rate (Copeland and Antikarov, 2003).

A main assumption of the CAPM is that the only risk investors receive com-

pensation for is the systematic risk since it is unavoidable, even if holding a

well-diversified portfolio. The method can therefore account for the fact that assets

with positive payoffs in bad market states can make a portfolio more valuable.

However, important to recognise is that there are methods opposing this assumption

that highlight the importance of considering other factors as well when adjusting

for risk. This is especially relevant for investors binding a major part of their total

capital to private investments, as it restricts their ability to form well diversified

portfolios (Fabiozzo, 2016).
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4 Identification of Valuation Method

In this section, we recognise the advantages and shortcomings of previously presented

valuation methods in order to identify a suitable valuation approach for high growth

tech firms.

4.1 Valuation Method Specification

We aim to find a valuation approach applicable to high growth tech firms operating

in a fast changing and highly uncertain market that captures both growth prospect

and future strategic options. There is evidence that the DCF is not suitable

for valuing this type of firm and we thus investigate the presented company val-

uation approaches within real options in order to find the most appropriate method.

Since the future of high growth tech firms is highly uncertain and hard to

predict, we assess that real options as add-on components to the DCF model

cannot capture the firm value correctly. Even though add-on components can value

flexibility and possible future growth opportunities, for example through a PVGO

terminal component, the base value is still hard to determine correctly. The DCF

model restricts the forecasts to one path and in addition discounts the values at a

high discount rate, generally resulting in undervaluation of high growth tech firms.

Hence, we identify that this method is insufficient in valuing these firms, even

though it improves the traditional DCF model.

The Schwartz-Moon model captures high uncertainty and high growth and is

appropriate for early stage companies since it enables modelling of many different

scenarios. It utilises Monte Carlo simulations for the stochastic variables that can

handle complex processes and path dependency. A clear advantage of the model in

comparison to the DCF model is thus its independence of subjective forecasts of

intermediate values. We consider estimations and forecasts of starting points and

long run levels reasonable to estimate, even if some variables are critical and may

be hard to find. On this basis, we believe that the Schwartz-Moon model is the

most appropriate valuation model to apply to our target companies and we use its

framework as basis for our valuation model.
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However, as identified in Section 3.4.1.2 Shortcomings the Schwartz-Moon Model,

empirical tests of the model yield a low price compared to the market price. With

base in real option theory, we identify that the model’s exclusion of strategic options

can explain the significant difference in prices between the model and the market.

For example, Schwartz and Moon (2000) value Amazon lower than the market in

2001, when the firm operated mainly within the online book market. Today, the

company offers a much broader product base due to its entrance into many new

markets in the previous years. This indicates that even though the model captures

the uncertainty regarding the development of current assets, it misses the fact

that these companies can potentially expand into new markets. We estimate this

aspect to be additionally problematic for high growth tech firms that operate in a

continuously changing environment, and thus have many opportunities to expand

into new operating areas. On this basis, we suggest using the Schwartz-Moon model

together with real option add-on components. This approach captures the total

value of the company in question and thereby increase the precision of the valuation.

For the potential add-on components, we consider using Monte Carlo estima-

tions or the binomial lattice approach. Advantages of the Monte Carlo approach is

its simplicity and that it can handle complex processes. It is however restrictively

applicable when it comes to options that are exercisable in many periods since

it requires simulations of many different paths. It is thus problematic to apply

to interacting options, which are common in practical situations and possible to

exercise at any time. On the contrary, the binomial lattice approach is intuitive and

can capture flexibility of advanced, interacting options, which neither the traditional

NPV methods nor the Monte Carlo approach are appropriate for. One challenge

with this approach is that new products and services in general are unrelated to

existing assets and therefore hard to replicate. The MAD assumption on the other

hand provides an easily applicable solution to this matter. Another shortcoming

with the lattice approach is that it requires forecasts of specific outcomes, cash

flows as well as real option features. This is difficult to estimate if valuing complex

situations but should be reasonably straightforward when considering the strategic

value as one or several stand-alone projects available for firms. The precision of the

value added depends on the information provided and potential add-on components

thereby differ in ease of applicability. With this in mind, and mainly due to the fact

that the binomial lattice can model different paths and take advanced, interactive
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options into account, we find the binomial lattice approach most appropriate for

capturing strategic value in the case of high growth tech firms.

4.1.1 The Extended Schwartz-Moon Model

Based on the above discussion, we conclude that the following formula governs the

valuation of high growth tech firms:

V (0) = EQ[X(T ) +M ∗ (R(T )− Cost(T ))]e−rT + EQ[ROV ] (59)

The first term reflects the Schwartz-Moon model and ROV represents the value

originating from real options estimated by the binomial lattice approach with the

MAD assumption.
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5 Case Study

The goal of this section is to use the presented theory to value a high growth tech

firm: Spotify. In order to estimate input variables and identify possible strategic

options for the company, we conduct an extensive analysis of the firm and its

industry before applying the model. Finally, we value the company and perform a

sensitivity analysis of the result.

5.1 Introduction to Spotify

Spotify AB is a Swedish private limited liability company founded in 2006 by

Daniel Ek and Martin Lorentzon, operating in the online music streaming industry.

The holding company, Spotify Technology S.A. is based in Luxemburg and operates

entirely through its subsidiaries. The Swedish unit, Spotify AB, accounts for the

main business operations and is the parent company of Spotify Ltd., Spotify USA

Inc, as illustrated in Figure 6. and the remaining subsidiaries. Further throughout

this paper, we refer to the group as ”Spotify”.

Figure 6: Spotify’s Organisational Structure

Source: Spotify Technology S.A. (2018). The figure illustrates the company structure
of Spotify. Spotify Technology S.A. is the sole owner of Spotify AB, which in turn is
the parent company of all remaining subsidiaries.

The company provides an online streaming platform offering more than 35 million

tracks. As of December 2017, the company had over 159 monthly active unique

streamers (MAUs) and 71 million premium subscribers (Spotify Technology S.A.,

2018). The number of premium users rapidly grows over time; in March 2017, the
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number for example amounted to 50 million (Music Business Worldwide, 2018).

Spotify offers its services in 65 countries; US, Brazil, UK, Mexico and Ger-

many are the largest markets in terms of users. In the home market Sweden, the

company has a market penetration of over 50%. The well-established position in

Sweden is possibly due to a first-mover advantage and analysts are not expecting

the company to reach such a high penetration in other markets (Spotify, 2018a;

GP Bullhound, 2017; Carlsson, 2018b). Figure 7 summarises Spotify’s geographical

presence.

Figure 7: Spotify’s Geographical Presence

Source: Spotify (2018a). The figure illustrates where Spotify offers its services, repre-
sented by the dark area. In total, Spotify’s services are available in 65 countries.

5.1.1 Milestones

Figure 8 displays an overview of Spotify’s historical milestones, in addition to past

valuations based on private transactions1.

1Converted into EUR from SEK using the average exchange rate for each year (The Swedish
Central Bank, 2018).
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Figure 8: Overview of Spotify’s History

Source: Carlsson (2018d). All numbers are in EUR million. The figure shows his-
torical valuations of Spotify based on unofficial transactions together with important
events. It reveals that the company experienced rapid growth in the most recent years,
even though there was a smaller decrease in value between 2015 and 2016. In the
latest financing round, the value of the company increased substantially.

Two years after the foundation, Spotify launched its services and made it available

for public use. At that point, Spotify provided a downloading service through

which you could create your own music library. As the business grew and Spotify

developed leverage over music providers, the company could eventually, in 2010,

offer streaming of music (Halliday, 2010).

During the first years, Spotify crucially relied on private funding. In 2011,

Spotify raised additional capital at a valuation of USD 1 billion and reached the

status of a Unicorn (Sorkin and Rusli, 2011). The same year, Spotify launched its

service in the US and reached 1 million paying subscribers. In 2012, the number

of paying subscribers increased fivefold and in September the company reached a

valuation of EUR 1,585 million2 (Halliday, 2011; Carlsson, 2018d).

2Converted into EUR from SEK using the average exchange rate for each year (The Swedish
Central Bank, 2018).
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In 2013, Spotify made its first acquisition by buying the Sweden-based music

application software company Tunigo AB (Mergermarket, 2018). During the

following years, the company continued to acquire related firms in the industry in

order to sustain high growth. In 2014, Spotify bought The Echo Nest, a music

intelligence platform. The Echo Nest became an important partner for Spotify

concerning selection and recommendation of music to the customers. This gave

Spotify an important advantage that could distinguish them from competitors

by providing its listeners with music especially selected for them (Spotify, 2014).

In 2017, Spotify acquired the Sweden based online music studio app Soundtrap,

signalling that it further ahead aims to expand into music production (Reuters,

2017). However, there is still no official information that the company plans to

enter this market.

In 2016, Spotify raised EUR 25 million from the Swedish pension company

AMF and EUR 885 million3 in convertible debt. The latter gave the debt holders

the right to convert the debt at discount in an IPO (Spotify Technology S.A., 2016;

Carlsson, 2018b; Carlsson, 2018a). During 2017, the company further entered an

agreement with the Chinese company Tencent Holdings (further referred to as

Tencent) in order to settle some of its outstanding debt. The company made several

agreements in 2017 and early 2018 to exchange convertible notes for ordinary

shares (Spotify, 2018a). As of January 2018, Spotify no longer had convertible debt

outstanding (Spotify Technology S.A., 2018).

Other important milestones for Spotify in 2017 was securing important licencing

deals with the major record labels and starting a collaboration with Tencent. As

Tencent dominates the music streaming market in China, the collaboration brought

Spotify closer to entering the huge Chinese market, in which Spotify has no current

operations (Cervenka, 2018).

