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Abstract

From the intuition that the financial intermediaries are the agents most repre-
sentative of the investors that actually interact on the financial markets and
determine the assets’ prices, intermediary asset pricing theories build pricing
kernels mainly based on intermediaries’ funding tightness. At the same time,
this is also hypothesized to be key in rationalizing one of the most celebrated
pricing anomalies, the CAPM-beta low risk anomaly. The same anomaly is
also hypothesized to depend on the different coskewness mechanically brought
by assets with different market betas, which is appreciated by the traders, but
by the canonical models. Interestingly, because of the asymmetrical effects of
the funding tightness, intermediary asset pricing theories predict their risk
factors to be related to both. This thesis, after a few preparatory tests of the
potential intermediary risk factors informativeness of the intermediary SDF,
tests whether the consistency showed by the intermediary factor models on
a multitude of assets in previous studies is extendible to the troubling LRA,
which are theoretically well connected, and should therefore be explained by
it.
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1
Introduction

To understand the dynamics of assets’ prices, modern finance theory mainly
focuses on modelling the optimal behaviour of a representative investor. While
this has been typically assumed to be the average household, recent research
developments has started to move the spotlight towards the type of agents
that realistically is the most active on the financial markets and thus whose
investment decisions are more likely to determine assets’ prices, i.e. the
financial intermediaries. The exact concerns that guide these agents crucially
depend on the financial frictions they are assumed to experience. However,
they all eventually boil down to funding tightness, that is the availability of
capital proportional to the needs of it in that moment. This can be driven
by several determinants, such as the profitability of investment opportunities,
the urgency of funds to cover losses, the obligation of meeting regulatory
requirements, etc, where all tend to be correlated – for instance, investment
opportunities of a market tend to be better when it is difficult to fund a
trading position in such market. Then, funding tightness is set as key variable
of the asset pricing models based on intermediaries.

On the other hand, one of the key factors of funding tightness, namely
borrowing constraints, and more broadly funding constraints, are also hypoth-
esized to be the root cause of a pricing anomaly, i.e. an error, of the Capital
Asset Pricing Model, which is the reference equilibrium model in the literature.
This defines a specific relationship between the amount of risk beared by
holding an asset and the compensation required to do so. However, it relies on
strong assumptions, such as the absence of funding constraints, and is widely
violated in reality. Specifically, the borrowing constraints are hypothesized to
cause the assets that are defined as riskier by the CAPM, those with higher
covariance with the market, to provide lower risk-adjusted returns than the
low-risk counterparties. Thus, as the intermediaries’ investment decisions and
this low-risk-anomaly have a common cause, namely the availability of funds
to the majority of investors, which are financial intermediaries themselves,
modelling their optimal behaviour should be very informative of assets’ prices
dynamics, which are not well captured by the CAPM. Further, there is another
violation of the CAPM foundations that provides an additional hypothetical
explanation of the low risk anomaly, which claims the unexplained returns
of the anomaly to represent compensation for risks related to distributional
asymmetries in the assets’ returns. Interestingly, funding tightness is also
predicted to cause asymmetries in assets’ returns, thereby ending up being
strictly related to the low risk anomaly in another way.

Finally, the goal of this work is then to assess how well the recent asset
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2 Introduction

pricing models based on the intermediaries actually explain such theoretically
strictly-related anomaly, exemplified by the trading strategy that is made
profitable by the low risk anomaly itself, the betting against beta strategy.
Pinning down this relationship may be potentially relevant for both future
investment and policy analysis: while the first ones may intuitively benefit
from a better pricing kernel model, whose signals enable the most profitable
investment strategies, the second ones may gain from an additional tool based
market data – for instance the level of profitability of betting against beta,
in case it was actually related to marginal value of wealth – to gauge the
actual status of funding tightness, which if not monitored and managed can
trigger amplification mechanisms that lead to systemic crises such as the
recent financial crises.

This thesis is structured as follows: first, I start outlining the main asset
pricing theoretical frameworks and predictions based on the intermediaries in
chapter 2; then, in chapter 3, I illustrate the empirical methods and evidence
of the intermediary asset pricing models; next, in chapter 4, I briefly present
the CAPM, as well as the evidence of some of its failures, and the theoretical
hypothesized explanations; after that, I set up the empirical analysis by
detailing the research questions that I aim to answer with this work and the
data used to do so, in chapter 5; in chapter 6 I show the results of the tests
executed and their implications; and finally, in chapter 7, I conclude. Further,
appendix A shows mathematical passages omitted from the main body of the
thesis; appendix B illustrate omitted details about the data used; and lastly,
appendix C shows additional tests.



2
Intermediary asset pricing theory

This chapter outlines the main results of the intermediary asset pricing
theoretical literature. More details about the models illustrated in this
chapter can be found in Appendix A.

2.1 Introduction

Standard consumption-based asset pricing models consider the consumer
households as the sole marginal investors and the intermediary sector as a
simple pass-through of the direct interactions among households. However,
to price all assets with the marginal value of consumption/wealth to the
households, they should participate in every market and execute complicated
trading strategies. Such assumptions seem to be widely violated in reality,1
while, on the other hand, financial intermediaries actually trade a wide
range of asset classes, often implementing complex investment strategies at
high frequencies thanks to low transaction costs, and using continuously-
updated models and extensive data to form forward-looking expectations of
asset returns at best. Therefore, intermediaries are more likely to be the
ultimate marginal investor in most of the asset markets and this motivated the
intermediary asset pricing literature to argue that a unified model for jointly
pricing of multiple traded assets in the economy is more informative if focused
on the marginal utility of wealth to the representative intermediary rather than
of consumption to the representative household. In particular, intermediaries
are likely to completely take over households as a trader the more sophisticated
is the asset, but participation of households in less sophisticated markets, such
as equity stocks, do not precludes financial intermediaries from remaining a
marginal investor.

Loosely speaking, the need of an additional dollar for an intermediary
depends on the scarcity of own funds and on how profitable the employment
of the extra dollar would be. The scarcity of funds depends on the availability
of funding and the easiness of obtaining it, which are summarized with the
term funding liquidity. It depends on institution-specific reasons, such as
bad credit worthiness, and on the macroeconomic state, which determines
the overall supply, while it determines the cost of funds. Anyway, when an
intermediary has lower capital, its risk bearing capacity is reduced and so
is its trading capacity. Then, when multiple intermediaries face restricted

1As showed for instance by Vissing‐Jørgensen (2002), who document households’ limited stock
market participation.
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4 Intermediary asset pricing theory

financing, the market(s) in which they participate get less competitive, which
leads to higher transaction costs to trade. Markets where the availability of
counterparties to trade is low and trading costs are high – where easiness of
selling assets is low – are termed of low ”market liquidity”. In such markets,
prices may be moved far away from the fundamental value, thus giving rise
to theoretical arbitrage opportunities and making more profitable to take
part to the market. Nonetheless, it can also work the other way around:
if few participants take part in a specific financial market, it is difficult to
redeem any investment in such market – to fund other trades for example,
thus less funds would be provided for trading activity in that market, making
such funds more expensive. To sum up, scarcity can drive up the costs of
capital while making investments more profitable, thus increasing the value of
additional funds. Thus, as usual, in equilibrium the cost and profitability of
a resource, funds in this case, are equal and represent two sides of the same
coin, namely its marginal value.

In a world without financial frictions an intermediary would always be able
to fund any profitable position or, at least, there would be a competing inter-
mediary to take its place. There would be a perfectly efficient market-making,
arbitrage-free markets, and asset pricing would be trivial. Nevertheless, in
the real financial markets the liquidity issues just described occur and at
times have huge effects, such as when they trigger liquidity spirals. These
are episodes where negative price shocks get enormously amplified because
market illiquidity and funding illiquidity reinforce each other. Specifically,
when a price shock is negative enough: the funding providers worry about
risk exposure thus reducing available funds and forcing further sales, which
further depress prices; the other traders sell as well,2 further depressing the
price and making trading costs surge. Therefore financial frictions, namely
funding constraints, are a key determinant of wealth marginal value and they
are crucial to build a pricing kernel consistent with the reality.

Since marginal wealth value is not directly measurable, as neither are
funding and market liquidity, to obtain testable predictions the intermediary
asset pricing literature pinned down the SDF by relating it to intermediaries’
balance sheets information, which instead is readily observable. More precisely,
leverage has been hypothesized to be the key variable related to the wealth
marginal value and their relation has been derived in general equilibrium
models of economies prone to liquidity spirals due to funding constraint.3
Strikingly, the conclusions of these models are at odds depending on the nature
of the constraint, whether on equity or debt raising. The following sections
will present the asset pricing predictions and contextualize the differences.

2.2 Equity constraint framework

The most recent examples of this line of research are He and Krishnamurthy
(2013) and Brunnermeier and Sannikov (2014).4 In these models, the inter-

2Positive-feedback trades may be due to: momentum strategies, predatory trading, hedging
strategies, or, simply, crowded trading strategies.

3Leverage is defined as total assets, which must equal the total liabilities, i.e. debt plus equity,
divided by equity capital – the intermediary’s net worth.

4This framework originates with net worth-based based models such as Bernanke and Gertler
(1989) and Kiyotaki and Moore (1997). Their models focus on linear approximations around a



2.2 - Equity constraint framework 5

mediary has a preference on the capital structure, as higher leverage implies
higher returns and risk, but their raising of equity is restricted, which can
be motivated by agency or informational frictions. As a result, when an
adverse shocks hit the intermediary sector’s assets and its equity shrink, the
intermediaries can restore the optimal target level of leverage-risk only by
reducing its debt financing. Such operation is performed with a lag and is
funded with the sale of assets. If the precautionary assets sale is enough to
trigger a liquidity spiral, the amplification mechanisms offset the de-leveraging
of the intermediary by reducing the asset prices until a boundary condition
is met – e.g. all of the assets are owned by the less-productive households,
or enough positive shocks enable the intermediary to get back healthy. As
the de-leveraging lags and the only possible equity in-flow is from assets
returns, the equilibrium leverage following a negative shock is higher than
what preferred by the intermediary, who then requires a higher risk premium
because of the higher risk implied and the need of funds. Therefore, in this
framework, leverage increase when funds are needed the most, while on the
other hand, a positive shock to the assets increases the intermediaries’ equity,
thereby mechanically decreasing leverage and possibly easing the constraints
on new equity raising, which may be used to buy other assets or leveraging
up, creating anyway buying pressure on prices. In a few words, leverage is
counter-cyclical.

A simple intermediary pricing kernel

To illustrate more formally the main asset pricing predictions of this class of
models, I will go through a simplified, single-period model inspired by He,
Kelly, et al. (2017) (HKM). The economy of this model is populated by two
representative agents, a household and a financial intermediary, but to derive
the equilibrium price of the assets in the economy only the marginal utility
of consumption to the representative intermediary is considered, since it is
assumed to be the only marginal investor in risky assets. The intermediary
maximizes the stream of utility over a period, which begins ”today” at time t
and ends ”then” at t+ 1, subject to a budget constraint:

max
ct,θt

Et
[
u(ct) + e−ρu(c̃t+1)

]
s.t. ct + θt · pt = wt, c̃t+1 = θt · x̃t+1 (2.1)

with ct being the consumption at time t, u(·) the instantaneous utility of
consumption,5 e−ρ the discount rate applied to the t+ 1 utility, wt the initial
endowment, θt the amount invested in a risky asset with price pt that gives
the right to the stochastic payoff xt+1 in the second period. The random
variables are marked as •̃ and are defined on the typical filtered probability
space (Ω,F ,P) and measurable with respect to Ft. The first order conditions
directly provide the pricing equation where the Stochastic Discount Factor
(SDF) M̃t+1 projects the future uncertain payoff into the current asset price:

pt = Et
[
e−ρ

u′( ˜ct+1)

u′(ct)
· x̃t+1

]
= Et

[
M̃t+1 · x̃t+1

]
(2.2)

deterministic steady state, while newer research typically solve fully stochastic models.
5The utility function is assumed to be well-behaved and concave



6 Intermediary asset pricing theory

Note that if there are no arbitrage opportunities in the economy, i.e. multiple
risky assets are traded and no profits can be done trading them without
investing any portion of wealth, then a unique SDF must price all of the risky
securities.6 That is, the pricing kernel of representative investor must price
the risk consistently across all of the available assets.

To link the current consumption-based formulation to intermediary’s
wealth, a first-order approximation is used: consumption ct is assumed to be
proportional to intermediary’s wealth W I

t , ct = βW I
t , where β is a positive

constant. Further, if Wt is the aggregated wealth in the economy, that is
Wt = W I

t +WHH
t , then the intermediary’s share of wealth ηt can be defined

as W I
t = ηt ·Wt.7 Since ct = β · ηt ·Wt, the SDF can be stated as:

M̃t+1 = e−ρ
u′(β η̃t+1W̃t+1)

u′(β ηt Wt)
(2.3)

As long as the intermediary is risk averse, its marginal utility is higher when
intermediary wealth is lower; in other words, when aggregate wealth Wt

and/or intermediary’s wealth share ηt are low, an additional dollar gets more
valuable for the intermediary. As the SDF is higher the higher is the expected
marginal utility of the state (and time) in which the payoff will be paid, it
follows that a payoff paid in low-wealth states is more valuable than the same
payoff paid in high-wealth states. More formally, the compensation required
by the representative intermediary to hold an asset whose payoff covary with
its future wealth, in the form of expected return in excess of the risk-free rate,
is the following:

Et[R̃t+1]−Rf = − Covt

[
M̃t+1

Et[M̃t+1]
, R̃t+1

]
(2.4)

Here, the future intermediary wealth enters the equation through the SDF
as showed in Equation 2.3. The covariance term shows how an asset whose
returns are lower when the SDF is higher – the ”bad” states, is expected
(unconditionally) to provide a higher return.

Finally, to relate the pricing kernel to the intermediary’s leverage, the
intermediary’s wealth share is equated to its capital ratio, which is simply the
reciprocal of leverage as defined in footnote 3:

W I
t

Wt

= ηt =
EquityIt
AssetsIt

(2.5)

Such critical relationship holds exactly only under stylized assumptions: (1)
intermediary assets represent all of the net wealth in the economy, so the
households cannot directly own any risky asset; (2) the intermediary equity
amounts to the intermediary’s net wealth only (more specifically to the wealth
of the financial expert that runs it), so households cannot own any equity
share of the intermediary, though they can have shares of the intermediary
debt. For instance, He and Krishnamurthy (2013) build on the assumption
that households can only invest in a zero-net-supply risk-free asset or in
the intermediary’s equity. Specifically, the last kind of investment may be

6Here I am also assuming market completeness.
7WHH

t is the wealth of the households.
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constrained, since it cannot be higher than a fixed share of the wealth invested
by the financial experts who manage the intermediary themselves.8 Therefore,
in this model condition (1) is always met by construction, while, about
condition (2), it can be noted that in the constrained states the intermediary’s
wealth share is mapped into the capital ratio.9 In Brunnermeier and Sannikov
(2014), intermediaries cannot issue equity to households, so condition (2)
always holds, but households can hold risky assets at a cost, so condition (1)
does not hold exactly. However, as outlined in the introductory section, the
buyback of debt lags behind the reduction in intermediaries’ capital, so the
capital ratio co-move with the intermediary’s wealth share.10

Plugging the right-hand side of Equation 2.5 into 2.3 and then into 2.4,
it can be clearly seen that an asset paying systematically less when capital
ratio is low, which is when leverage and the value of an additional dollar is
high, requires a higher expected return. It can also be seen that leverage risk,
that is, the risk of an asset’s return to positively covary with leverage, has a
negative price (commands a lower expected returns) because it helps agents
smoothing consumption through out the economic cycle. At the end of the
day, this pricing kernel relies crucially on two components – two factors:

• The economy’s total wealth, Wt, which is led by the canonical produc-
tivity shocks that affect the fundamentals of the whole economy. It is
related to the usual economic growth term used in consumption-based as-
set pricing models and is negatively related to marginal utility (marginal
utility is low when Wt is high), because of risk aversion.

• The intermediary’s capital ratio, ηt, which may be led both by changes in
the capital structure implemented by the intermediary – in theory mainly
through debt issuing/buybacks – and by shocks to the intermediary’s
assets that get channelled to the capital ratio through the equity. As
ηt decreases, intermediary wealth decreases thus increasing its marginal
utility and the absolute risk aversion.11 Therefore, risky assets get sold,
making the returns covary negatively with the SDF, and the price of
this risk factor positive.

Utility of managers, who practically price and trade the assets, is aligned
with the intermediary net worth utility with the following mechanisms:

• Monetary incentives and legal actions threat: as long as managers’
compensation is mostly paid through stocks their own wealth suffers
when intermediary’s wealth decreases. Similarly, if his maladministration
can be persecuted, he will be sensible to losses of the intermediary’s
wealth.

• Regulatory capital requirements: as equity shrinks, financial institutions
may be forced by authorities to forgo profitable but risky investments.
Therefore, the lower the capital the higher the potential opportunity
cost.

8In a companion paper, He and Krishnamurthy (2012), the authors derive the optimal share by
solving a moral hazard problem between the expert and the investor household.

9HKM, footnote 16.
10As showed in chapter 3, the empirical tests rely only qualitatively on the SDF specification, so

HKM claims the co-movement to be a sufficient condition.
11Assuming constant relative risk aversion.
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2.3 Debt constraint framework

This line of research is exemplified by Brunnermeier and Pedersen (2009) and
Adrian and Shin (2010), among others.12 In this set-up, equity issuance is ruled
out by assumption and the focus is on credit availability, which is time-varying
and depends on market conditions. In the case of Brunnermeier and Pedersen
(2009), trading margins are endogenously determined, so when the market is hit
by a significant decline, the lender tries to limit the exposure to the borrowers’
default by increasing it.13 Such action forces the trading intermediaries to
liquidate assets to fund the margin call, thereby de-leveraging.14 This, in
turn, creates further selling pressure that potentially makes the cycle start
all over again, moving prices away from the fundamentals. Once again, the
result is that following (or preceding!) a negative shock to asset prices, due
to precautionary motives, available funds are the least exactly when they
are needed the most – funding constraints are the tightest, though this time
it is credit availability that decreases, together with leverage. On the other
hand, when the economic outlook improves, lenders lower margins, increasing
credit availability and leverage, finally generating buying pressure on assets.
Therefore, the leverage in this setting is pro-cyclical.

A simple intermediary pricing kernel

In the style of Adrian, Etula, et al. (2014), I present some of the results of
Brunnermeier and Pedersen (2009) to show more formally the asset pricing
implications of the framework just described. The economy of this model is
composed by bank customers, who arrive sequentially to the market; specula-
tors, who provide market liquidity smoothing price fluctuations; and financiers,
who simply fund the speculators’ trades with collateralized borrowing and
set the margins to control their value-at-risk. Given the role similarity to
the real-world financial intermediaries, the intermediary pricing kernel here
is based on the representative speculator. There are two periods – three
points in time, and the risk-neutral speculator just maximize its final wealth,
given that its wealth must be higher than the margins required on its trading
position (funding constraint) at any time:15

θt ·mt ≤ Wt

where θt is the position in the risky asset at time t, mt is the margin and Wt

is the wealth. Then, at time 0, the problem can be described as maximizing
the wealth at time 1 times the shadow cost/value of capital at that time φ1:

max
θ0

E0

[
φ̃1 · W̃1

]
s.t. W̃1 = W0 + (p̃1 − p0)θ0 + γ̃1 (2.6)

12Shleifer and Vishny (1997) is a related pioneer work.
13The margin is the percentage of a trading position that must be deposited by the trader,

required by the lender. The rest of the trading position is funded with the lender’s capital, which
is essentially credit to the trader.

