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Abstract 

This thesis investigates how mean-variance asset allocation can benefit from factors in stock returns 

on the U.S. stock market. The performance of several portfolios formed upon a factor-based mean-

variance analysis will thus be evaluated and compared to the performance of an equally weighted 

portfolio. 

Based on this objective, the study first establishes a theoretical foundation for the identification of 

factors and the implementation of the empirical analysis. Having presented the theoretical founda-

tion, a review of the literature within the field of factor models is conducted to investigate how fac-

tors in stock returns can be explained, and which factors have been found to explain variability in 

stock returns. Particular attention is paid to four well-established factor models within the literature. 

These include the factor models of Sharpe (1963), Fama & French (1993, 2015) and Carhart (1997). 

Afterwards, the thesis presents a framework for the implementation of a factor-based mean-variance 

analysis. The framework is an attractive alternative to the traditional mean-variance analysis, as 

problems of singular variance-covariance matrices are not encountered in our implementation. The 

framework describes an unconstrained and a constrained solution to the mean-variance optimization 

procedure. Moreover, the framework is assessed in an econometric context.  

The factor-based mean-variance analysis allows us to form portfolios on a dataset of stocks includ-

ed in the S&P 500 Index. This provides the basis for the empirical analysis, which involves portfo-

lio backtesting and performance evaluation from January 1979 to January 2019. The results are that 

the portfolios formed upon the factor-based mean-variance analysis do not outperform the equally 

weighted portfolio over the full evaluation period. However, separating the full evaluation period 

into several decades shows evidence for better performance of the factor-based portfolios relative to 

the equally weighted portfolio. 

Several aspects of the thesis will form the basis of a discussion including causations for our find-

ings, data biases and practical applicability. Along with the results of the empirical analysis, the 

discussion will lead to proposals of topics for further research. 

 

 

 



Abstract (Danish) 

Dette speciale undersøger hvordan middelværdi-varians aktiv allokering kan drage fordel af fakto-

rer i aktieafkast på det amerikanske aktiemarked. Det vil således blive undersøgt hvordan porteføl-

jer dannet på baggrund af en faktorbaseret middelværdi-varians analyse præsterer sammenlignet 

med en ligevægtet portefølje. 

Ud fra denne målsætning, etableres først et teoretisk grundlag for identifikationen af faktorer og 

implementeringen af den empiriske analyse. Efter at have præsenteret det teoretiske grundlag, føl-

ger en gennemgang af litteraturen indenfor faktormodeller, for at undersøge hvordan faktorer i ak-

tieafkast kan forklares, og hvilke faktorer, der har vist sig at forklare variabilitet i aktieafkast. Der 

lægges særlig vægt på fire veletablerede faktormodeller indenfor litteraturen. Disse omfatter fak-

tormodellerne af Sharpe (1963), Fama & French (1993, 2015) og Carhart (1997). 

Dernæst præsenteres et framework for implementeringen af en faktorbaseret middelværdi-varians 

analyse. Frameworket er et attraktivt alternativ til den traditionelle middelværdi-varians analyse, da 

problemer med singulære varians-kovariansmatricer ikke opstår i vores implementering. Specialet 

beskriver hvordan en ubegrænset og en begrænset løsning til middelværdi-varians optimeringen kan 

implementeres. Desuden vurderes frameworket i en økonometrisk kontekst. 

Den faktorbaserede middelværdi-varians analyse anvendes til at danne porteføljer ud fra et datasæt 

af aktier, inkluderet i S&P 500 Indekset. Dette danner grundlaget for den empiriske analyse, der 

indebærer backtesting og præstationsevaluering af porteføljerne fra januar 1979 til januar 2019. 

Resultatet er, at porteføljerne dannet ud fra den faktorbaserede middelværdi-varians analyse ikke 

præsterer bedre end den ligevægtede portefølje i den fulde evalueringsperiode. Ved at opdele den 

fulde evalueringsperiode i årtier, viser det sig at de faktorbaserede porteføljer præsterer bedre end 

den ligevægtede portefølje. 

Flere aspekter af specialet vil danne grundlag for en diskussion, herunder grundlaget for porteføl-

jernes præstation, data bias, samt praktisk anvendelighed. Resultaterne af den empiriske analyse vil 

sammen med diskussionen føre til forslag af emner til videre forskning. 
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1 – Introduction 

The mean-variance framework proposed by Markowitz and the academic financial research on fac-

tor models are two important paradigms of modern finance. 

The pioneering research of Markowitz was developed more than six decades ago and conceptual-

izes how an investor may allocate wealth across risky financial assets with different return and risk 

characteristics. The key contribution of Markowitz constitutes a strictly formulated analysis for 

portfolio choice. His theory paved the way for further research in financial economics, and his con-

cepts are still frequently used in practical portfolio management today. For these reasons, he is de-

servedly regarded as “the father of modern, scientific finance”. 

On the other hand, factor models are merely econometric models relating the return on a financial 

asset to multiple explanatory factors. The publication of the three-factor model by Fama & French  

(1993) led off a huge literature on empirical factor modeling. Many factors have since been claimed 

to explain stocks returns significantly. Even though disagreement exists among theorists about the 

rationale behind these factors, factor models have undoubtedly had an enormous influence on the 

finance academia and the financial industry. 

Therefore, we find it interesting to combine and apply these two concepts in portfolio construction. 

Hence, the research interest of this study shall be found where the academic and practical use of 

Markowitz’ framework and factor models meet. 

The main objective of this thesis is to implement a factor-based mean-variance analysis. We will do 

this in order to investigate the benefits of applying such an analysis compared to the traditional 

framework by Markowitz, where inputs often are based on sample estimates. We expect that adding 

more structure to the model, in the form of assuming that several factors explain all common varia-

tions in the returns of financial assets, will lead to fewer and more reliable inputs. 

Initially, the purpose of this thesis included constructing a comparison portfolio based on the tradi-

tional Markowitz framework described above. Nevertheless, as we shall see moving forward, apply-

ing the traditional mean-variance analysis to a high number of assets will make such a comparison 

portfolio problematic to implement in practice. 