On April 3, 2018, Spotify went public through a direct listing on the New

York Stock Exchange. By choosing this path, Spotify did not raise additional

capital through ordinary roadshows and got no support from investment banks in

form of underwriting. The unusual process involved a higher valuation risk since

3Converted into EUR from USD 1,000 million by using the average exchange rate for 2017
(ECB, 2018b).
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the market determined the initial price through buy and sell orders. As projected,

the price set by the market at the date of listing was subject to both volatility and

low liquidity during the first days (Moyer, 2018; Levine, 2018).

The speculative reason for why Spotify chose a direct listing is that the company

was in no need of additional funds. Instead, the purpose of the listing was likely to

offer the current investors a way to sell their shares and cash in their profits. The

direct listing involved no usual lockup period for existing investors, with exception

for the latest investor Tencent, thus the investors could directly sell their shares on

the market (Carlsson, 2018d; The Economist, 2018).

5.1.2 Product Offering and Business Model

Spotify’s provides its services to both premium subscribers and ad-supported users.

The first customer group pays a subscription fee while the latter listens for free

with interruption of advertisements. Spotify’s view is that its unique business

model is a key factor to reach scale and as such critical for the company’s success

(Spotify Technology S.A., 2018). So far, premium subscribers use Spotify’s services

three times more than non-paying customers, which the revenue split reflects;

revenue generated from premium subscribers in 2017 was approximately 90%. An

aim is to increase the share of premium subscribers, but Spotify invests heavily

in both sides of the business model as they complement each other. According

to the company, the ad-supported service unit attracts users and channels them

toward a premium subscription, today driving approximately 60% of the increase

in premium subscribers. Another way to attract new customers is through offering

of beneficial listening subscriptions such as “Family Plan” and “Student Plan”

(Spotify Technology S.A., 2018).

Spotify offers access to over 35 million tracks and a great deal of freedom,

especially for premium users that have the opportunity to listen to music both on-

line and offline, on and across all types of devices. So far, offering the possibility to

stream music however comes at a high cost; the company pays approximately 80%

of revenue in royalties to artists, music labels and publishers (Spotify Technology

S.A., 2018).
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Furthermore, Spotify creates advantages from data collection and the benefits that

come with it. By collecting unique user data, the company can differentiate and

personalise every user’s experience, which is an important competitive advantage.

For example, Spotify offers personalised algorithm-generated playlists such as

“Discover weekly”, “Daily Mix” and “Release Radar” and playlists for specific

moods and activities for each individual user. Additionally, Spotify offers podcasts,

lyrics and customised videos. By continuously redefining the personalised services,

Spotify avoids a high churn rate and continues its expansion through new customer

attraction (Spotify Technology S.A., 2018).

According to Spotify, a crucial part of its business model is to be an impor-

tant partner for artists, making their music easier to discover, and to connect artists

to audiences around the world. By providing a large stage for artists, where they

can interact with fans, personalise profiles, videos and releases as well as access

data and analytics of their fan bases, Spotify aims to provide greater benefits for

the creators (Spotify Technology S.A., 2018). The greater benefits, the higher is

the demand for being present at Spotify’s platform. This is of high importance

since it secures Spotify’s ability to provide a wide ranged, updated and unique

service offering, but also because it gains ground for a more profitable business

model, having potential of lowering cost of goods sold (COGS) (Spotify, 2018b).
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5.1.3 Financial Overview

Spotify experiences a remarkably fast growth in revenues, as Figure 9 illustrates.

The growth rate in 2017 is 39% and the compounded annual growth rate since

launch of the services is 116%. Despite the rapid growth, and its 10 years in the

business, Spotify still does not make a profit; the loss more than doubled in 2017

in comparison to the year before (Spotify Technology S.A., 2018).

Figure 9: Revenue and Loss Development from 2012 to 2017

Source: Spotify Technology S.A. (2012-2016, 2018). The bars represent revenues and
net losses. In 2017, Spotify’s revenue amounts to EUR 4,090 million, reflecting a
39% revenue growth from 2016. The compounded annual growth rate between 2012
and 2017 is 57%. The loss in 2017 is EUR 1,235 million.
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Further, Figure 10 displays the relation between revenue and COGS. It il-

lustrates that COGS grows at almost the same pace as revenue in the past

years. COGS constitutes predominantly of royalty and distribution costs, which

currently makes up 80% of revenue (Carlsson, 2018d). It was not until 2017,

when Spotify re-negotiated its agreements with record labels that COGS finally

decreased marginally, by 6%, in relation to revenue (Spotify Technology S.A., 2018).

Figure 10: COGS as a Fraction of Revenue from 2012 to 2017

Source: Spotify Technology S.A. (2012-2016, 2018). The figure illustrates how revenue
and COGS develop over time. The percentage numbers represent the cost fractions of
revenue. As a result of re-negotiations with record labels, the fraction decreased by 6%
in 2017.
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Figure 11 reveals that Spotify earns the majority of its revenue from premium users

that pay a subscription fee each month; the ad-supported service only accounts for

approximately 10% of revenue. The average revenue per premium user decreases

over time, which Spotify explains with its new family and student discount packages

(Spotify Technology S.A., 2018).

Figure 11: Revenue by User Group

Source: Spotify Technology S.A. (2015-2016; 2018). The bars represent revenue per
user group, indicating that premium users account for 90% of revenue. The centred
numbers reflect average revenue per premium user, which is decreasing each year be-
tween 2015 and 2017.

One recognisable solution for Spotify to become profitable is to further decrease

COGS as to increase margins; at the moment, the gross margin is not substantial

enough to cover the remaining costs. However, this is not an easy task since

laws regulate the main building block of COGS through royalty and distribution

agreements (Spotify Technology S.A., 2018). Another solution may be to reverse

the trend of decreasing revenues per user, as premium users are the main source of

income.
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As Figure 12 displays, the global recorded music industry is growing after many

years of lost revenues; the loss between 1999 to 2014 was 40%. In 2017, total

revenues amount to USD 17,300 million, where the digital music industry revenue,

mainly generated from music streaming, measures to USD 9,400 million. Music

streaming this accounts for approximately 54% of the total market (IFPI, 2018).

Figure 12: Development of the Global Music Industry from 1999 to 2017

Source: IFPI (2017; 2018). The figure illustrates how the distribution of revenues
by different sources develop over time. The importance of digital music increases,
while physical music revenues decrease. Performance rights is the use of music by
broadcasters and public venues, while synchronisation represents the use of music
in advertisement, movies, games etc. Digital revenues constitute mainly of music
streaming.

Streaming is the most prevalent format in today’s modern music industry and

a key driver of growth of the global music industry. In 2017, music streaming

revenue increased by 41.1% while physical revenue declined by 5.4% (IFPI, 2018).

Figure 13 shows the growth of music streaming revenues during the past six years;

it increased with 48% on average during these years. Listeners trend towards

demanding legal and simple ways to listen to music and artists request improved

ways to monetise their music, which are two important factors driving this growth

(Spotify Technology S.A., 2018).
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Figure 13: Growth in Music Streaming from 2012 to 2017

Source: IFPI (2017; 2018). The figure displays revenue growth of music streaming
from 2012 to 2017. From 2016 to 2017, the music streaming industry experienced a
growth of 41%.

The music streaming market is currently providing services to 176 million paying

subscribers globally (IFPI, 2018). Overall, streaming is the most prevalent

music source in most geographical areas. In 2017, streaming revenue increased

with 30.3% in Europe, 49.9% in North America and 38.2% in Asia and Australa-

sia4. However, physical sales still dominate in a few geographical areas (IFPI, 2018).

Although the streaming industry is surging, the providers continuously fail

to generate profits (MarketLine, 2017). One important reason is the power of the

record labels; a dominating part of revenues for streaming providers goes to right

holders. We go further into detail about this in Section 5.1.7 Bargaining Power of

Suppliers.

5.1.4 Competitive Environment

Currently, competition is a key factor driving growth in the music streaming

industry. In order to appeal to customers’ music preferences, players in the market

try to differentiate their services. The competition has so far led to growth of the

4Australasia consists of Australia, New Zealand and other close by islands within Oceania
(Oxford Dictionaries, 2018).

71



market rather than crowding out of market players. A realistic explanation is the

big audience that is possible to attract by just creating awareness of the industry

(IFPI, 2017).

Spotify’s main competitors are Apple, Amazon and Google with their respec-

tive music streaming services: Apple Music, Amazon Music and Google Play.

Competitors offering a slightly different service, online music and radio, are

Pandora, iHeart Radio and Tidal (Spotify Technology S.A, 2018). There also exist

other players with strong positions in markets in which Spotify currently does not

operate, such as the leading Chinese streaming company Tencent (IFPI, 2017).

Spotify is the global leader in the music streaming market, but Apple Music

is since the launch in 2015 growing at a faster rate (IFPI, 2017). With the current

growth rate, analysts forecast Apple Music to outgrow Spotify in terms of US

subscribers already in the summer 2018 (Steele, 2018). Amazon Music is the second

largest player in the music streaming market, as Figure 14 indicates (Mulligan,

2017).

Figure 14: Division of Market Shares within Music Streaming

Source: Mulligan (2017). The figure displays market shares for the main providers of
music streaming services as of June 2017.
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Furthermore, an increasingly important feature of the streaming services is the

compatibility to different hardware, such as smartphones, TVs and speakers.

The switching cost for changing services is usually non-existing. Therefore, if

finding a superior hardware, it is likely that customers switch music provider if

non-compatibility is a problem. Table 3 illustrates that Spotify is compatible with

most of the existing hardware. However, important to highlight is that Apple’s

recently introduced smart speaker HomePod is only adaptable with Apple Music

(Waral and Handrahan, 2018).

Table 3: Service Integration Overview

Spotify Pandora Apple Music Amazon Music Google Play

Google Assistant
√ √

Amazon Alexa
√ √ √√

HomePod
√

Sonos
√ √√ √ √√ √√

Playstation 4
√√

Xbox One
√√ √

Chromecast
√√ √ √√ √√

Roku
√ √√ √

Fire TV
√√ √√ √√ √

Apple TV
√ √ √

Android Auto
√√ √ √√ √√

Apple Carplay
√√ √ √ √√ √√

Source: Waral and Handrahan (2018). The table presents the compatibility of hardware for
Spotify and its competitors.

