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Abstract

This thesis examines an artificial neural network option pricing model with an emphasis

on its ability to capture the volatility surface and the effect of supply and demand of options

on option prices. I compare the empirical pricing errors of the artificial neural network model

to the Black-Scholes-Merton model and the Practitioner Black-Scholes model on S&P 500 and

Dow Jones Industrial Average index options for the period 2010 to 2017. I find that the lowest

pricing errors occur when the VIX (VXD) volatility index is used as volatility parameter in the

artificial neural network model. Further, I find that the artificial neural model prevails both of

the comparison models across option moneyness and time-to-maturity implying that the ANN

model captures the volatility surface better than the comparison models. Finally, I find that

the model’s pricing error is reduced further by including the proportional bid-ask spread as a

proxy for the liquidity premium resulting from an imbalance between supply and demand, and

the slope of the yield curve as a proxy the perceived recession risk by the market. I attribute

the improvement of the artificial neural network model to its ability to learn the dynamics of

option markets without imposing restrictive assumptions like those of the Black-Scholes-Merton

model. However, I recognize that the artificial neural network model suffers from opaqueness

which may render the model impractical to some users.
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Chapter 1

Introduction

1.1 Background & Motivation

The first recorded option contract dates back to the 4th-century BC (Poitras, 2008). Aristotle

describes how the philosopher Thales entered into contracts with owners of olive presses that

gave him the right, but not the obligation, to use olive presses during harvest time. While the

concept of option contracts is old, it took more than 2,300 years before a well-regarded method

for valuing these contracts was discovered. In 1973, Black and Scholes (1973) in collaboration

with Merton (1973) proposed the Black-Scholes equation, a partial differential equation, that

they claimed all derivative securities had to satisfy, as well as closed-form solutions to this

equation for European call and put options.

The most prominent innovation of Black, Scholes, and Merton was not the actual op-

tion pricing formula, but the notion of dynamic hedging/replication of options. This notion

gave birth to the framework that is used to price all derivative securities today. While the

Black-Scholes-Merton model was an important breakthrough in option pricing and without

doubt changed the financial markets forever, the model suffers from restrictive and unrealis-

tic assumptions that researchers have tried to alleviate through a range of extensions such as
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Chapter 1 Introduction

using deterministic volatility functions (Dumas, Fleming, & Whaley, 1998) as opposed to the

constant volatility assumption of the Black-Scholes-Merton model.

Another less widespread method of option pricing involves the use of machine learning.

The first such attempt was by Hutchinson, Lo, and Poggio (1994), who explored the validity

of machine learning in option pricing by testing four different machine learning algorithms on

simulated option prices as well as observed option prices on the S&P 500 index. Their results

were promising from an academic perspective, but neither the technology, the data availability,

nor the machine learning research was sufficiently developed for their model to be accurate

enough to be of practical use. However, with the exponential growth in computing power and

data availability, and the significantly increased attention machine learning has received in the

past twenty years, it is time to reassess option pricing using machine learning techniques.

The primary proposed advantage of machine learning algorithms over traditional option

pricing methods is their non-parametric nature. Instead of relying on simplifying assumptions

about the underlying asset dynamics, machine learning algorithms are assumption-free. The

algorithms work by identifying patterns and relationships in data, and they use this information

to predict option prices. In this way, machine learning algorithms have the potential to identify

complex relationships in data without any restrictive assumptions.

Machine learning is already applied to a myriad of problems within all areas of scientific

research including financial theory. I find the potential for knowledge creation through a

combination of scientific fields particularly interesting. Machine learning is a relatively new

field of study, and the possible uses are far from exploited yet. I hope to be able to contribute

to our understanding of how machine learning can be used in a financial context with this

thesis.
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Chapter 1 Introduction

1.2 Problem Formulation

This thesis aims to answer the following research question:

Can Artificial Neural Networks Price Exchange-Traded Options Better Than Tra-

ditional Methods?

In the search for an answer to this question, I will further study the following questions:

1. Which is the optimal volatility forecasting model for the artificial neural network option

pricing model?

2. Are artificial neural networks able to capture the well-known volatility surface?

3. Can additional variables in the artificial neural network option pricing model capture the

effect of supply and demand on option pricing?

1.3 Limitations

There are endless possible specifications of artificial neural networks and even more additional

variables that have the potential to influence the accuracy of the artificial neural network

models. Even though more optimal specifications of the artificial neural network model likely

exist, the scope of this thesis is limited to the multilayer perceptron artificial neural networks.

Also, the additional variables examined are limited to four variables that attempt to capture

the effect of supply and demand of options on their price as well as option liquidity.

The scope of this thesis is limited to the pricing of European call index options on the S&P

500 and the Dow Jones Industrial Average during the period 2010 to 2017. I will focus the

analysis on the S&P 500 index options whenever it is redundant and information overload to

discuss the results of both the S&P 500 and the Dow Jones Industrial Average index options.

In addition, I assume that the put-call parity holds meaning the price of put options can easily
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Chapter 1 Introduction

be determined based on the price of call options of the same strike price and time-to-maturity.

I explain the put-call parity in more detail in section 2.1.

The comparison models are limited to the Black-Scholes-Merton model and the Practi-

tioner Black-Scholes model. While a myriad of extensions to the Black-Scholes-Merton model

exist, I have chosen to focus on the performance of the artificial neural network model in

comparison to only these two well-known and popular option pricing models to keep the anal-

ysis focused. I define these models as the traditional option pricing models mentioned in the

Research Question in section 1.2.

1.4 Literature Review

In this section, I present a brief overview of the most noticeable existing literature on the topic

of option pricing using artificial neural networks in order to motivate the purpose and addition

of this thesis in relation to existing literature.

The earliest attempt at pricing options using non-parametric machine learning algorithms

is by Hutchinson et al. (1994). They investigate if any of four non-parametric machine learning

methods, including an artificial neural network, can price and hedge S&P 500 futures index

options from 1987 to 1991. They describe their results utilizing the R2 from a linear regression

of the predicted option price against the observed market price. The artificial neural network

predictions result in an out-of-sample R2 of 95.53 percent, thus establishing artificial neural

networks as a feasible option pricing method.

Despite having more than twenty years of history, research in the cross-field between ma-

chine learning and option pricing is still relevant today due primarily to advances in computa-

tional power, increases in data availability, accessibility of machine learning tools and progress

in machine learning research.

Amilon (2003) uses a similar approach to Hutchinson et al. (1994) but has the advantage

of nine years of developments in computing power, increases in data availability and further
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Chapter 1 Introduction

progress in machine learning research. Concretely, Amilon (2003) prices European call options

on the Swedish stock market index using a multilayer perceptron artificial neural network during

the period 1997 to 1999. The results are however measured differently from Hutchinson et al.

(1994) making comparison difficult. Amilon (2003) presents an out-of-sample mean squared

error of 5.57 for the bid price and 6.40 for the ask price.

Note, that the unit of the mean squared error is comparable across currencies, because the

price of the underlying asset and the call price are both divided by the strike price resulting in

the mean squared error being normalized to the same scale despite the papers pricing options

in different currencies. See section 4.2 for a discussion of this normalization method.

Park, Kim, and Lee (2014) compares a range of parametric and non-parametric option

pricing models on approximately 21,000 KOSPI 200 index call options from 2001 to 2010.

They find significant outperformance of non-parametric methods over the Black-Scholes-Merton

model. One of these models is again the multilayer perceptron artificial neural network. For

this model, Park et al. (2014) present out-of-sample mean squared errors between 2.47 and

2.87 for in-the-money options, between 0.82 and 1.30 for at-the-money options, and between

0.48 and 1.39 for out-of-the-money options, thus beating the model of Amilon (2003). The

study from Park et al. (2014) was released eleven years after the one of Amilon (2003), and

it is therefore not surprising that the model of Park et al. (2014) prevails the one of Amilon

(2003) again due to the beforementioned reasons.

Whereas the studies of Hutchinson et al. (1994), Amilon (2003) and Park et al. (2014) use

similar methodologies, other researchers have tried to identify improvements to basic multilayer

perceptron artificial neural network. One of these is Wang (2009), who investigate whether the

integration of different volatility forecast models into the artificial neural network improves

the results. The data used by Wang (2009) consists of approximately 21,000 call options on

the Taiwanese stock market index from 2005 to 2006. The volatility forecasting models used

are the GARCH(1,1), the GJR-GARCH, and the Grey-GJR-GARCH. Wang finds that the

Grey-GJR-GARCH volatility forecast results in the best predictions with out-of-sample mean
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Chapter 1 Introduction

absolute percentage errors of 12% for in-the-money options, 359% for at-the-money options

and 1833% for out-of-the-money options.

The final study of interest concerning this thesis is Gradojevic, Gençay, and Kukolj (2009).

Gradojevic et al. (2009) discovered a weakness in artificial neural network’s ability to price out-

of-the-money options and suggested to use a Modular Neural Network trained separately on

nine modules consisting of different option moneyness and time-to-maturity. They use S&P

500 index call options from 1987 to 1994. The out-of-sample mean absolute percentage error of

the modular neural network is presented year-by-year and is between 3.01% and 27.67%, while

the out-of-sample mean squared error is between 0.02 and 3.18.

This brief overview of the existing literature illustrates many similarities between method-

ologies with some differentiating features. This thesis takes a similar approach to the exist-

ing literature, but some important distinctions apply. Firstly, the size of the S&P500 index

data is larger with approximately 64,000 call options and a total of roughly 2.4 million op-

tion prices, while the Dow Jones Industrial Average has approximately 9,000 call options with

nearly 430,000 option prices. Secondly, forecasted realized volatility and the VIX/VXD implied

volatility indices are investigated as volatility forecasting models. However, the most significant

novelty of this thesis is the integration of additional variables in order to capture the effect of

supply and demand on option prices.

The papers mentioned in this section are not exhaustive, but the literature on this topic is

rather homogeneous with only small differences in configurations of artificial neural networks

as well as different time periods and underlying assets. The reader is referred to the following

additional literature on the topic: Lajbcygier and Connor (1997), Gençay and Qi (2001), Yang

and Lee (2011), and Liang, Zhang, Xiao, and Chen (2009).

1.5 Structure

To comprehensively answer the research question, I have structured the thesis into five chapters

followed by a conclusion. I will briefly provide an overview of each chapter next.
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Chapter 1 Introduction

The primary aim of Chapter 2 is to derive the Black-Scholes-Merton model and discuss

the restrictive assumptions underlying this model. In addition to this, I derive the Practitioner

Black-Scholes model as a second comparison model to the artificial neural network model, and

I introduce the notion of supply and demand in empirical option pricing.

In Chapter 3, I introduce the theory of the artificial neural network used in this thesis

and discuss the primary properties of artificial neural networks that are beneficial in relation

to option pricing. In addition, I introduce the bias-variance tradeoff as a framework for testing

the generalizability of the model.

In Chapter 4, I describe the methodology of this thesis, concretely the data, the volatility

forecasting models, the evaluation criteria, the optimization of hyperparameters of the artificial

neural network model, the Practitioner Black-Scholes model, and the additional option pricing

variables.

I describe the empirical results of the artificial neural network model and the comparison

models in Chapter 5. I examine the ability ofartificial neural networks to capture the volatility

surface as well as the effects of supply and demand on option pricing. I conclude the chapter

with a discussion of the results.
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Chapter 2

Option Pricing Theory

The primary aim of this chapter is to derive the Black-Scholes equation and its analytical

solutions to European options as well as the Practitioner Black-Scholes model since I use these

models as benchmarks for comparison to the artificial neural network model. Derivations and

formulas in this chapter are based on Hull (2018) unless stated otherwise in the text.

The chapter is structured in the following manner: Initially, I introduce basic charac-

teristics of options and the hedging argument in discrete-time. Next, I introduce relevant

stochastic processes and derive Itô’s lemma from Itô’s calculus. I then use Itô’s lemma to

derive the Black-Scholes partial differential equation, and I present analytical solutions to the

equation for European call and put options. Finally, I discuss the assumptions underlying the

Black-Scholes-Merton model, and I introduce the notion of supply and demand affecting on

option pricing.

2.1 Introduction to Options

A derivative security (such as an option) is a financial instrument whose value deriveswo from

another asset called the underlying asset. Options are bilateral contracts that give the holder

the right, but not the obligation, to buy or sell the underlying asset at a specified price and
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Chapter 2 Option Pricing Theory

date. Options can have different exercise styles, whereas this thesis is limited to European

options that can only be exercised at maturity of the option.

European options can take two forms: call options and put options. Call (put) options

give the owner the right to buy (sell) a number of shares at a predetermined price, called the

strike price, at maturity of the option contract. If the price of the underlying asset at option

maturity is above the strike price, the call option is considered in-the-money (ITM) and the

option holder can buy the underlying asset at a discount and receive a positive payoff. Vice

versa, the option is said to be out-of-the-money (OTM) if the underlying asset price at option

maturity is below the strike price. In this case, the option holder would not exercise the option,

since this would lead to a negative payoff. Instead, the option contract would expire worthlessly,

and the option holder would lose the premium paid for the option. The opposite is true for

put options that benefit from a price decline in the underlying asset.

The payoff functions of European call and put options can be written as

c(S, T ) = max(ST −K, 0) (2.1a)

p(S, T ) = max(K − ST , 0) (2.1b)

where ST is the price of the underlying asset at maturity T and K is the strike price.

While the focus of this thesis is on call options only, the results can be extended to include

put options using the so-called put-call parity. Concretely, the put-call parity describes the

relationship between put and call options of the same strike price and time-to-maturity. The

put-call parity states that

p+ Se−qT = c+Ke−rT (2.2)

where q is the dividend yield, and r is the risk-free rate.

It is apparent from (2.2) that the price of a put option is a function of a call option, the

strike price and time-to-maturity of both options, the dividend yield on the underlying asset

and the risk-free interest rate: all variables given exogenously.
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Chapter 2 Option Pricing Theory

The payoffs of both call and put options can never become negative since the option holder

would choose not to exercise the option in such cases. With a strictly positive expected payoff,

there must be a price to gain access to the option payoff function. Estimating this price using

the cross-section of financial theory and machine learning is the focus of this thesis.

In 1973, Fischer Black and Myron Scholes published the seminal paper ‘The Pricing of

Options and Corporate Liabilities’. The option pricing model proposed by Black and Scholes

(1973) revolutionized the financial industry by building a common framework for option pricing.

They introduced the notion of dynamic replication and hedging of options and the resulting

no-arbitrage option pricing argument. During the same year, the Chicago Board Options

Exchange (Cboe) was founded as a marketplace for trading listed options as an alternative to

over-the-counter options. These two events can be largely accredited as the catalysts of the

enormous derivative markets today.

2.2 Hedging Argument

The theoretical price of an option is determined based on the principle of absence of arbitrage,

namely that arbitrage opportunities are assumed to be non-existent. The argument is that

arbitrage opportunities would attract arbitrageurs, who would place positions to capture the

riskless profit, causing the market price to converge towards the arbitrage-free price. In this

section, I show how to hedge a derivative using positions in the underlying stock. When

this hedge is perfect, the price of hedging has to be equal to the price of the derivative, or

an arbitrageur could capture the spread without taking any risk by dynamically hedging the

option.

Assume the price of an asset, S0, can be either S0u or S0d one period from today, while

a derivative on the asset, f0, can take on the values, fu or fd. Here, u and d denote two

constants that represent the possible changes to S0 one period ahead. The aim is to determine

the position in the underlying that perfectly hedges the short sale of the derivative.
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Chapter 2 Option Pricing Theory

At time t = 0, sell the derivative and go long ∆ of the underlying asset. This results in

a cash flow at time t = 0 of f0 − ∆S0. The value of this portfolio can then take on one of

two possible values at time t = 1: −fu + ∆S0u or −fd + ∆S0d. To achieve a perfect hedge,

the value of ∆ must be determined such that the two possible cash flows one period ahead are

identical

−fu + ∆S0u = −fd + ∆S0d (2.3a)

∆ =
fu − fd
S0 (u− d)

(2.3b)

The return on the portfolio from time t to t+ ∆t must then be equal to the risk-free rate, since

all risk is eliminated

(−f0 + ∆S0)er∆t = (−fu + ∆S0u) = (−fd + ∆S0d) (2.4a)

f0 = (pfu + (1− p)fd) e−r∆t, (2.4b)

where p ≡ er∆t − d
u− d

(2.4c)

In (2.4b) and (2.4c) , p denotes the risk-neutral probability of the u-scenario being realized.