14The intermediaries are essentially required to increase the equity deposited at the lender.
15I only consider one risky security to make notation simpler; the paper multiple securities are

considered.
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where pt is the price of the risky asset, γ1 is a zero-mean shock to final wealth
due to exogenous and independent events, and the variables marked as •̃ are
random variables defined on the typical filtered probability space (Ω,F ,P)
and measurable with respect to F1. Then, φ1 essentially determines the value
of wealth by itself since it is reflects the profitability of wealth in the next
period, as long as the intermediary is not bankrupt:

φ̃1 = 1 +
|ṽ1 − p̃1|
m̃1

(2.7)

where v1 stands for the fundamental value of the risky assets at time 1, so
|ṽ1−p̃1|
m̃1

is essentially the profits per dollar that can be earned by trading the
mispriced securities. In the model of Brunnermeier and Pedersen (2009), it
increases following a rise in de-stabilizing margins, which, forcing speculators
to sell assets in order to meet margin calls, makes mispricings increase.16

Therefore, the dynamics of φ1 is strictly related to the market liquidity – the
availability of counterparties to trade, since the more liquid a market, the less
sales have an impact on the price. At the end, intuitively, the value of wealth
at time 1 is higher when investment opportunities are especially good and
available funding is relatively low.

Generalizing the result of the first order conditions from the time frame
(0, 1, 2) to (t, t+ 1, t+ 2), the SDF is simply:

M̃t+1 =
φ̃t+1

Et
[
φ̃t+1

] (2.8)

This SDF weights more in the price the payoffs of the states when the shadow
value of capital is high relatively to its expected value. Then, expressing the
related pricing equation in terms of the expected return from a risky asset

Et[R̃t+1]−Rf = −
Covt

[
φ̃t+1, R̃t+1

]
Et[φ̃t+1]

(2.9)

It is clear that the lower are the asset’s returns when funding conditions
are bad and shadow value of an additional dollar is high, the greater the
compensation the agent will require (and expect) to hold such asset instead
of an asset that do not covary with the SDF – the risk-free asset.

Finally, to relate the pricing kernel to leverage, AEM rely on the fact that
at time t+1 the margin constraint is always binding, so φt+1 is monotonically
decreasing with time t+ 1 leverage (and increasing with the margin), i.e. as
capital become more abundant. So, they specify:

φt+1 ≈ a− b ln(leveraget+1) (2.10)

Therefore, the final relation between expected returns and leverage is:

Et[R̃t+1]−Rf = b
Covt

[
ln( ˜leveraget+1), R̃t+1

]
Et
[
φ̃t+1

] (2.11)

16To comply with the margin constraint, when it binds, θt needs to be lower to accommodate a
higher mt.
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Here, an asset whose returns are low when leverage is low – and relative
need for funding is high, is required to have a high expected excess returns,
i.e. the leverage risk has a positive price. Essentially, assets that covary
with leverage worsen the consumption pattern making it less smooth, thus
a positive compensation is required. Note that there is no aggregate wealth
nor consumption, therefore, as AEM literally state, “It is important to note
that leverage–not wealth–is the key measure of the marginal value of wealth
in these models”.

2.4 Discussion on leverage cyclicality

The two lines of research just presented get very different results. To sum
up, while the equity constraint models find that tighter funding is related to
higher intermediary’s leverage, and thereby attach a higher marginal value
to wealth in high-leverage states and ask a higher compensation for negative
covariance with leverage, the debt constraint models find that the funding
constraints are tighter when leverage is low, and thereby attach a higher
marginal value to wealth in low-leverage states and ask a higher compensation
for positive covariance with leverage.

At the root of the differences there is the fact that the two types of
constraint entails two exclusive types of balance sheet dynamics, illustrated
in Figure 2.1, where model 2 refers to equity-constraint models dynamics and
model 3 to debt-constraint ones. Specifically, only one element of the liabilities
is assumed to be driven by precautionary motives and thus engage with the
assets in a mutual-negative-feedbacks loop, that is, a liquidity spiral. This
automatically implies which element will be mostly affected by a (sufficiently)
negative shock of the assets and whether leverage is pro- or counter cyclical.
However, as AEM and He and Krishnamurthy (2013) point out, the real-world
intermediaries are likely to be heterogeneous to some degree and experience
the constraints in different states and extents. Indeed, one of the hypothesis
is that heterogeneity may depend on the type of intermediary: for example,
during a downturn, when the marginal value of wealth is likely to be high for
all intermediaries, the margin requirements may become binding for hedge
funds forcing them to sell their assets – acting closer to what described by debt-
constraint models – while commercial banks may buy such assets, enlarging
the balance sheet with external funds – acting more closely to what described
by the equity-constraint models. In such case, the hedge fund was likely
employing all of the debt capacity, while the commercial bank likely had some
spare capacity, reflective of the different purposes – and managers’ incentives
– of the two institutions. Then, the leverage of these two intermediaries would
move in opposite directions, leading the overall intermediary sector to behave
in a much more nuanced and complex way than what predicted by either
class of models. This potential heterogeneity poses some empirical challenges,
since as long as leverage is used to proxy marginal utility, the relationship
between these two must be univocal for the considered set of agents.

Empirical evidence

Recently, several empirical analysis have been carried out to provide evidence
on the cyclicality of leverage, with the following results:
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Figure 2.1: Modes of levereging up. The shaded area indicates the balance sheet component
that is held fixed. Source: Adrian and Shin (2014).

Pro-cyclical leverage

• Adrian and Shin (2010) and Adrian and Boyarchenko (2013) provide
evidence based on book values, of a highly pro-cyclical leverage of
the broker/dealer sector.17

• He, Khang, et al. (2010) and Ang et al. (2011) document that hedge
funds during the last financial crises, when marginal utility of funds
was likely to high for all of the intermediaries, reduced the assets
de-leveraging.

Counter-cyclical leverage

• Ang et al. (2011) provide evidence based on market values of a
higher leverage of the broker/dealer sector during the 2008 crisis.

• He, Khang, et al. (2010) show that the book leverage of commercial
banking sector increased significantly during the 2008 financial
crises.

• Gatev and Strahan (2006) and Pennacchi (2006) document the
counter-cyclicality of inflow funds to banks.

It is clear then that there is a wide heterogeneity in the leverage dynamics,
depending on the type of intermediary category, which is reflective of a
re-intermediation scheme in the sector.

17Adrian and Boyarchenko (2013) also show the leverage of the non-bank financial sector is
a-cyclical.
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Intermediary pricing kernel

empirical tests

The main empirical evidence supporting the intermediary asset pricing theory
as a whole is provided by AEM and HKM, since both find strong cross-sectional
evidence in favour of a pricing kernel based on intermediaries’ balance sheets.1
However, the results of the two studies, like the two classes of theoretical
models showed in chapter 2, are at odds about the risk premium related to
the intermediary leverage risk factor.

3.1 Data and empirical strategies

In this section I summarize the theoretical framework, empirical methodology
and data employed in the two studies.

Adrian, Etula, et al. (2014)

Similarly to section 2.3, AEM specify an SDF that is affine in a leverage factor

Mt = 1− b · lvg∆,BDt (3.1)

which ends up generating the linear factor model

E[ret ] = b Cov
[
ret , lvg

∆,BD
t

]
= λlvgβlvg (3.2)

where ret = Rt − Rf ; βlvg = Cov(ret , lvg
∆,BD
t )/Var(lvg∆,BDt ) captures the

exposure of the risky asset to lvg∆,BDt ; and λlvg represents the price of risk
associated with lvg∆,BDt . This leverage factor model is then tested with the
cross-sectional regression

Ê[rei,t] = a+ β̂′
i,f λf + εi (3.3)

where the test assets portfolios are indexed with i,2 λf is the vector of risk
premia associated to the risk factors tested – included in the vector ft, and
the vector βi,f is estimated with the time series regression

rei,t = ci + β′
i,f ft + εi,t (3.4)

1Further evidence is provided by Adrian, Moench, et al. (2016), which test the forecasting
power of four different intermediary pricing kernels and find evidence mostly according to AEM.

2The asset classes can be studied separately including only the portfolios from one asset class,
or pooled, including all of the portfolios in one regression.

13
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The main focus of AEM’s analysis clearly is on the case ft = lvg∆,BDt .
The leverage factor employed by the authors as a proxy of the shocks to

the SDF consists in the innovations to the aggregate leverage ratio lvgBDt of
all the institutions in the security broker-dealers sector – indexed by i, which
is computed as:

lvgBDt =

∑
i Financial assetst,i∑

i Financial assetst,i − Financial liabilitiest,i
(3.5)

Specifically, the leverage risk factor was built as real-time seasonally-adjusted
log differences in the level of lvgBD:

lvg∆,BDt =
[
∆ ln

(
leverageBDt

)]SA (3.6)

The authors estimate it using quarterly seasonal dummies in an expanding-
window regression at each date, using the data up to that date.

The data is based on book values from the Federal Reserve Flow of Funds
(FOF), have quarterly frequency and cover the period from 1968 to 2009.3 The
test assets included in the analysis are: 25 size and book-to-market (value)
portfolios, 10 momentum portfolios, and 6 Treasury bond portfolios sorted by
maturity.

He, Kelly, et al. (2017)

HKM essentially assume the SDF showed in section 2.2, where the marginal
utility of time t is standardized to 1:

Mt = e−ρ u′(β η∆t Wt) (3.7)

which the authors claim to test qualitatively with the factor model:

E[ret ] ≈ Cov
[
η∆t , r

e
t

]
+ Cov [Wt, r

e
t ] = ληβη + λWβW (3.8)

λi and βi being the premium of and the sensibility of the asset to the risk
factors [η∆,W ], respectively. [η∆,W ] represent the shocks to the aggregate
wealth – the market risk, and to the tightness of the intermediaries’ fundings
– the intermediary leverage/capital ratio risk.

The authors compute the intermediary quasi-market capital ratio ηt ag-
gregating the balance sheets of the Federal Reserve Bank of New York’s (NY
Fed) primary dealers – indexed with i; and the intermediary capital risk factor
η∆t , as the AR(1) innovations of ηt, scaled by the lagged value ηt−1:4

ηt =

∑
iMarket equityi,t∑

i

(
Market equityi,t + Book Debti,t

) (3.9)

η∆t = uηt /ηt−1 where uηt = ηt − φη0 − φη1 · ηt−1 (3.10)

Then the authors perform the regressions 3.3 and 3.4 focusing on f = [RW , η
∆].

The test assets set is comprised of a wide range of asset classes: 25 size-
3The available data actually spanned the period from 1952 to 2009, but the first 16 years were

dropped because the authors considered the resulting leverage ratios unreasonably high, with the
equity being negative for several years.

4More about the NY Fed primary dealers in section 3.3
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and value- sorted equities portfolios, 10 maturity-sorted US government
and corporate bonds portfolios, 6 sovereign bonds portfolio,5 54 moneyness-
and maturity- sorted options leverage-adjusted portfolios, 20 credit default
swaps spreads-sorted portfolios, 23 commodities portfolios, and 12 currencies
portfolios.6

3.2 Results

In this section I summarize the contrasting results of the two studies, whose
differences will be further debated in the next section.

Adrian, Etula, et al. (2014)

Pooling all of the test assets portfolios in the single-factor cross-sectional
regression, AEM find a low and insignificant intercept (12 basis points, t-stat:
0.06); and a positive and significant risk premium related to the leverage
factor (62%, t-stat: 4.6), where the adjusted R2 is 77%.7 The mean absolute
pricing error (MAPE) is around 1% per annum, and the most problematic
portfolios, those with the highest MAPE, are the highest momentum portfolio
(pricing error of 7%) and the small-growth portfolio (3% pricing error). The
authors then perform a series of comparison tests:

• They include the canonical market risk factor, thus test a two-factor
model similar to HKM: it does not change any of the statistics of the
previous results and the market risk price only ends up with a t-statistics
of 1.75

• They test the CAPM and the Fama and French (1993) three-factor
models: they have a cross-sectional intercept that is both statistically
and economically significant, as it is over 3% per annum with t-statistics
over 3, and a far lower adjusted R2, of 0.10 and 0.16 respectively

• They test a five-factor model that includes the Carhart (1997) momentum
factor and the bond pricing factor of Cochrane and Piazzesi (2008), which
are the shocks to the first principal component of the yield curve: it is the
only model that matches the performances of the leverage single-factor
model in terms of intercept (0.66%, t-stat: 1.14); and adjusted R2 (0.81).
However, the authors also test whether all of the pricing errors could be
jointly equal to 0, and the single-factor model shows a lower statistic
than this five-factor model.8

Finally, they also find that leverage shocks are uncorrelated to the measure of
innovations to market liquidity proposed by Pástor and Stambaugh (2003)
and that the presented results hold both in ”good” and ”bad” times, showing
that broker-dealers may be borrowing-constrained in period of non-crises as
well.

5These portfolios are created double-sorting the assets by their covariance with the US equity
market returns and S&P bond’s credit rating.

66 based on Lettau et al. (2014) interest-differential-sorting and 6 on momentum-sorting.
7Rates are quarterly and the t-statistics are computed as in Fama and Macbeth (1973).
8The test statistic associated to the leverage factor model is χ2

N−2 = 68, while for the five-factor
the statistic is χ2

N−6 = 110. Note how the statistic is lower for the leverage factor model even if it
has the least degrees of freedom among the tested models.
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Fig. 2. Pricing errors: all portfolios. Actual average percent excess returns on all tested portfolios versus predicted expected returns using their risk expo- 

sures (betas) with respect to shocks to the intermediary capital ratio and the excess return on the market. Test portfolios are abbreviated based on their 

asset class: equities (FF), US bonds (BND), foreign sovereign bonds (SOV), options (OPT), CDS, commodities (COM), and foreign exchange (FX). Distance from 

the 45-degree line represents pricing errors (alphas). Betas are estimated in a first-stage time-series regression. The quarterly sample is 1970Q1–2012Q4. 

The intermediary capital ratio is the ratio of total market equity to total market assets (book debt plus market equity) of primary dealer holding companies. 

Shocks to capital ratio are defined as AR(1) innovations in the capital ratio, scaled by the lagged capital ratio. 

all portfolios case is 0.11 (see Table 4 ). Thus, a one stan- 

dard deviation difference in the capital risk beta of two as- 

sets corresponds to a difference of 0.11 × 9.35 × 4, or 4.11 

percentage points, in their annual risk premia. We also re- 

port a restricted MAPE-R, which uses the pricing errors for 

each asset class, but where the risk prices are restricted to 

those of the all portfolios cross-sectional regression. Com- 

paring these MAPE-R estimates to MAPEs, shows modest 

economic gains, in terms of pricing ability, from allowing 

risk prices to vary across asset classes. 30 

Quite interestingly, the estimated price of risk on the 

market portfolio is positive in all asset classes, though it is 

significant only in the FX test. The significance of interme- 

diary capital risk after controlling for the market return in- 

dicates that our pricing kernel statistically improves on the 

CAPM for all sets of test assets. In Section 3.2.3 , we show 

that capital risk remains a powerful determinant of asset 

price behavior after controlling for other standard risk 

factors. 

30 Fig. 2 plots average portfolio returns in all asset classes ver- 

sus predicted values from the two-factor intermediary capital model. 

Appendix Fig. A.1 draws the same plot using separate parameter estimates 

within each asset class. In untabulated tests, we standardize portfolio re- 

turns by the average volatility of portfolios within its asset class, which 

equalizes the variance contribution of each asset class in the all portfolios 

test. The resulting capital risk price estimate is 10.91 ( t -statistic of 3.09). 

Similarly, if we assign each portfolio a weight that is inversely propor- 

tional to the number of test assets in that portfolio’s asset class, which 

equalizes the contribution of each asset class to the test in terms of ob- 

servation count, the price of risk is 9.60 ( t -statistic of 3.44), again corrob- 

orating our main result. 

3.2.2. Are prices of risk similar across asset classes? 

The sign of the estimated price of risk for intermediary 

capital factor is consistently positive across all asset classes 

in Table 5 . What can we learn from the magnitudes of the 

estimates? 

Under the standard asset pricing theoretical framework, 

if (2) is indeed an appropriate pricing kernel for all assets, 

then the price of risk from each asset class should be the 

same (up to sampling error). This is trivially evident from 

the Euler equation, which implies that risk prices are inde- 

pendent of the specific asset in question: 

E t 

(
dR 

i k 
t 

)
−r f t d t = β i k 

η,t d t · γ σ 2 
η,t ︸ ︷︷ ︸ 

λη

+ β i k 
W,t 

d t · γ σ 2 
W,t ︸ ︷︷ ︸ 

λW 

, for all i, k. 

(9) 

Intuitively, risk prices are determined solely by the pricing 

kernel of marginal investors; while the quantity of risk—or 

beta—is an attribute of the asset and can differ substan- 

tially across classes. Eq. (9) makes the theoretical state- 

ment that any difference in risk premia across assets must 

come solely from differences in betas, holding risk prices 

fixed. If λ is for some reason higher in a particular asset 

class, then the intermediary can earn a higher expected 

return (without increasing its risk) by tilting its portfolio 

toward this class. In turn, prices of risk would equalize, re- 

inforcing the equilibrium consistency of risk prices across 

all assets. 

The test in the last column of Table 5 , i.e., the “all”

portfolios column, indeed imposes that risk prices are 

Figure 3.1: Pricing errors of HKM. Actual average percent excess returns on all tested
portfolios versus the expected returns predicted by the pooled cross-sectional regression
based on risk exposures to the intermediary capital risk factor and the market excess
returns. Portfolios are abbreviated based on their asset class: equities (FF), US bonds
(BND), foreign sovereign bonds (SOV), options (OPT), CDS, commodities (COM), and
foreign exchange (FX). Source: He, Kelly, et al. (2017).

He, Kelly, et al. (2017)

HKM find a significant exposure to intermediary capital risk of all the asset
classes. Specifically, when the cross-sectional analysis is performed on the
asset classes separately, the estimated class-specific risk premia, which can
be observed in figure 3.2a, are always positive and statistically significant at
the 5% level, a part from the sovereign bonds and the commodities where it
is anyway significant at the 10% level.9 As can also be seen in Figure 3.1,
commodities is the asset class that in general the model fits the worst (R2 of
25%), while the closest fit is achieved with option portfolios (R2 of 99%). The
premia range from 7% for equities to 22% for options, and when all of the asset
classes are included contemporaneously in the (pooled) cross-section analysis,
the estimated price of intermediary capital risk is 9.35%.10 Interestingly,
the hypothesis that risk price is 9% for any of the individual asset classes
cannot be rejected at the 5% significance level, while the hypothesis of all
the separate risk premia being 0 can be rejected at 10% level of confidence.
Homogeneity of the intermediary capital risk premia is crucial to support
intermediary asset pricing theories because it confirms that the leverage risk
factor successfully proxy the SDF of a marginal investor active in all the
markets. In other words, it confirms that at least the set of intermediaries
considered in the intermediary risk factor are marginal in all of the asset
markets, thus strengthening the case of a unique pricing kernel based on their

9The t-statistics are respectively 1.66 and 1.90. These are GMM t-statistics, which are used in
order to correct for cross-correlation and first-stage estimation error in betas.

10With a t-statistic of 2.52 and a R2 equal to 71%. The rates are quarterly.
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wealth for all risky assets (which implies no arbitrage exist). If instead some of
the considered intermediaries specialized in a specific asset class, their leverage
would entail a different pricing kernel, which could not price all the risky
assets. The authors argue that evactly this failure could explain the higher
estimates for options and FX. Moreover, the authors also estimate the MAPE
for each of the asset classes and a restricted version of the MAPE (MAPE-R)
in which the pricing errors are computed using the risk premia estimated
in the pooled cross-sectional regression. The resulting differences between
the MAPE-R and the MAPE are modest: the proportionally and absolute
highest difference is with options, 0.54% (MAPE: 0.14%), and the lowest is
with equities, 0.06%(MAPE: 0.34%). So, again, allowing risk prices to vary
across asset classes brings little gains in pricing ability, strengthening the
hypothesis of a pricing kernel based on the intermediary capital to efficiently
price all of the financial assets.