Instead, we choose to construct portfolios based on several of the most well-established factor mod-

els of the finance literature. These include the factor models of Sharpe (1963), Fama & French 
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(1993, 2015) and Carhart (1997). In addition, we will construct a simple equally weighted portfolio 

as a comparison portfolio. With these portfolios at hand, we will compare the individual perfor-

mance of each portfolio using several relevant performance measures. The market on which we 

implement our analysis is the U.S. stock market, where we consider securities included in the 

Standard & Poor’s 500 Index (S&P 500 Index). This leads to the following problem statement. 

1.1 - Problem statement 

How can mean-variance asset allocation benefit from factors in stock returns on the U.S. 

stock market? 

In order to answer the overall problem statement, some related issues have to be addressed, which 

will be done by answering the following supporting research questions:  

• How can factors in stock returns be explained, and which factors have been found to explain 

variability in stock returns? 

• How can models based on these factors be implemented in the mean-variance analysis? 

• How do several portfolios constructed upon a factor-based mean-variance analysis perform 

relative to an equally weighted portfolio, before transaction costs, in the period from Janu-

ary 1979 to January 2019? 

Moreover, the thesis will include a discussion of our findings, leading up to further research on the 

subject. Finally, a conclusion will summarize the results of this study in order to answer the overall 

problem statement. 
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1.2 – Delimitations 

In spite of the narrow problem statement, several delimitations are necessary for the purpose of 

making a detailed analysis within the scope of this thesis.  

Firstly, this study does not intend to conduct tests to assess the statistical validity of the factor mod-

els in the context of asset pricing. Instead, we will take the models as given since extensive litera-

ture has been devoted to this purpose. Hence, we assume that the factor models we consider are 

sufficiently powerful in explaining variability in stock returns. However, we will discuss various 

complications of the models highlighted by the literature and keep these in mind, when evaluating 

our results. Furthermore, we will consider the theoretical foundation for the factor models and as-

sess the statistical implications with respect to implementing such models, thoroughly. The ra-

tionale for this relates to our desire of focusing more on portfolio construction and less on asset 

pricing in this thesis. 

Secondly, since this study is intended as a financial study rather than a statistical study, the econo-

metric implications of the applied statistical model (the OLS regression) will be discussed but not 

corrected for. Following this argument, the thesis will include a section where econometric issues 

that may arise in the application of the linear regression model on our data sample will be discussed. 

Moreover, a part of the discussion will address the problem of statistical significance. Throughout 

the thesis, a level of significance at 5% will be used. 

We limit our investment universe of stocks to only encompass the Standard & Poor’s 500 Index at a 

particular point in time. Lastly, for simplicity and as outlined in the problem statement, we will as-

sume trading costs to be non-existent. Therefore, the results will not include any calculated costs 

incurred by transactions.  

More exact delimitations regarding for example choice of factor models, length of estimation win-

dow and other appropriate restrictions will be presented through the relevant sections as we go 

along. 

1.3 – Motivation 

Through our academic time as business school students, we have repeatedly encountered the topic 

of Modern Portfolio Theory. Most students within finance programs are being taught Markowitz’ 

mean-variance analysis both during their undergraduate studies, but also in their graduate studies. 
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Due to the popularity and applicability of the theoretical framework, we decided to make it one of 

the cornerstones of our thesis. 

On the other hand, factor models have gained tremendous popularity and recognition in recent 

years. The seminal paper by Fama & French paved the way for research of new factors, and hun-

dreds of potential factor candidates have since been proposed, giving rise to what Feng, Giglio, & 

Xiu (2019) deem a “zoo” of risk factors. We, therefore, find this area of finance interesting to in-

corporate as the second cornerstone of our thesis. 

We recognize that these two major topics of finance are often introduced to students separately, but 

rarely used in conjunction. Hence, this is what our thesis intends to do. 

The thesis is meant to contribute to the existing literature on portfolio theory by combining academ-

ic knowledge with a practical approach, leading to both alternations as well as supplements to the 

existing literature. The thesis sustains a focus on implications from already existing theories which 

are applied quantitatively. 

The creation of this thesis is motivated by our academic background and aspirations for the future. 

Furthermore, our genuine interest in finance, portfolio analysis, and applied mathematics had led us 

to conduct this study and write this thesis. 

1.4 – Methodology 

To answer the problem statement, the thesis will follow a systematic structure and apply a quantita-

tive methodology, where financial time series data will be used to construct portfolios and evaluate 

the performance of the portfolios. The results of the quantitative analysis will be used to examine 

and assess various approaches to portfolio construction. 

An extensive selection of relevant academic literature and scientific research has been used as a 

basis for gaining insight into relevant financial topics and theory, as well as for inspiration to the 

research-design and methodology of this study. In particular, the analysis will be based on a theoret-

ical framework consisting of established theories of portfolio optimization, asset pricing, factor 

modeling, and performance evaluation. Several literary sources will be used to build the theoretical 

foundation. These sources primarily include academic articles and textbooks. The articles have been 

found in well-known journals with publications of internationally acclaimed and frequently cited 

researchers. More practically, the articles have been retrieved from various databases such as Econ-
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Papers, JSTOR, Social Science Research Network as well as through several author’s webpages. 

The databases and sources we gather information from are all well-known and highly regarded 

sources of academic research and information. Therefore, we assume that they serve as high quality 

and reliable sources of information. Nonetheless, the references we make use of will be critically 

studied before being incorporated into the thesis. 

A separate section has been devoted to describing the specific types of data employed in this thesis 

in detail. Consequently, this section will merely discuss the data from a general point of view. The 

financial time series data we use are retrieved from Thomson Reuters (2019), as well as from the 

data library of French (2019). These databases are internationally recognized and widely used in 

various scientific studies and tests on financial and economic issues and phenomena. Extensive 

screening and evaluation of our data have been conducted. Hence, we assess that the data in con-

junction with the delimitations will form the foundation for highly reliable and valid analyses and 

conclusions. However, we recognize that the way we construct the data sample makes several data 

biases unavoidable. A discussion about such issues will thus follow towards the end of the thesis. 

Since the data is publicly available, in case someone wishes to replicate our results, this may be 

possible at any time, by retrieving the same financial time series data. Publicly available data 

sources also make it easier to perform this study using an extended or alternative data sample, open-

ing up for further research. In this regard, a particular desire on our part has been to describe the 

implementation process of the analysis extensively. Accordingly, Section 4.2 will thoroughly de-

scribe how we form the analysis. 