In the risk-neutral world, the expected return on the underlying asset equals the return on

a risk-free investment by construction. This result allows for arbitrage-free pricing of options

independent on the real-world expected return on the underlying asset.

This can be generalized to a multi-step binomial lattice using the binomial probability

model. Defining n as the number of steps in the binomial lattice, p as the risk-neutral prob-

ability, and f(·) as the payoff function of the derivative security, the price of a European

derivative is

f0 =

[
n∑
j=0

n!

(n− j)!j!
pj(1− p)n−jf(S0u

jdn−j)

]
e−rT (2.5)

By adding more steps to the discrete time binomial lattice while letting the step size, ∆t,

approach zero, the binomial lattice converges towards the lognormal distribution and the option

price converges towards the Black-Scholes-Merton price.
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Chapter 2 Option Pricing Theory

2.3 Stochastic Processes

In order to understand the connection between the binomial lattice model of section 2.2 and

the Black-Scholes-Merton option pricing formula, stochastic processes are briefly introduced.

Stochastic processes take an essential part in the derivation of the partial differential equation

identified and solved by Black, Scholes, and Merton.

A stochastic process is defined as the uncertain behavior of variables across time, where

time can be measured both discretely and continuously. They are used in numerous scientific

fields to model variables that behave in a stochastic or unpredictable manner, including physics,

biology, and engineering. They also find applications in the financial markets, since they are

often considered unpredictable and random. This section aims to derive the stochastic process

of a stock as assumed by Black and Scholes in their model: the geometric brownian motion.

Wiener Process. Let z be a variable that follows a Wiener process. Two properties

defines Wiener processes: The first property is that instantaneous changes in z are normally

distributed with a mean of 0 and a variance of dt, i.e., dz ∼ N(0, dt). The second property

is that dz is independent across any two different intervals of time. This implies that Wiener

processes satisfy the Markov property, namely that the value of the process in the next time

step, whether discrete or continuous, only depends on the current level of the process, i.e., it

is independent of past values of the process

E [zt+1| z1, z2, . . . , zt] = E [zt+1| zt] (2.6)

Wiener processes are also termed Brownian Motion, which stems from their use as a model for

the random motion of particles in fluids as discovered by botanist Brown (2019).

Generalized Wiener Process. Let x be a variable that follows a generalized Wiener

process defined as dx = a dt + b dz where a and b are constants corresponding to the drift

coefficient determining the trend of the process and the diffusion coefficient determining the

variation around the trend, respectively. Changes in the generalized Wiener process are nor-

mally distributed with a mean of a dt and a variance of b2 dt, i.e. dx ∼ N(a dt, b2 dt).
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Chapter 2 Option Pricing Theory

Itô Process. Constant drift and diffusion coefficients are unrealistic properties of stocks,

since investors generally are concerned with the expected return and variance in percentage of

the stock price. To address is issue, the Itô process is introduced. Let x be a variable that

follows an Itô process defined as

dx = a(x, t) dt+ b(x, t) dz (2.7)

where the drift and diffusion coefficients are functions of the process x and time t. Define x as

the stock price, S, and define µ as the constant expected percentage return on S and σ as the

constant standard deviation of S. The process of S is then

dS = µS dt+ σS dz (2.8)

while the percentage change in S follows the process

dS

S
= µ dt+ σ dz (2.9)

where dS/S ∼ N(µ dt, σ2 dt). This variation of the Itô process is referred to as geometric

brownian motion.

2.4 Itô’s Lemma

One way to prove the Black-Scholes partial differential equation relies on Itô’s lemma: a stochas-

tic calculus proposition used to identify differentials of time-dependent stochastic processes Itô

(1944). Defining G as a twice-differentiable function of the Itô process x and of time t, a Taylor

series expansion can be used to approximate the change in the function G

dG =
δG

δx
dx+

δG

δt
dt+

1

2

δ2G

δx2
dx2 (2.10)
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In (2.10), terms of time increments, dt, are retained up to the first order of the Taylor series

expansion, while terms of the Itô process increments, dx, are retained up to the second order.

Substituting (2.7) into (2.10) while omitting arguments, so a(x, t) and b(x, t) becomes a and b,

yields

dG =
δG

δx
(a dt+ b dz) +

δG

δt
dt+

1

2

δ2G

δx2
(a2 dt2 + b2 dz2 + 2ab dt dz) (2.11)

To simply (2.11), the following properties from Itô calculus are used:

dz2 = dt (2.12a)

dt2 = 0 (2.12b)

dz × dt = 0 (2.12c)

Proving the first property requires rigorous mathematics that are out of the scope of this thesis,

but the last two properties can be understood (not proven) easily. Concretely, dt2 and dz× dt

must approach zero faster than dt asymptotically, since these values are smaller than dt. For

this reason, they can be considered asymptotically equal to zero. These properties simplify

(2.11) into

dG =
δG

δx
(a dt+ b dz) +

δG

δt
dt+

1

2

δ2G

δx2
(b2 dt) (2.13)

which can be rearranged to bring forth the well-known representation of Itô’s lemma

dG =

(
δG

δx
a+

δG

δt
+

1

2

δ2G

δx2
b2

)
dt+

δG

δx
b dz (2.14)

Letting x = S, and consequently replacing the drift and diffusion coefficients a and b by the

drift and diffusion coefficients of S as given by (2.8), the instantaneous change in a derivative

on S is

df =

(
δf

δS
µS +

δf

δt
+

1

2

δ2f

δS2
σ2S2

)
dt+

δf

δS
σSdz (2.15)
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2.5 Black-Scholes Partial Differential Equation

In conjunction, Itô’s lemma and the hedging argument under assumptions of absence of arbi-

trage provide a way to derive the Black-Scholes partial differential equation (PDE). Analogous

to section 2.2, the derivation of the Black-Scholes PDE builds on the principle of constructing

a portfolio consisting of a short position in the derivative security and a long position equal to

δf/δS in the underlying asset. This portfolio achieves the goal of eliminating the risk during

time dt that stems from changes in the Wiener process, dz. By the absence of arbitrage argu-

ment, this portfolio must have a return equal to the risk-free rate and its price must be equal

to the price of the derivative.

Assume the underlying asset, S, follows the process given in (2.8) and that the price of

a derivative on S is known at time t. Define Π(S, t) as the value of a portfolio at time t of a

short position in the derivative and a long position in S equal to δf(S, t)/δS

Π(S, t) = −f(S, t) +
δf(S, t)

δS
S (2.16)

For notional purposes, the arguments of f(S, t) and Π(S, t) are omitted. Letting δf/δS be

fixed during the period t to t+ dt, the instantaneous change in the value of the portfolio is

dΠ = −df +
δf

δS
dS (2.17)

The instantaneous change in the value of the derivative, df , is given by Itô’s lemma in (2.15).

By substituting (2.15) and (2.8) into (2.17)

dΠ =

(
− δf
δS

µS − δf

δt
− 1

2

δ2f

δS2
σ2S2

)
dt− δf

δS
σS dz +

δf

δS
(µS dt+ σS dz) (2.18a)

dΠ =

(
−δf
δt
− 1

2

δ2f

δS2
σ2S2

)
dt (2.18b)

it becomes clear that the Wiener process is eliminated and that changes in the value of the

portfolio is a deterministic function of time. This implies that only the passing of time has

an effect on the portfolio value, and this effect is perfectly predictable under the assumptions
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of Black-Scholes (1973). Assuming continuous trading in S and that S is perfectly divisible,

it follows that this portfolio is risk-free from time t to t + dt. According to the absence of

arbitrage argument, the return on this portfolio must be equal to the risk-free rate

dΠ = rΠ dt (2.19)

Substituting (2.16) and (2.18) into (2.19)

(
−δf
δt
− 1

2

δ2f

δS2
σ2S2

)
dt = r

(
−f +

δf

δS
S

)
dt (2.20)

and dividing (2.20) by dt, the Black-Scholes PDE materializes

δf

δt
+

1

2

δ2f

δS2
σ2S2 +

δf

δS
rS − rf = 0 (2.21)

The partial differential equation in (2.21), referred to as the Black-Scholes equation, is

the breakthrough that changed the financial markets by providing a framework for pricing and

hedging of derivative securities. Concretely, the price of any derivatives that is a function of

only S and t must satisfy the Black-Scholes partial differential equation.

2.6 Black-Scholes-Merton Option Pricing Formula

The majority of derivative securities do not have an analytical solution to the Black-Scholes

equation and must, therefore, be priced using numerical methods, most prominently using

binomial lattice, Monte Carlo and finite difference methods. However, Black and Scholes

(1973) succeeded in identifying analytical solutions to the Black-Scholes equation for European

call and put options.

In order to solve the Black-Scholes equation, it is necessary to identify boundary conditions

for a particular derivative. The boundary conditions specify which derivative is being priced
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by using properties of the derivative. For a European call option, the boundary conditions are

f(T, S) = max (S −K, 0) (2.22a)

f(t, 0) = 0 (2.22b)

lim
S→∞

f(t, S) = S −Ke−r(T−t) (2.22c)

and for a European put option, the boundary conditions are

f(T, S) = max (K − S, 0) (2.23a)

f(t, 0) = Ke−r(T−t) (2.23b)

lim
S→∞

f(t, S) = 0 (2.23c)

The first condition of both call and put options defines the values of the options at maturity T

as their respective payoff functions. The second condition defines the value of the call option

as zero if the price of S at any time t ≤ T is 0, since S is unable to recover given it follows

a geometric brownian motion. On the other hand, the put option value is the present value

of K if S = 0, since the payoff at maturity is K with certainty. The third condition defines

the value of a call option in the limit as S →∞ as S less the present value of the strike price,

since the probability that the option is exercised at maturity approaches 100%. On the other

hand, the value of a put option is 0 as S →∞, since the probability that the option will expire

worthlessly approaches 100%.

Black and Scholes (1973) solved the Black-Scholes equation for European call and put

options using the boundary conditions in (2.22) and (2.23). They found the price of a European

call option on a dividend-paying underlying asset to be

c(S0, r, q, σ,K, T ) = S0e
−qTN(d1)−Ke−rTN(d2) (2.24)

and the price of a European put option on a dividend-paying underlying asset to be

p(S0, r, q, σ,K, T ) = Ke−rTN(−d2)− S0e
−qTN(−d1) (2.25)
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where

d1 =
ln
(
S0

K

)
+
(
r − q + σ2

2

)
T

σ
√
T

, d2 = d1 − σ
√
T (2.26)

and

N (x) =

∫ x

−∞

1√
2π
e−

x2

2 dx (2.27)

is the cumulative distribution function of a standard normal distribution.

The function N(d1) can be interpreted as the position in the underlying asset needed for

continuous hedging, commonly referred to as the delta. The function N(d2) can be interpreted

as the risk-neutral probability that a call option expires in-the-money. In addition to providing

the fair price of a European option, the Black-Scholes-Merton model (henceforth the BSM

model) provides dealers with a methodology of how to hedge the risk associated with issuing

and holding options. In particular, the only source of risk under the assumptions of the BSM

model comes from changes in the price of the underlying asset, and this risk can be eliminated

through continuous hedging using positions in the underlying asset equal to N(d1), or delta.

2.7 Assumptions of the Black-Scholes-Merton Model

The BSM model is, however, only as good as the assumptions underlying the model and

these assumptions are generally considered unrealistic. As I discuss in section 3.4, one of

the advantageous properties of artificial neural networks is that they are assumption-free and

therefore have the potential to compete against the BSM model. In this section, I will briefly

discuss the assumptions of the BSM model.

The primary assumptions underlying the BSM model are:

1. The underlying asset follows a geometric brownian motion with constant drift and diffu-

sion coefficients.

2. The risk-free interest rate is constant and identical across all maturities.
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3. Securities trade continuously and are perfectly divisible.

4. There are no transaction costs or taxes.

5. Short selling of securities with full use of proceeds is permitted.

6. There are no riskless arbitrage opportunities.

The first two assumptions are not strictly necessary in order to solve the Black-Scholes equation.

For instance, several extensions to the BSM model attempt to circumvent the assumption

of constant volatility such as the Practitioner Black-Scholes model (Christoffersen & Jacobs,

2004) that assumes a deterministic volatility function and the Heston model (Heston, 1993)

that assumes stochastic volatility. This is discussed further in section 2.9, where I derive the

Practitioner Black-Scholes model as a benchmark for comparison to the artificial neural network

model.

The third assumption states that hedging using the delta, N(d1), can occur continuously

at fractions of a share such that the replicating portfolio is always risk-free, which is impos-

sible in the real world. Instead, frequent discrete hedging is necessary, but it leads to high

transaction costs in the real world which breaks the fourth assumption. The fifth assumption

is unrealistic due to margin requirements typically applying to investors wanting to sell short,

hence restricting the use of proceeds from short selling. I will not go in details about the

truthfulness of the sixth assumption since there are several schools of thought regarding the

degree of market efficiency and these opposing views are out of the scope of this thesis.

2.8 Implied Volatility

The expensiveness of options is often measured in terms of implied volatility. The implied

volatility of an option is defined as the volatility that makes the BSM price equal to the

observed market price

cobs(K,T ) = CBSM(K,T, σIV ) (2.28)
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where cobs(K,T ) is the observed market price of an option as a function of K, the strike price,

and T , the time-to-maturity, and CBSM(K,T, σIV ) is the BSM price as a function of K, T and

σIV , the implied volatility.

Under the assumptions of the BSM model, the implied volatility would be constant. How-

ever, when plotting implied volatility against strike price for index options, the fitted line

resembles a smirk, referred to as the volatility smirk (Hull, 2018). This implies that volatility

is a function of strike price and that OTM puts and ITM calls are more expensive than ITM

puts and OTM calls.

Moreover, evidence shows that implied volatility is a function of time-to-maturity, referred

to as the volatility term structure (Hull, 2018). Concretely, implied volatility is typically

increasing with maturity when short-term volatilities are lower than average since volatility is

expected to increase in the future. The opposite case is often seen when short-term volatility

is higher than average.

These empirical observations are often combined into a so-called volatility surface: a sur-

face plot of implied volatility against moneyness on the x-axis and time-to-maturity on the

z-axis. The existence of the volatility surface is one of the major breakpoints of the BSM

model, that assumes constant volatility.

2.9 Practitioner Black-Scholes Model

The Practitioner Black-Scholes (PBS) model is a popular extension to the original BSM model.

It circumvents the undesirable assumption of constant volatility in the underlying asset by

modeling implied volatility as a quadratic function of the strike price and the time-to-maturity

(Rouah & Vainberg, 2007). It was developed by Dumas et al. (1998) under the name ‘ad-hoc

model’, but it is better known as the Practitioner Black-Scholes Model as Christoffersen and

Jacobs (2004) later termed it.
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Dumas et al. (1998) use deterministic volatility functions (DVF) to model implied volatil-

ity, and then use the predicted implied volatility as input to the BSM model. They consider

four specifications of the DVF, but I will focus on the one they found to be performing best

since I only use the model as a benchmark model. This DVF is defined as

σIV = max (a0 + a1K + a2K
2 + a3T + a4T

2 + a5KT, 0.01) (2.29)

where the model parameters, ai, are the result of an ordinary least squares (OLS) regression

and the fitted implied volatility is restricted to a minimum value of 0.01 in order to avoid

negative predicted volatility. The DVF is a continuous function that can be interpreted as an

estimated volatility surface from which the BSM volatility parameter can be extracted. Dumas

et al. (1998) show that the implied volatility surface primarily depends on K, K2, T , and KT ,

while T 2 provides little improvement to the model. From this, they conclude that the curvature

in the volatility smile is determined primarily by the strike price, whereas implied volatility is

primarily linearly related to time-to-maturity.

I include the PBS model as a benchmark model to compare with the artificial neural

network model I develop in this thesis. I do not include the Heston stochastic volatility model

(Heston, 1993) mentioned in section 2.7, since Christoffersen and Jacobs (2004) find that the

PBS model is better able to fit option prices and due to the much simpler model specifications

of the PBS model.

