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”We simply attempt to be fearful when 
others are greedy and to be greedy 
only when others are fearful”

Warren Buffett



Abstract

The Variance Risk Premium (“VRP”), constituting the spread between opti-
on-implied and actual realized variance, has historically proven a stable and 
dominant predictor of future stock returns, especially at the quarterly horizon. 
Motivated by the extraordinarily low market volatility along with increased po-
litical uncertainty evident in recent years, we not only confirm the VRP’s ability 
to predict a nontrivial fraction of stock returns on the S&P 500 index, but we 
find a strengthened effect after the financial crisis, albeit at a slightly longer 
horizon. Viewing the VRP as an indicator of investor fear, we thus demonstrate 
that it is possible to ‘profit from fear’ across the sample period. However, in a 
post-US election setting, we find that the VRP has lost its dominant predictive 
ability. By using President Trump’s Twitter Feed as a proxy for political events, 
we discover that Trump does not act as a catalyst for market volatility, but rather 
acts as a risk reliever contrary to common conviction. Hence, our findings indi-
cate that a change in current investor sentiment has occurred: a disconnect bet-
ween actual volatility and investor fear could potentially be driving the change in 
predictability, with investors strongly overestimating actual crash risk given the 
current level of volatility, while Trump seems to be alleviating some of this fear. 
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Executive Summary
The equity premium puzzle has entertained many agents within various fields for decades, stretching 

from theoretical researchers to investment professionals. In recent years, focus has shifted towards 

examining how investor fear potentially offers predictability through a model-free options-pricing 

approach, which provides a metric that effectively isolates the Variance Risk Premium (“VRP”) of 

stock returns in the form of the spread between the implied and realized volatility. In light of the 

recent financial crisis, the market recovery and the current uncertain political environment, it seems 

more appropriate than ever to investigate the link between volatility, investor sentiment and stock re-

turns. The thesis sets out to investigate how the predictability of the VRP has evolved in recent years, 

and how the incumbent American president, Donald J. Trump, may affect investor sentiment and the 

volatility of stock returns. 

Based on an extension of the methodology proposed by Bollerslev, et al. (2009) and a temporal case 

study of political events, proxied by President Trump’s Tweets, the thesis investigated the VRP’s pre-

dictability on the S&P 500 index in the timeframe from 2002-2018. The thesis contributes to earlier 

literature on several accounts, firstly by confirming that the VRP continues to be a significant and do-

minant predictor relative to traditional predictor variables on the short return horizon of 3.5-months. 

Furthermore, the empirical findings reveal an outwards shift in predictability to the 4-month return 

horizon after the crisis, seemingly driven by an increase in the persistence of the volatility-of-volati-

lity of stock returns or the intertemporal elasticity of substitution (“IES”). IES can be interpreted as 

investor sensitivity to uncertainty regarding potential tail risk, which seems to have increased. The 

importance of these findings is substantiated by presenting a trading strategy on the VRP, which al-

lows market agents to ‘profit from fear’.

The thesis furthermore provides findings that bridge two separate fields in academia, namely studies 

of the VRP and political impact on stock returns. The VRP loses accuracy in predicting returns in the 

Trump era, and a disconnect seems to transpire as investor fear increase disproportionally with actual 

crash risk. However, a case study of political events surprisingly indicate that the President relieves 

investor fear in the market. The thesis thus points to a shift in investor sentiment in the Trump Era: 

market participants seem to needlessly overestimate tail risk relatively to earlier years, which inflates 

the VRP metric, all the while Trump’s effect on volatility proves to be negative, contrary to common belief.
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1   Introduction
From Keynes to Warren Buffett, the driving forces of investment decisions have confounded acade-

mics and market agents alike for decades. In his attempt to decode the enigma of investment yields, 

Keynes found no rationality to the way in which stocks move – rather, investors seem driven by “ani-

mal spirits”, composed of irrational fears and wishes. Under such a claim, stocks behave like dust in 

water and no investor can claim to possess a superior ability to predict the path of tomorrow. Natural-

ly, many will scoff at the idea; how can some investors or hedge funds consistently outperform the 

market, if there is no pattern to the movement of stock returns? Are they simply a representation of the 

lucky few? In terms of prediction, stock returns seem essentially unpredictable at short time-horizons; 

as seen in figure 1.A below, estimated historical R2 are close to zero for most traditional predictors. 

However, the result is hardly surprising, given the poor track record of market-timing and various 

asset allocation strategies. 

Figure 1.A: Proportion of variance explained by various metrics, 1926 - 2012
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Adapted from Davis, et al. (2012). An overview of R2 from two regression models, 10 years ahead and 1 year ahead, 
respectively. Real, annualized stock returns on each variable is fitted over a sample stretching from January 1926 to June 
2012 (except for corporate profits, which are fitted from 1929 and beyond due to data limitations). P/E ratios are from 
Robert Shiller’s website; P/E 1 denotes the nominal price over the prior 12 months, while P/E 10 (Shiller CAPE) denotes 
the nominal price over the prior 120 months. Building blocks models consist of a combination of dividend and earnings 
growth models. Returns are constructed from a bundle of US stock indices, please refer to Davis, et al. (2012) for a com-
plete overview.
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On the back of such findings, multiple researchers have concurred with Keynes’ interpretation of 

stock returns and claim that investor psyche is a significant driver of the lack of predictability espe-

cially on the short horizons. As argued by both Adam Smith (1776 / 1997) and Menger (1871 / 2007), 

market agents are inherently ambiguity or uncertainty averse. As a natural instinct, dislike for uncer-

tainty permeates every aspect of human life; from the hunter’s fear of missing game, to the British 

population pondering the uncertain consequence of Brexit. When it comes to investor fear, the talk 

often turns to the VIX index, also coined the “Fear Index”. Constructed from the implied volatility 

of out-of-the-money options, the VIX depicts the market’s expectation of volatility over the next 30 

days on the S&P 500 index. Over the past years, the VIX index has been shown to have a significant 

negative contemporaneous correlation with stock returns – an empirical phenomenon often associa-

ted with the leverage effect1.

In reality, the VIX is a combination of two volatility components: the physical or realized variance, 

and a premium consisting of investor fear, added on top of the physical variance. Termed the Variance 

Risk Premium (the “VRP”), this premium can be viewed as a “true” fear index, comprising only inve-

stor expectation. Historically, the VRP has been found to be a highly significant and robust predictor 

of future stock returns, especially at the 3-6-month horizons, with coefficients of determination in the 

ranges 5-10% (Bollerslev, et al., 2009). Relative to the classical predictor variables described above, 

such R2 are impressive overall and especially considering the relatively short return horizon. Based 

on this, the truth of the drivers of return most likely lies somewhere in-between with investor psyche 

dominating the realm of short-term predictability while the longer-term is driven by more fundamen-

tal factors, such as earnings ratios, growth in earnings and the economy and the level and change in 

interest rates.

However, after the financial crisis, the pricing behavior of stocks has changed dramatically; with the 

introduction of quantitative easing programs, bond prices soared as their yields plunged towards zero. 

This pushed portfolios into massive equity purchases in search for yield, causing the leading indices 

1  The leverage effect was first described in Black (1976). The effect describes that over a short period of time, while a 
company’s debt is relatively fixed, the market value of equity is fluid. A crash in the market can thus lead to an inflation 
in the debt-to-equity ratio, ceteris paribus making the firm more leveraged and thus riskier (Coval & Shumway, 2001)
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to rise to not just pre-crisis levels, but historical highs (Balatti, et al., 2018). Meanwhile, the VIX 

index dipped to its lowest historical levels in 2017, with investors heralding a new era of financial 

tranquility (Bullock, et al., 2018). Simultaneously, political instability seemed to be smoldering under 

the peaceful surface: With inequality levels on the rise, populist movements started to take root across 

the Western World (O’Connor, 2017). These populist movements were increasingly inward-looking, 

seeking to reinforce national sovereignty, constituting a direct clash with years of increasing globali-

zation and international integration (Fukuyama, 2018). This culminated in 2016 with the British vote 

to leave the European Union and the election of President Donald J. Trump (“Trump”) as the 45th 

President of the United States. Today, the political reality seems uncharacteristically unstable with 

real tangible economic repercussions in its wake; examples include the US-government shutdown 

in January 2018, the potential introduction of wide-scale trade tariffs on key production inputs and 

the UK attempting to guide their way through an upcoming Brexit. In this brave new world, does the 

VRP continue to be a significant and dominant predictor of stock returns? And how is the VRP and its 

components affected by political events imposed by Trump?

1.1	 Research Question

Following these two perspectives, the specific research question for this thesis is:

How has the VRP and its ability to predict stock returns on the US stock market 

been affected in recent years by the economic and financial development and 

the increased political uncertainty apparent in the Trump Era?

To further focus the contribution of this paper to the existent body of literature, we have chosen to 

structure the analysis around the four following guiding questions: 

What is the VRP and what evidence exists for its ability to predict stock returns?(i)

How has the VRP developed in the years following the global financial crisis and does it 

maintain its predictive prowess?

How has recent years’ political instability in the Trump era affected the VRP and its com-

ponents?

What does the evolvement of the VRP and its potential exposure to political uncertainty 

imply about current investor sentiment? 

(ii)

(iii)

(iv)
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1.2	 Motivation

The answers to this research agenda carry relevance across several arenas, which, in one way or ano-

ther, are interlinked with the VRP. In terms of academic research, the contribution of this paper relates 

to three principal areas: 1) Few papers considering the VRP have dealt with the time period following 

the Global Financial Crisis (“GFC”) and, to our knowledge, no such studies have dealt with the recent 

period of unprecedented low volatility in particular. 2) Furthermore, this paper uniquely bridges the 

chasm between two previously separated bodies of research: the study of the VRP and the effect of 

politics on the financial markets. 3) Lastly, the construction of the VRP causes it to convey highly 

relevant information on investor sentiment, especially regarding fear of extreme tail risk. Hence, the-

se contributions are tied together to further describe investor sentiment in both a new period and in 

regard to political events. 

In addition to the relevance of this thesis to researchers within the field of finance, the findings may 

also of interest to practitioners; especially since the VRP has historically been a very strong predictor 

of stock returns on the 3-6-month horizon. Hence, including this as a factor in trading considerations 

may allow the informed trader to obtain abnormal returns on their portfolio. To crystallize such a 

possibility, we include a trading strategy that may serve as testament to the predictive power of the 

VRP. Furthermore, the study of how the VRP reacts to political events may also allow the trader to 

gain a deeper understanding of how these might alter the volatility in the market and to gain abnormal 

returns on such changes. The additional investor sentiment implications of the study may further be 

of interest to the market agent exposed to the current sentiment, for an example in terms of timing an 

initial public offering or other sentiment-critical events.

1.3	 Scope and Delimitations

Based on the theories underlying derivative pricing, the VRP is nested in a relatively large field of 

financial-economic theory. Hence, keeping in mind the scope of this paper, it is assumed that the 

reader has a fundamental understanding of the two following areas of research: 1) Asset pricing mo-

dels, especially the CAPM and the Black-Scholes model for option pricing and 2) the fundamentals 

of statistics and econometrics. While the conclusions of this paper can be understood and utilized by 

readers without such prior knowledge, the underlying methodology may be too specifically bound to 

its theoretical roots. For the reader with a special interest in the underlying theory, we will point to 
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further readings under way, which we find to be of particularly good quality. 

The VRP has been the focal point of several studies since the introduction of Long-Run Risks model 

(Bansal & Yaron, 2004) and formal testing in Bollerslev, et al. (2009) (also referred to as the “BTZ 

paper”). In general, the results from Bollerslev, et al. (2009) have been found to hold for the square 

root process as well; that is, return predictability from the volatility risk premium is relatively similar 

to that of the variance risk premium. For this reason, we use the terms volatility and variance inter-

changeably, unless otherwise clearly stated. However, for formula purposes, we denote the VRP in 

capital letters (“VRP”), with the volatility risk premium in small letters (“vrp”). Likewise, as we ge-

nerate the implied variance measure from the square of the VIX index, we use the terms “the squared 

VIX” and “the implied variance” interchangeably. Instances in which we use the term “the VIX” or 

“VIX” denotes the value of index itself – for an example in the use for formulating a trading strategy. 

For a complete overview of utilized abbreviations, please refer to Appendix A.

In recent studies, the VRP has been found to not only show significant return predictability in US 

data, but also across other geographies. However, in order to center this study on the research questi-

on set out above, we do not consider it prudent to extend this analysis across multiple markets. This 

is due to several considerations: firstly, a key contribution of this paper is to study the VRP in a more 

recent time sample. To ease the comparability of this contribution to previous studies it is found to 

be of higher relevance to study US data, which more papers have delved into. Secondly, the access to 

market data in the US is less cumbersome relative to other markets. Especially as this paper is looking 

at intraday data, this is of key concern. Lastly, as we wish to study the impact of political events, it 

seems sensible to focus on one single market as to not confound the analysis by the imposition of 

potentially false assumptions of similarity across different political systems.

In similar form, this study focuses on the VRP derived for the S&P 500 index, as this has a rea-

dily-made index for model-free implied volatility through the VIX. Meanwhile, there is no hindrance 

in constructing the VRP for different indices or even other asset classes. This may be an interesting 

topic for further research, as different asset classes, for an example currencies and commodities, do 

not show the same volatility smirk as equities, but rather tend to show a pronounced smile (Hull, 

2012). Hence, the resulting VRP, may take a shape entirely different from the one evident in equiti-
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es, and potentially yield different results. However, for the scope of this paper, such possibilities are 

not entertained, as it would remove the focus from the key research contribution. In terms of time 

horizon, we are limited by data availability: While the VIX index has existed since 1990, we are not 

able to obtain data on the intraday frequency further back than 1996. Hence, we are unable to study 

the effects of the VRP over the long return horizons spanning multiple years in line with the study of 

other predictors included in figure 1.A.

In terms of theoretical backbone, this paper follows the economic model described in Bansal & Yaron 

(2004) and further elaborated upon in Bollerslev, et al. (2009). This is done in order to ease compa-

rability and to maintain a clear line of argument. However, several extensions are possible, such as 

the inclusion of jump risk, a decomposition of the VRP  and the implied volatility-of-volatility (as 

generated from the VVIX) to more directly study the downside risk. However, we maintain these 

ideas as opportunities for further research. On a more technical note, this paper makes several choices 

in terms of the empirical methodology. While we will address most of these as we cross the bridges, 

key choices include i) our choice of standard errors and ii) our choice of non-parametric estimation 

and a multiplicative component GARCH to model expected realized variance. Naturally, we address 

some alternatives to these choices, but as the focal point of this paper is not an econometric study of 

the most “correct” realized volatility modelling, we keep such considerations at a minimum.

1.4	 Overview and Structure of the Paper

With a point of departure in the research question set out above, this paper follows a 6-section struc-

ture which covers a broad outline of the existent literature, the specific analytical approach of this pa-

per, the results of this analysis, as well as interpretation and conclusions of these results. The specific 

contents of each segments are as follows:

Section 1: The aim of this section is to set the scene of the paper, providing both an introduction to the 

overall subject, as well as a brief overview of the motivation for the research question, including the 

relevance to both academics and practitioners. Furthermore, as there are multiple ways of answering 

our research question, we wish to provide an overview of the delimitations of this paper.
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Section 2: In the second section of this study, we aspire to answer our first guiding research question 

by providing the reader with an understanding of the academic foundation in which this paper is ne-

sted. We seek to offer an understanding of how the VRP is derived from the concepts and underlying 

theory with a focus on the derivation of implied variances. With this as a starting point, we provide 

an overview of the interlink between the VRP and stock returns, including an introduction to the 

underlying economic model and empirical results from precedent studies creating the foundation for 

our second guiding research question. Further, to create a footing for the remaining guiding research 

questions, we outline the previous research in the intersection of finance and politics. From these 

building blocks, we finally place our specific contribution in the network of previous research.

Section 3: In continuation of section 2, we guide the reader through the analytical methods underly-

ing our paper: We introduce the econometric method, including the construction of key variables and 

the regressions run, as well as the data utilized, such as the type of variables and time period studied. 

Furthermore, we outline strengths and weaknesses associated with the choice of data and methods.

Section 4: Based on this method and data overview, we present the results from our analysis. As illu-

strated in figure 1.B on the following page, our analysis is split into four phases: the first two phases 

directly relate to our second guiding research question regarding the VRP as a stock return predictor, 

while the following two seek to examine our third question regarding the effects of politics on the 

VRP. In order to solidify the results from our regression analyses, Phases 2 and 4 seek to establish 

profitable trading strategies, which may help the reader clearly see the implications of the results in 

a different setting. 

Section 5: The fifth section seeks to answer the fourth guiding research question, by discussing and 

interpreting the two analyses, and further aims to outline the implications of the presented findings in 

terms of current investor sentiment in the Trump era.

Section 6: Finally, we will tie the sections together to provide the reader with a conclusion to our 

initial research question. Furthermore, with respect to the scope of this paper, we have excluded se-

veral interesting topics from the analysis. Conclusively, we thus explore topics, which we consider 

particularly interesting for future studies.
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As an adherent to the tenets of stoicism, Marcus Aurelius famously said: “If you are distressed by 

anything external, the pain is not due to the thing itself, but your estimate of it; and this you have 

the power to revoke at any moment”. Whether one subscribes to a stoic worldview or not, it is clear 

that the distinction between physical and perceived uncertainty has been a feature of philosophical 

thought for millennia. It is vital that one understands the role played by both types of uncertainty in 

the economy and how they affect financial markets and decision sciences. Within the sphere of deri-

vative pricing, this is of particular importance as uncertainty in the form of volatility directly influ-

ence option prices (Black & Scholes, 1973). Furthermore, not only does the perception of economic 

uncertainty impact derivatives, asset prices are also affected by cash flow risk which feeds back into 

derivate prices as well (Drechsler & Yaron, 2009). Hence, in order to answer our first guiding research 

question, the following segment focuses on describing the driving forces behind the VRP; how it 

captures investors attitude towards uncertainty and its superior predictive powers in terms of asset 

returns; key concepts within financial option theory; and especially the role of volatility.

2.1	 Concepts and Underlying Theory

While option-like contracts have at least existed since the time Aristotle wrote his, by now, legendary 

work Politics, options trading remained a relatively esoteric activity, confined to a relatively small 

group of specialized market agents prior to the mid-19th century (Poitras, 2008). The modern options 

contracts we know today, are generally considered to have been born with the establishment of the 

Chicago Board of Exchange (“CBOE”) in 1973. Despite such a short contemporary history, options 

pricing theory has come far; from the still dominant Black-Scholes model, to the modern model-free 

pricing methodologies. From this body of knowledge, interesting conclusions arise, in particular in 

terms of fear: Fear as measured through expectations of volatility, seems to be a mean-reverting pro-

cess, which carries significant predictive power for stock returns.

2.1.1	 Option pricing according to the Black-Scholes Model

One of the most famous and pivotal option pricing models was introduced in 1973, known as the 

Black-Scholes (-Merton) model (Black & Scholes, 1973; Merton, 1973). The model has since then 

had a large influence on how traders trade and hedge options. Not surprisingly, the cornerstone-model 

2   The Variance Risk Premium as a Predictor of Stock Returns 
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While each of these assumptions are violated easily in real asset market data, what is of particular 

interest (and concern) when considering the aim of this paper, is the first assumption. Asset prices are 

assumed to have a constant expected rate of return, a constant relative volatility and can be described 

to a Geometric Brownian Motion (“GBM”) similar to a Generalized Wiener Process (Munk, 2005; 

Björk, 2009; Hull, 2012). That is, asset prices follow a stochastic development around an expected 

drift (Björk, 2009), causing their returns to be independent and unpredictable. It is important to note, 

in a risk-neutral world, the expected return equals the risk-free rate (Hull, 2012).

Additionally, the Generalized Wiener Process of an asset is a particular type of a stochastic Markov 

process. The Markov property states that future movements in a variable (i.e. asset prices) is indepen-

received its well-deserved acknowledgment in 1995, when Scholes and Merton were awarded the 

Nobel prize for economics (Hull, 2017)2. 

As mentioned in the scope and delimitation of this paper, the general introduction and dynamics of 

the calculus behind this well-known model will not be described in great depth, as it is not within 

the scope of this paper3. However, it is nevertheless important to highlight the key assumptions of 

this model and their shortcomings – which leave room for possible improvements within the space 

of option pricing, such as the model-free formulation, deployed in the construction of the VRP. There 

are seven overarching assumptions underlying the Black-Scholes (“BS”) model (Hull, 2017; Munk, 

2017; Hull, 2012):

2  Fisher Black died in 1995.
3  For the interested reader, the authors recommend J. Hull, “Fundamentals of futures and options markets”, 8 (2017): 
315-338.

1.	 Stock price behavior corresponds to the lognormal model, which is characterized by having a 

constant mean μ and volatility σ

2.	 There are no transaction costs or taxes

3.	 The underlying pays no dividends during the life of the option

4.	 There are no riskless arbitrage opportunities 

5.	 Securities trading is continuous

6.	 Investors can borrow or lend at the same risk-free rate of interest

7.	 The short-term risk-free rate of interest is constant and the same for all maturities
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dent and only rely on current information and not the history of variable movements. The Markov 

process of asset prices is thus consistent with a weak-form of market efficiency, as it is impossible 

for investors to gain superior returns based on interpretations of historical stock prices. This provides 

support for the BS model assumption of no riskless arbitrage opportunities, as any deviation from the 

Markov (and GBM) process would be quickly exploited by potential arbitrage investors, eliminating 

such deviations (Hull, 2012)

Given that assets follow a stochastic path over time, we need additional tools to model their move-

ment. In particular, the use of stochastic calculus is necessary: Itô’s Lemma employs a Taylor ap-

proximation creating a differentiable stochastic process. This reflects how Geometric Brownian Mo-

tions can have rough paths over small intervals, and further has non-zero quadratic variation. In such 

an Itô process, the drift rate and the variance are functions of time and the underlying variable (Hull, 

2012). Furthermore, the Wiener process of the asset price and the function of its stochastic process 

becomes subject to the same underlying source of uncertainty. Itô’s Lemma further helps describe 

how the stock prices are log-normally distributed in the BS model over longer periods of time, and 

hence how the continuously compounded stock return is approximately normally distributed (ibid). 

Contrarily to the normal distribution, the log-normally distributed variable is restricted, as it can only 

take positive values, and the distribution is skewed with a different mean, median and mode compa-

red to the symmetrical normal distribution (Hull, 2017). Based on this, the underlying assumption of 

asset prices following a GBM over time, causes the continuously compounded return to be normal-

ly distributed, independent and constant, furthermore with a constant volatility (Hull, 2012; Björk, 

2009; Hull, 2017)4. It is important to note that this assumption is a regular feature in many financial 

models and is as such not just a shortcoming of the BS model.

2.1.2	 The volatility surface and returns outside the sphere of Black-Scholes

When volatility is assumed to be constant, the time value of money and the expected risk premium of 

stock returns can be easily hedged. Directional risk (i.e. market risk) is hedged via delta hedging, and 

thus earn the risk-free rate of return (Hull, 2017; Hull, 2012). However, this is only true in a world 

based on BS assumptions. When considering real market data, returns are more negatively skewed 

than in a normal distribution, and extreme events are more likely, resulting in fatter tails (ibid). Hence, 

over short time horizons asset returns actually have finite variances and semi-heavy tails. 

4  If more detail is needed on stochastic processes, the authors kindly refer to J. Hull, “Options, futures, and other deri-
vatives”, 8 (2012), chapter 13.
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More importantly, options are not only subject to directional risk, but also volatility risk, which is 

stochastic. Hence, a critical flaw is the assumption of constant volatility. According to the BS model, 

holding all else constant, a one-to-one relationship exists between the call (and put) option price and 

volatility, and volatility is the same for all maturities (Hull, 2012). This is due to the fact that the asset 

prices are assumed to follow a GBM, hence asset prices do not jump, and asset returns are normally 

distributed. Considering the volatility surface within the domain of BS, a plot of option implied vo-

latility by strike price (moneyness and delta) and time to maturity, is thus flat along both dimensions.

Figure 2.A: The volatility surface in the Black-Scholes world

Graph of the volatility surface of S&P 500 options on April 10th, 2018 in a Black Scholes world. MN indica-
tes the moneyness while the dates indicate the expiry date. The value axis indicates the implied volatility; we have 
set the implied volatility to the average of actual, implied volatilities on that date. Data source: Bloomberg (2018)
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However, when considering real market data, we see a different picture: market prices jump, and 

volatility becomes skewed and non-constant. Volatility is the one term in BS that cannot be directly 

observed – hence traders work with a term known as ‘implied volatility’, i.e. the volatilities implied 

by option prices observed in the market. In essence, investors pay in volatilities, as higher volatilities 

yield higher options prices. This implied volatility thus gives a picture of the market’s opinion of the 

volatility of a stock going forward (whereas realized or historical volatilities are backward looking) 

(Hull, 2017). The implied volatility surface for Black-Scholes priced options is pictured in figure 2.A 

below.

According to BS, OTM put options are priced with the same volatility as at-the-money (“ATM”) put 

options. However, in reality OTM put options tend to be more expensive than otherwise predicted by 

BS. This is due to the existence of a volatility skew, or often termed a smirk, which can be illustrated 

by plotting implied volatility against the moneyness of the option (Breeden and Litzenberger, 1978). 

The volatility skew implies a different return distribution than the otherwise assumed log-normal 

distribution dictated by the GBM: the implied return distribution is actually more negatively skewed 

with fatter tails. (Hull, 2012). Given that deep-out-of-the-money (“DOTM”) put options only yield 

a pay-off in times of economic distress, that is, times of high marginal utility, they have an insuran-

ce-like pay-off structure. As this protects against extreme downside risk, investors tend to be willing 

to pay a premium for such insurance. The prices of DOTM puts thus become inflated, which results 

in a higher implied volatility as well. 

In addition to the volatility skew, options also tend to show a non-flat term structure of volatility. The 

volatility exhibits a stationary mean-reverting behavior:  If volatility today is higher than average, one 

would expect volatility to fall in the future and should thus price long-maturity options with lower 

volatilities. If volatility is above the long-run average, the term structure will thus be downward slo-

ping. This causes the term structure of volatility to look different in real world data relative to the BS 

world, as the shape depends on the current relative level of volatility (Hull, 2012). Tabulating implied 

volatility by strike price and maturity, the volatility surface in real world data becomes:



17

Figure 2.B: The volatility surface of S&P 500 options on April 10th, 2018

Graph of the actual implied volatility surface of S&P 500 options on April 10th, 2018. MN indicates the moneyness, 
while the dates indicate the expiry date. The value axis indicates implied volatility. Data from Bloomberg (2018)

In line with the argument above, we see a tendency for a downward sloping term structure of volatili-

ty, suggesting that the implied volatility levels were above average on April 10th, 2018. Furthermore, 

we see a pronounced skew in terms of moneyness with both tails being bid up, but the out-of-the-mo-

ney puts having notably higher volatilities. 

2.1.3	 Evidence from option returns

Several suggested explanations of the existence of the volatility skew have been proposed, of which 

the two most dominant are the “leverage effect”5 and the “fear of crashes”6. As higher implied volati-

5  Leverage effect describes how over a short period of time, a company’s debt is relatively fixed, however, as the market 
value of equity is fluid, a crash in the market will lead to an inflation in the debt-to-equity ratio, ceteris paribus making the 
firm more leveraged and thus more risky (Coval & Shumway, 2001).
6  Fear of crashes refers to the 1987 stock market crash (Coval & Shumway, 2001)). Prior to this crash, there was no pro-
nounced skew in option markets. However, following the crash the demand for market puts grew substantially, causing a 
skew in the implied volatility
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lity permeates through to option returns: when assets follow a Geometric Brownian Motion, options 

become redundant securities and with a few additional assumptions, both the Black-Scholes option 

pricing model and the CAPM will hold contemporaneously, as suggested by Coval and Shumway 

(2001). Hence, call options must have positive betas, while put options must have negative betas. 

However, in the study from 2001, Coval & Shumway find that average option returns significantly 

underperform their CAPM predicted returns.

Furthermore, studies of index option returns seem to suggest that investors are willing to pay a sub-

stantial premium to hedge not just downside risk, but volatility itself: As noted above, options are 

not simply exposed to directional risk, but also to volatility risk as the term structure of volatility 

is not flat. Hence, as option prices increase in value with volatility, a long-option position creates a 

hedge against increases in volatility. Thus, if investors dislike states of high volatility, as implied by 

the leverage effect, investors should conceivably be willing to pay a considerable premium to hedge 

against such states of the economy. Hence, the returns on an options portfolio that carries no directi-

onal risk, but still contains a positive volatility exposure, should command a negative premium. This 

has been confirmed for a wide array of studies regarding zero-beta straddles (Coval & Shumway, 

2001), delta-hedged option returns (Bakshi & Kapadia (2003), and even for volatility-of-volatility 

measures such as the VVIX (Huang et al., 2018). Thus, it seems that both volatility and the volatili-

ty-of-volatility have negative market prices.

While premiums in options prices is consistent in the data, it can also be modelled directly in an eco-

nomic setting: In their paper from 2014, Chen et al. seek to establish an economic model, in which the 

economy’s crash risk is exogenously determined. The model contains two types of agents, investors 

and broker-dealers, of which investors are net-demanders of crash insurance, while broker-dealers 

are net-providers. Through their model, they find that the equilibrium pricing of DOTM puts imply a 

higher crash risk in the economy that the actual, exogenously determined crash risk. This tendency for 

net-demanders of crash insurance to over-pay for DOTM puts causes the volatility skew to become 

more pronounced, indicative of the “Fear of Crashes” as a viable explanation of the data-observed 

volatility skew. The study further finds that extraordinary supply shocks to the economic system can 

cause the price of DOTM puts to rise dramatically, for an example when broker-dealers go from being 

net suppliers of options liquidity to becoming net demanders. This tendency is further confirmed em-

pirically through a study of the public net open to buy orders of index options (ibid).
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2.1.4	 A popular measure of implied volatility: the VIX index

It seems as if the volatility skew is not simply a curiosity in the data, but rather a consistent feature 

of options prices and further seems indicative of a more fundamental part of investor psyche, in par-

ticular regarding investor fear. Building upon this understanding, as well as how implied volatility 

reflects investor expectations, it is of the utmost importance for the purpose of this study that the 

reader is introduced to the VIX index and the “Variance Risk Premium”. The CBOE publishes im-

plied volatility indices, where the most popular is the SPX VIX index (Hull, 2012). Viewed as the 

premier benchmark for US stock market volatility (CBOE, 2014), the VIX has become the industry 

standard for measuring investor expectation of future volatility. The SPX VIX measures the market’s 

risk-neutral expectation of the volatility on the S&P 500 index 30 days ahead by averaging the weigh-

ted prices of puts and calls on the S&P 500 over a wide array of strikes. An index value of 18 implies 

that the implied volatility on a portfolio with an average maturity of 30 days on the S&P 500 index is 

approximately 18% (ibid). Throughout our sample, we find an average value of the VIX of 21, while 

the long run average since 1990 is around 19 (CBOE, 2015). 

The calculation of the VIX index is an estimate of the model-free implied volatility measure original-

ly proposed by Breeden and Litzenberger (1989, in Johnson, 2017). It is based on a model-free formu-

lation, founded on the pricing mechanism of a variance swap7 (Hull, 2012). As options are exposed to 

directional and volatility risk, one way to hedge volatility risk could be via variance swaps. A variance 

swap rate can be replicated using a portfolio of put and call options, just like the VIX is based on 

a portfolio of options. Like a variance swap, the VIX portfolio consists of OTM stock options with 

non-zero strikes8, weighted inversely proportional to the square of their respective strikes. This offers 

a constant exposure to variance regardless of stock prices, which generates a theoretically correct 

variance swap price (Demeterfi, Derman, Kamal and Zou, 1999) – contrarily to an equally-weighted 

portfolio of options. This is due to the fact that a portfolio’s exposure to variance changes as the stock 

price changes (an exposure known as vega), which is further illustrated in 2.C, figures (a) below. It is 

evident from the solid line in figures (b) that the inversely weighted portfolio flattens out the vega of 

the portfolio, yielding a constant exposure regardless of the current stock price relative to the equal-

ly-weighted portfolio (represented by the dashed lines).

7  A variance swap is an agreement to exchange the realized variance rate V  between time 0 and T for a pre-specified 
variance rate, which is computed as the square of the volatility. (Hull, 2012)
8  OTM options are used for their greater liquidity
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Building this on model-free assumptions of general stock price processes, the fair price of a variance 

swap based on S&P500 options yields the VIX index. Hence, based on the fair pricing equation for 

a variance swap9, the VIX index yields the implied variance for the S&P500 options on a model-free 

basis and can be calculated as:

Figure 2.C: Option portfolio vega with different weights
(a) (b)

From Goldman Sachs (1999). Figures (a) shows the vega of options with different strikes. Figure (b) shows 
the vega of the portfolio of options from figure (a) with different weights; the dashed line represents an equal-
ly weighted portfolio, while the solid line represents a portfolio inversely weighted by the strikes of the options
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By many financial journals and other media outlets, the VIX is often referred to as the “fear index”, as 

its inverted strike-weight causes it to spike, when market fear rises and investors demand more of the 

insurance-like DOTM puts. Hence, when investors regard the future development of financial market 

as more uncertain, they bid up the VIX index, even if the actual realized volatility does not imply 
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the same level of turmoil in the market. Thus, volatility hedging behavior creates a gap between the 

higher implied volatility and the realized volatility (Hull, 2012). This spread between implied and 

realized variance has been defined as the “Variance Risk Premium” and is calculated as:

2
t tVRP VIX RV≡ − (2.3)

	
The ex-post realized variance, RVt, is unobservable, but can be estimated in several ways, however, 

studies have found that one of the most precise estimation methods is the non-parametric summing 

of high-frequency intraday data on the squared returns on the focal index (Andersen, et al., 2001; 

Barndorff-Nielsen & Shephard, 2002; Meddahi, 2002; Schwert, 1990; Hsieh, 1991). Furthermore, the 

most accurate estimate of the ex-ante implied volatility remains the squared VIX index, especially 

compared to model-dependent methods such as the Black-Scholes pricing formula (Britten-Jones & 

Neuberger, 2000; Jiang & Tian, 2007). 

This generated spread can be viewed as a true fear index, as it removes the actual realized volatility 

and shows only the level of investor fear. Across multiple precedent studies (including Bollerslev, et 

al. (2009), Huang & Shaliastovich (2018) and Kilic & Shaliastovic (2017) among others), this spread 

is found to be positive on average. This lends support to the findings in Chen et al. (2014), that is, 

investor perceived crash risk is higher than the actual crash risk in the market. However, the level is 

not constant: As the magnitude of volatility risk increases, investors pay an increasing premium for 

put options, potentially causing the implied and realized variances to diverge, resulting in a larger 

VRP. As markets calm again, the heightened fear evaporates and the VRP reverts towards its mean. 

Hence, it seems that investor fear, as established through the VRP, is a mean reverting process. Given 

the influence of investor psyche on stock returns and the role of the VRP as a barometer for the per-

ceived risk in financial markets, it seems a natural step to consider the interlink to stock returns. Thus, 

over the past years, several studies have delved into this area, uncovering a strong predictive power 

between the VRP and stock index returns, especially over the short to medium term (3-5 months ho-

rizon returns). These findings hold both in the US and across other geographies.
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3	 Literature Survey
Within financial research, few factors have shown the same predictive prowess as the VRP on the 

short to medium time horizon. Hence, in the following segment, this paper will outline both the 

economic and empirical background of the VRP, including two manners in which it may maintain 

predictive power over equity prices: through volatility risk and its indication of changing perceptions 

of extreme tail risks. Furthermore, this segment will also consider how political events may influence 

stock markets and how previous studies have attempted to uncover the workings of this relation. Al-

together, this leads us to how this thesis makes its contribution to this network of former research, in 

particular by establishing a node of research between the VRP and political economics – a nexus that, 

to our knowledge, does not currently exist.

3.1	 Stock Return Predictability

The fundamental question and conundrum that has challenged many researchers and investors 

throughout the past decades, is whether stock market returns can be predicted (Ang & Liu, 2007; 

Kreps & Porteus, 1978; Weil, 1989; Epstein & Zin, 1991; Drechsler & Yaron, 2009; Drechsler, 2013; 

Han & Zhou, 2011; Bollerslev, et al., 2009; Bollerslev, et al., 2010; Bansal & Yaron, 2004). Overall, 

any predictor has two channels of influence on stock returns: either through cash flows or through 

the discount rate. Of these two, the cash flow channel tends to be evasive with very few predictors 

robustly maintaining any predictive power and commonly only showing both statistical and economic 

significance on longer time horizons. On the other hand, the discount rate effect has been proven 

across a much greater spectrum, especially governed by the well-known intertemporal CAPM model 

proposed by Merton in 1973, focusing on the understanding of risk-return tradeoffs in assets relative 

to aggregate market returns (Bollerslev, et al., 2009). 

By assuming returns to be a mean-reverting process driven by arbitrage processes, predictability 

occurs through current mispricing of assets with respect to its specific risk characteristics relative 

to the market portfolio. While the empirical search for estimating the focal equity premium in the 

CAPM in order to robustly predict expected market return has been extensive, the findings have 

remained mostly inconclusive (ibid). This can partly be explained by the flaws of the model’s basic 

assumptions, as these are easily violated by existing macroeconomic and microstructural dynamics 
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and frictions. Furthermore, it has proven difficult to reproduce reasonable CAMP-predicted values 

in evident asset market data. Thus, several extensions were later made to the CAPM, for example 

by including more risk factors10, as well as the relation to other predictive factors, such as dividend 

ratios and price-earnings ratio. However, finding successful predictors of returns on shorter horizons 

has, prior to the introduction of the VRP, been considered unrealistic, inconclusive or insignificant. 

Overall, the VRP affects equity prices through the discount factor channel and, in particular, through 

transient risk in financial markets. In the following paragraphs we seek to outline the empirical back-

ground of the VRP and explain the source of its predictive powers.

3.1.1	 The beginnings of the Variance Risk Premium: The Long-Run Risks Model

In their paper from 2004, Bansal & Yaron proposed a discrete-time model named the Long-Run Risks 

Model in attempt to solve certain asset pricing puzzles (Bansal & Yaron, 2004). The primary concern 

was how (and if) macroeconomic risk drive the equity risk premia in asset markets, based on the 

fundamentals from Merton’s CAPM (1973). The paper proposed a model that could justify the equity 

premium, a low risk-free rate, and the volatility of the market return, which had otherwise been chal-

lenging in earlier years (Mehra & Prescott, 1985; Weil, 1989; Hansen & Jagannathan, 1991; Shiller, 

1981; LeRoy and Porter, 1981).  With the inclusion of two basic components, the LRR model has the 

opportunity to explain the otherwise unproven features in asset market data mentioned above: (1) the 

use of Epstein-Zin (1989) and (Weil, 1989) recursive preferences, and (2) modeling consumption and 

dividend growth in a novel manner.

1) Epstein-Zin (1989) and Weil (1989) recursive preferences are based on the dynamic choice theory 

and utility functions presented by Kreps & Porteus in 1978. Intertemporal preferences are represented 

by utility functions that generalize a conventional, time-additive, expected utility. Applied to con-

sumption or portfolio choice problems of an infinitely-lived representative agent, the utility functions 

with recursive preferences gives testable restrictions on observable behavior which better separates 

risk aversion and intertemporal elasticity of substitution (IES) of the agent11.

10  See for example the Fama-French three factor model (Fama & French, 1993), later extended with the fourth factor 
“momentum” (Carhart, 1997).
11  When the IES is larger than 1, the LRR model shows that the agents demand a higher equity risk premium since they 
fear a reduction in annual growth rates or an increase in economic uncertainty, both lowering asset prices.
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2) In Bansal and Yaron (2004), consumption and dividend growth rates are modelled containing per-

sistence in expected growth rate components and fluctuating volatility to capture time-varying eco-

nomic uncertainty. With such a specification for consumption and dividends, the LRR model yields 

results consistent with the asset market data, relative to earlier research. The inclusion of persistence 

in growth rates has been proven to be important, as volatility can be detected within these processes 

when considering price-dividend ratios (Bansal & Lundblad, 2002; Barsky & DeLong, 1993). In the 

LRR model, fluctuations in the persistence in the expected growth rates affects the price-dividend 

ratio’s volatility when the model is in equilibrium, which in turn affects the risk premium of the as-

set (Bansal & Yaron, 2004). Furthermore, by allowing for fluctuations in the volatility itself, that is, 

time-varying risk premia, the LRR model incorporates conditional volatility of future growth rates 

and how it changes. Given the underlying recursive preferences, agents have a preference for early 

resolution of uncertainty and hence dislike increasing economic uncertainty. Under such preferences, 

economic uncertainty becomes a priced source of risk, leading to time-varying risk premia (volatility 

feedback effect)12.

Summing up, approximately 50% of the volatility in price-dividend ratios in the LRR model stems 

from fluctuations in the persistence of expected growth rates, and approximately 50% stems from 

variation in economic uncertainty. This directly affects the equity premia and asset volatility. Thus, 

the LRR model’s empirical results show how risk is related to varying growth prospects in the eco-

nomy, and how fluctuating consumption volatility affects time-varying economic uncertainty. The 

LLR model thus makes it possible to predict the price-dividend ratio based on consumption volatility, 

and help justify the observed equity premia, risk free rate and volatility in observed market returns. A 

non-trivial relationship exists between news about consumptions and its impact on long-term expec-

ted growth rates and hence economic uncertainty, in which asset prices are sensitive to these news – 

thus helping to explain some of the asset market puzzles (Bansal & Yaron, 2004; Bansal & Lundblad, 

2002).

While the LRR model presented by Bansal & Yaron (2004) helped predict asset market returns over 

a multi-year horizon using consumption innovations and persistence in growth rates, Bollerslev, et al. 

12  The volatility feedback effect stems from the consumption volatility channel, where return news and news about re-
turn volatility are negatively correlated (Bansal & Yaron, 2004).
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(2009) extended the LRR model with superior findings (the BTZ paper): via the innovative construc-

tion of the VRP variable, the study yielded evidence of extraordinary predictive powers of the VRP in 

terms of expected market returns over a quarterly horizon. As the economic model in the BTZ paper 

forms the foundation for the empirical findings of this study, the following segment will elaborate on 

the details of the model. This includes the constructed VRP variable and their convincing empirical 

results, which explain a non-trivial fraction of the variation in the aggregate stock market return post-

1990 (ibid).

3.1.2	 The Variance Risk Premium from the LRR model

While the Bansal & Yaron (2004) grounded their work in the long-run risk derived from consump-

tion growth, Bollerslev et al. (2009) instead focuses on the realized volatility dynamics to explain 

the equity premium and volatility in returns. The proposed economic model includes a two-factor 

structure that endogenously yields the equity risk premium directly linked to underlying factors in 

consumption growth. With the VRP derived as the spread between risk-neutral implied and realized 

return variance, a factor associated with consumption growth volatility is effectively isolated. Hence, 

building upon Bansal & Yaron’s (2004) findings, Bollerslev et al. (2009) find that the VRP serves as 

a dominant predictor for returns over a quarterly horizon, where these risk factors are of greater im-

portance relative to other predictors.

As mentioned, the basic model presented by Bollerslev et al. (2009) builds upon the framework 

of the discrete-time LRR model. In particular, the VRP model includes stochastically time-varying 

volatility-of-volatility (“VOV”), a stance supported by extensive empirical evidence on volatility dy-

namics stemming from time-varying consumption growth volatility (Bekaert & Liu, 2004; Bansal, et 

al., 2003; Bekaert, et al., 2009; Lettau, et al., 2008). Simplifying their model, the study excludes the 

long-run risk factor in consumption growth in the LRR model (Bansal & Yaron, 2004), and focuses 

instead on the role on time-varying volatility.

3.1.3	 Proposed economic model

The model proposed by Bollerslev, et al. (2009) comprises a self-contained general equilibrium mo-

del. It has a two-factor structure for an endogenously determined equity risk premium based on the 

assumption of a geometric growth rate of consumption in the economy. That is, the consumption 
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growth over time is unpredictable, but conditional on a constant mean growth, a conditional variance 

and a normally distributed innovation process. This compares to the dividend growth in a Lucas-tree 

type economy (Bollerslev, et al., 2009) and can be formulated as:

1 , , 1t g g t g tg zµ σ+ += + (3.1)
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is unpredictable, μg represents the constant mean growth rate, σg,t is the 

conditional variance of the growth rate and {zg,t+1} is an i.i.d. N(0,1) innovation process. The volatility 

dynamics in this model are assumed to be governed by two discrete-time versions of continuous-ti-

me square root-type processes. The first of these processes represents the time-varying economic 

uncertainty regarding consumption growth with an additional source of temporal variation derived 

from the second process which is a volatility-of-volatility process. As described above, the economic 

model has agents with Epstein-Zin-Weil recursive preferences (Epstein & Zin, 1991; Weil, 1989), 

yielding an agent preference for early resolution of uncertainty. Hence, the inclusion of the additional 

volatility-of-volatility process will carry a positive risk premium, as agents prefer not to be exposed 

to time-varying variance. This further induces asset prices to fall with volatility shocks, which is con-

sistent with the leverage effect, now endogenously found within the model (Bollerslev, et al., 2009).

With assets assumed to yield a consumption endowment infinitely, through the Campbell & Shiller 

(1988) approximation, Bollerslev, et al. (2009) solve returns as a function of the two volatility pro-

cesses above, that is, the endowment volatility and the volatility of volatility. In particular, they find 

that returns are increasing in both parameters which reflects a risk compensation in similar form to the 

CAPM; the higher the volatility, the higher the return (Merton, 1973). However, innovations in the 

future volatility will tend to affect returns negatively in line with the leverage effect and the agency 

dislike of uncertain volatility.

The model’s implied equity premium is composed of two separate, but additive, parts: The first part 

comprises a classic CAPM-type risk-return tradeoff relationship, which, as described above, conti-

nues to be elusive in empirical research. This relation does not contain information regarding a true 

volatility risk premium, it rather forms part of the model’s equity premium as it induces shifts in the 

price of consumption risk. The second part of the equity premium however comprises a pure premi-

um for holding volatility risk, as the premium is reactive to both shocks to volatility and the volatili-
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ty-of-volatility. This second part of the equity risk premium, which contains a priced factor for being 

exposed to time-varying volatility, is an entirely different source of risk, which has not been studied 

in previous research on the traditional risk premium of consumption. This additional term is further 

absent in Bansal and Yaron’s (2004) LRR model.

3.1.4	 Volatility risk and return predictability

To further understand the differential effect of the endowment volatility and the volatility-of-vola-

tility, along with their relationship to the expected excess returns, as defined in the two-term equity 

premium above, a more formal result must be defined. What is of particular interest is the ability of 

the VRP to effectively isolate the volatility-of-volatility risk (Bollerslev, et al., 2009). To formally 

establish this result, it can be found that the conditional variance at the time interval t to t+1 is dire-

ctly influenced by the two stochastic processes from above, the underlying economic volatility and 

the volatility of this volatility. While this conditional variance is known at time t, the one-period 

ahead conditional variance (for time t+1) remains unknown. The difference between the objective 

and risk-neutral expectation of the conditional variation (that is, the VRP) will then depend on how 

the volatility risk is priced.

While the objective expectation can be readily computed, the implied risk-neutral conditional expec-

tation cannot be computed in a log-linear approximation. From this, Bollerslev, et al. (2009) compare 

the two different expectations of the same future variance: They find that volatility-of-volatility inte-

restingly drives changes in the risk premium alone. Furthermore, given the specific values of chosen 

input parameters, the derived VRP is guaranteed to be positive. Comparing this finding to the two-

term equity risk premium above, it seems that, in this economic model, the VRP should be a useful 

predictor of actual, realized future returns, in which the volatility-of-volatility is the predominant 

source of variance. This is further in line with previous studies, such as (Ang & Liu, 2007), in which 

models with first-order risk aversion (parameterized by Epstein-Zin-Weil recursive preferences) can 

exhibit positive volatility risk-return linkages.

3.1.5	 Return regressions

In order to test the positive relationship between the VRP and return volatility, it is further necessary 

to determine under which time frame the VRP should have the greatest predictive power. To do this, 



28

(Bollerslev, et al., 2009) determine the following multi-period return regression for the equilibrium 

model, with the relation tested across different return horizons (h);
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	In which the summed return of an asset rt+j is regressed against the VRP, as denoted by the term 

( )( )2 2
, 1 , 1

Q
t r t r tE σ σ+ −− . This regression shows how the volatility-of-volatility (“VOV”) process and its 

persistence and magnitude compare to other risk factors in terms of β-coefficient and coefficient of 

determination, as it has been found to be directly (and positively) linked to the variance difference13. 

Depending on the specific values determined in the stylized model setup for the variables of (i) the 

growth rate of consumption, (ii) the time-varying volatility process in consumption growth, (iii) the 

VOV process, (iv) the intertemporal marginal rate of substitution (“IES”) and (v) the price-dividend 

ratio, the model-implied slope and explanatory power can be affected. From the equation above, it 

is further evident that the variance premium may depend nontrivially on the return horizon h. By 

calibrating this model, Bollerslev et al. (2009) succeeds in discovering how the predictability varies 

with the model parameters and h, and thus derives the slopes and explanatory powers plotted in figure 

3.A below.
Figure 3.A: Model-implied slopes and R2s

(a) (b)

From Bollerslev, et al. (2009). (a) shows the model-implied slope coefficients, while (b) shows 
the R2. Four different configurations are utilized with return horizons stretching up to 24 months.

Model A is based on the same values as applied in the LRR model (Bansal & Yaron, 2004), whereas 

model B has a decreased persistence in the volatility-of-volatility. Model C comprises an increase 

in the persistence in volatility-of-volatility and model D has a higher intertemporal elasticity of 

substitution. It is clear that compared to the baseline model, decreasing the persistence in volatility-

13  Furthermore, the VOV driven risk premium also depends on the recursive utility (IES), as it follows that , 
 			         where θ is the subjective discount factor involving IES and a risk aversion expression, and 
q is VOV. 
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of-volatility results in systematically lower slopes (and vice versa). Increasing the IES (as in model 

D) increases the relation between returns and the VRP, which in turn results in a systematically higher 

slope parameter across all horizons. Intuitively, the IES enhances the effects of volatility-of-volatility: 

If investors become more sensitive in their intertemporal consumption allocation, under Epstein-

Zin-Weil preferences, greater volatility-of-volatility will be amplified by a higher IES, as investors 

will prefer to resolve uncertainty earlier. Looking at the model-implied explanatory power (R2) for 

the baseline model, the degree of predictability is at its maximum around the quarterly horizon. 