1.5 – Structure 

While Section 1 introduced the thesis, Section 2 will provide the foundation for this study by de-

scribing the relevant theoretical frameworks we will employ. Furthermore, Section 3 will encom-

pass various theory on factor models, including an identification of the most relevant factors for our 

study. Section 4 will outline the basis for the empirical study and describe in detail how we form the 

analysis to answer the research questions and the overall problem statement. This includes data 

sampling, portfolio construction as well as back-testing and performance evaluation. Moreover, 

Section 4 will consider possible econometric issues and make an initial assessment of our data. Sec-

tion 5 will interpret the output of our analysis and conduct the portfolio backtesting, while Section 6 

will include the performance evaluation of the constructed portfolios. Section 7 will discuss the 
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findings of the two previous sections and lead to an overall conclusion to the problem statement in 

Section 8, where suggestions for further areas of research will be proposed. 
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2 – Theoretical Frameworks 

2.1 – Mean-Variance Portfolio Theory 

In this section, we will introduce the mean-variance analysis developed by Markowitz (1952). We 

will first consider the criterion for portfolio selection and then describe the idea of diversification. 

Moreover, we will elaborate on portfolio optimization with regards to mean-variance efficiency.  

2.1.1 – Mean-Variance Rule 

Markowitz (1952) presents his mean-variance framework for portfolio selection, where investors 

prefer higher expected return against lower expected return but favor lower risk against higher risk. 

Investors are thus return maximizing, and risk-averse and make decisions based on these prefer-

ences, known as the Mean-Variance Rule. Employing this criterion in the selection of portfolios, 

investors only evaluate the first two moments of the distribution, over a fixed, future period of time. 

These include the expectation of return on the portfolios, as the mean 𝜇, and the risk of the portfoli-

os as the variance 𝜎2. 

We may illustrate investment decisions based on the Mean-Variance Rule by comparing two portfo-

lios, Portfolio A and Portfolio B, with different subsets of securities. The idea of the Mean-Variance 

Rule is that Portfolio A is favored to Portfolio B if 

𝜇𝐴 ≥ 𝜇𝐵 

and 

𝜎𝐴
2 ≤ 𝜎𝐵

2 

or equivalent 

𝜎𝐴 ≤ 𝜎𝐵 

In the case that we have 𝜇𝐴 > 𝜇𝐵, but also 𝜎𝐴
2 > 𝜎𝐵

2 we are not able to determine which portfolio 

investors favor based on the Mean-Variance Rule. More generally, a portfolio is deemed to be 

mean-variance efficient, in case it has the lowest variance among all the portfolios with the same 

expected return. In our example, Portfolio A is said to be mean-variance efficient and Portfolio B is 

said to be mean-variance inefficient, since Portfolio B both has lower expected return and higher 
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risk than Portfolio A. In an investment universe of Portfolio A and Portfolio B, an investor would 

thus never be willing to hold Portfolio B. 

2.1.2 – Diversification 

The idea of diversification relates to the notion of “not putting all of your eggs in one basket”. Mar-

kowitz (1952) states that the Mean-Variance Rule implies that an investor should maximize ex-

pected return for a given variance and diversify the portfolio. We may illustrate the latter concept 

by considering Security 1 and Security 2 and forming a portfolio based on these securities. We have 

expectations of returns 𝜇1 = 𝐸[𝑟1], 𝜇2 = 𝐸[𝑟2] and variance of return 𝜎𝑖
2 = 𝐸[𝑟𝑖 − 𝜇𝑖]

2. We have 

the expectation of return for the portfolio 𝜇𝑝 as 

𝜇𝑃 = 𝑤1𝜇1 + 𝑤2𝜇2 (2.1) 

With 𝑤𝑖 being the proportion (weight) of our wealth invested in security 𝑖. The sum of our weights 

must equal 1 and 𝑤𝑖 ≥ 0 ∀ 𝑖. 

We have the variance of return on the portfolio 𝜎𝑝
2 as 

𝜎𝑝
2 = 𝑤1

2𝜎1
2 + 𝑤2

2𝜎2
2 + 2𝑤1𝑤2𝜎1𝜎2𝜌1,2 (2.2) 

where 𝜌1,2 refers to the correlation coefficient between the returns on Security 1 and Security 2, 

which can take a value in the interval [−1; 1]. The correlation coefficient can also be written as a 

function of the covariance between the two returns, 𝜎1,2 and the standard deviation of the returns on 

each security, 

𝜌1,2 =
𝜎1,2

𝜎1𝜎2
 (2.3) 

For 𝜌 = 1 there exists a perfect positively linear relation between the returns on the two securities. 

The returns move in the same direction; thus, we are not able to benefit from diversification by 

combining the two securities.  

If 𝜌 = −1, there exists a perfectly negatively linear relation between the returns on the two securi-

ties. Since the returns move in opposite directions, we can eliminate portfolio risk.  

For 𝜌 = 0 no linear relation exists. With a non-perfect correlation, we are still able to reduce the 

overall portfolio risk with diversification, however we are not able to reduce it to zero. Hence, the 

riskiness of the portfolio critically depends on the sign of 𝜌. 
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In Figure (2.1) we simulate 2000 random portfolios consisting of Security 1 and Security 2 and 

evaluate Equation (2.2) in different instances of 𝜌. In the simulation, we choose the arbitrary values 

for means and variances of returns for the two securities, 𝜇1 = 5%, 𝜇2 = 15% and 𝜎1 = 15%, 𝜎2 =

25%. 

Figure 2.1 – Diversification Benefits for Different Correlation Coefficients: 

 

Examining Figure (2.1), the advantages of diversification become clearer. As anticipated above, we 

see that in a decreasing correlation between returns, we are gaining the benefit of a reduced risk of 

the overall portfolio, for the same expected return. Thus, we are moving from the frontiers on the 

right to the frontiers on the left. We also see that by combining two securities with non-perfect cor-

relation, we are able to construct a portfolio with a lower overall risk than that of each of the securi-

ties. 