2.10 Supply-and-Demand-Based Option Pricing

The BSM model is a theoretical model that gives the fair price of European options under

the assumptions presented in section 2.7. Here, fair price refers to the no-arbitrage price that

was proven using the hedging argument. However, Bates (2003) argue that the model cannot

fully capture or explain the empirical properties of exchange-traded option prices. He bases his

proposition on market makers’ imperfect ability to hedge option positions due to nonperfect

capital markets unlike the assumption of the BSM model. Instead, he argues that inventory
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risk, or demand pressure, should be considered when pricing derivative securities (Bates, 2003).

Amihud, Mendelson, and Pedersen (2006) define inventory risk as the compensation market

makers require from making market when demand is larger than market supply. Inventory

risk is thus a compensation to market makers when the demand exceeds the market makers

willingness to make market. Amihud et al. (2006) further defines inventory risk as an exogenous

liquidity premium and argue that market makers increase bid-ask spreads of assets due to

regulatory capital constraints and in order to reduce risk exposure. In this way, market makers

can limit the demand to a level where they are comfortable with the associated risk by increasing

the bid-ask spread, thus introducing a liquidity premium.

According to Bollen and Whaley (2004), inventory risk allows market prices to diverge from

theoretical option prices, and it creates a no-arbitrage band within which the market price can

fluctuate without arbitrage opportunities. Garleanu, Pedersen, and Poteshman (2008) explain

this divergence of market prices from theoretical prices by varying demand and supply. The

varying demand arises due to option-users having various reasons for trading options, while the

varying supply arises due to varying willingness of market makers to make market by taking

the opposite position. Bollen and Whaley (2004) find that particularly index put options are

affected by buying pressure from institutional investors, who use the put options as portfolio

insurance. This is in accordance with Garleanu et al. (2008) and Constantinides and Lian

(2015), who find evidence that market makers are net sellers of index put options. Since the

demand for put options typically exceed the market supply, market makers need to provide

liquidity by acting as counterparties and hedging the related risks. Garleanu et al. (2008) argue

that this supply and demand imbalance can explain approximately one-third of index option

expensiveness.

The literature presented suggest that option prices fluctuate within a no-arbitrage band,

partly as a result of imbalances between demand and supply and the inventory risk associated

with demand pressure to market makers. In Chapter 5, I examine the ability of artificial neural

networks to incorporate this effect using four variables that I hypothesize proxy the market’s

demand for insurance in the form of put options and the liquidity premium.
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Chapter 3

Artificial Neural Networks

The focus of this chapter is to introduce the machine learning theory underlying the methodol-

ogy of this thesis. The chapter is structured in the following manner: Initially, I introduce the

scientific field of machine learning with a focus on supervised learning and the bias-variance

tradeoff, followed by an introduction to the artificial neural network called multilayer percep-

tron and its underlying mathematics. Particular emphasis will be given to the structure of

multilayer perceptrons and the machine learning algorithm used to train them.

3.1 Introduction to Machine Learning

The primary purpose of machine learning (ML) algorithms is to draw conclusions based on

data, known as statistical inference. In simple terms, machine learning algorithms are statistical

models that learn from data without being given explicit instructions. As the algorithms are

given more data to learn from, they are better able to provide insights into the underlying

probability distribution of the data and to provide accurate predictions.

The ML algorithm examined in this thesis is of the supervised learning type. In supervised

learning, a loss function is minimized by adjusting the model parameters through optimization
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Alpaydin (2010). A well-known ML algorithm that satisfies this definition is linear regres-

sion. Linear regression identifies linear relationships between variables by minimizing the mean

squared error between the estimated model predictions and the actual data by adjusting the

model parameters using ordinary least squares. Even more advanced supervised learning algo-

rithms follow this same structure but the model specifications, loss functions, and optimization

methods are different. Specifically, supervised learning is defined as a machine learning method,

where the objective is to learn the mapping from an input x to an output y (Alpaydin, 2010).

This implies that the output is known in advance such that the ML algorithm can learn the

relationship between the input and the output and infer a function that can be used to predict

new observations.

Supervised learning is further subcategorized into classification and regression. Classifi-

cation problems are concerned with predicting to which category an input belongs. In other

words, the classification supervised learning algorithms map input to categorical outputs, such

as whether an email is spam or not or which dog breed is shown in a picture. On the other

hand, regression problems are concerned with mapping inputs to a real-valued output, such as

the amount of rainfall in a month or the price of a financial derivative as is the focus of this

thesis. Essentially, the aim of this thesis is to identify a function that connects some input

variables to market prices of call options.

3.2 Bias-Variance Tradeoff

In analyzing the performance of machine learning algorithms, the bias-variance tradeoff is

very important. The bias-variance tradeoff is essentially a tradeoff between underfitting and

overfitting a dataset. In particular, the bias-variance tradeoff is a measure of the generalization

error of a machine learning model seen from the perspective of three sources of errors: bias,

variance and irreducible error. Bias is defined as the prediction error and can be measured as

the mean squared error or a similar function. Variance is defined as the variability of model

predictions and it can be measured using k-fold cross-validation as explained in section 4.3.
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Figure 3.1: Illustrations of the bias-variance tradeoff showcasing the importance of identifying the
optimal tradeoff between bias and variance.

Finally, the irreducible error is the noise contained within data that cannot be reduced by

building a better model.

The purpose of utilizing the bias-variance framework in model building is to find the right

balance between underfitting and overfitting data. The perfect scenario involves a minimization

of both the bias and variance such that only the irreducible error remains. In cases where the

bias is high, the model is underfitting the data and could benefit from an increase in model

complexity. On the other hand, when the model starts to explain noise in the data, the variance

is high, and the model will generalize poorly to new observations. A good tradeoff between

bias and variance occurs when the model complexity is such that the model predicts accurately

and consistently. The considerations when building low bias and low variance ANNs are thus

to find the optimal complexity of the model with respect to the inputs used, the number of

hidden layers, the number of perceptrons, etc.
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3.3 Introduction to Artificial Neural Networks

The human brain is perhaps the greatest known learning machine with purportedly 100 bil-

lion interconnected neurons that process information in a very complex but efficient man-

ner (Herculano-Houzel, 2009). The human brain’s impressive learning capabilities inspired

Mcculloch and Pitts (1943) to develop an Artificial Neural Network (ANN): a mathematical

representation of neurons in the human brain.

The neurons of the human brain can be viewed as computational units that process in-

formation. Neurons receive signals through so-called dendrites, which are ‘wires’ that connect

neurons. After the neurons have ‘computed’ the input signals, they are passed on to other neu-

rons through another set of ‘wires’ known as axons. In this way, neurons of the human brain are

structured in interconnected networks consisting of billions of connections (Herculano-Houzel,

2009).

However, the work of Mcculloch and Pitts (1943) was merely a structural and mathematical

representation of how the human brain processes information, known as forward propagation

in machine learning terminology. A technique for training the ANN to learn from data was not

developed until 43 years later by Rumelhart, Hinton, and Williams (1986).

ANNs can take numerous forms depending on the objective at hand. For instance, a

certain type of ANN is often used for object recognition in pictures and videos, while another

is preferred for text and speech recognition. Since this thesis is dealing with the approximation

of a continuous function, the most appropriate method is the ‘multilayer perceptron’ (MLP)

and I will focus only on this type of ANN.

In MLPs, the neurons of the human brain are modelled by perceptrons that work in a

similar way to biological neurons in the brain. Perceptrons perform computations on inputs

received from data or from the outputs of other perceptrons and then channels the results to

yet other perceptrons. Similar to the neurons in the human brain, perceptrons are structured

in interconnected networks consisting of one to multiple layers, called hidden layers, which

explains why the type of ANN is referred to as a multilayer perceptron.
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Each perceptron contains an activation function that processes the information it receives

in an often nonlinear manner and channels the results of this computation to the connected

perceptrons in the next layer. This process is repeated stepwise for each layer in the MLP

until the final layer, where the output is channeled into a single perceptron that forms the final

prediction. This process of producing predictions based on propagating inputs through the

MLP is denoted forward propagation.

Each connection between perceptrons has an associated weight that determines how much

information is passed on to each of the perceptrons in the next layer. These weights are obtained

through training of the MLP, where the objective is to identify the weights that result in the

most accurate predictions. This is achieved using the gradient descent algorithm described in

section 3.7.

Similar to the constant in linear regression allowing for vertical shifts of the fitted line along

the y-axis, MLPs have bias units. The bias units are set equal to one, while the associated

weight is optimized through the gradient descent algorithm. This allows for the activation

functions connected to the bias unit to shift vertically in the same way that the constant

in linear regression allows for the fitted line to change its intercept through a vertical shift.

The result of this is that the ANN can fit data better similarly to how the constant of linear

regression allows for a better fit to data.

I have included a generalized representation of an MLP in Figure 3.2, where a
(j)
i denotes

the value of perceptron i in layer j. The number of hidden layers as well as perceptrons per

hidden layer is discretionary, but they are often chosen using the grid search method described

in section 4.3. Each arrow in Figure 3.2 correspond to a weight, Θ
(j)
i,k , that connects a

(j)
k to a

(j+1)
i

where subscripts k and i are related to perceptron k and i in layer j and j+1, respectively. The

weights are only illustrated for the last layer for simplicity, but a weight is similarly associated

with each other arrow connecting perceptrons.
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Figure 3.2: Structural representation of an artificial neural network. Each arrow corresponds to a
weight like shown in the last layer, but they have been omitted for visual purposes

3.4 Properties of Artificial Neural Networks

ANNs belong to the family of nonparametric statistical models, meaning they do not rely on

assumptions about the parameters of the underlying probability distribution in contrast to the

vast majority of financial models. Consequently, ANNs allow the probability distribution to

take any form as given by data, which proves valuable for a range of purposes where traditional

parametric models fail to provide an accurate fit. This feature is particularly appropriate for

empirical option pricing, since market participants generally disregard the lognormal return

assumption underlying the BSM model due partly to the property that stock returns tend to

have fatter tails than the normal distribution (Taleb, 2008).
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ANNs are nonlinear models capable of fitting complex nonlinear data and providing non-

linear predictions. This feature among others are the underpinnings of the universal approxi-

mation theorem first proved by Cybenko (1989). This theorem states that ANNs with a finite

number of layers and neurons can approximate any continuous function. However, the theorem

does not advise how many layers or neurons are needed to achieve this, meaning there is no

guarantee to find the optimal solution (Kubat, 2015).

In general, artificial neural networks are considered highly non-transparent due to the

complexity of the connections between perceptrons and the nonlinear activation functions.

Unlike simpler forms of machine learning such as linear regression, the parameters of the

model are extremely difficult to interpret and the relationship between the input and output

is thus often criticized for being a black box (Benitez, Castro, & Requena, 1997). Generally,

researchers and practitioners disregard statistical inference of ANNs and instead trust the model

predictions if the out-of-sample prediction errors are sufficiently small for a specific purpose

and if the bias-variance tradeoff is sufficiently balanced.

3.5 Forward Propagation

Though visually more appealing, the graphical illustration in Figure 3.2 of forward propagation

in an MLP lacks the mathematics needed to understand how the algorithm can be implemented

in a computer. For this purpose, a vectorized representation is advantageous since it simplifies

equations while being computationally efficient. The following notation is adapted from Ng

and Katanforoosh (2018).

Following the notation of Figure 3.2, each perceptron, except those given directly from the

data in the input layer, are calculated by applying an activation function to a weighted sum of

the perceptrons in the preceding layer,

aji = g
(

Θ
(j−1)
i,0 a

(j−1)
0 + Θ

(j−1)
i,1 a

(j−1)
1 + . . .+ Θ

(j−1)
i,n a(j−1)

n

)
(3.1)
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where g(·) is an activation function and the bias unit a
(j−1)
0 ≡ 1. The above can be represented

using matrix notation by denoting the input of the g(·) function by zji ,

zj = Θ(j−1)a(j−1) =


Θ

(j−1)
1,0 Θ

(j−1)
1,1 · · · Θ

(j−1)
1,k

Θ
(j−1)
2,0 Θ

(j−1)
2,1 · · · Θ

(j−1)
2,k

...
...

. . .
...

Θ
(j−1)
i,0 Θ

(j−1)
i,1 · · · Θ

(j−1)
i,k




a

(j−1)
0

a
(j−1)
1

...

a
(j−1)
k

 =


zj1

zj2
...

zji

 (3.2)

The vector of perceptions at layer j including the added bias unit is then

aj =



a
(j)
0

a
(j)
1

a
(j)
2

...

a
(j)
i


=
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This notation is applicable to each hidden layer, but also the output layer where the

parameter matrix, Θ(j−1), simplifies to a vector since the perceptrons of the penultimate layer

are channeled into a single output perceptron as illustrated in Figure 3.2.

3.6 Activation Functions

The g(·)-function, known as the activation function, can take several forms. For classification

problems, the sigmoid activation function known from logistic regression is often applied since

it outputs a value between 0 and 1 that can be interpreted as a probability. For regression

problems, the Rectified Linear Unit, or ReLU is a commonly applied activation function. This

activation function coincidentally looks like the payoff of a call option as seen in Figure 3.3.

As such, the ReLU activation function will only output positive or zero values in accordance

with option prices always being positive or zero. For these reasons, and due to trial-and-error,

this thesis applies the ReLU activation function in the hidden layers. Concretely, the ReLU
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function is

g(x) = max (x, 0) (3.4)

For the output perceptron, a simple activation function denoted linear unit is applied, which

simply is

g(x) = x (3.5)

The linear unit thus simplifies to the weighted sum of the perceptrons in the preceding layer,

z(j−1), essentially equivalent to no activation function in the output layer.

Figure 3.3: Graphical illustration of the two activation functions used in this thesis.

3.7 Gradient Descent Algorithm

As mentioned in section 3.1, the learning process of the ANN occurs through minimization of

a cost function by changing its parameters. When dealing with regression-type problems, the

most frequently used cost function is the mean squared error (MSE)

J(Θ) =
1

N

N∑
i=1

(yi − ŷi)2 (3.6)

The cost functions of ANNs are normally minimized using variations of the gradient descent

algorithm, which uses the gradients of the cost function in order to find the global minimum

using an iterative process. The gradient is defined as a vector composed of the partial derivatives
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of the cost function with respect to all parameters of the model

∇J (Θ) =
[
δJ(Θ)
δθ1,0

δJ(Θ)
δθ1,1

· · · δJ(Θ)
δθi,k

]T
(3.7)

The gradient informs us which multidimensional ‘direction’ has the steepest upward slope

and it can therefore be used to determine in which direction a step would lead to the cost

function being reduced the most; that is the opposite direction of the gradient. Concretely, the

gradient descent algorithm initiates by choosing random parameters and calculating the cost

and gradient related to these parameters.

Figure 3.4: Three-dimensional illustration of the gradient descent algorithm. Notice, how two initial
starting points can lead to different solutions.
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A learning rate, η, is chosen, which determines the step-size of each iteration of the gradient

descent algorithm. The learning rate affects the rate of convergence and the ability for the

optimization algorithm to escape local minima. The parameters are then updated iteratively

as

Θj = Θj − η∇JΘ (3.8)

until the gradient approaches zero which indicates a local minimum has been reached. Notice,

that there is no guarantee of reaching the global minimum unless the cost function is convex.

One approach to training an ANN using the gradient descent algorithm is to adjust the

parameters of the model for each observation; an approach with slow convergence since each

observation affects the model parameters. Another approach is to compute the average gradient

of the entire dataset at once, which is a computationally expensive task. The compromise is to

use batches of training examples, which ensures computationally efficient and fast convergence

of the optimization algorithm. When the entire training data has been processed through the

ANN, the model is said to have been through one epoch and the decision of batch size and the

number of epochs to train the ANN needs to be decided before training initiates. In section

4.4, I discuss how the grid search method is used to identify the optimal batch size and number

of epochs.
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Methodology

In this chapter, I describe data collection and preprocessing in detail, followed by a description

of the cross-validation and the grid search methods used to identify the optimal hyperparame-

ters of the ANNs. Next, I present the methods used to forecast volatility and the metrics used

to measure the performance of the ANNs. Finally, I introduce the additional variables expected

to improve the ANN. The data preparation, model training and analysis are conducted in the

Python programming language primarily using the open source TensorFlow (Google, 2019) and

SciKit-Learn (Pedregosa et al., 2011) packages.