√
= partial integration,

√√
= full integration.

In conclusion, the competition in the industry is intense. The switching costs for

customers are almost non-existing since prices are similar between providers and

users generally pay monthly subscription fees. In addition, there are many different

services available (MarketLine, 2017). The closest competitors, Apple, Amazon and

Google, provide, in comparison to Spotify, a large range of services and products

besides their music streaming services. Hence, these firms create lock-in features

by offering their streaming services in combination with their other services or

products (Masters, 2018). Amazon is for example providing special discounts for
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premium subscribers having Amazon Prime5 or owning an Amazon smart speaker

(Amazon, 2018b). This increases the intensity of the competition and gives these

firms a competitive advantage compared to Spotify.

5.1.4.1 Closest Peers

We establish a peer group for Spotify that is of use in later stages of the valuation.

The closest competitors’ services are smaller business units of large conglomerates

and overall, they have different risk structures as their risk exposures emerge from

operations other than music streaming. As it is challenging to obtain data for their

respective streaming services isolated, Apple, Amazon and Google are not suitable

peers for Spotify.

Therefore, we examine other companies in our peer analysis, whose business

models are similar to the one of Spotify. Some of them only rely on paying

subscribers, while other solely profits from advertising. This should capture the

fact that Spotify has a mixed business model consisting of both premium and

ad-supported users. More specifically, we look at Snapchat, Pandora, iHeart Radio,

Netflix, Facebook and Twitter. These are all tech companies that depend heavily

on their user base and technological changes.

5.1.5 Entry Barriers

Today, there are few dominating providers operating in the music streaming

market, already having strong positions and large user bases, hence these firms

benefit from a first-mover advantage. In order to enter the market, it is therefore

necessary to provide differentiable services to attract users. Additionally, new

entrants need to secure large libraries of music, which requires securing distribution

rights, resulting in high entry costs. This, in combination with the fact that many

existing companies struggle to become profitable and as such demand a substantial

amount of capital, obstruct new companies from entering the market.

5Amazon Prime is a membership that includes free shipping of orders, video streaming, music
streaming and e-book access (Amazon, 2018a).
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However, it may still possible for large established companies to enter the

market with their own services due to their strong financial power and well-known

brands. They also commonly create lock-in effects by offering products and services

in combination, which enables them to gain strong positions despite lacking

first-mover advantages. One example is Apple that relatively recently entered the

music streaming industry and today is the second largest provider. Two other

examples are YouTube and Facebook’s potential upcoming releases of streaming

services. The immense interest from large, well-known firms further deter entry of

smaller players (MarketLine, 2017; Field, 2017).

5.1.6 Substitutes

Apart from online streaming services, there are alternative ways of listening to

music. One possibility is to legally or illegally download music, others are to buy

it in physical stores or listen at online sites such as YouTube. As the switching

cost is low or non-existing for most substitutes, customers can also easily switch

between different providers if not satisfied with the current one (MarketLine,

2017). However, as streaming is the most prevalent form of music listening today,

substitutes do not threaten Spotify’s position substantially.

5.1.7 Bargaining Power of Suppliers

The bargaining power of the record labels and creators is strong. Approximately

70% of the revenue from premium users in the industry goes to labels and right

holders (Waral and Handrahan, 2018). The creators can additionally choose which

streaming services to allow their music on. One example is when Taylor Swift

removed her music from Spotify with the argument that the company was not

compensating artists enough, which had a substantial impact on the company

(MarketLine, 2017). Spotify has succeeded in improving the relationship with

music providers and Taylor Swift allows her music at Spotify again (Sisario, 2017),

but the case illustrates the importance of keeping good relationships with artists.

As the streaming providers grow larger, more of the power originates with

them. Players in the market also commonly discuss whether the music streaming
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service providers can replicate the business model of film streaming, like Netflix,

which today is producing its own content. This would result in a decrease in

bargaining power for supplier (MarketLine, 2017).

5.2 The Future of Spotify

Currently, the most important challenge for Spotify seems to be turning profitable.

As the premium users are the main source of income, it is also a key driver for

future revenue growth. However, as Spotify experiences a decrease in earnings per

premium user, it is essential to also reduce costs in order to become profitable.

Weak financials result in higher distress for Spotify than its competitors since its

music streaming is the only source of income; no other businesses can support the

company financially. Apple, Amazon and Google on the other hand have larger

eco-system to depend on; their music streaming services can rather work as a way

of enhancing their other products, which makes them less dependent on becoming

profitable in the near future.

In a competitive industry where customers can easily switch between providers, it

is important for Spotify to keep attracting customers. One way main competitors

strengthen their position is by introducing own hardware, such as smart speakers,

and making them convertible with their own streaming services, further developing

their eco-systems. Spotify is currently heading into the smart speaker market

in order to compete with Apple Music, Amazon Music and Google Play and

their eco-systems (Murphy, 2018). By introducing an integrated smart speaker,

Spotify would be able to strengthen its position in relation to its closest competitors.

Yet another possibility for the future of Spotify is beginning to produce own

content by signing artists directly. This would require large initial investments

and result in a substantial change of Spotify’s business model, potentially leading

to increased margins in the long run. However, the company has not made any

indication that this is the headed direction. Instead, the current focus is on keeping

a high growth rate and gaining market shares (Spotify, 2018b).

A distinct plan for Spotify is to decrease the significance and importance of

record labels and give artists an easier way to break through by using its platform
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(Shaw, 2018), in order to lower royalty and distribution costs. Spotify is currently

heavily dependent on the licenses with record labels. The licensing situation is

a returning problem for Spotify, but as the company grows, it gains bargaining

power. It succeeded with negotiating lower royalty and distribution fees in 2017,

but as re-negotiations of the licenses occur continuously, there is high uncertainty

regarding future fees (Spotify Technology S.A., 2018). Recently, an American court

awarded songwriters in the US a pay rise of 44%, which is in force until 2022,

resulting in higher streaming costs for Spotify (Nicolaou, 2018). Thus, the fees

might be even higher going forward.

5.3 Valuation of Spotify

Spotify Technology S.A. has publicly available annual reports from 2012 to 2016.

The prospectus, released ahead of the direct listing, contains financial data for

2017. Since Spotify Technology S.A. owns 100% of Spotify AB, which financial

statements closely corresponds to the holding company’s, we also use the annual

reports for Spotify AB from 2009 to 2011 for the estimation of some input variables.

We only use these numbers when we require larger data samples and for variables

that are closely comparable between the two entities, such as growth rate and

volatilities. We do not use reports from earlier years as Spotify’s financials for

these years differ considerably compared to 2009 and onwards. In 2007, the sales

were only EUR 200, compared to in 2009, after the release of the services, when

sales increased to almost EUR 8.5 million. We thereby base the estimation of input

parameters on the financial data from 2009 to 2017.

Spotify AB conducts its annual reports from 2009 to 2012 in SEK. We con-

vert this to EUR by retrieving the average exchange rate for each respective year

from the Swedish Riksbank (2018).

5.3.1 Estimation of the Schwartz-Moon Model

Revenue and growth in revenues

The initial revenue for Spotify is EUR 4,090 million. Following the method

of Schwartz and Moon (2000; 2001) and Doffou (2015), we estimate the initial
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volatility of revenues by using the standard deviation of changes in revenues. Using

the annual reports from 2009 to 2017, the resulting initial volatility is 55% annually.

As Schwartz and Moon (2000; 2001), we assume that the long-term volatility

of revenues converges to half, 27.5%. As time passes, the uncertainty regarding

the company decreases and revenue stabilises, resulting in lower volatility. Since

Schwartz and Moon (2000, 2000) as well as Klobucnik and Sievers (2013) identify

the variable as non-critical, we decide to use the same approach without further

investigation.

For the estimation of initial growth in revenues, which is a critical variable

according to Schwartz and Moon (2000; 2001), we use historical revenues in absence

of other reliable numbers. There is limited information available about Spotify

and we can only obtain one analyst forecast, done by the investment bank GP

Bullhound (2017). In 2017, GP Bullhound predicts Spotify’s revenue to EUR 5.75

billion6 by the stock market introduction, which is well above the actual numbers

the company made public in the prospectus (Spotify Technology S.A., 2018). GP

Bullhound also estimates the company to keep growing at a high pace. Based

on the history of the company and the intense competition in the industry, we

make the assessment that its estimates are too optimistic, and we do not base

our estimations on these numbers. Additionally, GP Bullhound is an investor in

Spotify (GP Bullhound, 2018) and benefits from providing optimistic forecasts.

Instead, we look at the growth rates of the most recent years in combination with

the overall market development to obtain a fair representation of the current rate.

Between 2016 and 2017, Spotify’s revenues grew with 39%, even though the growth

rate decreased substantially compared to prior years. The same decreasing trend

is present in average revenue per premium user, which decreased by 12% during

the past two years. Between the same period, the overall market grew with 41%.

However, the European market experienced a weaker growth of only 30%, which

is the market in which Spotify is especially dominating. Additionally, we assess

that the intensity in competition will increase going forward as new well-known

companies may enter and existing competitors will pose a larger threat due to

their well-integrated positions. On these factors, we base our belief that the initial

growth rate, corresponding to the expected growth rate for 2018, is slightly lower

6Converted to EUR from USD 6.5 billion using the average exchange rate for 2017 (ECB,
2018b).
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than that of 2017; we estimate it to 32%.

The long-run growth rate in revenues is a critical variable, which Schwartz

and Moon (2000) estimate from the growth of revenues for mature companies in

the industry. The online music streaming industry that Spotify operates in is still

in an early stage, hence there is a lack of mature, stable companies to use for the

approximation of long-run levels. Instead, we assume that Spotify in the long-run

grows in accordance with the overall economy, in line with Koller et al. (2005). We

use the estimated long-run real GDP growth for the US of 1.74% as a proxy and

adjust it to a nominal rate of 3.50% (OECD, 2014). We assume an inflation rate

of 2% in line with the Federal Reserve inflation target (The Federal Reserve, 2018;

European Central Bank, 2018c).