But what happens when we include more securities in the portfolio? Below we will consider this 

instance, through the findings of Munk (2017). In the case we extend our portfolio to include 𝑁 

number of securities, Equation (2.1) and Equation (2.2) can be generalized to 

𝜇𝑝 = ∑ 𝑤𝑖𝜇𝑖

𝑁

𝑖=1

= 𝑤𝑇𝜇 (2.4) 
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𝜎𝑝
2 = ∑ 𝑤𝑖

2𝜎𝑖
2

𝑁

𝑖=1

+ ∑ ∑ 𝑤𝑖𝑤𝑗

𝑁

𝑗=1
𝑖≠𝑗

𝑁

𝑖=1

𝜎𝑖𝜎𝑗𝜌𝑖,𝑗 = 𝑤𝑇𝚺𝑤 (2.5)
 

where 𝜎𝑖,𝑗 = 𝜎𝑖𝜎𝑗𝜌𝑖,𝑗. For a portfolio with securities held in equal proportions, 𝑤𝑖 =
1

𝑁
, we have 

𝜎𝑝
2 =

1

𝑁2
∑ 𝜎𝑖

2

𝑁

𝑖=1

+
1

𝑁2
∑ ∑ 𝜎𝑖,𝑗

𝑁

𝑗=1
𝑖≠𝑗

𝑁

𝑖=1

 (2.6)
 

Across the 𝑁 securities, we have the average variance as 

𝜎𝑝
2̅̅ ̅ =

1

𝑁
∑ 𝜎𝑖

2

𝑁

𝑖=1

 (2.7) 

and the average covariance as 

𝜎𝑖,𝑗̅̅ ̅̅ =
1

𝑁(𝑁 − 1)
∑ ∑ 𝜎𝑖,𝑗

𝑁

𝑗=1
𝑖≠𝑗

𝑁

𝑖=1

 (2.8)
 

Where 𝑁(𝑁 − 1) denotes the number of covariances.  

By simply rewriting Equation (2.7) and Equation (2.8), and using them in Equation (2.6), we can 

state the variance of the portfolio as 

𝜎𝑝
2 =

1

𝑁2
𝑁 ∗ 𝜎𝑝

2̅̅ ̅ +
1

𝑁2
∗ (𝑁(𝑁 − 1)) ∗ 𝜎𝑖,𝑗̅̅ ̅̅ ⇔ 

𝜎𝑝
2 =

1

𝑁
∗ 𝜎𝑝

2̅̅ ̅ +
𝑁2 − 𝑁

𝑁2
𝜎𝑖,𝑗̅̅ ̅̅ ⇔ 

𝜎𝑝
2 =

1

𝑁
𝜎𝑖

2̅̅ ̅ + (1 −
1

𝑁
) 𝜎𝑖,𝑗̅̅ ̅̅ (2.9) 

By including more securities in the portfolio, we see that the term 
1

𝑁
𝜎𝑖

2̅̅ ̅ approaches zero. On the 

other hand, by increasing the number of securities the term (1 −
1

𝑁
) 𝜎𝑖,𝑗̅̅ ̅̅  approaches the average co-

variance. Thus, for a portfolio with equal proportions invested in each security the total portfolio 

variance will approach the average covariance, when 𝑁 → ∞. 
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The total risk of a security can be decomposed to factors affecting all securities, as well as influ-

ences specific to the relevant firm. The former is known as market (or systematic) risk and may 

encompass economic impacts such as the growth of the economy, changes in inflation, etc. The 

latter is known as firm-specific (idiosyncratic) risk, where examples may include an unexpected 

strike amongst employees, unforeseen (major) damages to production plants, etc. 

From Equation (2.9) we can conclude that by constructing portfolios with sufficiently low concen-

trations in each security, the asset specific risk can be diversified away. We denote such a portfolio 

as a diversified portfolio. Nevertheless, we are not able to eliminate any market risk through diversi-

fication, hence why the covariances across assets in Equation (2.9) remain when increasing the 

number of securities, 𝑁.  

2.1.3 – Mean-Variance Efficient Portfolio Optimization 

As concluded above, we say that a portfolio is mean-variance efficient if, for a given return, it has 

the minimum variance. Hence, we are interested in minimizing Equation (2.5) for an expected re-

turn 𝜇 in Equation (2.4). By matrix notation, we can formulate this as the following minimization 

problem 

min 𝑤𝑇 𝚺𝑤 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑇𝜇 = 𝜇∗ (2.10) 

𝑤𝑇𝟏 = 1 

where 𝑤 refers to the 𝑁 × 1 vector of weights for each security, 𝜇 the 𝑁 × 1 vector of expected 

excess return on the securities, 𝚺 the 𝑁 × 𝑁 variance-covariance matrix and 1 as a 𝑁 × 1 vector of 

ones, that act as a sum-operator, since we impose that the weights must sum to 1 as the only con-

straint. Solving this problem for a number of different target expected returns, 𝜇∗, will thus produce 

an efficient frontier in a diagram like Figure (2.1) above. 

The variance-covariance matrix in (2.10) must be non-singular. Non-singularity implies that the 

inverse of the variance-covariance matrix, denoted as 𝚺−𝟏, exists. A more intuitive interpretation of 

the case with non-singularity is presented by Munk (2017). He states that in the presence of a non-

singular variance-covariance matrix none of the risky assets are redundant, meaning that none of the 

individual risky assets can be replicated by a portfolio of the other risky assets. Therefore, these 

risky assets cannot be used to form a risk-free portfolio.  
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A closed-form solution exists to the optimization problem in (2.10). However, we will only consid-

er the derivation for the tangency portfolio by Munk (2017). We can find this portfolio when the 

mean-variance analysis includes both risky assets and the risk-free asset. The tangency portfolio is 

located on the point, where a straight line drawn from (0, 𝑟𝑓) in a 𝜇, 𝜎 – diagram, is tangent to the 

efficient frontier. This straight line is also known as the Capital Allocation Line (CAL), and indi-

cates combinations of the tangency portfolio and the risk-free asset where the highest Sharpe ratio is 

obtained (Bodie, Kane, & Marcus, 2009). The tangency portfolio is given by 

𝑤𝑇𝑎𝑛 =
1

𝟏𝑇𝚺−𝟏(𝜇 − 𝑟𝑓𝟏)
𝚺−𝟏(𝜇 − 𝑟𝑓𝟏) (2.11) 

In general, the inputs needed for mean-variance optimization comprise the expected excess returns 

and the variance-covariance matrix for all assets. The most common approach for obtaining these 

inputs is through estimation from historical sample data. The estimation of expected returns and the 

variance-covariance matrix is often based on the sample mean and sample variance-covariance ma-

trix, respectively. This procedure can have estimation errors attached to it and the implementation 

may not be feasible in practice. These issues will be discussed in Section 4.2, including an alterna-

tive procedure for estimating the inputs by using factor models. 