4.1 Data

The data underlying the analysis of this thesis is retrieved from two sources: OptionMetrics

(retrieved through WRDS) and The Federal Reserve Bank of St. Louis Economic Data (FRED).

The options under consideration are index call options on the S&P 500 and the Dow Jones

Industrial Average from the Chicago Board of Options Exchange (Cboe) from the period 2010

to 2017. I include options on two different indices in order to examine how well the ANNs

generalize to options on different indices. The options on these indices have European exercise

style which allows for comparison to the BSM model. In addition, these options are highly
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liquid and traded across a large assortment of strike prices and time-to-maturities, which is an

important factor since ANNs require large amounts of data. I focus the analysis solely on call

options while assuming that the put-call parity holds. In order words, the put-call parity can

be used to transform call option prices into put options, and the model is, therefore, able to

price both of these option types.

The dataset includes bid and ask prices, strike prices, close prices of the underlying indices,

dividend yields, and maturity dates. The only missing BSM input is a proxy for the risk-free

rate, which I instead obtain from FRED. Specifically, I choose the 1-month Treasury constant

maturity rate with a daily frequency as a proxy for the risk-free rate, since it is generally

considered one of the closest proxies of a risk-free investment.

I collect bid and ask prices at market close and calculate the mid option price as the average

of the bid and ask prices. I calculate the time-to-maturity as the number of calendar days

between the maturity date and the current date of an option price. OptionMetrics calculates the

continuously-compounded dividend yield as the implied index dividend based on a regression

of options and the put-call parity (OptionMetrics, 2015).

The data from OptionMetrics includes implied volatility, but since this measure is the

volatility that makes the BSM option pricing formula equal to the observed market price, using

the implied volatility of each option as input would essentially result in estimating the BSM

model. Instead, the volatility input consists of volatility forecasts using several approaches as

described in section 4.5.

I obtain financial time series of the assets under consideration to conduct these volatility

forecasts. The data is obtained as close prices from OptionMetrics with a daily frequency for

the period 2000 to 2017. I include data on the financial time series starting in 2000 because

I want volatility predictions for the options in 2010 to be based on sufficient historical data.

The returns are calculated without dividend adjustments, such that the dividend yield can be

used as input to the ANN similar to the BSM option pricing model.
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The option data is limited to options with a time-to-maturity up to two years while

the moneyness of the options is restricted to the interval 0.8-1.5. In Chapter 5, I conduct a

sensitivity analysis of the time-to-maturity and moneyness in order to identify any issues related

to the option pricing capability of the ANNs and to assess whether the ANN can capture the

volatility surface present in option markets.

The option data is described further in Figure 4.1, where the distribution of moneyness,

time-to-maturity and the number of options per year is illustrated. Figure 4.1a shows that the

majority of observations are distributed around near-the-money options with the number of

options declining the further out-the-money the options become. Figure 4.1b shows that the

time-to-maturity of the options is concentrated around the shorter maturities, while Figure 4.1c

shows that the number of options available in the data increases considerably during the period,

which could be due to a higher traded volume, increased data collection or a combination of

both.

Figure 4.1: Histograms of the distribution of input data in the artificial neural network model.

4.2 Data Preprocessing

The data has been preprocessed in two important ways. Firstly, the data has been normalized

by the strike price in accordance with previous literature on the subject. Secondly, feature

scaling is applied in order to ensure that the input variables are on the same scale.
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4.2.1 Dimensionality Reduction

Generally, ANNs tend to overfit training data resulting in poor out-of-sample predictions on the

validation data. The primary reason for this is related to the typically large number of weights

that need to be optimized during training. A simple method to reduce the dimensionality of

ANNs is to reduce the number of inputs while maintaining the information within these input

variables. By assuming the return distribution of the underlying asset is independent of the

level of the underlying price of the asset, the BSM option pricing formula is homogeneous of

degree one in both the price of the underlying and the strike price of the option (Hutchinson

et al., 1994). This implies that we can focus on the moneyness of the option, S/K, while also

dividing the price of the option by the strike price

C(S,K)

K
= C(

S

K
, 1) (4.1)

By doing this, the input variables are reduced by one resulting in optimization of fewer weights.

Whereas exploiting this feature of the BSM model may not successfully translate to the ‘market

pricing formula’, I keep the assumption since it is in agreement with previous literature and

since it is reasonable from the perspective of financial option pricing theory.

4.2.2 Feature Scaling

Feature scaling is a commonly applied method in machine learning. It can take several forms

but shared between them is the idea of scaling the features of the model – the input variables

– to the same scale, such that adjustments to weights have comparable effects on all features.

For instance, if one feature is 100 times larger than another, such as having the moneyness

centered around 1, but the interest rate centered around 0.01, the adjustments to the weights

in the gradient descent algorithm are uneven, and the effect of the interest rate diminishes.
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An example of a feature scaling method commonly applied in financial theory is standard-

ization, where the features are scaled to have zero mean and unit variance,

xi =
xi − x̄i
σi

(4.2)

The underlying assumption of standardization is that each feature is normally distributed. This

is often assumed in financial contexts, but it is an unrealistic assumption for the features of

this model since the moneyness and time-to-maturity evidently are not normally distributed

as seen in Figure 4.1a-b. An alternative feature scaling method is normalization, where the

features are scaled to the interval [0,1],

xi =
xi −min (x)

max (x)−min (x)
(4.3)

While this method has application to non-gaussian features, it is highly sensitive to outliers,

since a single very large outlier will drag the feature scaled data towards this outlier. This issue

is addressed in the robust scaling method.

Instead of relying on the minimum and maximum of the data like normalization does,

robust scaling scales using the interquartile range. The interquartile range is the range between

the first quartile (25th quantile) and the third quartile (75th quantile). This makes it robust

to outliers. Concretely, the robust scaling method is

xi =
xi −Q1(x)

Q3(x)−Q1(x)
(4.4)

where Q1(·) is the first quartile and Q3(·) is the third quartile. This feature scaling method

resulted in the best results for the benchmark ANN and is used throughout the thesis for this

reason.
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4.3 Cross-Validation

It is common practice in predictive modeling to divide data into groups of training data and

validation data in order to alleviate the issues of overfitting and to increase the generalizability

as described in section 3.2. This concept is denoted cross-validation. The overall goal is to

identify a model that generalizes well to new data by using only relevant signals and patterns

in the data without overfitting by finding patterns in noise. Concretely, the data is split such

that a percentage of the data is used to train the model, while the remainder is used to validate

the model predictions out-of-sample. In this thesis, I will use a split of 90% for training and

10% for validation of the model. I will also refer to the validation data as out-of-sample data.

I apply an extension to the cross-validation method denoted k-fold cross-validation. In this

approach, the dataset is randomly partitioned into k folds of approximately equal size, while

letting a single fold be the validation data and estimating the model on the remaining k–1 folds

(James, Witten, Hastie, & Tibshirani, 2017). Letting k = 10, I train the ANNs ten times, each

time with a different fold behaving as the validation data. I then average the ten resulting

loss functions to obtain a more precise estimate of the model’s loss function, and I compute

the standard deviation as an estimate for the variability of the model. I will refer to this

method as 10-fold cross-validation. The primary benefit of the 10-fold cross validation method

is that it provides insights into the bias and variance of a model. Applying the bias-variance

tradeoff framework using the 10-fold cross-validation method allows for improved optimization

of hyperparameters that result in a model with higher generalizability as described in section

4.4.

4.4 Optimization of Hyperparameters

Besides training the ANN, it is necessary to identify hyperparameters, which are parameters

that are chosen before the training is initiated (Bergstra & Bengio, 2012). For instance, the

number of layers and the number of perceptrons in each layer are examples of hyperparameters
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that need to be chosen before the ANN can be trained and the parameters of the model can

be optimized.

Hyperparameters affect the accuracy of the ANN to a large extent. In order to identify the

optimal hyperparameters, I apply the grid search approach. In grid search, the ANN trains on

all possible combinations of a specified subset of hyperparameters and the algorithm returns

the optimal combination of hyperparameters with respect to the loss function (Bergstra &

Bengio, 2012). I apply the 10-fold cross-validation method described in section 4.3 within the

grid search algorithm such that the bias-variance tradeoff is considered in the optimization of

hyperparameters.

I train the ANN and optimize hyperparameters on a Quadro P6000 commercial grade GPU

from NVIDIA using cloud computing on Paperspace (Paperspace, 2019). GPUs can compute

in parallel making them much faster at training ANNs than CPUs and the Quadro P6000

furthermore significantly outperforms the computing power of a personal computer resulting

in faster optimization of hyperparameters and the ability to test more combinations. However,

the ANNs still take a long time to train due to the large amount of data and the large number

of parameters. Concretely, the benchmark ANN presented in Chapter 5 takes 2:30h to train

once on the Quadro P6000, while the total uninterrupted training time for the entire analysis

was approximately eleven days.

The subset of hyperparameters chosen for the grid search algorithm are:

Perceptrons = {64, 128, 256} (4.5)

Layers = {1, 2, 3} (4.6)

Batch Sizes = {512, 1024, 4096} (4.7)

Epochs = {50, 100, 200} (4.8)

The grid search with 10-fold cross-validation tries all possible combinations of the chosen hy-

perparameters ten times, leading to the ANN being trained 34 × 10 = 810 times. While the

Quadro P6000 GPU is able to run parallel computations, the optimization of hyperparameters
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still took approximately eleven days of uninterrupted training. As apparent, the dimensionality

of the grid search approach increases rapidly as the number of tested hyperparameters increase.

This is the reason I limit testing to four hyperparameters for three potential values.

I now present the optimal hyperparameters found using the grid search approach. The

results apply to the Benchmark ANN, which is the optimized ANN based on the typical BSM

input variables. In Chapter 5, I attempt to improve this Benchmark ANN by extending it to

include additional input variables.

The ANNs in this thesis consist of three hidden layers consisting of 128 perceptrons each.

The perceptrons in the hidden layers contain the ‘ReLU’ activation function, while the percep-

tron in the output layer contains the ‘linear’ activation function. There are five perceptrons in

the input layer of the Benchmark ANN, which are 1) moneyness, 2) time-to-maturity, 3) volatil-

ity, 4) risk-free rate, and 5) dividend yield. I find the optimal batch size for the benchmark

ANN to be 4096, while I find the optimal number of epochs to be 200.

Given the grid search algorithm finds the optimal number of epochs and the optimal

number of layers to be the upper bound of the test values, the optimal hyperparameters are

likely above these values. Despite this, I have decided to continue with these values due to

constraints on time and costs of using cloud computing services.

4.5 Volatility Forecasting

The BSM model takes six inputs of which five are given exogenously, while the volatility input

needs to be chosen with discretion. This implies that prediction of option prices is highly reliant

on the chosen volatility estimate. Mandelbrot (1963) provides evidence that forecasting volatil-

ity is possible to a relatively high extent due to the high degree of conditional heteroscedasticity,

or volatility persistence, present in most financial time series. Numerous methods for forecast-

ing volatility are available in the literature, but only the most prominent methods are examined

in this thesis. Concretely, the volatility forecasting methods under consideration are: historical

volatility of different window lengths, GARCH(1,1), realized volatility, and the VIX index.
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The models are examined as input into the Benchmark ANN in Chapter 5 and the best model

is identified with respect to minimization of the mean absolute percentage error (MAPE) as

described in section 4.8.

4.5.1 Historical Volatility

Annualized historical volatility is calculated from the return series of the financial assets using

a 10-day, 30-day, and 60-day rolling window. The 30-day historical volatility is calculated as

σt =
√

252

√√√√ 1

T − 1

T−1∑
i=30

(rt−i − r̄)2 (4.9)

and the 10-day and 60-day historical volatility are calculated analogously. The 10-day, 30-day

and 60-day historical volatility are computed in order to evaluate the importance of shorter-term

vs. longer-term volatility. This volatility forecasting model is the simplest and is considered

the benchmark model to which the more advance methods are compared.

4.5.2 GARCH(1,1)

Generalized Autoregressive Conditional Heteroscedasticity, or GARCH, is commonly applied

for option pricing and risk management purposes (Bollerslev, 1986). The model pulls the

forecasted volatility towards an assumed long-term variance.

The GARCH(1,1) is the most commonly used variation of the GARCH(r,m) model, where

r denotes the r most recent observations on r2
t and q denotes the q most recent estimates of

variance. The GARCH(1,1) forecast of volatility is defined as

σt =
√
α0 + α1r2

t−1 + βσ2
t−1 (4.10)

where α0, α1, and β are parameters from maximum likelihood optimization, σ2
t−1 is the variance

forecast one period ago, and r2
t−1 is an estimate of variance under the assumption of stationarity.
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The aim of maximum likelihood estimation is to identify the optimal parameters to fit

a probability distribution to data. Given a time series of returns, r0, r1, . . . , rt−1, and the

assumption that returns are normally distributed with an expected daily return of zero and a

variance of σ2
t , that is N(0, σ2

t ), the variance simplifies to

σ2
t =

1

T − 1

T∑
t=1

(rt−1 − r̄)2 → σ2
t =

1

T − 1

T∑
t=1

r2
t−1 (4.11)

Following (Hull, 2018), the optimal parameters of the GARCH(1,1) are found as

max
α0,α1,β

T∑
t=1

[
− ln (σ2

t ) −
r2
t

σ2
t

]
(4.12a)

subject to α1 + β < 1 and a0 > 0 (4.12b)

Forecasts are generated recursively, such that the data used for estimating the GARCH(1,1)

is expanding with time. In other words, data from [1, t] is used to forecast t + 1, while data

from [1, t + 1] is used to forecast t + 2. To ensure that sufficient data is available to generate

the first forecast of volatility on January 1, 2010, the data used to estimate the GARCH(1,1)

begins ten years earlier on January 1, 2000. Finally, the forecasts are one-step-ahead forecasts,

meaning the model recursively forecasts volatility one trading day ahead.

4.5.3 Realized Volatility

Realized volatility is a measure of volatility based on intraday returns sampled at a high

frequency such as 5 min returns (Corsi, 2009). While the GARCH(1,1) has been widely accepted

for volatility forecasting in the literature and in practice, Andersen, Bollerslev, Diebold, and

Labys (2003) found that time series forecast of realized volatility significantly outperforms the

GARCH(1,1) out-of-sample.

The standard measure of realized volatility is the square-root of the sum of squares of

intraday log-returns. Given a set of equally-spaced intraday prices, Pt−j∆, the daily realized
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volatility is defined as

RV d
t =

√
r2
t−j∆ (4.13)

where ∆ = 1d/M, rt−j∆ = Pt−j∆ − Pt−(j+1)∆ is the continuously compounded intraday returns

sampled at a frequency of ∆, and subscript j indexes the time within day t (Corsi, 2009). The

daily realized volatility data is retrieved with a ∆-frequency of 5 min from the ‘Realized Li-

brary’ published by the Oxford-Man Institute at the University of Oxford (Oxford-Man Realized

Volatility Library , 2019). The Oxford-Man Institute publishes realized volatility measures for

31 assets as of March 2019, including the S&P 500 and Dow Jones Industrial Average indices.

Realized volatility is not a forecast but rather a measure of the volatility realized within

a day. According to a review of realized volatility forecast models by Wan Shin (2018), the

heterogeneous autoregressive realized volatility model (HAR-RV) proposed by Corsi (2009) is

the most prominent realized volatility forecast model in recent literature, and for this reason,

I will focus on this model.

The HAR-RV attempts to model the effect of realized volatility at daily, weekly and

monthly frequencies. It has been found to successfully reproduce some of the primary empirical

characteristics of financial return series such as volatility persistence and fat tail distributions

(Corsi, 2009). The heterogeneous autoregressive model of realized volatility (HAR-RV) is

defined as

RVt+1 = β0 + β1RV
d
t + β2RV

w
t + β3RV

m
t + εt+1 (4.14)

where RV d
t = RVt, RV w

t = 1
5
(RVt+ . . .+RVt−4), RV m

t = 1
22

(RVt+ . . . RVt−21). The forecasts

are conducted as one-step ahead recursive forecast corresponding to the method applied to the

GARCH(1,1) forecasts.