Lowering the degree of persistence within the volatility-of-volatility process results in a maximum 

around two months instead, while increasing the persistence results in an increase of predictability 

for a longer period. Finally, for model D with a higher IES, the time-varying volatility-of-volatility 

process is stronger, which also increases the overall predictability of the model. It thus seems that the 

predictive ability of the VRP is affected by both sources, in which the volatility-of-volatility indicates 

the uncertainty faced by market agents, while the IES parameterizes the sensitivity of market agents 

to this uncertainty.

Summing up, it is clear that the simple stylized general equilibrium model yields significant 

regression coefficients and return predictability over shorter time horizons, with the exact timing 

of peak predictability affected by the intertemporal elasticity of substitution and the persistence in 

the volatility-of-volatility. From this, the VRP on the RHS of the regression can be seen as a ‘pure 

volatility bet’ where everything else is risk-neutralized away. As derived above, due to the Epstein-

Zin-Weil preference structure, the VRP is driven solely by the volatility-of-volatility, and thus the 

price of this risk changes if the variance of the priced factors changes.  Hence, the VRP effectively 

isolates the systematic risk associated with the volatility-of-volatility process and becomes a useful 

predictor of future returns  (Bollerslev, et al., 2009)

3.1.6	 Model-free formulation of realized and implied variances

In the theoretical model above, the difference between risk-neutral expectation of future return 

variance and current return variance seems to be a useful predictor for future stock returns. In order to 

study this in depth, Bollerslev, et al. (2009) further run the return regressions in an empirical setting, 

looking at the predictive power of a US-based VRP on the returns on the S&P 500 index over the 

period 1990 to December 2007. In order to generate the VRP, the study utilizes model-free return 
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parameters for both constituent parts of the spread. Inspired by several former papers (Carr & Madan, 

1998; Demeterfi, et al., 1999; Britten-Jonas & Neuberger, 2000), Bollerslev, et al (2009) use the 

squared model-free VIX index, based on the pricing of variance swaps. This model-free measurement 

is a natural empirical version of the ( )2
, 1

Q
t r tE σ +  term from the discrete-time model defined in equation 

3.2 above. As mentioned, the model-free formulation represents a far stronger approximation than 

one based on the inversion of the typical BS formula with close-to-ATM options (Jiang & Tian, 2005; 

Bollerslev, et al., 2011).

In line with the definition from our Concepts and Underlying Theory, Bollerslev, et al. (2009) utilize 

the sum of squared logarithmic returns to generate an estimate of the realized variance (Andersen, et 

al., 2001; Barndorff-Nielsen & Shephard, 2002; Meddahi, 2002):
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To ensure accuracy, the Bollerslev et al. (2009) study utilizes intraday data to achieve more accurate 

ex post observations as close to the true return variation as possible. Finally, their model predictor 

and key empirical finding is the difference between the two terms; i.e. the VRP for the time interval 

of [t;t+1]-[t-1;t] becomes t t tVRP IV RV≡ − , in which the implied volatility runs forward 30 days, 

while the realized variance runs backward 30 days. An advantage of this formulation is that the VRP 

is directly observable at time t, which is key when attempting to forecast stock market returns.

3.1.7	 Main Empirical Findings

Following the line of thought in the calibrated return regressions section, the BTZ study starts out by 

looking at the return horizon predictability. For the estimated slope coefficient associated with the 

VRP, the study finds statistical significance at the 5%-level. Furthermore, they find that the VRP has 

the strongest predictive power at the quarterly horizon, where R2 maximizes at 6.32%. For comparison, 

the R2 is 1% at the one-month horizon, and from the quarterly horizon up until six months, the 

slope coefficient remains significant, albeit with a decreasing significance and explanatory power 

(Bollerslev, et al., 2009). Thus, the study supports the notion of a predictive relationship between the 

VRP and expected returns, in line with the economic model set out above. Comparing the empirical 

estimates for all monthly horizons until 24 months, the shapes seen in the regression outputs fit the 
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regressions reasonably well. Hence, it seems that the VRP does indeed succeed in separating the 

systematic risk factor associated with time-varying volatility of consumption growth volatility in real 

market data as argued in the economic model (ibid).

The study progresses by comparing the predictor variable VRP with more traditional variables from 

the existent literature, such as the price-earnings (“P/E”) ratio and the consumption-wealth (“CAY”) 

ratio (Lettau & Ludvigson, 2001), as well as the term spread and relative risk-free rate. None of these 

classic predictors dominate the VRP’s degree of predictability on a quarterly (or monthly) horizon. 

Furthermore, the term spread and risk-free rate actually reduce the adj. R2. Combining the P/E ratio 

with the VRP results in an R2 of 3.7% in excess of the sum of the two R2’s from the individual 

regressions, and they both remain significant. However, none of the t-statistics for any other predictor 

variable comes close to the VRP’s t-statistic of 2.86, and all maintain lower adj. R2’s. This is thus 

testament to the dominance of the VRP in terms of predictability. However, it is important to note that 

in multiple regression outputs they find that combining predictor variables such as the VRP and the P/E 

ratio jointly capture short- and long-term risks in market returns, yielding even stronger t-statistics14.

The highest t-statistic found in the multiple regression is when the VRP, P/E, term-spread and risk-

free rate is included. No matter which variables are included in the regression, the estimated VRP 

coefficients remain stable and significant at the 1%-level. Hence, the BTZ study provide impressive 

empirical evidence that the stock market return can be predicted by a model-free formulation of the 

VRP, based on robust results across many different specifications and regressions, as found for the 

simple regressions. The degree of predictability is at its maximum at the quarterly horizon, but the 

VRP remains a stable predictor at other horizons between 3-6 months in particular. These findings 

can alternatively be seen as a proxy for the total degree of risk aversion in the market, as time-varying 

volatility risk and risk aversion both play an important role when seeking to explain the temporal 

variation in expected returns (ibid).

3.1.8	 The variance risk premium in other geographies

While the BTZ study was restricted to studying the VRP in the period 1990 to 2007, the results from 

14  However, combining CAY and the P/E ratio yields insignificant t-statistics for both variables.
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the study have been confirmed for the US stock market in later time periods, including the financial 

crisis (see for example Huang, et al. (2018), Drechsler & Yaron (2009) and (Kelly & Jiang, 2014). 

Furthermore, a spatial dependence for the phenomenon of a consistently priced factor of aggregate risk 

aversion and economic uncertainty, seems too bold a statement. In their study from 2014, Bollerslev, 

et al. thus attempt to corroborate their results by utilizing the same methodology from their 2009 

study on a wider selection of countries. 

Due to data availability issues, they restrict their study to the main stock indeces in France, Germany, 

Switzerland, the Netherlands, Japan, Belgium, the United Kingdom and the United States. Across all 

countries, the predictability pattern found on the US market holds, and all show similar hump-shaped 

regression coefficients and adjusted R2s. However, many of the geographies show the strongest 

predictability at slightly longer horizons (4 to 5 months, relative to 3 months on the US market) and 

with somewhat attenuated coefficients relative to the US market. Based on the economic model in 

Bollerslev, et al. (2009) this may indicate a slightly higher persistence in the volatility-of-volatility, as 

well as a slightly lower intertemporal elasticity of substitution. Based on the apparent commonality in 

predictability patterns, they further define a “global” VRP based on the main indeces from the above 

mentioned geographies. Utilizing this global VRP as a predictor for stock returns on the country-

specific indeces, Bollerslev, et al. (2014) find even stronger commonalities and pattern uniformity 

across countries. For all individual countries, the global VRP serves as a highly significant predictor 

especially at the 4- and 5-month horizons. They further find that results are consistent when running 

regressions with an forward-looking VRP, constructed from a heterogeneous autoregressive model of 

realized volatility.

While the results from the 2014 study are striking, it is notable that the study only considers well-

developed economies. In order to study the VRP outside these relatively well-researched geographies, 

Chen, et al. (2017) attempt to study the phenomenon on the Chinese stock market. Noting that no 

previous studies exist on the Chinese market due to a lack of an options market, Chen et al. (2017) 

estimate a time-varying VRP based on a general equilibrium asset pricing model. In line with previous 

studies, they find the strongest predictive power at the 4-5 months horizons. Interestingly, in contrast 

to the studies of other geographies, the Chen, et al. (2017) study finds coefficients that exceed the 

empirical results for the US market; the estimated beta for the VRP against Chinese stock market 
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returns is 1.43 for the 3-month horizon, while the same beta estimate for the US market is 0.47 

(Bollerslev, et al., 2009). Thus, it seems that the Chinese market may be characterised by a more 

persistent volatility-of-volatility, as well as a higher intertemporal elasticity of substitution. Further, 

in the multiple regressions including other economic variables, the VRP causes a significant increase 

in the coefficient of determination. This implies that for the Chinese market, as for the markets studied 

in previous research, the VRP comprises additional forecasting information regarding stock market 

returns in excess of that embedded in classical economic variables.

3.2	 Extensions: Further Exploration of the Driving Forces of the VRP

In addition to the studies of the return predictability of the VRP, several extensions to the formulation 

and drivers of the VRP have been suggested. These include further study into the volatility-of-volatility 

as a risk factor; applying jump-diffusion modeling to the intersection of the VRP and equity pricing; 

considering asymmetric volatility preferences; and the VRP as an indicator for investor demand for 

tail risk hedging. These expansions stem from both an economically motivated standpoint, model-

independent big-data analysis, as well as from a more behavioral finance perspective.

3.2.1	 Diffusive jump-shocks as the driver of the predictive power in the VRP

Several papers (e.g. (Pan, 2002), (Eraker, 2004), (Broadie, et al., 2007)) have suggested that in order to 

study option-pricing with both physical and risk-neutral data, the inclusion of jump risk is necessary. 

In particular, it has been found the combination of recursive preferences and large, rare shocks to 

a persistent component in cash-flow growth is capable of generating the prominent option implied 

volatility skew or smirk (Benzoni, et al., 2005). Hence, extensions to both the LRR model by Bansal 

& Yaron (2004) and the VRP studies have taken their point of departure in jumps in both volatility and 

cash flows. Building on Eraker’s (2008) general equilibrium model including non-Gaussian shocks 

and endogenously occurring market crashes, Drechsler and Yaron (2009) extends the LRR model to 

the link between the VRP and jump risk. In particular, the 2009 extension focuses on the stochastic 

volatility process governing the level of uncertainty about shocks and long-run components of cash-

flows. Under the assumption of Epstein-Zin-Weil preferences, it is found that the inclusion of jump 

shocks helps create a model capable of generating a positive, time-varying VRP, capable of predicting 

future stock returns. 
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In his study regarding time-varying fear and the effect to asset prices, Drechsler (2013) argues that 

the asset pricing process includes both risk and uncertainty, drawing on the concept of Knightian 

uncertainty, capturing the ambiguity in the data-generating process itself. That is, there is a distinction 

between risk and uncertainty, where risk captures situations in which we do no not know the outcome, 

but where we can measure the odds. Uncertainty, on the other hand, applies to situations where we 

do not have enough information to set accurate odds. The paper confirms the role of jump-shocks 

as the primary driver of the predictive power of the VRP, but further finds that this power arises 

from a combination of jump risk in the reference model and uncertainty regarding the underlying 

model, in which model uncertainty amplifies concerns regarding jump shocks. Higher levels of model 

uncertainty thus entail that smaller jumps can generate a significant VRP. This is in line with the 

findings in Chen, et al. (2014) who found that market participants tend to overestimate an exogenously 

determined crash risk.

3.2.2	 Positive and negative volatility: Asymmetric volatility preferences

It seems that the inclusion of jump shocks is capable of capturing, to a large extend, the size and 

predictive power of the VRP, as this reveals variation and uncertainty regarding the intensity of shocks 

to the economy. However, Kilic & Shaliastovich (2017) suggest that the inability to differentiate 

between negative and positive volatility conflates potential opposite effects of good and bad jumps. 

Building on the intuition that investors like good uncertainty, as this increases the potential for 

gains, and dislike bad uncertainty, with an increase to the probability of substantial losses, Kilic & 

Shaliastovich (2017) suggest a model with a decomposition of the pricing of good and bad asset-price 

jumps. Building on the econometric approach from Segal, et al. (2015), Kilic & Shaliastovich (2017) 

find that “good” and “bad” variance have opposing effects on the level and variation in the risk-return 

relationship on the market: They find that a good VRP predicts future returns with positive signage, 

while a bad VRP predicts with a negative signage. 

This adds to previous studies that consider the intersection of the VRP and tail risk. In their study from 

2015, Bollerslev, et al. statistically disentangle the diffusive jump components of the VRP and show 

that this decomposition leads to stronger return predictability. It is particularly driven by variation 

to left tail jumps, consistent with the notion that most of the predictability is driven by investor fear. 

This supports the finding by Gou, et al. (2014) who find that short-term excess stock returns and 
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economic fundamentals are well predicted by realized positive and negative jump volatilities and that 

total jump variation has little predictive power. In further extension, Feunou, et al. (2015) found that 

the VRP is primarily driven by downside risk through their study of the empirical implications of a 

decomposition of the VIX into downside and upside components.

3.2.3	 The informational content of the VRP: Liquidity provision and tail risk hedging

As suggested by Bollerslev, et al. (2015), it seems that most of the predictive ability of the VRP stems 

from asymmetric volatility and in particular jumps in the far-left tail of the return distribution. In their 

paper from 2016, Fan, et al. argues that one should be able to infer information regarding investor 

demand for hedging downside tail-risk from option market data, and the intermediary willingness to 

meet this demand. This builds on the finding that the volatility risk premium represents option market 

makers’ willingness for inventory absorption and liquidity provision (as found in Gârleanu, et al. 

(2009) and Nagel (2012)), along with the tendency for buy-side investors to be net buyers of index 

options (Gârleanu, et al., 2009). From this, the VRP may be understood as the compensation that 

market makers require for intermediation and liquidity supply to meet investors’ hedging demand, in 

line with the argument made by Chen, et al. (2014). 

The study finds that when the demand for hedging increases, the deviation between implied and 

realized variance deepens, as market makers require an increasing premium for taking the short 

position. As noted by Fan, et al. (2016), a positive volatility risk premium15 is justified theoretically 

and, for the most parts, supported by the data. However, the large negative spikes during the financial 

crisis, seems paradoxical. Drawing on the findings in Bakshi & Kapadia (2003), the study finds that 

the periods with a negative VRP are consistent with positive returns on delta-hedged put positions. 

To the extent that this coincides with severe shocks in the supply of puts, it is possible that a negative 

VRP is representative of the restricted supply of liquidity in the market for hedging tail risk.

3.2.4	 Behavioral finance: Loss aversion and distorted probability assessment

While the VRP can be modelled under classical agent preferences, it may also carry a large 

informational content about investor behavior and sentiment if modelled considering an asymmetric 

15  Note here this is positive under the specification of this study, (Fan, et al., 2016) uses the opposite specification
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preference structure with a specific weight on rare events. However, this requires a different view of 

agent preferences: Known as prospect theory, the model developed by Kahneman & Tversky (1979) 

(extended in Tversky & Kahneman (1992)), represents an alternative model for decision making under 

risk. In particular, the model is capable of capturing the demand for insurance (taking small, frequent 

losses in order to cap large downsides) and distorted probability views in which the probability of 

extreme tail events is overweighed. Given that options tend to significantly underperform their 

CAPM-predicted returns (Coval & Shumway, 2001; Driessen & Maenhout, 2007), these two factors 

may help in describing the investor psyche underlying the strong demand for hedging volatility risk, 

in particular downside risk.  Indeed, as found in Driessen & Maenhout (2007), any investor, even with 

loss-aversion preferences, should prefer to hold short positions in DOTM puts, and should only prefer 

to hold long positions with highly distorted probability assessments, as modelled under prospect 

theory.

If investors are viewed through this lens of prospect theory, it seems that the VRP, as constructed via 

the model-free formulation, is suggestive of changes in investor perception of extreme tail events. 

Indeed, Driessen, et al. (2014) find that the variance risk premium seems primarily driven by distorted 

probability perceptions, which would imply that when the probability of extreme events changes, the 

effect is compounded by investors. Hence, while the physical probability of an event is very low, as 

long as it is non-zero and has a large potential effect, its impact on the volatility surface, and hence 

the VRP, may be large. Thus, it seems that the variation in the VRP is suggestive of tail risk fear – and 

hedging – under both economically-motivated arguments (for example (Kilic & Shaliastovich, 2017) 

and (Bollerslev, et al., 2015)), under model-independent analysis (Fan, et al., 2016) and under the lens 

of prospect theory (Driessen, et al., 2014).

3.2.5	 Investor sentiment and stock returns

Several previous studies have been engaged in investigating the existence of a link between different 

economic trends, stock returns and volatility. An interesting angle within this field is examining how 

economic trends affect investor sentiment and how this in turn affects stock returns. Hence, while 

the VRP seems affected by investor psyche, the market in a broader sense may also be affected. Lee, 

et al. (2002) study exactly this relationship, testing the “Investors’ intelligence sentiment index” in 
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connection with conditional volatility, founded on earlier determined noise trader models16 in finance. 

The study finds that investor sentiment is a systematically priced risk, in which shifting sentiment is 

positively correlated with excess returns. The study shows how bearish (bullish) changes in sentiment 

leads to an upward (downward) revision in volatility, followed by lower (higher) future excess returns. 

This can be described as the “hold more” effect – noise traders increase (decrease) their holdings of 

risky assets when their sentiment becomes more bullish (bearish), which raises market risk and return.

On the other hand, contrarily to many other studies, Chung, et al., (2012) actually find an asymmetry 

in the predictive power of investor sentiment across expansion and recession states of the economy. 

They find that only during an economic expansion does investor sentiment have a robust predictive 

power of stock returns, while during a recession the results are found to be insignificant. Nevertheless, 

many studies have considered numerous angles when trying to solve the equity premium puzzle, 

and how it might be related to investor sentiment. This spectrum spans much wider than to states 

of the economy: some have chosen to focus on the predictive power of general macroeconomic 

trends; some on the more extreme cases of tail risk events often referred to as market crashes; some 

on political elections and crises (Almeida & Ferreira, 2002; Niederhoffer, 1971) and some even on 

natural catastrophes (Brounen & Derwall, 2010; Shelor, et al., 1990).

3.2.6	 The effects of world events on the stock market

While we often consider tail risk to be driven by the risk of financial crashes, other factors or events 

may also cause investor perception of extreme risk to change. In his study from 1971, Niederhoffer 

examines several different “world events” on the stock market. Based on data from the S&P 500 

index, he investigates the relationship with world events taken from headlines in the New York Times. 

He finds evidence that these different kinds of world events affect fluctuations in the S&P 500, and 

that these events further induce abnormality in stock returns. In the years following the financial crisis 

of 2007-2009, many researchers have focused on the case of extreme tail risk events and investor 

sentiment. One paper constructs a new measure for a “tail-risk index” in order to investigate the risk 

premium and future market returns (Almeida, et al., 2017). They find that investors’ marginal utility 

16  The Noise Trader Model was proposed by De Long, Shleifer, Summers and Waldmann in 1990. They modeled in-
fluence of noise trading on equilibrium prices. Noise trading is acting on non-fundamental signals. They found that it 
introduces systematic risk, as the deviation in price created by changes in investor sentiment become unpredictable (Lee 
et. Al, 2001).
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is increasing in tail risk and measure the magnitude of a “tail risk premium”. The study further finds 

that the tail risk measure can anticipate and capture stock market movements in terms of financial, 

economic and political events such as the Korean War, Pearl Harbor, Eisenhower’s heart attack or the 

Kennedy Slide of 1962. Furthermore, they argue that contrarily to option pricing and VaR measure 

(which focus on individual systemic risk) tail risk is more broadly applicable as it considers a wider 

spectrum of risk provoked by catastrophic events and disasters, which affect all firms in the market 

(ibid). Hence, they criticize the model-free options-derived methodology from Bollerslev, et al. 

(2009)’s, but also find a correlation between their measure and the VIX of 0.56. Such correlation 

yields support for both methodologies, showing that risk-neutralization measures capture investors’ 

crash fears and risk attitudes, across both the financial and political spectrum.

Another approach in the literature has been to focus the impact of politics and political uncertainty on 

investor sentiment, risk attitudes and volatility in the market. While several studies have considered 

the connection between stock returns and political events, fewer have focused on volatility. For 

instance, Herron, et al. (1992) identified 15 economic sectors where stock prices react differently to 

changes in expectations of the results of the presidential election in the US in 1992. In 2000, Herron 

estimated that the stock market would have dropped 5% with a simultaneous increase in volatility, 

had the Labor party won the election in the UK. Furthermore, the study shows that the probability of 

Al Gore winning the presidential election in 2000 has been found to lead to lower levels of volatility 

in the US stock market. Jensen & Schmith (2005) investigate the political setting in Brazil and its 

impact on the Brazilian stock market. Contrarily to others, they suggest that greater certainty in 

elections was associated with higher levels of volatility. However, they put forward the hypothesis 

of ‘Candidate Uncertainty’, in which some presidential candidates might drive more stock market 

volatility than others. For instance, as the popularity of the Brazilian presidential candidate Lula rose, 

they find that “the uncertainty in the financial markets was not because of an uncertain election; 

rather, it was because of uncertainty about Lula’s policies.” (ibid). Hence, some candidates can have 

negative impact on the stock market while others can drive positive returns, and this can in turn spike 

more volatility if an unfavorable candidate is expected to win.

Combined with such considerations of the different effects on volatility given the presidential 

candidacy, studies have also considered more general effects of political risk and instability. 
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Bittlingmayer (1998) finds evidence for a causal relationship between political instability and stock 

prices in Germany. The study shows that political instability has negatively affected industrial 

production in Germany, as well as increased stock market volatility. He further finds evidence that 

revolution, crumbling governments and wars also resulted in higher volatility in stock returns.  Nazir, 

et al. (2014) investigate the impact of political risk in Pakistan on the country’s equity market returns 

and confirm that political risk increases the equity risk premium by 7.5-12%. In terms of signage, 

a Canadian study (Beaulieu, et al., 2005) finds that the impact of political risk on the volatility of 

stock returns is asymmetric – namely that the response to unfavorable political news results in larger 

volatility spikes than positive news, yielding a stronger potential for tail risk events. Finally, a recent 

Malaysian study investigates the relationship of political instability to stock prices (Irshad, 2017). 

Their results confirm the negative relationship between stock prices and political instability, as well 

as suggesting that an unstable political system ultimately leads to lower stock prices.

When considering the recent US election, Trump does not come across as the most stable and 

predictable political actor. According to previous studies, this unpredictable behavior should have 

spiked more volatility in the stock market returns, and maybe even lower stock market returns. 

Nevertheless, the fear index – the VIX - has since the election been characterized as lying far below 

the historical average of 19 (with one exception in February 2018) going against all intuition on 

the subject: with growing geopolitical tensions due to Trump’s increasingly protectionist policies, 

investors may be expected to seek to insure themselves against extreme tail events via DOTM puts, 

propping up the VIX. Many articles have been written on the topic, and following many of Trump’s 

policies, experts are expecting stock prices to fall (Redder, 2018). However, the stock market in the 

era of “Trumponomics” has repeatedly reached all-time highs over the past year, which presents a 

conundrum given the previous findings of the effects of political instability on the stock market. It is 

thus of the utmost importance to study whether Trump is in fact driving stock market performance, 

and whether his seemingly unpredictable character generates a more volatile stock market setting 

after all.
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4	 Contribution: Volatility in the Era of Trump
Given its superior predictive ability, it seems only natural that the VRP has been the subject of many 

recent studies within economic finance. Since the pivotal paper by Bollerslev, et al. (2009), extension 

studies have primarily focused on model improvements; either focusing on the inclusion of jump-dif-

fusion modeling, decomposition of upside and downside variance terms, and indication of tail risk 

hedging demand. Common for all these studies is the result that the VRP seems strongly driven by 

the left tail of the return distribution and particularly investors’ fear of extreme tail events. While the 

VRP is a young field of research, few of these papers have dealt with the post-GFC recovery market, 

and with the recent period of extraordinarily low volatility. 

How has the VRP and its ability to predict stock returns on the US stock market 

been affected in recent years by the economic and financial development and 

the increased political uncertainty apparent in the Trump Era?

What is the VRP and what evidence exists for its ability to predict stock returns?(i)

How has the VRP developed in the years following the global financial crisis and does it 
maintain its predictive prowess?

How has recent years’ political instability in the Trump era affected the VRP and its com-
ponents?

What does the evolvement of the VRP and its potential exposure to political uncertainty 

imply about current investor sentiment? 

(ii)

(iii)

(iv)

Extreme tail events are often considered to take the form of a sudden market crash, for an example 

the GFC or the Black Monday crash of 1987 (Hull, 2012). However, tail risk may also be politically 

driven: several previous studies have examined the link between politics and stock returns, including 

the effects of presidential elections, war, terror and more general political events. While this interse-

ction of finance and politics is well-researched, few of these former papers deal with what must be 

assumed to be the root of this interaction: investor fear – and none of them consider the VRP. Thus, 

this paper seeks to examine more directly how investor sentiment is affected by political events by 

utilizing the VRP as a pure form of investor fear. In particular, we focus on how the VRP may help 

explain investor response to a highly tumultuous political climate, such as the one observed since the 

recent US presidential election. Hence, as described in our introduction, this paper seeks to answer 

the following research question and guiding sub-questions:
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5	 Methodology and Analytical Approach
As outlined above, our contribution covers three areas: The research of the VRP in a new temporal 

setting, the interconnection of the VRP and political-financial research and the implications of these 

considerations on investor sentiment. In terms of research designs, several avenues exist for answe-

ring the guiding questions. Hence, in the following segment, we seek to outline the methodological 

approach of this paper; the data utilized; the treatment of this data and the methods applied.

5.1	 Research Methodology 

Taking a point of departure in the overall problem statement, our thesis is nested in a body of existent 

theory and precedent empirical findings. Notably, neither of our guiding questions take the form of 

falsifiable statements or hypotheses, but rather are open-ended guided by the previous literature within 

the field. Based on this, we find it most appropriate to take a deductive approach in terms of research 

design, as it allows the paper to utilize the precedent findings in discussions of the results (Chalmers, 

2013). The first phase of the analysis of this thesis seeks to examine the relation between the VRP 

and stock return predictability, in essence testing the results from the BTZ paper, in a new temporal 

setting. In the second phase of the analysis, we focus on the predictive ability under the current scene 

of political uncertainty and remarkably low VIX-values evident throughout 2017. Furthermore, with 

the theoretical evaluation and application of traditional and reformed options pricing theory in mind, 

this paper further attempts to uncover what may be discovered regarding investor sentiment for the 

focal period in the fourth guiding research question. We apply this deductive methodology to secon-

dary data to test the predictive power of the VRP through a set of regressions with a basis in the data 

as well as key predictors from the existent literature.

In terms of our third guiding research question, we choose a narrow approach to examining the implications of 

politics on the VRP and its components. In particular, we choose a case study-type research design in which we 

consider the time period in and of itself, without comparing to previous periods in time. An alternative measure 

may have been to choose a methodology, which allows for direct comparability across different time periods, 

however, given the potential for the focus of this paper to drift, we find it to be of utmost importance to utilize 

a parsimonious methodology. Thus, by applying a case-like approach, it allows us to focus the discussion di-

rectly on the time period of interest and answer the question set out above most directly (Rugg & Petre, 2007).
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5.2	 Utilized Data

It requires the use of several types of data to answer the research questions set out above; from broad 

index data; to macroeconomic indicators and political proxies. Hence, to acquire such data, we have 

had to turn to several different sources. As the study has an American perspective and wishes to main-

tain comparability with the bulk of previous research, the utilized index, and the basis of the establis-

hed VRP, is the aggregate S&P 500 composite index. Meanwhile, we base the implied variance on the 

squared VIX index (in line with Bollerslev, et al. (2009) and (2014) and Huang, et al. (2018) among 

others). The construction of the VRP requires an estimate of both the implied and realized variance to 

be as accurate as possible. Thus, following the previous literature, we rely on high-frequency intraday 

data for the S&P 500 index and the VIX, as obtained via the Thomson Reuters DataScope Select da-

tabase (2018). Note, that this paper samples the VIX on an intraday frequency as well, while previous 

studies have sampled the VIX on a daily frequency. This is done to allow the study of the intraday 

relation between the VRP and returns on the S&P 500.

It is recognized by the authors of this paper that historical intraday prices may be recorded with er-

ror. However, for our sample, which only covers trading hours, we noted no clear outliers in the data 

that may have been caused by recording error for the S&P 500 index. However, for the intraday VIX 

sample, we noted a total of 18 outliers that seemed to be caused by error in the price records. These 

instances were checked against secondary sources (primarily Yahoo Finance), in which we compare 

the high and low price of the day to make sure that these “outliers” were in fact falsely recorded. The-

se were then removed by taking the last sensible price. The errors were contained to the sample prior 

to the global financial crisis and concentrated around market opening.

5.2.1	 Sample size

The initial sample period stretches from January 1996 to March 2018. This is due to several con-

siderations: (i) Firstly, we wish to generate a sample with sufficient overlap to previous studies to 

ease comparability. (ii) Secondly, we wish to generate a model that covers several economic states 

including periods of economic prosperity (2002 to 2007) and recession (2007 to 2009) . (iii) In this 

connection, it is necessary to have a significant amount of data prior to and after the financial crisis in 

order to test whether relations have changed during the course of the crisis. (iv) Additionally, to test 
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the effects of the election of President Trump, we naturally require a time sample during which he has 

been elected. (v) Lastly, as will be elaborated upon in further detail, we need a significant timespan 

to generate returns and train various models, such as the MC-GARCH model for modelling realized 

variance. Altogether, this leaves us with a raw testing sample spanning from February 24th 1999 to 

February 27th 2018, for a sample of 4,648 days, or 362,544 intraday observations.

We further decrease the sample size due to two considerations: Firstly, in order to conduct sensible 

controls for regressions, we include the price-earnings and price-dividend ratios on the S&P 500 in-

dex, in line with Bollerslev et. al (2009). However, as this information is only available from January 

1st, 2000 and onwards, and we further need to generate lags up to 2 years on the variables, our final 

testing sample stretches from January 10th 2002 onwards. Additionally, the latest measurement of 

the Consumption-Wealth Ratio from Lettau and Ludvigson (2001) is dated to September 2017. Hen-

ce, the final testing sample ends on September 27th 2017. Thus, our final testing sample comprises 

3,850 days, constructed from 300,300 intraday observations. While this does comprise a conside-

rable sample size, we include the final part of the sample from September 2017 to March 2018 in the 

sample covering the elective period of Trump and chose not to control for the CAY ratio. Thus, the 

post-election sample comprises 318 days of data or 24,804 intraday observations. For an overview of 

the sample, please refer to figure 5.A below. 

17  With recessions defined in accordance with National Bureau of Economic Research (NBER, 2018)
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Figure 5.A: Overview of sample utilized and sample cuts
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5.2.2	 The relevance of intraday data

For the purposes of this study, intraday data is highly relevant, as it yields more precise volatility 

estimates (Taylor, 2007): The many additional daily observations enable the authors to analyze how 

prices react to information on a much finer scale and hence heightens the estimation accuracy. Accor-

ding to Bollerslev, et. al (2009) and Hansen & Lunde (2006) realized variance calculated as the sum 

of squared intraday returns, should in theory be a consistent (and perfect) estimator of volatility, as 

the sampling frequency n goes to infinity. Furthermore, with more frequent portfolio rebalancing and 

an increasing availability of intraday data, volatility modelling and forecasting of high frequency data 

have become much more relevant and important to address within the literature of today. Intraday 

data contains more information of volatility dynamics and can vary greatly within a few days (thus 

the high frequency allows for more accurate forecasting models). For instance, during the financial 

crisis of 2007-2009, volatility spiked not only on a daily but on an intradaily basis. 
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Later, on the 6th of May, 2010 the US market experienced the 2010 Flash Crash, which lasted a mere 

36 minutes in which the broad market indices crashed and rebounded at an astounding velocity (Ki-

rilenko, et al., 2017). While the crash was short, it constituted a significant drop: “[B]etween 2:40 

p.m. and 3:00 p.m., over 20,000 trades (many based on retail-customer orders) across more than 300 

separate securities, including many ETFs, were executed at prices 60% of more away from their 2:40 

p.m. prices […] By 3:08 p.m. […] the E-mini prices [were] back to nearly their pre-drop level […]” 

(Kirilenko, et al., 2017). Although the magnitude of the intraday price drop was extraordinary, the 

rapid rebound meant that the drop was only mildly reflected at close, with the S&P 500 down 3.2% 

on the day and 6.6% by the end of May. Clearly this does not nearly reflect the potential 60% price 

plunge experienced by some investors. Hence, as this paper seeks to generate the most efficient model 

for financial volatility, intraday data is key, and the findings of this study can furthermore help provide 

better protection against drastic price fluctuations and major losses in the future (Narsoo, 2016).

Despite these advantages, intraday returns are affected by a bias problem that grows in magnitude 

when the frequency increases below a few minutes; the observations become contaminated by noise 

arising from market microstructure. These microstructure effects, also known as minute operational 

details, occur due to price discreteness, rounding, interpolation, bid-ask bounce and data recording 

mistakes - as well as the fact that the mere size of the dataset, even for just a few years, may entail sig-

nificant computational effort in estimation (Goodhart & O’Hara, 1997; Taylor, 2007). Furthermore, 

the market microstructure noise induces autocorrelation in the intraday returns, enhancing any auto-

regressive conditional heteroscedastic (“ARCH”) tendencies already existent in the data and causing 

estimated realized variances to become inconsistent. The trade-off between bias and accuracy in the 

variance estimation thus affect the choice of sampling frequency, and a moderate sampling frequency 

such as five minutes has been found to be the most consistent and is the most widely used (Hansen 

& Lunde, 2006). 

5.2.3	 Sampling frequency and return measurement

The balance between high sampling frequency to ensure estimation precision and the increasing im-

pact of microstructure noise, is thus a fine line. Based on this and following previous studies (such as 

Bollerslev et. al (2009) Huang et al. (2018) and Kilic & Shaliastovich (2017) among others), we use 

a sampling frequency of 5 minutes. The data is sampled for the five trading days per week in which 
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we disregard any prices falling outside the normal trading window of 9:30 a.m. to 4:00 p.m., notably, 

we thus disregard the last 15 minutes of trading on the CBOE in order to ensure that the VIX and 

S&P 500 indices line up. With a normal trading window, this gives 78 daily observations, for a month 

comprising 1,716 “five-minute” returns, assuming a typical trading month of 22 days. We calculate 

the continuously compounded return as follows:

In which PSPX,t represents the price on the S&P 500 index at time t. This study utilizes logarithmic 

returns for two primary reasons: Firstly, with relatively small returns (such as those observed on the 

5-minute horizon) logarithmic returns and simple returns converge. Secondly, logarithmic returns 

exhibit time-additivity, hence, to generate returns over a longer time horizon it is sufficient to sum the 

intermediary returns. 
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5.3	 Estimation and Construction of Variables

Based on the measured returns, we estimate the lower part of the VRP spread; the realized variance, 

while we estimate the implied variance from the VIX index. We further create a proxy for political 

events through Trump’s Twitter feed and include several variables from the previous literature. In the 

following segment, we seek to outline the estimation, construction and sourcing of these variables.

5.3.1	 Estimation of realized variance

As suggested by Andersen, et al. (2009), realized variance created from finely-sampled squared re-

turns comprises a good, non-parametric estimate which is well-accepted in the literature (e.g. Barn-

dorff-Nielsen & Shephard (2004), Bollerslev et al. (2009) and Huang et al. (2018)). However, like 

returns at coarser frequencies, intraday returns tend to show significant volatility clustering or ARCH 

effects. Hence, it also seems appropriate to model volatility with frameworks capable of handling this 

behavior in order to support the non-parametric approach.

5.3.2	 Model-free variation measure

From the returns described above, it is relatively straightforward to measure the model-free return va-

riation. In the following equation, pt denotes the logarithmic price of the S&P 500 index, from which 

the realized variance over the period can be measured as:

(5.1)
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In which convergence is based on n→∞, that is, an ever-increasing number of in-sample squared 

returns. However, as described above, a 5-minute return horizon seems to offer the strongest balance 

between estimation accuracy and microstructure noise. While this model-free measure has obvious 

strength in its simplicity and stability, it further poses a range of issues: (i) Firstly, as described above, 

it does not directly handle ARCH effects in the returns. (ii) Secondly, from a forecasting perspective, 

it does not allow the realized and implied variances to line up in terms of time subscript. Naturally, 

this does not matter if realized variance is assumed to be a martingale difference sequence, that is 

its expectation with respect to the past is zero and hence contains no autocorrelation. This would, of 

course, imply that no ARCH-effects are present in the returns, which is rarely the case for financial 

time series. Hence, it seems appropriate to model the time series with autocorrelation in the volatility. 

5.3.3	 GARCH-modelling of intraday volatility

In high frequency studies, as in studies with lower frequencies, GARCH models reign supreme in 

modelling autocorrelation in volatility. Furthermore, several extensions have been made to allow the 

GARCH models to capture observed market tendencies, in particular asymmetric effects of large 

shocks and price declines, adding to its dominance in volatility forecasting (Goodhart & O’Hara, 

1997). Few other approaches have emerged, of which the most prevalent method includes utilizing 

option implied volatility as a predictor of realized volatility, which has historically compared well with 

GARCH models. However, the use of option implied volatility to predict intraday realized volatility 

has remained cautious, mainly due to concerns as to whether option markets are sufficiently developed 

to allow for meaningful intraday volatility estimates (ibid). Furthermore, utilizing the option-implied 

volatility to model the realized variance for the purpose of estimating the VRP, which is the spread 

between these two volatilities, would introduce dependence, which may confound the analysis. Ano-

ther methodology suggested by Bollerslev, et al. (2014) is the use of a heterogeneous autoregressive 

model for modelling realized variance (HAR-RV). In this methodology, realized variance is regressed 

against its lagged values across different horizons, thus taking into account the autoregressive ten-

dencies in the realized variance. However, considering the general dominance of GARCH-models in 

the field, GARCH-modelling is considered the most robust modelling methodology for the purposes 

2
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of this study. Furthermore, including HAR-RV modelling in addition to GARCH-modelling, runs the 

risk of clotting the analysis with an overabundance of statistical considerations.

Despite its dominance within the field, GARCH modelling also suffers from issues when modelling 

intraday data, primarily related to (i) shock decay, and (ii) distributional issues. Firstly, the frequency 

of the data causes the coefficients of the GARCH models to sum to approximately one. This common 

feature causes volatility to become a random walk, potentially drifting out towards zero or infinity, 

and not necessarily follow a mean-reverting process. However, assuming the coefficients to sum to 

less than unity requires shocks to volatility to decline exponentially, yielding excessively fast decay 

rates (Goodhart & O’Hara, 1997). In terms of more stylized facts, intraday returns tend to diverge 

from lower-frequencies in terms of both the fourth and second moments: Intraday returns tend to be 

highly fat-tailed and hence distinctly unstable. Furthermore, intraday returns are inclined to exhibit 

seasonal heteroscedasticity in the form of daily and weekly volatility clustering, which may also be a 

driver of the high level of fat tails (Gençay, et al., 2001). This volatility pattern typically arises from 

market events, e.g. market opening and closing and lunch hours. Such phenomena are similar to low-

er-frequency seasonality and pose similar issues for GARCH modelling (Goodhart & O’Hara, 1997).

These distributional factors cause conventional GARCH models to be unsatisfactory in modelling 

intraday returns. In particular, as found in (Bollerslev & Andersen, 1997) estimation of MA(1,1)-

GARCH(1,1) models at intraday frequencies yields parameters that are inconsistent with parameters 

at other frequencies and further do not comply with the theoretical results of Drost & Nijman (1993) 

on the time aggregation of GARCH processes. The driving factor behind these inconsistencies seem 

to be a pronounced diurnal volatility pattern and trading activity (Engle & Sokalska, 2012), which 

cannot be handled by traditional GARCH/ARMA models, which are geared towards exponential 

decay patterns. Hence, in order to handle such patterns Engle & Sokalska (2012) introduced the Mul-

tiplicative Component GARCH (MC-GARCH), which decomposes the volatility into multiplicative 

components that are relatively easy to estimate and interpret separately (Narsoo, 2016).

5.3.4	 Multiplicative Component GARCH

The MC-GARCH assumes that the conditional variance of the high-frequency time series is the pro-

duct of three components: (i) the daily volatility, (ii) the diurnal volatility and (iii) stochastic intraday 
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volatility. We let Rt,i be the logarithmic returns on the S&P 500 index, in which t represents a particular 

day and i the regularly spaced intraday time period, for our purposes 5 minutes. In the MC-GARCH, 

the intraday return process is thus modelled as:

, , ,t i t i t i t iR h s q ε= (5.3)
	In which (i) ht represents the daily variance, (ii) si is the diurnal variance for each intraday period, 

(iii) qt,i is the intraday variance component and (iv) εt,i is an error term (or the standardized innova-

tion) which follows a specified distribution. The daily component ht can be estimated via standard 

GARCH methodologies. For our study, an Exponential Generalized Autoregressive Heteroscedastic 

(“EGARCH”) methodology is chosen, as it addresses some of the shortcomings of a traditional 

GARCH methodology. These shortcomings include the restriction to non-negative values, which the 

EGARCH avoids through a log-linear formulation. This means that possible instabilities of optimi-

zation routines are reduced (Nelson, 1991). Further, the EGARCH specification permits differential 

impact from negative and positive innovations (as captured through its γ-coefficient), importantly 

allowing for an explicit leverage effect in the model:
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Indeed, when fitting both GARCH and EGARCH models on the S&P 500 returns, both the AIC and 

BIC point towards the EGARCH as the most appropriate model (please refer to Appendix B for an 

overview of the model fit). In terms of the intraday variance, the diurnal component (si) is estimated 

as the intraday variance in each 5-minute interval:
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The returns on the S&P 500 are then normalized using the daily and diurnal variance:
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The stochastic intraday variance is modelled via a GARCH(p,q) process – for the purposes of this 

paper, a GARCH(1,1) process – and specified as:
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In which w ≥ 0, α ≥ 0 and β ≥ 0. In this study, the innovation component εt,i is modelled utilizing the 

Normal Inverse Gaussian distribution. This particular distribution allows the conditional distribution 

to be both skewed and leptokurtic (Stentoft, 2008) – a desirable feature considering the tendency for 

intraday returns to be fat tailed. Using this methodology, we gain the parameter estimates noted in 

Appendix B.

5.3.5	 Measuring implied volatility

This study quantifies the risk-neutral implied variance measure via the square of the VIX index (post-

2003 formulation18), following the approach in the Bollerslev et. al (2009) and Huang et al. (2018) 

studies among others. As mentioned, the VIX index calculation is based on highly liquid S&P 500 op-

tions with the model-free approach of pricing as a variance swap, specified to replicate the risk-neu-

tral variance of a fixed 30-day maturity, with weighting applied to a portfolio of options to ensure an 

average of 30 days to maturity. It is important to note that the VIX is subject to some approximation 

error, but that it has generally emerged as the industry standard. Bollerslev et al. (2011) confirmed the 

applicability of the model-free formulation via a small-scale Monte Carlo simulation, which showed 

that using options with one month to maturity is superior to the estimates found utilizing Black-Scho-

les implied volatilities.

5.3.6	 The issue of potential manipulation of the VIX

In mid-February, following the historically large observed spike in the VIX index days prior, an 

anonymous whistleblower urged the two financial regulatory bodies, the Securities and Exchange 

Commission (SEC) and Commodity Futures Trading Commission (CFTC), to investigate alleged 

large-scale manipulation of the VIX index. The issue underlying the allegation is the ability, given the 

structure of the VIX, to influence the level of the index without posting any capital in the process. The 

VIX is constructed using the mid-price of OTM options. However, for very DOTM options, trading 

tends to be limited and hence, many options will tend to have bids of zero and a non-zero ask (CBOE, 

2015). 

18  The CBOE formulated the VIX differently prior to 2003, where it was based on “S&P 100 options and Black-Scholes 
implied volatilities. The ‘new’ VIX index is based on S&P 500 options and model-free implied volatilities. Both indices 
calculations are still available from the CBOE web site. If more detail is needed, the authors kindly refer to the description 
in the CBOE VIX White Paper (CBOE, 2015)
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Given this structure, along with the inverted strike-weight of the VIX, posting bids for DOTM options 

with 30 days left to maturity has the potential to move the VIX by a relatively large amount. Due to 

this phenomenon, “aggressive” buy orders may be posted in the open-auction period, driving up the 

clearing price of the options and with them, the VIX. Indeed, looking at trading behavior for S&P 500 

options, Griffin & Shams (2017) find a large spike in trading in options with approximately 30 days 

to maturity in the window prior to 8:15am19 with an upwards moving price trend. In the following 15 

minutes, the price tends to ove downwards again implying that other traders put in orders to sell the 

overpriced options, adjusting the prices downwards. Griffin & Shams (2017) note that this behavior 

is only observed for OTM options, which count towards the VIX index, and not ITM options. They 

further conclude that this behavior cannot be perscribed to neither hedging or coordinated liquidity 

trading motivations.

While the VIX has come under increasing scrutiny, no agents have been convicted of market mani-

pulation and the allegations from both the anonymous source and those put forward in the Griffin 

& Shams (2017) paper have not been endorsed by the CBOE. Naturally, such allegations pulls into 

question the validity of the VIX index and may confound the analysis of investor behavior. However, 

given the lack of a stronger model-independent measure of implied volatility, the authors of this paper 

choose to continue the use of the VIX index.

5.3.7	 Creating a proxy for political events in the Trump era

In order to gain an understanding of how political events may affect the VRP and its components 

in the Trump era, this study takes a qualitative approach through the use of soft data points in the 

case study. The study thus defines a proxy for Trump’s public activity, and how this creates political 

events. With the rise of the social-networking platform Twitter, which is seen and used by millions of 

users, it is possible to collect data directly on Trump’s statements throughout his presidential period. 

With the dissemination of content via 140-character microblogs, known as ‘tweets’, Trump addresses 

the public directly, and expresses his opinions about companies and countries, as well as future US 

policies and other news, he may find relevant. Twitter has the extensive reach of 330 million active 

19  From 8:15am to market open at 8:30am, only trading in options unrelated to VIX settlement is allowed. Note that our 
sample only uses data from trading hours, and thus will not capture this trend. However, the implication of this trend, i.e. 
potential manipulation of the index may have a profound effect on our results
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monthly users and is thus a valuable communication tool for influencing the public for all types of 

politicians and celebrities (FXCM Market Insights (2017) and Statista (2018)). Trump’s frequent use 

of Twitter has become an influential force: he has amassed more than 51 million followers (making 

his account the 19th most followed globally), has tweeted more than 37,000 times (Trump, 2018) and 

many of these tweets are reprinted in media across the world. 

As Twitter comprises such a strong tool in terms of both (relatively) unfiltered opinions and good hi-

storical data storage, this study utilizes Twitter data in order to track the potential impact that Trump’s 

tweets have on stock market return and volatility. To ease the data collection process and because 

Trump, in some instances, deletes Tweets, we downloaded a full archive of Trump’s twitter feed from 

the third-party database Trump Twitter Archive (Trump Twitter Archive, 2018) over the time period 

stretching from November 8th 2016 (the day of the US election) till February 28th 2018. For each twe-

et, three data points are extracted: (i) date, (ii) time stamp and (iii) theme, which is a binary variable 

for seven different themes: Economic policy, politically themed tweets, tweets featuring ‘Democrats’, 

military policy, presidential duties, personal tweets and others. We further include a broad category 

called “fake news”, as this is the most frequent combination of words across the entire sample.

Twitter supplies elements of both surprise and uncertainty, and as such one could expect the financial 

markets to be affected by sudden tweets from important political actors, such as Trump. As an examp-

le, one can consider a tweet by Trump right after the 2016 election, where he voiced his personal opi-

nion about Boeing, saying “Boeing is building a brand new 747 Air Force One for future presidents, 

but costs are out of control, more than $4 billion. Cancel order!” (Trump, 2018). As a result, Boeing’s 

stock immediately dropped 1%, as investors speculated if the company would lose favor with the new 

administration. Hence, not only have ethical questions about how President Trump uses Twitter been 

put forward, but history also shows that the tweets do indeed have the power to impact public (and 

financial market) opinion (FXCM Market Insights, 2017). With the current digitalized environment, 

market participants conduct trades very quickly, and as such information from the President can ea-

sily be expected to create unpredictable market fluctuations – and Twitter provides an outlet for data 

which has an unfiltered direct link to Trump and to investors. 
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Even fictitious news releases have been seen to affect the stock market; in 2013 a fake news report 

was released regarding the health of the President of the Unites States. It was falsely reported that 

President Obama and other White House members had been injured in explosions. When the tweet 

was posted, the equities markets plunged: Within minutes the DOW index dropped 143.5 points and 

the S&P 500 lost US$139bn in value (Prigg, 2015). This furthermore underlines the importance of 

gathering intraday data points for the market index and volatility, as the markets react within minutes, 

and then recover on the same day, confirming that the 2010 Flash Crash was not an isolated event in 

this respect (FXCM Market Insights, 2017).

5.3.8	 Other predictor variables as control variables

In order to gauge the strength of the VRP as a predictor variable, this study also includes several clas-

sical predictor variables. Inspired by several studies (Ang & Bekaert, 2007; Lamont, 1998; Lettau & 

Ludvigson, 2001; Bollerslev, et al., 2009), this study have chosen to include daily observations on 

i) the three-month T-bill rate ii) the default spread, which is the spread between Moody’s BAA and 

AAA corporate bonds iii) the term spread, also referred to as the interest rate spread – the difference 

between interest rates at two different maturities (here the 10-year T-bond and the 3-month T-bill), iv) 

the stochastically detrended risk-free rate (three-month T-bill rate minus its backward twelve-month 

trailing average). These first four variables are all obtained from the St. Louis Fed. v) The Consump-

tion-Wealth ratio (CAY) as defined by Lettau and Ludvigson (2001) and obtained from their website. 