For Spotify, we cannot estimate the initial volatility of expected growth in

revenues from the stock price, in accordance with Schwartz and Moon (2000; 2001),

as the company recently went public. Therefore, we conduct an AR(1) regression

for the initial growth rates in revenues, as Klobucnik and Sievers (2013) suggest.

However, the regression result is not significant, and we therefore choose to estimate

the volatility as an average of the closest peers instead. As the peer companies

operate in similar industries and all are high growth tech firms, we judge that they

provide a suitable sample group for basing approximate volatility calculations on.

The estimates yield an initial volatility of 14%. Since Klobucnik and Sievers (2013)

identify the variable as critical, we investigate this variable more closely in the

sensitivity analysis.

The long-term volatility of expected growth in revenues is 0, in accordance

to discussions in the previous section.

Variable costs

To estimate variable costs dynamics, we perform a regression of costs on revenues as

Schwartz and Moon (2001) suggest. However, this method yields unrealistic results

with negative fixed costs and an extreme variable costs fraction and we therefore

follow the method described by Klobucnik and Sievers (2013). They suggest

assuming that fixed costs are 0 and treating total costs as variable costs. In the

case of Spotify, this approach seems reasonable when investigating the development
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of the cost components over the recent years. The components, as fractions of

revenue, have been fairly stable since 2012, indicating that all costs are growing

proportionally to sales. It is important to notice that not separating variable and

fixed costs is a simplified assumption. However, considering Spotify’s business

model, we deem the assumption justifiable. The company has an asset-light cost

structure since its services are online, thus it does not require substantial tangible

assets. This implicates that even if there exist some smaller fixed costs, neglecting

these do not significantly impact the valuation result. Additionally, traditionally

fixed costs are rather semi-fixed for companies that grow rapidly. Because of this,

we believe the simplified assumption is preferable to assuming one fixed cost as

Schwartz and Moon (2001). This process yields the initial variable cost fraction of

1.13.

The estimation for the long-term variable cost fraction is more problematic.

As the online music streaming industry is fairly new, it is difficult to obtain this

variable by investigating mature companies in the industry. The few competitors

available differ somewhat in business model and are in addition still not profitable.

We further assess that the identified peer group is non-applicable since the cost

structure across the firms are likely to differ substantially. Therefore, we base the

long-term variable costs on an analysis of the historical costs ratios for Spotify. The

analysis reveals that COGS is the main component of total costs and that it follows

the growth of revenues closely, as seen in Figure 10. The other costs are small

and, in some cases, decreasing fractions of revenue, as Appendix A.1 reveals. As

previously mentioned, Spotify managed to reduce the royalty and distribution fees

in 2017. Even though Spotify seems to gain negotiating advantage against record

labels, we estimate that it is difficult to lower the COGS fraction because it is set

to increase by law in one of Spotify’s largest markets, the US (Spotify Technology

S.A., 2018). We do not believe that Spotify easily can change the requisites, as we

recognise laws as relatively inflexible. All these factors accounted for, we believe

that the variable cost fraction is relatively constant in the long run. However, we

identify that Spotify is capable to realise advantages of economics of scale going

forward. By lowering the semi-flexible costs fraction approximately by half, we

believe Spotify is able to reach a long run cost fraction of 93%. This reflects a 20%

reduction of total costs. Both the initial and the long-term variable cost fractions

are according to Schwartz and Moon (2001) crucial variables, which implicates that
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a slightly more positive or negative view can affect the company value considerably.

We estimate the initial volatility in variable costs by using the approach presented

by Klobucnik and Sievers (2013), conducting an AR(1) regression on the costs

ratios. The regression result is insignificant, hence we again investigate peers for

the estimation. Generally, it is hard to compare cost structure between companies

as they may differ substantially, thus we cannot use the whole pre-determined peer

group. Instead, we limit the comparable companies to music streaming companies

since all music distributers experience the same exposure to royalty fees, accounting

for a large part of total costs. By limiting the sample to Pandora and Tidal, we

estimate an initial volatility of 17%. It would be preferable to use more firms in the

peer analysis and it is therefore important to point out that just using two peers

might not yield representative results for Spotify. However, as the industry is young

and only limited data is available, we judge this method to yield the best estimation.

As previously discussed, the long-run variable costs fraction, the industry

median for long-term volatility is difficult to obtain in the industry Spotify operates

in. We set this variable to half of the initial variance, 8.5%, in accordance with

Schwartz and Moon (2001) and Doffou (2015) since the variance decreases with

time as the company matures and becomes more stable.

Speed of adjustment, half-time deviations and correlations

In line with Schwartz and Moon (2001) and Doffou (2015), we assume that the

speed of adjustment is the same for all mean reverting processes and estimate the

variable using the half-life of deviations. Doffou (2015) argues that the half-life

depends on the competitiveness of the industry and that a company in a highly

competitive industry has a lower half-life. Thus, the company cannot grow at a

higher rate than the industry average for a long time since competition drives the

growth down. The music streaming market is growing rapidly, which results in the

possibility of companies growing fast as well, even though the competitiveness is

high. In comparison, Schwartz and Moon (2000) set the half-life for eBay to 2.5

years. We believe that Spotify deserves a higher half-life despite the increasing

intensity of the competition since the market still is growing rapidly. With this

in mind, we set the half-life to 3 years and calculate the speed of adjustment to 0.23.
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As Schwartz and Moon (2001), we assume that the correlations between the

three stochastic variables are 0.

Data from annual reports

For the model, we further identify additional data from the balance sheet in

the recently released prospectus. Spotify has EUR 477 million in cash and

cash equivalents, EUR 1,351 million in initial loss-carry-forward and EUR 73 mil-

lion in accumulated property, plant and equipment (Spotify Technology S.A., 2018).

To obtain capital expenditures and the depreciation rate, Schwartz and Moon

(2000; 2001) investigate the historical values of the company. Capital expenditures

as a fraction of revenue for Spotify are remarkably low with an average of 2.32%

over the years from 2012 to 2017. As the intensity of competition is likely to

increase going forward, we assume that capital expenditures will increase as well

in order for the company to stay relevant. As we do not have analysts’ forecasts

for these numbers, we assume a fixed fraction of 3% of revenues going forward.

The average historical depreciation rate for Spotify is 35%. However, as Spotify

has recently increased this rate, we take the average of the latest years, 44%, and

assume it remains constant. The historical rates are available in Appendix A.1.

The prospectus reveals the corporate tax rate of the company. As Spotify is

a multinational company with a complex structure in many jurisdictions, there is

some uncertainty regarding this number. However, the company has its base in

Luxemburg, where the tax rate is 29.22% (Spotify Technology S.A., 2018). Since

this variable is not critical and there is no indication that it will change in the near

future, we use this rate.

Furthermore, for the purpose of estimating the stock price, we need number

of outstanding shares, number of stock options and the amount of debt from the

latest annual report. Number of ordinary shares outstanding as of December 31,

2017 is 178,112,840. There are also 14,977,569 number of employee share options

outstanding with a weighted average life of 3.3 years and an average exercise price

of EUR 53.59 as of the same date. Finally, debt outstanding is EUR 1,925 million.
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Risk parameters

As Spotify recently went public, we cannot imply the risk premium from the

stock price as Schwartz and Moon (2001) suggest. Instead, we apply the method

that Klobucnik and Sievers (2013) describe; adjusting for risk by calculating the

covariance between revenues and the market return. We only adjust for risk in the

revenue process since we assume the other stochastic processes to be orthogonal

to the market. As a proxy for the market, we use the MSCI world index7, both

because Spotify is an international company and since it has investors from a

broad range of countries. By applying the method, we identify a risk premium

of -3.4%. The explanation for the negative covariance is Spotify’s high growth

in revenues since the foundation, compared to the market returns that has been

through both bad and good states. This means that even when the market drops,

Spotify increased its revenues.

Simulations

In the model, we use a yearly time increment since all input data is on yearly

basis. We set the horizon to 25 years, as frequently done in prior applications

of the Schwartz-Moon model. This appears appropriate since Spotify is rela-

tively young and still far from stable. We set the simulation number to 10,000,

in line with both Schwartz and Moon (2000; 2001) and Klobucnik and Sievers (2013).

For the terminal value, we use an EV/EBITDA multiple of 10, similar to

Schwartz and Moon (2000; 2001), Klobucnik and Sievers (2013) and Doffou (2015).

Since Schwartz and Moon (2000; 2001) does not identify the multiple as critical,

we decide to apply the same terminal multiple.

To identify a reasonable negative amount of cash that the company must

reach in order to go bankrupt, we look at Spotify’s previous investment rounds.

This gives an indication of the amount of new financing the company can raise

in the future if it runs out of cash. Spotify has in the past executed some

substantial financing rounds. In 2016, AMF invested around EUR 25 million in

Spotify and the largest investor in Spotify after the founders, Tencent, invested

around EUR 960 million in December 2017 (Carlsson, 2018b, Carlsson, 2018a).

Since Spotify has been active ten years and is still not making a profit, we

7We retrieve the yearly returns from Bloomberg.
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estimate that future financing possibilities are lower than in the past. We still

assess that in the first years, the possible financing is higher, especially since

Tencent is not able to sell its shares until 2020 (Carlsson, 2018d) and therefore

has large incentives to make additional investments if Spotify struggles with

negative cash. However, the credibility of becoming profitable decreases as time

passes. Therefore, we believe investors to be more restrictive with providing capital

going forward. With this in mind, we set a high initial level of EUR 500 million,

which gradually decreases over five years to EUR 10 million for all subsequent years.