In the pricing kernel tested by HKM, contrary to AEM, also shocks to
aggregate wealth – proxied by the excess market returns, are considered.11

Empirically, the estimated price of market risk is positive in all asset classes,
though significant only in the foreign exchange test. As the intermediary
capital risk coefficient remains definitely significant while controlling for the
market return, the authors claim that it can be stated that the pricing kernel
tested statistically improves on the CAPM for all of the tested asset classes.
The authors also directly compare the pricing power of the intermediary capital
ratio factor to the plain CAPM, the Fama and French (1993) three- and the
Fama and French (2015) five-factor models, the Carhart (1997) momentum
factor, the Pástor and Stambaugh (2003) liquidity factor, and the Lettau et al.
(2014) down-side risk CAPM models. The first relevant result is that every
time the intermediary capital risk factor is included in the regressions of the
aforementioned models, the MAPE decreases of 22±2 basis points, where the
MAPEs of those models ranged from 0.82 to 0.87. The second one is that
the adjusted R2s moves as well: from 0.32 to 0.71 in the CAPM, from 0.65
to 0.80 in the three-factor model, from 0.65 to 0.69 in the five-factor model,
from 0.27 to 0.73 in the momentum model, from 0.50 to 0.71 in the down-side
CAPM, while the liquidity model is the only one to show no improvements in
the adjusted R2. The intermediary capital risk factor is always significant at
10% and at 5% in the CAPM, the five-factor and momentum models. At the
same time, the highest t-statistic reached by any of the peculiar factors of the
compared models is only 1.46, which reached by the High-Minus-Low factor
in the five-factor model.

Finally, as capital ratio shocks can be driven both by changes in the debt
and in the equity values, the authors test whether one of the two components
has a greater influence. They do so performing a three-factor version of the
model – the three factors are: market returns, log-innovations in intermediary
market equity, log-innovations in intermediary book debt – on the asset classes
separately and pooled. When all asset classes are tested together, the equity
risk factor is significant at 5% and of a similar magnitude to the two-factor
test (9.7%), while the debt risk factor has a coefficient and a t-statistic close
to 0, thereby suggesting that the intermediary capital risk factor is mainly
driven by the market equity innovations. Nonetheless, when asset classes are
tested separately, equity innovations always have coefficients higher than 4.7%,

11AEM test a specification where the market risk is included only as a robustness check.
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Fig. 3. Intermediary capital risk price λη estimates by asset class. Risk price estimates for shocks to the intermediary capital ratio, from a two-factor model 

that includes the excess return on the market. Risk prices are the mean slopes of period-by-period cross-sectional regressions of portfolio excess returns on 

risk exposures (betas), reported in percentage terms. Betas are estimated in a first-stage time-series regression. The quarterly sample is 1970Q1–2012Q4. 

The intermediary capital ratio is the ratio of total market equity to total market assets (book debt plus market equity) of primary dealer holding companies. 

Shocks to capital ratio are defined as AR(1) innovations in the capital ratio, scaled by the lagged capital ratio. Error bars are the 95% confidence interval 

around the point estimates, calculated using GMM standard errors that adjust for cross-asset correlation in the residuals and for estimation error of the 

time-series betas. 

equal across asset classes. Fig. 3 compares intermediary 

risk prices from different asset classes, and also compares 

with the all portfolios estimate, to illustrate the similarity 

in estimates across tests. Formally, our test cannot reject 

the hypothesis that the estimated risk price is equal to 9% 

per quarter (the value found in the all portfolios case) for 

any of the individual asset classes, at the 5% significance 

level. This is not merely a statement that our standard er- 

rors are large and lack power—we indeed reject the null of 

a 0% risk price in all classes (at the 10% significance level 

or better). 

From a theory perspective, the prediction of equal risk 

prices relies on the following key assumptions. First, the 

proposed financial intermediary pricing kernel represents 

the intermediaries’ marginal value of wealth. Second, fi- 

nancial intermediaries are actively making trading deci- 

sions in all asset markets (though not necessarily with 

large net positions). Also implicit in these assumptions is 

a degree of homogeneity in the pricing kernels of individ- 

ual financial intermediaries. That all financial intermedi- 

aries are homogeneous is the most standard—but perhaps 

the most tenuous—of these assumptions. Its failure could 

potentially explain the somewhat higher options and FX 

point estimates, if intermediaries that specialize in trading 

these securities differ in some way from other intermedi- 

aries (see, for example, Gârleanu, Panageas and Yu, 2015 ). 

We discuss heterogeneity among dealers in Section 3.2.5 . 

Irrespective the interpretation, comparing the magni- 

tudes of the risk price estimates across markets is infor- 

mative. One might expect that trading in different asset 

classes involves substantially different knowledge, exper- 

tise, and terminology; yet all of these markets produce 

estimated prices of intermediary capital risk with similar 

magnitude. This result is broadly in line with the assump- 

tion of homogeneity among intermediaries, but also con- 

sistent with the premise that the marginal intermediaries 

are different in each asset class but nonetheless all have 

highly correlated capital ratios (and hence the discrepancy 

of estimated risk prices is small). 

The central reason we include equity (more specifically, 

Fama and French (1993) 25 size and value sorted portfo- 

lios) is to remain comparable with recent empirical work 

in intermediary asset pricing, as well as the vast literature 

on US equity pricing. But we deem that equity is the asset 

class that is least likely to be explained by the pricing ker- 

nel of primary dealers. Section 5.7 provides suggestive ev- 

idence that these large banking-oriented financial institu- 

tions are not obviously active in (and hence unlikely to be 

marginal traders in) equity markets; this contrasts starkly 

with their large activity in other more sophisticated asset 

classes that are essentially all over-the-counter markets. 

Section 5.7 also reports more detailed asset pricing robust- 

ness tests that focus on additional widely used equity port- 

folios such as momentum and international equity. 

3.2.3. Is the intermediary capital factor just a proxy for other 

pricing factors? 

A large literature has investigated factors that explain 

the cross-section of asset returns. These analyses focus on 

the pricing of US equities, and have not been tested as 

pricing factors in many of the asset classes we study. Our 

intermediary capital factor is not a proxy for commonly 

studied factors in US equity markets. 

In Table 6 , we compare the pricing power of our inter- 

mediary capital ratio factor relative to the CAPM, the Fama 

and French (1993 , 2015) three- and five-factor models, the 

momentum factor, the Pástor and Stambaugh (2003) liq- 

uidity factor, and the Lettau et al. (2014 , LMW) down- 

(a) HKM
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Fig. 5. AEM leverage factor risk price estimates by asset class. Risk price estimates for shocks to the Adrian et al. (2014a ) leverage factor (AEM), from a 

two-factor model that includes the excess return on the market. Risk prices are the mean slopes of period-by-period cross-sectional regressions of portfolio 

excess returns on risk exposures (betas), reported in percentage terms. Betas are estimated in a first-stage time-series regression. The quarterly sample is 

1970Q1–2012Q4. The intermediary capital ratio is the ratio of total market equity to total market assets (book debt plus market equity) of primary dealer 

holding companies. Shocks to capital ratio are defined as AR(1) innovations in the capital ratio, scaled by the lagged capital ratio. The AEM leverage factor 

is defined as the seasonally adjusted growth rate in broker–dealer book leverage level from Flow of Funds. Error bars are the 95% confidence interval 

around the point estimates, calculated using GMM standard errors that adjust for cross-asset correlation in the residuals and for estimation error of the 

time-series betas. 

4.2.1. Market leverage vs. book leverage 

Our aim in constructing the capital ratio is to provide a 

current measure of financial distress that reflects the in- 

formation available in prevailing market prices. Virtually 

all intermediary asset pricing theories would suggest us- 

ing market values, which reflect forward-looking informa- 

tion available in traded securities prices. 42 The inverse of 

our market equity capital ratio is referred to as “market 

leverage.”

Book leverage, on the other hand, relies on accounting 

statement data for both equity and debt. One would ex- 

pect a positive correlation between market and book capi- 

tal ratios due to the fact that broker–dealers and banks are 

required to frequently mark their books to market. When 

mark-to-market is implemented perfectly, book leverage 

coincides with its market counterpart. 43 Because Flow of 

Funds data only includes book data for broker–dealers, 

Adrian et al. (2014a) rely on book leverage for their anal- 

42 While the market value of equity is readily available for publicly 

traded firms, market debt values are much more difficult to measure. 

Instead, we follow the standard approach in empirical corporate finance 

(e.g. Leary and Roberts, 2005 ) and use nonfinancial firms’ most recently 

published book value of debt from accounting statements. As we argued 

in Section 3.1.1 , this approximation is even more convincing in our con- 

text of financial firms, because the majority of bank holding companies’ 

liabilities consist of safe short-term debt such as deposits, repurchase 

agreements (repo), and trading liabilities which are to a large extent 

collateralized. 
43 One caveat is that the market value of a financial intermediary not 

only reflects the market value of the financial assets on its balance sheet, 

but also includes the present value of its profits earned from future ac- 

tivities. Our view is that this future enterprise value also affects the in- 

termediary’s financial distress, and therefore will show up in its pricing 

kernel. 

ysis, and appeal to mark-to-market accounting to support 

the timeliness and accuracy of their measure. 44 

An advantage of our data set is that we have access 

to both book and market equity values. We construct both 

book and market capital ratios for our sample of primary 

dealers, where the book capital ratio is defined as in (6) , 

but replaces market equity with its corresponding book eq- 

uity. We then investigate whether differences in the two 

measures can potentially reconcile the drastic difference 

between our paper and AEM. For example, a negative cor- 

relation between book and market leverage in our sample 

could help explain the conflicting risk prices estimated in 

our study versus AEM. 45 

We find, however, that the market capital ratio of pri- 

mary dealers is in fact strongly positively associated with 

book capital ratio. Book and market capital ratios have a 

correlation of 50% in levels and 30% in innovations, indi- 

cating qualitatively similar behavior between them. This 

is illustrated in the time-series plot of Fig. 4 b, and sug- 

gests that Compustat book leverage of primary dealers is 

in fact countercyclical. We present more direct evidence in 

Appendix Table A.2 , where we estimate the two-factor as- 

set pricing model replacing the market capital ratio factor 

44 In the accounting literature, there is some debate regarding account- 

ing manipulations in the practice of mark-to-market and there are in- 

dications that mark-to-market accounting is especially inaccurate during 

financial crises when capital requirements and credit channels tighten 

( Heaton, Lucas and McDonald, 2010; Milbradt, 2012 ). Ball, Jayaraman and 

Shivakumar (2012) provide a skeptical assessment of mark-to-market ac- 

counting in a large sample of banks’ trading securities. 
45 Previous literature such as Adrian et al. (2014b) and Adrian and Shin 

(2014) show that market and book leverage can be negatively correlated 

for banks, and therefore note that empirical analyses can be sensitive to 

choice of market-based versus book-based measures. 

(b) AEM

Figure 3.2: Intermediary capital risk premia per asset class, comparison of the results from
HKM and AEM. AEM only performed a pooled cross-section analysis, the class-specific
risk premia showed in panel (b) have been estimated by HKM with their methodology,
using the data provided by AEM. Source: He, Kelly, et al. (2017).

but significant only in the foreign exchange class (at 1% level), while debt
innovations have a negative coefficient in 5 of the 7 asset classes, statistically
significant at 5% only on the sovereign bonds and CDS classes. To sum up,
market equity seems to be the most important component of the analysis, but
debt definitely has a role in some asset class.

3.3 Making sense of the conflict

As illustrated in the previous section, the estimation of the risk premium
associated to the intermediary capital ratio differs significantly between HKM
and AEM. Specifically, it is positive for both of the papers, but where one uses
the capital ratio as a risk factor, the other one uses leverage, which, being the
reciprocal, should bring opposite results to be consistent with the first study.
Then, HKM have tested with their methodology and wide-ranging test assets
the AEM leverage factor, and the result is that the risk premia associated
to the leverage factor changes sign depending on the asset class and is not
significant for many asset classes, as it is shown in Figure 3.2. This is strongly
inconsistent with the theories, which predict a common risk factor to price all
of the traded assets.12 Moreover, in the pooled cross-sectional analysis, the
AEM leverage risk factor is not significant.

As the empirical results’ divergence resembles the divergence in the pre-
dictions of the theories showed in chapter 2, the cause of the divergence is
expected to be strictly related to the arguments explained in section 2.4,
where the theories are re-connected. In facts, as can be seen in Figure 3.3,
the leverage measures that underlie the leverage risk factors at the core the
two papers are markedly conflicting in terms of cyclicality: the correlation
between the HKM capital ratio and the AEM leverage measure is positive

12It must be reported though that on the classes equities and treasury bonds, the AEM
performance is superior to HKM, as reflected in their higher cross-sectional R2 (respectively
0.70 vs 0.53, 0.87 vs 0.84). AEM is relatively successful in explaining average returns among
momentum-sorted equity portfolios, which HKM state to be unable to explain.
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Figure 4: Intermediary Capital Measures Comparison
Sub-Figure (a) compares our main state variable of interest, the aggregate market-based capital ratio of
NY Fed primary dealers with other measures of intermediary capital. Market capital ratio at t is defined
as Σimarketequityit

Σi(marketequityit+bookdebtit) , where market equity is outstanding shares multiplying stock price, and book
debt is total asset minus common equity AT − CEQ. Book capital ratio simply replaces marketequityt
with bookequityt in this calculation. AEM leverage ratio is the leverage ratio of the broker-dealer sector
used by Adrian et al. (2014a), constructed from Federal Reserve Z.1 security brokers and dealers series:
Total Financial Assets (FL664090005) divided by Total Financial Assets (FL664090005) less Total Liabilities
(FL664190005). In Sub-Figure (a), the capital ratios are in the scale of percentage points (i.e., 5 means 5%).
Sub-Figure (b) draws a similar comparison for the risk factors (innovations in the state variables). Our main
asset pricing factor is AR(1) innovations to the market-based capital ratio of primary dealers, scaled by the
lagged capital ratio. The quarterly sample is 1970Q1–2012Q4. The AEM leverage factor, defined as the
seasonally adjusted growth rate in broker-dealer book leverage level from Flow of Funds, is from its authors.
Shaded regions indicate NBER recessions. 45

Figure 3.3: Comparison of leverage measures from HKM and AEM in levels. Source: He,
Kelly, et al. (2017).

both in levels (42%) and in innovations (14%).13 The potential reasons of
this discrepancy in the estimated leverage are illustrated in the following
paragraphs, which are mainly based on He, Kelly, et al. (2017).

Book vs. market values

The first difference to note in the used data is that HKM use quasi-market
data (market equity, book debt), while AEM use book data. In order to reflect
the forward-looking information contained in the assets’ prices, HKM argue
that most of the theories would suggest using market values. However, as
broker-dealers are required to mark the books to market frequently, one would
still expect a positive correlation between market values and book values. In
such case not huge differences would be expected. In facts, the correlation
between the HKM market capital ratio and the Compustat book capital
ratio of primary dealers is positively correlated both in levels (50%) and in
innovations (30%). Therefore, the source of the results differences is more
likely coming from the composition of the set of intermediaries considered.

Broker-dealer subsidiaries vs. primary dealers holding
companies

The second difference in the data used to build the leverage/capital ratio factor
takes place in the the set of intermediaries included: AEM consider the whole
universe of the intermediaries in the securities broker-dealers sector, while
HKM only include the primary dealers, which are the trading counterparties
of the NY Fed in its implementation of monetary policy. Nonetheless, as

13It must be remembered that capital ratio is the reciprocal of leverage. Therefore, a positive
correlation between the aggregate capital ratio measure from HKM and the leverage measure of
AEM implies a negative correlation between the two measures when expressed in the same terms.
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already illustrated in section 2.4, different types of financial intermediaries
are expected to show very different relationships between leverage and wealth
marginal utility, and thereby different prices of leverage/capital ratio risk.
Indeed, the correlation between the capital ratio of primary dealers and that
of non-primary dealers is −9%.

The NY Fed primary dealers form a relatively small group of institutions
that is composed by the largest and most active broker-dealers, while, as
described by HKM, “non-primary dealers tend to be smaller, standalone
broker–dealers with little activity in derivatives markets”. This leads the
primary dealers to be more likely to represent the marginal investor in most
of the financial markets and, on these terms, it also comes natural to choose
them as focus of the empirical test of an intermediary pricing kernel, which is
expected to price all of the risky assets in the economy. Indeed, when HKM
test the non-primary dealer capital ratio factor, equities and CDS show a
significantly positive price of capital ratio risk, while the estimated price of
capital risk in all the other asset classes is insignificant or even significantly
negative, in the case of options. This again confirms that there is a high degree
of heterogeneity in the intermediary sector but also, at the opposite, that the
primary dealers are quite homogeneous. To directly test the homogeneity of
primary dealers, HKM compute the correlation of the ”equal-weighted average
capital ratio” and the the ”value-weighted” measure for primary dealers, which
is 97.8%;14 while this correlation is only 56% for non-primary dealers.

A further difference in the selection of the intermediaries included in the
computation of the leverage risk factor is the observed economical unit: AEM,
by using the FOF data, focus on the broker-dealer subsidiaries, while HKM,
by hand-checking the correspondence, look at the holding companies of the
primary dealers. As HKM point out, capital markets within the financial
conglomerates can make this fact play a role in the gap between the two
papers, as they potentially diversify and transmit adverse financial shocks
across subsidiaries.15 Specifically, when a subsidiary suffers large trading losses,
it gets reflected in the FOF anyhow, but if the parent company is thriving and
the subsidiary has access to the internal capital market, then it does not affect
much the availability of funds nor the related marginal value of additional
capital. On the other hand, a negative shock to a different division that put
the holding company in distress may impair internal capital flow thereby
reducing the available funds to the healthy broker-dealer subsidiary, which
may have to reduce profitable positions. Clearly, if internal capital markets
represent a significant source of funds for the broker-dealer subsidiaries, the
capital ratio of the holding company would be a much better proxy for the
intermediary sector pricing kernel. Also from a legal perspective, it can be
observed that both the holding company and (many of) the subsidiaries are
subject to the regulatory capital requirements, but only the holding company
raises equity, which then distribute to the subsidiaries. So, once again, the
financial distress should observed at the holding level. Moreover, the holding
company may impact the subsidiaries’ financial soundness (where the opposite
is still less likely) even when the internal capital market is not affected, for

14The equal-weighted average capital ratio corresponds to the plain mean of the capital ratios
of the primary dealers, i.e. a weighted average of the capital ratios where each intermediary has
weight 1, irrespective of the size. On the other hand the ”value-weighted” measure essentially
refers to ηt as previously showed.

15Scharfstein and Stein (2000)
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example through the reputation, since the subsidiary’s funding ability in
the short-term debt market is influenced by the perceived risk of the entire
conglomerate.

3.4 Systemic risk

The focus of the intermediary asset pricing theories is the marginal utility of
wealth to intermediaries, which crucially relies on the availability of funding to
them. Interestingly, the capitalization status of the financial intermediaries is
also the key variable of the financial systemic risk literature, which is concerned
with how vulnerable is the financial system to propagation of losses. Several
empirical contributions have proposed different measures to gauge how high
is the risk of a systemic event, that is a default contagion among institutions
that interrupts the proper functioning of the whole financial system, then
hurting the real economy.16 Among those, there is a measure that relates
especially well with the intermediary asset pricing theories: the systemic
expected shortfalls (SES), proposed by Acharya et al. (2017), which equals
the expected losses conditional on critical market conditions. As the SES of
an institution increases, so do the funds needed to survive the crises. Thus,
if managers’ incentives/constraints are aligned, the higher value of financing
will be reflected in asset prices.