The consumption wealth index is measured on a quarterly horizon, hence, following the approach in 

Bollerslev et al. (2009), we define each observation from the last quarterly observation vi) we further 

include two constructed price ratios; the price-dividend (“P/D”) ratio and price-earnings (“P/E”) ra-

tio. Both are obtained from the database FactSet and are based the trailing 12-month averages on 

realized earnings or dividends as reported by brokers. Notably, this introduces some error margin 

as not all brokers update their estimates when a company announces earnings or dividends. Howe-

ver, overall, this methodology is empirically more stable relative to company reported figures in the 

database. Please refer to Appendix C for an overview of the included variables. Optimally, it would 

be preferable to have intraday data on all these variables in order to control the intraday regressions, 

however due to data limitations, this is not possible.
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5.4	 Statistical Properties of the Time Series

Over the sample period, the S&P 500 index had an average excess return of 3.71% (returns calcula-

ted as logarithmic returns in annualized terms, calculated on the monthly horizon), showing distinct 

departure from normality: As seen in the QQ-plot and histogram below, returns seem to exhibit ne-

gative skew with several extreme negative observations. At the same time, returns seem leptokurtic 

as evidenced by the distinct S-shape of the QQ-plot. Indeed, looking at summary statistics, we find 

kurtosis and skewness of 6.26 and -1.42 respectively (please refer to table 5.A below for a complete 

overview of summary statistics). As noted by Gençay, et al. (2001), fat tails are a common feature in 

stock returns in general, but especially on the intraday frequency. Since we construct daily returns 

from the sum of intraday returns, the high level of fat tails is not surprising.

Figure 5.B: Histogram and QQ-plot of daily excess returns on the S&P 500

Overview of distribution of daily excess returns on the S&P 500 (index returns less the US 3-month Treasury Rate) in the 
period from January 2002 to September 2018. Data sources: Thomson Reuters (2018) and (Federal Reserve Bank, 2018)

In terms of stationarity, an ADF test rejects the null hypothesis of a unit root at the 1% level, hence, 

stationarity is concluded for the returns. Testing for ARCH effects via Portmanteau-Q and Langra-

ge-Multiplier tests, the null of independence is rejected at the 1% confidence level for both tests, 

concluding that the returns seem to exhibit ARCH effects (please refer to Appendix D for the output 

of the ADF and ARCH tests). This suggests the use of the ARCH/GARCH family of models for 

volatility modelling. Further looking at the correlogram of the returns (Appendix B) a clear pattern 

repeating at every 78 observations (1-day) is evident, showing increases in volatility at open and close 

of the market.
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5.4.1	 Variance estimates

Following the non-parametric method for estimating realized variance as described above, we find an 

average monthly variance of 24.27% over the full sample, for a volatility of 4.23%20. Comparatively, 

following the same methodology, Bollerslev et al. (2009) find an average monthly variance of 14.93% 

for their sample stretching from January 1990 to December 2007. Notably, this sample does not inclu-

de financial crisis, and hence, it seems natural that the variance across our later sample is higher. For 

the MC-GARCH-modelled realized variance, we find an average monthly volatility of 4.13% for a 

variance of 26.77%. In Appendix B, the decomposition of the volatility is shown as the diurnal, daily 

and intraday volatility respectively with the last plot showing the total composite volatility for the 

time series. Between the two methodologies, we find a correlation of 0.65. For the implied variance, 

we find an average monthly value of 39.45, corresponding to an annual VIX value of 21.76.

5.4.2	 Generating the variance risk premium

The variance risk premium is constructed as the difference between the ex-ante expected implied 

variance less the realized variance. Utilizing the ex-post realized variance methodology, the variance 

risk premium becomes:

20  Note that both the model-free and MC-GARCH-modelled realized variance are based on the pure, logarithmic returns, 
not the excess returns

, 1 , 1t t t t tVRP IV RV+ −≡ −

Notably, the two time series do not line up and further, the RV does not model the ARCH tendencies 

of the data directly. However, it does offer a model-free approach in which the VRP is directly ob-

servable at time t. Instead employing the MC-GARCH methodology for the realized variance allows 

the IV and RV to coincide and further models the volatility more accurately. However, by utilizing 

the MC-GARCH method, we sacrifice the model-free approach in order to gain the expected variance 

risk premium, formed as:

(5.8)
	

, 1 , 1t t t t tEVRP IV RV+ +≡ − (5.9)
	

Using the two methodologies, we gain a VRP of 17.56 and an EVRP of 14.56. Thus, utilizing both 

methodologies, we find a positive variance risk premium in line with previous studies, however, 

slightly smaller than the one found in Bollerslev et al. (2009), who found an average VRP of 18.30.
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5.4.3	 The VRP from 2002 to 2018

During the sample period, the value of the VRP varies substantially, especially in the period during 

the eye of the storm of the financial crisis: In a period of just 48 trading days, the VRP ranged in valu-

es from a low of -283.815 to a high of 167.371, both representing in-sample extremes. The peak was 

observed on January 15th, 2009, generated from an implied variance of 233.230 and a realized varian-

ce of 65.859. During January 2009, both the implied and realized variance were in periods of cooling 

from having reached in-sample highs of 513.196 (on October 24th, 2008) and 475.704 (on October 

31st, 2008) respectively. For the implied variance, it took 241 days to go from the highest point to its 

long-run average, while it took the realized variance 189 days. Hence, it seemed that investor fear 

mean-reverted slightly slower than the actual realized variance, implying that investors took longer 

to forget the strong volatility shock than the actual market. On average however, the IV mean reverts 

faster as evidenced by the slightly lower AR(1) process coefficient in table 5.A.

Throughout the sample, negative VRP values are rare; out of 3,956 observations, they occurred only 

180 times, of which 59 occurred in the NBER-defined recession between December 2007 and July 

2009 (NBER, 2018). Given previous studies, it is hardly surprising that the lowest value of the VRP 

occurs during the tumultuos period of the financial crisis: In particular, if market suppliers of liquidity 

are highly constrained, it may cause a switch in the identity of the net-buyers of DOTM puts, driving 

signage change of the VRP (Chen, et al., 2014). Indeed, we find the lowest point only a few months 

before the highest point on November 4th 2008. This trough in the VRP is the middle observation of 

10 consecutive trading days of negative values, created by a mixture of the realized variance being 

slightly above the adjacent observations, while the implied variance was slightly below.

After the financial crisis, we observe the lowest value of the VRP on September 21st 2015 with a value 

of -48.574, following a pronounced spike in the VRP on August 24th 2015, when the Shanghai stock 

market fell 8.48%, causing stock markets to drop globally. The highest post-financial crisis value 

occurred on February 6th 2018, when the VIX-index performed the highest recorded jump in its hi-

story, increasing 115% in just one day to 37.32 (DeCambre, 2018), up from values of approximately 

11 just a week prior. This spike was followed by a drop in the VRP to -16.40 on February 26th 2018. 

Interestingly, across the sample, we see a tendency for strong spikes in the VRP to be followed by 

pronounced negative values in a matter of days after. Hence, it seems that there is a tendency for the 
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implied volatility to overshoot, with a market correction afterwards as a result. Whether this is due to 

the construction of the VRP, in which the implied variance runs 30 days ahead of the realized varian-

ce, or due to investors re-evaluating after fear spikes, is unknown.

5.4.4	 The EVRP from 2002 to 2018

Overall, the EVRP sees much stronger spikes than the VRP, especially of the negative kind, primarily 

driven by the EGARCH-formulation of the daily variance, which yields a negative coefficient on the 

γ-parameter (-0.038 on average). Negative values in itself are rare in the EVRP, as it is for the VRP, 

occurring just 242 times out of the total of 3,965 observations (6.1%). However, the magnitude is 

much higher: The lowest value is recorded on August 8th, 2008 at a value of -2,155.49, driven by an 

extraordinarily pronounced spike in the MC-GARCH estimated variance. While the magnitude of 

the spike is surprising, the date on which it happened is not; called the “the day the world changed”, 

August 8th, 2007 is widely recognized as the day the global financial crisis broke out, when banks 

across the US and Europe were brought to their knees in an unprecedented credit crunch. On this day, 

the FED and ECB felt compelled to inject approximately USD 90bn into the financial system in order 

to keep it afloat (Treanor, 2011). Hence, for the volatility to spike around such an event seems natural.

The MC-GARCH modelled realized variance generally mean-reverts quickly; the longest time from 

a negative spike to a return to the long-run mean was 178 days (following a spike on September 9th 

2008), while the strong spike observed for August 8th, 2007 had evaporated just 9 days later. Given 

the overall tendency for excessive decay in intraday GARCH modelling (Goodhart & O’Hara, 1997), 

this hardly seems surprising. In terms of the expected variance risk premium, we observe the highest 

value on November 28th, 2008 with a value of 150.946, following just 24 trading days after a period 

of pronounced negative values in the EVRP. This seems like a general tendency in the EVRP; from 

strong negative spikes in the EVRP (driven by the MC-GARCH modelled realized variance), the 

EVRP also mean reverts quickly and often overshoots into periods of above-average values. Once 

again, the specific cause of this behavior is unknown, however, it seems natural that the EVRP and 

VRP would behave differently in terms of patterns, given the realignment of time periods – for more 

detail, please refer to table 5.A below.
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Table 5.A: Summary statistics for key variables over the full test sample

The sample period extends from January 1996 to the end of February 2018. All variables are reported in an-
nualized percentage form whenever appropriate. Excess return (rSPX - rf ) comprises the logarithmic re-
turn on the S&P 500 in excess of the 3-month US Treasury Rate. IVt denotes the “model-free” implied va-
riance – or the squared VIX-index. RVt is the model-free realized variance, while ERVt denotes the MC-GARCH 
derived realized variance. From this, the VRPt denotes the spread between IVt and RVt, while EVRPt denotes the dif-
ference between IVt and ERVt. For a complete overview including control variables, please refer to Appendix E.

21  AR(1) process for excess returns shows significant autocorrelation due to mechanical autocorrelation created by sum-
ming returns over the monthly horizon. The AR(1) process without summing returns shows a coefficient of -0.08. , which 
is not significant at the 5%-level.
22  Note that in terms of regressions, the sample is cut in accordance to NYSE trading hours (EST 9:30 a.m. to 16:00 p.m.) 
and hence the number of Tweets within trading hours follows the NYSE hours.

 Summary statistics  Correlation matrix 
 Mean Std. 

dev Skew Kurt. AR(1)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 𝑅𝑅𝑅𝑅𝑡𝑡 𝐼𝐼𝐼𝐼𝑡𝑡 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑟𝑟𝑓𝑓 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡  26.77 73.23 12.90 269.8 0.60  1      
𝑅𝑅𝑅𝑅𝑡𝑡  24.27 44.16 5.92 44.30 0.99  0.648 1     
𝐼𝐼𝐼𝐼𝑡𝑡  39.45 48.02 4.15 24.21 0.98  0.687 0.901 1    
𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡  15.39 21.01 -0.39 31.43 0.90  0.221 -0.026 0.410 1   
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡  13.31 53.27 -22.88 802.6 0.27  -0.751 -0.071 -0.035 0.069 1  
𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑟𝑟𝑓𝑓  3.71 56.70 -1.42 6.26 0.9421  -0.461 -0.433 -0.500 -0.241 0.180 1 

 

5.4.5	 Trump tweets

Over the sample period stretching from the election (November 8th 2016) till February 28th 2018, 

Trump tweeted 2,903 times. Of these, the majority were outside trading hours: 26.67% occurred 

within NYSE trading hours, and 30.04% occurred within CBOE trading hours. Subtracting the twe-

ets occurring outside trading hours leaves us with a sample of 774 tweets22. The bulk of the total 

number tweets were political in nature, accounting for 36.41% of the total sample and 32.43% of the 

within-NYSE trading hours sample. Most of these tweets occurred outside trading hours, 76.26% to 

be exact. The second largest group, “Personal”, accounted for 25.53% of the total number of tweets. 

The group comprises a varied mix of tweets; from tweets regarding the “fake news press” to tweets 

on Christmas decorations in the White House. Like the political tweets, the lion’s share of Personal 

tweets occurred after trading hours (77.87%). Across all categories, the most frequently used phrase 

was “fake news” occurring in 185 tweets or 6.37%. Most of these stemmed from personal tweets, in 

particular in regard to the US media. Not considering the “Other” category, fake news had the second 

lowest percentage of tweets written within trading hours at 19.46%. Please refer to Appendix F for a 

full overview of the Trump tweets sample.
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Leaving out the “Other” category, Military and Economic tweets were the rarest of the categories, ac-

counting for just 4.17% and 9.30% of total tweets respectively. Economic tweets were slightly more 

represented in the sample covering within-trading hours, accounting for 10.08%, while only 7.49% 

of within-trading hours tweets were military in nature. Economic tweets cover a wide array of tweets 

that directly cover the US economy, including the Tax Cuts and Jobs Act of 2017, job creation and 

stock market performance. Notably most of these tweets occurred in November and December 2017 

(31.85%), when the Tax Cuts and Jobs Act was being negotiated. Meanwhile, military tweets cover 

both tweets regarding military spending in the US and the conflict with North Korea, including the 

threat of nuclear war. A large share of the military tweets (19.01%) were written in November 2017, 

a month following the terrorist attack in New York on October 31st, 2017 (Mueller, et al., 2017) and 

further the escalation of the potential nuclear conflict between the US and North Korea. 

5.5	 Regression Methodology

In accordance with the overall structure of this paper, the four phases of this analysis attempt to un-

cover the two following broad areas: i) The relation between the variance risk premium and returns 

on the S&P 500 index and ii) the influence of political events on the variance risk premium, and its 

components, with a focus on the Trump Era. Based on the results from these regressions, it is attemp-

ted to formulate trading strategies in order to uncover the possibility of consistently profiting from 

these results. 

5.5.1	 The VRP and return predictability: Daily regressions

In order to gauge the return predictability of the VRP on the S&P 500 index, this study utilizes a 

series of simple regressions directly between the VRP and stock returns over varied return horizons 

stretching from 1 to 24 months. Returns are constructed as the annualized rolling sum of the intra-pe-

riod daily logarithmic returns, yielding the following return regression:
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In order to test the parameter stability over time, this regression is run on the full sample, as well as 

for economically motivated subsamples; i) the period prior to the financial crisis, ii) the period during 

the financial crisis and iii) the period after. Furthermore, we test the period after the election of Trump 

separately, by making a pre- and a post-election sample for the second phase. Additionally, we for-

(5.10)
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mally test parameter stability by conducting rolling and expanding regressions as robustness checks. 

To further study the VRP’s return predictability and interlinks with other predictors, we run multiple 

regressions in which we include lags of well-known predictors from the literature:

0, 1, , 2, ,
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12 log( )
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t t j h h i t h i t t h
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R VRP
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β β β ε→ + +
=

= + + Γ +∑
In which Γ denotes additional regressors, each with their unique coefficient β2,h. As described above, 

these additional regressors include price ratios (price-earnings and price-dividends), the stochasti-

cally detrended risk-free rate, the term spread, the default spread and the consumption-wealth ratio. 

Furthermore, we run simple regressions on these predictors in order to test their individual predictive 

power relative to the VRP. As for the simple VRP-regressions, we test the multiple regressions over 

multiple time periods. However, for the samples pre and post the election of Trump, we test without 

the consumption-wealth ratio due to lacking data for the post-election sub-sample.

5.5.2	 Intraday regressions and the influence of politics on the VRP

While the VRP has consistently been proven to have the strongest predictability over a quarterly ho-

rizon (Bollerslev, et al. (2009), Huang, et al. (2018) and Kilic & Shaliastovich (2017)), few (if any) 

papers have looked at very short-term predictive power of the VRP to the knowledge of the authors 

of this study. Hence, we run the same simple regression from the previous segment on an intraday 

sample covering the hourly, twice hourly, half daily and daily return horizons. As mentioned, while 

it would have been optimal to control the intraday regressions utilizing similar economic controls as 

described in the multiple regression, this has not been possible due to lacking intraday data on key 

macroeconomic variables.

In terms of uncovering the influence of politics on the variance risk premium, and its components, 

we run multiple regressions based on dummy variables as constructed from our dataset of Trump’s 

Twitter feed. The dummy variables are constructed to have a value of 1 if a tweet of the category 

occurred in the previous 5 minutes, zero otherwise. The dummy then takes the next 5-minute value; 

that is, if a tweet occurred at 10:01 a.m., the tweet will be recorded for 10:05 a.m. We only consider 

tweets that have occurred within trading hours, as it becomes impossible to disentangle the individual 

effects of tweets outside trading hours as the effect of these will be pooled at market opening. As six 

of the seven categories are mutually exclusive, these do not cause concern regarding multicollinearity. 

(5.11)
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However, for the two categories “politically themed” and “mentioned ‘Democrats’”, we include an 

interaction term, as these are not mutually exclusive. Furthermore, as the category “fake news” has 

overlaps with multiple categories, we test this dummy variable in its own simple regression. From 

this, we run the following return regressions and variable regressions:

0, 1, ,
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12 log( )
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t t j h h i t t h
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= + +∑ (5.12)
	

0, 1, ,t j h h i t t htweetφ β β ε+ += + + (5.13)
	

1
78 22
jh = ×

In which Φ represents key variables, including the VRP, EVRP, realized variance and implied varian-

ce at time t+j. h is equal to the return horizon divided by the total number of daily observations (78) 

out of the number of days in a standard trading month (22). For a return horizon of 5 minutes, j takes 

the value of 1, 2 for 10 minutes and so on:

(5.14)
	

We run this regression over multiple return horizons, spanning from 5 minutes to a full day. We 

further construct a daily regression which includes all Tweets occurring from market closing the pre-

vious day to market closing on the day in question. We then run regressions between the sum of the 

tweets and returns, as well as key variables:
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(5.16)
	

Following the calculation above, h takes the value 1⁄22 in these daily regressions. Φ represents the 

same key variables as described above.

5.5.3	 Test-statistics and coefficient of determination

In the regression results noted below, all t-statistics are based on heteroscedasticity and autocorrelation 

consistent standard errors. For the regressions between the S&P 500 and the VRP, this paper employs 

Newey-West standard errors (which sums regressors in the past), following Huang, et al. (2018), Kilic 

& Shaliastovich (2017), Bollerslev, et al. (2015) and Chen, et al. (2017). However, as found by Hodrick 

(1992) and later studied in Ang & Bekaert (2007), long-horizon statistical inference with Newey-
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West standard errors can be treacherous: While Newey-West standard errors are both autocorrelation 

and heteroscedasticity consistent, highly persistent predictors can cause a significant downwards bias 

in the standard errors. This downwards bias tends to cause results to be plagued by over-rejection 

of the null (type I error) and distorted R2s. This is highly relevant for this study, considering both 

the inclusion of highly persistent predictors (such as price ratios and interest rates), as well as the 

introduction of persistence through the construction of variables; in particular, both realized variance 

and returns are constructed through rolling sums, which introduces mechanical autocorrelation in 

the sample. For our main results revolving around the quarterly to 4-month horizon, the choice of 

standard error is not considered as crucial, but when looking at longer horizons (one year and beyond), 

results should be interpreted with caution (Ang & Bekaert, 2007). For our intraday regressions based 

on dummy variables, we use Driscoll-Kraay (1998) standard errors. These standard errors apply a 

Newey-West type correction to the cross-sectional averages in order to account for cross-sectional or 

spatial dependence. For large samples, the Driscoll-Kraay standard errors are robust to both cross-

sectional and serial correlation, and are further heteroscedasticity consistent (Hoechle, 2007).

Additionally, we report the ability of the predictors to explain the variability of the returns through 

the adjusted R2. However, when looking at the variables noted above (along with the full overview 

of summary statistics in Appendix E including all control variables), persistence coefficients are 

very high, especially for the control variables. As noted throughout the literature (Stambaugh (1999) 

and Lewellen (2004) among others), this may cause serious issues with spurious and unbalanced 

regressions. Hence, the reported R2 for regressions with overlapping multi-period returns should be 

interpreted with caution. This is especially true for the longer horizon: In their paper from 2008, 

Boudoukh, et al. show that despite a lacking increase in true predictive power, the value of the R2s from 

regressions with highly persistent predictors and overlapping returns will, through sheer construction, 

increase approximately proportionally to the return horizon and the length of the overlap. Hence, this 

issue becomes of key concern for our long-horizon returns (one year and beyond) and in particular 

with regards to multiple regressions, which include strongly persistent predictors. However, as above, 

for the main results of this paper revolving around the quarterly horizon these issues are not as large 

in magnitude.
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Lastly, as mentioned above, the VRP (along with returns) tend to deviate significantly from average values 

in periods of economic distress. As our sample covers a period of extraordinary economic conditions 

during the financial crisis, both the dependent and independent variables can take extreme values. In such 

a situation, even in samples with good volume, standard asymptotic inference becomes unreliable (Kilic & 

Shaliastovich, 2017). Hence, in order to alleviate concerns as to whether regressions are driven by outliers 

stemming from such deviation, we further conduct the daily and intraday regressions on winsorized samples.

6	 Analysis of the VRP as a Predictor of Stock Returns
Based on the chosen methodology described in the previous section, the following analysis shows 

how these regressions may attempt to describe the predictive availability of the VRP and other vari-

ables from the literature. The ultimate goal of this analysis is to attempt to answer our two guiding 

research questions (no. 2 and 3); that is, whether the VRP remains a dominant predictor of stock 

returns on the short to intermediate return horizons, as well as two explore if and how the VRP and 

its components are affected by the political era of Trump. In order to uncover the highest degree of 

predictability, regressions are run over multiple return horizons, with interpretations of the empirical 

results focusing on the horizon with the strongest predictability in the full sample. As noted above, all 

reported t-statistics are based on robust Newey-West standard errors, however, given the long return 

overlaps especially the R2s should be interpreted with caution.

6.1	 Full Sample Regressions

Our full sample regressions cover a period stretching from January 2002 to September 2017. As our 

construction of the variance risk premium predictor variable is twofold, referred to as the ‘VRP’ and 

the ‘EVRP’, this paper naturally offers a dual-track analysis, which studies the coefficient size and 

explanatory power of both measures. However, the primary focus will be on the VRP measure, both 

in order to ease comparability with former papers, but also since the secondary EVRP metric can be 

viewed as a support of the non-parametric formulation of the VRP and thus as an inherent robustness 

check. This analysis begins with assessing the predictability of the VRP measure constructed identi-

cally to the BTZ paper’s methodology, with h horizons spanning from 1 to 24 months. Figure 6.1.A 

below illustrates the plotted beta estimates for the VRP and adjusted R2 for the stated return regression 

formula (5.10) at the different horizons: 
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Figure 6.1.A: VRP stock return predictability on the full sample
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Overview of estimated β coefficients (a) and explanatory power (b) on a simple regression between the VRP for time t, 
against the return for time t to t+1

Considering figure (a) above, the slope is seen to peak both at the origin and at the 3.5-month horizon, 

followed by a downward-sloping pattern of the beta estimate, as the return-horizon increases. Relati-

ve to the BTZ study, which find a more consistently decreasing β-coefficient, our slightly hump-sha-

ped beta development constitutes an interesting divergence to the earlier paper. However, taking the 

95%-confidence intervals into account, it is clear that a positive relationship between the VRP and 

the expected excess return of the S&P 500 index can be confirmed. Additionally, due to the narrow 

confidence intervals, the accuracy of our model seems quite good until the return horizon surpasses 

6 months and the lower bound moves below zero. Looking at the origin of the graph, while the beta 

estimate is quite high, the confidence interval is also quite wide and below zero on the lower bound. 

Hence, the return regressions’ estimated β-coefficients do not provide evidence of rejection of the null 

of no predictability. Compiling these observations, our empirical findings seem to compliment earlier 

conclusions,  as we detect the largest degree of predictability of the VRP at the intermediate return 

horizons between three to six months (Bollerslev, et al., 2009; Shaliastovich, 2015; Bollerslev, et al., 

2015; Dreschler & Yaron, 2009; Du & Kapadia, 2012; Bollerslev, et al., 2014).

As the BTZ paper finds the largest degree of predictability at the 3-month horizon, while the more re-

cent paper by Bollerslev, et al. from 2014 finds the largest degree of predictability of the ‘global’ VRP 

to be at the 4-month return regression horizon, we tested whether the predictability within our model 

(b)(a)
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peaked between these two horizons. Interestingly, a peak indeed exists between the two monthly re-

turn horizons at 3.5-months, where the VRP appears to offer the strongest degree of predictability as 

evident in the right-hand plot of the adj. R2, which yields a maximum of 3.6% at the 3.5-month return 

horizon. This is backed by the 3.5-month return regression also offers the highest slope coefficient of 

0.264. Both of these coefficients are slightly below those afforded by BTZ for the 3-month horizon.

Consequently, our findings confirm the predictive abilities of the VRP, and especially that the de-

gree of predictability maximizes just past the quarterly horizon. Comparing to the theoretical model 

predictions in figure 2.D, our findings exhibit great similarity, in particular in terms of the shape of 

the adj. R2 as well as the positive relationship between the VRP and returns. In accordance with the 

theoretical model, this may indicate how the VRP succeeds in isolating the systematic risk factor of 

time-varying volatility in consumption growth and persistence in volatility-of-volatility. Hence, the 

afforded predictability exists due to a mispricing of assets with respect to the specific risk characte-

ristics, assuming a mean-reverting process driven by arbitrage. Thus, the VRP illustrates the market 

pricing of risk and is thus useful in gauging the current investor sentiment. The positive beta coef-

ficients further validate the contemporaneous leverage effect, which cause asset prices to fall when 

volatility shocks occur. Following the shock, investors remain fearful, continuously paying heighte-

ned premiums for DOTM puts (driving up the VIX) and pricing with increased discount rates. As the 

memory of the shock diminishes, investors lessen their discount rates and prices slowly revert back 

upwards (Hull, 2012; Coval and Shumway, 2001).

When looking at the ERVP for the same regressions, we find supporting empirical results relative to 

our VRP simple regression (please refer to Appendix P for the regression output for the EVRP). Ge-

nerally, the estimated slope coefficients are lower, and do not reveal the same ‘peak’, but in terms of 

explanatory power, we see a similar pattern to the VRP findings above. The largest degree of expla-

natory power is at the 4-months return horizon, after which the adj. R2 tapers off. Looking across 

horizons, the betas tend to move towards zero with sub-zero lower bounds on the confidence intervals after 

the 6-months mark. That the EVRP results diverge from the VRP results is not surprising: As seen in figu-

re 6.1.B below, the forecasted variance sees much stronger spikes relative to the non-parametric realized 

variance, driven by the EGARCH-modelled daily variance. This affects the EVRP, by potentially produ-

cing outliers, which can distort the regression outcome and predictability, resulting in lower β-estimates 
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and explanatory power. Hence, the winsorized sample may yield interesting results in comparison. 

In terms of the shift in predictability to the 4-month mark, it seems indicative of a slightly stronger 

persistence in the volatility-of-volatility in the EVRP.

Figure 6.1.B: realized variance metrics over time

Overview of the MC-GARCH modelled realized variance (blue line) and the non-parametric realized variance estimate 
(red line). Shown for the full sample stretching from January 2002 to September 2017.

6.1.1	 Multiple regressions

For the simple regressions, both measures yielded a peak in the degree of predictability just past the 

quarterly horizon: 3.5-month horizon for the VRP and the 4-month horizon for the EVRP. In order to 

study whether these findings are driven by unobserved variables, we further run multiple regressions 

including variables from the existent literature (following regression equation 5.11). Looking at the 

output in Appendix G, it is evident the VRP has the strongest t-statistic and further has the highest 

explanatory power across all simple regressions, except for the price-earnings ratio, which affords a 

similar R2 (3.7%). However, the estimated β for the P/E ratio is insignificant, which may indicate that 

the R2 is inflated by high persistence in the ratio.

In terms of significance, only the stochastically de-trended risk-free rate (RREL) yields a significant 
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result, however, only at the 5% level compared to VRP, which is significant at the 1% level. It is 

further worth noting that the R2 of the RREL is an impressive 8.8%, however, as for the P/E ratio, this 

may be due to high persistence. The rest of the predictor variables yield insignificant results with low 

explanatory power, even the P/D ratio, which should be one of the better predictors on shorter return 

horizons (Davis, et al., 2012). Overall, these findings support previous studies, which also find the 

VRP to be dominant in predicting returns on the intermediate horizon.

Considering the multiple regressions on the 3.5-months return horizon with the VRP and key eco-

nomic variables (regressions numbers 10-15 in appendix G), we continue to find the VRP to be the 

superior predictor, in line with Bollerslev, et al (2009). Despite slightly lower β-coefficients and R2s, 

the regression yield even higher t-statistics than in the BTZ paper, with the VRP predictor remaining 

significant at the 1%-level across all regressions as well. With the inclusion of the P/E ratio (reg. 

no. 10), the explanatory power increases to 7.6%, in excess of the sum of the individual adj. R2’s. 

Combining these two predictors thus contains predictive power in excess of the sum of the parts, 

with the significance of the P/E ratio increasing to the 10%-level as well. This is further consistent 

with the qualitative implications of the economic model put forward by Bollerslev, et al (2009), as 

the regression contain parameters explaining time-varying volatility and volatility-of-volatility, while 

also predicting the mean of consumption growth (Bollerslev, et al., 2009; Bansal & Yaron, 2004). 

However, it remains vastly dominated by the degree of predictability afforded by the VRP, of which 

the t-statistic becomes even more impressive. For the same multiple regressions with the EVRP on the 

4-month return horizon, the P/E ratio becomes significant at the 5%-level, with the EVRP remaining 

significant at the 5%-level.

Looking at regression 11 in Appendix G, adding the CAY (consumption-wealth) ratio to the VRP in 

the predictive regressions yields a much higher adj. R2 of 9.2%, compared to 3.6% and 2% for the 

VRP and CAY simple regressions, respectively. The t-statistic of the VRP is further increased, and 

greatly dominates the t-statistic of the CAY ratio. Interestingly, contrary to the BTZ findings, we find 

a negative signage of the CAY ratio. Comparing to the EVRP regression output in Appendix H, the 

CAY predictor variable coefficient is smaller and insignificant, while still carrying negative signage. The 

low predictive power is most likely due to the fact that the CAY ratio is expected to have larger explanatory 

power on longer horizons, much like the P/E ratio (Lettau & Ludvigson, 2001). If we compare 
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our findings to Bollerslev, et al. (2011) regarding the volatility risk premium, we expect that adding 

the P/E ratio or the CAY ratio to the multiple regression would lower the adjusted R2’s, and only the 

VRP to remain significant in the predictive regressions (Bollerslev, et al., 2011). Thus, our findings 

support Bollerslev, et al. (2011), assuming that the square root process behaves akin to the VRP. 

While the massive increase in the constant may seem strange, it follows the empirical results 

presented in the BTZ, and it intuitively makes sense, as the β-coefficient for the P/E and CAY ratio 

are very large relative to the VRP.

As we find the simple regression on the de-trended risk-free rate (RREL) to have significant 

predictive powers on the intermediate return horizon, we further run the VRP and RREL together 

against excess returns (regression 12). This yields an even more impressive t-statistic of 5.346 for the 

VRP predictor, and the β-coefficient increases to 0.396 relative to the simple β-coefficient of 0.264. 

As noted above, the RREL was the only predictor variable that revealed some significance at the 

simple predictor regression level besides the VRP and EVRP, and this significance remains in the 

multiple regression at the 1%-level. Together, the two variables yield the highest R2 yet at 16.3%, 

much higher than the sum of the individual R2s. Comparing to the EVRP 4-month return regression 

in Appendix H, the RREL actually reveals higher predictive powers and more significance that the 

EVRP, however, overall the R2 is lower at 12.2%. Nevertheless, the EVRP still provides support for 

the findings for the VRP.

Combining only the economic variables, we find consistent results to those above: both the P/E and 

the CAY ratio predictors are found to be insignificant, with low t-statistics and a lower adj. R2 of 13% 

(and 14.2% for the 4-month regression), while only the RREL is significant. Intuitively, it makes sense 

that the adj. R2 is higher for the excess return regression with the longest horizon, as the predictor 

variables, excluding the VRP, are known to have stronger explanatory powers over longer time perio-

ds. Furthermore, these are also more subject to inflation in the R2 due to the high level of persistence.

Adding back the VRP (reg. no. 14), results in largest explanatory power yet (adj. R2 of 23%) and the 

highest slope coefficient for the VRP of 0.490. The multiple regression also reveals more significan-

ce for the P/E predictor variable, which becomes significant at the 5%-level. Furthermore, the VRP 

remains the dominant predictor on the 3.5-month return horizon, with a t-statistic of 5.235. The same 
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pattern is evident in the 4-month EVRP return regression, also yielding the highest coefficient for the 

EVRP at 0.091. A possible driver of the higher explanatory power could be that adding long-term pre-

dictor variables enables the return regression to capture both short- and long-term risks in the market. 

Furthermore, by creating a more ceteris-paribus-environment, the VRP is perhaps more capable of 

truly isolating the risk factor associated with consumption growth volatility. Finally, including the last 

predictor variables, while omitting the CAY-ratio in line with Bollerslev, et al. (2009), the β-estimate 

for the VRP and the adj. R2 deteriorates. This contrasts the findings in the BTZ paper, as they find 

the highest explanatory power in the full regression, albeit with only a marginal increase to the other 

regressions.

6.1.2	 Regarding the intraday relevance of the VRP in the full sample

Besides the regressions conducted on a monthly return basis, we also investigated the intraday predic-

tability of the VRP. As shown in Appendix I, all our findings are positive and significant for the VRP, 

with the strongest degree of predictability on an hourly basis, while controlling for realized variance. 

The estimated β-coefficient reaches 1.176 with significance at the 5%-level. Hence, the if the VRP in-

creases by 1, the log-return will increase by 1.176 percentage points in the following hour. The risk of 

inflation of both significance and R2s is not of key concern in these short-term regressions, and indeed 

the adj. R2 remains small, indicating that the VRP is not a key driver of short-term return variation. 

However, a criticism of this result is that we are not able to add control variables to the regression to 

test the consistency and robustness of our findings due to limitation of high-frequency data points, 

which might cause omitted variable bias.

In summary, we confirm the VRP to be a dominant predictor over the intermediate horizon across simple, as 

well as multiple regressions. While we find higher adj. R2s in the multiple regressions, relative to the BTZ study, 

we find overall lower slope coefficients and adj. R2s in the simple regressions. Furthermore, it is quite interesting 

that relative to other studies (Bollerslev, et al., 2011; Bollerslev, et al., 2009), the variable based on the CAY 

ratio has opposite signage. Taking the development of the S&P 500 and the fear index (VIX) over the course of 

our sample period into consideration, one might consider how the global financial crisis (“GFC”) affects these 

findings, given the high level of volatility characteristic of this period. From figure 6.1.C below, the high level of 

return volatility is evident, as well as the strong spike in the VRP. As noted above, we see further observe a strong 

negative spike in the VRP, potentially indicative of an “overshooting” effect in the implied volatility.
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Figure 6.1.C: S&P 500 returns and the VRP over the full sample period
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Given such radical change in both the independent and dependent variables, we further test the 

regressions above across three subsamples: i) the period prior to the financial crisis, ii) the period 

during the financial crisis, iii) the period after and lastly iv) the period prior to and after the recent 

US election. In addition to checking parameter stability, this dissection of samples further eases 

comparability to previous studies, which typically contain results from earlier dates (Bollerslev, et al., 

2009; Bollerslev, et al., 2011; Shaliastovich, 2015; Bollerslev, et al., 2015; Dreschler & Yaron, 2009; 

Dreschler, 2013; Kelly & Jiang, 2014).

6.2	 Pre-GFC Sample 

We define the pre-GFC sample as the time period spanning from January 2002 until December 2007, 

which ends at the American National Bureau of Economics Research’s definition of when the Global 

Development of daily log returns on the S&P 500 and the VRP over the full sample period stretching from January 2002 to 
September 2017. The global financial crisis (December 2007 to July 2009) is denoted with a grey backdrop. Data source: 
Thomson Reuters (2018)
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Financial Crisis (GFC) began (NBER, 2018). This sample period comprises the largest overlap with 

the BTZ paper, whose sample stretches from January 1990 to December 2007 and it is thus interesting 

to see whether we find (even) more comparable results than in our full sample findings. The most 

striking feature of our VRP regression results is the curvature observed for both β-coefficients and R2 

across return horizons. In terms of slope coefficients, we no longer see any significance across any of 

the return horizons and the β-estimate further remains flat throughout time. The right-hand side graph 

illustrating the explanatory power still exhibits a similar shape as for the full sample, which peaks at 

the 3.5-month return horizon, but the regressions exhibit much lower levels of adj. R2 and further a 

tail at the very long horizons.

Figure 6.1.D: Estimated β and adj. R2 for the pre-GFC sample

(b) VRP adj. R2(a) VRP β-coefficient
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(d) EVRP adj. R2(c) EVRP β-coefficient

In figure 6.1.D above, we also see drastic changes in the curvature for the EVRP’s predictability. 

What is particularly interesting is that both the estimated slope coefficients (left) and the explanatory 

power (right) seems to peak at the 3.5-month return horizon rather than to the 4-month return horizon 

as evident for the full sample. Furthermore, the explanatory power remains low overall (maxing at 
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0.7%) and while it tapered off both for the VRP and EVRP regressions in the full sample, it shows a 

strong spike at 24 months, akin to the VRP results above. It is furthermore important to note how wide 

the 95%-confidence interval bands are across all horizons, thus implying an inability to reject the null 

at any of the return horizons. Hence, for both the VRP and EVRP, we can no longer claim the VRP to 

be a significant predictor of future index returns on our pre-GFC sample, when comparing only the 

simple return regression (please refer to Appendices J and K for a full overview of the outputs). On 

the intraday regressions (Appendix I), we likewise find no predictability, which may be due to less 

fear in the market, or slower reaction times in this sample period. In terms of the simple regressions 

on economic variables, not only is the RREL no longer a significant predictor, but the P/E ratio seems 

to have been a far stronger predictor prior to the GFC, as it is now significant at the 1% level.

In terms of multiple regressions for the 3.5-month horizon with the VRP (Appendix J), the VRP be-

comes a significant predictor at the 1% level in regression no. 10 and 12, which includes the P/E ratio 

and RREL, respectively. Again, one could argue that by including both a more long-term predictor 

(P/E or RREL) and the VRP, this regression captures different, important risk factors that affect the 

equity premium simultaneously. This observation is further supported by the fact that the explanatory 

power of the multiple regression (no. 10) outperforms the individual adj. R2s, reaching 32.6%. Howe-

ver, when only including the traditional predictor variables, we find an even more impressive adj. R2. 

The highest is found in the final (no. 15) regression, including all predictor variables: In this regressi-

on, we find an R2 of 57.6%, despite the VRP remaining insignificant. However, we caution that this R2 

is likely inflated by the persistence of the predictors. A potential driver of the lack of predictability for 

the VRP may be a change in investor psyche, and that an increased fear of crashes has made the VRP 

a more significant predictor after the GFC compared to the precedent period. In the EVRP regressions 

on both the 3.5 and 4-month return horizons Appendix K, the EVRP actually proves to be a slightly 

significant predictor in the full multiple regression on the 4-month horizon, albeit on the 10%-level 

and with a switched signage on the β-estimate of -0.025. This regression result reveals the highest 

explanatory power yet – namely an astounding 63.1% in adj. R2.

Some points can be made as to why the pre-GFC results for the VRP’s and EVRP’s predictive power 

are less encouraging than our own findings for the full sample size, and relative to those in Bollerslev, 

et al.’s (2009). Firstly, one should keep in mind that the time-periods do not completely overlap – in 
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actuality, we are 12 years short of data-points, as their sample stretches from January 1990 to Decem-

ber 2007, making it unjust to draw direct parallels between the results. Secondly, looking at figure 

6.1.C, plotting the VRP and the log returns on the index, we see that about a third of the sample period 

is characterized by a medium level of volatility, and this might also make it hard to predict returns – 

especially since it seems the VRP at that time did not spike as easily as it has done in recent years (it 

is quite narrow especially around late 2002 – early 2003). All in all, this opens up to several questions 

as to why the VRP proved to be the dominant predictor over the full sample size, as well whether the 

investor psyche or fear might have changed over time. In particular, how the VRP performs in a time 

period of the highest volatility seen since the Great Depression.

6.3	 Global Financial Crisis Sample

The time period most deeply affected by the GFC stretches from December 2007 to July 2009 (NBER, 

2018). As this time period comprises less than two years, it could create spurious results to run the 

regressions over 24 months, hence we have chosen to run the multi-period simple regression with 

horizons spanning up to 12 months. This subsample continues to support the fact that the VRP is a 

dominant predictor especially at the 3.5-month horizon.  Looking at figure 6.1.E below, it is clear that 

the VRP as a predictor depends non-trivially on the return horizon: the explanatory power peaks at the 

3.5-month return horizon yet again. The adj. R2 is almost 12% for a simple regression – with quite a 

margin to the second highest which is below 6% in comparison. Despite relatively narrow confidence 

intervals, they are, for the most part, below zero, only allowing for 5%-significance at the 3.5-momth 

horizon. The confidence intervals widen significantly past the 5th month, where the adj. R2 further 

dips towards zero. Looking at the regression output in Appendix L, we see that the estimated beta 

coefficient of 0.395 is significant at the 1% level in the simple regression with VRP.

We know from the economic model presented that the persistence in volatility-of-volatility (“VOV”) 

drives the VRP, reflecting the compensation for underlying, priced risk factors as known from the 

CAPM (Merton, 1973), which in turn also underlines why we see a positive relationship between the 

VRP as a risk compensation and the expected excess return. Based on the adj. R2, it seems that the 

VOV became a significant driver of the excess stock returns in the highly volatile era of the GFC. 

Comparing our findings to the BTZ paper, we see that while our estimated coefficient and predictabi-

lity is lower, our t-statistics are higher and we further find a higher level of explanatory power.
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Figure 6.1.E: Estimated β and Adj. R2 for VRP regressions in the GFC sample

(b) VRP adj. R2(a) VRP β-coefficient
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One has to keep in mind that at that time the average VIX was about 22 points above its long-run 

average of 17, which was driven mostly by the beginning of the sample period. Volatility was the 

highest right after the crash, this was evident both in the implied variance, and in the realized variance 

measure: Right after the Lehman crash, the RV spiked much more than the VIX, underlining how the 

crash seemed to blindside the market. Hence, the highly volatile VRP seen in graph 6.1.C, contains 

multiple negative values. Such negative VRP values further indicate that options prices are expec-

ted to rise, as the investor fear incorporate the shocks to the realized variances in their expectations. 

Furthermore, the contemporaneous existence of a negative VRP and negative returns is an example 

of the leverage effect at work, with returns dropping simultaneously with upwards spikes to the vo-

latility. As described earlier, with spikes to the RV and IV, we tend to see a relatively slower mean 

reversion of the IV from strong spikes, which creates a widened VRP-spread for a prolonged period 

of time. However, as noted, this tendency does not hold on average, as the RV has slightly lower 

autocorrelation across the sample.

A critical finding, which we also established in our main sample analysis, was that the traditional 

construction of the VRP is the strongest predictor, rather than the EVRP, which is again the case for 

this subsample: We find no significant results for the EVRP on any return horizon for the simple re-

gressions, and only one significant result at the 10%-level for the multiple regressions at a 3-month 

return horizon. Looking at the plotted estimated slope coefficients for different horizons in Appendix 

P, as well as the adj. R2 for the EVRP, this is not surprising – the confidence intervals are wide and 

only slightly above zero at the 3-month return horizon, with low β-coefficients. Given the tendency 

for the MC-GARCH to model very strong spikes, along with the fact that the GFC-subsample contains
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the largest outliers in the full sample, the lack of significance does not seem surprising. Hence, a 

winsorized EVRP sample may yield more compelling results, which indeed the case, as noted in our 

robustness checks below.

While we found no significant relationship between the VRP and returns intraday prior to the crisis, it 

is evident in Appendix I that we now discover a positive significant relationship on the 5% level even 

on an hourly basis. The VRP estimated β is 1.71 with no controls, with a t-statistic of 2.037, which 

could be interpreted as more fear to be driving the returns, even on an hourly basis. This intuitively 

makes sense, as the market in this time-period is the most volatile in our full sample, and both the VIX 

and especially the RV is seen to spike several times during a single day.

Isolated, none of the economic variables carry any predictability in the simple regressions. Meanwhi-

le, in the multiple regressions, we see that including the P/E ratio increases the t-statistic, while 

maintaining an estimated β-coefficient at the same level. However, it actually reduces the explana-

tory power, as the sum of the individual adj. R2’s is larger than that of the multiple regression. The 

most significant regression output is regression number 15, including all predictors. This regression 

explains 70.8% of the variance of the excess returns in the financial crisis sample, while the estimated 

β-coefficient for the VRP falls to 0.268. Naturally, such high R2 does raise concerns as to whether the 

R2 may be inflated by the strongly persistent predictors and further the long overlap in returns relative 

to the length of the entire sample.

This subsample offers several key findings, which can be useful for both practitioners as well as 

researchers: While many consider the GFC as a time of uncertainty, unpredictability and drastically 

shrinking funds, these findings prove the VRP to be a reliable and dominant predictor of returns, even 

in the most volatile of times. One could pose that the predictive powers of the VRP is of particular 

importance in periods of heightened uncertainty, as it not only offers insights into the uncertain future, 

but does so on the very short-horizon, which may be of key concern in such tumultuous times.

6.4	 Post-Global Financial Crisis Sample

Due to the data limitations in the CAY ratio, the post-GFC sample stretches over a time period of ap-

proximately eight years (July 2009 – September 2017). A representation of the computed multi-period 
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return-regressions up to 24 months are shown below, again illustrating the development in the estima-

ted slope coefficients and the explanatory power for both the traditional construction of the VRP as 

well as the MC-GARCH constructed EVRP. Contrary to the other samples, we now find coinciding 

curvatures for both the EVRP and VRP. Furthermore, we see a switch in the peak return horizon for 

the EVRP and the VRP: The EVRP now peaks at 3.5-month, while the VRP peaks at the 4-month 

return horizon. While the EVRP has been more unstable as to which horizon provides the highest de-

gree of predictability, the VRP has, until this subsample, been stable at the 3.5-month return horizon. 

Nevertheless, while the curvature is now quite similar for the two metrics, the magnitude is vastly 

different: The VRP multi-period regression reveals a β-coefficient reaching 0.543 (with a narrow con-

fidence interval) at the 4-month return horizon, while the EVRP reaches an estimated slope of 0.217 

with wider confidence intervals. However, it is quite clear that both bands are above zero and looking 

at the regression outputs in Appendix N for the 4-month VRP return regression and Appendix O for 

the 3.5-month EVRP return regression it is clear that both regressors are strongly significant for their 

respective return horizons.

Figure 6.1.F: Estimated beta and Adj. R2 for VRP regressions in the post-GFC sample
(b) VRP adj. R2(a) VRP β-coefficient

(d) EVRP adj. R2(c) EVRP β-coefficient
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The increased coefficients and the switch in predictability horizon may be interpreted as a change 

in investor psyche in the aftermath of the GFC: The increased return predictability to 4 months may 

imply an increased persistence in the volatility-of-volatility, which causes the predictive horizon to 

be pushed outwards in line with the underlying economic model of this empirical study. Given the 

depth of the recent financial crisis, it seems natural that investors, rattled by the massive volatility 

spikes, would change their perception of risk, perhaps pushing them to demand more DOTM puts and 

to demand these for prolonged periods of time. Furthermore, the larger coefficients on both the VRP 

and EVRP indicate that fear has become a more pronounced factor in asset pricing, yielding greater 

predictive power to the two variables. In terms of the underlying economic model, the increased pa-

rameters may have been caused either by a change to the intertemporal elasticity of substitution (IES) 

or by a change to the volatility-of-volatility. As outlined earlier, a higher IES should theoretically 

cause the parameter estimate to increase as investors become more sensitive to uncertainty, amplify-

ing changes to volatility-of-volatility. However, an increase in the persistence in VOV could likewise 

yield a higher β-coefficient. Thus, it is impossible to disentangle the individual effects of these two 

sources of change.

In terms of the EVRP, we see that the peak return-horizon predictability does not expand, but rather 

contracts, relative to the full sample findings. However, the β-coefficients for the 3.5 and 4-month 

horizon are very similar, hence, the decrease in predictive horizon for this variable is not as notable 

as the increase for the VRP, and does not necessarily imply a similar change in investor psyche. This 

is to be expected, as the MC-GARCH directly models the volatility persistency parameter, hence, 

the velocity of the volatility mean-reversion process may not change akin to the non-parametric 

VRP. For the overall curvature of the graphs, we once again find a hump-shaped pattern in both the 

β-coefficients and the adj. R2s. However, these findings offer a higher estimated slope coefficient in 

our simple regression over a 4-month return horizon for the VRP (0.543, t = 5.422), relative to our 

full-sample findings. They also show superiority to the findings presented in the BTZ paper, which 

found a coefficient of 0.47 and a t-statistic of 2.86 on the quarterly return horizon. Hence, not only do 

we prove that the VRP still holds as a superior predictor, we also find evidence that while the return 

timing of the predictability has increased, the degree of predictability is even stronger than before. 

This confirms the argument stated above; investors are to a larger degree driven by fear when they 

invest and, as they dislike uncertainty and volatility, the risk premium assigned to the VRP increases.
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In terms of the intraday horizons, we find the strongest predictability on the daily horizon, when 

controlling for realized variance, with significance at the 5%-level. The estimated slope coefficient is 

1.504 with a Newey-West t-statistic of 2.024, while the explanatory power reaches 0.7%. Given the 

overall expectance of little to no explanatory power of the VRP on the very short horizons, this con-

stitutes a relatively strong result. However, one has to recall the relatively smaller sample size when 

evaluating the explanatory power. Nevertheless, it is worth noting that the β-coefficient is above that 

of the 4-month horizon. Please refer to Appendix I for the intraday regressions.

In terms of the other variables, we generally find higher levels of significance in the post-GFC sample: 

relative to previous samples, we now find significant results on the 1%-level in the simple regressions 

for both realized and implied variances on the 4-month horizon, as well as for the expected realized 

variance on the 3.5-month horizon. Hence, it seems that not only is investor fear (in the form of the 

VRP) a significant predictor of stock returns in the post-GFC world, but so is the level of realized 

variance. This further supports the idea that the change in coefficient for the VRP may be driven by 

the combined effect of an increased persistence in the volatility-of-volatility as well as an increased 

intertemporal elasticity of substitution, as the RV offers insights into the volatility-of-volatility.