Finally, for the discounting in the model, we use the risk-free rate as the

cash flows are risk-adjusted in the numerator. Since the risk-free rate is unob-

servable, a common proxy is government bond yields (Hull, 2012). The European

Central Bank (2018a) publishes euro area yield curves based on triple-A government

bonds issued in EUR. The rate for bonds with a maturity of 25 years is 1.37%,

which we use in the valuation of Spotify.

Table 4 provides a summary of the input parameters.

84



Table 4: Input Parameters for the Schwartz-Moon Model

Initial revenue R0 4,090,000,000

Initial volatility of revenues σ0 55%

Long-term volatility of revenues σ̄ 27.5%

Initial expected growth in revenues µ0 32%

Long-term rate of growth in revenues µ̄ 3.5%

Initial volatility of expected rate of growth in revenue η0 14%

Long-term volatility of rate of growth in revenues η̄ 0

Initial variable costs as a fraction of revenues γ0 113%

Fixed component of costs F 0

Long-term variable costs fraction γ̄ 93%

Initial volatility of variable costs fraction ϕ0 17%

Long-term volatility of variable costs fraction ϕ̄ 8.5%

Mean-reversion coefficient κ 0.23

Initial cash and cash equivalents X0 477,000,000

Initial loss-carry-forward L0 1,351,000,000

Initial property, plant and equipment PPE0 73,000,000

Capex as a fraction of revenue CR 3%

Depreciation rate DR 44%

Corporate tax rate τ0 29.22%

Risk premium λ̄ -3.4%

Time horizon T 25 years

Time increment ∆t 1 year

EBITDA multiple M 10

Allowed negative cash amount, year 1 and 2 X∗1 500,000,000

Allowed negative cash amount, year 3 X∗2 100,000,000

Allowed negative cash amount, following years X∗3 10,000,000

Risk-free rate r 1.37%

Number of shares outstanding 178,112,840

Number of employee stock options 14,977,569

Weighted average life employee stock options 3.3 years

Weighted average exercise price employee stock options 53.59

Initial debt 1,925,000,000

The table summarises the estimated input parameters used in the Schwartz-Moon model. All
numbers are in EUR.
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5.3.2 Estimation of Add-on Components

5.3.2.1 Choice of Add-on Components

Schwartz and Moon (2001) takes the company’s current assets and their possible

growth into account but fails to capture strategic value of future potential assets

outside the current asset set-up. In this section we distinguish potential strategic

options for Spotify, which we add to the model in order to avoid an undervaluation

of the company.

Spotify may have countless future potential business opportunities, of which

many are unimaginable today. That said, determining future projects to add to

the base company value is somewhat subjective and up to the view of each analyst.

We believe it is important to be critical in the selection of add-on components

and recommend limiting the potential list to concrete projects that preferably is

already in the pipeline. According to our analysis, Spotify currently has two such

opportunities; starting to produce its own music and entering the smart speaker

market. We do not consider Spotify’s strategy of improving licencing agreements

with record labels as a potential add-on component as the benefits of the strategy

only affect current assets and COGS. Thus, we already have the possibility to

account for this opportunity in the Schwartz-Moon model.

The first business opportunity for Spotify is reshaping the music industry in

regard to licencing with record labels and contracting with creators. By starting to

produce own content, Spotify can circumvent the high royalty and distribution fees

and thereby increase margins substantially. However, there is no indication from

Spotify that this is a future strategy. Instead, the firm is currently focusing on keep-

ing a high growth rate and its ongoing expansion. Thereby, we do not consider this

potential strategic option as sufficiently distinct to include as an add-on component.

The second potential add-on component is Spotify’s entrance into the smart

speaker market. The company commenced the project during 2017, hence we find

it essential to include in the valuation; excluding the project would undervalue the

company. We evaluate this business opportunity through a real option approach

and the ROV component will thus only constitutes this opportunity.
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5.3.2.2 Entrance to Smart Speaker Market

Spotify is already in the development stage of a smart speaker and the launch of the

speaker is likely happening next year (Levenson, 2018). Entering the smart speaker

market is a logical move for Spotify, given that its main competitors, Amazon,

Apple and Google, have similar speakers that integrate well with their respective

music streaming services. Apple’s recently launched smart speaker, HomePod, is

not compatible with the music streaming services provided by Spotify or any other

music streaming provider; it is only compatible with Apple Music (Murphy, 2018).

This strengthens Apple’s already well integrated position, resulting in a bigger

threat towards Spotify’s position, especially in the US. In March 2018, newspapers

report that Spotify is trying its own voice assistant, which is an important feature

for smart speakers that can make Spotify independent of Apple and Google’s voice

controls Siri and Alexa. This would give Spotify the opportunity to block its

services on Apple and Google’s products, possibly strengthening its own position

(Hern, 2018).

Entering the smart speaker market may have a large potential upside for

Spotify, given that the company is able to gain market shares. This strategic

move is at the same time risky. Even though the smart speaker market still

is fairly new, many players already have existing products on the market and

thereby a first-mover advantage. Additionally, Spotify does not provide integrated

eco-systems, like the closest competitors, and has less financial power as it is a much

smaller company. However, the high risk may not be a good enough argument to

not enter the market. Spotify is vulnerable to competitors’ market power and risks

losing streaming customers if they are not able to offer them the option to play

music on a smart speaker (Ghosh, 2018; Olsen, 2018).

5.3.2.3 The Underlying Asset

For the estimation of the ROV component, we need to model two binomial lattices:

one for the underlying asset and one for the real options. As the smart speaker

market is in an early stage and many companies have recently introduced their

products, it is challenging to use the replicating portfolio approach in the binomial
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lattice 8. Therefore, we apply the MAD assumption that Copeland and Antikarov

(2003) and Baduns (2013) impose; we use the project itself to model the underlying

asset. For the derivations, we follow the steps described in section 3.3.4 Binomial

Lattice.

We start with estimating the NPV of the project, defined as entering the

new market. The latest market data we can obtain is from 2016. In 2016, the size of

the market was EUR 360 million 9, and the compound annual growth rate forecasted

to 50% from 2017 to 2024 (Global Market Insight, 2017). Amazon is by far the

biggest provider, holding over 50% of the market in Q4 2017, followed by Google

that holds a significant share of 36% (Strategy Analytics, 2018). Apple entered the

market in the end of 2017, thus it has no established market share yet. In Q4 2017,

Sonos had only 1.9% of the market and Alibaba 2.4% (Strategy Analytics, 2018).

The market is growing rapidly, and we therefore judge that it is possible for new

players to enter and gain market shares, even though the competition is intense. It

should hence be possible for Spotify, with its well-known brand within the music

industry, to gain a stronger position than the smallest providers. At the same

time, Spotify is a new player within the field. Apple, Google and Amazon already

have hardware production and strong brand awareness within this area, which

are important features that Spotify lacks. We believe that this, in combination

with entering the market later than main competitors, limits Spotify’s chances of

seizing as large market share as the main competitors. Taking every component

into consideration, we make the assumption that Spotify can seize 5% of the market.

In order to forecast a reasonable margin of Spotify’s new product, we exam-

ine the main competitors’ smart speakers, displayed in Table 5. The average of the

margins is 53%, which we set Spotify’s margin to before tax. The margin after tax,

using the same tax rate as in prior analysis, is 38%.

8See Section 3.3.3 Contingent Claim Analysis and Section 3.3.4 Binomial Lattice for further
description.

9Converted into EUR from USD 400 million based on the average exchange rate for 2016 (ECB,
2018b).
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Table 5: Main Competing Smart Speakers

USD Apple’s HomePod Amazon’s Echo Google’s Home

Price 349 100 130

Cost 216 34 57

Margin 38% 66% 56%

Sources: Gurman (2018), Reisinger (2018) and Ranj (2018). The table gives an overview
of prices, associated costs and margins for the main competitors’ smart speakers.

Additionally, we need to include the initial investment required to develop the

product in the NPV calculations. The competitors of Spotify produce more than

just smart speakers, making it hard to retrieve information regarding investments

for this particular project from these firms. As a proxy, we look at the R&D

intensity for the whole industry. On average, the industry of technology hardware

and equipment has an R&D intensity of 14% of revenues (European Commission,

2018). In order to get an approximation of the required initial investment, we

multiply this number with explicitly forecasted cash flows, after risk-adjustment

and discounting.

After estimating the perpetuity part of the project by using the Gordon growth

formula10 we calculate the NPV of the project. For simplifications, we use an

industry average cost of capital of 12% (NYU Stern, 2018) in the growth formula

and the same risk-free rate as before, 1.37%. The explicit forecast period is set

up to 2024, since we have forecasted market data up to that period. It would be

optimal to set the terminal value farther ahead in time, following a fading period,

since the project most likely is not in steady state after only six years. However,

as we lack market estimations for continuing years and since the market is new,

we proceed with this simplified assumption to avoid highly uncertain forecasted

cash flows. Further, we adjust the cash flows for risk using the certainty equivalent

method derived from CAPM11 to create consistency between the NPV and the

risk-neutral approach taken in the binomial lattice. We thus assume that the only

compensational risk for Spotify’s investors refers to the covariance with the market.

We find this approach reasonable as Spotify is a publicly traded firm, implying that

investors can diversify away potential firm-specific risk. However, since the project

10See Section 2.1 The Discounted Cash Flow Model for further details.
11See Section3.4.2.1 The Certainty Equivalent Approach for further details.
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has no historical FCFs, it is not possible to find the covariance between the market

and the project itself. Therefore, we use FCFs for firms operating in the consumer

electronics industry as a proxy to find the covariance term. For the market, we use

the MSCI world index. We retrieve all data in EUR in order to make sure that no

exchange rate fluctuations affect the covariance.

The estimated NPV is EUR 1.64 billion. Complete calculations are available

in Appendix A.2.

5.3.2.4 The Binomial Lattice

To construct the two binomial lattices, we need to estimate the required input

variables. We calculate the up and down factors as well as the risk-neutral

probabilities using the functions described in Section3.3.4 Binomial Lattice. We set

the time to maturity to six years since it is the explicit forecast period. The step

size is one year as all available data for the estimations are on a yearly basis. We

use the risk-free rate of 1.37%.