4.5.4 VIX Index

The Chicago Board Options Exchange (Cboe) releases a volatility index commonly referred

to as the ‘fear gauge’ or by its ticker: the VIX. It is a measure of the expected risk-neutral

annualized volatility over the following 30 calendar days implied from mid-quote real-time
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prices of S&P 500 index options (Cboe, 2019). The VIX is thus a forward-looking estimate of

volatility, and it is often used by traders to assess the riskiness of the financial markets in the

next 30 days. Among others, Cboe also releases a volatility index for the Dow Jones Industrial

Average index called by its ticker, VXD.

The VIX and VXD are calculated according to

σ =

√√√√ 2

T

∑
i

∆Ki

K2
i

erTQ(Ki)−
1

T

[
F

K0

− 1

]2

(4.15)

where F is the forward index level derived from index option prices, T is the time to maturity

of an option, r is the risk-free rate, K0 is the first strike below the forward index level, Ki is

the strike price of ith out-of-the-money option, Q(Ki) is the midpoint of the bid-ask spread for

each option with strike Ki, and ∆Ki = (Ki+1 −Ki−1)/2 (Cboe, 2019).

4.6 Implied Volatility

The implied volatilities of the options in the data are found numerically using the Newton-

Raphson minimization algorithm, since the BSM option pricing formula cannot be solved an-

alytically for σIV . The Newton-Raphson method is an iterative algorithm for finding the root

of differentiable functions and it is often used to extract the implied volatility from the BSM

formulas. Concretely, our objective is to minimize the loss function

(cobs(K,T )− cBS(K,T, σIV ))2 (4.16)

such that

cobs(K,T ) = cBS(K,T, σIV ) (4.17)
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Figure 4.2: Time series plots of the four volatility forecasting models integrated into the artificial
neural network model of this thesis.

Define x0 as an initial guess of the root of the function f(xn) and f ′(xn) as the derivative of

the function f(xn), then the Newton-Raphson algorithm updates the initial guess as

x1 = x0 −
f(x0)

f ′(x0)
(4.18)

The guess of the root of the function is updated iteratively according to

xn+1 = xn −
f(xn)

f ′(xn)
(4.19)

until the loss function is minimized sufficiently. I choose the required precision of the loss

function to be e-07. The partial derivative of the BSM formulas with respect to volatility is
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called vega and it is

ν =
δcBS
δσ

= Ste
−q(T−t)N ′(d1)

√
T − t (4.20)

Replacing f ′(xn) by ν simplifies computations, and the algorithm is able to converge efficiently

with few iterations.

4.7 Practitioner Black-Scholes Model

As mentioned in section 2.9, the Practitioner Black-Scholes (PBS) model is the BSM model

with volatility determined by a deterministic volatility function (DVF), which is a quadratic

function of the strike price and time-to-maturity

σIV = max (a0 + a1K + a2K
2 + a3T + a4T

2 + a5KT, 0.01) (4.21)

I obtain the parameters of the DVF using OLS regression on a cross-section of implied volatili-

ties. I run the regressions on all available options in the training data during each trading day

in the period 2010 to 2017. Next, I use the DVF to obtain predictions of implied volatility

and pass these predictions into the BSM formula to obtain the PBS prices. The regressions

are run on options in the training data only, while the validation period is used to test the

out-of-sample performance of the PBS model.

4.8 Evaluation Measurements

In order to quantify the relative performance of different hyperparameters, volatility forecast

models, etc., the following measurements are recorded: mean squared error (MSE) and mean

absolute percentage error (MAPE). These measures are heavily applied in the literature making

comparison possible. This is likely due to their nonparametric nature making them well-suited

for evaluation of the nonparametric ANNs.

54



Chapter 4 Methodology

The MSE measure is used as the loss function when training the ANNs as described in

section 3.7. However, it is difficult to interpret the mean of squared errors, so the MAPE is

recorded alongside the MSE. The MAPE can be interpreted as the average percentage error

regardless of the sign of errors. In other words, positive and negative errors do not cancel out

but are instead taken as absolute errors. I consider MAPE as the primary evaluation measure

when choosing the optimal volatility forecasting model, hyperparameters, etc. since MSE was

used in the training process, while MAPE can be seen as a validation evaluation measurement.

The mean squared error (MSE) is calculated as

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (4.22)

and the mean absolute percentage error (MAPE) is calculated as

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (4.23)

4.9 Additional Option Pricing Variables

In order to capture the effect of demand pressure on option prices, I present four variables that

I hypothesize contain information about the demand for and supply of options. I investigate

whether either of these four variables has explanatory power in conjunction with the BSM

inputs already present in the Benchmark ANN. The following section describes the economic

rationale behind each variable, the source of the data, and the calculation methodology.

The first three variables are proxies of market participants’ perception of recession risk

while the fourth variable is a measure of inventory risk as measured by bid-ask spreads of

options. The reason I have included three variables with a similar purpose is that no one

variable is consistently able to predict a recession. Therefore, I include three variables that are

all considered relatively good indicators of the perceived recession risk.
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4.9.1 Cyclically Adjusted Price-Earnings (CAPE)

The CAPE ratio is the work of Robert Shiller and was first published in his book Irrational

Exuberance (Shiller, 2005). It is a measure of the expensiveness of the S&P 500 index similar

to how the price-earnings ratio is the expensiveness of individual stocks. It measures how much

it costs to invest in the S&P 500 index per $1 of net income of the constituents of the index.

Historically, the CAPE ratio has proved a valuable indicator of the expensiveness of the S&P

500, and thus it has been used as a predictor of market cycles and asset bubbles.

The CAPE is calculated as the price level of the S&P 500 index divided by the average

inflation-adjusted earnings for the S&P 500 constituents over the last ten years (Shiller, 2005).

It uses averages of earnings over ten years in order to smooth out short-term fluctuations and

to focus on longer market cycles. I obtain data from Robert Shiller’s website (Shiller, 2019)

with a daily frequency.

Options are often used as a risk management tool particularly to hedge against market

downturns. Therefore, the demand for and supply of put options is expectedly dependent on

the market cycle meaning put options would increase in price when the market is relatively

expensive, and the risk of a recession is increasing. This effect should, in theory, affect the

prices of both call and put options due to the put-call parity mentioned in section 2.1

4.9.2 TED Spread

The TED spread is an indicator of credit risk in the U.S. economy as measured by the spread

of interest rates on interbank loans over T-bills (Constable & Wright, 2011). A narrow TED

spread indicates confidence in the economy since commercial banks are willing to lend to each

other at a rate close to the risk-free rate. Vice versa, a wide TED spread indicates uncertainty

as liquidity is being withdrawn resulting in increased rates on interbank loans. This typically

results in an economic slowdown as the risk appetite of financial institutions decreases.
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Concretely, the TED spread is measured in basis points and is calculated as the 3-month

dollar-denominated LIBOR rate less the 3-month T-bill rate. I obtain data from FRED (FRED,

2019b) with a daily frequency. Historically, a TED spread between 10 and 50 bps has indi-

cated confidence and economic growth, a claim supported by Boudt, Paulus, and Rosenthal

(2017), who show how a level of the TED spread above 48 bps typically suggests that market

participants perceive the economy to be in, or close to, a financial crisis. Recent examples

of the TED spread widening beyond this ‘safe’ range include 1990, 2000, and 2008, where a

recession followed shortly after. However, the TED spread has also provided false positives,

where widening spreads were not followed by economic slowdown such as in 1987.

I hypothesize that the demand for put options as crash insurance increases when the TED

spread widens due to the increased perceived credit risk in the economy implied by a widening

TED spread. However, the effect of a widening TED spread may also affect the supply of these

options by market makers, since market makers would be less willing to make markets in put

options in such scenarios, where they themselves are worried about the risk of a recession.

4.9.3 Yield Curve

The Treasury yield curve illustrates the yield on Treasuries of different maturities (Constable &

Wright, 2011). Under normal conditions, the yield curve is upward-sloping, implying a higher

yield on longer-term Treasuries than on shorter-term Treasuries. However, periods of recessions

have historically often been preceded by an inversion of the yield curve, meaning a higher yield

on short-term Treasuries than on long-term Treasuries.

One economic explanation for the inversion of the yield curve is reinvestment risk. Notably,

investors lose confidence in short-term investment opportunities and prefer to allocate funds

at higher long-term yields. This mechanic drives a flattening and potentially inversion of the

yield curve as the yield decreases on the long-term Treasuries in relatively high demand, while

the yield increases on the short-term Treasuries in relatively low demand.

57



Chapter 4 Methodology

Importantly, inverted yield curves do not cause recessions but instead signal an increased

perceived risk among investor and a flight-to-safety mentality. For instance, the recession

of 1990 was preceded by an inverted yield curve, but the catalyst that actually started the

recession was likely the Iraqi invasion of Kuwait and the associated increase in oil prices that

followed (Andolfatto & Spewak, 2019). In other words, adverse events are more likely to cause

a recession in times when the yield curve is inverted, and investors are cautious. A negative

slope of the yield curve should thus be seen as an indicator of decreasing confidence among

investors and as a signal of an increased risk of a recession similar to the TED spread.

In the literature, the slope of the yield curve is often measured as the difference between

yields on 10-year Treasuries and 2-year Treasuries (Estrella & Mishkin, 1996). I obtain this

data from FRED with a daily frequency using the ‘10-Year Treasury Constant Maturity Minus

2-Year Treasury Constant Maturity’ data (FRED, 2019a).

The yield curve’s historically high predictive power of recessions has caused traders and

investors to follow any changes carefully. I hypothesize that this effect affects the pricing of

options due to an increased demand for crash insurance and a decreased willingness of market

makers to act as counterparties by supplying the increased demand.

4.9.4 Liquidity

Liquidity is a term used to describe how easy it is to buy and sell an asset with regards to price,

transaction cost, and timeframe (Boudt et al., 2017). Highly liquid assets are characterized by

low transaction costs, fast and easy access to buyers and sellers and the ability to buy and sell

close to the intrinsic value of the asset.

Liquidity of stocks is commonly measured by the traded volume since this figure provides

insight into how easy it is to find a buyer or seller at any given moment for a specific quantity

of shares. However, the mechanic of option trading as well as the large range of different

maturities and strike prices available for each option, makes the traded volume a bad measure

of option liquidity. Indeed, options with a certain maturity and strike price can have no traded
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Figure 4.3: Illustrations of the additional variables in the artificial neural network model. The areas
marked in dark grey are the period under consideration while the areas marked in red are global

financial crises.

volume within a day and still be liquid due to a high willingness of market makers to make

market. A large quantity of the options used in this analysis does in fact not have any traded

volume during a whole day despite the S&P 500 index options being the most heavily traded

options in the world (Fournier, 2013). Because options are derivative securities whose value

derive from the underlying asset, the price of options does in fact change regardless of any

trading activity.

Option prices are quoted by market makers, who provide liquidity by being prepared

to take positions in the markets. The liquidity of options is thus the willingness of market

makers to take the opposite side of a trade. Therefore, liquidity of options is most commonly
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measured by the bid-ask spread, since it measures how willing market makers are to make

market in specific options. Specifically, the more market makers are competing for trades on

an option, the narrower the bid-ask spread becomes and the higher the liquidity of that option

is.

The specific measure of option liquidity used in this thesis is the ‘proportional bid-ask

spread’. This representation of the bid-ask spread ensures that the bid-ask spread of options at

different price scales can be compared as the bid-ask spread is transformed into a percentage

spread. A large proportional bid-ask spread translates to a low liquidity option and vice versa.

The proportional bid-ask spread is calculated as

Ask Price− Bid Price

Mid Price
(4.24)

where the mid price is defined as (Ask Price− Bid Price)/2.

The hypothesis underlying the inclusion of a liquidity measure in the ANN for option

pricing is based on the inventory risk stemming from an imbalance between the supply and

demand of options. Market makers will increase the bid-ask spread of an option when they are

unwilling to supply the demand for an option. In this way, the effect of demand for and supply

of options is directly affecting the bid-ask spread, and I hypothesize that the proportional bid-

ask spread can increase the explanatory power of the Benchmark ANN by utilizing information

regarding the liquidity of an option.
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Empirical Results

In this chapter, I present the empirical results of the ANN models compared to the BSM

model and PBS model. Initially, I examine which volatility forecasting model results in the

lowest pricing error in order to identify the Benchmark ANN. I then investigate how well the

Benchmark ANN performs compared to the PBS and BSM in terms of capturing the volatility

surface. Next, I assess whether there is any improvement from including additional option

pricing variables to the Benchmark ANN model. Finally, I end the chapter with a discussion

of the results including a discussion of real-world implications of the results. As mentioned

in section 4.6, I focus the analysis on MAPE as opposed to MSE, since the MSE was used to

train the ANNs, while the MAPE acts as a validation evaluation measure. In addition, I will

focus the analysis on the S&P 500 index options and use the options on Dow Jones Industrial

Average to assess how well the model generalizes to other index options.

5.1 Volatility Forecasting Model

The Benchmark ANN is the product of the optimized hyperparameters and the best perform-

ing volatility forecasting model. In Chapter 4, I found the optimal hyperparameters of the
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Benchmark ANN to be: three hidden layers of 128 perceptrons with the ReLU activation func-

tion and a batch size of 4096. I apply the same method to the problem of finding the best

performing volatility forecasting model. Specifically, I race the six volatility forecasting models

against each other using the grid search approach to find the model that best price the options

under consideration when added as an additional input to the ANN.

Table 5.1 contains the mean and standard deviation of the MSE and MAPE estimates

resulting from the 10-fold cross-validation for each of the volatility forecasting models for S&P

500 (SPX) and Dow Jones Industrial Average (DJX) call options, respectively. I compare these

estimates to the BSM model with the equivalent volatility forecast.

Volatility Dependence. Interestingly, the ANN model prevails the corresponding BSM

model for all volatility forecasting models for both the SPX and DJX call options as measured

by lower MSE and MAPE. In addition, the variation between volatility forecasting models of

the ANN and the BSM is smaller suggesting that the ANN model is less reliant on the volatility

parameter than the BSM model. For instance, the out-of-sample MAPE of the BSM model

on DJX options lies in the interval from 25.57% to 48.15%, while the corresponding range for

the ANN model is 10.82% to 14.46%. This observation demonstrates that the ANN model

prevails the BSM model regardless of the volatility forecasting model used since the upper

bound of the interval of the ANN model is lower than the lower bound of the interval of the

BSM model. This observation is true for both DJX options and SPX options and both in the

training and validation data. This initial result suggests that the ANN model prevails the BSM

model regardless of the volatility forecasting model.

A likely explanation for the BSM model’s higher dependence on volatility is related to

a difference in how the models utilize the information available in input parameters. While

the BSM model interprets all information contained within input parameters as relevant, the

ANN model is able to assign weights to input parameters allowing it to cherry-pick relevant

information from the inputs and disregard noise. At the same time, the ANN model can learn

which parameters are most important from data while taking linear and nonlinear relationships

between input parameters into account. On the other hand, volatility is the only input chosen
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Table 5.1: Comparison of volatility forecasting models in the artificial neural network (ANN) model
and the Black-Scholes-Merton (BSM) model.

63



Chapter 5 Empirical Results

with discretion in the BSM model whereas all other input parameters are given exogenously

implying that the volatility parameter of the BSM model is essential.

Bias-Variance Tradeoff. The argument presented in the paragraph above is only valid

if the ANN is well-trained in relation to neither underfitting nor overfitting the data. I examine

this by analyzing the out-of-sample performance of the ANNs using the cross-validation method

mentioned in section 4.3 and the bias-variance tradeoff mentioned in section 3.2.

The MSE and MAPE are comparable across the training and validation data for both

SPX and DJX options. This observation suggests that the ANNs generalize well to unseen

data implying that the models do not suffer from overfitting. This is a good sign considering

the tendency of ANNs to overfit data due to the large number of parameters. Additionally, the

ANN model appears to generalize well to different index options as seen from the (even lower)

pricing errors on the options of the Dow Jones Industrial Average index.

The mean and standard deviation of the MSE and MAPE from the 10-fold cross-validation

present in Table 5.1 can be seen as measures of the bias and variance of the models, respectively.

While the ANN model has lower biases compared to the BSM model, the ANN model introduces

variance as a result of the complex optimization process underlying the training of the model.

The variance of the ANN model means that the predicted price of the same option may change

each time the model is trained; an undesirable feature that we wish to minimize. On the other

hand, the BSM model always provides the same option price for a given set of input variables.

The bias-variance tradeoff is, as implied by its name, a tradeoff between bias and variance.