So far, no constraints have been imposed on the individual portfolio weights in (2.10). Nevertheless, 

as we shall also see in Section 4.2, this may be necessary due to extreme behavior of the portfolio 

weights and for practical applicability. 

2.2 – Capital Asset Pricing Model (CAPM) 

Sharpe (1964), Treynor (1961), Lintner (1965), and Mossin (1966) formalized the Capital Asset 

Pricing Model (CAPM), which builds upon the mean-variance framework of Markowitz (1952) 

described in Section 2.1. The central implication of the model is that the expected return of security 

𝑖, 𝐸[𝑟𝑖], in excess of the risk free rate, 𝑟𝑓, can be written as a linear function of the expected return 

on the market, 𝐸[𝑟𝑚], in excess of the risk free rate. This is formalized as: 

𝐸[𝑟𝑖] − 𝑟𝑓 = 𝛽𝑖(𝐸[𝑟𝑚] − 𝑟𝑓) (2.12) 

where 𝛽𝑖 (beta) is a risk measure capturing co-movement between the security and the market port-

folio, defined as 𝛽𝑖 =
𝐶𝑜𝑣[𝑟𝑖,𝑟𝑚]

𝑉𝑎𝑟[𝑟𝑚]
. That is, the relative risk of the particular security. The intuition be-

hind Equation (2.12) is that each security is held as part of the market portfolio of risky securities, 
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hence the expected return on the security should only depend on the risk it contributes to the market 

portfolio. 

According to Bodie et al. (2009) the CAPM assumes the following conditions hold: 

Assumption 1 – Complete Agreement 

Complete agreement exists among investors; Thus, investors develop identical opinions about the 

parameter 𝜇, 𝑟𝑓 , 𝜎, 𝛽 and 𝜌. This leads to homogeneous expectations about the efficient frontier and 

the composition of the tangency portfolio. 

Assumption 2 – Mean-Variance Preferences 

Investors have mean-variance preferences and choose portfolio weights in order to maximize the 

Sharpe ratio, thereby arriving at the tangency portfolio. 

Assumption 3 – Market Equilibrium 

Investors are not themselves able to influence prices. Hence, they are price takers and the market is 

therefore always in equilibrium. 

Assumption 4 – Frictionless Markets 

Markets are frictionless, i.e., there are no taxes, no transaction costs and investors can access all 

assets in perfectly divisible portions. 

Assumption 5 – Unlimited Borrowing and Lending 

Investors can borrow and lend unlimitedly at the risk-free rate. 

As evident, the CAPM adds two key assumptions to the framework provided by Markowitz (1952). 

These include Complete Agreement and Unlimited Borrowing and Lending and imply that all inves-

tors view the same opportunity set and invest in the same tangency portfolio. As a result of that all 

investors hold the same portfolio, this portfolio must equal the market portfolio of risky assets 

(Bodie et al., 2009). 

More intuitively, the addition of risk-free borrowing and lending turns the efficient frontier into a 

straight line, since all investors will only hold a combination of the market portfolio and the risk-

free asset. This straight line is also known as the Capital Market Line (CML). In the CAPM, it is 
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assumed that investors may only differ with regards to their risk aversion. Hence, the overall opti-

mal portfolio for an investor is determined by their degree of risk aversion (Munk, 2017). 

Despite the theoretical appeal of the CAPM, Fama & French (2004) highlight the poor empirical 

record of the model. They attribute this to the strongly simplified assumptions brought forward by 

the model. In particular, they note that “the failure of the CAPM in empirical tests implies that most 

applications of the model are invalid”. As we shall see in Section 3.2, the three-factor model of 

Fama & French (1993) was developed as a result of the market anomalies unexplained by the 

CAPM. In the late 1970s, studies found that market anomalies like size and certain price ratios add 

to the explanations of average returns (Fama & French, 2004). Size and value are thus added as 

additional factors in their three-factor model, besides the market factor. 

However, other authors such as Roll (1977) suggest the practical impossibility of testing the 

CAPM, since the true market portfolio is unobservable (referred to as Roll’s Critique). In theory, 

the market portfolio should include all invested assets. Empirically we are not able to observe such 

a portfolio and tests of the CAPM usually employ a stock index as a proxy for the market portfolio. 

Substituting the market portfolio with such a proxy may lead to false inferences about the CAPM’s 

validity, which is what Roll (1977) emphasizes. 

2.3 – Arbitrage Pricing Theory (APT) 

The Arbitrage Pricing Theory (APT) was developed by Ross (1976) in response to the failure of the 

CAPM. The assumptions underlying the APT are very different from those of the CAPM. While the 

CAPM includes assumptions on complete agreement, mean-variance preferences and economy-

wide equilibrium, the APT only assumes an absence of arbitrage and several other structural condi-

tions. The following section will primarily make use of Cuthbertson & Nitzsche (2004), Skovmand 

(2015) and Ross (1976) as references. 

The assumptions of the APT do more explicitly constitute: 

Assumption 1 – Returns are generated by a factor model 

In the APT, the return on security 𝑖, 𝑟𝑖,𝑡, is priced as a linear product of 𝐾 systematic risk factors, 𝐹, 

and an idiosyncratic risk factor, 𝑒𝑖,𝑡.  

𝑟𝑖,𝑡 = 𝑎𝑖 + ∑ 𝛽𝑖,𝑘𝐹𝑘,𝑡

𝐾

𝑘=1

+ 𝑒𝑖,𝑡 (2.13) 
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where 𝐸[𝑒𝑖,𝑡] = 0, 𝑐𝑜𝑣[𝐹𝑘,𝑡, 𝑒𝑖,𝑡] = 0 and 𝑐𝑜𝑣[𝑒𝑖,𝑡, 𝑒𝑗,𝑡] = 0.  