Furthermore, looking at the economic variables in the simple regressions for the 4-month horizon, 

both the P/E ratio and the RREL exhibit the expected negative relationship, also significant at the 

1%-level. Furthermore, the default spread is now significant, with a positive relationship to excess 

returns, also at the 1%-level. Nevertheless, combining all of the economic variables removes the 

significance of the default spread and the RREL, and lowers the significance of the P/E ratio to the 

10%-level. Hence, it seems that the simple regressions carried significant omitted variable bias. The 

only variable that does experience a dilutive effect is the VRP, which remains significant at the 1%, 

albeit with a lower coefficient (0.411). However, the multiple regression offers less explanatory pow-

er, as the sum of the predictor variables’ simple regression adj. R2s is much larger than 34.2% as noted 

in the multiple regression (or 23.1% for the EVRP 3.5-month return regression). Actually, none of 

the multiple regressions capture more predictability than the simple regressions, based on the sum of 

adj. R2s. As such, it is easy to see that the VRP (and EVRP) still remains a dominant predictor in this 

subsample and indeed seems stronger than in previous samples.
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6.5	 Robustness Checks

While the subsampling of the data confirms the relative stability of the VRP as a predictor of returns 

across periods of both market turmoil and tranquility, it is further necessary to test these results for 

robustness. Thus, by changing certain regression specifications, we perform a series of robustness to 

confirm the structural validity of the results found above (White & Lu, 2010). In order to conserve 

space, the robustness checks discussed in this section only regard previously presented results in the 

analysis above, as these results were the most significant.

6.5.1	 Inherent robustness checks

The methods applied in the analysis already contain several inherent robustness checkes, thus va-

lidating the dominance of the VRP as a return predictor. Given that the realized variance has been 

computed across two different measures (backward looking and forecasted), this acts as a robustness 

check in terms of realized variance modelling. As seen above, we generally find that the significance 

of the VRP holds in the expected form (EVRP) across subsamples (with few exceptions), albeit with 

lower beta coefficients and R2s. Hence, it seems that while the significance and dominance of the 

VRP is relatively non-sensitive to the modelling, this has a non-trivial effect on coefficients and R2s. 

In a similar test, the BTZ study find equally lower coefficients and explanatory power, but continue 

to find the EVRP to be the strongest predictor for the return horizons in question. They further argue 

that the similarity of results may imply that the fear of higher future volatility is priced in today, hence 

depressing prices and yielding higher future returns in line with the VRP.

Naturally, given this test of robustness to the realized variance measure, it may also have been rele-

vant to check the robustness of the implied variance measure. This is especially true considering the 

allegations of potential manipulation of the VIX index. However, since previous studies (including 

Bollerslev, et al. (2009)) have conducted robustness checks in the form of computing Black-Scholes 

implied volatility, and overall argued that it was an inferior methodology, we do not consider it neces-

sary to conduct such a test. Other testing methodologies would have required considerations outside 

the scope of this paper, and hence, we solely rely on the model-free variance swap computation of the 

VIX for implied variance.
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The subsampling of the data further comprises a robustness test of the parameter estimates (Lamont, 

1998). Comparing across subsamples, we continue to find the VRP (and in almost every subsample 

the EVRP), to be dominant, while only showing modest changes in the t-statistics and coefficients, 

but never a signage change. We only find the VRP to be insignificant in the pre-financial crisis sample 

in the simple regression, and otherwise it is significant at least at the 5%-level. Additionally, many 

papers argue that the multiple regressions they have conducted in similar capacity to ours, act as ro-

bustness check (Ang & Bekaert, 2007; Lettau & Ludvigson, 2001). Hence, we have inherently tested 

whether the VRP (and the investor sentiment it represents) is dominant relative to the included eco-

nomic variables. Not only does the VRP prove to have better t-statistics across most samples; none 

of the other predictors are robust across all subsamples either. Hence, none of the economic variables 

shows a predictive capacity similar to the VRP.

6.5.2	 Winsorized regressions

A typical approach when checking the robustness of regressions is to identify extreme values within 

the sample and remove them, if they can be characterized as genuine outliers (Ghosh & Vogt, 2012). 

As argued above, extreme outliers can cause asymptotic inference to become unreliable, which is 

especially true when both the independent and dependent variables can take extreme values, such as 

in our sample. One methodology for dealing with such issues is through winsorization, which either 

assigns a weight to the extreme value or modifies it to bring it closer to other sample values (ibid). For 

our purposes, we have winsorized at the 5%-level and utilized the second methodology, hence, obser-

vations falling below 5% or above 95% of the normal distribution are assigned the 5% or 95% value 

respectively. Naturally, one has to keep in mind that such winsorizing can produce poor estimates by 

introducing statistical bias and undervaluing the outliers. Hence, these winsorized results should be 

considered with respect to non-winsorized estimates.

We have winsorized all samples and subsamples for all frequencies utilized in the regressions, in 

order to check the robustness of our results. Below in table 6.A are examples of the OLS regression 

outputs versus the “robust regressions” based on the winsorized samples for the VRP regressions. The 

displayed regressions are the simple kind on the most significant return horizons, as well as the mul-

tiple regression including the logarithm of the price-earnigns ratio P/E. For a more detailed overview 

of all winsorized sample regressions, please see Appendix Q.
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Table 6.A: Return predictability of the VRP (original and winsorized samples)

 

Sample Dependent

X1 X2 β1 β2 Adj. R2 (%) β1 β2 Adj. R2 (%)

Main sample r t+3.5 VRP 0.264*** 3.6 0.211* 1.4
(t -stat) (3.602) (1.839)

Main sample r t+3.5 VRP log (P/E)t 0.279*** -40.738* 7.6 0.216** -37.868* 6.0
(t -stat) (t -stat) (3.978) (-1.744) (2.126) (-1.645)

Pre-GFC r t+3.5 VRP 0.140 1.5 0.070 0.3
(t -stat) (0.986) (0.486)

Pre-GFC r t+3.5 VRP log (P/E)t 0.396***  -133.112*** 32.6 0.362*** -111.333*** 30.1
(t -stat) (t -stat) (3.475) (-2.409) (4.283) (-3.671)

During GFC r t+3.5 VRP 0.395*** 11.4 0.599** 11.6
(t -stat) (2.524) (2.196)

During GFC r t+3.5 VRP log (P/E)t 0.358*** -71.171 15.1 0.557** -21.689 11.8
(t -stat) (t -stat) (3.935) (-1.29) (2.001) (-0.481)

Post-GFC r t+4 VRP 0.543*** 13.4 0.638*** 12.6
(t -stat) (5.422) (4.365)

Post-GFC r t+4 VRP log (P/E)t 0.334*** -55.297*** 24.8 0.409*** -49.421*** 23.1
(t -stat) (t -stat) (3.796) (-3.686) (3.178) (-2.975)

Return predictability regressions for OLS and winsorized OLS regressions. The sample differs, and is defined in the first column. The t -statistics are Newey-West corrected. 
VRP is the Variance Risk Premium. P/E is the price-earnigns ratio of the S&P 500 index. The dependent variable is the excess log return on the S&P 500 Index over the 
periods indicated, streching from 3-4 months. The return series are overlapping.

Regressors Original Winsorized

The primary finding from these winsorized samples is that the VRP maintains significance across 

nearly all regressions. In fact, in both the GFC and post-GFC samples the simple regression and the 

multiple regression including the P/E ratio are stronger, both in terms of coefficient estimates and 

explanatory power. Considering that the largest spikes in the VRP happens during the GFC, and we 

later observe the flash crash in 2015, it seems that these extreme spikes negatively affected the pre-

dictability of the VRP for these samples. Interestingly, across the full sample, the significance of the 

VRP is strongly impacted when winsorizing, indicating that the full sample results were partly driven 

by outliers, some of which may stem from the abovementioned sub-periods.

When considering the regressions conducted on the winsorized samples for the EVRP (Appendix R), 

an even more solid picture emerges. All results across all subsamples and regressions become much 

stronger, which intuitively makes much sense: As described earlier, the EGARCH estimation of the 

daily variance tends to spike intensively, especially negatively, given our negative gamma parameter, 

much more so than the non-parametric estimate. Hence, outliers may very likely obscure the regres-

sion results for the EVRP and removing them creates a clearer picture.
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While a limited significance was detected on the intraday frequencies for the VRP, the winsorized 

regressions prove to be even less persuasive, with a loss of nearly all significance. The only regression 

in which the VRP maintains 10% significance in a winsorized sample is for the pre-GFC period. This 

tendency for lower significance in the winsorized intraday results may be due to the tendency for fat 

tails in intraday returns, which may have been driving the regressions prior to winsorization.

6.5.3	 Expanding and rolling regressions

Another methodology within the sphere of robustness testing is to create recursive and rolling regres-

sions over the sample period (Yu & Yuan, 2011). With respect to the scope of this paper, we conduct 

this test on the most robust of the full-sample regressions, which are the 3.5-month horizon for the 

VRP and the 4-month horizon for the EVRP. These robustness checks are not just statistically mo-

tivated, but also economically motivated as we expect pricing of risk to act differently in periods of 

booms or busts.

A rolling regression is based on a window of a fixed size that is “rolled” throughout the sample, where 

the earliest observation is dropped, and a new observation is added. When employing the methodo-

logy of a rolling window, the size of the estimation window is of key concern: If the window is too 

small, it potentially reduces the performance of the model, while a window too large adds little benefit 

compared to the full sample estimation. When conducting the rolling analysis, the sample repeatedly 

becomes split into estimation and prediction samples. Then model is then fitted on the estimation 

sample and rolled ahead in the given increments over the sample period. For our purposes, we utilize 

a training period of two years (1996 to 1998) to estimate the first window and roll the regression over 

2-year windows from then onwards. In terms of the investor utilizing the VRP as a predictor, this 

rolling window regression assumes that the investor only regards the past two years and disregards 

any information prior to that on the day of investment. For the recursive regression, we increase the 

estimation window over time, and do not drop the oldest observation, when a new is added. Con-

trarily to the rolling regression, this assumes that the investor utilizes all available data up until the 

investment point.

These kinds of robustness checks seek to explore parameter stability over time, implying that a fully 

robust parameter will have little to no development. If the parameters change dramatically, the rolling 
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and expanding windows will capture this instability, and hence question the validity, stability and 

predictive accuracy of the VRP. Figure 6.2.A illustrates estimated β-coefficient for the VRP on the 

3.5-month return horizon for the rolling window regression (a) and the expanding window regressi-

on (b). For the 4-month horizon EVRP expanding and rolling window regressions, please refer to 

Appendix S.

Figure 6.2.A: Rolling and expanding window 3.5-month VRP return regressions
(b)(a)
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As evidenced in the graphs above, while the recursive regression (b) seems robust, remaining above the zero 

mark throughout our full sample period, the rolling regression reveals inconsistencies around the financial 

crisis and slightly in the early summer of 2014. As we saw a change from insignificant to significant results 

for the VRP from the pre-GFC to the GFC sample, this is to be expected: Given the two-year window used 

for the rolling regression, the β-estimate in the rolling regression is the end-point of the two year estimation. 

Hence, negative β-coefficients in our pre-GFC sample would not be shown in the rolling regression until 

their end-point, which will be placed during the crisis. Likewise, the strong β-coefficients we find for the 

GFC sample will show with a delay in the rolling regressions, as evidenced by the sharp spike during early 

2009. For the expanding window, we also see a decrease in the β-coefficient around the same time, however 

since the regression is computed on a larger amount of data, the data points right before the crisis are not 

extreme enough to cause the expanding window regression to move below zero. Hence, according to the 

recursive regression, our main sample regression is robust on the 3.5-month return horizon, while the rolling 

regression questions the robustness of our pre-GFC sample, in line with the subsampling conducted above.
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For the EVRP (see Appendix S), we find the rolling regression on the 4-month return horizon to show 

a relatively different pattern: while the EVRP parameter seems more consistent over time, this consi-

stency is relatively close to the zero-mark. Further the β-estimate sees a strong upwards spike in the 

period just prior to the GFC and further drops consistently below zero after April 2014. This finding 

post April 2014, makes sense, considering our finding of the 3.5-month return horizon to yield stron-

ger predictability for the EVRP relative to the 4-month horizon in the post-GFC sample. In terms of 

the recursive estimation, we further find less encouraging results for the EVRP relative to the VRP: 

In line with the rolling window, the EVRP β-estimate consistently moves close to or below the zero 

mark.  Hence, it seems that not only does the non-parametric VRP provide stronger β-coefficients and 

R2s, the parameters also seem more robust.

6.6	 Concluding Remarks On VRP-Regressions 

From the analysis above, we find that from showing no significance in our pre-GFC sample, the VRP 

became a strong and dominant predictor of future stock returns in the tumultuous conditions during 

the financial crisis. However, this dominance was not contained to the GFC-sample: in the post-

GFC recovery market, the VRP not only maintained its predictive prowess, but it did so in excess 

of previous sample periods, showing both stronger β-coefficients and R2s. These findings are further 

confirmed by the EVRP, showing the robustness of the regressions towards the modelling of realized 

variance, as well as supporting that fear of future volatility is reflected in prices today.

In addition to the increased β-coefficients, we further find an outwards shift in the peak return predictability 

from 3.5 months to 4 months for the post-GFC sample. This combined change seems indicative of a chan-

ge in the constituent parts of VRP predictability, the volatility-of-volatility and the intertemporal elasticity 

of substitution: Firstly, the increased peak predictability is indicative of an increased persistence in the 

volatility-of-volatility, hence, volatility shocks take longer to taper off in the post-GFC sample relative to 

earlier time periods. Such increased persistence may further be a driver of the increased β-coefficient, an 

effect which is amplified by potential increases in the intertemporal elasticity of substitution, which can be 

interpreted as an increased level of sensitivity in the investor sentiment. However, the exact disentangle-

ment of these two effects is not possible with the current model setup. We could potentially have measured 

the persistence in an AR(1) process, however persistence will remain high due to the overlapping return 

calculations, and it is as such deemed inappropriate to conduct this analysis.
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6.6.1	 Creating a profitable trading strategy based on the findings for the VRP

To exemplify how the results above may be utilized by the interested practitioner, we further consi-

der the possibilities of creating a profitable trading strategy based on the results. Given that the VRP 

shows stronger and more robust predictive power relative to the EVRP, we utilize the VRP for trading 

purposes. Furthermore, two things are clear: i) Firstly, as the relation between the VRP and future 

returns is positive, one should take a long position in the S&P 500, when the VRP is above a certain 

threshold. ii) Secondly, given that the coefficient on the VRP in the return regression is highest and 

most significant at the 3.5-month horizon in the full sample, a trading strategy should focus on hol-

ding the long position for this amount of time. As our strategy constitutes a market timing attempt, 

if the VRP is lower than the chosen threshold, the strategy rolls out of the market and takes a long 

position in the risk-free rate, proxied by the US 3-Month Treasury Bill. 

In terms of technicality, we assume a notional of USD 100m with trading start on January 4th, 2000 

and end on February 28th, 2018. We calculate percentiles of the VRP on a recursive window, allowing 

the investor to utilize all available information up until the investment decision. Further, we restrict 

the strategy to no short-selling and no leverage, however, to maintain simplicity, we do not consider 

any trading costs and assume that the investor can borrow and lend at the risk-free rate. In terms of the 

investment strategy itself, we assume that the investor re-weights 1/77 of the portfolio daily since, for 

a standard trading month of 22 days, a 3.5-month return horizon corresponds to 77 days. This further 

means that from the strategy start on January 4th, 2000, the portfolio is not fully invested until April 

26th, 2000. At every re-weighting, the trader makes the following decision:

•	 If   xth percentileVRP ≥ , weight in the market for the 1/77 part of the portfolio is 1

•	 If   < xth percentileVRP , weight for that part of the portfolio is 0

Given this structure, the trader may have a wide range of possible total exposure to the S&P 500, 

based on the weight assigned in any previous reweighting, as is made clear in figure 6.3.A below, in 

which the blue backdrop denotes the weight in the S&P 500 index. The highest cumulative weight 

for our strategy is reached on November 29th 2002, with a total weight of 98.701%, corresponding to 

having invested in the index for 76 consecutive reweights. At every reweight, the investor reinvests 

any profit for the past period into the new position taken.
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In terms of evaluating the strategy, we benchmark to a strategy which also rebalances daily with a 

77-day turnover, but it is restricted to only investing in the S&P 500 index. We then compare the two 

strategies across the three following key measurements: The total cumulative return, the Sharpe ratio 

and the Sortino ratio. The cumulative return simply considers the total dollar-wealth increase to the 

investor with no regard to the volatility exposure of the strategy. Meanwhile, the Sharpe ratio consi-

ders the unique return-volatility trade-off to the strategy and is calculated as follows:

p f

p

r r
Sharpe

σ
−

= (6.1)
	

In which rp reflects the return on the portfolio, rf the risk-free rate as proxied by the US 3-month 

Treasury Bill and σp the standard deviation of the portfolio. As seen, engaging in a strategy with zero 

risk, i.e. investing in the risk-free rate, will yield a Sharpe ratio of exactly zero. However, while the 

Sharpe ratio is capable of taking into consideration the volatility of the portfolio, it does not distingu-

ish between the downside and upside volatility. As an answer to this issue, the Sortino ratio, rather 

than considering risk tolerance, focuses on the investor’s desired return. Similar to the Sharpe Ratio in 

calculation, rather than looking at the total standard deviation of the portfolio return, the Sortino ratio 

uses downsize deviation from the desired return as the denominator (Sortino & Price, 1994). Thus, 

the standard deviation then becomes the sum of downside deviations over the investment period, 

yielding the following ratio equation:

,

p f

downside p

r r
Sortino

σ
−

= (6.2)
	

As our return requirement, we use the US 3-month Treasury Bill rate for the 3.5-month investment pe-

riod. This is chosen as it is the most natural alternative to a market investment. An alternative could for 

example have been the long-run average equity premium, however, as this is not an investment available 

to the investor for each period, we find the risk-free rate to be a more viable choice. Naturally, by choo-

sing the risk-free rate as the desired return, the Sortino ratio becomes biased, as the Sortino ratio will 

approach infinity as the portfolio becomes more and more heavily invested in the risk-free rate. Thus, 

we balance the Sortino ratio with the other metrics for completeness. With this in mind, we find the 65th 

percentile to be optimal as it balances a high Sharpe Ratio, a high cumulative return and a fairly high 

Sortino ratio (please refer to Appendix T for an overview of the three metrics at different percentiles). 
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Hence, based on this final strategy, in which the portfolio takes a long position in the market if the 

VRP is above its 65th percentile, we gain the cumulative return profile depicted in figure 6.3.A below:

Figure 6.3.A: Overview of cumulative returns from trading strategy vs. benchmark
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weight (right-hand axis) Investment strategy return (left-hand axis) S&P 500 return (left-hand axis)

Total return
Strategy: 67.29%
S&P 500: 46.06%

Sharpe Ratio
Strategy: 20.03%
S&P 500: 6.91%

Sortino Ratio
Strategy: 652.87%
S&P 500: 123.36%

Cumulative dollar-returns from an initial USD 100m investment in January 2000. The red line denotes the 65th-percentile 
investment strategy, while the blue line denotes a similarly rebalanced strategy, restricted to investing in the S&P 500 
index. The blue bars in the background denote the total weight in the S&P 500 index at any given point in time. Price data 
from Thomson Reuters (2018).

A simple glance at the graph will reveal that the strategy outperforms the simple index strategy, espe-

cially when considering the effective cap of the large downturns in the S&P 500 index in 2000-2002 

and 2007-2009. Notably, the strategy seems capable of timing the rebounds in the market fairly well, 

especially with the large portfolio weight invested during 2009. Out of the entire period, the strategy 

chose a long position in the S&P 500 index 723 times out of a 4,400 number of possible times. In 
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terms of the metrics considered, the strategy is capable of generating a cumulative return of 167.25 

(or 67.25%), while the index generated a return of 145.42 (45.42%)23. Meanwhile, the Sharpe ratio 

for the strategy was 20.03%, while it was only 6.91% for the index. Lastly, the strategy vastly out-

performed the index on the Sortino Ratio with a ratio of 652.87% against 123.36%. Hence, it is clear 

that in addition to revealing information regarding the level of fear in the market, the VRP can also 

form the foundation of a profitable trading strategy by isolating the pricing of volatility-of-volatility. 

23  The authors would like to note that this comprises continuously rebalanced returns and does not correspond to the 
return from a simple buy-and-hold strategy. Over the entire investment horizon, such a strategy would have generated a 
return of 90.05%.

7	 The VRP in the Trump Era
Considering the instability of the political spectrum today, and how the world changed when Trump 

was elected in late 2016, the analysis progresses by investigating the potential effects the new presi-

dent has had on stock market volatility. A wide array of opinions exist as to what impact Trump has 

actually had: some view the instability and unpredictability of Trump’s personal character as a threat, 

leading to higher levels of volatility and potential tail risk in the market than during the GFC (Shen, 

2017), some argue that Wall Street remains unsettled by Trump’s policy moves (Bullock, et al., 2018), 

and some talk of the “Trump Rally” or “Trump Jump”, as the stock market was up 26% by January 

2018 since inauguration day (O’Grady, 2018). With respect to our earlier findings and our third gui-

ding research question, it is thus interesting to consider, whether the VRP is still a dominant predictor 

in the Trump Era and further if it or its components are affected by the apparent political instability. 

In the following segment, we attempt to uncover the effect of Trump on the VRP via two avenues: By 

studying the VRP and its predictive ability in the subsample prior to and after the election of Trump 

and secondly, by directly examining the impact of political events on the VRP and its components by 

utilizing Trump’s Twitter feed.

7.1	 The VRP Return Regressions Prior to Trump

We define the period prior to the election of Trump as stretching from the end of the latest recession 

(July 2009) until the US presidential election on November 8th, 2016 – an overview of the samples 

is included in figure 7.1.A below. Given the large overlap to our post-GFC sample, we expect large 
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similarity in our findings for these two samples. Indeed, looking at figure 7.1.B we find the recogni-

zable hump-like shape of both the estimated β and R2.

Full sample
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Figure 7.1.A: Overview of samples

Figure 7.1.B: Estimated β-coefficient and R2 for VRP return regression, pre-election sample

Overview of samples utilized. Pricing data for indices from Thomson Reuters (2018).
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Relative to the post-GFC sample, we see the same degree of predictability, which peaks at the 4-month 

return horizon with an adj. R2 around 14%. The estimated β for the VRP is significant at the 1%-level 

with a coefficient of 0.556. The pre-Trump sample thus exhibits a slightly higher degree of predicta-

bility compared to the post-GFC sample, which offered an estimated β-coefficient of 0.543. Not only 

(b) VRP adj. R2(a) VRP β-coefficient
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are these results robust to winsorizing, they are strengthened with a β-estimate of 0.675 with 

significance at the 1%-level (see Appendix V). Notably, the highest t-statistic for the predictor 

variables for the simple regression is not for the VRP, but rather found for the price-earnings ratio. 

Even when combining the two predictors in a multiple regression, while they both remain significant 

at the 1%-level, it still seems to be the price-earnings ratio driving most of the predictability. Never-

theless, in the largest multiple regression, we again see the traditional predictor’s crowding each other 

out, while only the VRP remains significant at the 1%-level.

In terms of the EVRP, the adj. R2 and β-coefficients both peak at 3.5 months, from which they taper 

off as the return horizon increases. The coefficient is again larger, just as we saw for the VRP, and the 

winsorized results (Appendix W) yields a tripled estimated β-coefficient, offering almost the same 

slope as the VRP (VRPwin, 4-mo. = 0.675 vs EVRPwin, 3.5-mo.  = 0.668). For both the EVRP and the VRP, 

it is interesting that we once again find a hump-shaped development for both the β-coefficients and 

the explanatory power, unlike the findings in Bollerslev, et al. (2009), who found a gentler decrease 

in the β-coefficients from a peak at the 1-month horizon. For this pre-election subsample, this hump 

shape is even more pronounced than for our full sample and hence matches the post-GFC sample in 

this respect. Nevertheless, the increase in the degree of predictability for the VRP and EVRP in this 

subsample period might also imply that the last observations in the post-GFC sample could be nega-

tively affecting the predictability. Hence, in the following we now study this remaining sample on its 

own to discover if the election may constitute a break in the predictive ability of the VRP.

7.2	 The VRP in the Trump Era

We define the post-election sample as the period stretching from the election on November 8th, 2016 

until the end of our sample on February 28th, 2018. Following the argumentation of our GFC sample, 

the multi-horizon return-regressions have been run only for one year, as the sample period is less 

than two years. We do caution that due to the shorter sample compared to the pre-election sample, 

the relative length of the return overlaps in the post-election sample may cause slight inflation in the 

R2s. In the plotted graphs in Appendix U, the degree of R2 and statistical significance of the VRP still 

maximizes at the 4-month horizon and 3.5 months for the EVRP. Notably, relative to the pre-election 

sample, both measures show significantly wider confidence intervals, most likely representative of 

the smaller sample size. Notably, the VRP no longer shows a smooth hump-shaped curvature, but 
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rather strong jumps at 2 and 3.5 months. For the EVRP, the maximum at the 3.5-month return horizon 

is very pronounced, and likewise does not seem to follow a smooth development. Directly compa-

ring the pre- and post-election R2s (figure 7.1.C below) reveals, that for both the VRP and EVRP the 

explanatory power is lowered in the post-election sample. 

Figure 7.1.C: Comparison of pre- and post-election R2 for the VRP and EVRP

(b) EVRP adj. R2(a) VRP adj. R2

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 2 3 3.5 4 5 6 9 10 12

A
dj

us
te

d 
R

 s
qu

ar
ed

Return horizon (months)

Adj. R squared pre Trump Adj. R squared post Trump

-1%

0%

1%

2%

3%

4%

5%

6%

1 2 3 3.5 4 5 6 9 10 12

A
dj

us
te

d 
R

 s
qu

ar
ed

Return horizon (months)

Adj. R squared pre Trump Adj. R squared post Trump

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 2 3 3.5 4 5 6 9 10 12

A
dj

us
te

d 
R

 s
qu

ar
ed

Return horizon (months)

Adj. R squared pre Trump Adj. R squared post Trump

-1%

0%

1%

2%

3%

4%

5%

6%

1 2 3 3.5 4 5 6 9 10 12

A
dj

us
te

d 
R

 s
qu

ar
ed

Return horizon (months)

Adj. R squared pre Trump Adj. R squared post Trump

Turning to the regression outputs for the VRP and the EVRP simple regressions, we find contradicting 

results: Whereas the β-coefficient for the VRP reaches a new high of 0.692 (significant at the 1%-le-

vel), the EVRP with its relatively high β-estimate (0.527) carries no significance. This is contrary to 

previous samples, in which the VRP predictability was robust to the modelling of expected realized 

variance. Furthermore, when winsorizing the samples, all significance is removed; hence it seems that 

the predictive ability of the VRP in this period is primarily driven by outliers, such as the VIX-spike 

in February 2018. This constitutes a significant shift relative to previous samples, which found the 

opposite to be true. We note that the relatively low number of observations in the post-election samp-

le may be a cause of this loss of significance, as it will tend to inflate the standard errors. However, 

considering the stronger results of the pre-election sample, relative to the post-GFC sample (in which 

the difference between these two samples is the post-election sample), it does seem that the VRP loses 

predictive power during the post-election sample – even in a larger sample setting.

The question as to why we experience such a drastic change in the predictive power of the VRP and 

EVRP remains to be answered. It seems that the time period during the Trump administration consti-

tutes a significant change in the relationship between investor fear and stock returns. Hence, in figure 
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7.1.D below , we compare the mean of key variables in the pre- and post-election samples relative to 

the full sample statistics to attempt to solve the puzzle.

Figure 7.1.D: Comparison of means in the pre-election and post-election samples

 

 

 

Pre-election Post-election Main Sample
VRP 13.45 7.23 15.39
EVRP 14.91 5.87 13.31
r SPX - r f 11.70 19.20 3.71
IV 31.46 12.63 39.45
RV 18.01 5.40 24.27
ERV 16.55 6.76 26.77

Graph showing the relative importance of the realized variance and variance risk premium as components of the implied 
variance.

Looking at the descriptive statistics above, a general picture emerges: there was much more volatility 

in the time period prior to the election of Trump relative to after – both in terms of implied and rea-

lized variance. However, the level of volatility for both samples can be characterized as lying below 

the full sample average. It is especially notable that despite the February spike in the VIX, the overall 

level of volatility in the post-election period is far below any previous sample studied. Furthermore, 

we see that the average excess return for both election samples are much larger than the full sample 

average – showing both the rebound in the stock markets following the GFC and perhaps evidencing 

the “Trump Rally”. 

The lack of predictability in the post-election Trump sample might be caused by a decreased relative 

importance of the RV compared to the VRP: In the pre-election sample, the VRP comprised 42.75% 

of the IV, while it accounted for 57.27% after the election. Considering that the IV is the sum of these 

two physical (RV) and perceived (VRP) risk measures, it seems that investors have become more 
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more fearful in the Trump Era with the perceived fear increasing in importance. As the underlying 

economic model explains, the VRP’s predictive power stems from the pricing of the volatility-of-vo-

latility and the intertemporal elasticity of substitution. Based on the findings above, the increased 

β-coefficient with lower significance may be indicative of a shift in the relative importance of the IES 

and persistence in the volatility-of-volatility (“VOV”). Given that perceived risk has increased in im-

portance while the realized variance has decreased, it may be that investors have become more fear-

ful and react more forcefully to changes in the VOV, demonstrating an increased IES. However, the 

persistence in VOV may have decreased as indicated by the lower realized variance. Together, these 

opposing model dynamics may cause the inflated β-estimates with little significance. Further noting 

the loss of significance when winsorizing, it seems that the VRP requires a more volatile environment 

to maintain its predictive ability.

With these results in mind, one may wonder if excess returns are driven by other factors than volati-

lity. In the multiple regressions, both the P/E and P/D ratios, as well as the term spread, show strong 

t-statistics. Running these multiple regressions on both the original and winsorized sample offers 

predictive power to VRP, hence, it seems that the lack of significance for the VRP in the winsorized 

sample may also be caused by omitted variable bias. Indicating that overlap in long-run (economic) 

variables and short-run (VRP) has been introduced. Meanwhile, the EVRP remains insignificant in 

these multiple regressions, implying that the findings for the VRP are not robust to the realized vari-

ance modelling.

Nevertheless, the insignificance of the variance risk premium factor seems quite controversial relati-

ve to many medias’ beliefs about Trump’s character, as well as to the earlier empirical research and 

literature on uncertain policies and candidates’ effects on the equity risk premium (Jensen & Schmith, 

2005; Bittlingmayer, 1998; Beaulieu, et al., 2005). It is believed that a candidate, who is characterized 

as uncertain or with uncertain policies tends to spur uncertainty in the market, and thus increase the 

equity risk premium. However, as argued above, it seems that while investors are indeed more fearful 

in the Trump era as evidenced by the increased relative size of perceived risk, they have less to be 

fearful about in terms of realized volatility. While the cause of this change may be manifold, it cannot 

be rejected that it may be driven by the political climate during the Trump administration. Hence, in 

the following section, we seek to study how Trump may have affected investor sentiment in this extra-
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ordinary low-volatility world. In order to do so, we examine the effects of Trump tweets on the VRP 

and EVRP, along with their components, IV, RV and ERV, to detect if Trump tweets, as a proxy for 

the communication between Trump and the investors, may influence volatility and the pricing thereof.

7.3	 Trump’s Influence on Market Volatility

As described in the methodology section, we study the effect of Trump tweets on the stock market 

by running regressions between dummy variables representing these tweets24 over various horizons 

spanning from the lowest possible intraday frequency (5 minutes) to a full day. In order to gain an 

overall image of the relation, we start with the full day regression between the sum of categorized 

tweets during the day against the chosen dependent variables. 

On the daily horizon, we see a negative relation between the implied variance and economic tweets 

with a β-coefficient of -0.509 and significance at the 5%-level (please refer to Appendix X for the 

complete regression output). This result is robust to winsorizing, albeit with a slightly lower β-co-

efficient. Hence, it seems that the economic Tweets act as risk relievers in the market. An example 

of such a tweet is “Jobless claims have dropped to a 45 year low!” (Twitter, 2018), which Trump 

tweeted on February 10th, 2018. Based on the reassuring contents of such a tweet, it makes sense that 

this should decrease the implied variance – either via the perceived risk premium (VRP) or the realized 

volatility on the market. In addition to the effects of the economic tweets, we further find slight signi-

ficance for political tweets on returns with a very low negative β-coefficient of -0.003, as well as for 

presidential duties with a β of 0.0003. As the economic impact of such results are very limited, we 

do not consider it cause for further investigation. Likewise, while we find some significance for the 

“Other” category, we do not find any economic intuition for this result and regard it as likely spurious, 

also due to the very limited amount of observations. Finally, we detect quite an impact between fake 

news tweets and the different variance measures – both the IV, the RV and the VRP. Hence, we see 

that variance and the fear premium is actually decreased by Trumps tweets on fake news – however, 

like before, the intuition behind this effect is hard to substantiate.

24  Relisting the categories as described in the methodology section: 1) Economic policy, 2) politically themed tweets, 3) 
tweets featuring ‘Democrats’, 4) military policy, 5) presidential duties, 6) personal tweets and 7) others. Additionally, we 
constructed a separate indicator variable on Trump’s most frequently tweeted term; 8) fake news. 
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While we find only slight evidence of Trump affecting volatility on the daily frequency, the intraday 

regressions reveal quite different results: As noted, we test intraday frequencies ranging from the 

immediate market reaction to the daily reaction. Overall, it seems that Trump Tweets act as risk 

relievers across all frequencies and measures: While many coefficients are insignificant, they all share 

the characteristic of negative signage. The strongest relation is between the economic and military in-

dicator variables against the implied variance. This result is consistent across almost all horizons and 

remains robust after winsorizing. Given the negative relation, both these types of tweets seem to act 

as risk relievers with a peak in the combined predictability at the 20-minute horizon. From an econo-

mic tweet occurs, the implied variance tends to decrease by 2.127 20-minutes later and by 2.906 for 

military tweets, both significant at the 1%-level (please refer to Appendix Y for the 20-minute regres-

sion output). Additionally, we see a significant decrease in the VRP, albeit with a lower β-coefficient. 

Given the lack of significance in the realized variance, it seems that the change in the VRP is driven 

by the effect of the tweets on the implied variance.

Based on this, it seems that on the intraday frequency, both military and economic tweets cause inve-

stors to be less fearful. In terms of the military tweets, an example includes “North Korea disrespe-

cted the wishes of China & its highly respected President when it launched, though unsuccessfully, 

a missile today. Bad!” (Twitter, 2016) tweeted by Trump on April 28th, 2016. However, other tweets 

include increased funding to the US military, which, given the existence of the military-industrial 

complex (Encyclopædia Britannica, 2018), should increase market confidence as this would imply 

higher economic activity.

While we experience a peak in predictability on the 20-minute horizon, we find little coefficient de-

velopment in terms of continuous time. From our daily regressions, we know that in terms of discrete 

time, we find the coefficients to be much lower on the daily regressions, hence we expect a general ta-

pering in the coefficients. However, looking at the coefficient development in the figure 7.2.A below, 

both variables remain significant up until the 6-hour mark, although the confidence intervals are not 

quite as stable at the greater time horizons. As the economic and military tweets also yield significant 

predictability towards the movement of the VRP, we also plotted the development of this relationship 

in Appendix Z. It is clear that the confidence intervals are much larger, and that the upper bounds for 

both variables are much closer to zero than for implied variance. The economic tweets maintain a sig-
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nificant, though less accurate, negative predictability towards the VRP throughout the 6-hour horizon, 

however the military tweets lose significance after the 40-minute mark. 

Figure 7.2.A: β-coefficient development of economic (a) and military (b) tweets

(b) Military tweets(a) Economic tweets
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Hence, we see that despite prior research and news outlets claiming a volatility-inducing effect of 

Trump, we find the opposite effect: Overall, we see that the Trump Era is characterized by an extraor-

dinarily low level of volatility, in which Trump tweets act as further risk relief, diminishing investor 

fear on the intraday horizon. We further see that the market reacts rapidly to Trump tweets with 

significant immediate reactions and greatest absorption at the 20-minute horizon. Given that the num-

ber of economic and military tweets are low relative to the overall number of tweets, we cannot con-

clude that this is representative of an overall investor reaction pattern to Trump’s character. However, 

it seems that, at least his communication regarding military and economic matters have a reassuring 

effect on the market.

7.4	 Concluding Remarks on the VRP in the Trump Era

As seen in the analysis above, relative to both of the full sample and the pre-election sample, the 

VRP maintains its significance and has increased β-coefficients in the Trump era, with the greatest 

return predictability at the 4-month horizon. However, these results are not robust to winsorizing or 

the modelling of realized variance. Despite this apparent loss of robustness, we find that the VRP 

accounts for a relatively higher part of the implied variance, compared to both the pre-election and 

full sample. Thus, given that we see increased β-coefficients, but a loss of robustness, it may be that the 
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two constituent parts of the VRP have changed in opposite directions in this time period: Given the 

low overall volatility in the time period, but ability of shocks to drive the regression results, it may be 

that shocks, despite their size, no longer permeate the rest of the sample to the same degree. Hence, it 

may be that the persistence of volatility-of-volatility has decreased, which would dilute the efficacy 

of the VRP as a return predictor.

Meanwhile, this ability of shocks to drive the regression results, combined with the evidence of in-

creased β-coefficients, may reflect an increased intertemporal elasticity of substitution: An increased 

IES would cause investors to become highly sensitive to changes in the volatility-of-volatility and 

would thus inflate the importance of shocks. Based on this argumentation, it can be theorized that the 

investor sentiment has become more uneasy, as evidenced by the increased weight of the VRP in the 

implied variance, however, not due to increased underlying volatility, but rather the fear of changes 

in the volatility-of-volatility. Together, this may cause the VRP to lose its predictability, when we 

disregard the effect of shocks.

It cannot be disregarded that part of the roots for this state of the market is described by Trump. In-

deed, looking at the reaction of the VRP and its components to Trump tweets, we find that tweets of 

economic and military nature have significant negative impacts on especially the implied variance 

as well as a milder (but still negative) effect on the VRP. We furthermore find that the market reacts 

quickly to these tweets with the largest news absorption seeming to occur at the 20-minute horizon. 

Hence, it seems that the tweets act as a risk relief in the market – despite the many news outlets 

proclaiming Trump as a risk inducer. While such a finding carries important information regarding 

the investor sentiment in the Trump Era, it further contains information that may be of interest for the 

trader attempting to create a profitable trading strategy. Hence, in the following segment, we outline 

how these results may be used in intraday trading.

7.4.1	 Utilizing Trump tweets as a key input to a trading strategy

While we find significance in both the implied variance and the VRP for economic and military 

tweets, for trading purposes, we only utilize the results for the implied variance. This is due to the 

impossibility of trading directly in the VRP: to utilize the negative relation for the VRP would require 

a short position in the implied variance and a long position in the realized variance. However, as the 
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realized variance is a mere estimate of the variance on the S&P 500 index, it does not constitute a di-

rectly tradeable entity. Hence, it is not possible to create the required spread to follow such a strategy. 

As an alternative, one may use a chained trading strategy, using tweets as a predictor for the VRP, 

which is in turn a predictor for future returns on the S&P 500. However, as the VRP has the strongest 

predictive power at the quarterly horizon, while the tweets have intraday power, the chain strategy 

becomes hard to implement given the vastly different time horizons at play.

Instead, we build the strategy around the implied variance, using the VIX index as the invested entity. 

We do recognize, however, that the VIX is also not directly tradable and a trading strategy would have 

to make use of VIX futures instead. While we would have wished to base the strategy results below 

on such futures instead, this was not possible due to a lack of intraday prices. Hence, we use the VIX 

as a proxy for the futures’ prices, cautioning that these can diverge as there is no arbitrage opportunity 

between the VIX index and its futures value: while a portfolio of options could be created to replica-

te the VIX index value, as the VIX is created from mid-prices, in practice this becomes impossible 

(CBOE, 2018). In terms of predictor values, we utilize both economic and military tweets in order 

to create a strategy with as many event dummies as possible. As for the signage of these dummies, 

the negative relation between both types of tweets implies that a trading strategy should optimally 

take a short position in the VIX following either type of tweet. As we find the strongest effect on the 

20-minute horizon, we choose this as the exit point. However, given the relatively slow tapering in 

the effect of the tweets, exact exit-timing is not critical. As before, this constitutes a market timing 

strategy, in which the market is now the short VIX and the alternative investment is comprised of a 

risk-free investment (3-Month US Treasury Bill).

As in the VRP-based strategy, we assume a rebalancing portfolio, however, we now assume that one-

fourth of the portfolio is rebalanced every five minutes, for a full turnover of at the 20-minute mark. 

Naturally, such frequent rebalancing would in practicality require the use of a trading algorithm, 

however, with the rise of topic modelling within machine learning, this does not seem far-fetched25. 

We assume trading start on November 8th, 2016 (the day of the US-election) with strategy-end on 

25  If the reader is interested in some of the possibilities with machine learning, we would recommend “Automatic Do-
nald Trump” by Filip Hráček ( https://filiph.github.io/markov/ ), which generates fake Trump-tweets based on the existent 
Twitter feed.
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February 28th, 2018. In terms of restrictions, we assume that short-selling is allowed, however, we do 

not allow for leverage. As before, we assume that the investor can borrow and lend at the risk-free rate 

and further faces no trading costs. As the constituent parts of the strategy are a short-VIX position and 

long risk-free position, we benchmark the strategy against two similarly rebalanced portfolios that 

are restricted to holding only either type of asset. As before, the key performance metrics are the total 

return, the Sharpe ratio and the Sortino ratio.

Over the course of the strategy, we have 67 within-trading hour tweets26. Thus, out of 21,547 available 

re-balances, the strategy only takes a short 0.31% of time. The highest weight observed is 50%, which 

occurs 8 times, evidencing a relatively low degree of clustering in the tweets, which can further be 

seen in the overview of the weights in figure 7.2.B below. In terms of key performance metrics, the 

strategy generated a cumulative return of 3.14%, while the risk-free and short-VIX portfolios genera-

ted returns of 1.07% (a) and -68.81% (b) respectively. Naturally, this loss in the short-VIX portfolio 

permeates through to the Sharpe and Sortino ratios, which are both negative for the short-VIX port-

folio. For the tweet-driven strategy, the Sharpe ratio was 35.159%, while the Sortino was 921.773.

26  Note that this is lower than the recorded amount in Appendix F due to the data availability on the utilized price indices.

Figure 7.2.B: Cumulative returns on investment strategy vs. alternative investments
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Total return
Strategy: 3.140%

Short-VIX: -68.808%
Risk-free: 1.069%

Cumulative dollar-return from an initial USD 100m investment over the investment horizon (from November 8th, 2016 
The red line denotes the tweet-driven short-VIX investment strategy, while the blue line in (a) denotes a similarly reba-
lanced strategy, restricted to investing in the risk-free rate. Meanwhile the blue line in (b) denotes a similarly rebalanced 
portfolio, restricted to only holding a short position in the VIX. The blue bars in the background denote the total weight 
of the short-position in the VIX index at any given point in time.

Sharpe Ratio
Strategy: 35.159%

Short-VIX: -0.697%
Risk-free: n.m.

Sortino Ratio
Strategy: 921.773
Short-VIX: -0.663

Risk-free: n.m.

This very high Sortino ratio is primarily driven by a large weight in the risk-free asset; as mentioned, 

our choice of the risk-free rate as the return requirement, causes the Sortino ratio to approach infinity 

as a larger weight is invested in the risk-free asset. Furthermore, while the strategy outperforms the 

short-VIX portfolio across all three metrics, the poor performance of said portfolio is primarily dri-

ven by the large spike in the VIX in February 2018. Given the very low R2 found for the regression 

between the tweets and the VIX, it seems unlikely that the trading strategy would consistently be 

capable of avoiding such detrimental spikes in the future. Hence, while Trump’s Twitter feed seems 

to have some effect on the development of the VIX, it is a stretch to call it a true driver. This saturates 

this trading strategy as well: if measured against the broad market portfolio, it does not outperform a 

similarly rebalanced S&P 500 investment across any of the metrics. Hence, while these results seem 

to reveal interesting insights regarding the reaction of investor fear to Trump communication, it is no 

simple feat to formulate a trading strategy around these results.

Over the course of time, across multiple subsamples, studies, methodologies and presented analyses, 

the variance risk premium has proven a dominant predictor of future stock returns. However, in the 

wake of the global financial crisis, market dynamics changed considerably: Extraordinarily low in-

terest rates have caused bond yields to plunge towards zero, pushing investors into massive equity 

purchases, yielding extraordinary returns on the stock markets in the western world. Despite increa-

sing political instability with the surge in populist movements, which culminated in the election of 

the Donald J. Trump as the 45th president of the US, market volatility has followed the bond yields 

to historically low levels. Hence, while economists and international newspapers, within and without 

Discussion and Potential Implications for Current Investor Senti-
ment

8	
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the US, have criticized Trump repeatedly for his seemingly unpredictable and irrational character, 

the American market stock market has, undeniably, flourished in recent years. This development is 

in spite of an increasing interest rate during the Trump presidency, which may have been expected to 

otherwise depress stock returns.

Interestingly, a new market state in the Trump Era has yielded a decline in the predictability offered 

by the VRP – a perplexing result, given the parameter’s stability throughout the financial crisis and 

the subsequent period leading up to the election. Hence, the following section seeks to answer the 

fourth guiding research question, and thus interpret and discuss the potential sources of the lesser 

degree of predictability of the VRP, including the potential influence of the current uncertain political 

setting. Additionally, we seek to discuss how we may derive key insights regarding investor sentiment 

and how this affects the VRP.

In order to determine the sources of the decreased predictability, we turn to the key components of 

the VRP: Overall, the VRP is considered to be driven by two major dynamics directly and indirectly 

-  the persistence in the volatility-of-volatility (“VOV”) and the intertemporal elasticity of substitu-

tion (“IES”) (Bollerslev, et al., 2009). As described in the economic underpinnings of this empirical 

study, the IES intuitively models the market agent responsiveness – or rather sensitivity – towards 

changes in the growth of consumption. Further, given the Epstein-Zin-Weil recursive preferences 

behind this model, a preference for early resolution of uncertainty will cause agents to change their 

consumption patterns based on the persistence in VOV. In particular, with increased persistence in 

the VOV of consumption growth, market agents will prefer to hold safer assets and hence the price 

of riskier assets, such as stocks, will fall (the leverage effect) (Bansal & Yaron, 2004). As prices drop, 

future returns are likely to increase, exactly as predicted by the VRP. Given such interdependency, it 

is natural to view the VRP as a pure volatility bet, in which the realized variance is risk-neutralized 

away (Bollerslev, et al., 2009).

The IES will further enhance these findings: for a given level of VOV, the IES will increase the esti-

mated slope coefficient of the VRP – implying that investors are more sensitive to the VOV. However, 

it is clear from this line of argumentation that the persistence of VOV unanimously and directly influ-

ences the VRP: With a more persistent VOV, the isolated variance premium increases in importance 
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to investors, as uncertainty becomes a more integral part of the market, hence permeating the asset 

pricing decision to a greater degree. Together, the IES and VOV represent a composite effect: If the 

persistence of VOV is high, volatility represents a central part of asset pricing decisions for prolonged 

periods, while a higher IES will further compound this effect by intensifying the sensitivity to the gi-

ven level of uncertainty. However, as these terms are interlinked in the economic model, their effects 

cannot be directly separated. Hence, in the following paragraphs we study the clues in our findings 

attempting to disentangle the two effects and how they might separately affect the VRP, considering 

the current market characteristics and change in investor sentiment.

8.1	 The VRP, Investor Sensitivity and Difference Between Risk and Uncertainty

In attempt to explain the lack of predictability, the amplifying effect of consumption growth sensitivity 

of investors to the volatility risk premium is key. Hence, in order to determine whether such sensiti-

vity has decreased or increased in recent times, it is essential to consider the underpinning effects at 

work. According to Drechsler (2013), an important explanatory factor of the predictive power of the 

VRP may arise from the Knightian distinction of risk and uncertainty. In particular, the ability of the 

VRP to predict future stock returns derives from the risk of jumps in the economy, while this effect is 

compounded by the market agents’ uncertainty in assessing the odds of such jumps. Even in a world 

of rational market agents, this can result in overestimation of the risk of crashes, as the uncertainty 

regarding the assigned odds inflates the odds themselves.

After the financial crisis, we have seen an increase in the relative size of the VRP, with a particular 

inflation after the US election, implying that investors are demanding DOTM puts to a larger degree, 

driving up the VIX relatively more than the development in the realized variance would entail in 

terms of actual potential tail risk. The divergence of the VRP and the RV follows the line of arguments 

presented by Chen, et al. (2014), who also find that investor perceived crash risk may be higher than 

the actual crash risk in the market and that the difference may contract or expand over time. As the 

original formulation of the VRP does not separate risk and uncertainty, the lack of significance might 

be caused by a divergence in these two factors: while the current perceived uncertainty is high, the 

actual crash risk is low given the apparent market tranquility. Thus, investors seem unable to assign 

probabilities with certainty, perhaps because investor psyche remains affected by the GFC, or because 

it has become stirred by the new unstable political sphere. Regardless of such high uncertainty, with 
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a low actual crash risk, the product of these two will continue to be limited. Contrarily, in a highly 

volatile market, we see an amplified effect: in the GFC subsample, where both the RV and the VRP 

are high, we expectedly find strong predictability for the VRP.

In terms of understanding investor sentiment in relation to Trump and his influence on the economy, 

this distinction between actual risk and investor perceived uncertainty may offer further insight: As 

we pointed out within the analysis, Trump’s economic and military tweets seem to act as risk 

relievers. This effect might be due to investors regarding the uncertainty of Trump’s overall political 

agenda and the manner in which this is conducted to be worse than the policies actually proposed and 

approved. Such fear of political instability follows the findings on the German and Pakistani mar-

kets (Bittlingmayer, 1998; Nazir, et al., 2014). Furthermore, as Jensen & Schmith (2005) argued in 

their “Candidate Uncertainty” hypothesis, uncertainty regarding the policies of a popular presidential 

candidate can be a key driver for market volatility. Hence, by utilizing the distinction of risk and 

uncertainty (Drechsler, 2013), we may be better equipped to explain how the seemingly irrational and 

unpredictable Trump does not generate higher volatility in the market with his tweets: 

It may be that, in the era of Trump, investors assign some non-zero probability to the implementation 

of policies, however, due to the unpredictable nature of the current president, this probability be-

comes assigned with higher uncertainty. This higher uncertainty causes investors to become fearful, 

spurring demand for DOTM puts, and skewing the volatility surface into a more pronounced smirk, 

inflating the VIX. The tweets then act as a relief of the uncertainty, as investors can now more accura-

tely place odds on the policies in question. Since the compounding effect of uncertainty is reduced, 

the VIX index drops – in our empirical findings, 20 minutes following the tweet. The detected drop 

in implied volatility following a tweet is then not a relief of overall uncertainty, but rather the uncer-

tainty induced by the Trump administration itself.