The question is therefore whether the lower bias of the ANN model more than offsets the

adversarial effect of the variance they introduce. The standard deviation of the out-of-sample

MAPE estimates resulting from the 10-fold cross-validation of the ANNs is between 2.21%

and 8.73% for the SPX options and between 1.85% and 7.60% for the DJX options. To avoid

information overload, I will only highlight the most interesting insights from Table 5.1 regarding

the bias-variance tradeoff.
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For the SPX options, the MAPE of the ANN model with GARCH(1,1) volatility is only

marginally lower than the corresponding BSM model, but the standard deviation is the highest

among all models at 8.73%; a bad tradeoff between bias and variance. On the other hand,

the ANN model with VIX (for SPX options) and VXD (for DJX options) volatility introduces

only a modest standard deviation in relation to the substantially lower bias as measured by

MAPE. Indeed, the VIX/VXD volatility forecast results in the lowest bias of the six volatility

forecasting models, and I define the volatility of the Benchmark ANN as VIX and VXD for the

SPX and DJX options, respectively. Specifically, the Benchmark ANN for SPX options achieves

an out-of-sample MAPE of 13.13% with a standard deviation of 3.85% while the Benchmark

ANN for DJX options achieves an out-of-sample MAPE of 10.82% with a standard deviation

of 1.85%. The key takeaway from this result is that the ANN model can price options with

a substantially lower bias than the BSM model while only introducing a modest variance; a

promising result for the ANN model. In reference to the research question of this thesis, namely

whether the ANN model is able to price options better than traditional methods, the initial

results are in favor of the ANN model.

Benchmark BSM Model. Interestingly, the BSM model with VIX/VXD volatility has the

highest MAPE of all the volatility forecasting models in contrast to the ANN model. Concretely,

the out-of-sample MAPE is 71.22% for the BSM model with VIX as volatility for SPX options,

while it is 48.15% for DJX options with VXD as volatility in the BSM model. Instead, the

BSM model with GARCH(1,1) volatility achieves the lowest MAPE for both SPX and DJX

options. For this reason, I define the first comparison model to the Benchmark ANN as the

BSM model with GARCH(1,1) volatility.

The reason for this discrepancy between which volatility forecasting model performs best

in the ANN model and the BSM model is challenging to know with certainty. On the one hand,

since the VIX/VXD volatility measure is created from implied volatilities of index options on

SPX and DJX options, it is not surprising that it is useful for option pricing. On the other

hand, option prices are likely to reflect that the GARCH(1,1) volatility forecasting model is

widely used in practice (Rouah & Vainberg, 2007). Seemingly the VIX/VXD measure of future
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volatility is not directly appropriate in the BSM model, but the ANN model manages to extract

useful information from this measure despite.

While Table 5.1 shows evidence of improvements of the ANN model to the BSM model, it

also conveys the message that there is room for improvement. MAPEs of 13.13% and 10.82%

for the Benchmark ANN on SPX and DJX options, respectively, is substantially better than

the BSM model but it is still a sizeable error from an economic perspective. I will discuss the

real-world implication of the results further in section 5.4.

5.2 Benchmark Artificial Neural Network

The ANNs contain 50,433 weights applied to nonlinear activation functions making them ex-

tremely difficult, if not impossible, to understand and interpret. Instead, I investigate how

reliable the model predictions are in order to understand under which circumstances the model

predictions are reliable and under which circumstances the model has problems. Concretely, I

initiate this section by investigating the precision of the ANNs as measured by linear regression

of the predicted prices against the observed prices and compare the results to Hutchinson et

al. (1994). Next, I investigate how well the ANNs are able to incorporate the volatility surface

by investigating how well the ANNs price options of different moneyness and time-to-maturity.

5.2.1 Regression

Following in the footsteps of Hutchinson et al. (1994), the first paper to explore the use of

machine learning to price options, I present an ordinary least squares (OLS) regression of the

predicted option prices by the Benchmark ANN against the observed market prices for SPX

options in Table 5.2. In addition, I illustrate the predicted option prices in a scatter plot against

the observed market prices in Figure 5.1.

The fitted line of the OLS regression has an intercept of 0.0579, a slope of 1.0006 and

an R2 of 0.99997 for the SPX options and approximately the same for the DJX options. The
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slope and R2, both close to one, suggest that the model is making very accurate predictions,

whereas the intercept of approximately 0.0579 suggests that the Benchmark ANN consistently

prices options a bit too expensive. However, seen relative to option prices ranging from $0 to

$800, the mispricing of approximately five cents is trivial.

Figure 5.1: Scatter plot of the predicted option pricing against the observed option price.

Table 5.2: Regression output from regressing the predicted option pricing against the observed
option price.

The Benchmark ANN developed in this thesis achieves a higher R2 than the one of

Hutchinson et al. (1994) of 95.53% suggesting the Benchmark ANN can price options more

accurately. This improvement is not surprising given the exponential growth in computing

power and the vastly increased data availability; possibly the two most important success

factors of ANNs.

The distribution of percentage residuals of the ANN models, presented in Figure 5.2,

exhibit a bell curve shape with a visibly higher kurtosis than the normal distribution. Approx-

imately 94% of options are priced with an error of less than 5% while approximately 88% of
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Figure 5.2: Distribution of percentage residuals of the artificial neural network model.

the options are priced with an error of less than 1%. This result suggests that the ANN model

price the majority of options with a reasonably small percentage error from the true observed

market price.

However, the ANN model has some outliers that negatively affect overall pricing errors.

Concretely, 1% of options are priced with an error of greater than 38% while 0.5% of percentage

residuals exceed 57%. These outlier residuals were not visible in the histograms in Figure 5.2,

and I have therefore restricted the x-axis to ± 15%.

To summarize, the percentage residuals imply that almost nine out of ten options are

priced with a percentage error of 1% or less; a promising result. However, the outliers are

sizeable, and the model seems to have issues, whose origin I will examine in further detail in

the next section.

5.2.2 Moneyness

Table 5.3 shows the performance of the ANN model and the two comparison models for dif-

ferent moneyness for SPX and DJX index call options. For both SPX and DJX options, the

PBS model exhibits lower pricing errors than the BSM model, while the ANN model exhibits

substantially lower pricing errors than both the PBS and BSM. This result is consistent across

all moneyness and the training and validation data.
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Table 5.3: Evaluation of the three models in the training and validation data on S&P 500 and Dow
Jones Industrial Average index options per moneyness.

The three models have in common that the pricing error as measured by MAPE is a

decreasing function of moneyness. Said differently, the more in-the-money (ITM) an option

becomes, the better able are all three models of pricing the option. One cause of this result is

likely the fact that option prices under Black-Scholes assumptions approach S −Ke−r(T−t) in

the limit as S → ∞ as mentioned in section 2.6. The effect of this is that option prices start

to behave linearly as the moneyness increases.

This feature of option prices is also evident from Figure 5.3 that shows the predicted

option price from the ANN model on SPX options and the observed SPX option prices both

plotted against moneyness. From these plots, it is apparent that both observed option prices
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and predicted option prices behave linearly for higher moneyness, while at-the-money options

show the greatest variation.

Figure 5.3: Predicted option prices and observed option prices both plotted against moneyness.

Another reason for this behavior of the ANN model could be related to the composition of

the training data used to train the model, namely that approximately 68% of the SPX options

are ITM or DITM while this number is approximately 65% for the DJX options as seen in

Table 5.4. This overrepresentation of ITM and DITM options in the data indicates that the

ANNs have an incentive to focus on minimizing the pricing error of ITM or DITM options

since this results in the most considerable reduction of the overall error.

Table 5.4: Composition of data per group of moneyness in the training and validation data for the
options under consideration in this thesis.

The Benchmark ANN model thus captures the volatility smirk of index options better

than the comparison models as seen by consistently lower pricing error across all moneyness.
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However, the pricing error is still a decreasing function of moneyness implying that the model

has issues related to pricing out-the-money options.

5.2.3 Time-To-Maturity

Table 5.5 shows the pricing errors of the three models on SPX and DJX option for different

groups of time-to-maturity up to two years. The ANN model prevails the two comparison

models for almost all time-to-maturities as measured by both MSE and MAPE.

Table 5.5: Evaluation of the three models in the training and validation data on S&P 500 and Dow
Jones Industrial Average index options per time-to-maturity.
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Interestingly, the ANN model is a decreasing function of time-to-maturity while the op-

posite is true for the BSM model. The MAPE of the PBS model is instead decreasing for

time-to-maturities up to 90 days, while it is increasing for time-to-maturities between 90 and

730 days. Precistly what causes this difference in pricing errors across time-to-maturities for

the three models is difficult to say based on Table 5.5. Nevertheless, it is an important insight

into the pricing capabilities of the models as it shows how confident one should be on an option

price prediction given by each model for a given time-to-maturity.

While the PBS model is modeling the volatility term structure observed in market prices,

the benefits of doing so seem negligible compared to the BSM with GARCH(1,1) volatility.

Both of these models have a large variation in MAPE between different time-to-maturity, and

this inconsistency in pricing across time-to-maturity is an undesirable feature. The ANN is

seemingly more reliable in pricing options of different time-to-maturity, but it does have issues

related to pricing shorter-term options.

The conclusion from Table 5.5 is therefore that the ANN model is better able to capture

the volatility term structure of index options than the comparison models, while the model still

has some issues related to pricing of shorter-term options.

In order to conclude on the ANN models’ ability to incorporate the volatility surface, I have

prepared a sensitivity analysis in Table 5.6 that combines the moneyness and time-to-maturity

and evaluates the Benchmark ANN model on out-of-sample MAPE for SPX options.

The general pattern apparent from Table 5.6 is that the ANN model prices options of

longer time-to-maturity and higher moneyness better. The highest pricing error occurs for

the options of the shortest time-to-maturity that are the most out-of-the-money, while the

DITM options appear to be consistently priced across different time-to-maturities with an

out-of-sample MAPE of approximately 0.7%.
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Table 5.6: Sensitivity analysis of the artificial neural networks ability to capture the volatility
surface.

5.3 Additional Option Pricing Variables

After analyzing the benchmark ANN, henceforth denoted the ANN (B), I continue to an anal-

ysis of whether additional variables can increase the explanatory power of the model and help

predict option prices. I call this new model with an additional predictive variable the ANN

(A). As mentioned in section 4.9, the four variables are hypothesized to capture the effect of

supply and demand on option prices.

I use the same approach to evaluate the explanatory power of the additional option pricing

variables as I used to identify the best volatility forecasting model: grid search with 10-fold

cross-validation. I retrain the ANNs using the additional input variable and report the results

in Table 5.7. Since I already showed that the ANN (B) prevails the BSM model and the PBS

model, I will only compare the ANN (A) to the ANN (B) to evaluate whether there is any added

explanatory power to the ANN (B) from including the additional option pricing variables.

CAPE. Table 5.7 show little to no improvement in the model bias from including the

CAPE ratio to the ANN (B) implying that the ANN struggles to identify relevant information

from the CAPE ratio. Instead, the CAPE ratio introduces substantially more variance to

the 10-fold cross-validation estimates. These results are consistent across the SPX and DJX

options.
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Table 5.7: Evaluation of the additional option pricing variables in the artificial neural network model
in comparison to the Black-Scholes-Merton model.

This result implies that the expensiveness of the stock market, specifically the S&P 500

index, does not affect the pricing of options according to the ANN model. One reason for

this result could be that the CAPE ratio contains little to no relevant information for the

pricing of options. However, the black-box nature of ANNs implicates that such conclusions are

challenging to make with certainty. Another reason could be that the ANN fails to extract the

relevant information. Instead, I can conclude that the CAPE ratio shows little predictive power

of option prices for the given specifications of the benchmark ANN in terms of hyperparameters

and the given period under consideration.

TED Spread. The results of including the TED spread in the ANN (B) is conflicting

across SPX and DJX options. For the SPX options, the TED spread substantially worsens
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both the bias and the variance of the model. For the DJX options, the TED spread slightly

improves the bias with a comparable variance to the ANN (B). However, I do not consider

these conflicting results convincing enough to conclude that the TED spread increases the

explanatory power of the ANN (B).

This result is unexpected since the economic rationale for the TED spread having an

influence on option prices, based on the notion of supply/demand option pricing, is convincing.

Especially because the TED spread can be interpreted as a measure of the risk appetite among

commercial and investment banks, who are the typical dealers of options, and who would be

expected to limit the supply of options in times when they are more constrained. A likely

explanation for this could be that the ANN model fails to extract useful information from the

TED spread in the period under consideration. Specifically, the period from 2010 to 2017 does

not include any U.S. recessions causing the TED spread to behave relatively steady as apparent

from Figure 4.3. The ANNs simply may not have had enough relevant data during the period

under consideration to understand and interpret the signals from the TED spread.

Liquidity. The liquidity measure considerably lowers the bias and the variance of the

ANN (B) for both SPX and DJX options. Concretely, the out-of-sample MAPE is 8.91% for

SPX options while it is 8.10% for DJX options both with a standard deviation of close to 1%

suggesting a beneficial tradeoff between bias and variance. These MAPEs should be seen in

relation to an out-of-sample MAPE of 18.50% for the PBS model and 25.57% for the BSM

model; a substantial improvement in empirical option pricing to traditional methods.

Seemingly, option prices are affected by the proportional bid-ask spread used in this thesis

as a measure of option liquidity. This implies that the size of the bid-ask spread influences

the mid-price of an option, likely due to an imbalance between market demand and supply.

Concretely, market makers increase the bid-ask spread of an option when they are unwilling to

supply the demand for an option, thus increasing the transaction costs.

However, increased transaction costs are not sufficient to explain the improvements of

including the liquidity measure in the ANN (A) model, since the model is optimized to predict

75



Chapter 5 Empirical Results

the mid-price: Ceteris paribus, an increase in the bid-ask spread does not change the mid-

price, since it is the average of the bid and ask price. However, the proportional bid-ask

spread seemingly does affect the mid-price of options implying that unwillingness among market

makers to supplyt the increased demand for an option not only effects the transaction costs

but increase the mid-price of the option as well.

Yield Curve. Table 5.7 show evidence of improvements to the ANN (B) model from

using information about the slope of the yield curve. The improvement is not as substantial as

the improvement due to the liquidity measure, but the results still do imply an improvement

in bias without an increase in variance.

The slope of the yield curve is generally considered reliable in predicting a forthcoming

recession (Constable & Wright, 2011) and Table 5.7 suggests that this signal translates to

option pricing as well. A likely cause of this relationship is the effect of supply and demand,

concretely that market participants have increased demand for options as insurance to protect

against adverse market moves when the slope of the yield curve is decreasing thus driving up

the prices of these options. At the same time, market makers are less willing to supply the

market with crash insurance given they too perceive an increased probability of a financial

crisis.

5.4 Discussion and Suggested Further Research

The primary feature of ANNs that make them suitable for option pricing is their ability to learn

the dynamics of the option markets without restrictive assumptions like the BSM model. While

the BSM relies on assumptions such as the underlying asset following a geometric brownian

motion and the volatility being constant, the ANN instead learns these dynamics directly

from the data. ANNs do not require specification of a partial differential equation, complex

continuous-time stochastic calculus, assumptions about perfect capital market, etc. to obtain

the price of an option, unlike the BSM model. Granted, ANNs are not simple models either, but

they have the advantage of being versatile and useful to a range of different applications within
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most scientific fields without considerable adjustment. This versatility likely allows for the

ANN model to apply to different derivatives such as American options, exotic options or even

interest rate derivatives. Indeed, I would suggest conducting further research on the pricing of

different derivatives using ANNs or other machine learning methods given the required data is

available in the necessary quantities.

While the ANN model prevails both the BSM model and the PBS model, the errors are still

significant from an economic perspective, specifically for OTM options. Conceivably the most

prominent concern regarding the use of ANNs to price options is the black-box concept. Even

though the ANN model exhibits lower pricing errors than the BSM model and the PBS model,

the black-box nature of the model may worry market participants using the model. While the

BSM model consistently misprices options, likely as a result of the unrealistic assumptions,

option dealers are aware of the limitations of the model and are able to make adjustments that

take the market dynamics better into account. On the other hand, the inner workings of the

ANN model are concealed by the complexity of the model stemming from the massive number

of parameters connecting nonlinear functions. Instead, option dealers must blindly trust the

predictions of option prices of the ANN model and disregard any wish to know what causes a

specific prediction. This implies a tradeoff between the vast improvements in the pricing error

of the ANN model and the black-box nature of the model. Further research could examine the

outliers of the ANN model versus the BSM model and evaluate whether either model is more

reliable in ‘extreme’ times versus in ‘normal’ times.