An issue with this claim concerns government insurance: in the occur-
rence of systemic events, the government typically intervenes to mitigate the
systemic risk externalities on the real economy. In such cases the risk of
undercapitalization is not beared by the intermediaries and moral hazard
may take place. Then, SES would perfectly capture the value/scarcity of
funds in the overall economy, but the managers of the intermediaries would
not experience a higher need of funds, thereby leaving the intermediary SDF
unaffected. However, when government intervention seems less likely, a higher
SES implies a higher risk of not being able to perform the basic transactions
or meeting the capital requirements when it is most relevant – in crises. There-
fore, its informativeness about the level of funding needs of the intermediaries
is expected to provide anyway some precious information, and juxtaposed
with leverage.

The SRISK and empirical evidence

Acharya et al. (2017) propose an estimator of the SES based on structural
assumptions and that requires observing a realization of a systemic crisis,
thus such methodology is not the first-best ex-ante. Brownlees and Engle
(2017) propose a forward-looking version of the SES, called SRISK, based on
publicly available information.

Following the original paper, capital shortfall of firm i on day t is

CSi,t = k · assetsi,t − equityi,t (3.11)

where k is the prudential capital fraction, e.g. following Basel Accords k =
8%, and assetsi,t = equityi,t + debti,t. Then, a systemic event is defined as a
multiperiod (from time t + 1 to t + h) arithmetic market return below the

16See Bisias et al. (2012) for a thorough survey of the systemic risk measures.
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threshold C, {RM,t+1:t+h < C}, where the authors set C=60%.17 Finally, the
expected capital shortfall in case of systemic risk with horizon h is named
SRISK, which computed as:

SRISKi,t = Et(CSi,t+h|RM,t+1:t+h < C)

= k · Et(debti,t+h|RM,t+1:t+h < C)

− (1− k)Et(equityi,t+h|RM,t+1:t+h < C)
(3.12)

It is assumed that debt cannot be renegotiated, so that the expected amount
of debt at the horizon t+ h is equal to debt at time t. SRISK then:

SRISKi,t = equityi,t[k · lvgi,t + (1− k)LRMESi,t − 1] (3.13)

where lvgi,t =
debti,t+ equityi,t

equityi,t
, and LRMES is the Long Run Marginal Expected

Shortfall, that is the expected multiperiod arithmetic return given that the
market experience a crises

LRMESi,t = 1− Et(Ri,t+h|RM,t+1:t+h < C) (3.14)

Estimation of LRMES requires a model for the returns of market and firm:
several methodologies can be used, and Acharya et al. (2017) use the GARCH-
DCC specification.18 It can be seen from Equation 3.13 that SRISK increases
with the size of the firm, its leverage, and its expected equity return conditional
on a systemic event, which depends on the specific assets and liabilities that
compose the balance sheet. A limitation reported by the authors is that
off-balance sheet information is not employed, so the true asset structure of a
firm might be not appropriately captured.

The authors test the predictive power of SRISK, over the period 2003-2012,
with respect to capital injections, industrial production growth, and unemploy-
ment rate.19 SRISK is used in log-levels in the regression of capital injection,
and obtain a t-statistic higher than 2 despite including several alternative
predictors as additional regressors. The real-economy variables instead are
regressed on the log-differences of SRISK, and SRISK results having a signi-
ficative role in predicting both, especially at horizons longer than 6 months
where it is always significant at 1% level, also including autoregressive terms
of the series and other canonical regressors.

Further relevant evidence on systemic risk is provided by Giglio et al.
(2016). They study how a broad set of financial distress and systemic risk
measures affect the real economy. Among the variables included there are the
leverage of the 20 biggest financial intermediaries, market liquidity measures,
and the one-step-ahead SES illustrated in Brownlees and Engle (2017), though
not the SRISK. They shrink all of these in a single measure, with two different
approaches and use it to forecast macroeconomic shocks. The main result is
that the synthetic measure that include systemic risk, intermediary leverage
and market liquidity, has most of the predictive power on the negative part of
macroeconomic shocks distribution rather than its central tendency. Similarly,
Jensen et al. (2017) provide evidence of the asymmetric relation of leverage
with the real economy, as they show that firms’ and households’ leverage

17So, to be crystal clear, the critical rate of return is rC = C − 1 = −40%.
18The main reference provided for the GARCH-DCC is Engle (2009).
19The information used in the SRISK calculations started from January 2000.
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induce negative skewness in the business cycle. Since the real economic shocks
are typically reflected in asset prices, this evidence further strengthen the claim
that tighter funding constraints are related to negative skewness of returns,
which the theories of chapter 2 predicted, even without the fundamental value
being skewed.





4
Betting against beta

This chapter introduces the Low Risk Anomaly (LRA) related the risk priced
by Capital Asset Pricing Model (CAPM), the beta. Then, a trading strategy
that takes advantage of the LRA, and helps studying it, is introduced, as well
as two theoretical explanations to rationalise it.

4.1 Introduction: the CAPM

The reference equilibrium model in the asset pricing literature to specify the
relationship between risk and return is the CAPM. This predicts that the
expected return of an asset i is equal to the risk-free return rate Rf plus a risk
premium, the expected return of the whole market RM in excess of Rf , times
the asset’s sensitivity to systematic risk, which is the non-diversifiable risk to
be beared to hold the asset and which is quantified with the OLS-regression
beta:

E[Ri] = Rf + βi
[
E[RM ]−Rf

]
where βi =

Cov[Ri, RM ]

Var[RM ]
=
σi,M
σ2
M

E[Ri]−Rf =

[
E[RM ]−Rf

]
σM

· ρi,M · σi︸ ︷︷ ︸
amount of risk

= SR · σi,M
σM

(4.1)

The CAPM, however, relies on the premise that all agents are rational, so all
of them only invest in the single portfolio with the highest expected return per
unit of risk. Specifically, all agents are expected to invest in the portfolio that
gives the highest expected return per unit of volatility – the highest Sharpe
Ratio (SR), which, if a risk-free asset exist, is simply a combination of this
and the whole market,1 meaning essentially that the agents only leverage or
de-leverage the market portfolio to accommodate their specific risk preferences.
Therefore, at the end, to have no arbitrage, any risky asset must provide the
same SR, which translates in a return proportional to the risk, proxied by the
covariance of the asset with the market, scaled by the market volatility. This
framework follows from two specific assumptions, namely:

Mean-variance optimization i.e. expected utility of investors only de-
pends on the first two moments of the portfolio returns. However, taking
the Taylor expansion of the utility that agents get out of the wealth at

1Since in equilibrium demand equals supply and all of the agents’ demand is on a single risky
portfolio, that must be the market.

25
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the end of an investments, around its expected value µW0 = E[Ri]W0, it
can be seen that higher moments play a role as well:

U(RiW0) = U(µW0) + (Ri − µ) ·W0 · U ′(µW0) +

+ (Ri − µ)2 · W
2
0

2
· U ′′(µW0) + . . .

+ (Ri − µ)n · W
n
0

n!
· U (n)(µW0) + . . .

(4.2)

Exact mean-variance optimization only happens when one of the follow-
ing two conditions is true:

Quadratic utility The agents’ utility function is quadratic, which has
no derivatives with order higher than the second one.

Separating distribution of returns The returns’ distribution belong
to a specific set of distributions that includes the elliptical class,
whose members can essentially be characterized by their first two
moments and whose most prominent examples are the normal
distribution and the Student’s t.

No borrowing constraints such as the mandatory cash holdings of mutual
funds, which do not allow agents to leverage the optimal portfolio,
thereby distorting the efficient frontier of the portfolio choice.

4.2 Evidence of the low beta-risk anomaly

One of the empirical implications of the CAPM is that

αi = E[rei ]− βi E[reM ] = 0 (4.3)

where E[rei ] = E[Ri]− Rf . Since Miller and Scholes (1972) and Black et al.
(1972), however, this is proved to not hold true in practise. Specifically, when
the security market line (SML) outlined by the CAPM is tested empirically
with a cross-sectional regression similar to the one showed in section 3.1

Ê[rei ] = γ0 + γ1 β̂i + εi (4.4)

where γ0 essentially estimates αi and should be 0, while γ1 should be equal to
Ê[Re

m]; then γ0 ends up being significantly higher than 0 and γ1 significantly
lower than Ê[Rm].2 Therefore, the SML results being flatter than what
predicted by the CAPM and lower-beta stocks seem to provide higher risk-
adjusted returns than stocks with a higher beta, on average. Another way
to observe this is by separately analysing portfolios of beta-sorted stocks, i.e.
groups of stocks separated by their beta. Doing so, Frazzini and Pedersen
(2014) (FP) find the average excess returns of groups with different betas being
similar, i.e. a flat SML, across several asset classes – international stocks, US
treasury and corporate bonds, credit, foreign exchange, and commodities.3
Furthermore, FP find that CAPM alphas and the SR of the beta-sorted stocks

2In Black et al. (1972) the results are contrasting only for the period 1931-1939.
3On the US stocks only, Black et al. (1972) obtain similar results.
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portfolios decrease almost monotonically from low-beta to high-beta ones; in
particular, for the US stocks, the alpha and the annualized SR of the lowest
beta ranking stocks are 0.52% monthly (t-statistic: 6.3) and 0.70, where the
alpha and SR of the highest beta ranking stocks is -0.10% (t-statistic: -0.5)
and 0.28, respectively. This higher market-risk-adjusted compensation for
assets with lower risk is only one of the different Low Risk Anomalies observed
in the financial market, where the risk is proxied by variables other than the
market beta, such as the idiosyncratic volatility.4

Betting against beta

Based on the evidence of higher risk-adjusted returns in low-beta stocks
than high-beta stocks, FP consider the ”betting against beta” (BAB) trading
strategy: this forms a portfolio (the BAB factor) that is short in high-beta
stocks and long in low-beta stocks, where both positions are de/leveraged
such that the portfolio is market-neutral, i.e. is has the same beta-exposure
in the long positions and in the short ones. More precisely, every month all of
the securities (per asset class) are ranked by their beta, and then assigned
to either the high-beta or low-beta sub-portfolio depending on whether they
rank above or below the average beta. The weights of the securities in the
sub-portfolios are hold in the vectors wH and wL, and each security has a
weight wi• that is proportional to the beta ranking itself, i.e. higher beta
stocks have a higher weight in the high-beta sub-portfolio wiH , while lower
beta stocks have higher weights in the low-beta sub-portfolio wiL. Finally, a
long position is taken in the low-beta sub-portfolio and a short position is
taken in the high-beta sub-portfolio, where the positions in the sub-portfolios
are inversely proportional to the weighted average of the betas of the stocks
it contains. Therefore, both sub-portfolio positions have an offsetting beta of
one, and the whole BAB portfolio is (theoretically) not affected by market
movements – beta-neutral. The factor is also self-financing since the long
position is funded shorting the risk-free asset (borrowing), while the short
funds an investment in the risk-free asset. Therefore, the rate of return of the
BAB factor is:

rBABt+1 =
1

βLt
(rLt+1 − rf )− 1

βHt
(rHt+1 − rf ) (4.5)

where rLt+1 = w′
Lrt+1, rHt+1 = w′

Hrt+1, and βLt = w′
Lβt, βHt = w′

Hβt – being r
and β the vectors of returns and betas of all the assets in the market.

Over the sample 1931-2017, the BAB portfolio for US equities results
being on average long $1.4 in the low-beta sub-portfolio and $0.7 in the
high-beta one. The authors then test this BAB factor by regressing it on the
CAPM single risk factor – the market excess returns, the Fama and French
(1993) three factors – market, size and value, the Carhart (1997) four factors
– the three factors plus momentum, and a five factors model – the four-factor
plus the Pástor and Stambaugh (2003) market liquidity measure. The alpha
resulting from these tests is always positive and statistically significative:
0.73% monthly in both the CAPM and the three-factor tests (t-statistics
above 7) and 0.55% in the four- and five-factor tests (t-statistics 5.6 and
4.1 respectively). Interestingly, the alpha’s point estimate and the level of

4More details in N. L. Baker and Haugen (2012) and M. Baker et al. (2011).
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significance in the CAPM and three-factor tests is very similar to the plain
average excess returns of the BAB factor (0.70%, t-statistic: 7.1), which is
the result of good estimates of the ex-ante betas, which in turn allows to get
closer to an actual market neutrality.5 Finally, the estimated annualized SR
of the US equities’ BAB factor is 0.78, while, for comparison, the annualized
SR of the US equities over the same sample is 0.44. As the authors obtain
statistically significant alphas for the other asset classes as well, it can be
concluded that there is clear evidence of the CAPM beta not being able to
capture all of the risks priced by the investors.

4.3 Funding constraints

One of the risks that is commonly regarded as the economic driver ot the BAB
anomaly, is related to the borrowing constraints. Practically, in the market
there are agents that cannot borrow to leverage the optimal portfolio and
reach the desired risk level, so they end up overweighting the riskier assets
to achieve the target level of return. Then, because of the buy pressure, in
equilibrium the riskier assets offer a lower risk-adjusted return, of which an
unconstrained agent can take advantage using a BAB strategy. Black (1972)
has been the first to model constrained agents, then FP built on that, related
the funding constraint to investments’ margins, and extended the analysis to
explicitly explain the BAB anomaly. Their theoretical predictions about the
relationship between funding constraints and the BAB factor, as well as the
empirical results are outlined in the next section; more details on the model
are in Appendix A.

Frazzini and Pedersen (2014) model and empirical evidence

Consider an overlapping generations economy, populated by agents indexed
by i that born with wealth W i

t and die in t + 1. Such agents can trade S
securities, indexed by s, with prices Pt, which pay dividends δst and that
has xs,∗ outstanding shares. Then, at each time t, young agents can choose
portfolio weights xi and invest the remaining wealth in the risk-free asset,
with rf rate of return, solving the following problem:

max
xi

xi′
(
Et
[
P̃t+1 + δ̃t+1

]
− (1 + rf )Pt

)
− γi

2
xi′Ωtxi

subject to mi
t

(
xi′ Pt

)
≤ W i

t (4.6)

where Ωt is the variance-covariance matrix of the future uncertain payoff
P̃t+1 + δ̃t+1, then xi′Ωtxi is the variance of the agent’s portfolio, and γi is the
aversion of agent i to variance – the risk. So, the agent, through the objective
function, is essentially maximizing the excess returns of its holdings while
minimizing the variance of the portfolio, practically making a mean-variance
optimization. Next, mi

t is the exogenously-set margin – the share of any
5The authors also report the realized betas of the 10 beta-sorted portfolios, which, indeed,

never differ of more than 20% from the ex-ante estimates. The betas are estimated by splitting
the correlation’s and the standard deviations’ processes. For the former they use a longer window
(750 trading days instead of 120) and three-days returns (rather than single-day) in the rolling
estimation.
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position that the agent has to hold in the form of equity, so the sum of the
margins on total holdings mi

t

(
xi′ Pt

)
=
∑

sm
i
tx
i,sP s

t has to be less than the
endowed wealth. Similarly to the debt-constraint intermediary asset pricing
literature, a higher margin, given W i

t , forces agent i to decrease her portfolio
positions to meet the budget constraint. For instance, if mi=1, no leverage is
allowed, if it is 0.5 then the agent can hold twice his wealth in risky assets. The
pricing equation resulting from the first order and the equilibrium conditions
is

Pt =
Et
[
P̃t+1 + δ̃t+1

]
− γΩx∗

1 + rf + ψt
(4.7)

which can be expressed in terms of the excess returns, so to describe a new
SML:

Et[r̃st+1]− rf = ψt + βst (Et[r̃Mt+1]− rf − ψt) (4.8)
= (1− βst )ψt + βst (Et[r̃Mt+1]− rf ) (4.9)

where γ is the aggregate risk aversion 1
γ
=
∑

i
1
γi
, aggregate tightness of

funding ψt is a weighted average of individual restriction levels,
∑

i
γ
γi
ψit, and

security’s beta it the CAPM beta βst =
σs,M
σ2
M

. From Equation 4.8, it can be
seen that when the funding constraints get tighter, the SML gets higher and
flatter, thereby closing the gap between the CAPM and the SML empirically
observed. That means that to obtain the level of returns of the tangency
portfolio, constrained agents have to hold riskier assets. Further, in the
CAPM-like formulation of Equation 4.9, the intercept is explicitly function of
the asset’s beta and the funding constraint tightness, and it gets higher, as
well as the expected excess return does, when:

• Funding constraints are tighter – lower funding liquidity, making portfolio
choices more distorted

• The asset’s beta is lower – it is less risky, providing less expected returns.

Moreover, two peculiar results should be noted:

• The market portfolio is a weighted average of all investors’ portfolios,
essentially averaging the portfolios of both the unconstrained agents –
the tangency portfolio, and the constrained agents, which have higher
risk than the tangency portfolio. Therefore, the market portfolio in
equilibrium has to have higher risk, and lower SR, than the tangency
portfolio. As a result, the tangency portfolio, the portfolio with the best
SR, has a beta lower than 1.

• An asset that does not covary with the market should anyway provide a
return higher than the risk-free asset. The authors relate this to the fact
that constrained agents escape such securities for more risky ones, while
at the same time unconstrained agents, who hold the tangency portfolio,
would see their diversification harmed, thus they ask a compensation for
that. Specifically, the tangency portfolio contains zero-beta assets, so
zero-beta assets would actually have some covariance with the uncon-
strained agents’ holdings, thereby making them bear a higher risk even
if the security has zero beta, and then ask a compensation for that.
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The predicted return on the BAB factor is:

Et[rBABt+1 ] =
βHt − βLt
βLt β

H
t

ψt (4.10)

which is positive by definition, and increasing with the ex-ante beta spread
βH
t −βL

t

βH
t β

L
t

and the ex-ante funding constraints tightness ψt. Tighter funding,
following an increase in the margin requirements for instance, implies a higher
expected returns of the BAB factor because agents, being more constrained,
tilt more the portfolios toward high-beta stocks, increasing the convenience
of low-beta stocks. However, it follows that the effect of higher constraints
on the contemporaneous return of the BAB factor is opposite: as constraints
get tighter, prices of high-beta assets get pushed up while low-beta ones get
pushed down even more, thus making the BAB factor realizing a loss, i.e. a
negative return. In other terms, one may observe that higher expected returns
mechanically decrease prices because of the higher discounting.

FP test these predictions regressing the BAB factor returns on the con-
temporaneous change in the TED spread and the lagged value of the TED.
The TED spread is the difference between the 3-month LIBOR rate, which is
the rate at which major banks expect to obtain funding, and the 3-month US
treasury bill interest rate, at which US government, regarded as the global
safest borrower, obtain funding. Thereby, measuring how relatively expensive
are the funds for the banking sector, it broadly indicates how difficult is
to obtain funds for intermediaries and how tight funding constraints are –
the ψt of the model.6 Surprisingly, both the coefficients of the lagged TED
level and the contemporaneous TED change are negative for the BAB factor
returns of US stocks, international stocks, and the pool of all the assets in the
study.7 Further, when the authors perform a more robust regression including
different control variables, the two coefficients double in magnitude – the
contemporaneous change also in t-statistics.8 This would mean that tighter
funding constraints do decrease contemporaneous returns of a BAB strategy,
but so does the past level of funding tightness, which strongly contrast the
theory. The authors suggest that the interpretation of TED may be a bit
different, namely that a high TED may represent a worsening in the funding
constraint, which may lead to a gradual intensification of funding tightness
over time keeping the BAB factor loose over time.

Further evidence related to the link between the BAB factor and funding
constraints is provided by AEM, who claim their leverage factor to (1) correlate
with the BAB factor (at 10% level of significance) as well as other funding
constraint proxies such as volatility, the Baa-Aaa spread, and asset growth
and (2) explain the cross-section of returns sorted on betas.9

6TED is, in a related manner, also interpreted as a proxy of how much risky the banking sector,
and the economy more in general. Moreover, since it depends on the US treasury yield, it inherit
the convenience yield effect, thereby potentially overestimating the spread at times.