Estimating volatility is problematic. For these kind of projects, we cannot imply

it from a stock price and it is further hard to identify projects with a similar

risk structure. As it is a critical variable in the binomial lattice, we believe it

is important to be cautious in the estimation. Models such as Monte Carlo and

generalized autoregressive conditional heteroskedasticity (GARCH) process, that

in general are appropriate approaches for estimating volatility, may not provide

reliable results in our case, as we have few data points to base it on. Instead, we

use a similar approach as done in the Schwartz-Moon model’s estimations of the

initial volatility in revenues; we find the volatility from the standard deviation of

growth rates in revenues. Since we have no historical revenue numbers for this

particular project, we use revenues for peer firms as proxy. We create a broad peer

group within consumer electronics since it is challenging to find revenue numbers

originating only from smart speakers. In addition, the closest possible peers

vary largely in regard to pricing segment and are thereby not optimal peers. By

selecting a broad group, we hope to best capture the overall volatility of the speaker

project. This process yields a volatility of 16%. Appendix A.3 displays the cal-
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culations of volatility and Table 6 summarises the parameters in the binomial lattice.

Table 6: Parameters in the Binomial Lattice

Static NPV for project EUR 1.63 billion

Volatility, σ 16%

Time to maturity, T 6 years

Step size, ∆t 1 year

The up factor, up 1.17

The down factor, down 0.852

Risk-free rate, r 1.37%

Risk neutral probability, p 0.50

Given the estimated information above, we create the binomial lattice for the

underlying asset, displayed in appendix A.3.

In order to construct the final binomial lattice, we identify three different

real options available for Spotify, commonly available in projects (Trigeorgis,

1993a). We assess that Spotify in each node has the possibility to expand or

abandon the project as well as deferring the decision of expansion or abandonment.

If the market conditions turn out favourable, Spotify can exercise the option to

expand, which implicates increased spending in order to gain a larger market share.

In the opposing case, Spotify can choose to leave the market by exercising the

option to abandon. Managers can also wait with deciding whether or not to expand

or leave the market depending on how competitors behave and how the market

evolves. If waiting, holding the option involves a deferral cost since Spotify most

likely lose profits to its competitors. This managerial flexibility creates value that

the NPV analysis cannot capture. The real options are summarised in Figure 15.
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Figure 15: Spotify’s Real Options

The figure displays the real options available for Spotify: option to expand, option to
abandon and option to defer.

As the smart speaker market is fairly new, providing us with limited historical

data, and since we do not have access to Spotify’s internal market and product

intelligence, we find a precise estimation of the real options difficult. Therefore, we

choose to present likely ranges for the input variables, rather than exact numbers.

For the valuation of the real options, we use the mean of the range and investigate

all possible outcomes further in the sensitivity analysis.

We estimate the additional investment to be between 60% and 100% of the

initial investment, which would increase the project value with 6% to 14%. The ex-

pansion cost associated with the option consists of additional R&D and marketing,

as well as other costs related to expansion. As the market is competitive, and the

technology develops rapidly, and Spotify enters the market in a late stage compared

to competitors, we believe that Spotify needs to make large additional investments

in order to gain a larger market share. Due to the intense competition, we estimate

the expansion possibilities to be rather restricted since Spotify enters a completely

new segment where dominating firms have strong first-mover advantages. The

salvage value depends on demand, liquidity and other factors and is therefore hard

to precisely estimate. We assume it to be between 30% and 70% of the NPV of

the project since we believe Spotify is able to sell its technology to a discount if

deciding to abandon the project. We measure the deferral cost of the option as

the lost potential revenues from not expanding. We assume it to be between 0.2%

and 1.8% of the explicitly forecasted FCF. Since the market is at an early stage

and grows fast, we believe deferring comes at quite a low cost. Postponing the

expansion should only marginally affect Spotify’s market share negatively, since
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the company has a strong position in the streaming market and a well-known

brand. Table 7 summarises the mean values of the parameters that we apply in the

valuation.

Table 7: Input Variables for the Real Option Lattice

Expansion cost, EC 80%

Expansion rate, ER 1.1

Salvage value, SV 50%

Deferral cost, DC 1%

The lattice method recognises the value of holding the option an additional period

to await more information regarding the project, which Baduns (2013) defines as

the intermediate value:

IVt = [p ∗ up+ (1− p) ∗ down]e−r∆t (60)

Thereby, the final payoff function for the real option is:

Max(IVt −DC ∗ FCFE , ER ∗NPVt − EC ∗ I0, SV ∗NPV0) (61)

where FCFE is the explicitly forecasted FCFs, NPVt is the value of the underlying

project from the first lattice and I0 is the initial investment.

Finally, we construct the binomial lattice that calculates the ROV compo-

nent, which Appendix A.3 presents.

5.3.3 Valuation Results

By implementing the Extended Schwartz-Moon model, we estimate the total

enterprise value of Spotify to EUR 19.17 billion (USD 21.66 billion) as of 3 April

2018, resulting in a price per share of EUR 93.27 (USD 105.39), when taking
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employee stock options into account. Excluding stock options results in a share

price of EUR 107.61 (USD 121.60). On the listing day, Spotify’s closing firm value

of EUR 21.62 billion (USD 26.50 billion), implying a stock price of EUR 121.54

(USD 149.01) (Mikolajczak and Nellis, 2018). Thereby, the model price is lower

than the market price on the listing day, implying that the market values Spotify

at a premium of 13%.

Figure 16 illustrates that the main part of the value of Spotify originates

from the Schwartz-Moon model, capturing the potential of current assets. A

smaller part originates from entering the smart speaker market from which only a

slight fraction arises from the managerial flexibility of the project. Even though

the ROV component in this case is small, it illustrates the importance of adding

additional value to the Schwartz-Moon model if there is a possibility of creating

opportunities outside the current assets and growth prospects.

Figure 16: Total Enterprise Value

The figure demonstrates the total estimated EV for Spotify of EUR 19.17 billion and
from which valuation component the value originates. All numbers are in EUR billion.
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Figure 17 illustrates how Spotify’s growth rate in revenues progresses over time

according to the Schwartz-Moon model. Spotify is able to sustain a growth rate

above 10% until 2023, but the growth rate in revenues eventually mean-reverts

towards the long-run level of 3.5%.

Figure 17: Growth Rate in Revenues

The figure illustrates how the Schwartz-Moon model estimates the progress of Spotify’s
growth rate in revenues over time. The process is mean reverting and eventually
reaches the long-run level of 3.5%.
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Figure 18 displays the evolution of the variable costs fraction over time estimated

by the Schwartz-Moon model. We conclude Spotify’s music streaming services to

be profitable first in year 2020. The process displays a clear mean reverting trend

and the variable costs fraction finally ceases in the long-run level to 84%.

Figure 18: Variable Costs as a Fraction of Revenue

The figure shows how the Schwartz-Moon model predicts variable costs as fraction
of revenue to develop over time. Spotify breaks even in 2020 and eventually costs
mean-revert to the long-run level of 84% of revenue.

Furthermore, we estimate the value originating from the ROV component, defined

as entering the smart speaker market, to EUR 1.69 billion. The NPV part of the

project is EUR 1.64 billion, while the flexibility component constitutes EUR 0.44

billion.

5.3.4 Sensitivity Analysis

As for all valuation models, the valuation result is dependent on estimations of

input parameters. It is therefore necessary to evaluate the result and analyse

consequences of changes in critical parameters.

In the Schwartz-Moon model, Schwartz and Moon (2000; 2001) and Klobuc-

nik and Sievers (2013) identify the variable costs fraction, the growth rate in

revenues and their respective volatilities as well as the mean-reversion coefficient
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as especially sensitive. Figure 19 reveals how the valuation result changes when

decreasing and increasing these parameters, ceteris paribus, by 20%.

We identify the variable costs fraction as the most critical parameter for Spotify.

If the cost fraction declines, the value of the company increases substantially.

The long-term variable costs fraction is of highest importance since the company

struggles to become profitable while still growing rapidly. Figure 19 also reveals

that if Spotify is able to decrease its variable costs fraction marginally, the value

of the firm would increase considerably, which would justify a higher valuation.

The figure further illustrates that the potential for decreasing the variable costs

fraction provides a substantially high upside, while increasing the costs fraction

only results in a limited downside. One explanation for the higher price inferred

by the market is this that the market seems to be optimistic regarding Spotify’s

ability of improving its margins in the future. Due to lack of available data, it

is challenging to estimate the initial volatility of variable costs. The sensitivity

analysis however shows that the variable only marginally affects the results and

that potential estimation errors thus only have limited impact on the total valuation.

Growth in revenues also affects the value of the firm, but not to the same

extent as variable costs. Since the firm already grows substantially, changing this

variable is not as crucial for the company’s success. The initial growth affects the

value more than the long-term growth, hence the latter is not as critical for the

result. The volatility in growth rate is a difficult variable to estimate due to lack of

data. Fortunately, we conclude that this variable does not have a large impact on

the end result and thereby judge that the variable do not decrease the confidence

in the model.

Moreover, the mean-reversion coefficient affects the result significantly, how-

ever not to the same magnitude as the variable costs fraction. If decreasing, the

value increases since Spotify is able to sustain its high growth rate for a longer

period. On the contrary, Spotify mean-reverts faster to the long-run level if the

variable increases. Figure 19 further demonstrates that a lower mean-reversion

coefficient provides a higher potential upside compared to the lower downside that

a higher mean-reversion coefficient yields. We subjectively estimate the variable,

which exposes the coefficient to some uncertainty; if the competition in the market is
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less substantial than what we initially estimate, Spotify might deserve a higher value.