As far as I am aware, the notion of including additional variables in an ANN option pricing

model is novel, and the initial results of doing so are promising. Especially the liquidity measure

proved to have a positive effect on the pricing error of the ANN model as well as the slope of

the yield curve. The improvements to the ANN model of including these two measures suggest

that the ANN model is able to capture the effect of supply and demand on option pricing to a

degree. The favorable tradeoff between bias and variance suggested that ANN (A) was able to

capture this effect reliably and consistently.

It would be interesting to explore further if any other variables have predictive power in
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the ANN model or conversely if any of the traditional BSM inputs can be omitted from the

ANN model. In relation to this, there is potential to further reduce the dimensionality of the

ANN by normalizing input variables using insights from financial theory. For example, one

could use the futures price of the underlying asset, F0 = S0e
(r−q)T , and in this way reduce the

number of input variables by two – the interest rate and the dividend yield – without losing

any information. However, this approach introduces assumptions to the ANN model instead

of letting the ANN model discover such relationships on its own. In addition, there may exist

relationships between the interest rate and the other variables that the ANN model is unable

to learn if these variables are embedded in the specification of the underlying asset as a futures

contract.

The versatile nature of ANNs allows for easy adjustments to the inputs of the model.

Arguably, this is one of the major advantages of ANN in relation to option pricing. Besides

this, I find that the universal approximation theorem stating that ANNs can approximate any

continuous function and the notion of ANNs being non-parametric are the primary reasons

underlying the improvements of the ANN models to the traditional methods. ANNs surely

have potential to improve on traditional option pricing models.
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Conclusion

The Black-Scholes-Merton option pricing model suffers from unrealistic assumptions that affect

its empirical option pricing capabilities. In this thesis, I explore whether non-parametric arti-

ficial neural networks are able to price options on the S&P 500 and the Dow Jones Industrial

Average indices better than traditional methods.

I develop an artificial neural network option pricing model and compare its empirical

performance on index options to the Black-Scholes-Merton model and the Practitioner Black-

Scholes model. I examine whether the artificial neural network is able to incorporate the effect

of the volatility surface and supply and demand in option markets.

I find that the artificial neural network model prices index options on the S&P 500 index

and the Dow Jones Industrial Average index with substantially lower pricing error than the

comparison models. Approximately nine out of ten options are priced with less than 1% error,

but large outliers pull the mean absolute percentage error to approximately 12%. Despite

these outliers, this is still a substantial improvement to the Black-Scholes-Merton model’s mean

absolute percentage error of approximate 25% and the Practitioner Black-Scholes model’s mean

absolute percentage error of approximately 21%.

I present evidence that the artificial neural network model is better able to capture the

volatility surface known from option markets since the model prices options better than the
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comparison models across different moneyness and time-to-maturity. However, the pricing error

is still a decreasing function of moneyness and time-to-maturity implying that the pricing errors

get larger the more out-the-money the options becomes and the longer the time-to-maturity is.

I show that including the proportional bid-ask spread as a measure of the liquidity premium

and the slope of the yield curve as variables to the artificial neural network model improves

the pricing error. In particular, the proportional bid-ask spread model achieves an out-of-

sample mean absolute percentage error of approximately 8.5%, close to three times better than

the Black-Scholes-Merton model. I conclude that the improvement from using the liquidity

measure is likely due to the demand pressure on index put options shown by Garleanu et al.

(2008) and Constantinides and Lian (2015).

The primary limitation of the artificial neural network is its black-box nature. Concretely,

the model is highly opaque due to a large number of parameters and nonlinear activation

functions. This implies a tradeoff between the opaqueness of the artificial neural network

model and the unrealistic assumptions of the Black-Scholes-Merton model.

I conclude that the artificial neural network model is a promising option pricing model

that prevails both the Black-Scholes-Merton model and the Practitioner Black-Scholes model

substantially. The ANN models developed in this thesis result in lower pricing errors than the

comparison models while indicating the ability to capture the volatility surface and the effect

of supply and demand on option pricing. In particular, the ability to add additional variables

with predictive power is a promising feature of the artificial neural network model.

I believe artificial neural networks have great potential in the field of option pricing. I

would suggest further research be conducted on additional variables that could help increase

the predictive power of the artificial neural network model, particularly variables that could

help decrease the relatively high pricing error of out-the-money options and options with long

time-to-maturity.
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Data Preparation

1 # Import L i b r a r i e s

2 import pandas as pd

3 import numpy as np

4 from copy import copy

5 import matp lo t l i b . pyplot as p l t

6 import s c ipy . s t a t s as s i

7 import s ta t smode l s . ap i as sm

8 from p y v o l l i b . b l a ck s cho l e s mer ton . i m p l i e d v o l a t i l i t y import i m p l i e d v o l a t i l i t y

9

10 # Import Data

11 data = pd . r ead c sv ( ’ Data/Option Metr ics / o p t i o n m e t r i c s . csv ’ )

12

13 # Data Preparat ion

14 data = data [ data [ ’ t i c k e r ’ ]== ’SPX ’ ] # SPX or DJX

15 data = data [ data [ ’ c p f l a g ’ ]== ’C ’ ]

16 data [ ’ s t r i k e p r i c e ’ ] = data [ ’ s t r i k e p r i c e ’ ] / 1000

17 data = data [ data [ ’ b e s t b i d ’ ] > 0 ]

18 data [ ’ p r i c e ’ ] = ( data [ ’ b e s t b i d ’ ] + data [ ’ b e s t o f f e r ’ ] ) / 2

19 data [ ’ spread ’ ] = data [ ’ b e s t o f f e r ’ ] − data [ ’ b e s t b i d ’ ]

20 data = data . drop ( [ ’ b e s t b i d ’ , ’ b e s t o f f e r ’ ] , a x i s =1)

21 data [ ’ date ’ ] = pd . to date t ime ( data [ ’ date ’ ] , format = ’%Y%m%d ’ )

22 data [ ’ exdate ’ ] = pd . to date t ime ( data [ ’ exdate ’ ] , format = ’%Y%m%d ’ )
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23 data [ ’T ’ ] = ( ( data [ ’ exdate ’ ] − data [ ’ date ’ ] ) . dt . days ) /365

24 data = data . s e t i n d e x ( ’ date ’ )

25 de l ( data [ ’ exdate ’ ] )

26 data = data [ ( data [ ’T ’ ] <= 2) ]

27 data [ ’ Year ’ ] = data . index . year

28 data = data [ ( data [ ’ Year ’ ] >= 2010) ]

29

30 # Merge I n t e r e s t Rate ( r ) , Continous Dividends ( q ) , Underlying (S) , and

V o l a t i l i t y ( sigma )

31

32 # 1M Treasury Rate ( r )

33 r = pd . r ead c sv ( ’ Data/Option Metr ics /1M Treasury Rate . csv ’ , p a r s e d a t e s=True ,

i n d e x c o l=’DATE’ , na va lue s=’ . ’ )

34 r . dropna ( i n p l a c e=True )

35 r [ ’ r ’ ] = np . f l o a t 6 4 ( r [ ’DGS1MO’ ] ) / 100

36 de l ( r [ ’DGS1MO’ ] )

37 data = data . merge ( r , l e f t i n d e x=True , r i g h t i n d e x=True , how=’ l e f t ’ )

38 de l ( r )

39

40 # Continous Dividends ( q )

41 q = pd . r ead c sv ( ’ Data/Option Metr ics / div . csv ’ , i n d e x c o l=’ date ’ , p a r s e d a t e s=

True )

42 q [ ’ r a t e ’ ] = q [ ’ r a t e ’ ] / 100

43 q = q [ q [ ’ t i c k e r ’ ]== ’SPX ’ ] # SPX or DJX

44 q = pd . DataFrame ( q [ ’ r a t e ’ ] )

45 data = data . merge (q , l e f t i n d e x=True , r i g h t i n d e x=True , how=’ l e f t ’ )

46 de l ( q )

47

48 # Underlying (S)

49 S = pd . r ead c sv ( ’ Data/Option Metr ics / I n d i c e s t s . csv ’ , p a r s e d a t e s=True ,

i n d e x c o l=’ date ’ )

50 S = S [ S [ ’ t i c k e r ’ ]== ’SPX ’ ] # SPX or DJX

51 S = pd . DataFrame (S [ ’ c l o s e ’ ] )

52 data = data . merge (S , l e f t i n d e x=True , r i g h t i n d e x=True , how=’ l e f t ’ )

53 de l (S)

54 data [ ’M’ ] = data [ ’ c l o s e ’ ] / data [ ’ s t r i k e p r i c e ’ ]
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55 data = data [ ( data [ ’M’ ] <= 1 . 5 ) ]

56 data = data [ ( data [ ’M’ ] >= 0 . 8 ) ]

57

58 # V o l a t i l i t y ( sigma )

59 vo l = pd . r ead c sv ( ’ Data/Option Metr ics /SPX vol . csv ’ , i n d e x c o l=’ date ’ ,

p a r s e d a t e s=True ) # SPX or DJX

60 data = data . merge ( vol , l e f t i n d e x=True , r i g h t i n d e x=True , how=’ l e f t ’ )

61 de l ( vo l )

62

63 # Merge Addi t iona l Var iab l e s

64

65 # CAPE r a t i o

66 cape = pd . r ead c sv ( ’ Data/Option Metr ics / Addi t iona l Var i ab l e s / cape . csv ’ ,

na va lue s=’ . ’ , i n d e x c o l=’ date ’ , p a r s e d a t e s=True )

67 cape = cape . resample ( r u l e=’D ’ ) . f f i l l ( )

68 data = data . merge ( cape , l e f t i n d e x=True , r i g h t i n d e x=True , how=’ l e f t ’ )

69 de l ( cape )

70

71 # TED spread

72 TEDspread = pd . r ead c sv ( ’ Data/Option Metr ics / Addi t iona l Var i ab l e s /TEDspread . csv ’

, dtype=’ a ’ , na va lue s=’ . ’ , i n d e x c o l=’DATE’ )

73 TEDspread . dropna ( i n p l a c e=True )

74 TEDspread [ ’TEDRATE’ ] = np . f l o a t 6 4 ( TEDspread [ ’TEDRATE’ ] ) / 100

75 data = data . merge ( TEDspread , l e f t i n d e x=True , r i g h t i n d e x=True , how=’ l e f t ’ )

76 de l ( TEDspread )

77

78 # Yield Curve : 10Y − 2Y

79 y i e l d c u r v e = pd . r ead c sv ( ’ Data/Option Metr ics / Addi t iona l Var i ab l e s /T10Y2Y . csv ’ ,

dtype=’ a ’ , na va lue s=’ . ’ , p a r s e d a t e s=True , i n d e x c o l=’DATE’ )

80 y i e l d c u r v e [ ’T10Y2Y ’ ] = np . f l o a t 6 4 ( y i e l d c u r v e [ ’T10Y2Y ’ ] ) / 100

81 y i e l d c u r v e = y i e l d c u r v e . resample ( r u l e=’D ’ ) . f f i l l ( )

82 data = data . merge ( y i e l d cu rve , l e f t i n d e x=True , r i g h t i n d e x=True , how=’ l e f t ’ )

83 de l ( y i e l d c u r v e )

84

85 # BSM Cal l Option Pr i ce

86 de f BSM call (S ,K,T, r , q , sigma ) :
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87 d1 = (np . l og (S/K) + ( r − q + 0 .5 ∗ sigma ∗∗2) ∗ T) / ( sigma ∗ np . s q r t (T) )

88 d2 = d1 − sigma ∗ np . s q r t (T)

89 re turn S ∗ np . exp(−q∗T) ∗ s i . norm . cd f ( d1 , 0 . 0 , 1 . 0 ) − K ∗ np . exp(−r ∗ T)

∗ s i . norm . cd f ( d2 , 0 . 0 , 1 . 0 )

90

91 # P r a c t i t i o n e r Black−Scho l e s

92 i v = np . z e ro s ( ( l en ( data ) ,1 ) )

93 f o r i in range ( l en ( iv ) ) :

94 t ry :

95 i v [ i ] = i m p l i e d v o l a t i l i t y ( data [ ’ p r i c e ’ ] [ i ] , data [ ’ c l o s e ’ ] [ i ] , data [ ’

s t r i k e p r i c e ’ ] [ i ] , data [ ’T ’ ] [ i ] , data [ ’ r ’ ] [ i ] , data [ ’ r a t e ’ ] [ i ] , ’ c ’ )

96 except :

97 i v [ i ] = np . nan

98 data [ ’ IV ’ ] = iv

99 data . dropna ( i n p l a c e=True )

100

101 reg = pd . DataFrame ( data [ ’ s t r i k e p r i c e ’ ] )

102 reg [ ’Kˆ2 ’ ] , reg [ ’T ’ ] , reg [ ’Tˆ2 ’ ] , reg [ ’KT’ ] = data [ ’ s t r i k e p r i c e ’ ] ∗∗ 2 , data [ ’T

’ ] , data [ ’T ’ ] ∗∗ 2 , data [ ’ s t r i k e p r i c e ’ ] ∗ data [ ’T ’ ]

103 reg = sm . add constant ( reg )

104 reg [ ’ y ’ ] = data [ ’ IV ’ ]

105 de f r e g r e s s ( reg , X, y ) :

106 r e s u l t s = sm .OLS( reg [ y ] , reg [X] ) . f i t ( )

107 re turn r e s u l t s . params

108 params = reg . groupby ( by=reg . index ) . apply ( r eg r e s s , [ ’ const ’ , ’ s t r i k e p r i c e ’ , ’Kˆ2 ’ ,

’T ’ , ’Tˆ2 ’ , ’KT’ ] , [ ’ y ’ ] )

109 data = data . merge ( params , l e f t i n d e x=True , r i g h t i n d e x=True )

110 data [ ’ P r a c t i t i o n e r Vol ’ ] = data . const + data [ ’ s t r i k e p r i c e y ’ ] ∗ data [ ’

s t r i k e p r i c e x ’ ] + data [ ’Kˆ2 ’ ] ∗ ( data [ ’ s t r i k e p r i c e x ’ ] ∗∗ 2) + data . T y ∗

data . T x + data [ ’Tˆ2 ’ ] ∗ ( data . T x ∗∗2) + data .KT ∗ data [ ’ s t r i k e p r i c e x ’ ] ∗

data . T x

111 data = data [ ( data [ ’ P r a c t i t i o n e r Vol ’ ] > 0 . 0 1 ) ]

112

113 # Data Export

114 df = pd . DataFrame ( )
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115 df [ ’S ’ ] , d f [ ’K ’ ] , d f [ ’M’ ] , d f [ ’T ’ ] = data [ ’ c l o s e ’ ] , data [ ’ s t r i k e p r i c e x ’ ] ,

data [ ’M’ ] , data [ ’ T x ’ ]

116 df [ ’ vo l10 ’ ] , d f [ ’ vo l30 ’ ] , d f [ ’ vo l60 ’ ] = data [ ’ vo l10 ’ ] , data [ ’ vo l30 ’ ] , data [ ’

vo l60 ’ ]

117 df [ ’GARCH’ ] , d f [ ’HAR−RV’ ] , d f [ ’VIX ’ ] = data [ ’GARCH’ ] , data [ ’HAR−RV’ ] , data [ ’VIX ’

] # VIX or VXD

118 df [ ’ IV ’ ] , d f [ ’ P r a c t i t i o n e r Vol ’ ] = data [ ’ IV ’ ] , data [ ’ P r a c t i t i o n e r Vol ’ ]

119 df [ ’ r ’ ] , d f [ ’ q ’ ] = data [ ’ r ’ ] , data [ ’ r a t e ’ ]

120 df [ ’ p r i c e ’ ] = data [ ’ p r i c e ’ ]

121 df [ ’ ID ’ ] = data [ ’ op t i on id ’ ]

122 df [ ’ p r i c e ’ ] = df [ ’ p r i c e ’ ] / df [ ’K ’ ]

123 df [ ’CAPE’ ] , d f [ ’TED’ ] , d f [ ’ Yie ld Curve ’ ] , d f [ ’ L i q u id i t y ’ ] = data [ ’ cape ’ ] , data [ ’