An equivalent way of writing Equation (2.13), that is also present within the literature on APT, is in 

terms of expectancy. We may take the expectation of Equation (2.13) and do some rewriting:  

𝐸[𝑟𝑖,𝑡] = 𝐸 [𝑎𝑖 + ∑ 𝛽𝑖,𝑘𝐹𝑘,𝑡

𝐾

𝑘=1

+ 𝑒𝑖,𝑡] ⟺  

𝐸[𝑟𝑖,𝑡] = 𝐸[𝑎𝑖] + 𝐸 [∑ 𝛽𝑖,𝑘𝐹𝑘,𝑡

𝐾

𝑘=1

] + 𝐸[𝑒𝑖,𝑡] ⟺  

Because 𝐸[𝑎𝑖] = 𝑎𝑖 and 𝐸[𝑒𝑖,𝑡] = 0 we get: 

𝐸[𝑟𝑖,𝑡] = 𝑎𝑖 + 𝐸 [∑ 𝛽𝑖,𝑘𝐹𝑘,𝑡

𝐾

𝑘=1

] ⇔  

𝐸[𝑟𝑖,𝑡] = 𝑟𝑖,𝑡 − (∑ 𝛽𝑖,𝑘𝐹𝑘,𝑡

𝐾

𝑘=1

+ 𝑒𝑖,𝑡) + 𝐸 [∑ 𝛽𝑖,𝑘𝐹𝑘,𝑡

𝐾

𝑘=1

]  ⇔ 

𝑟𝑖,𝑡 = 𝐸[𝑟𝑖,𝑡] + ∑ 𝛽𝑖,𝑘(𝐹𝑘,𝑡 − 𝐸[𝐹𝑘,𝑡])

𝐾

𝑘=1

+ 𝑒𝑖,𝑡 (2.14) 

Where 𝛽𝑖,𝑘 denotes the 𝑘th factor loading, 𝐹𝑘,𝑡 is the systematic 𝑘th risk factor and 𝐸[𝐹𝑘,𝑡] repre-

sents the expectation of the 𝑘th systematic risk factor. The expectation of the risk factor is with re-

spect to information available at time 𝑡 − 1 or earlier. While the factors, 𝐹𝑘,𝑡, are common impacts 

across the economy, and therefore are the same across securities, the sensitivity of each security 

towards the factors can differ. This sensitivity is given by the factor loading, 𝛽𝑖,𝑘. One of the key 

assumptions of the factor structure underlying the APT is that the idiosyncratic risk components 

across securities and all time periods are uncorrelated, 𝑐𝑜𝑣[𝑒𝑖,𝑡, 𝑒𝑗,𝑡] = 0. Furthermore, the idiosyn-

cratic risk component must also be independent of the risk factors, 𝐹, that is 𝑐𝑜𝑣[𝐹𝑘,𝑡, 𝑒𝑖,𝑡] = 0. 

Nevertheless, one of the short comings of the APT as emphasized in the literature, is that the selec-

tion and number of risk factors in Equation (2.14) are ambiguous. As a consequence, Section 3.2 

has been devoted to identifying the factors relevant for this study. Furthermore, Section 3.1 will 

discuss the statistical properties of models underlying a factor structure. 
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Assumption 2 – There exist enough stocks to eliminate idiosyncratic risk by diversification 

The idea of diversification is one of the major premises of mean-variance portfolio theory as de-

scribed in Section 2.1. In case security 𝑖 is kept in a portfolio with securities that behave less alike 

(their price movements have low correlation with each other), we expect to see a reduction in total 

risk as a result of a decrease in the idiosyncratic risk component (Bodie et al., 2009). However, 

since we are not able to diversify the systematic risk component away, this is the only part we 

should be compensated for holding, i.e., the part that should be priced in an asset pricing model.  

Consider the return on a portfolio, 𝑟𝑡
𝑃𝑓

, consisting of 𝑁 securities, each with weight 𝑤𝑖, with 𝐾 

numbers of risk factors, 𝐹𝑘,𝑡: 

𝑟𝑡
𝑃𝑓

= ∑ 𝑤𝑖𝑟𝑖,𝑡

𝑁

𝑖=1

= ∑ 𝑤𝑖 (𝐸[𝑟𝑖,𝑡] + ∑ 𝛽𝑖,𝑘(𝐹𝑘,𝑡 − 𝐸[𝐹𝑘,𝑡])

𝐾

𝑘=1

+ 𝑒𝑖,𝑡)

𝑁

𝑖=1

⇔

                                  𝑟𝑡
𝑃𝑓

  = ∑ 𝑤𝑖𝐸[𝑟𝑖,𝑡]

𝑁

𝑖=1

+ (∑ 𝑤𝑖𝛽𝑖,1

𝑁

𝑖=1

) (𝐹1,𝑡 − 𝐸[𝐹1,𝑡]) +

(∑ 𝑤𝑖𝛽𝑖,2

𝑁

𝑖=1

) (𝐹2,𝑡 − 𝐸[𝐹2,𝑡]) + ⋯ + ∑ 𝑤𝑖𝑒𝑖,𝑡

𝑁

𝑖=1

 (2.15)

 

We notice that the return on the portfolio, 𝑟𝑡
𝑃𝑓

, is a sum of the weighted average of expected returns, 

the weighted average of factor sensitivities times the innovation in the factors, and the weighted 

average of the idiosyncratic risk components. 

Above, the residuals terms, 𝑒, were assumed to be uncorrelated across securities. Hence, for proper-

ly large values of 𝑁, ∑ 𝑤𝑖𝑒𝑖,𝑡
𝑁
𝑖=1  will approach zero when 𝑁 → ∞ and thus be diversified away.  

Therefore, we end up with an expression for the return on the portfolio: 

𝑟𝑡
𝑃𝑓

= ∑ 𝑤𝑖𝑟𝑖,𝑡

𝑁

𝑖=1

= ∑ 𝑤𝑖𝐸[𝑟𝑖,𝑡]

𝑁

𝑖=1

+ (∑ 𝑤𝑖𝛽𝑖,1

𝑁

𝑖=1

) (𝐹1,𝑡 − 𝐸[𝐹1,𝑡]) +

(∑ 𝑤𝑖𝛽𝑖,2

𝑁

𝑖=1

) (𝐹2,𝑡 − 𝐸[𝐹2,𝑡]) + ⋯ + (∑ 𝑤𝑖𝛽𝑖,𝐾

𝑁

𝑖=1

) (𝐹𝐾,𝑡 − 𝐸[𝐹𝐾,𝑡]) (2.16)

 

Assumption 3 – Opportunities for arbitrage profits are traded away 

The validity of the APT is proved by Ross (1976) through the absence of arbitrage, which implies 

that assets with similar cash flows in all states must have identical prices. The latter condition is 
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also known as the Law of One Price, which is enforced by market participants engaging in arbitrage 

activity (arbitrageurs). More intuitively, in case arbitrageurs observe a violation of the Law of One 

Price they will simultaneously buy the asset where it is cheap and sell the asset where it is expen-

sive. They will bid up the price where it is low and force it down where it is high, until the arbitrage 

opportunity is eliminated (Bodie et al., 2009). 