Figure 19: Sensitivity Analysis of the Schwartz-Moon Model

The figure shows the sensitivity analysis result for the critical parameters in the
Schwartz-Moon model, illustrating how total EV for Spotify changes if the variables
increase and decrease by 20%. We conclude that the variable costs as fraction of
revenue is the most critical parameter. All numbers are in EUR million.

Furthermore, we conduct a sensitivity analysis of the add-on component. We have

limited data for many of the variables concerning the project, forcing us to use

subjective assumptions, which in turn increases uncertainty. In order to minimise

the effect of the uncertain estimates, we set the variables to ranges instead to

specific numbers, which we present in Figure 20 and Figure 21. Total ROV does not

change substantially within the selected ranges, illustrating that the parameters do

not have large impacts on the total EV of Spotify.

Figure 20 reveals that going from an expansion potential of 6% to 14% in-

creases ROV with 4% to 7%, depending on the expansion cost. A decrease in the

expansion cost affect the value even less, with a maximal increase in ROV of 1.5%,

logically in combination the highest expansion potential.
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Figure 20: Sensitivity Analysis of Expansion and Expansion Cost

The figure displays how changes in expansion rate and expansion cost affect total ROV.
The variables affect the value marginally. All numbers are in EUR million.

From Figure 21, we conclude that salvage value and deferral cost marginally impact

the overall result. Decreasing deferral cost increases ROV with approximately 1%,

independently of salvage value. Increasing salvage value impacts ROV positively

with around 4.5%, no matter the deferral cost.

Figure 21: Sensitivity Analysis of Salvage Value and Deferral Cost

The figure displays how changes in salvage value and deferral cost affect total ROV.
The variables affect the value marginally. All numbers are in EUR million.

The input parameters, expansion rate, expansion cost, salvage value and deferral

cost, only affect the flexibility value and has limited impact on total ROV. We

thereby assess them as non-critical for the total valuation. On the contrary, the

parameter that substantially affect the flexibility value is volatility; if volatility

is twice as high, it increases the flexibility value three times and total ROV with

3%. This is in line with real option theory; higher volatility positively affects real

options as they provide a hedge against the larger downside while still gaining the

potentially higher upside. Thereby, we identify volatility as the most important

factor for the flexibility value.
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The market share Spotify is able to capture when entering the smart speaker

market also affects total ROV to a large extent. We assess that Spotify can capture

a relatively small and constant market share since we judge that already established

strong players make the competition intense and entering the smart speaker market

means operating in a completely new segment for Spotify. However, if Spotify, in

spite of the obstacles, succeeds in capturing a larger market share, the ROV can

increase substantially. For example, if the company seizes 7% of the market, the

ROV increase with 40%. We thus emphasise that the ROV component can possi-

bly differ in importance, depending on the actual market share that Spotify captures.
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6 Analysis and Discussion

In this section, we discuss and evaluate the findings of our study as well as examine

benefits and challenges with our proposed valuation approach for high growth tech

firms.

6.1 Theoretical Findings

The traditional valuations methods have several characteristics not suitable for

valuing high growth tech firms. As pointed out, the models cannot capture uncer-

tainty, flexibility and growth accurately, and may provide subjective values affected

by analysts and market beliefs. Real option theory arises as a way of improving the

valuation accuracy for projects with these characteristics by modelling more than

one path for the future of the firm, either by using lattices or simulations. Another

advantage with real options is the embedded risk-neutral valuation principles, which

makes the valuation independent of physical probabilities and enables discounting

with the risk-free rate. As these probabilities and firm-specific discount rates are

challenging to estimate, risk-neutral valuation significantly improves the reliability

of the results. It is also feasible to incorporate risk-neutrality into the DCF model

by using the certainty equivalent approach in the CAPM, but this process involves

estimations of extra parameters. Furthermore, real options is likewise superior to

multiple and comparable valuation methods. As high growth tech firms commonly

are disrupters that constantly change, peers may be both hard to identify and even

more challenging to replace when firms change. Additionally, comparable analyses

fail to capture corporate growth options that high growth tech firms commonly

have and are thereby not suitable approaches for this type of firm.

Our suggested valuation method, the Extended Schwartz-Moon model, for

high growth tech firms consists of two components, the first originating from the

Schwartz-Moon model and the second from the ROV component. The first compo-

nent aims to capture the main value of the firm and takes high growth potential of

current assets into account. The main advantage with the Schwartz-Moon model

is that it solely requires estimation of initial and long-run levels of the parameters;

in contrast to the DCF model, it does not require estimations of intermediate

values. The model captures uncertainty by simulating stochastic variables using the

Monte Carlo approach, which can take both uncertainty and path dependency into
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consideration. High uncertainty and high growth obstruct the prediction of cash

flows for high growth tech firms, and the DCF model can thus yield high valuation

errors. We thereby consider the Schwartz-Moon model as especially robust.

As we assess that the Schwartz-Moon model fails to capture potential strate-

gic value of firms, we expand the model through add-on components using the

binomial lattice approach, which the ROV part captures. The lattice can easily

incorporate specific strategic real options, such as entering new markets or seg-

ments, in the valuation. Through real options, such as expansion and abandonment

options, companies have the opportunity to limit potential downside while at

the same time capturing the full potential upside of a business opportunity. The

binomial lattice approach can intuitively value these real options and thereby

improve the accuracy of the valuation.

Further, we identify that the Extended Schwartz-Moon model is flexible, which

increases its potential importance for firm valuations in the future. Firstly, the

input parameters in the Schwartz-Moon model are easily adjustable. When the

model is in place, it is possible to amend single parameters without implicating

adjustments to the whole model. On the contrary, changing single variables in

the DCF model requires modifications of several steps in the valuation, such as

re-estimations of intermediate cash flows. Secondly, the ability to add potential

add-on component increases the flexibility of our approach further. If identifying

additional strategic options, the model is easily expandable since strategic options

are simply added to the base valuation. This feature is especially suitable for high

growth tech firms that are changing alongside the technical development and digital

globalisation and continuously expand into new markets and segments.

However, as our proposed valuation method builds on complicated theoreti-

cal frameworks, and requires understanding of elemental asset pricing and real

option theory, it may be hard to incorporate practically in the industry. Yet, we

believe the demand for this type of valuation model is rapidly increasing for several

parties operating in the financial markets and the model may thus provide valuable

contributions, despite its complexity.
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6.2 Empirical Implications

The application of the Extended Schwartz-Moon model provides valuable insights

into its importance. The achieved value justifies the high valuation of Spotify.

Spotify’s closing value at the listing day resulted in a premium of 13% compared

to the implied model value. One possible explanation for why the market infers a

higher value of Spotify than implied by the Extended Schwartz-Moon model is that

investors put higher confidence in Spotify’s future prospects.

The case study illustrates that high growth tech firms actually may deserve

their apparently high valuations and that these valuations have substance in terms

of an intrinsic value. Our case study provides evidence that the suggested method

is able to explain the high valuations by these firms’ potential corporate growth

options, which the Schwartz-Moon component captures. The add-on component

further illustrates the importance of adding strategic value to capture the complete

firm value.

The Schwartz-Moon model

The Schwartz-Moon model seizes the uncertainty regarding current assets that

high growth tech firms commonly experience, exemplified in the case study. The

method shows that Spotify, if able to decrease its margins, has huge potential.

If the company succeeds in undermining the record labels and thereby decrease

royalty and distribution fees, cost margins can improve. As the sensitivity analysis

illustrates, this increases Spotify’s enterprise value substantially. This further

provides an explanation for the higher share price after the listing; the market

is possibly more optimistic concerning Spotify’s ability of decreasing the variable

costs fraction in the future. We may have a more doubtful view than the market

and thereby less confidence in Spotify’s ability to decrease COGS.

A shortcoming with the model is that it requires estimations of several input

parameters. Many of these variables are critical and can affect the value substan-

tially, as seen in the sensitivity analysis. The firm value is highly dependent on

initial and long-run values, for example the long-run variable costs fraction highly

affects the total firm value. Even though it is a significant shortcoming, this large

effect is also consistent with the fact that high growth tech firms are in continuous
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change and thereby volatile in respect to their valuations irrespectively of valuation

model. Furthermore, as previously identified as a shortcoming, high volatility

of variable costs receives full risk compensation in terms of a higher company

valuation even though it implicates high uncertainty regarding the company’s

survival. However, since our sensitivity examination shows that the variable does

not affect the total value substantially, we assess this shortcoming to restrictively

influence the overall performance of the model.

ROV component

In this study, the ROV component constitutes almost 10% of Spotify’s total

enterprise value, of which managerial flexibility is a minor fraction. In other

applications, this part of the enterprise value may be of higher significance; if a

company has several strategic options or opportunities of higher potential, the

ROV could constitute a higher fraction of the valuation. Additionally, as identified

in the sensitivity analysis, the flexibility value increases with volatility; the higher

the volatility of a project, the higher effect on the flexibility component on total

ROV.

Total enterprise value

Overall, the case study reveals the model’s applicability to valuing private, or

recently listed, firms with limited insights, as it does not require forecasts of

intermediate cash flows. The method is useful for analysts as well as individual

investors as it enables valuation of high growth tech firms, which are increasing in

importance and are challenging to value with the established valuation models that

exist today. Additionally, the precision of the model is possible to improve if having

superior information. We thus assess the model to contribute with particular

value in IPOs and direct listing processes as well as in merger and acquisition

transactions, in which advisors have almost complete insight into firms. Internal

information of a company’s future projects is especially essential when estimating

potential add-on components. The add-on component in the case study relies

on assumptions and simplified estimations; additional information could thereby

improve the precision. Also, with close communication with the target company,

the identification of add-on components is more straightforward.
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In conclusion, the case study illustrates the applicability and accuracy of our

presented method. It provides an example of how to value high growth tech firms

and the strength in being able to accurately value firms with limited information.
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7 Conclusion

The aim of the concluding section is to summarise our main findings and insights

from the study. We further present limitations as well as suggestions for future

research.