7Coefficients and t-statistics for US stocks: -0.025 (-5.3) and -0.019 (-2.6) respectively.
8The additional explanatory variables were the market returns, to account for noise in the beta

estimation; the 1-month lagged beta, to account for potential momentum in the BAB factor; the
ex-ante beta spread; the short volatility return – a portfolio of straddles on the S&P500; and the
lagged inflation. Only the market returns and the short on the straddles had a t-statistic larger
than 1 in magnitude.

9No statistics are provided about the second statement.



4.4 - Systematic skewness 31

4.4 Systematic skewness

The CAPM is built on a proxy of the SDF that is linear in the market return,

Mt+1 = aCAPM + bCAPMRM,t+1 (4.11)

Then the coefficients are related to the first two terms of the Taylor’s series
expansion of the SDF – the intertemporal marginal rate of substitution
U ′(WtRt+1)
U ′(Wt)

, around the null t+ 1 rate of return on wealth:

Mt+1 = 1 +
Wt U

′′(Wt)

U ′(Wt)
(rt+1) +

W 2
t U

′′′(Wt)

2 U ′(Wt)
(rt+1)

2 + o(Wt) (4.12)

where o(Wt) represents the remainder of the expansion. So, aCAPM = 1+o(Wt)

and b = Wt U ′′(Wt)
U ′(Wt)

, which is the relative risk aversion. As U ′′(W ) is negative to
reflect economic satiation, b is negative as well, which consistently means that
in periods of high returns, and high wealth, the intertemporal marginal rate of
substitution is low. This kind of SDF proxy, combined with the standard first
order condition of the representative agent showed in Equation 2.2, generates
the CAPM. Nonetheless, this is exact only when the conditions outlined
in section 4.1 are met, while it is an approximation in the other cases. In
facts, as argued by Harvey and Siddique (2000), several elements may induce
skewness in the investments’ returns, for example limited liability and other
agency problems related to investments’ management. Therefore, they specify
a non-linear pricing kernel that includes the squared market returns:

Mt+1 = a+ bRM,t+1 + cR2
M,t+1 (4.13)

Comparing this to the Taylor’s series expansion of the SDF, it can be observed
that a and b are similar to the CAPM specification, while c is related to the
term W 2

t U ′′′(Wt)

2 U ′(Wt)
: if the agent has non-increasing absolute risk aversion, which

Kimball (1993) claim being an essential feature of realistic risk-averse agents,
this is positive. From that SDF specification, Schneider et al. (2016) derive a
skewness-aware SML, in a fashion similar to the CAPM:

Eskewt [Re
t+1] = βskewt · Et[Re

M,t+1] (4.14)

where
βskewt =

b · σi,M,t + c · σi,M2,t

b · σ2
M,t + c · σM,M2,t

(4.15)

Here, σi,M2,t is the covariance between Re
i,t and Re

M,t
2, i.e. the asset coskewness,

while σM,M2,t is the covariance between Re
M,t and Re

M,t
2, that is the market

skewness. As claimed by the authors, |b · σ2
M,t| is generally greater than

|c ·σM,M2,t| by several orders of magnitude, therefore, at the end, a higher risk
premium is required from security i when it has higher covariance and lower
coskewness with the market. In other words, in this skew-aware framework, a
higher compensation is required for assets whose returns happen to be low
when market returns are low and highly volatile, which are states of low
utility and high marginal utility. Indeed, note that adding such an asset to
the agent’s portfolio would increase its undiversified variance and shrink more
when volatility is high – having a higher undiversified skewness.
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If the real world is better represented by the skew-aware model, the CAPM
implies a pricing error defined as

αi,t+1 = Eskewt [Re
i,t+1]− ECAPMt [Re

i,t+1] + εskewi,t+1 where E[εskewi,t+1] = 0 (4.16)

which in expectations amount to the CAPM regression’s alpha, and amounts
to:

Et[αi,t+1] = (σi,M2,t − βCAPMi,t · σM,M2,t) ·Bt · Et[RM,t+1]

where Bt =
c

b · σ2
M,t + c · σM,M2,t

(4.17)

Then, since market skewness σM,M2,t and Bt are typically negative, the last
equation implies that the higher the CAPM-beta, the (more) negative should
be the alpha on average, which matches the empirical evidence showed in
section 4.2. Meanwhile, also the coskewness not captured by the CAPM, and
thereby left in the residuals, is derived:

σαi,M2,t = σi,M2,t − βCAPMi,t · σM,M2,t (4.18)

Residuals’ coskewness is higher the higher is βCAPMi,t because more of the
negative coskewness in asset i is due to correlation with the negatively skewed
market, thus, adjusting for the market, residuals get more positively coskewed
the higher the beta. Finally, plugging the mispricings’ coskewness into the
expected alpha,

Et[αi,t+1] = σαi,M2,t+1 ·Bt · Et[RM,t+1] (4.19)

So, the CAPM alpha of an asset is lower the more positively coskewed its
returns are with the market and this is argued to be the reason why high-beta
stocks have lower alphas. Economically, positive coskewness is a distributional
feature that agents appreciate, and for which they pay in terms of lower risk
premium. However, coskewness is not among the risk factors considered and
thus gauged by the CAPM, to which then CAPM fails to attach a value in
terms of predicted excess return.

Low Risk Anomalies?

Schneider et al. (2016) then illustrate how considering the CAPM mispricing
related to coskewness can account for the returns of the BAB strategy, which
in expectations are:

Et[αBAB,t+1] = Et[αL,t+1]− Et[αH,t+1]

= (σαL,M2,t+1 − σαH ,M2,t+1) ·Bt · Et[RM,t+1] (4.20)
=
(
(σL,M2,t+1 − σH,M2,t+1)−

(
βCAPML,t − βCAPMH,t

)
· σM,M2,t

)
·Bt · Et[RM,t+1]

(4.21)

As the CAPM underestimates the risk and the required return from holding
low-beta stocks and overestimates them for high-beta stocks, implementing
a BAB strategy implies bearing the risk ignored by the CAPM on both
sides of the strategy and earning the relative compensation – it is essentially
comparable to selling protection from negative coskewness. Indeed, from
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Equation 4.20 it can be seen that the average excess returns of the BAB
factor increase with lower residuals’ coskewness of low-beta stocks, on which
the strategy is long, σαL,M2,t+1, as well as with higher residual coskewness of
high-beta stocks, which are shorted, σαH ,M2,t+1. The role of the CAPM beta
can be directly seen in Equation 4.21, where, assuming that the coskewness of
the low-beta and high-beta portfolios is identical as well as market skewness is
negative, the BAB factor’s alpha is higher the higher the beta spread is: this
happens because the BAB portfolio inherit even more negative skewness from
shorting high-beta stocks, as well as less positive skewness from investing in
low-betas, which can be checked in Equation 4.18.

In the empirical analysis of Schneider et al. (2016), it is actually found that
the coskewness of high-beta stocks is lower than that of low-beta stocks – figure
4.1a.10 However, this only mitigates the positive effect of accounting for the
market skewness, so the residuals of high-beta stocks are indeed found to have
a higher coskewness than the low-beta stocks – figure 4.1b. So, the relationship
between alphas and residuals’ coskewness is strongly confirmed, as showed
in 4.1c. To perform an empirical test of the skew-aware pricing kernel, the
authors build three skewness factors, based on ex-ante skewness, to capture
the coskewness risk.11 Specifically, they create ten portfolios with stocks
sorted by their ex-ante risk-neutral skewness, which is estimated with option
data; then, those portfolios are combined in three different ways, to build the
skewness factors.12 Those factors are then included in the CAPM regression
test,13 resulting in significantly lower alphas – figure 4.1d, specifically, the
alpha’s t-statistic decreases from the 2.87 of the plain CAPM test, to between
1.87 and 1.06 in the CAPM extended with the skewness factors.14

10The authors include in the analysis portfolios of stocks sorted by measures of risk different
from the CAMP beta, which still give rise to LRAs.

11The authors also illustrate how ex-ante skewness is strictly related to residuals realized
coskewness.

12Skewness is computed from data on call and put options, thus the upper-, lower-, and total
(the sum of upper- and lower-) skewness of returns are observed. One factor, ”SK1+10-SK5+6,
is long the highest and the lowest total-skewness-sorted stocks deciles and short the central two
deciles; the other two are long the most skewed decile and short the lowest one, where the skewness
is either the upper-, factor ”USK”, or the lower-, factor ”LSK”, one.

13Further analysis are performed extending the Fama and French (1993) and Carhart (1997)
models, with similar results.

14The best result is achieved by including both the USK and LSK factors.
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(a) CAPM betas - returns coskewness (b) CAPM betas - residuals’ coskewness

(c) Residuals’ coskewness - CAPM alphas

(d) Skew-adjusted alphas (e) Skew-adjusted residuals’ coskewness

Figure 4.1: Tests on coskewness and LRAs. Source: Schneider et al. (2016).



5
Analysis set-up

The main goal of this thesis is to test the intermediary pricing kernel on
the CAPM-beta low risk anomaly. The link should be now trivial: tightness
of funding is the key determinant of both the marginal value of wealth to
intermediaries, which defines the intermediary pricing kernel, and the betting
against beta factor returns. Therefore, an SDF that efficiently gauge the
soundness of intermediaries’ funding should solve the LRA and being able to
price the risk compensated with the BAB returns. The study is structured in
three research questions (RQs), whose goal and data are further described in
this chapter. The term ”intermediary risk” stands for ”intermediary leverage
risk”, or indistinctly, as should be clear by now, ”intermediary capital ratio
risk”.

5.1 Research questions formulation

RQ 1: which intermediary risk factor specifications explain the
most of variables related to the intermediaries’ true SDF?

Clearly, there is no measure of the intermediaries’ marginal value of wealth
against which a proxy can be tested directly, otherwise there would not be
any need of the proxy itself. However, the wealth marginal value is proven
to depend on a few drivers – among which undercapitalization, funding and
market liquidity, for which proxies exist. Therefore, assuming the true SDF
has a strong relationship with these, I make an introductory assessment of the
risk factors representativeness of the SDF by testing their ability to explain the
other supposedly-related proxies. This will also be indicative of the cyclicality
of the leverage specifications used and is preparatory for the following research
question. The answer to this question relies on the proxies of the Systemic
Expected Shortfall, funding liquidity, and market liquidity; namely the SRISK,
the TED spread, and the liquidity measure of Pástor and Stambaugh (2003).

RQ 2: can an intermediary pricing kernel explain the
beta-CAPM low risk anomaly and consistently price it?

Firstly I further test the ability of intermediary risk factors to explain a
proxy of funding tightness, and thus being related to it, by testing them
directly on the BAB factor, which crucially relies on funding constraints. This
leverages on the precise theoretical relationship showed in section 4.3, which
has been difficult to pin down by other tests. Then, after having showed how

35
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the intermediary risk factors relate to elements supposedly connected to the
intermediary SDF, I move on using these factors to test the SDF itself, and its
ability to price multiple asset simultaneously, especially those most commonly
associated to funding tightness. Therefore, the ultimate questions are two:

1. Is the SDF able to provide a consistent pricing kernel, which is the
ultimate goal of any SDF? Or, better, how consistent is the intermediary
SDF over different assets?

2. Is the intermediary SDF able to price low risk anomalies, which are
supposed to depend exactly on the key factor on which the intermediary
SDF in founded – funding tightness? Or, better, how good is the
intermediary SDF in pricing such anomalies with respect to other models
that not theoretically built on such premises?

This last hypothesis is explicitly verified with a cross-sectional asset pricing
test on a variety of test assets, including the beta-sorted stocks portfolios and
the troubling BAB factor.

RQ 3: do the intermediary risk factors also capture the
coskewness risk?

Another theoretical explanation for the CAPM-beta LRA is provided by the
existence of a compensation required by investors for the risk of assets’ returns
being negatively coskewed with the market. This is proved being related to
the skewness of the asset itself, which, at the same time, intermediary asset
pricing theory predicts to be related to funding tightness, independently of the
fundamental asset’s distribution.1 Further, empirical evidence relates leverage
and other measures of financial distress to asymmetries in real economic
shocks, i.e. negative skewness of the fundamentals. Therefore, it is natural
to test whether the intermediary pricing kernel specifications already tested,
which theoretically capture funding tightness, are able to account also for
this risk. To do so, I essentially test whether the mispricings of the previous
intermediary pricing kernel application are related to coskewness like the
CAPM residual are proved doing.

5.2 Data

I have focused on the USA and the data have been collected from multiple
sources, listed in table 5.1. More details about some of the series are provided
in Appendix B.

Intermediary risk factors

The authors of AEM make available the quarterly leverage factor lvg∆,BDt

defined in section 3.1, which in the meanwhile has been updated following the
FOF revision in 2017. Performing an Augmented Dickey-Fuller Unit Root Test
(ADF), the series results being stationary at 1% level of significance. However,
despite the seasonal adjustments, the series shows significant autocorrelation:

1Namely because of the asymmetrical amplification mechanisms that yield liquidity spirals.
These make liquidity and prices drop quickly and recover slowly.
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Table 5.1: Data sources, frequencies, and time spans. D, M, and Q stand for daily, monthly,
and quarterly, respectively.

Variable Source Frequency Timespan

ηt and η∆t He, Kelly, et al. (2017) M, Q 1/1970 – 10/2017
lvg∆,BDt Adrian, Etula, et al. (2014) Q 1968q1 – 2017q3
SRISK Brownlees and Engle (2017) D 2/6/2000 – 9/1/2014
TED spread FRED D 2/1/1986 – 6/4/2018
m.liqt Pástor and Stambaugh (2003) M 8/1962 – 12/2016
BAB factor Frazzini and Pedersen (2014) D 1/12/1930 – 29/12/2017
Other risk factors
and 1-month T-Bill French (2018) M 7/1926 – 3/2018

Characteristic-sorted
stocks portfolios French (2018) M 7/1963 – 3/2018

US bonds WRDS M 1/1969 – 5/2018
Test assets other than
US stocks and bonds He, Kelly, et al. (2017) M, Q 1/1970 – 12/2012

performing the Box-Ljung test with lags equal to the yearly frequency of the
series, i.e. 4 in this case, the series proves to have autocorrelation at 1% level
of significance; ACF and PACF plots in Appendix B.

HKM instead make available both the primary dealers capital ratio ηt
described in section 3.1 and the relative intermediary capital risk factor η∆t .
Their capital ratio measure depends both on book values and market data,
so these series are provided at daily, monthly, and quarterly frequencies.2
As only in the quarterly series all the information used is updated at every
observation, I will mainly rely on this for my analysis. However, I will use the
monthly series for robustness checks in Appendix C because, as illustrated in
section 3.2, the prevalent driver of the series is the equity, i.e. the part that
is updated more frequently. The quarterly series of η∆t is stationary at 1%
level of confidence and non autocorrelated; for further details about the other
series, please refer to Table 5.2 and Appendix B.

Analogously to HKM, and from the capital ratio series provided by them, I
compute the intermediary sector leverage (lvgt) and the intermediary leverage
risk factor (lvg∆t ) as:

lvgt =
1

ηt
=

∑
i

(
Market equityi,t + Book Debti,t

)∑
iMarket equityi,t

(5.1)

lvg∆t = ûlvgt /lvgt−1 where ûlvgt = lvgt − φ̂lvg0 − φ̂lvg1 · lvgt−1 (5.2)
As leverage and capital ratio point at the same economic quantity, the inter-
pretation of results are unaltered, but I consider both because the econometric
performance may differ and, more importantly, because the intermediary
leverage in levels conveniently results being stationary at 10%, contrary to

2The authors also provide data at daily and yearly frequency, which are not used in this work.
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Table 5.2: Intermeciary capital ratios time-series characteristics. The level of significance
of stationarity is based on the outcome of an Augmented Dickey–Fuller test while the
autocorrelation (Autocorr) level of significance is determined with a Box-Ljung test where
the number of lags tested is equal to yearly frequency of the series tested (12 for monthly
data, 4 for quarterly data).

Quarterly Monthly
Definition Stationary Autocorr Stationary Autocorr

ηt Equation 3.9 No Yes*** No Yes***

η∆t Equation 3.10 Yes*** No Yes*** Yes*

lvgt Equation 5.1 Yes* Yes*** Yes** Yes***

lvg∆t Equation 5.2 Yes*** No Yes*** No

lvg∆,BDt Equation 3.6 Yes*** Yes*** – –
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 5.3: Summary statistics of quarterly and monthly intermediary data. ρ measures the
the Pearson correlation.

Quarterly Monthly

lvg∆,BDt ηt η∆t lvgt lvg∆t ηt η∆t lvgt lvg∆t

Min -30.1 0.026 -0.437 7.61 -0.311 0.022 -0.280 7.46 -0.295
1st Qu. -3.0 0.045 -0.066 13.10 -0.084 0.045 -0.040 13.09 -0.043
Median 1.0 0.057 0.017 17.67 -0.029 0.057 0.001 17.61 -0.007
3rd Qu. 5.2 0.076 0.078 22.06 0.060 0.076 0.040 22.03 0.037
Max. 33.3 0.132 0.445 38.46 0.739 0.134 0.397 44.84 0.385

Mean 0.7 0.062 0.004 18.36 -0.002 0.063 0.001 18.20 -0.001
SD 8.0 0.024 0.125 6.52 0.140 0.024 0.068 6.43 0.068

ρ(ηt, •) -0.06 – – – – – – – –
ρ(η∆t , •) 0.01 0.29 – – – 0.16 – – –
ρ(lvgt, •) 0.01 -0.92 -0.35 – – -0.91 -0.19 – –
ρ(lvg∆t , •) -0.06 -0.44 -0.96 0.48 – -0.25 -0.98 0.26 –

T 199 191 191 191 190 574 573 574 573

the capital ratio in levels, which is not.3 Thus, it can be used limiting the
risk of spurious relationship, in a factor model that I will illustrate in the
next chapter. Quarterly lvg∆t results being both stationary at 1% and non
autocorrelated.

The aggregated intermediary balance sheet measures differ markedly:
the correlation between lvg∆,BDt and η∆t is 0.01, while between lvg∆,BDt and
lvg∆t is -0.06. This is consistent with the evidence from HKM – Figure 3.3,
and confirms how crucial is the composition of the set of representative
intermediaries. Further descriptive statistics of the quarterly and monthly
series can be found in Table 5.3.

310% is generally considered enough to reject the unit root hypothesis because of the low power
of the ADF test.
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Figure 5.1: Plot of lvgt (in black) and lvg∆t (in red). lvgt is measured on the left axis,
while lvg∆t on the right axis.

SRISK, TED, and market liquidity measure

SRISK has been introduced in section 3.4. It is provided in real-time at
https://vlab.stern.nyu.edu [Engle et al. (2018)], and the data is at firm level,
with daily frequency. To aggregate daily firm-level data to US-wide daily
data, I have followed page 53 of Brownlees and Engle (2017), i.e. I have
summed up only the positive values of each day. This type of aggregation
has a specific rationale: during a severe downturn, over-funded institutions
– those with a negative SRISK – are not likely to buy or generically supply
capital to the under-funded institutions, therefore, the total capital needed by
the financial system to overcome the crises, likely supplied by the government,
amounts to what derived in this way. Then, I have aggregated daily data into
monthly data, which is the time unit used by Brownlees and Engle (2017), by
averaging 15 calendar daily values centred at the end of each month. This
is only one of the adjustments that I have implemented on this dataset; the
others consist of the removal of problematic dates with limited underlying-
data coverage and the time span reduction to match the starting date of
Brownlees and Engle (2017). The full procedure and the reasons for that
are explained in section B.2. Finally, quarterly frequency data is obtained
by simply taking the last monthly observation of each quarter. SRISK is
non-stationary and autocorrelated, thus it will not be used in the analysis to
avoid spurious relationships. Instead, accordingly to Brownlees and Engle
(2017) and consistently with the use of innovations for intermediary capital
ratio, the log differences ∆ ln (SRISKt) will be used, which are conveniently
both stationary and non-autocorrelated, at least at quarterly frequency.