8.2	 Behavioral Finance Within the World of Trumponomics

While Dreshler’s (2013) distinction explained how rational agents in the post-Trump world may 

overestimate crash risk, the field of behavioral finance offers a similar justification based on the ac-

tions of irrational agents, namely through the idea of prospect theory (Driessen, et al., 2014). A key 

feature of prospect theory is the ability to capture how strong shocks continue to permeate investor 
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psyche: Given that investors have a combination of strong loss aversion and a tendency for distorted 

probability assessment, it seems likely that an old and severe shock, such as the GFC, continues to 

affect investor preferences nearly a decade later. Hence, investors continue to have a heighted fear of 

potential crashes today.

Our finding of a relatively larger VRP thus may lend support to this argument: In prospect theory, 

when the probability of an extreme event changes, as above, perception and probability enters multi-

plicatively. Hence, while investors continue to overestimate the risk of crashes following the financial 

crisis, the actual crash risk is low. Thus, the multiplicative effect of these two factors is not strong 

enough to afford the VRP significant predictability. This may also explain the importance of the vola-

tility spikes in the post-election sample – and hence why winsorization causes the significance of the 

VRP to disappear: If we effectively cap extreme tail risks (of which there are very few in the post-ele-

ction sample), the remaining magnitude of the shocks is not large enough to drive VRP predictability.

Considering the risk relieving effect of Trump Tweets, a similar argument applies as in the world of 

rational agent assumptions (Drechsler, 2013): The tweets can be seen to reduce the distorted proba-

bility assessments, as they offer some degree of certainty about the future development of the US 

economy and military. Not only does this carry important implications regarding how the mar-

ket perceives Trump, but it can also form the basis of a profitable trading strategy – both in terms of 

augmenting understanding of the drivers of the VRP, but also as a direct, intraday trading strategy in 

VIX futures as seen above.

8.3	 Volatility-of-volatility and Changes in Crash Risk

Persistence in VOV is assumed to be the sole ‘direct’ driver of a positive VRP, which is particularly 

true in terms of jump risk in the left tail (Bollerslev, et al., 2009; Bollerslev, et al., 2015). The general 

market recovery period after the GFC, including the Trump era, has been described as constituting 

a stable market setting, however it is especially tranquil during the post-election sample. Hence, the 

sample shows low probability of crashes and persistence of these, with the exception of the jump in 

volatility in February 2018. As mentioned above, it is thus not surprising that we lose significance for 

the post-election sample, contrary to other samples, when we apply winsorization techniques, as this 

removes the large spike, which is assumed to drive at least some of the predictability. 
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Given the political focus of this paper, it is important to note that the volatility jump was, to a large 

degree, not politically driven or motivated. One could argue that the representation of Trump as a 

person and a politician throughout this paper may have been affected by the European mindset of the 

authors, and that the detected results for the VIX are not as surprising, as they might otherwise seem. 

Arguably, many of Trump’s policies are good for the US stock market; examples cover tax cuts for 

firms, more military spending (increasing economic activity through the military-industrial complex), 

and protection of US-based steel producers among others.

If Trump is not the facilitator of risk or perceived uncertainty, the lack of significance must be trig-

gered by some other factor(s). Another theory that may explain the lacking predictability of the VRP, 

is that it seems to fail in periods of low volatility. Like the Trumponomics subsample, the pre-GFC 

subsample was generally characterized by more peaceful market conditions. However, in previous 

periods of high instability (GFC) or relatively normal levels of volatility (post-GFC/pre-election) the 

VRP seems to be a successful and dominant predictor. What these last-mentioned periods seem to 

have in common, is the larger persistency of the VOV, as well as having the compounded effect of 

VOV and IES moving in the same ‘direction’. Hence, not only is the risk higher with some probabili-

ty, the uncertainty regarding the reference model is also higher (Drechsler & Yaron, 2009). 

Nevertheless, whether the VRP simply is not modelled towards capturing low persistence in VOV or 

that the VOV dynamics have changed, it seems that model modifications could potentially yield bet-

ter results in terms of predictability and insight into the current investor sentiment. One such solution 

can be found in the idea of a decomposed VRP as presented by Kilic & Shaliastovich (2017) and Se-

gal, et al. (2015). The decomposition makes it possible for the model to capture upside and downside 

volatility differently, which is of utmost relevance as they carry relationships of opposite signage with 

regards to expected return. Investors like good uncertainty, as it increases the potential for substantial 

gains, whereas bad uncertainty carries an increased probability of extreme losses. Given that we, 

during the Trumponomics sample, see at least one large negative spikes, and few strong positive spi-

kes, a decomposed VRP may more accurately capture investor perception of risk for the subsample. 
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Another potential modification, could be direct modeling of risk jump-diffusion (Pan, 2002; Eraker, 

2008; Broadie, et al., 2007; Drechsler & Yaron, 2009), which might seem appropriate for this sub-

sample in particular. Given the aim of constructing a VRP variable that accurately depicts investor 

sentiment and further can form the basis of a profitable trading strategy viable across multiple eco-

nomic cycles, it is important that a model does not simply apply to the world of today, but also the 

world of tomorrow. Hence, the inclusion of model modifications, such as those suggested, may be of 

help to the investor going forward.

8.4	 Final considerations

As evidenced by the increased importance of the VRP as a constituent part of the VIX, it seems that, 

despite a relatively tranquil market, investors continue to fear potential crashes: they seem to react 

very strongly to potential changes in the future volatility of consumption growth, even more so than 

in previous periods. This is not simply a factor in our theoretically based discussion above; in terms 

of more empirical evidence, the historical spike in the VIX index in February 2018 followed a job 

report, which due to the increasing employment in the US economy, may translate into rising wages 

and hence inflation in the future (Varathan, 2018). While such factors should naturally be considered 

in asset prices today, it may be argued that the reaction in the VIX was surprisingly strong conside-

ring the overall positive news. Given the discussion above, such a strong reaction might have several 

foundations, including that investors face a high level of uncertainty in the decision-making process 

(in line with the argument of Drechsler (2013)) or that investors have strongly distorted probability 

assessments, following a prospect theory argument. 

In similar manner, the finding of Trump as a risk reliever in the market, could be an expression of 

cautionary optimism towards Trump in either of two ways: Firstly, the unpredictable nature of the US 

president may cause uncertainty regarding his policies to be build up in the market, which is then reli-

eved when the tweet is posted. Thus, in either a Knightian uncertainty argument, or through distorted 

probability assessment, the strength of the multiplicative effect of uncertainty is lessened. Alterna-

tively, investors could simply find the content of the tweets to be beneficial to the US economy, and 

that the increased relative importance of the VRP in implied variance is due to a lack of faith in the 

existence of a greater political agenda. Naturally, in the middle of the presidential term it is difficult 

to accurately determine the full effect of Trump on the market. Hence, such conclusions are perhaps 
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better made in the future with the benefit of hindsight.

A disconnect between the actual crash risk and the level of fear of these crashes could be an under-

lying reason of why the predictive power of the VRP is not as robust in the post-election world: The 

general level of risk in the market is simply not large enough to drive predictability on a robust 

foundation without a greater volume of spikes or stronger persistence of these spikes. Overall, it se-

ems that investors are in a relatively calm market with both low volatility and persistence of VOV, but 

do not expect this market state to continue forever. Model modification to the VRP, such as a decom-

position of the volatility or direct inclusion of jump risk, may provide a VRP estimate capable of cap-

turing these specific market dynamics, yielding a more robust predictor in this subsample and beyond.

9	 Conclusion
As evidenced by the scope of previous literature, along with the poor track record of market timing 

efforts, it seems that the enigma of the equity premium remains to be decoded. This is especially true 

for the short to intermediate term horizons, in which it seems that investment decisions are opaque. As 

agents are known to be risk averse, which seems to cause the volatility smirk via demand for insurance-like 

strategies in states of market uncertainty, the VRP gains predictive power in the short-medium term 

horizon through the leverage effect or a fear of crashes, or a combination of the two.

Over the past two decades, the world has weathered all stages of the economic cycle: from the expan-

sion of the 00’s creating the housing bubble, which culminated with the Lehman crash and credit 

crunch of 2007, resulting in the contraction known as the Global Financial Crisis (“GFC”), to the 

economic recovery beginning in Q3 2009. The GFC was the most severe crash since the Great De-

pression, wreaking havoc and creating highly volatile markets within and without the US, making the 

road to recovery from the trough of the cycle long and winding. Nevertheless, the economy has now 

reached a new, expansionary market state, characterized by tranquility: low volatility and interest 

rates have spurred investors to search for yield, driving stock markets to soar to new highs. For the 

first time since the end of the recession, the economy is now outperforming most predictions including a 

positive gap between realized and potential GDP (Federal Reserve Bank, 2018), which is only expected 
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amplified throughout 2018 (Hatzius, et al., 2017). Given the uniqueness of the financial markets post-

GFC, it seems even more appropriate to test the VRP’s predictability throughout this time period, as 

the variable seeks to capture the potential manifestation of perceptions of uncertainty in asset prices. 

Moreover, the thesis is further motivated by the relatively small body of literature published after the 

GFC, and through its systemized, deductive methodological approach it aims to fill the void within 

academia of whether the dominant predictive prowess of the VRP remains today and what informati-

on it may carry regarding investor sentiment.

On a model-free formulation, the VRP provides robust evidence of dominant predictability relative to 

traditional variables on a 3.5-month return horizon on the S&P 500 index for the entire sample period, 

stretching from January 2002 to September 2017. The thesis furthermore presents robust results for 

an outward shift in predictability of the VRP towards a 4-months return horizon after the GFC, and 

stronger predictability and explanatory power than the findings in the BTZ paper for this time period. 

Hence, the natural behavior of uncertainty avoidance permeates through our findings, confirming the 

importance of risk aversion in investment decisions as suggested by Adam Smith (1776 / 1997) and 

Menger (1871 / 2007). Following the period of high volatility in the GFC, where consumer confidence 

and the financial markets hit rock bottom, the results of this thesis suggest that a shift in investor sen-

timent occurred. Put simply, the VRP predictability seems to be driven by two dynamics – persistence 

in volatility-of-volatility (“VOV”) and the elasticity of intertemporal substitution (“IES”). While the 

general volatility is lower post-GFC, it seems that a combined effect of higher persistence of VOV 

and higher IES created this shift in the VRP predictability. In this post-GFC world, shocks to volatility 

take longer to die out and furthermore, as the IES can be seen as the level of sensitivity to shocks, 

investors remain even more fearful of potential shocks, that is, it seems as if they have tightened the 

seat belts in fear of what lies ahead.

Viewing the VRP as a pure volatility bet, this illustrates how the investors’ fear of tail risk has increa-

sed, and how investor sentiment is hyper-sensitive to changes in the volatility-of-volatility, inflating 

the importance of volatility spikes. The significance of these results is not just relevant within the 

sphere of academia but could also be of use for practitioners. Understanding investor sentiment thus 

seems key if one seeks to understand the riddle of future stock yields. Hence, this thesis proves that 

it can be profitable to trade on fear, by following a market timing strategy utilizing our findings, which 
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follows the mantra of Warren Buffett, “We simply attempt to be fearful when others are greedy and to 

be greedy only when others are fearful.” (Buffett, 2018).

Not only did the recovery from the GFC result in tranquility of financial markets – the new world also 

brought on a tumultuous political epoch, including the Brexit and the inauguration of President 

Donald J. Trump. While politically driven volatility has been scrutinized in earlier literature, never 

before have the dots between political uncertainty and the VRP been connected. The Trump Era has 

yielded less volatility and higher returns, but more importantly, the composition of the implied vari-

ance has been altered; the VRP makes up much more of the implied variance relative to the realized 

variance after the election. Subsequently, the otherwise proven dominant predictability of the VRP is 

found to be unrobust, although yielding higher coefficients than before at the 4-month return horizon. 

In an attempt to elucidate these findings, Trump’s tweets are analyzed to test whether he is at fault 

for the relative increase in investor uncertainty. Contrarily to popular beliefs of both the authors and 

media, Trump’s economic and military tweets act as risk relievers in a significant manner in terms of 

implied variance as well as the VRP, most strongly 20 minutes after a tweet.

Many possible explanations for the evolvement of the VRP’s predictability – or lack thereof – exist, 

as well as to why the investors seem to be relieved 20 minutes after Trump tweets. As the IES seems 

to be inflated, even compared to the pre-election period, this entails that the prevalence of fear seems  

intensified in the investor sentiment after the election of Trump, the latest evidence seen with the 

extreme spike of the VIX in February 2018. While this might be driven by Knightian uncertainty re-

garding Trump’s political agenda, the persistence in VOV also seems to have decreased in the Trump 

Era, and as such the multiplicative effect of risk and uncertainty is lessened, yielding the VRP’s sig-

nificance and robustness to be inferior relative to earlier samples or other predictors. However, while 

Trump tweets prove to be risk relievers, it might be from uncertainty that Trump has induced himself. 

As to whether he is following a Madman theory strategy (Thompson, 2018) or is rather driven by 

spontaneous urges towards action rather than inaction, one can only speculate.

Nevertheless, the weakening of the VRP’s predictive prowess towards returns poses a conundrum. In-

tuitively, as well as economically, it makes sense that if one understands the current volatility setting 

and investors sensitivity towards that level of uncertainty, it should convey some information about 
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future asset prices – which is also a key conclusion of this thesis. However, although the new market 

has yielded higher stock prices while realized and implied variances have reached new lows, inve-

stors seem more sensitive to potential tail risk than ever before, triggering a disconnect between the 

VRP and excess returns. Hence, the BTZ proposed model-free formulation of the VRP as a predictor 

may require modifications, in order to capture the true essence of what lies ahead. Whether that is 

distinguishing between good and bad volatility or the inclusion of a jump-diffusion parameter, is for 

future research to determine. With continued economic expansion and a potential risk of overheating, 

we may also face different market characteristics in terms of higher interest rates and inflation sooner 

rather than later. This only makes the modifications more important both within the field of academia 

and practice, as it can aid agents in understanding future investor sentiment, predicting asset prices 

and determining political impact on market volatility in the Era of Trumponomics and beyond. 

10	 Further Research
From our discussion above it becomes clear that, while our analysis has helped expand the knowledge 

base of the VRP and investor sentiment in the post-GFC and Trump Era markets, several questions 

remain, especially regarding the underlying drivers of the observed tendencies. While we have 

attempted to outline possible reasons, we remain limited by the scope of this paper. Hence, in the 

following, we seek to outline areas, which may be of interest for future research.

A particular issue made clear in both in our interpretation of results and our discussion is the inability 

to disentangle the separate effects of the persistence in VOV and IES. Given that the IES is difficult 

to estimate, the most viable route seems to be the study of persistence in VOV, however, due to our 

variance construction from rolling returns, this becomes unstable, while additional measures would 

muddle the analysis with an overabundance of metrics. Future studies may thus focus on studying the 

persistence through other avenues, either through a different construction of the realized variance or 

by a proxy - an example of an approach could be through the persistence in implied volatility from 

options on the VIX (the VVIX index). Additionally, the distinct impacts of the leverage effect and the 

fear of crashes is unclear, hence, future studies could also focus on studying these more separately. 

One could do so by looking at the CBOE SKEW index, which measures the probabilities of extreme 

outlier returns from options data and is further indicative of a steepening or flattening of the implied 
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volatility surface (CBOE, 2018b). Lastly, model improvements that directly include a decomposition 

of the VRP and jump risk may further yield interesting insights into the predictability of the VRP and 

investor sentiment.

This paper’s study of political impact on the VRP and its components took the form of a case study 

of the Trump Era, however, it may of interest to study whether our findings hold in both a broader 

temporal, spatial and methodological sense. Hence, future research may apply our methodology to 

other geographical markets looking at the impact of political leaders in these geographies. Alterna-

tively, studies could examine the impact of other political leaders in the US, for example President 

Obama during his presidency, or Hillary Clinton during the presidential candidacy. Additionally, 

other methodological approaches are available, for example by quantifying political risk through the 

use of such metrics as Caldara and Iacoviello (2018)’s Geopolitical Risk Index. Not only would this 

broaden the spatial scope of the study, it would also provide a timeframe stretching back to 1985 (for 

daily data) or 1899 (for monthly data), hence allowing for a very broad study of the effect of politics 

on the VRP and investor sentiment in both a spatial and temporal sense.

Through our analysis, we find that Trump seems to act as a risk reliever and theorize that this relief 

may stem from uncertainty that the President has induced himself. However, to draw conclusions 

from such considerations, further studies are required. A potential approach could be to study the 

development in the VRP and its components prior to a Tweet (contrarily to our methodology, which 

studied the development after). Doing so would allow the researcher to study whether the Tweets 

seem to cause relief from pent-up uncertainty or whether they constitute a true positive event. In a 

likewise manner, we have discussed the possibility of whether our surprise at the results are due to a 

European mind-set: in an American view, many of Trump’s policies should, at least in the short term, 

lead to more stable markets given the general pro-business content. From this, it may be interesting to 

study both whether European markets react to Trump tweets at all and whether a reaction has similar 

signage to the US. Lastly, the recent thaw in the relationship between North and South Korea may be 

an early indication of a change in the political calculus: Perhaps, Trump’s apparent unpredictability is 

not a measure of his character, but rather a Nixon-like ‘Madman’ theory strategy (Thompson, 2018). 

However, given the novelty of the development, such considerations and their potential impact on 

the financial markets, are better to left future research, which may benefit from greater retrospection.



112

11	 Bibliography

Almeida, C., Ardison, K., Garcia, R. & Vincent, J., 2017. Nonparametric Tail Risk, Stock Returns, and the 
Macroeconomy. Journal of Financial Econometrics, 15(3), pp. 333-376.

Almeida, H. & Ferreira, D., 2002. Democracy and the variability of economic performance: Domestic and 
international sources of economic activity. Economics and Politics, Volume 14, pp. 225-257.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Ebens, H., 2001. The distribution of realized stock return 
volatility. Journal of Financial Economics, February, Volume 61, pp. 43-76.

Andersen, T. G., Davis, R. A., Kreiss, J.-P. & Mikosch, T. V., 2009. Handbook of Financial Time Series. 1st 
edition ed. Berlin: Springer-Verlag Berlin Heidelberg.

Ang, A. & Bekaert, G., 2007. Stock Return Predictability: Is it There?. The Review of Financial Studies, 20(3), 
pp. 651-707.

Ang, A. & Liu, J., 2007. Risk, Return and Dividends. National bureau of Economic Research, January.

Bakshi, G. & Kapadia, N., 2003. Delta-hedged Gains and the Negative Market Volatility Risk Premium. The 
Review of Financial Studies, 16(2), pp. 527-566.

Bakshi, G. & Madan, D., 2006. The Theory of Volatility Spreads. Management Science, 52(12), pp. 1945-
1956.

Balatti, M., Brooks, C., Clements, M. P. & Kappou, K., 2018. Did Quantitative Easing Only Inflate Stock Pri-
ces? Macroeconomic evidence from the US and UK. SSRN Working Paper, pp. 1-48.

Bansal, R., Khatchatrian, V. & Yaron, A., 2003. Interpretable asset markets?. European Economic review, 
Volume 49, pp. 531-560.

Bansal, R. & Lundblad, C., 2002. Market efficiency, asset returns, and the size of the risk premium in global 
equity markets. Journal of Econometrics, Volume 109, pp. 195-237.

Bansal, R. & Yaron, A., 2004. Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles. The 
Journal of Finance, August.59(4).

Barndorff-Nielsen, O. E. & Shephard, N., 2004. Power and bipower variation with stochastic volatility and 
jumps. Journal of Financial Econometrics, 2(1), pp. 1-37.

Barndorff-Nielsen, O. & Shephard, N., 2002. Econometric analysis of realized volatility and its use in estima-
ting stochastic volatility models. Journal of the Royal Statistical Society Series B, 64(2), pp. 253-280.

Barsky, R. & DeLong, B. J., 1993. Why does the stock market fluctuate? Quarterly Journal of Finance, Volume 
108, pp. 291-312.

Beaulieu, M.-C., Cosset, J.-C. & Essadam, N., 2005. The impact of political risk on the volatility of stock re-
turns: the case of Canada. Journal of International Business Studies, Volume 36, pp. 701-708.

Bekaert, G., Engstrom, E. & Xing, Y., 2009. Risk, uncertainty and asset prices. Journal of Financial Economi-
cs, Volume 91, pp. 59-82.



113

Björk, T., 2009. Arbitrage theory in Continuous Time. 3rd ed. Oxford: Oxford University Press.

Bloomberg, 2018. Implied volatilities on S&P 500 options, New York: Bloomberg.

Bekaert, G. & Liu, J., 2004. Conditioning Information and Variance Bounds on Pricing Kernels. Review of 
Financial studies, 17(2), pp. 339-378.

Benzoni, L., Collin-Dufresne, P. & Goldstein, R. S., 2005. Can Standard Preferences Explain the Prices of Out-
of-the-Money S&P 500 Put Options, University of Minnesota: Working Paper.

Bittlingmayer, G., 1998. Output, stock volatility, and political uncertainty in a natural experiment: Germany 
1880-1940. Journal of Finance, Volume 53, pp. 2243-2256.

Black, F., 1976. Studies of Stock Price Volatility Changes. Proceedings of the Business and Economics Section 
of the American Statistical Association, pp. 177-181.

Black, F. & Scholes, M., 1973. The Pricing of options and Corporate Liabilities. Journal of Political Economy, 
Volume 81, pp. 637-659.

Bollerslev, T. & Andersen, T. G., 1997. Intraday periodicity and volatility persistence in financial markets. 
Journal of Empirical Finance, 4(1), pp. 115-158.

Bollerslev, T., Gibson, M. & Zhou, H., 2011. 2006. Dynamic Estimation of Volatility Risk Premia and Investor 
Risk Aversion from Option-Implied and Realized Volatility. Journal of Econometrics, Volume 160, pp. 235-
245.

Bollerslev, T., Marrone, J., Xu, L. & Zhou, H., 2014. Stock Return Predictability and Variance Risk Premia: 
Statistic Inference and International Evidence. Journal of Financial and Quantitative Analysis, 49(3), pp. 633-
661.

Bollerslev, T., Tauchen, G. & Zhou, H., 2009. Expected Stock Returns and Variance Risk Premia. Oxford 
Journals, February.

Bollerslev, T., Todorov, V. & Xu, L., 2015. Tail risk premia and return predictability. Journal of Financial Eco-
nomics, 118(1), pp. 113-134.

Bollerslev, T., Xu, L. & Zhou, H., 2015. Stock return and cash flow predictability: The role of volatility risk. 
Journal of Econometrics, Volume 187, pp. 458-471.

Boudoukh, J., Richardson, M. & Whitelaw, R. F., 2008. The Myth of Long-Horizon Predictability. Review of 
Financial Studies, 21(4), pp. 1577-1605.

Britten-Jonas, M. & Neuberger, A., 2000. Option Prices, Implied Price Processes, and Stochastic Volatility. 
Journal of Finance, Volume 55, pp. 839-866.

Broadie, M., Chernov, M. & Johannes, M., 2007. Model Specification and Risk Premiums: Evidence from 
Futures Options. The Journal of Finance, Volume 62, pp. 1453-1490.

Brounen, D. & Derwall, J., 2010. The impact of terrorist attacks on international stock markets. European 
Financial Management, 16(4), pp. 585-598.



114

CBOE, 2015. White Paper: The CBOE Volatility Index - VIX, Chicago, IL: The Chicago Board of Exchange.

CBOE, 2018b. CBOE SKEW index, Chicago: Chicago Board of Exchange.

Coval, J. D. & Shumway, T., 2001. Expected Option Returns. The Journal of Finance, Jun.

Buffett, W., 2018. Investopedia. [Online] Available at: https://www.investopedia.com/university/warren-buf-
fett-biography/warren-buffett-most-influential-quotes.asp [Accessed 3rd May 2018].

Bullock, N., Platt, E. & Scaggs, A., 2018. The end of an era for market tranquility. The Financial Times. [On-
line] Available at: https://www.ft.com/content/11e079da-2e1a-11e8-a34a-7e7563b0b0f4 [Accessed 15th April 
2018].

Carr, P. & Madan, D., 1998. Towards a Theory of Volatility Trading. In: I. R. J. (ed.), ed. Volatility: New Esti-
mation Techniques for Pricing Derivatives. London: Risk books, pp. 417-427.

CBOE, 2018. The Relationship of Prices of VIX® Futures contracts to the VIX® Index. [Online] Available 
at: http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-futures/price-relationship 
[Accessed 23 April 2018].

Chalmers, A., 2013. What Is This Thing Called Science?. 4th ed. New York, NY, United States of America: 
Open University Press - McGraw-Hill Education.

Chen, H., Joslin, S. & Ni, S., 2014. Demand for Crash Insurance, Intermediary Constraints, and Risk Premia 
in Financial Markets, San Diego: Working Paper.

Chen, J., He, C. & Zhang, J., 2017. Time-Varying Variance Risk Premium and the Predictability of Chinse 
Stock Market Return. Emerging Markets Finance & Trade, 53(8), pp. 1734-1748.

Chung, S.-L., Hung, C.-H. & Yeh, C.-Y., 2012. When does investor sentiment predict stock returns?. Journal 
of Empirical Finance, Volume 19, pp. 217-240.

Davis, J., Aliaga-Díaz, R. & Thomas, C. J., 2012. Forecasting Stock Returns: What signals matter, and what do 
they say now?, Valley Forge, PA: Vanguard Research.

DeCambre, M., 2018. Historic jump in Wall Street’s ‘fear index’ in February sounds a stock-market warning. 
MarketWatch, 23 03, p. 1.

Demeterfi, K., Derman, E., Kamal, M. & Zou, J., 1999. A Guide to Volatility and Variance Swaps. Journal of 
Derivatives, Volume 6, pp. 9-32.

Drechsler, I., 2013. Uncertainty, Time-Varying Fear, and Asset Prices. The Journal of Finance, October. 
LXVIII(5).

Drechsler, I. & Yaron, A., 2009. What’s Vol Got to Do With It, s. l.: Rodney White Center at the Wharton 
School.



115

Encyclopedia Britannica, 2018. Military-industrial complex, Chicago: Encyclopedia Britannica Inc..

Eraker, B., 2008. The Volatility Premium. Working Paper, The University of Wisconsin-Madison.

Driessen, J., Baele, L., Londono, J. M. & Spalt, O., 2014. Cumulative Prospect Theory and the Variance Pre-
mium, Tilburg: Netspar Discussion Paper.

Driessen, J. & Maenhout, P., 2007. An Empirical Portfolio Perspective on Option Pricing Anomalies. Review 
of Finance, 11(4), pp. 561-603.

Fan, J., Imerman, M. B. & Dai, W., 2016. What Does the Volatility Risk Premium Say About Liquidity Pro-
vision and Demand for Hedging Tail Risk?. Journal of Business and Economic Statistics, 24(4), pp. 519-535.

Federal Reserve Bank, 2018. FRED Economic Data - St. Louis, Federal Reserve Bank of St. Louis.

Driscoll, J. & Kraay, A., 1998. Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. 
The Review of Economics and Statistics, 80(4), pp. 549-560.

Du, J. & Kapadia, N., 2012. Tail and Volatility Indices from Option Prices. Working paper, University of Mas-
sachusetts, Amhurst., pp. 1-49.

Engle, R. F. & Sokalska, M. E., 2012. Forecasting intraday volatility in the US equity market. Multiplicative 
component GARCH. Journal of Financial Econometrics, 10(1), p. 54–83.

Epstein, L. G. & Zin, S. E., 1991. Substitution, Risk Aversion, and the Temporal Behavior of Consumption and 
Asset Returns: An Empirical Analysis. The Journal of Political Economy, April, 99(2), pp. 263-386.

Eraker, B., 2004. Do Equity Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices. 
The Journal of Finance, Volume 56, pp. 1367-1403.

Fukuyama, F., 2018. The Rise of Populist Nationalism in the 2018 Davos Edition: The Future of Politics, Da-
vos: Credit Suisse.

FXCM Market Insights, 2017. How Does President Trump’s Twitter Use Impact Forex, Markets And Stocks?. 
[Online] Available at: https://www.fxcm.com/insights/president-trumps-twitter-impact-forex-markets-stocks/ 
[Accessed 19 March 2018].

Gârleanu, N., Pedersen, L. H. & Poteshman, A. M., 2009. Demand-based Option Pricing. Review of Financial 
Studies, 22(10), pp. 4259-4299.

Gençay, R. et al., 2001. An Introduction to High-Frequency Finance. 1st Edition ed. San Diego(California): 
Academic Press, an Imprint of Elsevier.

Ghosh, D. & Vogt, A., 2012. Outliers: An evaluation of Methodoligies. JSM - Section on Survey Research 
Methods. 



116

Goldman Sachs, 1999. More Than You Ever Wanted To Know About Volatility Swaps. Quantitative Strategies 
Research Notes, pp. 1-56.

Goodhart, C. A. & O’Hara, M., 1997. High frequency data in financial markets: Issues and applications. Jour-
nal of Empirical Finance, 4(1), pp. 73-114.

Hansen, P. R. & Lunde, A., 2006. Realized Variance and Market Microstructure Noise. Journal of Business & 
Economic Statistics, 24(2), pp. 127-161.

Hatzius, J., Stehn, S. J., Fawcett, N. & Chaudhary, M., 2017. As Good As It Gets, New York City: Goldman 
Sachs | Economics research.

Herron, M., Lanvin, J., Cram, D. & Silver, J., 1992. Measurement of political effects in the United States eco-
nomy: A study of the 1992 presidential election. Economics and Politics, 11(1), pp. 51-81.

Hodrick, R. J., 1992. Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and 
Measurement. The Review of Financial Studies, 5(3), pp. 357-386.

Hoechle, D., 2007. Robust Standard Errors for Panel Regressions with Cross-sectional Dependence. Stata 
Journal, 7(3), pp. 281-312.

Hsieh, D. A., 1991. Chaos and Nonlinear Dynamics: Application to Financial markets. The Journal of Finance, 
46(5), pp. 1839-1877.

Hráček, F., 2018. Automatic Donald Trump. [Online] Available at: https://filiph.github.io/markov/ [Accessed 
23 April 2018].

Huang, D., Shaliastovich, I., Schlag, C. & Thimme, J., 2018. Volatility-of-Volatility Risk, Wharton School, 
University of Pennsylvania: Working Paper.

Hull, J., 2017. Fundamentals of futures and options markets. Harlow(Essex): Pearson.

Hull, J. C., 2012. Options, futures, and other derivatives. 8th ed. Boston: Prentice Hall.

Irshad, H., 2017. Relationship among political instability, stock market returns and stock market volatility. 
Studies in Business and Economics, 12(2), pp. 70-99.

Jensen, N. M. & Schmith, S., 2005. Market Responses to Politics - The Rise of Lula and the Decline of the 
Brazilian Stock Market. Comparative Political Studies, 38(10), pp. 1245-1270.

Jiang, G. J. & Tian, Y. S., 2005. Model-Free Implied Volatility and Its Information Content. Journal of Finan-
cial Studies, Volume 18, pp. 1305-1342.

Jiang, G. J. & Tian, Y. S., 2007. Extracting Model-Free Volatility from Option Prices: An examination of the 
Vix Index. Journal of Derivatives, Volume 14, pp. 1-26.

Johnson, T. L., 2017. Risk Premia and the VIX Term Structure. Journal of Finance, 52(6), pp. 2461-2490.

Kahneman, D. & Tversky, A., 1979. Prospect Theory: An Analysis of Decision under Risk. Econometrica, 
47(2), pp. 263-291.



117

Kelly, B. & Jiang, H., 2014. Tail Risk and Asset Prices. The Review of Financial Studies, 27(10), pp. 2841-
2871.

Kilic, M. & Shaliastovich, I., 2017. Good and Bad Variance Premia and Expected Returns. Marshall School of 
Business (USC) and Wisconsin School of Business (UWM): Working Paper.

Kirilenko, A., Kyle, A. S., Samadi, M. & Tuzun, T., 2017. The Flash Crash: High-Frequency Trading in an 
Electronic Market. The Journal of Finance, 72(3), pp. 967-998.

Lamont, O., 1998. Earnings and Expected Returns. The Journal of Finance, LIII(5), pp. 1563-1587.

Lee, W. Y., Jiang, C. X. & Indro, D. C., 2002. Stock market volatility, excess returns, and the role of investor 
sentiment. Journal of Banking & Finance, Volume 26, pp. 2277-2299.

Lettau, M. & Ludvigson, S., 2001. Consumption, Aggregate Wealth, and Expected Stock Returns. The Journal 
of Finance, LVi(3), pp. 815-849.

Lettau, M., Ludvigson, S. C. & Wachter, J. A., 2008. The Declining Equity Premium: What Role Dows Macro-
economic Risk Play?. The Society for Financial Studies, 21(4), pp. 1653-1687.

Lewellen, J., 2004. Predicting returns with financial ratios. Journal of Financial Economics, 74(2), pp. 209-
235.

Meddahi, N., 2002. A Theoretical Comparison between Integrated and Realized Volatility. Journal of Applied 
Econometrics, 17(5), pp. 479-508.

Menger, C., 1871 / 2007. Principles of Economics. Reprint from 2007 ed. Auburn(AL): Ludwig von Mises 
Institute.

Merton, R. C., 1973. An Intertemporal Capital Pricing Model. Econometrica, September, 41(5), pp. 867-887.

Merton, R. C., 1973. Theory of Rational Option Pricing. Bell Journal of Economics and Management Science, 
Volume 4, pp. 141-183.

Mueller, B., Rashbaum, W. K. & Baker, A., 2017. Terror Attack Kills 8 and Injures 11 in Manhattan. The New 
York Times, 31 October, p. 1.

Munk, C., 2017. Financial Markets and Investments. Frederiksberg (Capital Region): Copenhagen Business 
School.

Narsoo, J., 2016. High Frequency Exchange Rate Volatility Modelling Using the Multiplicative Component 
GARCH. International Journal of Statistics and Applications, 6(1), pp. 8-14.

Nazir, M. S., Younus, H., Kaleem, A. & Anwar, Z., 2014. Impact of political events on stock market returns: 
empirical evidence from Pakistan. Journal of Economic and Administrative Sciences, 30(1), pp. 60-78.

NBER, 2018. National Bureau of Economic Research - US Business Cycle Expansions and Contractions. 
[Online] Available at: http://www.nber.org/cycles.html [Accessed 06 April 2018].



118

Nelson, D. B., 1991. Conditional Heteroscedasticity in Asset Returns: A New Approach. Econometrica, Mar., 
59(2), pp. 347-370.

Niederhoffer, V., 1971. The analysis of world events and stock prices. Journal of Business, 44(2), pp. 193-219

O’Connor, N., 2017. Three Connections between Rising Economic Inequality and the Rise of Populism. Irish 
Studies of International Affairs, 28(1), pp. 29-43.

O’Grady, S., 2018. Donald Trump isn’t the only reason - or even the main one - why stock markets are 
booming in America and beyond. [Online] Available at: https://www.independent.co.uk/news/business/ana-
lysis-and-features/trump-us-economy-effect-stock-market-record-fact-check-piers-morgan-interview-presi-
dent-a8183586.html [Accessed 18 April 2018].

Pan, J., 2002. The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-Series Study. The 
Journal of Financial Economics, Volume 63, pp. 3-50.

Poitras, G., 2008. The Early History of Option Contracts, Vancouver, BC: Simon Fraser University.

Prigg, M., 2015. Dailymail.com. [Online] Available at: http://www.dailymail.co.uk/sciencetech/artic-
le-3090221/The-tweet-cost-139-BILLION-Researchers-analyse-impact-hacked-message-claiming-Presi-
dent-Obama-injured-White-House-explosion.html [Accessed 2019 March 2018].

Redder, H., 2018. Cheføkonom: ”Trumps vanvid bekymrer mig”. Børsen, 5 March. 

Robert Burgess, B., 2018. Trump Has Lost the Confidence of Investors. Bloomberg, 9 April, p. 1.

Rugg, G. & Petre, M., 2007. A Gentle Guide to Research Methods. 1st ed. New York, NY, United States of 
America: Open University Press - McGraw-Hill Education.

Schwert, G. W., 1990. Stock Volatility and the Crash of ’87. The Review of Financial Studies, 3(1), pp. 77-102.

Shaliastovich, I., 2015. Learning, condifence, and option prices. Journal of Econometrics, Volume 187, pp. 
18-42.

Shelor, R. M., Anderson, D. C. & Cross, M. L., 1990. The Impact of the California Earthquake on Real Estate 
Firms’ Stock Value. Journal of Risk & Insurance, 5(3), pp. 335-340.

Shen, L., 2017. President Trump Is Causing More Economic Uncertainty Than the 2008 Financial Crisis. 
[Online] Available at: http://fortune.com/2017/05/19/donald-trump-economic-uncertainty-index/ [Accessed 
18 April 2018].

Smith, A., 1776 / 1977. The Wealth of Nations. Facsimile of 1904 ed. Chicago(IL): The University of Chicago 
Press.

Sortino, F. A. & Price, L. N., 1994. Performance Measurement in a Downside Risk Framework. Journal of 
Investing, 3(3), pp. 59-64.

Stambaugh, R., 1999. Predictive Regressions. Journal of Financial Economics, 54(3), pp. 375-421.



119

Statista, 2018. Number of monthly active Twitter users worldwide from 1st quarter 2010 to 4th quarter 2017, 
s. l.: Statista.

Stentoft, L., 2008. American Option Pricing using GARCH models and the Normal Inverse Gaussian distribu-
tion. CREATES Research Paper, Volume 41, pp. 1-47.

Tankov, P., 2008. Pricing and hedging gap risk. Financial Risks, Derivatives of the Future, Finance and Sustai-
nable Development, 14 September. 

Taylor, S., 2007. Asset price dynamics, volatility and prediction. Princeton, New Jersey: Princeton University 
Press.

Thompson, I., 2018. Vanity Fair -Could Trump’s Madman Theory of North Korea Actually Lead to Peace?. 
[Online] Available at: https://www.vanityfair.com/news/2018/03/could-trumps-madman-theory-of-north-ko-
rea-actually-lead-to-peace [Accessed 4 May 2018].

Thomson Reuters, 2018. Thomson Reuters DataScope Select - Thomson Reuters Tick History, s.l.: s.n.

Treanor, J., 2011. Credit crunch pinpointed to 9 August 2007 – the day the world changed. The Guardian, 1 
12, p. 1.

Trump Twitter Archive, 2018. Full Archive of Trump Tweets. [Online] Available at: http://www.trumptwit-
terarchive.com/ [Accessed 26 March 2018].

Trump, D. J., 2018. Twitter.com. [Online] Available at: https://twitter.com/realDonaldTrump?lang=da [Acces-
sed 2019 March 2018].

Tversky, A. & Kahneman, D., 1992. Advances in Prospect Theory: Cumulative Representation of Uncertainty. 
Journal of Risk and Uncertainty, 5(4), pp. 297-323.

Twitter, 2016. Trump’s Twitter Feed - April 28th 2016, 7:26 p.m., New York: Twitter.

Twitter, 2018. Trump’s Twitter Feed - February 10th 2018, 09:02 a.m., New York: Twitter.

Varathan, P., 2018. The main measure of market instability has more than doubled in a week. Quartz, 5 Febru-
ary, p. 1.

Weil, P., 1989. The Equity Premium Puzzle and the Risk-free Rate Puzzle. Journal of Monetary Economics, 
July, Volume 24, pp. 401-421.

White, H. & Lu, X., 2010. Robustness Checks and Robustness Tests in Applied Economics, San Diego: De-
partment of Economics, University of California, San Diego.

Yu, J. & Yuan, Y., 2011. Investor sentiment and the mean-variance relation. Journal of Financial Economics, 
Volume 100, pp. 367-381.



A
Appendices



 1 

Overview of Appendices: 

Appendix Title Page 

A Glossary 2 

B Overview of MC-GARCH modelled output 3 

C Overview of included control variables 5 

D Output from ADF and ARCH tests 6 

E Overview of summary statistics 7 

F Summary statistics on Trump Tweets 9 

G VRP 3.5-month return regression, full sample 10 

H EVRP 4-month return regression, full sample 11 

I Intraday regressions, S&P 500 returns and key variables 12 

J VRP 3.5-month return regression, pre-GFC sample 17 

K EVRP return regressions, pre-GFC sample 18 

L VRP return regressions, GFC-sample 20 

M EVRP return regressions, GFC-sample 21 

N VRP return regressions, post-GFC sample 24 

O EVRP return regressions, post-GFC sample 26 

P EVRP slope coefficients and R2 for studied time samples 28 

Q VRP winsorized samples 31 

R EVRP winsorized samples 40 

S EVRP rolling and recursive return regressions 49 

T Sortino, Sharpe and total return profiles for VRP strategy 51 

U Pre- and post-election beta and R2 estimates  52 

V VRP return regressions, pre-election and post-election samples 56 

W EVRP return regressions, pre-election and post-election samples 62 

X Daily Trump Tweet regressions 68 

Y Intraday Trump Tweet regressions 70 

Z Overview of Trump Tweet effect over time 72 

AA R-Script for MC-GARCH modelling of realized variance 73 

AB R-Script for daily return regressions across all samples 77 

AC R-Script for intraday regressions (including Trump Tweets) 82 

AD R-Script for daily Trump Tweet regressions 86 

  



 2 

Appendix A: Glossary 

Abbreviation Full denotation 

ARCH Autoregressive Conditional Heteroscedasticity 

ATM At-the-money (regarding options) 

BS Black-Scholes(-Merton) option pricing model 

BTZ Bollerslev, et al. (2009) study 

CAPM Capital Asset Pricing Model (Merton, 1973) 

CAY Consumption-Wealth Ratio 

CBOE Chicago Board of Exchange 

DOTM Deep-out-of-the-money (regarding options) 

EGARCH Exponential Generalized Autoregressive Conditional Heteroscedastic (model) 

ERV Expected realized variance (modelled with MC-GARCH) 

GARCH Generalized Autoregressive Conditional Heteroscedastic (model) 

GBM General Brownian Motion 

GFC Global Financial Crisis 

IES Intertemporal Elasticity of Substitution 

ITM In-the-money (regarding options) 

IV Implied variance 

LRR Long Run Risks model (Bansal & Yaron, 2004) 

MC-GARCH Multiplicative Component Generalized Autoregressive Conditional 

Heteroscedastic (model) 

MN Moneyness 

OTM Out-of-the-money (regarding options) 

P/D Price-dividend ratio 

P/E Price-earnings ratio 

RREL Relative risk-free rate (stochastically de-trended risk-free rate) 

RV Realized variance 

SPX S&P 500 index 

SPX VIX Volatility index constructed from S&P 500 options (CBOE, 2018) 

VIX Volatility index constructed from S&P 500 options (CBOE, 2018) 

VOV Volatility-of-volatility 

VRP Variance risk premium 

vrp Volatility risk premium 

VVIX Volatility-of-volatility measure constructed from options on the VIX 

(CBOE,2018) 
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Appendix B: Overview of MC-GARCH modelled output 

Table B.1: Overview of information criteria for daily variance 

Information criterion GARCH (1,1) EGARCH(1,1) 

AIC (Akaike) -6.5354 -6.5676 

BIC (Bayesian) -6.5262 -6.5573 

Shibata -6.5354 -6.5676 

Hannan-Quinn -6.5322 -6.5640 

 

Table B.2: Parameter estimates from MC-GARCH model 

 𝜇 𝐴𝑅(1) 𝑀𝐴(1) 𝜔 𝛼 𝛽 𝛾 Skew Shape 

Mean 0.00005 -0.04892 0.01084 -0.85544 0.23469 0.91082 -0.03792 0.25013 7.39760 

Std. Dev 0.00088 0.60291 0.62295 1.26432 0.12398 0.12870 0.14960 0.24410 8.59474 

 

Figure B.1: Correlogram of 5-minute absolute returns on the S&P 500 Index for the period 

stretching from January 1st 2018 to February 28th 2018 
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Appendix B: Overview of MC-GARCH modelled output (continued) 

 

Figure B.2: Overview of components of MC-GARCH model, for the period stretching from 

January 1st 2018 to February 28th 2018 
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Appendix C: Overview of included control variables 

Variable Description Source 

US 3-month Treasury Bill  Federal Reserve Bank of St. Louis 

(2018) 

Default spread Spread between Moody’s BAA and AAA 

bond indices 

Federal Reserve Bank of St. Louis 

(2018) 

Term spread The difference between the rates on the 

US 10-year Treasury Bond the US 3-

Month Treasury Bill 

Federal Reserve Bank of St. Louis 

(2018) 

Relative Risk-free Rate 

(RREL) 

Stochastically detrended risk-free rate; 

the US 3-month minus its backward 

twelve-month trailing average 

Federal Reserve Bank of St. Louis 

(2018) 

Consumption-Wealth Ratio 

(CAY) 

Log of consumption wealth ratio is 

defined as: 𝑐𝑤𝑡 ≡ 𝑙𝑜𝑔 (
𝐶𝑡

𝑊𝑡
) = 𝑐𝑡 −𝑤𝑡, in 

which 𝑊𝑡 denotes the total wealth, while 

𝐶𝑡 denotes the aggregate consumption.  

As empirically defined in Lettau & 

Ludvigson (2001) and retrieved 

from their website 

Price-earnings ratio (P/E) The price of the S&P 500 index divided 

by an index of last year’s earnings for the 

constituent firms: 𝑃 𝐸⁄ =
𝑃𝑆𝑃𝑋

𝐸𝑆𝑃𝑋
 

 

Based on trailing 12-month averages on 

realized earnings as reported by brokers.  

FactSet (2018) 

Price-dividend ratio (P/D) The price of the S&P 500 index divided 

by an index of last year’s dividends for 

the constituent firms: 𝑃 𝐸⁄ =
𝑃𝑆𝑃𝑋

𝐷𝑆𝑃𝑋
 

 

Based on trailing 12-month averages on 

realized dividends as reported by brokers. 

FactSet (2018) 
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Appendix D: Output from ADF tests and ARCH tests 

Table D.1: Augmented Dickey-Fuller Test 

Variable Test-statistic 
Critical values 

1% 5% 10% 

𝑟𝑆𝑃𝑋  -17.057 -3.43 -2.86 -2.57 
(𝑟𝑆𝑃𝑋 − 𝑟𝑚)  -11.513 -3.43 -2.86 -2.57 
𝑅𝑉𝑡  -6.637 -3.43 -2.86 -2.57 
𝐼𝑉𝑡  -3.9114 -3.43 -2.86 -2.57 
𝑉𝑅𝑃𝑡   -10.127 -3.96 -3.41 -3.12 
𝐸𝑅𝑉𝑡  -5.935 -3.43 -2.86 -2.57 
𝐸𝑅𝑃𝑡   -8.849 -3.43 -2.86 -2.57 
log⁡(𝑃 𝐸⁄ )𝑡  -2.306 -3.43 -2.86 -2.57 
log⁡(𝑃 𝐷⁄ )𝑡  0.688 -3.43 -2.86 -2.57 
𝐷𝐹𝑆𝑃𝑡   -2.412 -3.43 -2.86 -2.57 
𝑇𝑀𝑆𝑃𝑡   -1.940 -3.43 -2.86 -2.57 
𝐶𝐴𝑌𝑡  -3.141 -3.96 -3.41 -3.12 
𝑅𝑅𝐸𝐿𝑡  -2.607 -3.43 -2.86 -2.57 

 

Table D.2: ARCH heteroscedasticity test for residuals, 5-minute returns on the S&P 500 

Portmanteau-Q test 

Order PQ P-value 

4 54,864 0.00 

8 82,085 0.00 

12 90,951 0.00 

16 99,244 0.00 

20 106,636 0.00 

24 112,052 0.00 

 

Langrange-Multiplier test 

Order LM P-value 

4 374,516 0.00 

8 160,916 0.00 

12 105,121 0.00 

16 77,725 0.00 

20 61,491 0.00 

24 50,986 0.00 
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Appendix E: Overview of summary statistics 

 Summary statistics 

 Mean Std. dev Skew Kurt. AR(1) 

𝑟𝑆𝑃𝑋 − 𝑟𝑓  3.712 56.701 -1.418 6.261 0.9371 

𝐸𝑅𝑉𝑡  26.770 73.236 12.896 269.786 0.602 

𝑅𝑉𝑡  24.268 44.157 5.917 44.302 0.997 

𝐼𝑉𝑡  39.453 48.019 4.150 24.208 0.979 

𝑉𝑅𝑃𝑡   15.389 21.013 -0.393 31.432 0.900 

𝐸𝑉𝑅𝑃𝑡   13.308 53.274 -22.879 802.562 0.269 

𝐶𝐴𝑌𝑡  -0.008 0.015 0.290 -0.442 0.997 

(𝑃 𝐸⁄ )𝑡  16.351 2.334 0.128 0.396 0.996 

(𝑃 𝐷⁄ )𝑡  0.039 0.012 0.273 -0.779 0.997 

𝑅𝑅𝐸𝐿𝑡  -0.063 0.631 -1.066 2.579 0.996 

𝐷𝐹𝑆𝑃𝑡   1.094 0.463 2.779 9.402 0.999 

𝑇𝑀𝑆𝑃𝑡   2.054 1.062 -0.623 -0.270 0.998 

 

 

 

 

 

 

 

 

                                                           
1 AR(1) process for excess returns shows significant autocorrelation due to mechanical autocorrelation created by summing 

returns over the monthly horizon. The AR(1) process without summing returns shows a coefficient of -0.08, which is not 

significant at the 5%-level. 