Skovmand (2015) provides an intuitive derivation of the No Arbitrage condition. We apply his 

methodology below when proving the condition. Let us form a portfolio, 𝑃𝑓0 with zero-investment, 

i.e., an arbitrage portfolio, meaning that 

∑ 𝑤𝑖

𝑁

𝑖=1

= 0 (2.17) 

because some stocks are held short, where the proceeds are invested in other securities. The return 

on the zero-investment portfolio must then be equivalent to Equation (2.16). Let us construct the 

portfolio to include no systematic risk: 

∑ 𝑤𝑖𝛽𝑖,𝑘 = 0

𝑖

  ∀𝑘 ∈ [1, 𝐾] (2.18) 

This leaves us with the return on the portfolio as 

𝑟𝑡
𝑃𝑓0 = ∑ 𝑤𝑖𝑟𝑖,𝑡

𝑁

𝑖=1

= ∑ 𝑤𝑖𝐸[𝑟𝑖,𝑡]

𝑁

𝑖=1

 (2.19) 

By construction the return ∑ 𝑤𝑖𝑟𝑖,𝑡
𝑁
𝑖=1  is always equal to the expected return ∑ 𝑤𝑖𝐸[𝑟𝑖,𝑡]𝑁

𝑖=1 .  

In the absence of arbitrage, a zero-investment portfolio with no systematic risk must have a zero 

return. Hence 

∑ 𝑤𝑖𝐸[𝑟𝑖,𝑡]

𝑁

𝑖=1

= 0 (2.20) 

We are now able to define the exact condition that leads to the absence of arbitrage: 

No Arbitrage Condition: If we have a well-diversified portfolio with zero investment and zero sys-

tematic risk, then the return on the portfolio must be equal to zero. 
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As a result of the no arbitrage condition, Campbell, Lo, & MacKinlay (1997) formulate the follow-

ing model for the expected return underlying the APT: 

𝐸[𝑟𝑖,𝑡] = 𝜆0 + ∑ 𝛽𝑖,𝑘

𝐾

𝑘=1

𝜆𝑘 (2.21) 

Equation (2.21) can be derived based on linear algebra statements as shown by Danthine & 

Donaldson (2005). Equation (2.17), which concerns a zero-investment portfolio, implies that the 

vector of weights, 𝑤, is orthogonal to a vector of ones, 1. Equation (2.18), which implies no sys-

tematic risk, states that the vector of weights, 𝑤, is orthogonal to the vectors of factor loadings, 𝛽. 

Therefore, it must true that the vector of ones, 𝟏, is orthogonal to the vectors of factor loadings, 𝛽. 

By assuming no arbitrage as in Equation (2.20), the vector of expected returns, 𝐸[𝑟], must be or-

thogonal to the vector of weights, 𝑤. A mathematical consequence is that the vector of expected 

returns, 𝐸[𝑟], can be expressed as a linear combination of the vector of ones, 𝟏, and the vectors of 

factor loadings, 𝛽, as stated in Equation (2.21). 

In Equation (2.21), 𝜆0 is the return on the risk-free asset, 𝛽𝑖,𝑘, the sensitivity of asset 𝑖 to the 𝑘th 

factor and 𝜆𝑘, the risk premium associated with the 𝑘th factor. Ross (1976) states that in the case no 

risk-free asset exists, 𝜆0 is simply the return on a zero-beta portfolio, thus a portfolio where 𝛽𝑖,𝑘 = 0 

for all 𝑖 and 𝑘. One may notice that we did not include any 𝑖 subscripts in 𝜆0 and 𝜆𝑘, this is because 

these are constant across all securities and throughout time. 

Campbell, Lo, & MacKinlay (1997) underline that for the relation in Equation (2.21) to strictly 

hold, the number of assets in the economy has to be approaching infinity. The model may therefore 

only be considered as approximate. They instead propose Equation (2.21) restriction as 

𝐸[𝑟𝑖,𝑡] ≈ 𝜆0 + ∑ 𝛽𝑖,𝑘

𝐾

𝑘=1

𝜆𝑘 (2.22) 

Due to the fact that it is problematic to apply “approximate theories”, this thesis will assume that the 

strict, non-approximate version of Equation (2.22) holds, going forward. 
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3 – Factor Models 

This section will elaborate on the factor structure underlying the APT as explained in Section 2.3. 

The section is structured first to describe the statistical implications of factor models and then iden-

tify a number of factor models, relevant for this study. 

3.1 – Statistical Properties 

First, it is essential to note that factor models have no theoretical foundation in the sense that they 

do not assume anything about a security’s return in equilibrium. Bodie et al. (2009) suggest that 

factor models are merely a statistical assumption, hence why we need a theoretical framework to 

understand asset pricing in equilibrium. This is the reason why we choose first to explain APT and 

subsequently turn to the statistical properties of factor models. 

With reference to Equation (2.13), a factor model explains the return on any security, 𝑟𝑖,𝑡, as a linear 

function of 𝐾 number of factors 𝐹, 𝐾 number of factor loadings 𝛽, an intercept 𝑎𝑖 and a residual 𝑒𝑖,𝑡 

𝑟𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖,1𝐹1,𝑡 + ⋯ + 𝛽𝑖,𝐾𝐹𝐾,𝑡 + 𝑒𝑖,𝑡 (3.1) 

Equation (3.1) holds for all securities as well as for portfolios 𝑖 = 1,2, … , 𝑁, and in all time periods 

𝑡 = 1,2, … , 𝑇.  The factor, 𝐹𝑘,𝑡, can relate to any economic variables found to explain 𝑟𝑖,𝑡, where 

examples of variables may include growth in GDP, inflation and interest rates. Various ways exist 

for fitting factor models and Ruppert & Matteson (2010) note that conditional on the choice of the 

factor model, either the factor loadings, the factors, or both the factors and the loadings are unob-

servable parameters and must be estimated. Progression further, we have chosen to fit our factor 

models by time series regression due to its convenience in comparison to other approaches. In time 

series factor models, the factors are observable, while the factor loadings are the unobservable pa-

rameters to be estimated by regression. 