The TED spread has been introduced in section 4.3 and it is provided
by the Federal Reserve Bank of St. Louis (2018). TED is provided with
daily frequency, so lower frequencies are obtained keeping the last observation
available. This rate is expected to be especially informative about the debt
funding liquidity, as well as more in general of the funding tightness. Since
the pricing kernel is tested in terms of shocks to the intermediary capital

https://vlab.stern.nyu.edu/
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Table 5.4: SRISK, TED and Market Liquidity time-series characteristics. The level of
significance of stationarity is based on the outcome of an Augmented Dickey–Fuller test
while the autocorrelation level of significance is determined with a Box-Ljung test where
the number of lags tested is equal to the yearly frequency of the series tested, 4 and 12.

Quarterly Monthly
Stationary Autocorr Stationary Autocorr

SRISKt No Yes*** No Yes***

∆ ln (SRISKt) Yes*** No Yes*** Yes***

∆TEDt Yes*** Yes*** Yes*** Yes***

TED∆
t Yes*** Yes* Yes*** Yes***

m.liq∆t Yes*** No Yes*** Yes***
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 5.5: Summary statistics of SRISK, TED, and market liquidity. l(SR) stands for
∆ ln (SRISKt), and ρ measures the the Pearson correlation.

Quarterly Monthly

l(SRt) ∆TEDt TED∆
t m.liq∆t l(SRt) ∆TEDt TED∆

t m.liq∆t

Min. -0.048 -0.018 -0.011 -0.256 -0.062 -0.010 -0.461 -0.392
1sr Qu. -0.023 -0.001 -0.001 -0.023 -0.023 -0.001 -0.054 -0.023
Median 0.004 0.000 -0.001 0.001 0.004 0.000 -0.020 0.007
3rd Qu. 0.037 0.001 0.001 0.029 0.037 0.001 0.007 0.029
Max. 0.430 0.022 0.023 0.116 0.430 0.020 0.198 0.280

Mean 0.017 -0.000 -0.000 -0.002 0.015 -0.001 -0.029 0.000
SD 0.073 0.003 0.003 0.055 0.058 0.230 0.061 0.055

ρ(∆TEDt, •) 0.06 – – – 0.12 – – –
ρ(TED∆

t , •) 0.11 0.95 – – 0.20 0.96 – –
ρ(m.liq∆t , •) -0.28 -0.12 -0.26 – -0.31 -0.19 -0.24 –

N 45 129 130 218 133 387 653 653

ratio, the changes in TED, ∆TEDt, are used. I also consider the the AR(1)
innovations TED∆

t to remove the remarkable autocorrelation of TED, which
is reported in Table 5.4. However, the correlation between the changes and
the innovations amounts to 0.96.

The market liquidity measure m.liqt provided by Pástor and Stam-
baugh (2003) is an average of the US individual stocks’ liquidity measures.
These measures are based on the the short-term reversal of stocks’ returns,
which is greater in magnitude the more sensible the returns are to the order
flow, which depends on the liquidity in the market. The authors provide
the ARIMA innovations of m.liqt, which I define m.liq∆t and use, to be con-
sistent with the intermediary risk factors measures, similarly based on the
innovations.

Interestingly, the correlation between market liquidity innovations and
TED innovations is -0.26, that is, negative market liquidity shocks tend to
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happen when funding liquidity suffers negative shocks as well. This is reflective
of the self-reinforcing mechanisms that generate liquidity spirals. Similarly,
the correlation between TED changes and market liquidity innovations is
-0.12. As the TED innovations do not appear to bring additional information
with respect to the changes, and are also more redundant as they are generally
more correlated with other proxies, in the next analysis I will only use the
latter, following FP.

Other risk factors

The risk factors considered in this work other than those related to the
intermediaries’ balance sheets are: the market excess returns; Small-Minus-
Big (SMB) and High-Minus-Low (HML) from Fama and French (1993); and
momentum (UMD), from Carhart (1997). All of these are obtained from the
web library of professor French, at French (2018), with monthly frequency
from 1926 to 2018. The quarterly series are obtained taking the geometric
sum over the period.

Test assets

The test assets included in this analysis are the following portfolios:

(a) * the US-equity BAB factor presented in section 4.2

(b) * 10 of US stocks sorted on CAPM beta

(c) 25 of US stocks sorted on value and size (also named FF25)

(d) * 10 of US stocks sorted on momentum

(e) 7 of US government bonds sorted on maturity

(f) 10 of US corporate bonds sorted on yield spread

(g) 6 of sovereign bonds sorted on covariance with the US equity market
and default probabilities from S&P ratings

(h) 18 of S%P 500 index options sorted on moneyness and maturity; 9 of
calls, 9 of puts

(i) 6 of currencies sorted on interest rate differential

(j) 6 of currencies sorted on momentum

(k) 23 of commodities

(l) 20 of individual-name 5-year CDSs, sorted by spreads

(a) is obtained from the authors of FP; (b), (c), (d) from French (2018); (e)
from Wharton Research Data Services (2018); the remaining ones from HKM,
whose analysis does not include the test assets marked with *. Quarterly
returns of portfolios are computed with a geometric sum; descriptive statistics
of the test assets are provided in Table 6.5.
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The intermediary factor models

Four factor models based on intermediary risk factors are specified as follows:

IFM1 includes only the leverage factor lvg∆t , thereby essentially replicating
the AEM specification, but based on HKM’s primary dealers data

IFM2 is based on HKM, and as such it includes the capital ratio risk factor
η∆t and the market excess returns

IFM3 is the most complex model: it includes the market excess returns,
lvg∆t , the absolute contemporaneous primary-dealers leverage level lvgt,
and the interaction term lvg∆t · lvgt

IFM4 is based on AEM, and as such it includes their leverage factor lvg∆,BDt

only

where IFM is just the shorthand for Intermediary Factor Model. IFM2 and
IFM4 have been widely discussed in chapter 3, and the first specification is
one of the robustness checks of HKM, which join their data with the AEM
specification. Thereby, IFM1 is then not expected to provide results too far
from IFM2. However, it may have a different empirical performance and,
most importantly, it works as a direct benchmark to the third specification,
which is introduced only now. The aim of the third specification is to test
the hypothesis that leverage does not impact homogeneously the SDF, but
rather the impact depends on the level of leverage in place. Thus, the focus
of this specification is on the interaction term lvg∆t · lvgt: this is higher the
higher are the intermediary leverage risk factor and the leverage level, with
the effect of magnifying the leverage shocks in higher-leverage states. My
choice of multiplying the leverage level with the scaled innovations instead
of the innovations themselves is quite arbitrary, but I relied on HKM, which
identifies the scaled innovations to the capital ratio, and not the absolute
innovations, as fundamental shocks to the intermediary capital risk.1 Then,
this interaction term should capture the difference, if there is any, between
the risk associated to shocks realized in different leverage-level states.

1Moreover, to remove the autocorrelation from the absolute innovations – p-value higher than
10% in Box-Ljung test with 4 lags – at least an ARMA(1,2) model of leverage is required, while
for scaled innovations an AR(1) suffices, thus strengthening the argument in favour of scaled
innovations as fundamental shocks to the leverage process.

43
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Table 6.1: Regression results: capital risk factors – SRISK. NW HAC-SEs in parenthesis;
RMSE is the shorthand for Root Mean Squared Errors. Models are, in order: IFM1, IFM2,
IFM3, IFM4.

∆ log SRISK ∆ log SRISK ∆ log SRISK ∆ log SRISK

(Intercept) 0.024∗ 0.026∗∗ 0.061 0.026∗

(0.010) (0.009) (0.033) (0.011)

lvg∆t 0.118 0.410∗∗

(0.061) (0.122)
η∆t −0.164∗∗

(0.058)
lvgt −0.002

(0.002)

lvg∆t · lvgt −0.009∗∗

(0.003)

lvg∆,BDt 0.002
(0.001)

R2 0.112 0.159 0.201 0.058
Adj. R2 0.091 0.139 0.143 0.017
AIC −128.7 −131.2 −129.5 −125.2
BIC −123.3 −125.8 −120.5 −119.8
Num. obs. 45 45 45 45
RMSE 0.055 0.054 0.054 0.058
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

6.1 Research question 1

Here I make a battery of basic tests to assess how well the intermediary risk
factors explain proxies of undercapitalization, funding liquidity, and market
liquidity, widely recognized as causes and symptoms of the funding tightness.

Undercapitalization

The test is performed with OLS regressions on quarterly data, using the Newey
and West (1987) (NW) standard errors, which account for heteroskedasticity
and autocorrelation of residuals (HAC). The results relative to SRISK are
shown in Table 6.1. The first striking result comes from IFM4, whose per-
formance is definitely the worst one, with the worst R2, just above 5%, AIC,
BIC and root mean squared errors (RMSE) values. Moreover, differently from
AEM, the results show that the AEM leverage factor is positively related to
higher undercapitalization states – higher distress states, thus covarying with
the factor of HKM as well. On the other side, the specification that simply
explain the most of SRISK log differences is the IFM3, with an R2 of 20%,
that is the double of IFM1 and 5% higher than IFM2. The model also has the
best AIC, however, considering the more parsimonious BIC, the best model
in the group is IFM2, which indeed has the same RMSE of IFM3, but obtains
it with two parameters less. In general, all of the models show that a negative
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Figure 6.1: Monthly SRISK-leverage scatterplot (on the left) and SRISK histogram (on
the right). Dots in the y axis of the histogram are monthly observations of SRISK.

shock to leverage is associated with a higher funding level, therefore, at least
with this set of aggregate capital ratios, the predominant dynamics is that of
the equity-constraint model where lower leverage implies higher utility (and
lower marginal utility).

Interestingly, the leverage factor at the base of IFM1 is not statistically
significant until a discriminant of the level of leverage (IFM3) is introduced.
Then, it is highly significant, as well as the interaction term with the leverage
level. This would seem to confirm the relevance of considering the leverage
absolute level. Nonetheless, being the interaction term negative, it implies
that a positive shock to leverage would have less and less effect the higher
is the level of leverage, which in general contradict the prediction of higher
leverage implying more financial distress. This may be due to the interventions
of government, if these impact the log differences of SRISK when leverage
is high. Looking at Figure 6.1, it may hypothesized that if interventions
of government take place when SRISK is high, then they will likely take
place when also leverage is high. However, since SRISK is non-stationary, it
cannot be said much of statistically significant about the relationship between
SRISK and leverage, and this hypothesis. Moreover, the leverage required
to make its shocks having a negative relation with SRISK log differences is
47.1, which has never been observed. Figure 6.1 also broadly supports what
predicted by Brunnermeier and Sannikov (2014), that is the economy spends
most of the time in two regimes, a stable one and a crisis one: in facts, two
distinct clusters can be observed in the chart, one of low SRISK and the other
one of high SRISK, which even split the probability density showed in the
histogram.2 Notably, the two clusters are also quite well distinct in terms of
leverage, and if leverage was to actually have two regimes like SRISK, it would
provide further motivation to include the level of leverage as an intermediary
capital risk factor. The last consideration about this test only covers a limited

2Notably, it is really similar to the probability density drawn in figure 4 of Brunnermeier and
Sannikov (2014).
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Table 6.2: Regression results: capital risk factors – TED. NW HAC-SEs in parenthesis;
RMSE is the shorthand for Root Mean Squared Errors. Models are, in order: IFM1, IFM2,
IFM3, IFM4.

∆ TEDt ∆ TEDt ∆ TEDt ∆ TEDt

(Intercept) −0.010 −0.007 0.172∗∗ −0.007
(0.018) (0.013) (0.060) (0.017)

lvg∆t −0.263 2.110∗∗∗

(0.530) (0.485)
η∆t 0.037

(0.465)
lvgt −0.008∗

(0.003)

lvg∆t · lvgt −0.097∗∗∗

(0.026)

lvg∆,BDt 0.015
(0.010)

R2 0.012 0.000 0.202 0.107
Adj. R2 0.004 −0.008 0.182 0.100
AIC 85.09 86.65 62.28 72.38
BIC 93.60 95.15 76.46 80.89
Num. obs. 126 126 126 126
RMSE 0.334 0.336 0.303 0.317
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

amount of time, thus relying only on 45 observations, which may weaken the
reliability of results.

Funding liquidity

The regression results of the analysis on TED changes are in Table 6.2; as
for the other tests, standard errors are NW HAC. The outcome overturn in
some respects the previous test: the model that better performed under the
BIC in the test before, IFM2, here is the worst under all measures; it has a
negative adjusted R2, the highest AIC and BIC, and the higher RMSE of the
group. At the same time, the worst performing specification of the first test,
IFM4, now explains the second most of the variation of TED in the group,
with 10% of R2. Notably, this is only half ot the R2 of the best specification,
which is again IFM3. This explains the most variance in TED, plus having
the lowest RMSE, AIC, and BIC, and highly significant parameters, though
including the intercept. Indeed, another fact that is not overturned is the
significance of the interaction term, which also makes the leverage factor
lvg∆ becoming highly significant. Again, the interaction term is negative,
meaning that the higher the leverage level, the less leverage positive shocks
are associated with positive TED changes – lower funding liquidity. This is
rather puzzling especially because the positive shocks are already associated
to negative TED changes when leverage is above 21.75, which happened in
9% of observations. In any case, it is appreciable that this specification is able
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Table 6.3: Regression results: capital risk factors – market liquidity. NW HAC-SEs in
parenthesis; RMSE is the shorthand for Root Mean Squared Errors. Models are, in order:
IFM1, IFM2, IFM3, IFM4.

m.liq∆t m.liq∆t m.liq∆t m.liq∆t

(Intercept) −0.003 −0.003 −0.025 −0.003
(0.005) (0.005) (0.018) (0.005)

lvg∆t −0.113∗∗ −0.093
(0.034) (0.101)

η∆t 0.115∗∗∗

(0.032)
lvgt 0.001

(0.001)

lvg∆t · lvgt −0.002
(0.004)

lvg∆,BDt 0.001∗

(0.000)

Adj. R2 0.074 0.059 0.083 0.004
AIC −552.3 −549.3 −552.1 −538.6
BIC −542.6 −539.6 −535.9 −528.9
Num. obs. 187 187 187 187
RMSE 0.055 0.055 0.054 0.057
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

to capture this asymmetry, while IFM1 coefficients is negative and not even
statistically significant. All in all, the two specifications that better perform
by far, IFM3 and IFM4, both agrees on associating higher TED – lower
funding liquidity – with higher leverage, thus once again showing dynamics
more comparable to those described by the equity-constraint framework.3

Market liquidity

The tests performed on the market liquidity measure are showed in Table 6.3.
The results here are more ambiguous because there is not a specification
that outperform the others in the majority of the statistics. Specifically,
IFM3 is the one that explains the most of market liquidity variation, having
the highest R2 and the lowest RMSE. Nonetheless, its AIC is slightly lower
than IFM1, which also has a far better BIC, and comparable R2 and RMSE.
Under the parsimonious BIC, also IFM2 performs better than IFM3, which
implies IFM3 may be the most at risk of overfitting. Furthermore, IFM3
has no significant coefficients, and the opposite of the past test happens:
when the interaction term factor is included, the leverage factor lvg∆ becomes
insignificant. However, the hypothesis of all the coefficients of IFM3 being
0 is rejected, by far, at the 1% level of confidence, with a p-value of 0.0003.
IFM4 is not only the worst model under any measure, but is also the only

3IFM3 and IFM4 are also the only 2 to have a F statistic significant at 1% level, while the
p-values of IFM1 and IFM2 are higher than 0.2.
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model not significant, at any level. This is also the only one predicting a
pro-cyclical leverage – higher leverage associated with higher market liquidity.
So, at the end of the day, only IFM1, IFM2 and IFM3 show a weak, though
still statistically significant, relation the market liquidity and they all predict
a counter-cyclical leverage, as in the previous tests.

6.2 Research question 2

Since (1) the performances of IFM1 and IFM4 were quite bad in RQ1; (2)
IFM1 is extremely close to IFM2 and nested in IFM3, thus quite redundant;
and (3) IFM4 proved being a poor proxy of the intermediary pricing kernel also
in HKM tests, I do not test these two specifications further. Instead, to answer
RQ2 I only apply IFM3, which has had the best overall performance, and
IFM2, of which HKM have extensively proved the goodness in the ultimate
asset pricing test, in addition to having an easier interpretation and greater
theoretical support than IFM3.

A direct test on the BAB factor of risk factors
representativeness

Before testing the consistency of the intermediary factor models in pricing
the BAB factor and more in general the CAPM-beta LRA, I further test the
ability of the risk factors to gauge funding liquidity, this time directly on the
BAB factor. This leverage on the relationship predicted by the theory showed
in section 4.3, which tests fail to confirm though. Then, similarly to FP, I
regress the BAB excess returns on the current risk factors, on their 1-lag
value, and on the market returns, for robustness reasons:

rBABt − rf,t = β0 + β1ft + β2ft−1 + β3r
e
M,t + εt (6.1)

The regression is performed with the OLS method and standard errors are NW
HAC; results are in Table 6.4. IFM3 (first column) performs better than the
HKM specification under any measure: AIC, BIC, R2, and RMSE. Since the
market coefficient in the first IFR3 specification is statistically insignificant,
a version without the market variables is estimated, showed in the second
column. No performance statistic worsen significantly, while the BIC even
slightly improves.

The contemporaneous factors that have a statistically significant coefficient
are η∆t and the interaction term lvg∆t · lvgt. The first one has a positive
coefficient, which is consistent with the view that higher capital ratio, i.e.
lower leverage, implies looser funding constraint. Then, as current funding
constraints get looser, low-beta asset prices increases, high-beta prices drop,
lowering the expected returns of the BAB portfolio, while making the BAB
strategy realize a contemporaneous positive return. Next, the interaction term
is negative, which agrees with the first one, despite a different interpretation:
current positive shocks to leverage are associated with lower BAB returns, the
higher is the leverage. This perfectly agrees with the intuition of the theory:
as leverage is higher, and marginal utility of wealth increases, shocks to wealth
have heavier implications. Interestingly, the contemporaneous leverage factors
lvg∆t have positive coefficients, which instead diametrically contradicts the
theory, but are totally insignificant.
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Table 6.4: Regression results: BAB factor – intermediary factor models. The dependant
variable is rBAB

t , standard errors are Newey-West HAC.