 8 

Appendix E: Overview of summary statistics 

Full correlation Matrix 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡−𝑡+1 𝐸𝑅𝑉𝑡 𝑅𝑉𝑡 𝐼𝑉𝑡 𝑉𝑅𝑃𝑡  𝐸𝑉𝑅𝑃𝑡  𝐶𝐴𝑌𝑡 (𝑃 𝐸⁄ )𝑡 (𝑃 𝐷⁄ )𝑡 𝑅𝑅𝐸𝐿𝑡 𝐷𝐹𝑆𝑃𝑡  𝑇𝑀𝑆𝑃𝑡  

(𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡−𝑡+1 1            

𝐸𝑅𝑉𝑡  -0.461 1           

𝑅𝑉𝑡  -0.433 0.648 1          

𝐼𝑉𝑡  -0.500 0.687 0.901 1         

𝑉𝑅𝑃𝑡   -0.241 0.221 -0.026 0.410 1        

𝐸𝑉𝑅𝑃𝑡   0.180 -0.751 -0.071 -0.035 0.069 1       

𝐶𝐴𝑌𝑡  -0.203 0.282 0.397 0.532 0.391 0.095 1      

(𝑃 𝐸⁄ )𝑡  0.066 -0.240 -0.370 -0.344 -0.016 0.017 -0.122 1     

(𝑃 𝐷⁄ )𝑡  -0.052 0.052 0.070 0.205 0.325 0.114 0.747 0.276 1    

𝑅𝑅𝐸𝐿𝑡  0.204 -0.322 -0.448 -0.492 -0.191 -0.004 -0.373 0.161 -0.054 1   

𝐷𝐹𝑆𝑃𝑡   -0.203 0.463 0.733 0.766 0.224 0.060 0.381 -0.497 0.062 -0.535 1  

𝑇𝑀𝑆𝑃𝑡   -0.018 0.127 0.203 0.283 0.225 0.082 0.312 0.105 0.281 -0.361 0.222 1 
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Appendix F: Summary statistics of Trump Tweets 

 

 

 

 

 

 

 

 

Month
Total no. 

of tweets
Economics Political

Featured 

Democrats*
Military

Presidential 

Duties
Personal Other

Fake 

News*

Nov-16 98 1 49 9 2 17 28 1 0

Dec-16 132 16 36 12 9 35 36 0 1

Jan-17 207 12 85 20 6 31 72 1 11

Feb-17 152 5 47 10 9 38 53 0 18

Mar-17 133 15 54 13 3 28 30 3 7

Apr-17 138 7 52 22 7 31 40 1 3

May-17 146 9 51 19 1 45 38 2 12

Jun-17 175 5 92 25 8 29 41 0 12

Jul-17 228 18 77 26 8 57 67 2 16

Aug-17 197 9 68 10 5 68 46 1 18

Sep-17 234 9 64 12 4 92 56 4 9

Oct-17 257 35 83 43 8 71 51 3 25

Nov-17 250 38 80 18 23 51 58 3 13

Dec-17 190 48 56 16 12 26 49 1 22

Jan-18 206 31 95 40 14 33 34 2 9

Feb-18 160 12 68 16 2 37 42 1 9

Total 2,903 270 1,057 311 121 689 741 25 185

Inside trading hours (NYSE) 774 78 251 58 34 244 164 3 36

Outside trading hours (NYSE) 2,129 192 806 253 87 445 577 22 149

Inside trading hours (CBOE) 811 82 260 61 35 261 170 3 37

Outside trading hours (CBOE) 2,092 188 797 250 86 428 571 22 148
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Appendix G: VRP 3.5 month return regressions, full sample from Jan. ‘02 to Sep. ‘17 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.264***         0.279*** 0.413*** 0.396***  0.490*** 0.457*** 
 (3.602)         (3.978) (4.603) (5.346)  (5.235) (5.997) 

𝐼𝑉𝑡  
 -0.016              

  (-0.203)              

𝑅𝑉𝑡  
  -0.085             

   (-1.147)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -38.656      -40.738*   -41.069 -46.561** -50.882** 

    (-1.269)      (-1.744)   (-1.416) (-2.563) (-2.054) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -7.862          -9.340 

     (-0.648)          (-1.522) 

𝐷𝐹𝑆𝑃𝑡   
     -2.936         -5.628 

      (-0.224)         (-0.775) 

𝑇𝑀𝑆𝑃𝑡   
      -1.562        2.049 

       (-0.469)        (0.873) 

𝐶𝐴𝑌𝑡  
       -2.873   -5.307**  -0.688 -3.300  

        (-0.816)   (-1.989)  (-0.242) (-1.482)  

𝑅𝑅𝐸𝐿𝑡  
        13.181**   16.390*** 12.867** 14.518*** 16.118*** 

         (2.368)   (4.288) (2.530) (3.462) (2.589) 

Constant -0.200 4.760 6.238 111.846 -21.652 7.330 7.356 1.864 5.597 113.114* -6.742 -0.481 119.502 124.996** 111.662 
 (-0.050) (1.007) (1.213) (1.297) (-0.522) (0.606) (1.349) (0.273) (1.426) (1.714) (-1.241) (-0.162) (1.462) (2.497) (1.480) 

Observations 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 

R2 0.036 0.001 0.015 0.037 0.006 0.002 0.003 0.020 0.088 0.077 0.093 0.164 0.130 0.231 0.226 

Adjusted R2 0.036 0.0004 0.015 0.037 0.006 0.002 0.003 0.020 0.088 0.076 0.092 0.163 0.130 0.230 0.225 

Note: Parentheses denote t-statistics                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Appendix H: EVRP 4-month return regressions, full sample from Jan. ‘02 to Sep. ‘17 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.079**         0.083** 0.087** 0.085**  0.091** 0.088** 
 (2.201)         (2.147) (2.260) (2.312)  (2.319) (2.185) 

𝐼𝑉𝑡  
 -0.008              

  (-0.098)              

𝐸𝑅𝑉𝑡  
  -0.065             

   (-0.808)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -39.644      -40.835**   -41.086 -42.570** -45.301* 

    (-1.348)      (-2.059)   (-1.389) (-2.271) (-1.912) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -7.848          -1.961 

     (-0.673)          (-0.292) 

𝐷𝐹𝑆𝑃𝑡   
     -1.382         -1.197 

      (-0.110)         (-0.129) 

𝑇𝑀𝑆𝑃𝑡   
      -1.295        2.566 

       (-0.405)        (1.246) 

𝐶𝐴𝑌𝑡  
       -2.529   -2.862  -0.1269 -0.640  

        (-0.723)   (-1.286)  (-0.096) (-0.306)  

𝑅𝑅𝐸𝐿𝑡  
        13.026*   13.256*** 12.981** 12.900*** 14.377** 

         (1.947)   (3.263) (2.041) (3.080) (2.515) 

Constant 2.979 4.435 5.735 114.595 -21.595 5.607 6.786 2.144 5.639 116.745** 0.667 4.480 119.956 122.524** 120.399 
 (0.829) (0.948) (1.071) (1.378) (-0.533) (0.482) (1.286) (0.307) (1.468) (2.086) (0.139) (1.416) (1.447) (2.307) (1.525) 

Observations 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 

R2 0.022 0.0002 0.010 0.043 0.007 0.0005 0.002 0.017 0.096 0.068 0.044 0.122 0.142 0.172 0.178 

Adjusted R2 0.022 -0.0001 0.009 0.043 0.007 0.0002 0.002 0.017 0.096 0.067 0.044 0.122 0.142 0.171 0.177 

Note: Parentheses denote t-statistics                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Appendix I: Intraday regressions between S&P 500 returns and key variables,  

Table I.1: VRP, full sample from January 2002 till February 2018 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  1.104** 1.176** 1.027**          

 (2.474) (2.572) (2.135)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   0.149           

  (0.639)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     0.149          

   (0.640)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   1.064** 1.044** 1.085**       

    (2.310) (2.128) (2.197)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    -0.041        

     (-0.147)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     -0.041       

      (-0.151)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         1.120** 1.114* 1.127**    

       (2.053) (1.944) (1.996)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         -0.013     

        (-0.040)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           -0.013    

         (-0.040)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           1.270** 1.282** 1.258** 

          (2.232) (2.107) (2.272) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            0.024  

           (0.058)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             0.024 

            (0.058) 

Constant 
-

10.895* 
-15.78** -15.78** -10.190 -8.858 -8.858 -9.650 -9.227 -9.227 -10.697 -11.475 -11.475 

 (-1.657) (-1.964) (-1.961 (-1.505) (-0.961) (-0.987) (-1.231) (-0.840) (-0.840) (-1.299) (-0.853) (-0.858) 

Observations 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 

R2 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.009 0.009 0.009 

Adjusted R2 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.009 0.009 0.009 

Note: Parentheses denote t-statistics                                                                                 *p<0.1; **p<0.05; ***p<0.01 
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Table I.2: Intraday VRP, pre-financial crisis sample, January 2002 till December 2007 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  0.463 0.106 -0.566          

 (0.865) (0.181) (-0.547)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   0.672           

  (1.052)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     0.672          

   (1.052)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   0.322 0.121 -0.258       

    (0.523) (0.181) (-0.235)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    0.379        

     (0.589)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     0.379       

      (0.590)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.233 0.049 -0.296    

       (0.301) (0.061) (-0.212)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.345     

        (0.403)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           0.345    

         (0.401)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           0.200 0.023 -0.311 

          (0.204) (0.022) (-0.171) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            0.334  

           (0.304)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             0.334 

            (0.300) 

Constant -6.969 -13.519 -13.519 -2.864 -6.550 -6.550 0.160 -3.198 -3.198 1.099 -2.139 -2.139 
 (-0.867) (-1.418) (-1.421) (-0.32) (-0.644) (-0.645) (0.015) (-0.245) (-0.244) (0.082) (-0.134) (-0.133) 

Observations 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 

R2 0.0003 0.001 0.001 0.0002 0.0005 0.0005 0.0002 0.0005 0.0005 0.0002 0.001 0.001 

Adjusted R2 0.0003 0.001 0.001 0.0002 0.0005 0.0005 0.0002 0.0005 0.0005 0.0002 0.001 0.001 

Note: Parentheses denote t-statistics                                                                                 *p<0.1; **p<0.05; ***p<0.01 
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Table I.3: Intraday VRP, financial crisis sample, December 2007 till July 2009 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  1.710** 2.279* 1.756*          

 (2.037) (1.766) (1.875)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   0.523           

  (0.879)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     0.523          

   (0.891)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   1.526* 1.840* 1.551*       

    (1.873) (1.767) (1.878)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    0.289        

     (0.613)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     0.289       

      (0.610)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         1.579 1.973 1.610    

       (1.458) (1.418) (1.551)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.363     

        (0.584)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           0.363    

         (0.585)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           1.806* 2.312 1.846* 

          (1.748) (1.404) (1.763) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            0.467  

           (0.518)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             0.467 

            (0.514) 

Constant -25.594 -85.744 -85.744 -47.20* -80.40* -80.402* -48.712 -90.424 -90.424 -49.661 -103.24 -103.24 
 (-0.934) (-1.498) (-1.518) (-1.69) (-1.783) (-1.782) (-1.31) (-1.517) (-1.523) (-1.101) (-1.276) (-1.268) 

Observations 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 

R2 0.006 0.008 0.008 0.007 0.008 0.008 0.011 0.013 0.013 0.025 0.031 0.031 

Adjusted R2 0.006 0.008 0.008 0.007 0.008 0.008 0.011 0.013 0.013 0.025 0.031 0.031 

Note: Parentheses denote t-statistics                                                                                *p<0.1; **p<0.05; ***p<0.01 
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Table I.4: Intraday VRP, post-financial crisis sample, July 2009 till February 2018 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  0.452 0.456 0.375          

 (1.008) (0.978) (0.794)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   0.081           

  (0.270)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     0.081          

   (0.274)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   0.947 0.957 0.764       

    (1.619) (1.644) (1.209)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    0.193        

     (0.493)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     0.193       

      (0.489)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         1.245 1.261* 0.970    

       (1.568) (1.740) (1.151)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.291     

        (0.550)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           0.291    

         (0.543)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           1.487** 1.504** 1.180 

          (2.106) (2.024) (1.286) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            0.324  

           (0.476)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             0.324 

            (0.503) 

Constant 2.248 0.763 0.763 0.313 -3.239 -3.239 -1.466 -6.810 -6.810 -2.964 -8.922 -8.922 
 (0.437) (0.104) (0.106) (0.048) (-0.361) (-0.358) (-0.16) (-0.604) (-0.593) (-0.363) (-0.695) (-0.719) 

Observations 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 

R2 0.0002 0.0002 0.0002 0.001 0.001 0.001 0.002 0.003 0.003 0.006 0.007 0.007 

Adjusted R2 0.0002 0.0002 0.0002 0.001 0.001 0.001 0.002 0.003 0.003 0.006 0.007 0.007 

Note: Parentheses denote t-statistics                                                                                          *p<0.1; **p<0.05; ***p<0.01 
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Table I.5: Intraday VRP, post-election sample, November 2016 till February 2018 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  1.108 0.925 -0.819          

 (0.229) (0.198) (-0.181)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   1.743           

  (0.690)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     1.743          

   (0.690)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   1.230 0.964 -1.411       

    (0.266) (0.207) (-0.385)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    2.375        

     (0.817)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     2.375       

      (0.832)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         1.024 0.804 -1.048    

       (0.179) (0.140) (-0.239)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         1.852     

        (0.605)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           1.852    

         (0.610)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           2.439 2.253 0.877 

          (0.474) (0.480) (0.233) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            1.377  

           (0.381)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             1.377 

            (0.365) 

Constant 1.151 -7.116 -7.116 8.216 -2.876 -2.876 11.684 3.167 3.167 2.312 -3.780 -3.780 
 (0.037) (-0.199) (-0.199) (0.286) (-0.072) (-0.073) (0.332) (0.067) (0.068) (0.076) (-0.090) (-0.085) 

Observations 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 

R2 0.001 0.002 0.002 0.002 0.005 0.005 0.002 0.004 0.004 0.016 0.018 0.018 

Adjusted R2 0.001 0.002 0.002 0.002 0.005 0.005 0.002 0.004 0.004 0.016 0.018 0.018 

Note: Parentheses denote t-statistics                                                                                          *p<0.1; **p<0.05; ***p<0.01 
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Appendix J: VRP 3.5-month return regressions, pre-financial crisis sample (January ‘02 to December ‘07) 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.140         0.396*** 0.220 0.386**  0.133 0.123 
 (0.986)         (3.475) (1.640) (2.444)  (1.141) (1.581) 

𝐼𝑉𝑡  
 0.045              

  (0.497)              

𝑅𝑉𝑡  
  -0.023             

   (-0.153)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -103.987**      -133.112**   -187.349*** -180.616*** -307.105*** 

    (-1.992)      (-2.409)   (-3.064) (-3.045) (-6.280) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -18.157          91.050* 

     (-0.477)          (1.670 

𝐷𝐹𝑆𝑃𝑡   
     -34.611         -58.799*** 

      (-0.980)         (-3.033) 

𝑇𝑀𝑆𝑃𝑡   
      -3.002        3.775 

       (-0.574)        (0.825) 

𝐶𝐴𝑌𝑡  
       0.768   -1.821  6.713*** 5.332*  

        (0.232)   (-0.624)  (2.663) (1.884)  

𝑅𝑅𝐸𝐿𝑡  
        6.144   12.156* -7.360 -5.955 -18.942*** 

         (0.955)   (1.915) (-1.290) (-1.194) (-4.555) 

Constant -0.171 0.890 2.995 303.076** -51.626 36.253 7.925* 2.644 2.132 379.437** -1.872 -5.919 544.995*** 522.704*** 1,211.335*** 
 (-0.034) (0.172) (0.493) (2.040) (-0.433) (1.202) (1.723) (0.432) (0.331) (2.439) (-0.269) (-0.911) (3.115) (3.086) (4.309) 

Observations 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 

R2 0.015 0.004 0.0003 0.222 0.013 0.076 0.027 0.002 0.038 0.327 0.020 0.119 0.368 0.374 0.578 

Adjusted R2 0.015 0.004 -0.0004 0.221 0.013 0.075 0.026 0.001 0.038 0.326 0.019 0.117 0.367 0.373 0.576 

Note: Parantheses denote t-statistics                                                                                                                                             *p<0.1; **p<0.05; ***p<0.01 
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Appendix K: EVRP return regressions, pre-financial crisis sample (January ‘02 to December ‘07) 

Table K.1: EVRP, 4-month return horizon , pre-GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.036         0.095** 0.025 0.085*  -0.017 -0.024* 
 (0.557)         (2.023) (0.747) (1.715)  (-0.753) (-1.945) 

𝐼𝑉𝑡  
 0.040              

  (0.478)              

𝐸𝑅𝑉𝑡  
  -0.024             

   (-0.183)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -102.421*      -107.823*   -185.267*** -186.420*** -319.079*** 

    (-1.829)      (-1.935)   (-2.931) (-2.816) (-7.379) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -16.937          107.563** 

     (-0.397)          (2.420) 

𝐷𝐹𝑆𝑃𝑡   
     -33.095         -55.045*** 

      (-0.937)         (-3.646) 

𝑇𝑀𝑆𝑃𝑡   
      -2.836        3.349 

       (-0.504)        (0.903) 

𝐶𝐴𝑌𝑡  
       0.974   0.690  6.908** 7.090**  

        (0.287)   (0.250)  (2.440) (2.521)  

𝑅𝑅𝐸𝐿𝑡  
        6.245   7.383 -6.888 -7.060 -19.949*** 

         (0.746)   (1.058) (-1.032) (-1.073) (-4.647) 

Constant 1.972 1.094 3.031 298.767* -47.907 34.765 7.684 2.663 2.209 312.707** 2.198 0.639 539.157*** 542.817*** 1,295.234*** 
 (0.354) (0.187) (0.456) (1.872) (-0.360) (1.151) (1.524) (0.383) (0.318) (1.972) (0.341) (0.109) (2.973) (2.859) (6.028) 

Observations 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 

R2 0.003 0.004 0.0004 0.246 0.013 0.080 0.027 0.003 0.047 0.267 0.004 0.063 0.416 0.416 0.632 

Adjusted R2 0.002 0.003 -0.0003 0.245 0.012 0.079 0.027 0.002 0.046 0.266 0.003 0.061 0.415 0.415 0.631 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Table K.2: EVRP, 3.5-month return horizon, pre-GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.073         0.184** 0.075 0.165*  0.019 -0.021 
 (0.763)         (2.187) (1.255) (1.894)  (0.521) (-1.035) 

𝐼𝑉𝑡  
 0.045              

  (0.497)              

𝐸𝑅𝑉𝑡  
  -0.023             

   (-0.153)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -103.987**      -116.038***   -187.349*** -186.192*** -319.691*** 

    (-1.992)      (-2.612)   (-3.064) (-2.994) (-6.300) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -18.157          117.534** 

     (-0.477)          (2.382) 

𝐷𝐹𝑆𝑃𝑡   
     -34.611         -59.570*** 

      (-0.980)         (-2.961) 

𝑇𝑀𝑆𝑃𝑡   
      -3.002        2.114 

       (-0.574)        (0.496) 

𝐶𝐴𝑌𝑡  
       0.768   -0.098  6.713*** 6.514***  

        (0.232)   (-0.039)  (2.663) (2.661)  

𝑅𝑅𝐸𝐿𝑡  
        6.144   8.601* -7.360 -7.152 -20.969*** 

         (0.955)   (1.665) (-1.290) (-1.253) (-5.078) 

Constant 1.285 0.890 2.995 303.076** -51.626 36.253 7.925* 2.644 2.132 334.619*** 1.236 -1.004 544.995*** 541.281*** 1,333.438*** 
 (0.265) (0.172) (0.493) (2.040) (-0.433) (1.202) (1.723) (0.432) (0.331) (2.656) (0.214) (-0.208) (3.115) (3.041) (4.769) 

Observations 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 

R2 0.008 0.004 0.0003 0.222 0.013 0.076 0.027 0.002 0.038 0.266 0.008 0.071 0.368 0.369 0.573 

Adjusted R2 0.007 0.004 -0.0004 0.221 0.013 0.075 0.026 0.001 0.038 0.265 0.006 0.070 0.367 0.367 0.572 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Appendix L: VRP return regressions, financial crisis sample (December ’07 to July ‘09) 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.395***         0.358*** 0.406* 0.432**  0.340*** 0.268*** 
 (2.524)         (3.935) (1.895) (2.299)  (4.191) (4.203) 

𝐼𝑉𝑡  
 0.096              

  (1.119)              

𝑅𝑉𝑡  
  0.021             

   (0.173)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -88.91      -71.171   -238.154 -215.224** -433.671*** 

    (-0.542)      (-1.29)   (-1.487) (-2.140) (-5.563) 

log⁡(𝑃 𝐷⁄ )𝑡 
    1,218.12          1,071.76*** 

     (0.764)          (2.730) 

𝐷𝐹𝑆𝑃𝑡   
     14.278         -5.161 

      (0.532)         (-5.161) 

𝑇𝑀𝑆𝑃𝑡   
      -9.948        -53.153*** 

       (-0.539)        (-7.448) 

𝐶𝐴𝑌𝑡  
       -12.525   -13.150  -32.112** -30.3464**  

        (-0.579)   (-1.036)  (-2.099) (-2.330)  

𝑅𝑅𝐸𝐿𝑡  
        -11.694   -17.905 -9.922 -14.616 -57.433*** 

         (-0.259)   (-0.653) (-0.447) (-0.820) (-7.693= 

Constant -42.95*** -46.12* -38.095 198.040 4,011.82 -60.922* -17.316 -31.494 -52.455 145.239 -38.108*** -68.340 589.931 516.596* 4,694.674*** 
 (-2.806) (-1.910) (-1.157) (0.449) (0.757) (-1.681) (-1.102) (-1.444) (-0.565) (0.951) (-3.191) (-1.292) (1.292) (1.802) (3.216) 

Observations 389 389 389 389 389 389 389 389 389 389 389 389 389 389 389 

R2 0.117 0.037 0.002 0.062 0.135 0.053 0.030 0.065 0.015 0.155 0.188 0.151 0.346 0.427 0.713 

Adjusted R2 0.114 0.035 -0.001 0.059 0.133 0.051 0.027 0.063 0.012 0.151 0.184 0.146 0.340 0.421 0.708 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Appendix M: EVRP return regressions, financial crisis sample (December ’07 to July ‘09) 

Table M.1: EVRP, 3-month return horizon, GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.093**         0.097*** 0.071 0.098***  0.048* 0.052* 
 (2.539)         (3.459) (1.161) (3.128)  (1.901) (1.706) 

𝐼𝑉𝑡  
 0.097              

  (0.977)              

𝐸𝑅𝑉𝑡  
  0.037             

   (0.513)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -117.986      -119.587   -293.476** -290.387*** -633.914*** 

    (-0.990)      (-1.216)   (-2.518) (-2.589) (-4.299) 

log⁡(𝑃 𝐷⁄ )𝑡 
    1,510.362          1,379.117*** 

     (1.045)          (2.988) 

𝐷𝐹𝑆𝑃𝑡   
     16.011         -43.325* 

      (0.751)         (-1.668) 

𝑇𝑀𝑆𝑃𝑡   
      -5.149        -44.675*** 

       (-0.392)        (-4.601) 

𝐶𝐴𝑌𝑡  
       -15.515   -14.468  -40.603*** -39.500***  

        (-0.859)   (-0.894)  (-3.525) (-3.450)  

𝑅𝑅𝐸𝐿𝑡  
        -9.375   -11.106 -8.632 -9.748 -56.600*** 

         (-0.176)   (-0.257) (-0.309) (-0.369) (-4.914) 

Constant -35.452* -45.530 -38.640 274.265 4,984.564 -63.990* -25.319 -28.542** -48.344 278.439 -29.028** -50.759 741.005** 730.855** 6,299.190*** 
 (-1.884) (-1.631) (-1.360) (0.865) (1.036) (-1.735) (-1.620) (-2.008) (-0.469) (1.070) (-2.230) (-0.624) (2.213) (2.271) (3.858) 

Observations 389 389 389 389 389 389 389 389 389 389 389 389 389 389 389 

R2 0.027 0.030 0.005 0.094 0.145 0.055 0.006 0.077 0.008 0.123 0.092 0.037 0.441 0.448 0.602 

Adjusted R2 0.024 0.028 0.002 0.092 0.143 0.053 0.003 0.074 0.005 0.119 0.087 0.032 0.437 0.442 0.595 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Table M.2: EVRP, 3.5-month return horizon , GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.028         0.030* 0.023 0.027  0.019 0.015 
 (1.239)         (1.665) (0.671) (0.706)  (1.262) (0.933) 

𝐼𝑉𝑡  
 0.096              

  (1.119)              

𝐸𝑅𝑉𝑡  
  0.021             

   (0.173)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -88.914      -89.535   -238.154 -237.672 -518.878*** 

    (-0.542)      (-0.605)   (-1.487) (-1.594) (-3.489) 

log⁡(𝑃 𝐷⁄ )𝑡 
    1,218.124          882.422* 

     (0.764)          (1.898) 

𝐷𝐹𝑆𝑃𝑡   
     14.278         -13.672 

      (0.532)         (-0.652) 

𝑇𝑀𝑆𝑃𝑡   
      -9.948        -60.829*** 

       (-0.539)        (-5.811) 

𝐶𝐴𝑌𝑡  
       -12.525   -12.341  -32.112** -31.929**  

        (-0.579)   (-0.623)  (-2.099) (-2.157)  

𝑅𝑅𝐸𝐿𝑡  
        -11.694   -11.472 -9.922 -9.800 -58.112*** 

         (-0.259)   (-0.274) (-0.447) (-0.477) (-7.427) 

Constant -36.115 -46.124* -38.095 198.040 4,011.816 -60.922* -17.316 -31.494 -52.455 199.860 -31.422 -51.983 589.931 588.875 4,323.024** 
 (-1.504) (-1.910) (-1.157) (0.449) (0.757) (-1.681) (-1.102) (-1.444) (-0.565) (0.502) (-1.532) (-0.610) (1.292) (1.388) (2.423) 

Observations 389 389 389 389 389 389 389 389 389 389 389 389 389 389 389 

R2 0.007 0.037 0.002 0.062 0.135 0.053 0.030 0.065 0.015 0.069 0.070 0.021 0.346 0.349 0.668 

Adjusted R2 0.004 0.035 -0.001 0.059 0.133 0.051 0.027 0.063 0.012 0.064 0.065 0.016 0.340 0.342 0.662 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Table M.3: EVRP, 4-month return horizon , GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.034         0.035 0.030 0.032  0.027 0.015 
 (1.104)         (0.972) (0.950) (0.932)  (1.058) (1.082) 

𝐼𝑉𝑡  
 0.078              

  (0.803)              

𝐸𝑅𝑉𝑡  
  0.035             

   (0.295)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -53.609      -54.716   -177.770 -177.437 -350.538*** 

    (-0.321)      (-0.470)   (-1.169) (-1.393) (-3.053) 

log⁡(𝑃 𝐷⁄ )𝑡 
    1,017.147          846.101*** 

     (1.371)          (3.622) 

𝐷𝐹𝑆𝑃𝑡   
     11.691         10.509 

      (0.575)         (0.679) 

𝑇𝑀𝑆𝑃𝑡   
      -12.064        -56.887*** 

       (-0.892)        (-7.219) 

𝐶𝐴𝑌𝑡  
       -10.635   -10.401  -24.787 -24.549  

        (-0.586)   (-0.697)  (-1.338) (-1.629)  

𝑅𝑅𝐸𝐿𝑡  
        -12.850   -12.560 -11.174 -10.942 -55.908*** 

         (-0.527)   (-0.466) (-0.599) (-0.588) (-10.613) 

Constant -37.755** -45.626** -40.911 103.928 3,341.298 -57.544* -15.937 -34.566* -55.502 107.106 -34.435* -54.884 425.377 424.923 3,711.342*** 
 (-1.972) (-2.218) (-1.484) (0.231) (1.364) (-1.729) (-1.315) (-1.687) (-1.025) (0.345) (-1.922) (-0.969) (0.975) (1.160) (4.985) 

Observations 389 389 389 389 389 389 389 389 389 389 389 389 389 389 389 

R2 0.013 0.032 0.007 0.026 0.147 0.045 0.064 0.064 0.027 0.040 0.073 0.038 0.257 0.265 0.755 

Adjusted R2 0.010 0.029 0.005 0.023 0.145 0.043 0.061 0.061 0.024 0.035 0.069 0.033 0.252 0.258 0.751 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Appendix N: VRP return regressions, post-financial crisis sample (July ’09 to September ‘17) 

Table N.1: VRP, 3.5-month return horizon, post-GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.479***         0.292*** 0.409*** 0.361***  0.351*** 0.405*** 
 (4.275)         (2.991) (3.312) (3.425)  (3.281) (3.535) 

𝐼𝑉𝑡  
 0.316***              

  (5.422)              

𝑅𝑉𝑡  
  0.332***             

   (3.231)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -62.889***      -53.570***   -82.576** -84.508** -57.356 

    (-3.698)      (-3.397)   (-2.040) (-2.211) (-1.389) 

log⁡(𝑃 𝐷⁄ )𝑡 
    8.063          -16.567 

     (0.529)          (-0.766) 

𝐷𝐹𝑆𝑃𝑡   
     19.130***         5.520 

      (6.211)         (0.675) 

𝑇𝑀𝑆𝑃𝑡   
      -3.477        -4.087 

       (-0.630)        (-0.705) 

𝐶𝐴𝑌𝑡  
       3.333   1.960  -2.832 -3.783  

        (1.617)   (0.992)  (-0.825) (-1.169)  

𝑅𝑅𝐸𝐿𝑡  
        -32.946***   -23.652*** -0.957 6.358 -6.937 

         (-3.502)   (-2.777) (-0.060) (0.422) (-0.346) 

Constant 6.426** 2.564 6.586 185.513*** 40.970 -7.536 21.107* 17.984*** 12.855*** 155.960*** 10.335** 7.955** 235.269** 234.365** 110.881 
 (2.279) (0.672) (1.638) (3.973) (0.747) (-1.393) (1.846) (3.346) (3.569) (3.589) (1.970) (2.430) (2.212) (2.349) (1.430) 

Observations 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 

R2 0.083 0.176 0.127 0.157 0.010 0.136 0.013 0.043 0.076 0.184 0.096 0.118 0.172 0.208 0.264 

Adjusted R2 0.083 0.175 0.126 0.157 0.010 0.136 0.013 0.043 0.076 0.184 0.095 0.117 0.171 0.207 0.261 

Note: Parentheses denote t-statistics                                                                                                                                                *p<0.1; **p<0.05; ***p<0.01 
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Table N.2: VRP, 4-month return horizon , post-GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.543***         0.334*** 0.473*** 0.395***  0.386*** 0.411*** 
 (5.422)         (3.796) (4.095) (4.207)  (3.695) (4.211) 

𝐼𝑉𝑡  
 0.331***              

  (7.824)              

𝑅𝑉𝑡  
  0.367***             

   (3.211)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -68.320***      -55.297***   -84.045** -85.981*** -59.981* 

    (-3.962)      (-3.686)   (-2.487) (-2.912) (-1.903) 

log⁡(𝑃 𝐷⁄ )𝑡 
    8.169          -18.527 

     (0.546)          (-1.148) 

𝐷𝐹𝑆𝑃𝑡   
     21.089***         6.149 

      (5.831)         (1.007) 

𝑇𝑀𝑆𝑃𝑡   
      -3.537        -3.564 

       (-0.621)        (-0.690) 

𝐶𝐴𝑌𝑡  
       3.763   1.942  -2.888 -3.947  

        (1.546)   (0.991)  (-0.930) (-1.444)  

𝑅𝑅𝐸𝐿𝑡  
        -

38.546*** 
  -

25.681*** 
-5.778 4.703 -5.109 

         (-3.328)   (-2.753) (-0.399) (0.346) (-0.297) 

Constant 5.610** 2.016 5.980 200.469*** 41.598 -9.601* 21.558* 18.837*** 12.852*** 160.076*** 9.465* 7.420** 239.216*** 237.621*** 109.197* 
 (2.192) (0.608) (1.544) (4.213) (0.762) (-1.657) (1.912) (3.021) (3.842) (3.837) (1.756) (2.396) (2.711) (3.109) (1.904) 

Observations 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 

R2 0.134 0.246 0.181 0.206 0.011 0.195 0.014 0.060 0.120 0.249 0.148 0.177 0.225 0.277 0.344 

Adjusted R2 0.134 0.245 0.181 0.205 0.011 0.195 0.014 0.059 0.119 0.248 0.147 0.176 0.224 0.276 0.342 

Note: Parentheses denote t-statistics                                                                                                                                                *p<0.1; **p<0.05; ***p<0.01 
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Appendix O: EVRP return regressions, post-financial crisis sample (July ’09 to September ‘17) 

Table O.1: EVRP, 5-month return horizon , post-GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.206***         0.102*** 0.162*** 0.132***  0.108** 0.100*** 
 (2.838)         (3.011) (2.762) (2.712)  (2.481) (2.650) 

𝐼𝑉𝑡  
 0.331***              

  (7.824)              

𝐸𝑅𝑉𝑡  
  0.367***             

   (3.211)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -68.320***      -63.636***   -84.045** -82.914*** -54.644 

    (-3.962)      (-3.792)   (-2.847) (-2.724) (-1.544) 

log⁡(𝑃 𝐷⁄ )𝑡 
    8.169          -11.846 

     (0.546)          (-0.602) 

𝐷𝐹𝑆𝑃𝑡   
     21.089***         7.818 

      (5.831)         (1.013) 

𝑇𝑀𝑆𝑃𝑡   
      -3.537        -4.180 

       (-0.621)        (-0.656) 

𝐶𝐴𝑌𝑡  
       3.763   3.091  -2.888 -3.119  

        (1.546)   (1.346)  (-0.930) (-1.085)  

𝑅𝑅𝐸𝐿𝑡  
        -38.546***   -34.135*** -5.778 -3.387 -11.680 

         (-3.328)   (-3.040) (-0.399) (-0.242) (-0.616) 

Constant 10.059*** 2.016 5.980 204.763*** 40.834 -9.601* 21.558* 18.837*** 12.852*** 185.045*** 15.318** 10.850*** 239.216*** 234.128*** 121.562 
 (3.290) (0.608) (1.544) (4.213) (0.762) (-1.657) (1.912) (3.021) (3.842) (3.962) (2.549) (3.422) (2.711) (2.952) (1.617) 

Observations 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 

R2 0.053 0.246 0.181 0.206 0.011 0.195 0.014 0.060 0.120 0.218 0.091 0.139 0.225 0.238 0.299 

Adjusted R2 0.052 0.245 0.181 0.205 0.011 0.195 0.014 0.059 0.119 0.217 0.090 0.139 0.224 0.237 0.29 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Table O.2: EVRP, 3.5-month return horizon , post-GFC 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.217***         0.123*** 0.181*** 0.157***  0.132*** 0.120*** 
 (2.884)         (3.060) (2.820) (2.800)  (2.727) (2.954) 

𝐼𝑉𝑡  
 0.316***              

  (5.422)              

𝐸𝑅𝑉𝑡  
  0.332***             

   (3.231)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -62.89***      -56.99***   -82.576** -81.11*** -51.169 

    (-3.698)      (-3.799)   (-2.040) (-2.638) (-1.351) 

log⁡(𝑃 𝐷⁄ )𝑡 
    8.063          -9.230 

     (0.529)          (-0.462) 

𝐷𝐹𝑆𝑃𝑡   
     19.130***         6.303 

      (6.211)         (0.774) 

𝑇𝑀𝑆𝑃𝑡   
      -3.477        -4.646 

       (-0.630)        (-0.760) 

𝐶𝐴𝑌𝑡  
       3.333   2.566  -2.832 -3.117  

        (1.617)   (1.345  (-0.825) (-1.126)  

𝑅𝑅𝐸𝐿𝑡  
        -32.95***   -27.24*** -0.957 2.367 -10.509 

         (-3.502)   (-3.311) (-0.060) (0.181) (-0.553) 

Constant 9.615*** 2.564 6.586 185.51*** 40.970 -7.536 21.107* 17.984*** 12.855*** 167.42*** 14.040*** 10.455*** 235.269** 228.78*** 123.515 
 (3.226) (0.672) (1.638) (3.973) (0.747) (-1.393) (1.846) (3.346) (3.569) (4.021) (2.842) (3.210) (2.212) (2.812) (1.467) 

Observations 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 

R2 0.054 0.176 0.127 0.157 0.010 0.136 0.013 0.043 0.076 0.173 0.078 0.102 0.172 0.190 0.233 

Adjusted R2 0.054 0.175 0.126 0.157 0.010 0.136 0.013 0.043 0.076 0.172 0.077 0.101 0.171 0.188 0.231 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Appendix P: Overview of EVRP slope coefficients (with 95% confidence intervals) and adj. R squared for studied 

time samples 

Figures P.1: Expected Variance Risk Premium (EVRP) for the full 

sample 
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Figures P.2: EVRP for the pre-financial crisis sample (January 

2002 to December 2007) 

Figures P.3: EVRP for the post-financial crisis sample (July 

2009 to March 2018) 
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Figures P.4: EVRP for the financial crisis sample (January 2002 to 

December 2007) 
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Appendix Q: VRP winsorized samples 

Table Q.1: VRP 3.5 month return regressions, winsorized full sample from January 2002 to September 2017 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.211*         0.216** 0.446*** 0.538***  0.685*** 0.679*** 
 (1.839)         (2.126) (3.622) (4.980)  (5.967) (6.119) 

𝐼𝑉𝑡  
 0.042              

  (0.495)              

𝑅𝑉𝑡  
  0.022             

   (0.144)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -37.596      -37.868*   -42.692** -47.580*** -50.074*** 

    (-1.447)      (-1.645)   (-2.124) (-3.514) (-2.852) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -7.197          -11.188** 

     (-0.735)          (-2.119) 

𝐷𝐹𝑆𝑃𝑡   
     -5.289         -8.714 

      (-0.358)         (-0.840) 

𝑇𝑀𝑆𝑃𝑡   
      -0.847        2.085 

       (-0.282)        (0.888) 

𝐶𝐴𝑌𝑡  
       -1.963   -4.182**  0.115 -2.651*  

        (-0.869)   (-2.236)  (0.058) (-1.796)  

𝑅𝑅𝐸𝐿𝑡  
        11.847***   16.793*** 12.780*** 16.370*** 17.593*** 

         (2.938)   (5.610) (3.214) (5.005) (4.564) 

Constant 2.114 3.862 4.986 110.240 -18.121 11.019 7.220 3.915 6.554** 107.589* -4.864 -1.488 125.725** 126.705*** 104.117* 
 (0.752) (1.019) (1.184) (1.506) (-0.542) (0.787) (1.310) (0.870) (2.129) (1.657) (-1.127) (-0.591) (2.234) (3.366) (1.679) 

Observations 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 

R2 0.014 0.003 0.0004 0.046 0.009 0.004 0.001 0.014 0.096 0.061 0.060 0.173 0.155 0.256 0.267 

Adjusted R2 0.014 0.003 0.0001 0.045 0.009 0.004 0.001 0.014 0.096 0.060 0.060 0.173 0.154 0.255 0.266 

Note: Parentheses denote t-statistics                                                                                                                                     *p<0.1; **p<0.05; ***p<0.01 
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Table Q.2: VRP 3.5 month return regressions, winsorized pre-GFC sample from January 2002 to September 2017 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.070         0.362*** 0.104 0.356**  0.044 0.037 
 (0.486)         (4.283) (0.564) (2.438)  (0.270) (0.325) 

𝐼𝑉𝑡  
 0.014              

  (0.146)              

𝑅𝑉𝑡  
  -0.024             

   (-0.114)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -85.393**      -111.333***   -144.762*** -143.116*** -257.172*** 

    (-2.499)      (-3.671)   (-3.586) (-3.350) (-9.430) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -14.537          85.379** 

     (-0.527)          (2.014) 

𝐷𝐹𝑆𝑃𝑡   
     -27.513         -49.172*** 

      (-1.026)         (-4.354) 

𝑇𝑀𝑆𝑃𝑡   
      -2.248        2.785 

       (-0.576)        (0.662) 

𝐶𝐴𝑌𝑡  
       0.538   -0.591  5.591*** 5.174*  

        (0.220)   (-0.211)  (2.773) (1.662)  

𝑅𝑅𝐸𝐿𝑡  
        5.699   11.062** -4.315 -3.918 -15.787*** 

         (1.253)   (2.158) (-0.932) (-0.817) (-4.229) 

Constant 1.910 2.699 3.614 249.915** -40.182 29.977 7.216* 3.250 2.715 318.050*** 1.232 -4.454 422.141*** 416.496*** 1,044.656*** 
 (0.482) (0.540) (0.728) (2.560) (-0.468) (1.270) (1.706) (0.724) (0.631) (3.703) (0.221) (-0.851) (3.652) (3.390) (6.236) 

Observations 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 

R2 0.004 0.001 0.0003 0.216 0.013 0.067 0.023 0.001 0.045 0.302 0.004 0.108 0.345 0.345 0.545 

Adjusted R2 0.003 -0.0002 -0.0004 0.215 0.012 0.067 0.022 0.001 0.044 0.301 0.003 0.106 0.343 0.343 0.543 

Note: Parentheses denote t-statistics                                                                                                                                             *p<0.1; **p<0.05; ***p<0.01 
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Table Q.3:  VRP 3.5 month return regressions, winsorized financial crisis sample (December 2007 to July 2009) 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.599**         0.557** 0.684** 0.743**  0.550** 0.505*** 
 (2.196)         (2.001) (2.372) (2.537)  (2.205) (3.166) 

𝐼𝑉𝑡  
 0.103              

  (1.043)              

𝑅𝑉𝑡  
  0.034             

   (0.330)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -62.511      -21.689   -203.881 -153.235** -324.511*** 

    (-0.520)      (-0.481)   (-1.344) (-1.967) (-2.939) 

log⁡(𝑃 𝐷⁄ )𝑡 
    1,218.831          877.376** 

     (0.846)          (2.073) 

𝐷𝐹𝑆𝑃𝑡   
     11.655         3.456 

      (0.662)         (0.229) 

𝑇𝑀𝑆𝑃𝑡   
      -11.285        -52.255*** 

       (-0.726)        (-6.208) 

𝐶𝐴𝑌𝑡  
       -12.803   -15.321*  -28.837* -26.017**  

        (-0.716)   (-1.648)  (-1.870) (-2.199)  

𝑅𝑅𝐸𝐿𝑡  
        -16.698   -27.898 -12.933 -20.652 -60.103*** 

         (-0.412)   (-1.611) (-0.558) (-1.296) (-7.827) 

Constant -48.89*** -47.492** -40.140 127.519 4,013.344 -57.399* -15.827 -32.423* -60.351 9.127 -44.667*** -90.148*** 493.517 337.615 3,735.243** 
 (-3.512) (-2.149) (-1.429) (0.395) (0.839) (-1.922) (-0.964) (-1.846) (-0.745) (0.079) (-3.740) (-2.776) (1.139) (1.502) (2.491) 

Observations 389 389 389 389 389 389 389 389 389 389 389 389 389 389 389 

R2 0.119 0.041 0.005 0.034 0.149 0.042 0.042 0.082 0.032 0.122 0.233 0.200 0.321 0.399 0.709 

Adjusted R2 0.116 0.038 0.002 0.032 0.147 0.039 0.040 0.079 0.029 0.118 0.229 0.196 0.316 0.392 0.705 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table Q.4: VRP 3.5 month return regressions, winsorized post-financial crisis sample (July 2009 to September 2017) 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.605***         0.389*** 0.517*** 0.551***  0.495*** 0.623*** 
 (3.919)         (2.799) (3.190) (3.249)  (3.364) (3.958) 

𝐼𝑉𝑡  
 0.354***              

  (5.084)              

𝑅𝑉𝑡  
  0.364***             

   (3.127)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -58.117***      -47.484**   -79.023** -78.436** -64.738 

    (-2.823)      (-2.445)   (-2.033) (-2.122) (-1.633) 

log⁡(𝑃 𝐷⁄ )𝑡 
    8.320          -17.852 

     (0.573)          (-0.906) 

𝐷𝐹𝑆𝑃𝑡   
     18.265         -0.792 

      (1.546)         (-0.070) 

𝑇𝑀𝑆𝑃𝑡   
      -3.186        -4.030 

       (-0.592)        (-0.803) 

𝐶𝐴𝑌𝑡  
       3.186   1.777  -2.201 -2.996  

        (1.484)   (0.845)  (-0.606) (-0.877)  

𝑅𝑅𝐸𝐿𝑡  
        -31.621   -11.417 7.237 20.711 -8.702 

         (-1.429)   (-0.560) (0.293) (0.887) (-0.288) 

Constant 4.774 1.912 6.386 172.614*** 41.894 -5.860 20.463* 17.814*** 13.162*** 138.117** 8.658 5.563 226.674** 217.056** 130.626 
 (1.472) (0.476) (1.591) (3.055) (0.804) (-0.474) (1.830) (3.393) (4.055) (2.567) (1.522) (1.483) (2.227) (2.250) (1.490) 

Observations 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 

R2 0.094 0.175 0.127 0.145 0.013 0.065 0.013 0.048 0.033 0.179 0.107 0.098 0.156 0.206 0.252 

Adjusted R2 0.094 0.174 0.126 0.144 0.013 0.064 0.012 0.047 0.033 0.178 0.106 0.097 0.155 0.205 0.250 

Note: Parentheses denote t-statistics                                                                                                                                                *p<0.1; **p<0.05; ***p<0.01 
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Table Q.5: VRP 4 month return regressions, winsorized post-financial crisis sample (July 2009 to September 2017) 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝑉𝑅𝑃𝑡   0.638***         0.409*** 0.541*** 0.559***  0.510*** 0.617*** 
 (4.365)         (3.178) (3.546) (3.615)  (3.790) (4.393) 

𝐼𝑉𝑡  
 0.354***              

  (6.595)              

𝑅𝑉𝑡  
  0.358***             

   (2.925)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -61.203***      -49.421***   -79.068** -79.144*** -67.749** 

    (-3.390)      (-2.975)   (-2.568) (-2.810) (-2.051) 

log⁡(𝑃 𝐷⁄ )𝑡 
    8.967          -20.106 

     (0.674)          (-1.262) 

𝐷𝐹𝑆𝑃𝑡   
     20.059**         0.725 

      (2.202)         (0.089) 

𝑇𝑀𝑆𝑃𝑡   
      -2.851        -2.942 

       (-0.556)        (-0.604) 

𝐶𝐴𝑌𝑡  
       3.456*   1.908  -2.145 -3.021  

        (1.731)   (1.062)  (-0.736) (-1.166)  

𝑅𝑅𝐸𝐿𝑡  
        -36.119*   -15.154 1.623 16.303 -6.616 

         (-1.758)   (-0.844) (0.077) (0.824) (-0.261) 

Constant 4.533 2.014 6.663* 181.251*** 44.451 -7.667 20.033* 18.485*** 13.321*** 143.280*** 8.713* 5.616* 227.072*** 218.942*** 127.081* 
 (1.585) (0.630) (1.810) (3.633) (0.920) (-0.758) (1.931) (3.690) (4.568) (3.091) (1.715) (1.702) (2.809) (2.974) (1.873) 

Observations 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 

R2 0.126 0.216 0.152 0.187 0.018 0.106 0.012 0.066 0.056 0.232 0.143 0.134 0.198 0.259 0.315 

Adjusted R2 0.126 0.216 0.151 0.186 0.017 0.106 0.011 0.065 0.056 0.231 0.142 0.133 0.197 0.258 0.313 

Note: Parentheses denote t-statistics                                                                                                                                                             *p<0.1; **p<0.05; ***p<0.01 
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Table Q.6: Intraday regressions between S&P 500 returns and key variables, winsorized full 

sample from January 2002 till February 2018 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  -0.437 -0.400 -0.336          

 (-1.468) (-1.279) (-0.810)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   -0.070           

  (-0.413)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     -0.062          

   (-0.372)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   -0.114 -0.053 0.049       

    (-0.340) (-0.151) (0.112)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    -0.116        

     (-0.636)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     -0.099       

      (-0.586)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.006 0.099 0.249    

       (0.016) (0.255) (0.518)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         -0.176     

        (-0.862)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           -0.148    

         (-0.791)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           0.215 0.294 0.417 

          (0.429) (0.581) (0.678) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            -0.150  

           (-0.545)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             -0.123 

            (-0.508) 

Constant 7.099* 8.171* 8.019* 5.842 7.626 7.328 5.180 7.875 7.392 3.615 5.910 5.449 
 (1.748) (1.937) (1.952) (1.291) (1.565) (1.531) (1.026) (1.457) (1.401) (0.534) (0.809) (0.747) 

Observations 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 265,588 

R2 0.0002 0.0002 0.0002 0.00002 0.0001 0.0001 0.00000 0.0002 0.0002 0.0001 0.0004 0.0003 

Adjusted R2 0.0001 0.0002 0.0002 0.00001 0.0001 0.0001 -0.0000 0.0002 0.0002 0.0001 0.0004 0.0003 

Note: 
Parentheses denote t-statistics                                                                                

*p<0.1; **p<0.05; ***p<0.01 
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Table Q.7: Intraday regressions between S&P 500 returns and key variables, winsorized pre-

financial crisis sample, January 2002 till December 2007 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  -0.598 -0.927* -1.481*          

 (-1.297) (-1.723) (-1.808)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   0.385           

  (0.959)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     0.414          

   (1.159)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   -0.358 -0.474 -0.609       

    (-0.66) (-0.718) (-0.623)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    0.136        

     (0.292)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     0.117       

      (0.286)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         -0.471 -0.478 -0.512    

       (-0.72) (-0.63) (-0.452)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.008     

        (0.015)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           0.019    

         (0.040)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           -0.472 -0.509 -0.513 

          (-0.566) (-0.521) 
(-

0.342) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            0.043  

           (0.060)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             0.019 

            (0.031) 

Constant 5.570 3.319 4.123 5.136 4.344 4.727 8.293 8.246 8.227 9.410 9.159 9.343 
 (0.862) (0.487) (0.627) (0.672) (0.530) (0.601) (0.914) (0.858) (0.882) (0.835) (0.793) (0.822) 

Observations 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 96,414 

R2 0.0003 0.001 0.001 0.0002 0.0002 0.0002 0.0004 0.0004 0.0004 0.001 0.001 0.001 

Adjusted R2 0.0003 0.001 0.001 0.0002 0.0002 0.0002 0.0004 0.0004 0.0004 0.001 0.001 0.001 

Note: 
Parentheses denote t-statistics                                                                                 

*p<0.1; **p<0.05; ***p<0.01 
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Table Q.8: Intraday regressions between S&P 500 returns and key variables, winsorized 

financial crisis sample, December 2007 till July 2009 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  -0.023 -0.031 -0.032          

 (-0.027) (-0.035) (-0.033)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   0.068           

  (0.142)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     0.011          

   (0.030)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   0.193 0.172 0.122       

    (0.221) (0.197) (0.132)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    0.177        

     (0.373)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     0.095       

      (0.256)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.364 0.337 0.272    

       (0.356) (0.330) (0.255)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.225     

        (0.394)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           0.123    

         (0.279)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           0.740 0.699 0.547 

          (0.694) (0.660) (0.502) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            0.336  

           (0.545)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             0.256 

            (0.545) 

Constant -17.349 -21.344 -18.127 -22.814 -33.166 -29.413 -29.831 -42.997 -38.359 -35.782 -55.486 -53.571 

 (-0.960) (-0.678) (-0.620) (-1.24) (-1.054) (-1.002) (-1.37) (-1.106) (-1.052) (-1.551) (-1.283) 
(-

1.295) 