TEDRATE’ ] , data [ ’T10Y2Y ’ ] , ( data [ ’ spread ’ ] / df [ ’K ’ ] ) / df [ ’ p r i c e ’ ]

124 df [ ’ Year ’ ] = data [ ’ Year ’ ]

125 df [ ’BSM ( vol10 ) ’ ] = ( BSM call ( df [ ’ S ’ ] , d f [ ’K ’ ] , d f [ ’T ’ ] , d f [ ’ r ’ ] , d f [ ’ q ’ ] , d f [ ’ vo l10 ’

] ) ) / df [ ’K ’ ]

126 df [ ’BSM ( vol30 ) ’ ] = ( BSM call ( df [ ’ S ’ ] , d f [ ’K ’ ] , d f [ ’T ’ ] , d f [ ’ r ’ ] , d f [ ’ q ’ ] , d f [ ’ vo l30 ’

] ) ) / df [ ’K ’ ]

127 df [ ’BSM ( vol60 ) ’ ] = ( BSM call ( df [ ’ S ’ ] , d f [ ’K ’ ] , d f [ ’T ’ ] , d f [ ’ r ’ ] , d f [ ’ q ’ ] , d f [ ’ vo l60 ’

] ) ) / df [ ’K ’ ]

128 df [ ’BSM (GARCH) ’ ] = ( BSM call ( df [ ’ S ’ ] , d f [ ’K ’ ] , d f [ ’T ’ ] , d f [ ’ r ’ ] , d f [ ’ q ’ ] , d f [ ’GARCH’

] ) ) / df [ ’K ’ ]

129 df [ ’BSM (HAR−RV) ’ ] = ( BSM call ( df [ ’ S ’ ] , d f [ ’K ’ ] , d f [ ’T ’ ] , d f [ ’ r ’ ] , d f [ ’ q ’ ] , d f [ ’HAR−

RV’ ] ) ) / df [ ’K ’ ]

130 df [ ’BSM (VIX) ’ ] = ( BSM call ( df [ ’ S ’ ] , d f [ ’K ’ ] , d f [ ’T ’ ] , d f [ ’ r ’ ] , d f [ ’ q ’ ] , d f [ ’VIX ’ ] ) )

/ df [ ’K ’ ]

131 df [ ’BSM ( P r a c t i t i o n e r ) ’ ] = ( BSM call ( df [ ’ S ’ ] , d f [ ’K ’ ] , d f [ ’T ’ ] , d f [ ’ r ’ ] , d f [ ’ q ’ ] , d f [

’ P r a c t i t i o n e r Vol ’ ] ) ) / df [ ’K ’ ]

132

133 df . t o c s v ( ’ Data/Option Metr ics / Market Data SPX call . csv ’ )
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Volatility Forecasts

1 # Import L i b r a r i e s

2 import pandas as pd

3 from matp lo t l i b import pyplot as p l t

4 from arch import arch model

5 from arch . u n i v a r i a t e import HARX

6 import numpy as np

7

8 # Import Data

9 data = pd . r ead c sv ( ’ Data/Option Metr ics / I n d i c e s t s . csv ’ , p a r s e d a t e s=True ,

i n d e x c o l=’ date ’ )

10 data = data [ data [ ’ t i c k e r ’ ]== ’SPX ’ ] # SPX or DJX

11 data = pd . DataFrame ( data [ ’ c l o s e ’ ] )

12 data [ ’ r e turn ’ ] = data [ ’ c l o s e ’ ] . pct change ( )

13 data . dropna ( i n p l a c e=True )

14

15 # H i s t o r i c a l V o l a t i l i t y ( Ro l l i ng )

16 vo l = pd . DataFrame ( columns = [ ’ vo l10 ’ , ’ vo l30 ’ , ’ vo l60 ’ ] )

17 vo l [ ’ vo l10 ’ ] = data [ ’ r e turn ’ ] . r o l l i n g ( window = 10) . std ( ) ∗ np . s q r t (252)

18 vo l [ ’ vo l30 ’ ] = data [ ’ r e turn ’ ] . r o l l i n g ( window = 30) . std ( ) ∗ np . s q r t (252)

19 vo l [ ’ vo l60 ’ ] = data [ ’ r e turn ’ ] . r o l l i n g ( window = 60) . std ( ) ∗ np . s q r t (252)

20 vo l . dropna ( i n p l a c e=True )

21
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22 # Recurs ive GARCH

23 r e tu rn s = data [ ’ r e turn ’ ] ∗ 100

24 garch = arch model ( r e tu rn s )

25 end loc = np . where ( r e tu rn s . index >= ’2001−1−1 ’ ) [ 0 ] . min ( )

26 f o r e c a s t s = {}

27 f o r i in range ( l en ( r e tu rn s )−end loc +1) :

28 r e s = garch . f i t ( l a s t o b s=i+end loc , d i sp=’ o f f ’ )

29 temp = r e s . f o r e c a s t ( ) . var i ance

30 f c a s t = temp . i l o c [ i+end loc −1]

31 f o r e c a s t s [ f c a s t . name ] = f c a s t

32 df = pd . DataFrame ( f o r e c a s t s ) .T

33 df = np . s q r t ( df /100)

34 vo l [ ’GARCH’ ] = df

35

36 # HAR−RV

37 rv = pd . r ead c sv ( ’ Data/ r e a l i z e d v o l . csv ’ , i n d e x c o l = ’ date ’ , p a r s e d a t e s = True

)

38 rv = rv [ rv [ ’ Symbol ’ ]== ’ . DJI ’ ]

39 rv = pd . DataFrame ( rv [ ’ rv5 ’ ] )

40 har = HARX( rv , l a g s =[1 , 5 , 2 2 ] )

41 end loc = np . where ( rv . index >= ’2001−1−1 ’ ) [ 0 ] . min ( )

42 f o r e c a s t s = {}

43 f o r i in range ( l en ( rv )−end loc +1) :

44 r e s = har . f i t ( l a s t o b s=i+end loc , d i sp=’ o f f ’ )

45 temp = r e s . f o r e c a s t ( ) . mean

46 f c a s t = temp . i l o c [ i+end loc −1]

47 f o r e c a s t s [ f c a s t . name ] = f c a s t

48 df = pd . DataFrame ( f o r e c a s t s ) .T

49 df = np . s q r t ( df ∗ 252)

50 vo l [ ’HAR−RV’ ] = df

51

52 # VIX (SPX) / VXD (DJIA)

53 vix = (pd . r ead c sv ( ’ Data/Option Metr ics / Addi t iona l Var i ab l e s /VIX . csv ’ ,

p a r s e d a t e s=True , i n d e x c o l=’ Date ’ ) ) / 100

54 vo l [ ’VIX ’ ] = vix [ ’ v ix ’ ] # VIX or VXD

55
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56 # Export to CSV

57 vo l . t o c s v ( ’ Data/Option Metr ics /SPX vol . csv ’ ) # SPX or DJX
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Artificial Neural Network

1 # Import L i b r a r i e s

2 from keras . models import Sequent i a l

3 from keras . l a y e r s import Dense

4 from keras import backend

5 import pandas as pd

6 import numpy as np

7 import matp lo t l i b . pyplot as p l t

8 import matp lo t l i b as mpl

9 from s k l ea rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

10 from keras . models import load model

11 from s k l ea rn . p r e p r o c e s s i n g import RobustScaler

12 from keras . c a l l b a c k s import His tory

13 import seaborn as sns

14 import time as time

15 sns . s e t ( c o l o r c o d e s=True )

16 sns . s e t s t y l e ( ” darkgr id ” , {” axes . f a c e c o l o r ” : ” . 9 ” })

17 from keras . u t i l s import CustomObjectScope

18 from keras . i n i t i a l i z e r s import g l o ro t un i f o rm

19 from copy import copy

20 import s ta t smode l s . ap i as sm

21 import s c ipy . s t a t s as s i

22

91



Appendix C Artificial Neural Network

23 # Accuracy Function

24 de f CheckAccuracy (y , y hat ) :

25 s t a t s = d i c t ( )

26 s t a t s [ ’ d i f f ’ ] = y − y hat

27 s t a t s [ ’ mse ’ ] = np . mean( s t a t s [ ’ d i f f ’ ]∗∗2 )

28 pr in t ( ”Mean Squared Error : ” , s t a t s [ ’ mse ’ ] )

29 s t a t s [ ’mape ’ ] = np . mean(np . abs ( y − y hat ) /y

30 pr in t ( ”Mean Absolute Percentage Error : ” , s t a t s [ ’mape ’ ] )

31 re turn

32

33 # Import Data

34 df = pd . r ead c sv ( ’ Data/Option Metr ics / Market Data SPX call . csv ’ , p a r s e d a t e s=

True , i n d e x c o l = ’Unnamed : 0 ’ )

35 X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t ( df [ [ ’M’ , ’T ’ , ’ r ’ , ’ q ’ , ’ vo l10 ’

, ’ vo l30 ’ , ’ vo l60 ’ , ’GARCH’ , ’HAR−RV’ , ’VIX ’ , ’BSM ( vol10 ) ’ , ’BSM ( vol30 ) ’ , ’BSM (

vol60 ) ’ , ’BSM (GARCH) ’ , ’BSM (HAR−RV) ’ , ’BSM (VIX) ’ , ’ Year ’ , ’K ’ ] ] . va lues , df [ [ ’

p r i c e ’ ] ] . va lues , t e s t s i z e = 0 .10 , random state = 110493)

36 s t r i k e t r a i n = np . r e s i z e ( X tra in [ : , −1 ] , ( l en ( X tra in ) ,1 ) )

37 y e a r t r a i n = np . r e s i z e ( X tra in [ : , −2 ] , ( l en ( y e a r t r a i n ) ,1 ) )

38 BSM train = np . r e s i z e ( X tra in [ : , 1 0 : 1 6 ] , ( l en ( BSM train ) ,6 ) )

39 X tra in = X tra in [ : , 0 : 5 ]

40 s t r i k e t e s t = np . r e s i z e ( X tes t [ : , −1 ] , ( l en ( s t r i k e t e s t ) , 1 ) )

41 y e a r t e s t = np . r e s i z e ( X tes t [ : , −2 ] , ( l en ( y e a r t e s t ) , 1 ) )

42 BSM test = np . r e s i z e ( X tes t [ : , 1 0 : 1 6 ] , ( l en ( BSM test ) , 6 ) )

43 X test = X test [ : , 0 : 5 ]

44 v o l t r a i n = np . r e s i z e ( X t r a i n s c [ : , 4 : 1 0 ] , ( l en ( v o l t r a i n ) ,6 ) )

45 X tra in = X t r a i n s c [ : , 0 : 4 ]

46 v o l t e s t = np . r e s i z e ( X t e s t s c [ : , 4 : 1 0 ] , ( l en ( v o l t e s t ) , 6 ) )

47 X test = X t e s t s c [ : , 0 : 4 ]

48

49 # 10− f o l d cros s−v a l i d a t i o n | V o l a t i l i t y Forecas t ing Model

50 f o r k in range (10) :

51 mse tra in , mse test , mse BSM train , mse BSM test = np . z e ro s (6 ) , np . z e r o s (6 ) ,

np . z e r o s (6 ) , np . z e r o s (6 )

52 mape train , mape test , mape BSM train , mape BSM test = np . z e r o s (6 ) , np . z e r o s

(6 ) , np . z e r o s (6 ) , np . z e r o s (6 )
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53 d i f f t r a i n , d i f f t e s t , d i f f BSM tra in , d i f f BSM tes t = np . z e r o s ( ( l en ( X tra in

) ,6 ) ) , np . z e r o s ( ( l en ( X tes t ) , 6 ) ) , np . z e r o s ( ( l en ( X tra in ) ,6 ) ) , np . z e r o s ( ( l en (

X tes t ) , 6 ) )

54 modelList = [

55 ( ’ vol10 SPX . h5 ’ , ’ vol30 SPX . h5 ’ , ’ vol60 SPX . h5 ’ , ’GARCH SPX. h5 ’ , ’HAR−RV SPX

. h5 ’ , ’VIX SPX . h5 ’ ) ]

56 e r r o r L i s t c s v = [

57 ( ’ d i f f t r a i n S P X 1 . csv ’ , ’ d i f f t e s t S P X 1 . csv ’ ) ]

58

59 f o r i in range (6 ) :

60 pr in t ( ’ Fold ’ , k+1, ’ ,− Model ’ , i +1)

61 model = Sequent i a l ( )

62 model . add ( Dense (128 , input dim=5) )

63 model . add ( Dense (128 , a c t i v a t i o n=’ r e l u ’ ) )

64 model . add ( Dense (128 , a c t i v a t i o n=’ r e l u ’ ) )

65 model . add ( Dense (128 , a c t i v a t i o n=’ r e l u ’ ) )

66 model . add ( Dense (1 , a c t i v a t i o n=’ l i n e a r ’ ) )

67 model . compi le ( l o s s=’ mse ’ , opt imize r=’adam ’ )

68 X t r a i n s c = np . append ( X train , np . r e s i z e ( v o l t r a i n [ : , i ] , ( l en ( v o l t r a i n

) ,1 ) ) , a x i s = 1)

69 X t e s t s c = np . append ( X test , np . r e s i z e ( v o l t e s t [ : , i ] , ( l en ( v o l t e s t ) , 1 )

) , a x i s = 1)

70 model . f i t ( X t ra in s c , y t r a i n s c , b a t c h s i z e =4096 , epochs =200 , verbose =

0)

71 # P r e d i c t i o n s ( Train )

72 y t r a i n h a t = sc y . i n v e r s e t r a n s f o r m (np . f l o a t 6 4 ( model . p r e d i c t ( X t r a i n s c

) ) )

73 # P r e d i c t i o n s ( Test )

74 y t e s t h a t = sc y . i n v e r s e t r a n s f o r m (np . f l o a t 6 4 ( model . p r e d i c t ( X t e s t s c ) )

)

75 # ANN Evaluat ion Metr ics

76 d i f f t r a i n [ : , i : i +1] = y t r a i n − y t r a i n h a t

77 mse tra in [ i ] = np . mean( d i f f t r a i n [ : , i : i +1]∗∗2)

78 mape train [ i ] = np . mean(np . abs ( d i f f t r a i n [ : , i : i +1]/ y t r a i n ) )

79 d i f f t e s t [ : , i : i +1] = y t e s t − y t e s t h a t

80 mse te s t [ i ] = np . mean( d i f f t e s t [ : , i : i +1]∗∗2)
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81 mape test [ i ] = np . mean(np . abs ( d i f f t e s t [ : , i : i +1]/ y t e s t ) )

82 # BSM Evaluat ion Metr ics

83 d i f f BSM tra in [ : , i : i +1] = y t r a i n − BSM train [ : , i : i +1]

84 d i f f BSM tes t [ : , i : i +1] = y t e s t − BSM test [ : , i : i +1]

85 mse BSM train [ i ] = np . mean( d i f f BSM tra in [ : , i : i +1]∗∗2)

86 mse BSM test [ i ] = np . mean( d i f f BSM tes t [ : , i : i +1]∗∗2)

87 mape BSM train [ i ] = np . mean(np . abs ( d i f f BSM tra in [ : , i : i +1]/ y t r a i n ) )

88 mape BSM test [ i ] = np . mean(np . abs ( d i f f BSM tes t [ : , i : i +1]/ y t e s t ) )

89 # Save Model

90 model . save ( modelList [ k ] [ i ] )

91 pr in t ( ’ Model ’ , i +1, ’ Completed ’ )

92 pr in t ( mse t ra in )

93 pr in t ( mse te s t )

94 pr in t ( mape train )

95 pr in t ( mape test )

96 pr in t ( mse BSM train )

97 pr in t ( mse BSM test )

98 pr in t ( mape BSM train )

99 pr in t ( mape BSM test )

100 # Save Res idua l s

101 pr in t ( ’ Saving Res idua l s ’ )

102 e r r o r L i s t = [ d i f f t r a i n , d i f f t e s t , d i f f BSM tra in , d i f f BSM tes t ]

103 f o r j in range (4 ) :

104 df = pd . DataFrame ( e r r o r L i s t [ j ] )

105 df . t o c s v ( e r r o r L i s t c s v [ k ] [ j ] )
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