IFM3 IFM3-mkt HKM FP IFM3-mkt

(Intercept) −0.019 −0.017 0.026∗∗∗ 0.066∗∗∗ −0.007
(0.025) (0.026) (0.007) (0.010) (0.037)

reM,t −0.169 −0.120

(0.150) (0.147)

lvg∆t 0.023 0.089 0.082
(0.091) (0.114) (0.135)

lvg∆t−1 −0.330∗∗ −0.361∗∗ −0.413∗∗∗

(0.113) (0.118) (0.106)
lvgt 0.006 0.007 0.008

(0.006) (0.006) (0.011)
lvgt−1 −0.003 −0.005 −0.006

(0.006) (0.005) (0.009)

lvg∆t · lvgt −0.014∗∗∗ −0.015∗∗∗ −0.014∗

(0.004) (0.004) (0.006)

lvg∆t−1 · lvgt−1 0.008 0.010∗ 0.012∗∗

(0.004) (0.005) (0.004)
η∆t 0.158∗

(0.068)
η∆t−1 0.069

(0.072)
∆ TEDt −0.044∗∗

(0.013)
TEDt−1 −0.073∗∗∗

(0.015)

R2 0.217 0.199 0.094 0.179 0.204
Adj. R2 0.187 0.173 0.074 0.166 0.164
AIC −515.3 −513.0 −493.8 321.8 −314.14
BIC −486.1 −487.0 −474.3 −310.5 −291.5
Num. obs. 189 189 190 126 126
RMSE 0.060 0.061 0.064 0.066 0.065
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Similar to the results of FP, the lagged proxies of funding tightness, which
in this case are the capital-related risk factors lvg∆t−1 and η∆t−1, do not have
positive coefficients – but neither are significant. The only partial exception
is with the IFM3-mkt model, where the lagged interaction term is significant
at the 5% level.4 Then, as t− 1 leverage increases, positive t− 1 shocks to
leverage are more and more positively related to higher BAB returns in t.
Interestingly, when t−1 leverage reaches 37.0, positive shocks to t−1 leverage
finally predict higher BAB returns in the next period, which is consistent with
the view that higher leverage is related to tighter funding – higher marginal
utility of wealth. Despite the fact that such a high realization of leverage only
occurred in 2 quarters in whole sample – slightly more than 1% of observations

4In IFM3 it has a p-value of 0.078.
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– this seems a step closer towards what predicted by FP.
In the last two columns IFM3 and the FP’s specification are directly

compared, where the sample size is reduced to match the time span of the
TED time series.5 The intermediary model outperforms the TED model
in terms of variance explained – R2, however, the TED-based specification
results being better considering adjusted R2, AIC and BIC. Notably, in the
smaller sample the lagged interaction term of the leverage-model becomes
more significant both statistically and economically: in this case a leverage of
0.52 is enough for a positive lagged shock to be associated with higher future
BAB returns. So, despite being less powerful in explaining the BAB returns
per se, and since no leverage observation is lower than 7, in the shorter sample
the intermediary model risk factors successfully show the relationship between
funding tightness and BAB returns predicted by the theory. To be precise,
this is true assuming that the leverage measure on which the intermediary
risk factors are based, are counter-cyclical, which has wide support from RQ1
and other coefficients here. Nonetheless, it must be noted that the interaction
term seems to be quite fragile, as its direction changes across this and the
previous tests, even though it may also be due to the structural relationship.
In any case, even if fragile, it consistently appears to be useful in explaining
dependant series.

Cross-sectional asset pricing test

To test the ability of the intermediary pricing kernel to price consistently all
the assets in the economy, I perform the two-stage procedure employed by
both HKM and AEM:

1. I estimate the risk exposure of each test asset over the whole sample, in
terms of covariance with the risk factors, with the regression showed in
Equation 3.4.

2. Having the average risk exposures of the test assets to the risk factors, I
regress the cross-sections of average excess returns on average exposures,
i.e. betas estimated over the whole sample, with the regressions showed
in Equation 3.3.

Note that this procedure differs from the canonical period-by-period estima-
tion of betas employed commonly to perform 2-stage tests similar to this.
Specifically, here the estimated risk prices are unconditional averages over the
sample, thus ignoring state-dependant effects, which are a matter of second
order for this investigation. Moreover, a technical note: the standard errors of
the risk premia estimated in the second stage need to account for the potential
bias due to autocorrelation and cross-sectional correlation between test assets
that may make betas biased, thus I follow Petersen (2009), using the NW
HAC SE estimator, and set the lag to T-1. To use such estimator, instead
of actually regressing the expected excess return estimated over the whole
sample, i.e. the average return, of each test asset on the relative full-sample
betas, I regress period-by-period the excess returns of the test assets on the
full-sample betas. Then, the average risk premium of a risk factor is derived
taking the mean of regression coefficients of the relative beta, over the whole

5The results of the HKM specification in the shorter sample is not reported because essentially
identical to those of the full sample.
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Table 6.5: Test assets characteristics by category. Quarterly rates, in percentage. The
count of observation for the category ”all” is an average of all the portfolios.
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sample. As mentioned, this is the same procedure as HKM, though the SEs
are estimated differently. A consequence of this procedure is that when the
available time span of the test assets is not homogeneous, the period-by-period
risk premia are estimated on different ranges of assets, thus overweighting the
pricing dynamics of assets that are more present in the dataset. In the case of
HKM, the predominant asset class was US stocks, in the form of value- and
size-sorted portfolios. In this work, such test assets are still predominant but
so are the BAB factor, the momentum-, and beta-sorted US stocks portfolios,
and the maturity-sorted US government bonds portfolios as well.6 The results
of the first-stage regressions, as well as the number of observations and other
descriptive statistics per asset class/sorting-characteristic are reported in
Table 6.5.

The results of the second-stage regression of the HKM and IFM3 factor
models are reported in Table 6.6, together with the results of the same two-
stage procedure for the CAPM, the Fama and French (1993) three-factor
model (FF3), and the four-factor model of Carhart (1997) (C4). Firstly, as the
CAPM market risk premium is lower than the sample average market excess
return, which is 1.72%, and the intercept is positive and statistically significant,
it can be noted the flatness of the CAPM’s SML mentioned in section 4.2.
Then, moving to the intermediary risk factor models, it can be noted that the
intercept is even higher than the CAPM, with the IFM3 being the highest
one, which is a general sign of relatively worse fit. Next, it can be noted that
the market risk premium is significant only for HKM, consistently with their
analysis, despite being half a percentage point lower in this sample. Finally,
HKM results having a significant positive risk premia for the capital risk, again
consistent with HKM results, as well as IFM3 ends up having two out of three
factors’ premia significantly different from 0. Specifically, the significant IFM3
premia are the level of leverage and the interaction term, both with negative
sign. This indicates that the more negatively an asset covary with leverage,
the higher is the required return from it, since it is negatively covarying with
the marginal utility of wealth, consistently with all the previous results and
the HKM specification. More precisely, the covariances are with the level of
leverage, and the shocks scaled by the leverage level. The magnitude of the
risk premia is remarkable, 6.97% and 128.19% quarterly. However, the risk
exposures are relatively low: for instance, the average FF25 portfolio, ignoring
the extremely insignificant risk premium of the risk factor lvg∆t , earns per
quarter (−6.97%) · (−0.127)+(−128.19%) ·0.002 = 0.629% from the exposure
to these risk factors, which is nothing monstrous but more likely the opposite.

Looking at the overall performances, the R2 of HKM is higher than those
of the CAPM and FF3, while the R2 of IFM3 is the highest of all of the five
models showed. Then, moving to the ultimate measure of pricing accuracy,
the mean absolute pricing error (MAPE), HKM only outperform the CAPM,
while IFM3 is the second lowest among the specifications, loosing solely to
the C4. So, this evidence seems to suggest that the two intermediary factor
models definitely do a better job than the CAPM, but not that better than
the FF3, and unlikely better than the C4, which has both the lowest intercept
and MAPE of the group of models. This provides a first answer to the first

6The series of maturity-sorted US government bonds portfolios have been updated with respect
to HKM, equating the length of stocks’ series. In Table 6.5 it is reported having as few as 168
observation because government bonds are grouped with the US corporate bonds, whose time span
is shorter.
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Table 6.6: Prices of risk. Quarterly returns, expressed in percentage. Newey and West
(1987) SEs, R2 computed as in He, Kelly, et al. (2017), that is variance of predicted excess
returns divided by variance of actual excess returns.

CAPM FF3 C4 HKM IFM3

(Intercept) 0.54∗∗∗ 0.41∗∗∗ 0.25∗ 0.65∗∗∗ 1.11∗∗∗

(0.11) (0.12) (0.11) (0.10) (0.20)
λ̄M 1.31∗∗∗ 1.21∗∗∗ 1.47∗∗∗ 0.96∗∗∗ 0.42

(0.23) (0.30) (0.29) (0.22) (0.44)
λ̄SMB 0.22 0.29

(0.18) (0.19)
λ̄HML 1.65∗∗∗ 1.79∗∗∗

(0.25) (0.27)
λ̄mom 1.32∗

(0.61)
λ̄η∆ 6.46∗∗∗

(0.72)
λ̄lvg∆ 10.37

(137.59)
λ̄lvg −6.97∗∗∗

(0.67)
λ̄lvg∆·lvg −128.19∗∗∗

(31.65)

R2 0.201 0.291 0.382 0.367 0.453
Adj. R2 0.197 0.279 0.368 0.361 0.442
Num. obs. 191 191 191 191 191
MAPE 0.908 0.810 0.761 0.823 0.799
MAPE-betas 0.489 0.315 0.232 0.367 0.320
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

part of RQ2; to move on and reply to the second part, the MAPE of the
10 beta-sorted US stocks portfolios and the BAB factor can be observed in
Table 6.6. The lowest one is of C4, which is essentially half the MAPE of
the CAPM. Then, midway through the C4 and the CAPM, FF3 and IFM3
perform similarly, while HKM follows. It can be noted how all the models
price the beta-sorted portfolios (including the BAB factor) quite well relatively
to the average portfolio of all the test assets included. So, one may consider
the difference between the overall MAPE and the beta-MAPE as a measure
of goodness in pricing the portfolios ”affected” by the CAPM-beta LRA.
However, the intermediary pricing kernel specifications here tested do not
excel in this metric either, being ranked third and fourth after FF3 and C4.
The only point related to beta-LRA pricing in which intermediary models
outperform other models, can be observed in Figure 6.2, where it can be noted
that the BAB factor is best priced within the IFM3 model set up (0.54%
against 1.03% of C4, the best competitor).

One of the issues to be considered using these results is that the test
assets are extremely imbalanced in terms of asset classes, overweighting
the US stocks, which are theoretically less strictly related to intermediaries’
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(a) IFM3 – Intermediary pricing kernel
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(c) HKM – intermediary pricing kernel
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Figure 6.2: Pricing errors scatter plots comparison. On the x-axis the average excess
return predicted by the models, on the y-axis the actual value. In the (a) panel ”beta.•”,
”S•.BM•”, ”mom•”, ”USbonds•”, ”SovBonds•”, ”Commod•”, ”Option•”, ”FX•”, and
”CDS•” stand for beta-sorted, FF25, momentum-sorted, US bonds, Sovereign bonds,
Commodities, Options, Foreign Exchange, and CDS portfolios
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Table 6.7: Prices of risk. Quarterly returns, expressed in percentage. Newey and West
(1987) SEs.

Beta-sorted + BAB Other test assets
CAPM C4 HKM IFM3 CAPM C4 HKM IFM3

(Intercept) 2.20∗∗∗ 1.61∗∗ 1.74∗∗∗ 1.78∗∗∗ 0.42∗∗∗ 0.21 0.57∗∗∗ 1.15∗∗∗

(0.22) (0.50) (0.23) (0.30) (0.11) (0.11) (0.10) (0.21)
λ̄M −0.21 0.11 0.03 0.04 1.46∗∗∗ 1.51∗∗∗ 1.06∗∗∗ 0.38

(0.31) (0.66) (0.28) (0.47) (0.23) (0.30) (0.22) (0.43)
λ̄SMB 0.66∗∗∗ 0.30

(0.18) (0.19)
λ̄HML 1.86∗ 1.70∗∗∗

(0.86) (0.27)
λ̄mom 0.04 1.24∗

(1.26) (0.61)
λ̄η∆ 4.95∗∗∗ 6.25∗∗∗

(1.08) (0.68)
λ̄lvg∆ −253.15∗ 30.75

(102.33) (142.02)
λ̄lvg −6.49∗∗∗ −6.44∗∗∗

(1.02) (0.68)
λ̄lvg∆·lvg −108.22∗∗∗ −100.47∗∗

(26.78) (36.63)

R2 0.103 0.504 0.587 0.594 0.224 0.375 0.363 0.476
Adj. R2 0.099 0.493 0.582 0.585 0.220 0.362 0.356 0.465
Num. obs. 191 191 191 191 191 191 191 191
MAPE 0.230 0.134 0.146 0.138 0.924 0.800 0.841 0.847
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

SDFs. However, using only the observations with all the test assets would
reduce the sample to approximately 30 periods only, concentrated between
2001 and 2009, which would yield results hardly generalizable. Nevertheless,
a useful perspective, especially with respect to the second part of RQ2,
may be provided by analysing the beta-LRA related portfolios (beta-sorted
and BAB factor) and all of the other portfolios separately. The results
of this analysis is showed in Table 6.7. In the panel related to all of the
test assets other than the beta-related ones, as one could expect, results
are very similar to the pooled regression. At the same time, in the beta-
portfolios panel there are a few notable differences concerning: the intercepts,
which are all significantly higher; the sign of the market risk premium in the
CAPM, which is negative; the loading on the SMB factor, which becomes
extremely significant; the risk premia in the HKM model, where market
becomes insignificant and capital risk premium gets lower; and finally the
gigantic risk premium for leverage shocks lvg∆t in IFM3, which is significant in
this set-up. To give a sense of the results of the last specification, the quarterly
risk premium related to intermediaries’ leverage risk factors that an average
beta-portfolio is predicted to earn is (−253.15%) · (0.00045) + (−6.49%) ·
(−0.038) + (−108.22%)(0.000001) = 0.133%, which is quite insignificant in
economical terms, especially compared to the intercept. Looking at the
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performances of the models, the intermediary factor specifications present
remarkably higher R2, both capturing almost 60% of the returns in beta-
portfolios. This is also translated in a significantly lower MAPEs, though
the C4’s MAPE is still slightly lower. Another relevant observation is that
IFM3’s alpha increases of only 0.67%, while C4 of as much as 1.36%, with
HKM increasing as well, of 1.09%. Thus, again, intermediary models perform
well, but not better than C4, under different measures.

All in all, across the three cross-sectional analysis, IFM3 generally performs
better and shows more uniform estimations of risk premia than HKM. Where
the latter shows significantly different intercepts and risk premia, the first
results being the model whose intercepts change the least of all 5 specifications
and having all the risk premia which cannot be excluded to be exactly the
same across all three the regressions. Then, relatively to the other models, the
intermediary specifications perform well under several measures, but never
peaking C4. Therefore, in a few words, these models perform quite well and
in a decently consistent way, but do not outperform other models, not even
limiting the analysis to portfolios related to the beta-LRA, where they should
show some sort of advantage theoretically.

6.3 Research question 3

As can be observed in Table 6.9, when the CAPM regression is performed
on the beta-sorted portfolios singularly, the resulting alphas decrease almost
monotonically from the low-beta portfolios to the high-beta ones. At the
opposite, still from low-beta to high-beta portfolios, coskewness of residuals
changes sign from negative to positive. Indeed, as confirmed in the first
column of Table 6.8 and in the first panel of Figure 6.3, the CAPM alphas
of the beta-sorted stocks portfolios result being negatively correlated with
residuals’ coskewness, consistently with Schneider et al. (2016). Thus expected
CAPM mispricings’ expectations (alphas) are related to their covariance with
the market (coskewness), similar to any other risk factor. Interestingly, the
BAB factor fits in this linear relationship almost perfectly.

I test whether the intermediary risk factors are able to capture the coskew-
ness of portfolio’s returns thus eventually pricing it and leaving no correlation
between alphas and residuals’ coskewness with the market. To do so, I make
the same computations for the HKM and IFM3 models: I regress the indi-
vidual portfolios’ returns on these two pricing kernel specifications, and then
compute the correlations between alphas and residuals’ coskewness. A few
interesting facts already emerge from the regressions, whose results can be
observed in average for all the beta-portfolios in the first column of Table 6.5
and for each beta-portfolio in Table 6.9:

• The alpha of the BAB factor when tested with the CAPM and the HKM
specifications is significantly positive and different from 0, while with
IFM3 it is not significant at any level. A further evidence of the peculiar
pricing ability of IFM3 with respect to the BAB factor, is provided by
the R2, which is a remarkable 0.101 against the 0.033 of HKM and the
0.001 of CAPM

• Alphas over all the beta-portfolios are on average positive for both
CAPM and HKM, while they are negative for IFM3
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Table 6.8: Alphas - coskewness relation in beta-sorted portfolios. SE of correlations are
computed from 10,000 bootstrapped samples.

CAPM HKM IFM3
Mean(α) 0.388 0.456 -0.330
SD(α) 0.867 0.905 2.087

Mean(σε,M2) 1.768 1.842 -0.000
SD(σε,M2) 102.314 102.383 0.000

ρ(α, σε,M2) -0.877*** -0.863*** 0.604***
(0.105) (0.108) (0.228)

• Coskewness of beta-portfolios’ residuals, when tested with CAPM and
HKM are extremely close, approximately ranging from −60 ·10−6, −167 ·
10−6 including the BAB factor, to 220 · 10−6. On other hand, in the test
of IFM3, these are incredibly smaller, ranging from −7 ·10−20 to 2 ·10−19

Finally, the correlations between alphas and residuals’ coskewness: while the
relation estimated applying the HKM specification is essentially identical to the
one of CAPM, it is extremely different for IFM3, for which is even reversed, as
the correlation is a positive 0.604. Then, to assess the statistical significance
of this difference, I compute the standard errors of the correlations from
10,000 bootstrapped samples of the 11 portfolios’ alpha-residual coskewness
couples, whose resulting distributions can be seen on the right of the panels in
Figure 6.3. The t-statistics of the difference between HKM’s correlation and
IFM3’s correlation or between CAPM’s correlation and IFM3’s correlation,
either assuming homogeneous or heterogeneous variance of the population,
are all higher than hundreds. Alternatively it can also be observed that
the confidence intervals of HKM and IFM3 do not touch until the level of
confidence is xxx. Therefore, while it cannot be generalized to both the
intermediary pricing kernel specifications, the IFM3 model, and thus the risk
factors used in it, seems significantly affect the relationship alpha - residual
coskewness, capturing the coskewness risk.
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Table 6.9: Beta-sorted and BAB portfolios statistics. Quarterly rates in percentage,
coskewness multiplied by 106. Standard Errors in parenthesis, Heteroskedasticity Consistent
for betas and alphas. Re is for excess return, R̄2 for adjusted R2.
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Figure 6.3: Alphas – coskewness models comparison. On the left the scatter plots of the
doubles alpha-residuals coskewness of each beta-portfolio. Red diamonds indicate the three
highest-beta stocks portfolios, blue the three lowest-beta stocks portfolios. On the right the
histogram of 10,000 bootstrapped samples, from which the standard deviation is obtained:
the vertical solid line is placed at the bootstrapped average, while each dot on the X axis
represents a bootstrapped sample value.





7
Conclusion

This work studies the relation between the intermediary asset pricing mod-
els and the CAPM-beta low risk anomaly. In the theoretical premises it is
made clear the key role of intermediary leverage as a determinant of inter-
mediaries’ funding tightness, and thus of their marginal utility and pricing
kernel. However, depending on how financial frictions are modelled, leverage
has diametrically opposing dynamics, either pro- or counter-cyclical, thereby
generating pricing kernels in direct contradictions. This is also reflected in
opposing empirical evidence, which agree on the significance of intermediary
funding tightness as a relevant risk factor, but with opposing estimates of the
leverage price. This is rationalized taking a deeper look at the intermediary
sector and the representative members considered, which may experience
different constraints, incentives and ultimately leverage dynamics.

Then it is introduced the CAPM and its assumptions because two violations
of these provide the theoretical justification of the differential in risk-adjusted
returns differential between assets with different market betas. One directly
relying on a funding tightness, similarly to the intermediary asset pricing
models, and the other relying on returns distributional features not captured
by the CAPM, namely the asymmetry, the skewness. Despite not being
directly related to funding tightness, also the second violation is related to
it because of amplification mechanisms, which asymmetrically affect assets
return, and the real returns’ skewness, due to leverage. Therefore, the issues
are all interestingly theoretically connected.