7.1 Valuation Method for High Growth Tech Firms

The goal of this study is to develop a valuation approach for finding the intrinsic

value of high growth tech firms since we identify an absence of a suitable valuation

model for this emerging and increasingly important firm type. To tackle the prob-

lem, we recognise shortcomings with traditional models and investigate whether

real option theory can provide a feasible solution.

We find real option theory a suitable framework, overcoming the drawbacks

of traditional valuation methods when valuing high growth tech firms. After

assessing its theoretical foundation and fundamental techniques, we distinguish

two main company valuation approaches incorporating these frameworks: the

Schwartz-Moon model and real options as add-on components.

As a result, we identify and present a valuation method for high growth tech

firms with strong foundation in academia. The approach consists of two com-

ponents, both originating from prior company pricing applications with basis in

fundamental real option theory. We illustrate the importance of the presented

method by applying it to a highly relevant practical example, yielding a satisfactory

result. As the method reconciles academically advanced techniques and real-world

situations, the study creates the link between academia and practice that we aimed

for.

The main component in the valuation method constitutes the Schwartz-Moon

model, originally developed for valuing internet firms. With our application,

we demonstrate that the model is applicable to high growth tech firms as well.

However, we assess that the method does not capture the complete enterprise value

of these firms, thus we allow for adding a ROV component consisting of all available

strategic options of the firm.
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We believe that our study contributes to firm valuation methods, both aca-

demically and practically. The Extended Schwartz-Moon model improve existing

academic frameworks for company valuation and provides an explicit valuation

approach for valuing high growth tech firms in practice.

7.2 Limitations

The main limitation of this study is the limited generalisability of the valuation

process of the case study to future applications. We estimated numerous variables

thoroughly and specifically for Spotify, obscuring the possibility of systematically

apply the method to other high growth tech firms. The valuation process for

the ROV component is especially challenging to generalise for the purpose of

simplifying future applications on high growth tech firms. The main reason for this

limitation is the lack of mature comparable firms to use for estimation purposes

of volatilities and long-run levels, for both components of the valuation method.

However, we believe that this is a minor setback since practical applications, such

as listings, mergers and acquisitions, regardless require a thorough investigation

of each individual firm. A careful examination also increases the valuation accuracy.

7.3 Future Research

For further research, we suggest testing the proposed valuation method on addi-

tional high growth tech firms in order to assess its robustness. This could result

in a higher degree of generalisability of parameter estimations, making the model

increasingly practical to apply.
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A Appendix

A.1 Financials of Spotify Technology S.A.

Table 8: Income Statement

EUR million 2012 2013 2014 2015 2016 2017

Revenues 430 747 1,082 1,945 2,934 4,090
COGS (390) (616) (876) (1,624) (2,483) (3,241)
Gross profit 41 130 206 322 451 849
Product development (38) (73) (121) (143) (207) (396)
Sales and marketing (54) (111) (173) (247) (418) (567)
General and administrative (29) (40) (77) (116) (175) (264)
Operating profit/loss (80) (93) (165) (184) (349) (378)
Finance income 0 39 26 28 152 118
Finance costs (6) (2) (19) (11) (337) (974)
Share in earnings of associates and joint ventures - 0 0 3 (2) 1
Net finance income/cost (6) 37 7 20 (186) (855)
Profit/loss before tax (86) (56) (159) (165) (536) (1,233)
Income tax expense (1) (2) (4) (8) (4) (2)

Net profit/loss (87) (58) (162) (173) (539) (1,235)

Source: Spotify Technology S.A. (2012-2016; 2018).
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Table 9: Balance Sheet

EUR million 2012 2013 2014 2015 2016 2017

Assets
Non-current assets
Property, plant and equipment 15 39 51 81 85 73
Intangible assets incl. goodwill 1 7 59 78 80 162
Investment in associates and joint ventures - 0 - 4 - 1
Long-term investment - - - - - 910
Restricted cash 5 6 9 20 21 54
Other non-current assets - 0 1 0 2 -
Deferred tax assets - - 4 4 3 9
Sum of non-current assets 21 52 123 188 191 1,209
Current assets
Streaming content - - - 15 - -
Trade and other receivables 69 103 143 281 300 360
Income tax receivables - - - - 6 -
Short-term investments - - - - 830 1,032
Cash and cash equivalents 168 218 206 597 755 477
Other current assets - - - - 18 29
Sum of current assets 237 321 349 894 1,909 1,898

Total assets 258 373 473 1,082 2,099 3,107

Equity and liabilities
Equity
Share capital 0 0 0 0 0 0
Other paid in capital 201 294 406 797 830 3,432
Other reserves 8 6 8 85 122 177
Accumulated deficit (164) (212) (354) (563) (1,194) (2,427)
Equity attributable to owners of parent 45 88 70 319 (242) 1,182
Non-current liabilities
Borrowings - - 3 5 - -
Convertible notes - - - - 1,106 -
Accrued expenses and other liabilities - - 4 2 10 56
Provisions 12 5 2 7 4 6
Deferred tax liabilities - 0 0 - 0 3
Sum of non-current liabilities 12 5 8 14 1,120 65
Current liabilities
Trade and other payables 49 95 110 128 201 341
Income tax payable 0 1 8 3 6 9
Borrowings - - 2 6 - -
Deferred revenue 30 43 68 110 151 216
Accrued expenses and other liabilities 67 92 184 411 673 881
Provisions 4 4 16 8 57 59
Derivative liabilities 51 45 7 82 134 354
Sum of current liabilities 202 280 394 749 1,222 1,860
Total liabilities 213 286 403 763 2,342 1,925

Total equity and liabilities 258 373 473 1,082 2,099 3,107

Source: Spotify Technology S.A. (2012-2016; 2018).
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Table 10: Costs as Fraction of Revenue

2012 2013 2014 2015 2016 2017

COGS 0.91 0.83 0.81 0.83 0.85 0.79

Research and development 0.09 0.10 0.11 0.07 0.07 0.10

Sales and marketing 0.13 0.15 0.16 0.13 0.14 0.14

General and administrative 0.07 0.05 0.07 0.06 0.06 0.06

Total costs 1.19 1.12 1.15 1.09 1.12 1.09

Table 11: Capex and Depreciation Levels

EUR million 2012 2013 2014 2015 2016 2017

Accumulated PPE 15.06 38.94 50.71 81.09 84.84 73

Depreciation PPE 3.23 8.56 15.73 25.97 32.24 46

Capex 12.44 33.59 17.30 54.09 29.60 46

Capex / revenues 2.89% 4.50% 1.60% 2.78% 1.01% 1.12%

Depreciation rate 21% 22% 31% 32% 38% 63%

Capex average 2012-2017 2.32%

Depreciation rate average 2012-2017 35%

Depreciation rate average 2015-2017 44%

A.2 Calculations Smart Speaker Project

Table 12: Estimation of Volatility

Apple Amazon B&O Logitech Foster
Panasonic
Group

Edifier
Technol-
ogy

Harman
Interna-
tional

Pioneer
Corp

JVC
Ken-
wood

2009 47%

2010 55% 66% 0%

2011 68% 56% 6%

2012 36% 35% 155% (2%) 18% (10%) 16% 12% (5%) (9%)

2013 8% 26% 41% (9%) 20% (7%) (5%) 16% 4% (5%)

2014 6% 25% 0% 1% 17% 6% (7%) (2%) 10% 3%

2015 30% 24% 15% (6%) 13% 0% (7%) 24% 1% (10%)

2016 (11%) 30% 58% 1% 1% (1%) (3%) 15% (10%) 3%

2017 27% 10% 16% (4%) 10% 12% (14%) 2%

Std 26% 15% 7% 14% 5% 8% 8% 9% 6%

Ave 16%

Sources: S&P Capital IQ (2018) and Bloomberg (2018).
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Table 13: Estimation of the Certainty Equivalent

Company Covariance with market

B&O (4,616,421)

Logitech (983,642)

Foster 999,570

Panasonic Corp 5,972,080

Edifier Technology 1,614,482

Harman International (2,315,863)

Pioneer Corp (6,735,032)

JVC Kenwood (1,572,285)

Average (954,639)

Expected return market 6.00%

Variance market 0.33%

Risk-free rate 1.37%

Risk premium CAPM 1.41

Risk adjustment term (1,348,802)

Sources: S&P Capital IQ (2018) and Bloomberg (2018). We calculate the covariance with
the market by using the FCFs of each respective firm and the MSCI world index from 2007
to 2017, when data is available. The variance on the market originates from the variance
of MSCI world return from 2007 to 2017.
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Table 14: NPV Analysis of Smart Speaker Project

EUR million 2018 2019 2020 2021 2022 2023 2024 Terminal

Spotify market share 0% 0% 5% 5% 5% 5% 5%

Revenues 0 61 91 137 205 308 461 4,492

Fixed investments (159)

Margin before tax 53% 53% 53% 53% 53% 53% 53% 53%

Margin after tax 38% 38% 38% 38% 38% 38% 38% 38%

Cash flows (159) 23 34 51 77 115 173 1,685

CE cash flows (160) 21 33 50 76 114 172 1,684

PV (160) 21 32 48 72 106 158 1,365

Sum PV 277

Terminal PV 1,365

NPV 1,641

A.3 Binomial Lattice Smart Speaker Project

Table 15: Binomial Lattice Underlying Asset

1 2 3 4 5 6

1,641 1,926 2,261 2,653 3,113 3,653 4,287

1,399 1,641 1,926 2,261 2,653 3,113

1,192 1,399 1,641 1,926 2,261

1,016 1,192 1,399 1,641

866 1,016 1,192

738 866

629
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Table 16: Binomial Lattice Real Options

1 2 3 4 5 6

1,685 1,982 2,343 2,775 3,281 3,875 4,573

1,437 1,676 1,977 2,343 2,775 3,281

1,242 1,423 1,667 1,976 2,343

1,099 1,220 1,406 1,662

1,012 1,072 1,192

985 985

985
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