Observations 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 26,076 

R2 0.00000 0.00001 0.00000 0.0000 0.0002 0.0001 0.0002 0.0005 0.0003 0.001 0.002 0.002 

Adjusted R2 -0.0004 -0.0001 -0.0001 0.0000 0.0001 0.00003 0.0002 0.0004 0.0003 0.001 0.002 0.002 

Note: 
Parentheses denote t-statistics                                                                                 

*p<0.1; **p<0.05; ***p<0.01 
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Table Q.9: Intraday regressions between S&P 500 returns and key variables, winsorized post-

financial crisis sample, July 2009 till February 2018 

 Dependent variable: 

 Hourly return Return per 2 hours Half day returns Daily returns 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

𝑉𝑅𝑃𝑡−1ℎ𝑜𝑢𝑟  -0.238 -0.245 -0.339          

 (-0.556) (-0.575) (-0.647)          

𝑅𝑉𝑡−1ℎ𝑜𝑢𝑟   0.036           

  (0.150)           

𝐼𝑉𝑡−1ℎ𝑜𝑢𝑟     0.075          

   (0.303)          

𝑉𝑅𝑃𝑡−2ℎ𝑜𝑢𝑟𝑠  
   0.282 0.256 -0.027       

    (0.565) (0.515) (-0.042)       

𝑅𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
    0.124        

     (0.439)        

𝐼𝑉𝑡−2ℎ𝑜𝑢𝑟𝑠  
     0.230       

      (0.751)       

𝑉𝑅𝑃𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.663 0.628 0.256    

       (1.178) (1.095) (0.338)    

𝑅𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦         0.171     

        (0.506)     

𝐼𝑉𝑡−ℎ𝑎𝑙𝑓⁡𝑑𝑎𝑦           0.304    

         (0.856)    

𝑉𝑅𝑃𝑡−1𝑑𝑎𝑦           1.038 0.982 0.487 

          (1.438) (1.346) (0.485) 

𝑅𝑉𝑡−1𝑑𝑎𝑦            0.264  

           (0.581)  

𝐼𝑉𝑡−1⁡𝑑𝑎𝑦             0.410 

            (0.858) 

Constant 10.809** 10.262* 9.779* 8.660 6.746 5.511 5.793 3.170 1.637 2.943 -1.103 -2.653 
 (2.163) (1.790) (1.722) (1.472) (1.018) (0.834) (0.857) (0.414) (0.218) (0.335) (-0.112) (-0.275) 

Observations 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 143,098 

R2 0.00004 0.00004 0.0001 0.0001 0.0001 0.0003 0.001 0.001 0.001 0.002 0.003 0.004 

Adjusted R2 0.00003 0.00003 0.00004 0.0001 0.0001 0.0003 0.001 0.001 0.001 0.002 0.003 0.004 

Note: Parentheses denote t-statistics                                                                                          *p<0.1; **p<0.05; ***p<0.01 
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Appendix R: EVRP winsorized samples 

Table R.1: EVRP 4 month return regressions, winsorized full sample from January 2002 to September 2017 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.249***         0.229** 0.453*** 0.514***  0.586*** 0.586*** 
 (2.629)         (2.388) (4.210) (5.160)  (5.502) (5.271) 

𝐼𝑉𝑡  
 0.049              

  (0.604)              

𝐸𝑅𝑉𝑡  
  0.028             

   (0.188)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -38.084      -36.402   -41.637* -40.352*** -43.696*** 

    (-1.466)      (-1.637)   (-1.892) (-3.335) (-2.768) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -7.381          -10.115** 

     (-0.819)          (-2.116) 

𝐷𝐹𝑆𝑃𝑡   
     -4.312         -9.324 

      (-0.286)         (-1.019) 

𝑇𝑀𝑆𝑃𝑡   
      -0.674        1.914 

       (-0.227)        (0.910) 

𝐶𝐴𝑌𝑡  
       -1.756   -4.289***  0.325 -2.349*  

        (-0.805)   (-2.581)  (0.171) (-1.758)  

𝑅𝑅𝐸𝐿𝑡  
        11.424**   16.507*** 12.354*** 15.435*** 16.218*** 

         (2.570)   (5.457) (2.740) (5.328) (5.147) 

Constant 1.133 3.557 4.834 111.590 -18.733 9.961 6.829 4.064 6.548** 102.967 -5.692 -1.793 122.968** 107.543*** 91.479 
 (0.392) (0.945) (1.099) (1.524) (-0.599) (0.690) (1.258) (0.884) (2.248) (1.628) (-1.479) (-0.765) (1.998) (3.130) (1.639) 

Observations 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 

R2 0.030 0.005 0.001 0.053 0.010 0.003 0.001 0.013 0.102 0.078 0.085 0.208 0.165 0.280 0.293 

Adjusted R2 0.030 0.005 0.0005 0.053 0.010 0.003 0.001 0.012 0.101 0.077 0.085 0.208 0.165 0.279 0.292 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table R.2: EVRP 4 month return regressions, winsorized pre-GFC sample from January 2002 to December 2007 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.054         0.293*** 0.028 0.296**  -0.109 -0.144** 
 (0.493)         (4.024) (0.230) (2.564)  (-1.028) (-2.296) 

𝐼𝑉𝑡  
 0.020              

  (0.216)              

𝐸𝑅𝑉𝑡  
  -0.005             

   (-0.027)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -81.760**      -102.610***   -141.469*** -146.739*** -268.424*** 

    (-2.139)      (-4.319)   (-3.444) (-3.710) (-11.110) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -12.343          107.358*** 

     (-0.397)          (2.620) 

𝐷𝐹𝑆𝑃𝑡   
     -25.053         -45.540*** 

      (-0.952)         (-4.824) 

𝑇𝑀𝑆𝑃𝑡   
      -1.961        1.943 

       (-0.463)        (0.488) 

𝐶𝐴𝑌𝑡  
       0.801   0.479  5.689** 6.822***  

        (0.322)   (0.194)  (2.548) (2.875)  

𝑅𝑅𝐸𝐿𝑡  
        5.396   9.949** -4.161 -5.200 -17.151*** 

         (0.859)   (2.343) (-0.754) (-0.986) (-4.423) 

Constant 2.416 2.718 3.516 239.799** -33.372 27.778 6.949 3.472 3.016 294.568*** 2.936 -2.912 412.991*** 430.404*** 1,144.398*** 
 (0.647) (0.571) (0.663) (2.186) (-0.346) (1.195) (1.499) (0.691) (0.596) (4.315) (0.549) (-0.745) (3.487) (3.777) (10.485) 

Observations 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 

R2 0.003 0.001 0.00001 0.232 0.011 0.066 0.020 0.003 0.049 0.308 0.004 0.107 0.387 0.390 0.605 

Adjusted R2 0.002 0.0005 -0.001 0.231 0.010 0.065 0.019 0.003 0.048 0.307 0.002 0.106 0.385 0.389 0.604 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Table R.3: EVRP 4 month return regressions, winsorized GFC sample from December 2007 to July 2009 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.201***         0.202*** 0.177* 0.219**  0.164** 0.115** 
 (2.876)         (3.038) (1.894) (2.524)  (2.475) (2.090) 

𝐼𝑉𝑡  
 0.096              

  (0.807)              

𝐸𝑅𝑉𝑡  
  0.050             

   (0.410)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -43.715      -44.305   -165.205 -156.130 -320.052*** 

    (-0.490)      (-0.873)   (-1.296) (-1.637) (-3.374) 

log⁡(𝑃 𝐷⁄ )𝑡 
    1,055.260          949.048*** 

     (1.217)          (3.389) 

𝐷𝐹𝑆𝑃𝑡   
     10.625         9.475 

      (0.676)         (0.722) 

𝑇𝑀𝑆𝑃𝑡   
      -12.658        -50.273*** 

       (-1.004)        (-6.609) 

𝐶𝐴𝑌𝑡  
       -10.710   -9.582  -23.236 -21.414  

        (-0.661)   (-0.759)  (-1.315) (-1.368)  

𝑅𝑅𝐸𝐿𝑡  
        -18.784   -20.775 -15.225 -16.994 -56.921*** 

         (-0.746)   (-1.050) (-0.816) (-1.113) (-9.248) 

Constant -39.223*** -47.159** -42.070 77.682 3,467.963 -55.840* -14.898 -34.649* -63.834 78.114 -36.002*** -67.784* 386.069 358.107 3,960.422*** 
 (-3.070) (-2.096) (-1.501) (0.321) (1.209) (-1.768) (-1.157) (-1.874) (-1.201) (0.597) (-2.583) (-1.764) (1.042) (1.303) (4.110) 

Observations 389 389 389 389 389 389 389 389 389 389 389 389 389 389 389 

R2 0.062 0.041 0.013 0.018 0.160 0.040 0.069 0.070 0.050 0.081 0.118 0.123 0.260 0.300 0.771 

Adjusted R2 0.060 0.039 0.010 0.015 0.158 0.037 0.067 0.068 0.047 0.076 0.113 0.118 0.254 0.293 0.767 

Note: Parentheses denote t-statistics                                                                                                                                                         *p<0.1; **p<0.05; ***p<0.01 
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Table R.4: EVRP 4 month return regressions, winsorized post-GFC sample July 2009 to September 2017 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.574***         0.318*** 0.489*** 0.506***  0.426*** 0.524*** 
 (6.499)         (3.418) (4.025) (4.876)  (3.980) (5.209) 

𝐼𝑉𝑡  
 0.354***              

  (6.595)              

𝐸𝑅𝑉𝑡  
  0.358***             

   (2.925)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -61.203***      -48.153***   -79.068** -76.740*** -67.419** 

    (-3.390)      (-2.919)   (-2.568) (-3.198) (-2.420) 

log⁡(𝑃 𝐷⁄ )𝑡 
    8.967          -21.092 

     (0.674)          (-1.642) 

𝐷𝐹𝑆𝑃𝑡   
     20.059**         -1.769 

      (2.202)         (-0.250) 

𝑇𝑀𝑆𝑃𝑡   
      -2.851        -2.298 

       (-0.556)        (-0.523) 

𝐶𝐴𝑌𝑡  
       3.457*   1.436  -2.145 -3.266  

        (1.731)   (0.826)  (-0.736) (-1.443)  

𝑅𝑅𝐸𝐿𝑡  
        -36.119*   -13.615 1.623 13.368 -7.881 

         (-1.758)   (-0.942) (0.077) (0.808) (-0.371) 

Constant 4.011* 2.014 6.663* 181.251*** 44.451 -7.667 20.033* 18.485*** 13.321*** 140.279*** 7.530 5.105* 227.072*** 212.099*** 123.854* 
 (1.894) (0.630) (1.810) (3.633) (0.920) (-0.758) (1.931) (3.690) (4.568) (3.051) (1.568) (1.894) (2.809) (3.365) (1.908) 

Observations 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 

R2 0.127 0.216 0.152 0.187 0.018 0.106 0.012 0.066 0.056 0.217 0.135 0.133 0.198 0.245 0.292 

Adjusted R2 0.126 0.216 0.151 0.186 0.017 0.106 0.011 0.065 0.056 0.216 0.135 0.132 0.197 0.244 0.290 

Note: Parentheses denote t-statistics                                                                                                                                                   *p<0.1; **p<0.05; ***p<0.01 
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Table R.5: EVRP 3 month return regressions, winsorized GFC sample December 2007 to July 2009 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.223***         0.212*** 0.187 0.245***  0.116* 0.169** 
 (2.608)         (2.656) (1.599) (2.664)  (1.823) (2.325) 

𝐼𝑉𝑡  
 0.097              

  (1.018)              

𝐸𝑅𝑉𝑡  
  0.036             

   (0.483)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -89.855      -86.408   -249.696** -241.827*** -535.031*** 

    (-1.105)      (-1.242)   (-2.426) (-2.602) (-3.946) 

log⁡(𝑃 𝐷⁄ )𝑡 
    1,446.712          1,375.073*** 

     (0.782)          (2.833) 

𝐷𝐹𝑆𝑃𝑡   
     13.140         -37.888 

      (0.880)         (-1.540) 

𝑇𝑀𝑆𝑃𝑡   
      -6.538        -36.311*** 

       (-0.622)        (-3.351) 

𝐶𝐴𝑌𝑡  
       -15.017   -13.735  -35.970*** -34.262***  

        (-0.937)   (-0.951  (-3.170) (-3.368)  

𝑅𝑅𝐸𝐿𝑡  
        -10.898   -14.665 -8.464 -10.574 -52.303*** 

         (-0.206)   (-0.359 (-0.282) (-0.363) (-4.499) 

Constant -37.863*** -45.900* -39.099 199.873 4,772.606 -59.459* -23.245 -29.390** -50.996 189.102 -31.472*** -58.146 623.903** 598.653** 6,004.797*** 
 (-2.653) (-1.949) (-1.474) (0.931) (0.776) (-1.922) (-1.477) (-2.397) (-0.508) (1.060) (-3.093) (-0.789) (2.092) (2.205) (3.781) 

Observations 389 389 389 389 389 389 389 389 389 389 389 389 389 389 389 

R2 0.052 0.032 0.005 0.067 0.157 0.047 0.012 0.092 0.012 0.115 0.128 0.073 0.418 0.431 0.577 

Adjusted R2 0.050 0.029 0.002 0.065 0.155 0.044 0.009 0.090 0.009 0.110 0.124 0.068 0.414 0.425 0.571 

Note: Parentheses denote t-statistics                                                                                                                                                         *p<0.1; **p<0.05; ***p<0.01 
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Table R.6: EVRP 3.5 month return regressions, winsorized full sample from January 2002 to September 2017 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.261**         0.239** 0.485*** 0.537***  0.624*** 0.617*** 
 (2.468)         (2.359) (4.324) (4.986)  (5.740) (5.564) 

𝐼𝑉𝑡  
 0.042              

  (0.495)              

𝐸𝑅𝑉𝑡  
  0.022             

   (0.144)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -37.596      -35.591   -42.692** -41.445*** -45.420*** 

    (-1.447)      (-1.507)   (-2.124) (-3.194) (-2.605) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -7.197          -10.546** 

     (-0.735)          (-2.000) 

𝐷𝐹𝑆𝑃𝑡   
     -5.289         -10.296 

      (-0.358)         (-1.046) 

𝑇𝑀𝑆𝑃𝑡   
      -0.847        1.904 

       (-0.282)        (0.881) 

𝐶𝐴𝑌𝑡  
       -1.963   -4.675***  0.115 -2.733**  

        (-0.869)   (-2.695)  (0.058) (-1.983)  

𝑅𝑅𝐸𝐿𝑡  
        11.847***   17.207*** 12.780*** 16.101*** 16.966*** 

         (2.938)   (5.242) (3.214) (5.145) (4.969) 

Constant 0.964 3.862 4.986 110.240 -18.121 11.019 7.220 3.915 6.554** 100.553 -6.525* -2.162 125.725** 109.632*** 95.358 
 (0.319) (1.019) (1.184) (1.506) (-0.542) (0.787) (1.310) (0.870) (2.129) (1.502) (-1.657) (-0.851) (2.234) (2.989) (1.526) 

Observations 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 3,850 

R2 0.029 0.003 0.0004 0.046 0.009 0.004 0.001 0.014 0.096 0.070 0.088 0.200 0.155 0.270 0.279 

Adjusted R2 0.029 0.003 0.0001 0.045 0.009 0.004 0.001 0.014 0.096 0.069 0.087 0.199 0.154 0.269 0.278 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table R.7: EVRP 3.5 month return regressions, winsorized pre-GFC sample from January 2002 to December 2007 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.064         0.319*** 0.097 0.323***  -0.029 -0.131* 
 (0.633)         (4.654) (0.832) (2.911)  (-0.307) (-1.828) 

𝐼𝑉𝑡  
 0.014              

  (0.146)              

𝐸𝑅𝑉𝑡  
  -0.024             

   (-0.114)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -85.393**      -108.415***   -144.762*** -146.081*** -270.682*** 

    (-2.499)      (-4.258)   (-3.586) (-3.601) (-10.433) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -14.537          116.811*** 

     (-0.527)          (3.242) 

𝐷𝐹𝑆𝑃𝑡   
     -27.513         -51.214*** 

      (-1.026)         (-4.425) 

𝑇𝑀𝑆𝑃𝑡   
      -2.248        0.739 

       (-0.576)        (0.192) 

𝐶𝐴𝑌𝑡  
       0.538   -0.597  5.590*** 5.889***  

        (0.220)   (-0.243)  (2.773) (2.701)  

𝑅𝑅𝐸𝐿𝑡  
        5.699   10.760*** -4.315 -4.585 -18.166*** 

         (1.253)   (2.765) (-0.932) (-0.975) (-5.248) 

Constant 2.023 2.699 3.614 249.915** -40.182 29.977 7.216* 3.250 2.715 310.472*** 1.371 -3.746 422.141*** 426.528*** 1,186.498*** 
 (0.552) (0.540) (0.728) (2.560) (-0.468) (1.270) (1.706) (0.724) (0.631) (4.264) (0.272) (-0.995) (3.652) (3.673) (7.938) 

Observations 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 1,440 

R2 0.004 0.001 0.0003 0.216 0.013 0.067 0.023 0.001 0.045 0.292 0.004 0.104 0.345 0.345 0.548 

Adjusted R2 0.003 -0.0002 -0.0004 0.215 0.012 0.067 0.022 0.001 0.044 0.291 0.003 0.103 0.343 0.343 0.546 

Note: Parentheses denote t-statistics                                                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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Table R.8: EVRP 3.5 month return regressions, winsorized GFC sample from December 2007 to July 2009 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.175**         0.176*** 0.143 0.195**  0.119** 0.099 
 (2.244)         (2.581) (1.290) (1.975)  (2.003) (1.329) 

𝐼𝑉𝑡  
 0.103              

  (1.043)              

𝐸𝑅𝑉𝑡  
  0.034             

   (0.330)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -62.511      -62.960   -203.881 -197.834 -441.525*** 

    (-0.520)      (-0.833)   (-1.441) (-1.599) (-3.278) 

log⁡(𝑃 𝐷⁄ )𝑡 
    1,218.831          942.425* 

     (0.846)          (1.662) 

𝐷𝐹𝑆𝑃𝑡   
     11.655         -9.534 

      (0.662)         (-0.464) 

𝑇𝑀𝑆𝑃𝑡   
      -11.285        -53.155*** 

       (-0.726)        (-4.344) 

𝐶𝐴𝑌𝑡  
       -12.803   -11.788  -28.837** -27.348*  

        (-0.716)   (-0.825)  (-2.017) (-1.912)  

𝑅𝑅𝐸𝐿𝑡  
        -16.698   -19.021 -12.933 -14.682 -57.119*** 

         (-0.412)   (-0.643) (-0.566) (-0.693) (-6.884) 

Constant -38.435** -47.492** -40.140 127.519 4,013.344 -57.399* -15.827 -32.423* -60.351 127.585 -33.718** -64.794 493.517 473.831 4,297.322** 
 (-2.465) (-2.149) (-1.429) (0.395) (0.839) (-1.922) (-0.964) (-1.846) (-0.745) (0.636) (-2.488) (-1.141) (1.215) (1.345) (2.036) 

Observations 389 389 389 389 389 389 389 389 389 389 389 389 389 389 389 

R2 0.040 0.041 0.005 0.034 0.149 0.042 0.042 0.082 0.032 0.075 0.108 0.080 0.321 0.339 0.655 

Adjusted R2 0.037 0.038 0.002 0.032 0.147 0.039 0.040 0.079 0.029 0.070 0.103 0.075 0.316 0.332 0.650 

Note: Parentheses denote t-statistics                                                                                                                                                         *p<0.1; **p<0.05; ***p<0.01 
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Table R.9: EVRP 3.5 month return regressions, winsorized post-GFC sample July 2009 to September 2017 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

𝐸𝑉𝑅𝑃𝑡   0.615***         0.389*** 0.567*** 0.598***  0.531*** 0.678*** 
 (8.247)         (4.299) (5.324) (6.723)  (5.019) (6.910) 

𝐼𝑉𝑡  
 0.354***              

  (5.084)              

𝐸𝑅𝑉𝑡  
  0.364***             

   (3.127)             

log⁡(𝑃 𝐸⁄ )𝑡 
   -58.117***      -42.031**   -79.023** -75.779*** -66.815** 

    (-2.823)      (-2.324)   (-2.033) (-2.581) (-2.241) 

log⁡(𝑃 𝐷⁄ )𝑡 
    8.320          -20.637 

     (0.573)          (-1.473) 

𝐷𝐹𝑆𝑃𝑡   
     18.265         -6.920 

      (1.546)         (-0.665) 

𝑇𝑀𝑆𝑃𝑡   
      -3.186        -3.136 

       (-0.592)        (-0.749) 

𝐶𝐴𝑌𝑡  
       3.186   0.807  -2.201 -3.617  

        (1.484)   (0.449)  (-0.606) (-1.288)  

𝑅𝑅𝐸𝐿𝑡  
        -31.621   -3.538 7.237 22.382 -2.542 

         (-1.429)   (-0.243 (0.293) (1.092) (-0.104) 

Constant 3.057 1.912 6.386 172.614*** 41.894 -5.860 20.463* 17.814*** 13.162*** 122.133** 5.055 3.344 226.674** 206.973*** 128.373 
 (1.228) (0.476) (1.591) (3.055) (0.804) (-0.474) (1.830) (3.393) (4.055) (2.431) (1.041) (1.126) (2.227) (2.672) (1.641) 

Observations 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 2,022 

R2 0.125 0.175 0.127 0.145 0.013 0.065 0.013 0.048 0.033 0.184 0.127 0.125 0.156 0.219 0.262 

Adjusted R2 0.124 0.174 0.126 0.144 0.013 0.064 0.012 0.047 0.033 0.183 0.126 0.124 0.155 0.217 0.260 

Note: Parentheses denote t-statistics                                                                                                                                                   *p<0.1; **p<0.05; ***p<0.01 
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Appendix S:  EVRP 4-months rolling and recursive return regressions 

Graph S.1: Rolling 4-month return regression for EVRP 
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Graph S.2: Recursive 4-month return regression for EVRP:  
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Appendix T: Sharpe and Sortino ratios and total return profiles for VRP trading strategy 

Figure T.1: Sharpe ratio profile 

 

Figure T.2: Sortino ratio profile 

 
 

Value axis denotes the Sharpe Ratio. Horizontal axis denotes VRP-

percentile utilized as threshold for market investment 

 

Value axis denotes the Sortino Ratio. Horizontal axis denotes VRP-

percentile utilized as threshold for market investment 

Figure T.3: Total return profile 

 

 

Value axis denotes the total return. Horizontal axis denotes VRP-

percentile utilized as threshold for market investment 
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Appendix U: Overview of VRP slope coefficients (with 95% confidence intervals) and adj. R squared for studied 

time samples 

Figures U.1 VRP for the sample pre-election of Trump (July 

2009 to 8. November 2016) 

Figures U.2: VRP for the sample post-election of Trump (8. 

November 2016 to March 2018) 
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Figures U.3: Comparison of pre- and post-election of Trump samples 

VRP 
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Figures U.4: EVRP for the sample pre-election of Trump (July 

2009 to 8. November 2016) 

Figures U.5: EVRP for the sample post-election of Trump (8. 

November 2016 to March 2018) 
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Figures U.6: Comparison of pre- and post-election of Trump EVRP  
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Appendix V: VRP return regressions, pre-election sample from July 2009 to November 2016 

Table V.1: VRP, 3.5-month return horizon, pre-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝑉𝑅𝑃𝑡   0.488***        0.267*** 0.337***  0.244** 0.345*** 
 (4.271)        (2.723) (3.124)  (2.474) (3.069) 

𝐼𝑉𝑡  
 0.340***            

  (5.319)            

𝑅𝑉𝑡  
  0.356***           

   (3.150)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -87.329***     -78.376***  -76.944*** -72.302*** -70.786 

    (-5.184)     (-4.870)  (-3.085) (-3.139) (-1.549) 

log⁡(𝑃 𝐷⁄ )𝑡 
    12.279        -13.593 

      (0.682)        (-0.596) 

𝐷𝐹𝑆𝑃𝑡   
     20.897***       4.107 

      (5.937)       (0.459) 

𝑇𝑀𝑆𝑃𝑡   
      -3.795      -3.150 

       (-0.609)      (-0.485) 

𝑅𝑅𝐸𝐿𝑡  
       -46.411***  -36.834*** -14.671 -9.646 -13.778 

        (-4.787)  (-4.135) (-1.043) (-0.712) (-0.574) 

Constant 5.775* 0.771 5.292 250.388*** 54.839 -10.390 21.966 11.304*** 222.217*** 6.790* 221.673*** 205.709*** 156.518* 
 (1.808) (0.176) (1.144) (5.433) (0.860) (-1.596) (1.587) (2.812) (5.024) (1.914) (3.229 (3.250) (1.872) 

Observations 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 

R2 0.085 0.194 0.141 0.229 0.018 0.154 0.013 0.111 0.252 0.147 0.237 0.256 0.300 

Adjusted R2 0.085 0.193 0.140 0.229 0.018 0.154 0.013 0.111 0.252 0.146 0.236 0.254 0.298 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table V.2: VRP, 3.5-month return horizon, winsorized pre-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝑉𝑅𝑃𝑡   0.633***        0.371*** 0.485***  0.349** 0.488*** 
 (3.885)        (2.734) (2.707)  (2.229) (3.163) 

𝐼𝑉𝑡  
 0.389***            

  (5.090)            

𝑅𝑉𝑡  
  0.400***           

   (3.118)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -83.998***     -73.648***  -76.745*** -71.374*** -68.658* 

    (-4.218)     (-3.857)  (-3.318) (-3.257) (-1.726) 

log⁡(𝑃 𝐷⁄ )𝑡 
    12.541        -13.782 

     (0.716)        (-0.717) 

𝐷𝐹𝑆𝑃𝑡   
     22.950**       3.009 

      (2.012)       (0.285) 

𝑇𝑀𝑆𝑃𝑡   
      -3.558      -4.446 

       (-0.586)      (-0.783) 

𝑅𝑅𝐸𝐿𝑡  
       -57.809***  -37.810* -19.494 -7.797 -32.387 

        (-2.650)  (-1.703) (-0.848) (-0.321) (-1.070) 

Constant 3.744 -0.353 4.811 241.565*** 55.738 -11.870 21.394 11.623*** 208.095*** 5.118 221.428*** 202.070*** 152.548* 
 (0.997) (-0.076) (1.024) (4.433) (0.901) (-0.903) (1.592) (3.090) (3.940) (1.277) (3.484) (3.361) (1.852) 

Observations 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 

R2 0.099 0.198 0.144 0.222 0.023 0.103 0.013 0.078 0.252 0.127 0.229 0.253 0.306 

Adjusted R2 0.098 0.198 0.143 0.221 0.022 0.102 0.013 0.078 0.251 0.126 0.228 0.252 0.304 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table V.3: VRP, 4-month return horizon, pre-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝑉𝑅𝑃𝑡   0.556***        0.303*** 0.368***  0.274*** 0.352*** 
 (5.401)        (3.573) (4.050)  (3.139) (3.433) 

𝐼𝑉𝑡  
 0.353***            

  (8.168)            

𝑅𝑉𝑡  
  0.390***           

   (3.247)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -92.196***     -79.501***  -78.642*** -72.997*** -74.248** 

    (-6.133)     (-6.050)  (-3.928) (-4.230) (-2.017) 

log⁡(𝑃 𝐷⁄ )𝑡 
    12.063        -16.133 

     (0.702)        (-0.917) 

𝐷𝐹𝑆𝑃𝑡   
     22.760***       5.044 

      (5.747)       (0.747) 

𝑇𝑀𝑆𝑃𝑡   
      -4.004      -2.271 

       (-0.641)      (-0.365) 

𝑅𝑅𝐸𝐿𝑡  
       -50.545***  -37.355*** -17.345 -9.886 -9.286 

        (-5.044)  (-4.426) (-1.419) (-0.891) (-0.465) 

Constant 4.872* 0.276 4.683 263.687*** 54.408 -12.371* 22.853* 11.240*** 224.695*** 6.290* 226.211*** 207.087*** 153.991** 
 (1.686) (0.075) (1.070) (6.356) (0.881) (-1.837) (1.737) (3.075) (6.129) (1.755) (4.075) (4.324) (2.415) 

Observations 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 

R2 0.138 0.267 0.199 0.288 0.019 0.216 0.015 0.160 0.323 0.209 0.300 0.327 0.380 

Adjusted R2 0.137 0.267 0.198 0.287 0.018 0.216 0.015 0.160 0.323 0.209 0.300 0.326 0.378 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table V.4: VRP, 4-month return horizon, winsorized pre-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝑉𝑅𝑃𝑡   0.675***        0.405*** 0.501***  0.375*** 0.513*** 
 (4.358)        (3.177) (2.980)  (2.600) (3.574) 

𝐼𝑉𝑡  
 0.383***            

  (6.953)            

𝑅𝑉𝑡  
  0.383***           

   (2.806)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -85.447***     -73.575***  -76.064*** -70.547*** -74.419** 

    (-5.128)     (-4.675)  (-3.909) (-3.896) (-2.024) 

log⁡(𝑃 𝐷⁄ )𝑡 
    12.913        -16.182 

     (0.823)        (-0.929) 

𝐷𝐹𝑆𝑃𝑡   
     23.554**       2.289 

      (2.391)       (0.286) 

𝑇𝑀𝑆𝑃𝑡   
      -3.279      -2.899 

       (-0.561)      (-0.504) 

𝑅𝑅𝐸𝐿𝑡  
       -56.382***  -36.722** -20.784 -8.650 -21.756 

        (-3.349)  (-2.275 (-1.135 (-0.465 (-0.894) 

Constant 3.343 -0.018 5.329 245.708*** 57.368 -12.304 21.130* 11.679*** 207.522*** 4.920 219.632*** 199.489*** 156.858** 
 (0.999) (-0.005) (1.243) (5.333) (1.022) (-1.048) (1.685) (3.579) (4.712) (1.383) (4.082) (3.978) (2.410) 

Observations 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 

R2 0.134 0.243 0.169 0.269 0.027 0.135 0.013 0.113 0.312 0.173 0.281 0.313 0.369 

Adjusted R2 0.133 0.243 0.169 0.268 0.027 0.134 0.012 0.112 0.311 0.172 0.280 0.312 0.367 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table V.5: VRP, 4-month return horizon, post-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝑉𝑅𝑃𝑡   0.692***        0.710*** 0.745***  0.749*** 0.691*** 
 (2.793)        (3.231) (3.464)  (3.361) (5.681) 

𝐼𝑉𝑡  
 0.405            

  (1.054)            

𝑅𝑉𝑡  
  -0.511           

   (-0.778)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -2.579     11.169  -2.688 -9.251 -476.134*** 

    (-0.037)     (0.209)  (-0.032) (-0.142) (-7.966) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -109.754        -680.170*** 

     (-0.770)        (-6.389) 

𝐷𝐹𝑆𝑃𝑡   
     -11.944       -70.565** 

      (-0.459)       (-2.521) 

𝑇𝑀𝑆𝑃𝑡   
      -5.145      21.790*** 

       (-0.660)      (4.244) 

𝑅𝑅𝐸𝐿𝑡  
       -0.499  5.469 0.038 7.340 -7.133 

        (-0.031)  (0.528) (0.003) (0.651) (-0.550) 

Constant 11.216*** 11.368** 19.158*** 24.118 -405.473 25.672 24.057* 16.684*** -21.701 9.330** 24.428 35.948 -1,182.801*** 
 (3.478) (2.048) (4.744) (0.118) (-0.740) (1.236) (1.788) (2.632) (-0.138) (2.061) (0.101) (0.191) (-3.008) 

Observations 318 318 318 318 318 318 318 318 318 318 318 318 318 

R2 0.131 0.051 0.033 0.0002 0.090 0.020 0.033 0.0001 0.134 0.141 0.0002 0.141 0.698 

Adjusted R2 0.129 0.048 0.030 -0.003 0.087 0.017 0.030 -0.003 0.129 0.135 -0.006 0.133 0.692 

Note: Parentheses denote t-statistics                                                                                                                            *p<0.1; **p<0.05; ***p<0.01 
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Table V.6: VRP, 4-month return horizon, post-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+4 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝑉𝑅𝑃𝑡   0.695        0.732* 0.791*  0.790* 0.731*** 
 (1.527)        (1.710) (1.835)  (1.830) (2.837) 

𝐼𝑉𝑡  
 0.372            

  (0.789)            

𝑅𝑉𝑡  
  -0.388           

   (-0.414)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -7.088     9.854  -11.535 -10.359 -490.206*** 

    (-0.091)     (0.164)  (-0.122) (-0.138) (-7.245) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -103.254        -710.567*** 

     (-0.757)        (-6.916) 

𝐷𝐹𝑆𝑃𝑡   
     -9.521       -65.494** 

      (-0.365)       (-2.546) 

𝑇𝑀𝑆𝑃𝑡   
      -4.989      24.187*** 

       (-0.721)      (5.056) 

𝑅𝑅𝐸𝐿𝑡  
       -0.822  5.399 1.552 7.522 -5.652 

        (-0.049)  (0.444) (0.103) (0.564) (-0.476) 

Constant 11.196*** 11.847** 18.465*** 37.316 -380.508 23.781 23.793** 16.736*** -18.007 9.000 49.947 38.837 -1,266.334*** 
 (2.773) (1.994) (3.873) (0.163) (-0.725) (1.149) (1.998) (2.645) (-0.101) (1.543) (0.182) (0.178) (-3.341) 

Observations 318 318 318 318 318 318 318 318 318 318 318 318 318 

R2 0.072 0.030 0.016 0.001 0.086 0.013 0.033 0.0002 0.075 0.081 0.002 0.082 0.687 

Adjusted R2 0.069 0.027 0.013 -0.002 0.083 0.010 0.030 -0.003 0.069 0.075 -0.005 0.073 0.681 

Note: Parentheses denote t-statistics                                                                                                                            *p<0.1; **p<0.05; ***p<0.01 
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Appendix W: EVRP return regressions, pre-election sample from July 2009 to November 2016 

Table W.1: EVRP, 4-month return horizon, pre-election 

 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝐸𝑉𝑅𝑃𝑡   0.209***        0.091*** 0.125***  0.078*** 0.084** 
 (2.809)        (2.840) (2.647)  (2.605) (2.553) 

𝐼𝑉𝑡  
 0.353***            

  (8.168)            

𝑅𝑉𝑡  
  0.390***           

   (3.247)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -92.196***     -87.695***  -78.642*** -76.175*** -71.236* 

    (-6.133)     (-6.019)  (-3.928) (-3.984) (-1.735) 

log⁡(𝑃 𝐷⁄ )𝑡 
    12.063        -10.148 

     (0.702)        (-0.485) 

𝐷𝐹𝑆𝑃𝑡   
     22.760***       6.199 

      (5.747)       (0.708) 

𝑇𝑀𝑆𝑃𝑡   
      -4.004      -2.704 

       (-0.641)      (-0.369) 

𝑅𝑅𝐸𝐿𝑡  
       -50.545***  -46.017*** -17.345 -15.555 -15.932 

        (-5.044)  (-4.466) (-1.419) (-1.287) (-0.715) 

Constant 9.678*** 0.276 4.683 263.687*** 54.408 -12.371* 22.853* 11.240*** 249.966*** 9.364*** 226.211*** 218.296*** 169.665** 
 (2.802) (0.075) (1.070) (6.356) (0.881) (-1.837) (1.737) (3.075) (6.184) (2.714) (4.075) (4.112) (2.141) 

Observations 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 

R2 0.054 0.267 0.199 0.288 0.019 0.216 0.015 0.160 0.297 0.178 0.300 0.307 0.348 

Adjusted R2 0.054 0.267 0.198 0.287 0.018 0.216 0.015 0.160 0.297 0.177 0.300 0.306 0.346 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table W.2: EVRP, 4-month return horizon, winsorized pre-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝐸𝑉𝑅𝑃𝑡   0.622***        0.311*** 0.467***  0.275** 0.400*** 
 (6.945)        (3.332) (4.168)  (2.561) (3.546) 

𝐼𝑉𝑡  
 0.383***            

  (6.953)            

𝑅𝑉𝑡  
  0.383***           

   (2.806)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -85.447***     -72.057***  -76.064*** -68.293*** -73.468** 

    (-5.128)     (-4.668)  (-3.909) (-3.723) (-2.175) 

log⁡(𝑃 𝐷⁄ )𝑡 
    12.913        -16.252 

     (0.823)        (-1.028) 

𝐷𝐹𝑆𝑃𝑡   
     23.554**       0.843 

      (2.391)       (0.111) 

𝑇𝑀𝑆𝑃𝑡   
      -3.279      -2.377 

       (-0.561)      (-0.418) 

𝑅𝑅𝐸𝐿𝑡  
       -56.382***  -34.944** -20.784 -11.773 -23.787 

        (-3.349)  (-2.539) (-1.135) (-0.693) (-1.041) 

Constant 2.454 -0.018 5.329 245.708*** 57.368 -12.304 21.130* 11.679*** 203.914*** 4.216 219.632*** 193.982*** 154.831** 
 (0.982) (-0.005) (1.243) (5.333) (1.022) (-1.048) (1.685) (3.579) (4.719 (1.404) (4.082) (3.807) (2.304) 

Observations 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 

R2 0.142 0.243 0.169 0.269 0.027 0.135 0.013 0.113 0.298 0.177 0.281 0.301 0.350 

Adjusted R2 0.142 0.243 0.169 0.268 0.027 0.134 0.012 0.112 0.297 0.176 0.280 0.300 0.347 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table W.3: EVRP, 3.5-month return horizon, pre-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝐸𝑉𝑅𝑃𝑡   0.221***        0.109*** 0.146***  0.098*** 0.101*** 
 (2.820)        (2.907) (2.712)  (2.833) (2.948) 

𝐼𝑉𝑡  
 0.340***            

  (5.319)            

𝑅𝑉𝑡  
  0.356***           

   (3.150)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -87.329***     -81.595***  -76.944*** -73.728*** -67.192 

    (-5.184)     (-5.404)  (-3.085) (-3.256) (-1.571) 

log⁡(𝑃 𝐷⁄ )𝑡 
    12.279        -7.440 

     (0.682)        (-0.352) 

𝐷𝐹𝑆𝑃𝑡   
     20.897***       4.664 

      (5.937)       (0.515) 

𝑇𝑀𝑆𝑃𝑡   
      -3.795      -3.411 

       (-0.609)      (-0.509) 

𝑅𝑅𝐸𝐿𝑡  
       -46.411***  -40.367*** -14.671 -11.955 -17.061 

        (-4.787)  (-4.680) (-1.043) (-0.923) (-0.752) 

Constant 9.157*** 0.771 5.292 250.388*** 54.839 -10.390 21.966 11.304*** 233.012*** 9.115** 221.673*** 211.416*** 171.030* 
 (2.727) (0.176) (1.144) (5.433) (0.860) (-1.596) (1.587) (2.812) (5.585) (2.559) (3.229) (3.372) (1.939) 

Observations 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 

R2 0.056 0.194 0.141 0.229 0.018 0.154 0.013 0.111 0.242 0.134 0.237 0.247 0.278 

Adjusted R2 0.056 0.193 0.140 0.229 0.018 0.154 0.013 0.111 0.241 0.133 0.236 0.246 0.276 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table W.4: EVRP, 3.5-month return horizon, winsorized pre-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝐸𝑉𝑅𝑃𝑡   0.668***        0.374*** 0.555***  0.357*** 0.504*** 
 (8.272)        (3.793) (5.254)  (3.229) (4.207) 

𝐼𝑉𝑡  
 0.389***            

  (5.090)            

𝑅𝑉𝑡  
  0.400***           

   (3.118)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -83.998***     -67.834***  -76.745*** -66.385*** -70.657** 

    (-4.218)     (-3.938)  (-3.318) (-3.254) (-2.157) 

log⁡(𝑃 𝐷⁄ )𝑡 
    12.541        -16.442 

     (0.716)        (-1.074) 

𝐷𝐹𝑆𝑃𝑡   
     22.950**       -0.907 

      (2.012)       (-0.095) 

𝑇𝑀𝑆𝑃𝑡   
      -3.558      -3.389 

       (-0.586)      (-0.670) 

𝑅𝑅𝐸𝐿𝑡  
       -57.809***  -28.502* -19.494 -5.840 -26.674 

        (-2.650)  (-1.765) (-0.848) (-0.291) (-1.025) 

Constant 1.319 -0.353 4.811 241.565*** 55.738 -11.870 21.394 11.623*** 191.141*** 2.688 221.428*** 187.368*** 148.926* 
 (0.458) (-0.076) (1.024) (4.433) (0.901) (-0.903) (1.592) (3.090) (3.985) (0.783) (3.484) (3.310) (1.947) 

Observations 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 1,804 

R2 0.140 0.198 0.144 0.222 0.023 0.103 0.013 0.078 0.257 0.155 0.229 0.258 0.307 

Adjusted R2 0.139 0.198 0.143 0.221 0.022 0.102 0.013 0.078 0.256 0.154 0.228 0.257 0.304 

Note: Parentheses denote t-statistics                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Table W.5: EVRP, 3.5-month return horizon, post-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝐸𝑉𝑅𝑃𝑡   0.527        0.586* 0.538  0.558 0.520 
 (1.482)        (1.777) (1.469)  (1.606) (1.627) 

𝐼𝑉𝑡  
 0.616            

  (1.251)            

𝐸𝑅𝑉𝑡  
  0.070           

   (0.089)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -4.691     15.673  20.485 27.752 -380.269*** 

    (-0.065)     (0.248)  (0.220) (0.320) (-3.405) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -104.433        -723.437*** 

     (-0.833)        (-4.158) 

𝐷𝐹𝑆𝑃𝑡   
     -3.036       -19.486 

      (-0.145)       (-0.439) 

𝑇𝑀𝑆𝑃𝑡   
      -4.661      23.825*** 

       (-0.751)      (3.394) 

𝑅𝑅𝐸𝐿𝑡  
       -4.687  0.630 -8.590 -4.452 -8.810 

        (-0.304)  (0.054) (-0.537) (-0.308) (-0.514) 

Constant 12.660*** 9.269 16.685*** 30.791 -384.824 19.299 23.823** 18.306*** -33.888 12.400** -40.817 -67.922 -1,670.931* 
 (3.932) (1.229) (3.187) (0.146) (-0.798) (1.176) (2.327) (3.181) (-0.183) (2.508) (-0.151) (-0.271) (-1.895) 

Observations 318 318 318 318 318 318 318 318 318 318 318 318 318 

R2 0.043 0.093 0.0003 0.0004 0.070 0.001 0.022 0.006 0.047 0.043 0.009 0.049 0.465 

Adjusted R2 0.040 0.090 -0.003 -0.003 0.067 -0.002 0.018 0.003 0.041 0.037 0.003 0.040 0.455 

Note: Parentheses denote t-statistics                                                                                                                            *p<0.1; **p<0.05; ***p<0.01 
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Table W.6: EVRP, 3.5-month return horizon, post-election 

 Dependent variable: 

 (𝑟𝑆𝑃𝑋 − 𝑟𝑚)𝑡→𝑡+3.5 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

𝐸𝑉𝑅𝑃𝑡   0.556        0.598 0.539  0.557 0.474 
 (1.144)        (1.382) (1.130)  (1.187) (1.398) 

𝐼𝑉𝑡  
 0.589            

  (0.948)            

𝐸𝑅𝑉𝑡  
  0.850           

   (0.613)           

log⁡(𝑃 𝐸⁄ )𝑡 
   -10.976     6.216  9.250 14.341 -408.554*** 

    (-0.137)     (0.086)  (0.090) (0.146) (-3.376) 

log⁡(𝑃 𝐷⁄ )𝑡 
    -97.380        -742.145*** 

     (-0.762)        (-4.614) 

𝐷𝐹𝑆𝑃𝑡   
     -0.388       -19.548 

      (-0.017)       (-0.429) 

𝑇𝑀𝑆𝑃𝑡   
      -4.840      25.426*** 

       (-0.721)      (3.331) 

𝑅𝑅𝐸𝐿𝑡  
       -5.156  -0.546 -6.971 -3.206 -7.706 

        (-0.323)  (-0.044) (-0.414) (-0.192) (-0.388) 

Constant 12.483*** 9.794 13.204* 49.282 -357.654 17.317 24.104** 18.457*** -6.133 12.769** -8.223 -28.787 -1,661.837* 
 (2.992) (1.121) (1.899) (0.209) (-0.727) (0.965) (2.176) (3.118) (-0.029) (2.334) (-0.027) (-0.101) (-1.956) 

Observations 318 318 318 318 318 318 318 318 318 318 318 318 318 

R2 0.024 0.059 0.028 0.002 0.068 0.00002 0.025 0.007 0.025 0.024 0.008 0.026 0.501 

Adjusted R2 0.021 0.056 0.025 -0.001 0.065 -0.003 0.022 0.004 0.018 0.018 0.002 0.016 0.492 

Note: Parentheses denote t-statistics                                                                                                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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Appendix X: Daily regressions between key variables and the sum of daily categorized Trump-

tweets, from November 2016 till February 2018 

Table X.1: Daily regressions from November 2016 till February 2018 

 

 Dependent variable: 

 𝑟𝑆𝑃𝑋,𝑡→𝑡+1𝑑𝑎𝑦⁡ 𝐼𝑉𝑡+1𝑑𝑎𝑦  𝑅𝑉𝑡+1𝑑𝑎𝑦⁡ 𝑉𝑅𝑃𝑡+1𝑑𝑎𝑦⁡ 𝐸𝑅𝑉𝑡+1𝑑𝑎𝑦⁡ 𝐸𝑉𝑅𝑃𝑡+1𝑑𝑎𝑦⁡ 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Economic 0.0002  -0.509**  -0.214  -0.295  -0.394  -0.115  

 (1.369)  (-2.061)  (-1.480)  (-1.593)  (-0.951)  (-0.429)  

Political -0.003*  0.362*  0.241  0.120  0.657  -0.295  

 (-1.878)  (1.745)  (1.362)  (0.736)  (1.560)  (-1.150)  

Military 0.0003  -0.512  -0.781*  0.268  0.010  -0.523  

 (0.788)  (-1.047)  (-1.940)  (0.633)  (0.011)  (-0.879)  

Presidential duties 0.0003*  -0.218  -0.118  -0.100  -0.063  -0.154  

 (1.880)  (-1.505)  (-1.217)  (-1.030)  (-0.258)  (-0.744)  

Personal -0.0001  -0.292  -0.035  -0.257*  -0.444  0.153  

 (-0.064)  (-1.398)  (-0.276)  (-1.710)  (-1.207)  (0.811)  

Other -0.0001  -2.243**  -1.600**  -0.643  -3.365**  1.122  

 (-0.082)  (-2.440)  (-2.120)  (-0.982)  (-2.287)  (1.538)  

Featured 

Democrats 
0.001  -0.411  0.039  -0.450  -0.927  0.516  

 (1.294)  (-0.829)  (0.097)  (-1.088)  (-1.030)  (0.970)  

Political *  

Featured 

Democrats 

-0.0001  -0.036  -0.045  0.010  -0.040  0.004  

 (-0.210)  (-0.832)  (-0.976)  (0.292)  (-0.584)  (0.100)  

Fake.news  0.0001  -1.144**  -0.476*  -0.668**  -1.226  0.082 
  (0.364)  (-2.517)  (-1.695)  (-1.998)  (-1.500)  (0.193) 

Constant 0.001 0.001* 13.90*** 13.26*** 5.830*** 5.747*** 8.071*** 7.516*** 7.458*** 7.439*** 6.444*** 5.825*** 
 (0.957) (1.696) (11.03) (10.503) (7.645) (6.862) (9.622) (8.827) (3.543) (3.453) (5.997) (5.576) 

Observations 319 319 319 319 319 319 319 319 319 319 319 319 

R2 0.026 0.0002 0.032 0.013 0.024 0.005 0.021 0.008 0.017 0.005 0.011 0.0001 

Adjusted R2 0.001 -0.003 0.007 0.010 -0.001 0.002 -0.004 0.005 -0.008 0.002 -0.014 -0.003 

Note: Parentheses denote t-statistics                                                                                  *p<0.1; **p<0.05; ***p<0.01 
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Table X.2: Daily regressions winsorized sample from November 2016 till February 2018 

 

 Dependent variable: 

 𝑟𝑆𝑃𝑋,𝑡→𝑡+1𝑑𝑎𝑦⁡ 𝐼𝑉𝑡+1𝑑𝑎𝑦  𝑅𝑉𝑡+1𝑑𝑎𝑦⁡ 𝑉𝑅𝑃𝑡+1𝑑𝑎𝑦⁡ 𝐸𝑅𝑉𝑡+1𝑑𝑎𝑦⁡ 𝐸𝑉𝑅𝑃𝑡+1𝑑𝑎𝑦⁡ 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Economic 0.003**  -0.376**  -0.122  -0.208*  -0.151  -0.202  

 (2.132)  (-2.414)  (-1.281)  (-1.880)  (-1.071)  (-1.450)  

Political -0.003**  0.187*  0.053  0.061  0.199  -0.003  

 (-2.428)  (1.655)  (0.884)  (1.040)  (1.510)  (-0.043)  

Military 0.0003  -0.575**  -0.36***  -0.073  -0.421  -0.247  

 (1.031)  (-2.383)  (-2.851)  (-0.440)  (-1.491)  (-1.376)  

Presidential duties 0.003***  -0.25***  -0.120**  -0.112*  -0.141  -0.087  

 (2.907)  (-2.863)  (-2.365)  (-1.923)  (-1.050)  (-1.129)  

Personal -0.0001  -0.116  -0.014  -0.102*  -0.068  -0.030  

 (-0.570)  (-1.342)  (-0.330)  (-1.873)  (-0.601)  (-0.506)  

Other -0.0002  -1.46***  -0.649**  -0.530  -1.91***  0.283  

 (-0.359)  (-2.990)  (-2.200)  (-1.630)  (-3.344)  (0.914)  

Featured 

Democrats 
0.0001  -0.230  -0.203  -0.060  -0.540  0.217  

 (0.509)  (-0.779)  (-1.203)  (-0.314)  (-1.635)  (0.964)  

Political *  

Featured 

Democrats 

0.00001  -0.022  0.003  -0.010  -0.002  -0.015  

 (0.316)  (-0.752)  (0.178)  (-0.610)  (-0.082)  (-0.720)  

Fake.news  -0.0001  -0.78***  -0.37***  -0.37***  -0.472*  -0.228 
  (-0.372)  (-3.694)   (-3.213)  (-2.760)  (-1.929)  (-1.617) 