The final part empirically test the connection between the theories, con-
sidering different intermediary factor models and comparing them to proxies
of other variables that drive the intermediary marginal utility of wealth. The
core of the analysis is the cross-sectional test of two intermediary pricing
kernel specifications on several test assets, included test assets related to the
CAPM-LRA, which should be strictly connected. The models prove to be
definitely better than the standard reference model, the CAPM, and being
generally consistent. However, a superior performance on the test assets that
should be theoretically best explained by this type of pricing kernel is not
observed. Finally, the coskewness is proved to be captured by one of the risk
factors, but not by the other main alternative specification.

Further investigations would surely be insightful if investigated the non-
linearities of leverage and the SDF, the cross-country differences intermediary
risk premium and the direct comparison with risk factors that account for
coskewness.
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Appendices





A
Models' details

This appendix shows the mathematical passages omitted in the main body of
the thesis.

A.1 Section 2.2

The optimization problem faced by the intermediary

max
ct,θt

Et
[
u(ct) + e−ρu(c̃t+1)

]
s.t. ct + θt · pt = wt, c̃t+1 = θt · x̃t+1 (A.1)

is solved maximizing the following Lagrangian:

L = Et
[
u(ct) + e−ρu(θ · x̃t+1)

]
+ λ [wt − ct − θt · pt] (A.2)

The resulting first order conditions are:

∂L
∂ct

= u′(ct)− λ = 0 → u′(ct) = λ (A.3)

∂L
∂θt

= Et
[
e−ρu′(c̃t+1) · x̃t+1

]
− λ pt = 0

→ Et
[
e−ρu′(c̃t+1) · x̃t+1

]
= λ pt

(A.4)

Finally, assuming the utility function is concave, to obtain the the single-period
asset pricing equation it suffices plugging Equation A.3 in A.4:

pt = Et
[
e−ρ

u′(c̃t+1)

u′(ct)
· x̃t+1

]
= Et

[
M̃t+1 · x̃t+1

]
(A.5)

To express Equation A.5 in terms of returns, it is assumed a risk-free bond
which pays 1 at t+ 1 in every state, whose price is then

Bt = Et
[
M̃t+1 · 1

]
= Et

[
M̃t+1

]
=

1

Rf

(A.6)
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Then:

pt = Et

[
1

Rf

M̃t,t+1

Et[M̃t+1]
· x̃t+1

]

pt ·Rf = Et

[
M̃t,t+1

Et[M̃t+1]
· x̃t+1

]

Rf = Et

[
M̃t+1

Et[M̃t+1]
· R̃t+1

]
where R̃t+1 = x̃t+1/pt = 1 + rt+1

= Et

[
M̃t+1

Et[M̃t+1]

]
· Et

[
R̃t+1

]
+ Covt

[
M̃t+1

Et[M̃t+1]
, R̃t+1

]
(A.7)

Which, applying the law of iterated expectations to Et
[

M̃t+1

Et[M̃t+1]

]
, brings to:

Et
[
R̃t+1

]
−Rf = − Covt

[
M̃t+1

Et[M̃t+1]
, R̃t+1

]
(A.8)

A.2 Section 2.3

The problem solved by financial experts in the two-period model, time =
(0,1,2), is:

max
θ0

E0

[
φ̃1 · W̃1

]
(A.9)

s.t. W̃1 = W0 + (p̃1 − p0)θ0 + γ̃1 (A.10)

The problem can be solved via the Lagrangian

L = E0

[
φ̃1 · (W0 + (p̃1 − p0)θ0 + γ̃1)

]
(A.11)

whose first order condition, since γ1 is independent and 0 in expectations, is
∂L
∂θ0

= E0

[
φ̃1 · (p̃1 − p0)

]
= 0 (A.12)

→ E0

[
φ̃1 · p̃1

]
= E0

[
φ̃1 · p0

]
(A.13)

p0 E0

[
φ̃1

]
= E0

[
φ̃1 · p̃1

]
(A.14)

p0 =
E0

[
φ̃1 · p̃1

]
E0

[
φ̃1

] (A.15)

p0 =
E0

[
φ̃1

]
· E0 [p̃1] + Cov0

[
φ̃1, p̃1

]
E0

[
φ̃1

] (A.16)

p0 = E0 [p̃1] +
Cov0

[
φ̃1, p̃1

]
E0

[
φ̃1

] (A.17)
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Then, the price of a risk-free asset whose pB1 = 1 in every state is

pB0 = 1 +
Cov0

[
φ̃1, 1

]
E0

[
φ̃1

] = 1 =
1

Rf

→ Rf = 1 (A.18)

Then, dividing Equation A.17 by p0, it can be expressed in returns:

1 = E0[R̃1] +
Cov0

[
φ̃1, R̃1

]
E0

[
φ̃1

] where R̃1 = p̃1/p0 = 1 + r̃t+1 (A.19)

E0[R̃1]−Rf = −
Cov0

[
φ1, R̃

]
E0 [φ1]

(A.20)

A.3 Section 4.3

As in the previous models, the optimization problem

max
xi

xi′
(
Et
[
P̃t+1 + δ̃t+1

]
− (1 + rf )Pt

)
− γi

2
xi′Ωtxi

subject to mi
t

(
xi′ Pt

)
≤ W i

t (A.21)

can be solved with the Lagrangian:

L = xi′
(
Et
[
P̃t+1 + δ̃t+1

]
− (1 + rf )Pt

)
− γi

2
xi′Ωtxi

+ λt

[
W i
t −mi

t

(
xi′ Pt

)] (A.22)

The resulting first order condition is:

∂L
∂xi = Et

[
P̃t+1 + δ̃t+1

]
− (1 + rf )Pt − γiΩtxi − λtm

i
t︸︷︷︸

ψi
t

Pt = 0 (A.23)

So, rearranging, the resulting individual optimal position is:

xi = 1

γi
Ω−1
t

(
Et
[
P̃t+1 + δ̃t+1

]
− (1 + rf + ψit)Pt

)
(A.24)

The equilibrium is defined as supply of shares equal total demand
∑

i xi = x∗,
thus:

x∗ =
1

γ
Ω−1
t (Et [Pt+1 + δt+1]− (1 + rf + ψt)Pt) (A.25)

Where aggregate risk aversion 1
γ
=
∑

i
1
γi
, and aggregate tightness of funding

ψt =
∑

i
γ
γi
ψit is a weighted average of individual restriction levels. Finally,
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rearranging, the pricing equation shows up:

Et
[
P̃t+1 + δ̃t+1

]
− (1 + rf + ψt)Pt = γΩtx∗

Et
[
P̃t+1 + δ̃t+1

]
+ γΩtx∗ = (1 + rf + ψt)Pt

Pt =
Et
[
P̃t+1 + δ̃t+1

]
− γΩtx∗

(1 + rf + ψt)
(A.26)

To derive an expression of assets’ individual returns, only the row s of
the system in Equation A.26 is considered. Using the definition rs,t+1 =
Ps,t+1+δs,t+1

Ps,t
− 1 and the vector es composed by zeros and a 1 only in row s,

and then dividing Equation A.26 by Ps,t, it brings:

e′
sPt(1 + rf + ψt) = e′

sEt
[
P̃t+1 + δ̃t+1

]
− e′

sγΩtx∗

Ps,t(1 + rf + ψt) = Et
[
P̃s,t+1 + δ̃s,t+1

]
− γe′

sΩtx∗

1

Ps,t
γe′

sΩtx∗ = Et[r̃s,t+1 + 1]− (1 + rf + ψt)

Et[r̃s,t+1]− rf =
1

Ps,t
γe′

sΩtx∗ + ψt (A.27)

where e′
sΩt = Covt

[
P̃s,t+1 + δ̃s,t+1,

(
P̃t+1 + δ̃t+1

)′]
. Next:

Et[r̃s,t+1]− rf = ψt + γ Covt

[
P̃s,t+1 + δ̃s,t+1

Ps,t
,
(

P̃t+1 + δ̃t+1

)′]
x∗

= ψt + γ Covt
[
r̃s,t+1,

(
P̃t+1 + δ̃t+1

)′]
x∗

= ψt + γ Covt
[
r̃s,t+1, ((r̃M,t+1 + 1) (Pt))

′]x∗

= ψt + γ Covt [r̃s,t+1, r̃M,t+1]P′
tx∗ (A.28)

where it is used the fact that Ps,t+1 + δs,t+1 = (1+ rs,t+1)Ps,t so Pt+1 + δt+1 =
(1 + rs,t+1)Pt. The return of the market depends on the sum of the market
securities’ returns, weighted by their value share of the whole market (market
portfolio weights)

ws =
x∗sPs,t
x∗′Pt

(A.29)

So, multiplying Equation A.28 by ws and summing over s bring∑
s∈S

ws · (Et[r̃s,t+1]− rf ) =
∑
s∈S

ws · ψt +
∑
s∈S

ws · (γ Covt [r̃s,t+1, r̃M,t+1]P′
tx∗)

Et[r̃s,t+1]− rf ·

(∑
s∈S

ws

)
= ψt ·

(∑
s∈S

ws

)

+ γ P′
tx∗ ·

(∑
s∈S

ws · Covt [r̃s,t+1, r̃M,t+1]

)
Et[r̃M,t+1]− rf = ψt + γP′

tx∗Vart[r̃M,t+1]

Et[r̃M,t+1]− rf − ψt = γVart[r̃M,t+1]P′
tx∗ (A.30)
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Finally, as
Et[r̃M,t+1]− rf − ψt

γVar[r̃M,t+1]
= P′

tx∗

the equilibrium risk premium for any security s of Equation A.28 is

Et[r̃s,t+1]− rf = ψt + Covt [r̃s,t+1, r̃M,t+1]
Et[r̃M,t+1]− rf − ψt

Var[r̃M,t+1]

= ψt + βs,t(Et[r̃M,t+1]− rf − ψt)

= (1− βs,t)ψt + βs,t(Et[r̃s,t+1]− rf ) (A.31)

The expected BAB return is:

Et[r̃BABt+1 ] = Et
[
1

βLt
(r̃Lt+1 − rf )−

1

βHt
(r̃Ht+1 − rf )

]
= Et

[
1

βLt
((1− βLt )ψt + βLt (Et[r̃M,t+1]− rf ))

− 1

βHt
((1− βHt )ψt + βHt (Et[r̃M,t+1]− rf ))

]
=

(
1− βLt
βLt

− 1− βHt
βHt

)
ψt

+

(
βLt
βLt

− βHt
βHt

)
(Et[r̃M,t+1]− rf )

=

(
1

βLt
− 1− 1

βHt
+ 1

)
ψt

=
βHt − βLt
βLt β

H
t

ψt (A.32)





B
Data

B.1 Autocorrelation capital risk factors

The results for the quarterly series are shown in Figure B.1.

B.2 SRISK

As can be seen in Figure B.4a, the available data on US SRISK presents
huge single-day drops and back-to-previous-level increases, whose relative
log-differences dominate the time series. As claimed by Brunnermeier and
Oehmke (2013), systemic risk should be slow-moving, therefore I considered
these enormous consecutive drops-surges realizations highly unlikely to be
structural, but rather being data aberrations. Looking for the sources of
this aberrations in order to delete the problematic dates, I have checked the
number of firms that compose the aggregate measure, Figure B.4b, and the
log-difference of each year-day across all the years in the sample, Figure B.4c.
The number of firms that compose the SRISK are indeed highly volatile and
present huge drops as well, however changes in number of firms shows some
only little correlation with the log differences of SRISK, 0.27, therefore, it
cannot be used as rationale to identify the problematic dates, despite being
related. Figure B.4c shows average, minimum and maximum log-differences
observed in each day across years. There, it can be observed that days
right after Christmas and around the end of March, when accounting years
typically close, shows (a) extreme values, (b) extreme increases right after
extreme decreases. Therefore, I consider the the availability of balance sheet
information to be the real cause of the big swings in SRISK, and thus I proceed
eliminating such changes to remove data non actually related to changes in
SRISK.

The cleaning procedure I implemented consists in removing all the obser-
vations on the 26th December in the sample and all the observations that
generated log-differences lower than -20% on the same day and more than
+20% on the following calendar day. Performing the procedure, the final
attrition rate has been 2.84% (97 days out of 3422). The resulting series is
plotted in Figure B.3. Finally, the ex-post SD of the log-differences is 9.80%,
therefore the single-day observations that I deleted were less likely than than
two 2-sigma consecutive events, assuming a normal distribution. Clearly, I am
not assuming SRISK is normally distributed, but since the literature consider
the systemic risk to be a slow-moving variable, this comparison should provide
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Figure B.1: Quarterly series ACFs and PACFs
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Figure B.2: Quarterly series ACFs and PACFs
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Figure B.3: SRISK cleaned-non cleaned comparison.

a feeling of how unlikely those daily observations were to be from the actual
SES distribution.1

Furthermore, after the main procedure, almost all of the first observations
of July show an increase then maintained in the next days. I did not perform
any sort of cleaning of these days as I they were not as clearly unlikely as
the other aberrations. However, I followed the authors of Brownlees and
Engle (2017), using only the observations from 2003 and, lastly, to reduce the
measurement errors, which mid-year surges are likely to be, I performed the
monthly aggregation by taking the 2-week average, centered on the last days
of the month, which I consider an efficient trade-off between smoothing of
data aberrations and promptness of the information.

1In several observations, SRISK dropped to near 0 for a single day and then came back to the
previous values, realizing proportional daily changes of -100% and consecutively even +28,300%.
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Figure B.4: Non cleaned SRISK, daily frequency.





C

Additional tests

C.1 Research question 1

Table C.1, Table C.2, Table C.3 the monthly tests equivalent to those per-
formed in the main body of the thesis. These tests further confirm the
relevance of the considered risk factors specification, though showing a less
prominent role of the interaction term, partly substituted by the sole-leverage
level factor in the TED series.

∆ log SRISK ∆ log SRISK ∆ log SRISK

(Intercept) 0.014∗ 0.014∗ 0.035∗∗

(0.006) (0.006) (0.012)

lvg∆t 0.341∗∗∗ 0.887∗∗∗

(0.090) (0.172)
η∆t −0.356∗∗∗

(0.085)
lvgt −0.001

(0.001)

lvg∆t · lvgt −0.020∗∗∗

(0.005)

Adj. R2 0.154 0.159 0.200
Num. obs. 133 133 133
RMSE 0.054 0.054 0.052
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table C.1: Regression results: SRISK-leverage
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∆ TEDt ∆ TEDt ∆ TEDt

(Intercept) −0.000 −0.000 0.069∗

(0.009) (0.008) (0.033)

lvg∆t 0.439 0.981
(0.334) (0.581)

η∆t −0.459
(0.311)

lvgt −0.004∗

(0.002)

lvg∆t · lvgt −0.023
(0.040)

Adj. R2 0.014 0.015 0.023
Num. obs. 381 381 381
RMSE 0.230 0.230 0.229
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table C.2: Regression results: TED-leverage

m.liq∆t m.liq∆t m.liq∆t

(Intercept) −0.001 −0.001 −0.004
(0.002) (0.002) (0.008)

lvg∆t −0.225∗∗∗ −0.441∗∗∗

(0.059) (0.113)
η∆t 0.216∗∗∗

(0.051)
lvgt 0.000

(0.000)

lvg∆t · lvgt 0.010
(0.007)

Adj. R2 0.073 0.066 0.080
Num. obs. 563 563 563
RMSE 0.055 0.055 0.054
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table C.3: Regression results: market liquidity-leverage

C.2 Research question 2

Quarterly mispricings

Figure C.1 and Figure C.2 show the quarterly plots of chapter 6, with the
portfolios labels.
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Figure C.1: Pricing errors comparison.
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Figure C.2: Pricing errors comparison.
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Monthly time series test

Table C.4 contains the analysis of Table 6.4, for monthly series. For reasons
related to space, the regressors not significant are omitted. Results are weaker
but in the shorter sample test the lagged interaction value of the the past
quarter, t − 3, is still significant. This is partly due to the frequency with
which data is completely updated, which is quarterly.

IRF3-mkt IRF3-mkt HKM FP IRF3-mkt

(Intercept) −0.016 −0.004 0.009∗∗∗ 0.022∗∗∗ −0.030∗

(0.011) (0.010) (0.002) (0.003) (0.014)

lvg∆t−2 −0.240∗∗ −0.298∗∗∗

(0.078) (0.088)

lvg∆t−4 −0.261∗∗∗ −0.303∗∗∗

(0.071) (0.073)
lvgt 0.024. 0.025∗ 0.050∗∗∗

(0.014) (0.012) (0.013)
lvgt−1 −0.027 −0.025∗ −0.055∗

(0.021) (0.114) (0.027)
lvgt−4 0.025∗ 0.036∗∗∗

(0.010) (0.010)
lvgt−5 −0.010 −0.021∗∗∗

(0.007) (0.005)

lvgt · lvg∆t −0.026∗ −0.028∗∗ −0.046∗∗∗

(0.012) (0.010) (0.012)

lvgt−1 · lvg∆t−1 −0.003 0.006
(0.012) (0.003) (0.015)

lvgt−3 · lvg∆t−3 0.014− 0.016∗

(0.006) (0.008)
η∆t 0.060−

(0.032)
∆TEDt −0.018∗

(0.009)
TEDt−1 −0.025∗∗∗

(0.005)

R2 0.159 0.080 0.064 0.085 0.233
Adj. R2 0.131 0.070 0.057 0.080 0.195
AIC −2321.1 −2309.2 −2308.0 −1463.9 −1482.1
BIC −2234.3 −2274.4 −2281.9 −1448.2 −1403.5
Num. obs. 568 572 573 380 376
RMSE 0.031 0.032 0.032 0.035 0.033
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05,−p < 0.10

Table C.4: Regression results: BAB-leverage

Monthly cross-sectional test

Performing the monthly test on beta- and non-beta-portfolios separately
brings the same comparisons as in Table 6.7.
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Table C.5: Prices of risk. Quarterly returns, expressed in percentage. Newey and West
(1987) SEs, R2 computed as in He, Kelly, et al. (2017), that is variance of predicted excess
returns divided by variance of actual excess returns.

CAPM FF3 FF4 HKM IRF3

(Intercept) 0.17∗∗∗ 0.14∗ 0.08 0.16∗∗∗ 0.20∗∗∗

(0.07) (0.06) (0.06) (0.06) (0.06)
λ̄M 0.42∗ 0.33∗ 0.46∗∗ 0.40∗∗∗ 0.32∗∗

(0.13) (0.14) (0.14) (0.12) (0.12)
λ̄SMB 0.20 0.17

(0.11) (0.11)
λ̄HML 0.46∗∗∗ 0.52∗∗∗

(0.10) (0.11)
λ̄mom 0.84∗∗∗

(0.16)
λ̄η∆ 1.34∗

(0.17)
λ̄lvg∆ 54.22

(221.11)
λ̄lvg −1.54∗∗

(0.53)
λ̄lvg∆·lvg −37.61∗∗∗

(8.72)

R2 0.185 0.262 0.414 0.218 0.216
Adj. R2 0.181 0.250 0.402 0.210 0.199
Num. obs. 574 574 574 574 574
MAPE 0.292 0.261 0.225 0.291 0.286
MAPE-betas 0.213 0.219 0.112 0.200 0.179
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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(c) HKM intermediary pricing kernel
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Figure C.3: Pricing errors comparison. D
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C.3 Research question 3

Table C.6 shows results of Table 6.8, for monthly data. Results are weaker,
but the difference between the correlations are still statistically significant.

Table C.6: Alphas - coskewness in beta-sorted portfolios. SE of correlations are computed
from 10,000 bootstrapped samples. Coskewness multiplied by 106

CAPM HKM IFR3
Mean(α) 0.253 0.260 0.172
SD(α) 3.684775e-01 3.740770e-01 7.601519e-01

Mean(σε,M2) -2.100 -2.393 -1.99
SD(σε,M2) 16.118 16.074 15.845

ρ(α, σε,M2) -0.434*** -0.411*** -0.297***
(0.082) (0.080) (0.095)
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