Constant 0.001** 0.001*** 12.72*** 12.05*** 4.948*** 4.615*** 7.451*** 7.062*** 5.571*** 5.115*** 7.297*** 7.062*** 
 (2.138) (4.072) (22.28) (22.643) (14.65) (15.86) (20.99) (24.73) (8.083) (8.526) (18.33) (24.63) 

Observations 319 319 319 319 319 319 319 319 319 319 319 319 

R2 0.047 0.0003 0.082 0.032 0.060 0.027 0.053 0.022 0.042 0.008 0.026 0.006 

Adjusted R2 0.022 -0.003 0.058 0.029 0.035 0.024 0.028 0.019 0.017 0.005 0.001 0.003 

Note: Parentheses denote t-statistics                                                                                  *p<0.1; **p<0.05; ***p<0.01 
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Appendix Y: Intraday regressions between key variables and categorized Trump-tweets,  

Table Y.1: Daily regressions from November 2016 till February 2018 

 

 Dependent variable: 

 𝑟𝑆𝑃𝑋,𝑡→𝑡+20𝑚𝑖𝑛⁡ 𝐼𝑉𝑡+20𝑚𝑖𝑛⁡ 𝑅𝑉𝑡+20𝑚𝑖𝑛⁡ 𝑉𝑅𝑃𝑡+20𝑚𝑖𝑛⁡ 𝐸𝑅𝑉𝑡+20𝑚𝑖𝑛⁡ 𝐸𝑉𝑅𝑃𝑡+20𝑚𝑖𝑛⁡ 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Economic -32.899  -2.127***  -1.022  -1.105**  -2.87***  0.738  

 (-0.633)  (-3.226)  (-1.455)  (-2.328)  (-5.669)  (1.254)  

Political 84.291*  0.828  -0.096  0.924  2.401  -1.573  

 (1.663)  (0.640)  (-0.193)  (0.862)  (1.232)  (-1.434)  

Military 
263.395**

* 
 -2.906***  -1.82***  -1.089**  -2.56***  -0.358  

 (3.817)  (-4.731)  (-6.529)  (-2.127)  (-2.904)  (-0.366)  

Presidential 

duties 
32.356  0.055  0.618  -0.562  -0.609  0.664  

 (0.782)  (0.058)  (0.966)  (-0.797)  (-0.618)  (1.027)  

Personal -5.633  -0.946  -0.079  -0.867*  0.167  -1.113  

 (-0.090)  (-1.162)  (-0.090)  (-1.808)  (0.153)  (-1.318)  

Other -  -  -  -  -  -  

Featured 

Democrats 
20.798  -1.945  1.044  -2.990**  -2.956  1.010  

   (-1.180)  (0.653)  (-2.293)  (-1.304)  (0.822)  

Political *  

Featured 

Democrats 

-  -  -  -  -  -  

Fake.news  54.358  -1.592  -0.187  -1.406**  -1.632  0.040 
  (0.636)  (-1.155)  (-0.105)  (-2.085)  (-1.549)  (0.063) 

Constant 7.145 8.045 
12.602**

* 

12.596**

* 
5.510*** 5.511*** 7.092*** 7.085*** 5.449*** 5.451*** 7.153*** 7.145*** 

 (1.070) (1.213) (50.403) (50.537) 
(39.854

) 

(39.736

) 

(37.421

) 

(37.463

) 

(13.013

) 

(13.152

) 

(22.769

) 

(23.056

) 

Observation

s 
21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 

R2 0.0005 
0.0000

1 
0.0003 0.00002 0.0003 0.00000 0.0003 0.00003 0.0002 0.00001 0.0001 0.000 

Adjusted R2 0.0002 -0.0001 -0.0000 -0.0000 0.00000 -0.0001 0.0001 -0.0000 -0.0001 -0.0000 -0.0002 -0.0001 

Note: 
Parentheses denote t-statistics                                                                                          

*p<0.1; **p<0.05; ***p<0.01 
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Table Y.2: Daily regressions winsorized sample from November 2016 till February 2018 

 Dependent variable: 

 𝑟𝑆𝑃𝑋,𝑡→𝑡+20𝑚𝑖𝑛⁡ 𝐼𝑉𝑡+20𝑚𝑖𝑛⁡ 𝑅𝑉𝑡+20𝑚𝑖𝑛⁡ 𝑉𝑅𝑃𝑡+20𝑚𝑖𝑛⁡ 𝐸𝑅𝑉𝑡+20𝑚𝑖𝑛⁡ 𝐸𝑉𝑅𝑃𝑡+20𝑚𝑖𝑛⁡ 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Economic -43.706  -1.083**  -0.69***  -0.468  -1.02***  -0.473  

 (-0.947)  (-2.426)  (-2.77)  (-1.287)  (-3.41)  (-1.430)  

Political 59.490  0.446  0.075  0.467*  1.179**  -0.841**  

 (1.567)  (1.178)  (0.307)  (1.660)  (2.420)  (-2.558)  

Military 229.0***  -1.580***  -1.00***  -0.499  -0.707  -0.768  

 (4.374)  (-2.855)  (-4.329)  (-1.038)  (-0.91)  (-1.207)  

Presidential 

duties 
17.346  -0.395  -0.042  -0.505**  -0.043  -0.220  

 (0.638)  (-1.254)  (-0.220)  (-2.395)  (-0.106)  (-0.923)  

Personal 16.234  -0.330  -0.083  -0.323  1.108  -1.066**  

 (0.389)  (-0.787)  (-0.324)  (-1.001)  (1.453)  (-2.402)  

Other             

Featured 

Democrats 
48.914  -1.035  -0.416  -1.172**  -0.475  -0.391  

   (-1.412)  (-0.891)  (-2.489)  (-0.537)  (-0.777)  

Political *  

Featured 

Democrats 

-  -  -  -  -  -  

Fake.news  40.747  -0.987  -0.795*  -0.502  0.165  -0.923* 
  (0.501)  (-1.327)  (-1.796)  (-1.083)  (0.173)  (-1.858) 

Constant 11.88*** 12.59*** 11.33*** 11.33*** 4.733*** 4.731*** 6.502*** 6.498*** 3.614*** 3.622*** 8.048*** 8.036*** 
 (2.841 (3.025) (132.93) (132.97) (93.230) (93.193) (101.92) (102.04) (36.723) (36.717) (122.08) (122.17) 

Observations 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 21,317 

R2 0.001 0.00001 0.001 0.0001 0.001 0.0001 0.001 0.00003 0.001 0.00000 0.001 0.0001 

Adjusted R2 0.001 -0.0000 0.0004 0.00002 0.0002 0.0001 0.0004 -0.0000 0.001 -0.00005 0.001 0.00004 

Note: Parentheses denote t-statistics                                                                                          *p<0.1; **p<0.05; ***p<0.01 
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Appendix Z: Overview of Trump Tweet effects on VRP over time 
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APPENDIX AA: R-script for creating the MC-GARCH expected realized variance EVRP  

## MC-GARCH script 

 
## Setting timezones to align datasets 

Sys.setenv(TZ = 'America/Chicago') 

 
## Reading in necessary packages 

library(quantmod) 

library(rugarch) 
library(xts) 

library(aTSA) 

library(stargazer) 
library(lubridate) 

library(AER) 

 
## Reading data from csv files 

SP <- read.csv('New SPX.csv') 

VIX <- read.csv('New VIX.csv') 
day.SP <- read.csv('Day-SP.csv') 

 

## Convert to XTS files 
SP = xts(SP[, 2], as.POSIXct(SP[, 1], format = c("%d-%m-%Y %H:%M"))) 

VIX = xts(VIX[, 2], as.POSIXct(VIX[, 1], format = c("%d-%m-%Y %H:%M"))) 

day.SP = xts(day.SP[, 2], as.Date(day.SP[, 1], format = c("%d-%m-%Y"))) 
colnames(SP) <- "SP" 

colnames(VIX) <- "VIX" 

colnames(day.SP) <- "SPX" 
 

## Converting both time series to New York time - currently in Chicago time 

indexTZ(VIX) <- "America/New_York" 
indexTZ(SP) <- "America/New_York" 

 

# Generate daily log returns 
R_d <- log(day.SP$SPX/lag(day.SP$SPX, -1)) 

R_d <- na.omit(R_d) 

plot(R_d) 
 

## Create intraday log returns on the S&P 500 

SP$R_i <- log(SP$SP/lag(SP$SP, -1)) 
SP <- na.omit(SP) 

 

# cut sample to regular trading hours (9:30 to 16:00) less five minutes due to lacking data 
SP <- window(SP, start = "1996-01-02", end = "2018-03-01") 

SP <- SP["T09:30:00/T15:55:00"] 

 
####### CHECKING DATA SERIES ####### 

 

## Checking acf for returns for full sample 
par(cex.main = 0.85, col.main='black') 

par(mfrow = c(1,1)) 

acf(abs(as.numeric(SP$R_i)), lag.max = 4000, main = '5-minute absolute returns on the S&P500 from 1996 to 2018', 
cex.lab=0.8) 

 

## Create window for 2018 
data.2018 = window(SP, start = "2018-01-01") 

head(data.2018) 
tail(data.2018) 

 

## checking acf for 2018 sub-sample 
acf(abs(as.numeric(data.2018$R_i)), lag.max = 4000, main = '5-minute absolute returns on the S&P500 in 2018', 

cex.lab=0.8) 

 
###### Testing for heteroscedasticity in residuals (ARCH) ###### 

 

## ARCH test for full sample 
mod <- estimate(SP$R_i, p = 1) 
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arch.test(mod, output = TRUE) 

 

## both the Portmanteau-Q test and the Langrange multipler test reject the null that the residuals are homoscedastic. 
## hence, it seems that the residuals are heteroscedastic, implying autocorrelation in the residuals. 

## this supports the implementation of a GARCH model to estimate the intraday variance 

# ARCH heteroscedasticity test for residuals 
# alternative: heteroscedastic 

 

# 
# Portmanteau-Q test: 

# order PQ p.value 

# [1,] 4 54864 0 
# [2,] 8 82085 0 

# [3,] 12 90951 0 

# [4,] 16 99244 0 
# [5,] 20 106636 0 

# [6,] 24 112052 0 

# Lagrange-Multiplier test: 

# order LM p.value 

# [1,] 4 374516 0 

# [2,] 8 160916 0 
# [3,] 12 105121 0 

# [4,] 16 77725 0 

# [5,] 20 61491 0 
# [6,] 24 50986 0 

 

####### MC-GARCH ESTIMATION ####### 
 

## CREATING DAILY VARIANCE ESTIMATE 

## Find the unique days in the intraday sample 
n = length(unique(format(index(SP$R_i), '%Y-%m-%d'))) 

# n = 5547 

## define daily specs 
 

# GARCH MODEL 

spec_garch = ugarchspec(mean.model = list(armaOrder = c(1,1)), variance.model = list(model = 'sGARCH', garchOrder = 

c(1,1)), distribution = 'nig') 

 
# EGARCH MODEL 

spec_d = ugarchspec(mean.model = list(armaOrder = c(1,1)), variance.model = list(model='eGARCH', garchOrder=c(1,1)), 

distribution='nig') 
 

# estimate model to get coefficients and information criteria 

fit_garch = ugarchfit(spec = spec_garch, data = R_d) 
fit_d = ugarchfit(spec=spec_d, data = R_d) 

 

# Checking information criteria 
 

## EGARCH 

infocriteria(fit_d) 
# Akaike -6.567623 

# Bayes -6.557292 

# Shibata -6.567627 
# Hannan-Quinn -6.564029 

 

## GARCH 
infocriteria(fit_garch) 

# Akaike -6.535367 

# Bayes -6.526184 
# Shibata -6.535371 

# Hannan-Quinn -6.532173 

## the best model is the one with the highest absolute value 
## as seen, both the AIC and BIC point to the EGARCH as the best model 

 

# Use Ugarchroll method to create rolling forecast for the data 
roll = ugarchroll(spec_d, data=R_d['/2018-03-12'], forecast.length = n, refit.every = 5, refit.window = 'moving', 

moving.size = 30, calculate.VaR = FALSE, solver = 'hybrid') 
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# extract the sigma forecast for the daily model 

df = as.data.frame(roll) 
f_sigma = as.xts(df[, 'Sigma', drop = FALSE]) 

f_sigma <- window(f_sigma, start = "2018-01-01", end = "2018-02-28") 

 
#drop timestamps in SP 

daily <- apply.daily(SP$SP, mean) 

head(daily) 
str(index(daily)) 

strsplit(as.character(index(daily))," ")# split by space 

lapply(strsplit(as.character(index(daily))," "), function(x) x[1]) #select the first vector element 
unlist(lapply(strsplit(as.character(index(daily))," "), function(x) x[1])) #which is still a 'character' class 

index(daily)<-unlist(lapply(strsplit(as.character(index(daily))," "), function(x) x[1])) 

index(daily)<- as.Date(unlist(lapply(strsplit(as.character(index(daily))," "), function(x) x[1]))) 
 

#drop timestamps in f_sigma 

str(index(f_sigma)) 

strsplit(as.character(index(f_sigma))," ")# split by space 

lapply(strsplit(as.character(index(f_sigma))," "), function(x) x[1]) #select the first vector element 

unlist(lapply(strsplit(as.character(index(f_sigma))," "), function(x) x[1])) #which is still a 'character' class 
index(f_sigma)<-unlist(lapply(strsplit(as.character(index(f_sigma))," "), function(x) x[1])) 

index(f_sigma)<- as.Date(unlist(lapply(strsplit(as.character(index(f_sigma))," "), function(x) x[1]))) 

 
dailyvar <- merge.xts(daily, f_sigma) 

dailyvar <- na.omit(dailyvar) 

 
 

## ESTIMATE INTRADAY MODEL 

spec = ugarchspec(mean.model = list(armaOrder = c(1,1), include.mean = TRUE), variance.model = 
list(model='mcsGARCH'), distribution = 'nig') 

#DailyVar is the required xts object to forecast daily variance - this knits together the daily variance and intraday 

pattern 
fit = ugarchfit(data = SP['2018-01-01/2018-02-28']$R_i, spec = spec, DailyVar = dailyvar$Sigma^2) 

 

######## Generating plots that show the components of the MC-GARCH model ######## 

 

# setting up the plots 
ep <- axTicksByTime(fit@model$DiurnalVar) 

par(mfrow = c(4,1), mar=c(2.5, 2.5, 2, 1)) 

 
## Diurnal component 

plot(as.numeric(fit@model$DiurnalVar^0.5), type = 'l', main = 'Sigma[Diurnal]', col = 'tomato1', xaxt = 'n', ylab = 

'sigma', xlab = ' ') 
axis(1, at=ep, labels = names(ep), tick = TRUE) 

grid() 

 
## Daily forecast 

plot(as.numeric(fit@model$DailyVar^0.5), type = 'l', main = 'Sigma[Daily-Forecast]', col = 'tomato2', xaxt = 'n', 

ylab = 'sigma', xlab = ' ') 
axis(1, at = ep, labels = names(ep), tick = TRUE) 

grid() 

 
## stochastic volatility component 

plot(fit@fit$q, type = 'l', main = 'Sigma[Stochastic]', col = 'tomato3', xaxt = 'n', ylab = 'sigma', xlab = ' ') 

axis(1, at = ep, labels = names(ep), tick = TRUE) 
grid() 

 

## Plot of total sigma 
plot(as.numeric(sigma(fit)), type = 'l', main = 'sigma[Total]', col = 'tomato4', xaxt = 'n', ylab = 'sigma', xlab = '') 

axis(1, at = ep, labels = names(ep), tick = TRUE) 

grid() 
 

######## Output of forecast ######## 

 
## Getting forecast in monthly variance terms 

forecast.var <- (forecasted.sigma*100*sqrt(78)*sqrt(22)) 
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forecast.var$var <- forecast.var$e1^2 

 

## Create daily data 
daily.forecast <- apply.daily(forecast.var$var, mean) 

 

# dropping time stamps 
str(index(daily.forecast)) 

strsplit(as.character(index(daily.forecast))," ")# split by space 

lapply(strsplit(as.character(index(daily.forecast))," "), function(x) x[1]) #select the first vector element 
unlist(lapply(strsplit(as.character(index(daily.forecast))," "), function(x) x[1])) #which is still a 'character' 

class 

index(daily.forecast)<-unlist(lapply(strsplit(as.character(index(daily.forecast))," "), function(x) x[1])) 
index(daily.forecast)<- as.Date(unlist(lapply(strsplit(as.character(index(daily.forecast))," "), function(x) x[1]))) 

daily.forecast 

 
## Generate CSV files 

write.csv(daily.forecast, file = "daily-EGARCH.csv", row.names = index(daily.forecast)) 
write.csv(forecast.var$var, file = "EGARCH-forecast.csv", row.names = index(forecast.var)) 
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APPENDIX AB: R-script - daily regressions on the full sample, as well as sub samples 

## Script for primary regressions 

 
## Setting timezones to align datasets 

Sys.setenv(TZ = 'America/Chicago') 

 
## Reading in necessary packages 

library(quantmod) 

library(rugarch) 
library(xts) 

library(aTSA) 

library(stargazer) 
library(lubridate) 

library(AER) 

library(DistributionUtils) 
library(dynlm) 

library(forecast) 

library(strucchange) 
library(zoo) 

library(roll) 

library(PerformanceAnalytics) 
library(tidyquant) 

library(cranlogs) 

library(urca) 
library(DescTools) 

 

######## Reading in data and converting to correct formats ######## 
## Read in data from local csv files 

SP <- read.csv('New SPX.csv') 

VIX <- read.csv('New VIX.csv') 
 

## Convert to xts files 

SP = xts(SP[, 2], as.POSIXct(SP[, 1], format = c("%d-%m-%Y %H:%M"))) 
VIX = xts(VIX[, 2], as.POSIXct(VIX[, 1], format = c("%d-%m-%Y %H:%M"))) 

 

## Convert to New York time 
indexTZ(VIX) <- "America/New_York" 

indexTZ(SP) <- "America/New_York" 

 
## Cut both samples to only cover trading hours (9:30 to 16:00) 

SP <- SP["T09:30:00/T16:00:00"] 

VIX <- VIX["T09:30:00/T16:00:00"] 
colnames(SP) <- "SP" 

colnames(VIX) <- "VIX" 

 
######## Generate 5-minute returns ######## 

R_i <- log(SP$SP/lag(SP$SP)) 

 
 

## Squaring returns 

R_i$sq.ret <- (R_i$SP*100)^2 
R_i <- na.omit(R_i) 

 

######## Create RV and returns: Sum rolling monthly squared and regular returns ######## 
## Create RV from squared intraday returns 

R_i$var.day <- apply.daily(R_i$sq.ret, sum) 
 

## Create returns from sum of intraday returns 

R_i$ret.day <- apply.daily(R_i$SP, sum) 
R_i <- na.omit(R_i) 

 

## Create new files for RV and returns 
RV <- R_i$var.day 

ret <- R_i$ret.day 

 
## Create the monthly RV 
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RV$var <- rollapply(RV$var.day, 22, sum) 

RV <- na.omit(RV) 

 
## Dropping time stamps 

str(index(RV)) 

strsplit(as.character(index(RV))," ")# split by space 
lapply(strsplit(as.character(index(RV))," "), function(x) x[1]) #select the first vector element 

unlist(lapply(strsplit(as.character(index(RV))," "), function(x) x[1])) #which is still a 'character' class 

index(RV)<-unlist(lapply(strsplit(as.character(index(RV))," "), function(x) x[1])) 
index(RV)<- as.Date(unlist(lapply(strsplit(as.character(index(RV))," "), function(x) x[1]))) 

 

############## Reading in MC-GARCH RV ################## 
 

## Read in MC-GARCH results from csv 

FORC <- read.csv("daily-EGARCH.csv") 
FORC <- na.omit(FORC) 

 

## Convert to xts 

FORC = xts(FORC[,2], as.Date(FORC[,1], format = c("%Y-%m-%d"))) 

colnames(FORC) <- "var" 

 
## Merge with the realized-var dataset 

Real.var <- merge.xts(FORC, RV) 

Real.var <- na.omit(Real.var) 
colnames(Real.var)[3] <- "RV" 

colnames(Real.var)[1] <- "EGARCH" 

 
############## Generate monthly returns ################## 

 

## Generate monthly returns from sum of daily returns 
##Example for the first month 

ret$month1 <- rollapply(ret$ret.day, 22, sum)*12*100 

#(...) 
## similar line run for horizons up to the 24-month mark 

 

ret <- na.omit(ret) 

 

######## Creating excess returns ######## 
 

## Getting data on the 3-month T-bill 

symbols <- c("DGS3MO") 
getSymbols(symbols, from = "1990-01-01", src="FRED", auto.assign = TRUE) 

#merge into SP.day 

excess.ret <- merge.xts(DGS3MO, ret) 
excess.ret <- na.omit(excess.ret) 

 

## Example of excess return generation for the first month 
excess.ret$ER1 <- excess.ret$month1 - excess.ret$DGS3MO 

#(...) 

## created for monthly return horizons up to the 24-month mark 
############## Getting implied variances in the correct format ################## 

 

##Getting daily average of the VIX 
IV.day <- apply.daily(VIX, mean) 

 

## Convert VIX to monthly variance 
IV.day$vix.month <- IV.day$VIX/sqrt(12) 

IV.day$vix2 <- IV.day$vix.month^2 

 
## Merging the two files together 

VRP.data <- merge.xts(Real.var, IV.day) 

VRP.data <- na.omit(VRP.data) 
 

######## Generate the VRP and EVRP ######## 

VRP.data$VRP <- VRP.data$vix2 - VRP.data$RV 
VRP.data$EVRP <- VRP.data$vix2 - VRP.data$EGARCH 
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######## Getting control variables ######## 

symbols <- c("DGS3MO", "DAAA", "DBAA", "DGS10", "TEDRATE") 

getSymbols(symbols, from = "1996-01-01", src="FRED", auto.assign = TRUE) 
controls <- merge.xts(DBAA, DGS10, DGS3MO, TEDRATE, DAAA) 

controls <- na.omit(controls) 

 
## Create rolling average of the risk-free to detrend the timeseries 

controls$rolling <- rollmean(controls$DGS3MO, 252, align = "right") 

 
## Create relevant spreads 

controls$riskfree <- controls$DGS3MO - controls$rolling 

controls$default <- controls$DBAA - controls$DAAA 
controls$term <- controls$DGS10 - controls$DGS3MO 

 

## Define window and merge with (E)VRP data 
controls <-window(controls, start = '1996-01-01', end = '2018-02-28') 

VRP.data <- merge.xts(controls, VRP.data) 

VRP.data <- na.omit(VRP.data) 

 

####### Creating lags for regressions ####### 

## To run regression, we create lags for implied and realized variance, the (E)VRP and relevant control variables for 
months 1-24 

 

## An example is the first month for the VRP 
VRP.data$VRP.1 <- lag(VRP.data$VRP, 22) 

#(...) 

 
## Merge the two datasest to make sure the data lines up 

merged.data <- merge(VRP.data, excess.ret) 

 
## Read in CAY and Price-dividend and price-earnings ratios 

CAY <- read.csv("CAY.csv") 

CAY <- na.omit(CAY) 
CAY = xts(CAY[, 2], as.Date(CAY[, 1], format = c("%d-%m-%Y"))) 

CAY$CAY <- CAY$CAY*100 

price <- read.csv("price-div-earn.csv") 

price <- na.omit(price) 

price = xts(price[, 2:3], as.Date(price[, 1], format = c("%d-%m-%Y"))) 
controlv2 <- merge.xts(CAY) 

controlv2 <- na.omit(controlv2) 

mergedv2 <- merge.xts(merged.data, controlv2) 
mergedv2 <- na.omit(mergedv2) 

 

# We then create lags akin to the VRP data for the CAY and price ratios, example: 
mergedv2$CAY.1 <- lag(mergedv2$CAY, 22) 

#(...) 

mergedv2 <- na.omit(mergedv2) 
 

 

 
####### Cutting sample into desired subsamples ####### 

mergedv2 <- window(mergedv2, start = "2002-01-10", end = "2017-09-29") 

 
post.GFC <- window(mergedv2, start = "2009-07-01", end = "2017-09-29") 

 

pre.GFC <- window(mergedv2, start ="2002-01-01", end = "2007-12-01") 
 

GFC <- window(mergedv2, start = "2007-12-01", end = "2009-07-01") 

 
pre.elect <- window(merged.data, start = "2009-07-01", end = "2016-11-08") 

 

post.elect <- window(merged.data, start = "2016-11-08", end = "2018-02-27") 
 

 

####### Example of regressions run ####### 
 

# This represents the example fo the VRP on the 3.5 month for the full sample, regressions have been run across 
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horizons 

 

output.formulas <- list(ER3.5 ~ VRP.3.5, 
ER3.5 ~ IV.3.5, 

ER3.5 ~ RV.3.5, 

ER3.5 ~ log(PE.3.5), 
ER3.5 ~ log(PD.3.5), 

ER3.5 ~ default.3.5, 

ER3.5 ~ term.3.5, 
ER3.5 ~ CAY.3.5, 

ER3.5 ~ riskfree.3.5, 

ER3.5 ~ VRP.3.5 + log(PE.3.5), 
ER3.5 ~ VRP.3.5 + CAY.3.5, 

ER3.5 ~ VRP.3.5 + riskfree.3.5, 

ER3.5 ~ log(PE.3.5) + CAY.3.5 + riskfree.3.5, 
ER3.5 ~ VRP.3.5 + log(PE.3.5) + CAY.3.5 + riskfree.3.5, 

ER3.5 ~ VRP.3.5 + log(PE.3.5) + log(PD.3.5) + default.3.5 + term.3.5 + riskfree.3.5) 

 

output.models <- lapply(output.formulas, function(formula) lm(formula, data = mergedv2)) 

Newey.west.3.5 <- lapply(output.models, coeftest, vcov = NeweyWest) 

stargazer(output.models, type = "html", out = "output.VRP.full.html" ,se = lapply(Newey.west.3.5, function(x) x[,2]), keep.stat = c("n", "rsq", "adj.rsq"), 
report = ('vc*t')) 

 

####### Winsorized example ####### 
 

## Example of winsorization (3.5 month VRP for the full sample) 

 
full.sample.winsorized <- Winsorize(mergedv2$VRP.3.5, minval = NULL, maxval = NULL, probs = c(0.05,0.95), na.rm =FALSE) 

full.winsorized.model <- lapply(output.formulas, function(formula) lm(formula, data = full.sample.winsorized)) 

 
Newey.west.3.5.wins <- lapply(full.winsorized.model, coeftest, vcov = NeweyWest) 

stargazer(full.winsorized.model, type = "html", out = "winsorized.VRP.full.html" ,se = lapply(Newey.west.3.5.wins, function(x) x[, 2]), keep.stat = c("n", 

"rsq", "adj.rsq"), report = ('vc*t')) 
 

########## Rolling regression ########## 

 

# Get rolling coefficients for 3.5 months on RV-VRP 

rr3.5.coef <- rollapply(merged.data, width = 528, FUN = function(z) coef(lm(ER3.5 ~ VRP.3.5, data = 
as.data.frame(z))), by.column = FALSE, align = "right") 

 

# Get rolling confidence intervals for 3.5 months on RV-VRP 
rr3.5.confint <- rollapply(merged.data, width = 528, FUN = function(z) confint(lm(ER3.5 ~ VRP.3.5, data = 

as.data.frame(z))), by.column = FALSE, align = "right") 

 
## merge estimates together 

rr.3.5m <- merge.xts(rr3.5.coef, rr3.5.confint) 

 
colnames(rr.3.5m)[3] <- "intercept.lower" 

colnames(rr.3.5m)[4] <- "VRP3.5.lower" 

colnames(rr.3.5m)[5] <- "intercept.upper" 
colnames(rr.3.5m)[6] <- "VRP3.5.upper" 

rr.3.5m <- na.omit(rr.3.5m) 

 
########## Expanding regression ########## 

# create for expanding regression for 3.5 month horizon RV-HORIZON 

snip <- merged.data$ER3.5 
snip$VRP.3.5 <- merged.data$VRP.3.5 

exp.3.5 <- lapply( seq(528, nrow(snip) ), function(x) lm(ER3.5 ~ VRP.3.5, data = snip[1:x, ]) ) 

 
# Extract estimated coefficient 

coefs.3.5 <- lapply(exp.3.5[1:4121], function(x)coef(x)[2]) 

coefs.3.5 <- as.data.frame(unlist(coefs.3.5, recursive = FALSE, use.names = FALSE)) 
colnames(coefs.3.5) <- "ER.3.5" 

 

# Extract confidence lower confidence interval 
confints.3.5 <- lapply(exp.3.5[1:4121], function(x)confint(x)[2]) 

confints.3.5 <- as.data.frame(unlist(confints.3.5, recursive = FALSE, use.names = FALSE)) 
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colnames(confints.3.5) <- "CI.lower" 

 

write.csv(coefs.3.5, file = "coefs35.csv") 

write.csv(confints.3.5, file = "confints35.csv") 
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APPENDIX AC: R-script for intraday regressions 

## Script for intraday regressions 

 
## Setting timezones to align datasets 

Sys.setenv(TZ = 'America/Chicago') 

 
## Reading in necessary packages 

library(quantmod) 

library(rugarch) 
library(xts) 

library(aTSA) 

library(stargazer) 
library(lubridate) 

library(AER) 

library(DistributionUtils) 
library(dynlm) 

library(forecast) 

library(strucchange) 
library(zoo) 

library(dplyr) 

library(data.table) 
library(Rfast) 

library(DescTools) 

 
## Read in data from local csv files 

SP <- read.csv('New SPX.csv') 

VIX <- read.csv('New VIX.csv') 
 

## Convert to xts files 

SP = xts(SP[, 2], as.POSIXct(SP[, 1], format = c("%d-%m-%Y %H:%M"))) 
VIX = xts(VIX[, 2], as.POSIXct(VIX[, 1], format = c("%d-%m-%Y %H:%M"))) 

 

## Convert to New York time 
indexTZ(VIX) <- "America/New_York" 

indexTZ(SP) <- "America/New_York" 

 
## Cut both samples to only cover trading hours (9:30 to 16:00) 

SP <- SP["T09:30:00/T16:00:00"] 

VIX <- VIX["T09:30:00/T16:00:00"] 
colnames(SP) <- "SP" 

colnames(VIX) <- "VIX" 

 
######## Create RV and returns: Sum rolling monthly squared and regular returns ######## 

R_i <- log(SP$SP/lag(SP$SP)) 

 
## Squaring returns 

R_i$sq.ret <- (R_i$SP*100)^2 

R_i <- na.omit(R_i) 
 

## Create new datasets for RV and returns 

RV <- R_i$sq.ret 
ret <- R_i$SP 

 

## CREATE A MONTHLY RV 
RV$var <- rollapply(RV$sq.ret, 78*22, sum) 

RV <- na.omit(RV) 
 

## Example of creating annualized returns from rolling sums - example of one hour 

ret$hour <- rollapply(ret$SP, 12, sum)*(12/((12/78)/22))*100 
#(...) 

##run up 24 months 

 
############## MC-GARCH ################## 

## Read in MC-GARCH results from csv 

FORC <- read.csv("EGARCH-forecast.csv") 
FORC <- na.omit(FORC) 
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## Convert to xts 

FORC = xts(FORC[,2], as.POSIXct(FORC[,1], format = c("%Y-%m-%d %H:%M"))) 

colnames(FORC) <- "var" 
FORC <- FORC["T09:35:00/T16:00:00"] 

 

## Merge with the realized-var dataset 
Real.var <- merge.xts(FORC, RV) 

Real.var <- na.omit(Real.var) 

colnames(Real.var)[3] <- "RV" 
colnames(Real.var)[1] <- "EGARCH" 

 

######## Treating intraday variance data ###### 
## Generate monthly data 

VIX$VIX.month <- VIX$VIX/sqrt(12) 

VIX$IV <- VIX$VIX.month^2 
 

## Merging the two data series together 

VRP.data <- merge.xts(Real.var, VIX) 

VRP.data <- na.omit(VRP.data) 

 

######## Generating the VRP ######## 
VRP.data$VRP <- VRP.data$IV - VRP.data$RV 

VRP.data$EVRP <- VRP.data$IV - VRP.data$EGARCH 

 
######## Generating lags for regressions ######## 

## Example with 1 hour VRP lag 

VRP.data$IV.hour <- lag(VRP.data$IV, 12) 
 

## Run for implied and realized variance, VRP and EVRP 

VRP.data <- na.omit(VRP.data) 
 

########## Generate leads for dummy regressions ########## 

# Example with implied variance for a 5-minute lead 
VRP.data$IV.lead.5 <- shift(VRP.data$IV, n = 1, type = "lead") 

#(...) 

#Run up to 6 hours. For VRP, EVRP, returns and realized and implied variances 

#merge leads together 

leads <- merge.xts(ret.leads, IV.leads, RV.leads, VRP.leads, ERV.leads, EVRP.leads) 
leads <- na.omit(leads) 

 

########## Generate leads for dummy regressions ########## 
Trump <- read.csv('Intraday Trump.csv') 

Trump$Within.NYSE.trading. <- NULL 

Trump$Comments <- NULL 
Trump = xts(Trump[, 2:9], as.POSIXct(Trump[, 1], format = c("%d-%m-%Y %H:%M"))) 

 

## Create a blank timeseries to merge with Trump 
blank <- VRP.data$VRP 

blank$newcol <- rep(0,nrow(blank)) 

blank$VRP <- NULL 
 

## Merge blank timeseries with Trump 

Trump.v2 <- merge.xts(Trump, blank) 
 

## Create a window on the first and last observations in the Trump dataset 

Trump.v2 <- window(Trump.v2, start = "2016-11-08 09:35", end = "2018-02-28 16:00") 
 

## Create zero variables for NA variables 

Trump.v2[is.na(Trump.v2)] <- 0 
 

## Drop the blank column 

Trump.v2$newcol <- NULL 
 

## Merge data set with VRP data 

merged <- merge.xts(Trump.v2, leads) 
merged <- na.omit(merged) 
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## Merge datasets for intraday VRP regressions 

intraday.reg <- merge.xts(ret, VRP.data) 

intraday.reg <- na.omit(intraday.reg) 
intraday.reg <- window(intraday.reg, start = "2002-01-01", end = "2018-02-27") 

 

######### Dummy regressions, example for 5-minute reactions ######### 
formulas.5min <- list(ret.lead.5 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

ret.lead.5 ~ Fake.news, 
IV.lead.5 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

IV.lead.5 ~ Fake.news, 
RV.lead.5 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

RV.lead.5 ~ Fake.news, 
VRP.lead.5 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

VRP.lead.5 ~ Fake.news, 

ERV.lead.5 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

ERV.lead.5 ~ Fake.news, 
EVRP.lead.5 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

EVRP.lead.5 ~ Fake.news) 
 

models.v2 <- lapply(formulas.5min, function(formula) lm(formula, data = merged)) 

se.PL.imm.v2 <- lapply(models.v2, coeftest, vcov = vcovPL) 
stargazer(models.v2, type = "html", out = "intra 5min.html", se = lapply(se.PL.imm.v2, function(x) x[, 2]), report =('vc*t'), keep.stat = c("n", "rsq", 

"adj.rsq")) 

 
## Run from immediate reactions up until 6 hours 

 

######### Intraday return regression ######### 
intraday.RV <- list(hour ~ VRP.hour, 

hour ~ VRP.hour + RV.hour, 

hour ~ VRP.hour + IV.hour, 

hour2 ~ VRP.2hour, 

hour2 ~ VRP.2hour + RV.2hour, 
hour2 ~ VRP.2hour + IV.2hour, 

halfday ~ VRP.halfday, 

halfday ~ VRP.halfday + RV.halfday, 
halfday ~ VRP.halfday + IV.halfday, 

day ~ VRP.day, 

day ~ VRP.day + RV.day, 
day ~ VRP.day + IV.day) 

models.intra <- lapply(intraday.RV, function(formula) lm(formula, data = intraday.reg)) 

NeweyWest.intra <- lapply(models.intra, coeftest, vcov = NeweyWest) 
stargazer(models.intra, type = "html", out = "intraday_reg.html", se = lapply(NeweyWest.intra, function(x) x[, 2]), 

report = ('vc*t'), keep.stat = c("n", "rsq", "adj.rsq")) 

 
## Run for subsamples of pre-GFC, post-GFC, GFC and pre- and post-election 

 

######### Winsorized sample regressions ######### 
 

## For 20-minute reactions, example for full sample of returns 

Winsorized.20.min <- Winsorize(merged$ret.lead.20, minval = NULL, maxval = NULL, probs = c(0.05,0.95), na.rm = FALSE) 
# (...) 

 

## Run for VRP, EVRP, Returns, Realized and Implied variances 
formulas.20min <- list(ret.lead.20 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

ret.lead.20 ~ Fake.news, 
IV.lead.20 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

IV.lead.20 ~ Fake.news, 
RV.lead.20 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 
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RV.lead.20 ~ Fake.news, 

VRP.lead.20 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 
VRP.lead.20 ~ Fake.news, 

ERV.lead.20 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 
ERV.lead.20 ~ Fake.news, 

EVRP.lead.20 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 
EVRP.lead.20 ~ Fake.news) 

 

Winsorized.20min.model <- lapply(formulas.20min, function(formula) lm(formula, data = Winsorized.20.min)) 
se.PL.winsorized.20min <- lapply(Winsorized.20min.model, coeftest, vcov = vcovPL) 

stargazer(Winsorized.20min.model, type = "html", out = "Winsorized intra 20min.html", se = 

lapply(se.PL.winsorized.20min, function(x) x[, 2]), report = ('vc*t'), keep.stat = c("n", "rsq", "adj.rsq")) 
 

## For intraday return regressions 

## Example for 1-hour return 

Winsorized.intraday <- Winsorize(intraday.reg$hour, minval = NULL, maxval = NULL, probs = c(0.05,0.95), na.rm =FALSE) 

# (...) 

## Run for periods from 1 hour to one day, for VRP, EVRP, RV and IV 
 

## Subsampling 

Winsorized.intraday.reg.pre.gfc <- window(Winsorized.intraday, start = "2002-01-01", end = "2007-12-01") 
Winsorized.intraday.reg.post.gfc <- window(Winsorized.intraday, start = "2009-07-01", end = "2018-02-27") 

Winsorized.intraday.reg.gfc <- window(Winsorized.intraday, start = "2007-12-01", end = "2009-07-01") 

Winsorized.intraday.reg.trump <- window(Winsorized.intraday, start = "2016-11-08", end = "2018-02-27") 
 

## Example for full-sample VRP 

intraday.RV.winsorized <- list(hour ~ VRP.hour, 
hour ~ VRP.hour + RV.hour, 

hour ~ VRP.hour + IV.hour, 

hour2 ~ VRP.2hour, 
hour2 ~ VRP.2hour + RV.2hour, 

hour2 ~ VRP.2hour + IV.2hour, 

halfday ~ VRP.halfday, 

halfday ~ VRP.halfday + RV.halfday, 

halfday ~ VRP.halfday + IV.halfday, 
day ~ VRP.day, 

day ~ VRP.day + RV.day, 

day ~ VRP.day + IV.day) 
 

models.intra.winsorized <- lapply(intraday.RV.winsorized, function(formula) lm(formula, data = Winsorized.intraday)) 

NeweyWest.intra.winsorized <- lapply(models.intra.winsorized, coeftest, vcov = NeweyWest) 
 

stargazer(models.intra.winsorized, type = "html", out = "winsorized_intraday_reg.html", se = 
lapply(NeweyWest.intra.winsorized, function(x) x[, 2]), report = ('vc*t'), keep.stat = c("n", "rsq", "adj.rsq")) 

 

 

 

 

 

 

 

 



 86 

APPENDIX AD: R-script for daily Trump Tweet regressions 

## Script for intraday regressions 

 

## Setting timezones to align datasets 

Sys.setenv(TZ = 'America/Chicago') 

 

## Reading in necessary packages 

library(quantmod) 

library(rugarch) 

library(xts) 

library(aTSA) 

library(stargazer) 

library(lubridate) 

library(AER) 

library(DistributionUtils) 

library(dynlm) 

library(forecast) 

library(strucchange) 

library(zoo) 

library(dplyr) 

library(data.table) 

library(Rfast) 

library(DescTools) 

 

## Read in data from local csv files 

SP <- read.csv('New SPX.csv') 

VIX <- read.csv('New VIX.csv') 

 

## Convert to xts files 

SP = xts(SP[, 2], as.POSIXct(SP[, 1], format = c("%d-%m-%Y %H:%M"))) 

VIX = xts(VIX[, 2], as.POSIXct(VIX[, 1], format = c("%d-%m-%Y %H:%M"))) 

 

## Convert to New York time 

indexTZ(VIX) <- "America/New_York" 

indexTZ(SP) <- "America/New_York" 

 

## Cut both samples to only cover trading hours (9:30 to 16:00) 

SP <- SP["T09:30:00/T16:00:00"] 

VIX <- VIX["T09:30:00/T16:00:00"] 

colnames(SP) <- "SP" 

colnames(VIX) <- "VIX" 

 

######## Create RV and returns: Sum rolling monthly squared and regular returns ######## 

R_i <- log(SP$SP/lag(SP$SP)) 

 

## Squaring returns 

R_i$sq.ret <- (R_i$SP*100)^2 

R_i <- na.omit(R_i) 

 

## Create RV and returns from rolling sums 

R_i$var.day <- apply.daily(R_i$sq.ret, sum) 
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R_i$ret.day <- apply.daily(R_i$SP, sum) 

R_i <- na.omit(R_i) 

 

## Create new datasets for RV and returns 

RV <- R_i$var.day 

ret <- R_i$ret.day 

 

## Create monthly RV 

RV$var <- rollapply(RV$var.day, 22, sum) 

RV <- na.omit(RV) 

 

## DROPPING THE TIME STAMPS 

str(index(RV)) 

strsplit(as.character(index(RV))," ")# split by space 

lapply(strsplit(as.character(index(RV))," "), function(x) x[1]) #select the first vector element 

unlist(lapply(strsplit(as.character(index(RV))," "), function(x) x[1])) #which is still a 'character' class 

index(RV)<-unlist(lapply(strsplit(as.character(index(RV))," "), function(x) x[1])) 

index(RV)<- as.Date(unlist(lapply(strsplit(as.character(index(RV))," "), function(x) x[1]))) 

 

############## MC-GARCH ################## 

 

## Read in MC-GARCH results from csv 

FORC <- read.csv("daily-EGARCH.csv") 

FORC <- na.omit(FORC) 

 

## Convert to xts 

FORC = xts(FORC[,2], as.Date(FORC[,1], format = c("%Y-%m-%d"))) 

colnames(FORC) <- "var" 

 

## merge with the realized-var dataset 

Real.var <- merge.xts(FORC, RV) 

Real.var <- na.omit(Real.var) 

colnames(Real.var)[3] <- "RV" 

colnames(Real.var)[1] <- "EGARCH" 

 

######## Generate monthly returns from rolling sums ######## 

 

## Example for 1-month 

ret$month1 <- rollapply(ret$ret.day, 22, sum)*12*100 

##(...) 

## Run from 1 to 24 months 

 

ret <- na.omit(ret) 

 

######## Getting implied variance in the correct format ######## 

IV.day <- apply.daily(VIX, mean) 

IV.day$vix.month <- IV.day$VIX/sqrt(12) 

IV.day$vix2 <- IV.day$vix.month^2 

 

## Merging the two files together 

VRP.data <- merge.xts(Real.var, IV.day) 
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######## Generating the VRP ######## 

VRP.data$VRP <- VRP.data$vix2 - VRP.data$RV 

VRP.data$EVRP <- VRP.data$vix2 - VRP.data$EGARCH 

 

###### Generate excess returns ###### 

symbols <- c("DGS3MO") 

getSymbols(symbols, from = "1990-01-01", src="FRED", auto.assign = TRUE) 

 

## Merge into SP.day 

excess.ret <- merge.xts(DGS3MO, ret) 

excess.ret <- na.omit(excess.ret) 

 

## Generate excess returns, example for 1-month 

excess.ret$ER1 <- excess.ret$month1 - excess.ret$DGS3MO 

## (...) 

## Run for up to 24-months 

 

###### Control variables ###### 

symbols <- c("DGS3MO", "DAAA", "DBAA", "DGS10", "TEDRATE") 

getSymbols(symbols, from = "1996-01-01", src="FRED", auto.assign = TRUE) 

controls <- merge.xts(DBAA, DGS10, DGS3MO, TEDRATE, DAAA) 

controls <- na.omit(controls) 

 

## Create rolling average of the risk-free to detrend the timeseries 

controls$rolling <- rollmean(controls$DGS3MO, 252, align = "right") 

 

## Create relevant spreads 

controls$riskfree <- controls$DGS3MO - controls$rolling 

controls$default <- controls$DBAA - controls$DAAA 

controls$term <- controls$DGS10 - controls$DGS3MO 

 

## Define window and merge with (E)VRP data 

controls <-window(controls, start = '1996-01-01', end = '2018-02-28') 

VRP.data <- merge.xts(controls, VRP.data) 

VRP.data <- na.omit(VRP.data) 

 

####### Creating lags for regressions ####### 

 

## To run regression, we create lags for implied and realized variance, the (E)VRP and relevant control variables for 

months 1-24 

## An example is the first month for the VRP 

VRP.data$VRP.1 <- lag(VRP.data$VRP, 22) 

#(...) 

 

## Merge the two datasest to make sure the data lines up 

merged.data <- merge(VRP.data, excess.ret) 

merged.data <- na.omit(merged.data) 

 

####### Dummy variable construction ####### 

## Read in Trump data 

Trump.daily1 <- read.csv("Daily-data-trump1.csv",sep=";") 
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## convert to xts 

Trump.daily1 = xts(Trump.daily1[, 2:9], as.POSIXct(Trump.daily1[, 1], format = c("%d-%m-%Y %H:%M"))) 

 

## Getting the daily sum of the Indicator variables 

econ.sum <- apply.daily(Trump.daily1$Economic, sum) 

pol.sum <- apply.daily(Trump.daily1$Political, sum) 

dem.sum <- apply.daily(Trump.daily1$Featured..Democrats., sum) 

mil.sum <- apply.daily(Trump.daily1$Military, sum) 

pres.sum <- apply.daily(Trump.daily1$Presidential.duties, sum) 

per.sum<- apply.daily(Trump.daily1$Personal, sum) 

other.sum <- apply.daily(Trump.daily1$Other, sum) 

fake.sum<-apply.daily(Trump.daily1$Fake.news,sum) 

Trump.sum<-merge.xts(econ.sum,pol.sum, dem.sum, mil.sum, pres.sum, per.sum, other.sum, fake.sum) 

 

##Merging sum and avg to one file 

Trump_all<-Trump.sum 

 

## Removing time stamps 

str(index(Trump_all)) 

strsplit(as.character(index(Trump_all))," ")# split by space 

lapply(strsplit(as.character(index(Trump_all))," "), function(x) x[1]) #select the first vector element 

unlist(lapply(strsplit(as.character(index(Trump_all))," "), function(x) x[1])) #which is still a 'character' class 

index(Trump_all)<-unlist(lapply(strsplit(as.character(index(Trump_all))," "), function(x) x[1])) 

index(Trump_all)<- as.Date(unlist(lapply(strsplit(as.character(index(Trump_all))," "), function(x) x[1]))) 

 

## create a blank timeseries to merge with Trump, just to be sure all days are present for VRP 

blank <- merged.data$VRP 

blank$newcol <- rep(0,nrow(blank)) 

 

## drop the VRP column 

blank$VRP <- NULL 

 

# merge blank timeseries with Trump 

Trump_all2 <- merge.xts(Trump_all, blank) 

 

# create a window on the first and last observations in the Trump dataset 

Trump_all2 <- window(Trump_all2, start = "2016-11-08", end = "2018-02-28") 

 

# create zero variables for NA variables 

Trump_all2[is.na(Trump_all2)] <- 0 

 

## drop the blank column 

Trump_all2$newcol <- NULL 

 

# Merge Trump data set with VRP data 

merged <- merge.xts(Trump_all2, merged.data) 

merged <- na.omit(merged) 

 

################ REGRESSIONS ######################## 

 

##General reactions - no controls, on SUMMED Trump tweets 

formulas.sum <- list(ret.day ~ Economic + Political + Military + Presidential.duties + Personal + Other + 



 90 

Featured..Democrats. + Featured..Democrats.*Political, 

ret.day ~ Fake.news, 

vix2 ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

vix2 ~ Fake.news, 

RV ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

RV ~ Fake.news, 

VRP ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

VRP ~ Fake.news, 

EVRP ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

EVRP ~ Fake.news) 

models.v1 <- lapply(formulas.sum, function(formula) lm(formula, data = merged)) 

se.PL.sum <- lapply(models.v1, coeftest, vcov = vcovPL) 

stargazer(models.v1, type = "html", out = "Daily_sum.html", se = lapply(se.PL.sum, function(x) x[, 2]), report = 

('vc*t'), keep.stat = c("n", "rsq", "adj.rsq")) 

 

#WINSORIZED 

 

merged$ret.day.wins <- Winsorize(merged$ret.day, minval = NULL, maxval = NULL, probs = c(0.05,0.95), na.rm = FALSE) 

merged$vix2.wins <- Winsorize(merged$vix2, minval = NULL, maxval = NULL, probs = c(0.05,0.95), na.rm = FALSE) 

merged$RV.wins <- Winsorize(merged$RV, minval = NULL, maxval = NULL, probs = c(0.05,0.95), na.rm = FALSE) 

merged$VRP.wins <- Winsorize(merged$VRP, minval = NULL, maxval = NULL, probs = c(0.05,0.95), na.rm = FALSE) 

merged$EVRP.wins <- Winsorize(merged$EVRP, minval = NULL, maxval = NULL, probs = c(0.05,0.95), na.rm = FALSE) 

 

formulas.sum.wins <- list(ret.day.wins ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

ret.day.wins ~ Fake.news, 

vix2.wins ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

vix2.wins ~ Fake.news, 

RV.wins ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

RV.wins ~ Fake.news, 

VRP.wins ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

VRP.wins ~ Fake.news, 

EVRP.wins ~ Economic + Political + Military + Presidential.duties + Personal + Other + 

Featured..Democrats. + Featured..Democrats.*Political, 

EVRP.wins ~ Fake.news) 

 

models.v1.2 <- lapply(formulas.sum.wins, function(formula) lm(formula, data = merged)) 

se.PL.sum.wins <- lapply(models.v1.2, coeftest, vcov = vcovPL) 

 

stargazer(models.v1.2, type = "html", out = "Daily_sum_wins.html", se = lapply(se.PL.sum.wins, function(x) x[, 2]), 

report = ('vc*t'), keep.stat = c("n", "rsq", "adj.rsq")) 

 