As described in Section 2.3, the residuals of the factor model are mean zero random variables, 

which are assumed to be independent across securities and with the factors. The variance-

covariance matrix of residuals, 𝚺𝒆 is thus assumed to be diagonal. According to Ruppert & 

Matteson (2010), the variance-covariance matrix of returns in the factor model is derived as 

𝚺 = 𝜷𝑻𝚺𝑭𝜷 + 𝚺𝒆 (3.2) 
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With 𝜷 being to the 𝐾 × 𝑁 matrix of the factor loadings, 𝚺𝑭 the 𝐾 × 𝐾 variance-covariance matrix 

of the factors and 𝚺𝒆 the 𝑁 × 𝑁 diagonal variance-covariance matrix of the residuals. 

Throughout Section 2.1, we described Markowitz’ mean-variance framework for determining opti-

mal portfolios with respect to mean-variance efficiency. But what exactly are the benefits of using 

the factor structure for the estimation procedure of the inputs to the mean-variance Analysis?  

First of all, Ruppert & Matteson (2010) suggest improved accuracy in the estimation of the vari-

ance-covariance matrix of returns. They imply that there exists a bias-variance tradeoff between 

estimating 𝚺 using the factor structure, and not imposing a factor structure and merely using the 

sample variance-covariance matrix. While the sample variance-covariance matrix is unbiased, it 

consists of 𝑁(𝑁 + 1)/2 estimates. Through each of these estimation procedures, we may incur er-

rors.  In the accumulation of these many errors, the result can be a considerable loss of precision. 

In contrast, by estimating the variance-covariance matrix using the factor structure, we have to es-

timate 𝑁 ∗ 𝐾 factor loadings 𝛽, 𝐾(𝐾 + 1)/2 parameters in the variance-covariance matrix of the 

factors 𝚺𝒇 and 𝑁 estimates in the diagonal variance-covariance matrix of residuals, 𝚺𝒆. This sums to 

𝑁 ∗ 𝐾 + 𝑁 + 𝐾(𝐾 + 1)/2 parameter estimates. According to Ruppert & Matteson (2010), the 

number of stocks is usually large compared to the number of factors, 𝑁 > 𝐾. The consequence is 

that 𝑁 ∗ 𝐾 + 𝑁 + 𝐾(𝐾 + 1)/2 is much smaller than 𝑁(𝑁 + 1)/2.  

Based on our dataset, where 𝑁 = 188, Table 3.1 shows the number of parameter estimates required 

for estimating the variance-covariance matrix using the factor structure (with 𝑘 = 1,3,4,5) and the 

sample covariance matrix. We see that by imposing a factor structure on the returns, we get a signif-

icant reduction in the number of parameter estimates. Hence, without the application of a factor 

structure, we must estimate 17,766 parameters, while using the factor structure we only have to es-

timate 377, 758, 950 and 1,143 parameters for 𝑘 = 1, 3, 4  and 5 factors respectively. 

Table 3.1 - Number of Inputs to the Variance-Covariance Matrix: 

 

Parameter Estimates: Total

Sample Covariance 17,766

One Factor Structure (k = 1) 377

Three Factor Structure (k = 3) 758

Four Factor Structure (k = 4) 950

Five Factor Structure (k = 5) 1,143
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Furthermore, Ruppert & Matteson (2010) advocate the advantage of expediency, understood as the 

convenience of having fewer parameters to estimate, and the ease with respect to updating these 

estimates. Suppose we have implemented a factor model including 𝑁 securities and want to add 

another security to the model. In the case where no factor structure has been imposed on the vari-

ance covariance matrix, we must compute 𝑁 sample covariances between the new security and the 

securities already included in the model. Thus, time series data for all of the 𝑁 securities must be 

available. Evaluating Equation (3.2), we observe that in the case where a factor structure has been 

imposed on the variance-covariance matrix, we only require sufficient data to regress the new re-

turns on the factors. 

3.2 – Identification of Factors 

Throughout the literature, various categories of factors in stock returns have been proposed. None-

theless, academics do not agree on the theoretical justifications for the factors. According to Fama 

& French  (2004), the explanations for the existence of factors commonly take two stances; the ra-

tional (risk-based) or the irrational (behavioral) explanation. In the first perspective, factors exist 

because asset pricing models are not capturing components of systematic risk. Abnormal returns 

thus exist owing to investors undertaking risks and capturing risk premia. In the second, factors 

exist because of investor overreaction. Thus, investors may act irrationally to information or possess 

certain psychological biases that affect how they process information (Fama & French, 2004). The 

theoretical framework that we will apply to form the analysis is the APT. Hence, we will focus 

more on the rational (risk-based) perspective going forward. 

According to Munk (2017), two approaches commonly exist for identifying factors. The first in-

cludes pre-specifying theoretical factor models and testing whether they are empirically significant. 

The second constitutes identifying empirically significant factors and attempting to explain the ra-

tionale for why they should be priced factors. 

Throughout Section 3.1, we specified that this thesis will only consider factor models fitted through 

time series regression. This has the consequence of limiting our universe of factors only to ones that 

are related to traded assets. Hence, in this section, we will only focus on factors that are tradable in 

financial markets. In this sense, the factor risk premiums are returns of factor mimicking portfolios, 

which are portfolios with returns that mimic the unexpected movements in the risk factors. 
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3.2.1 – Macroeconomic Factors 

One may use economic theory to postulate a set of reasonable macro-economic variables that are 

good proxies for risks relevant to the investor. Chen, Roll, & Ross (1986) present such a factor 

model with macro-economic variables as common risk factors. They base their choice of factors on 

the formulation of the current price of a stock as the present value of the expected cash flows: 

𝑃𝑡 = ∑
𝐸[𝐶𝐹𝑡+𝜏]

(1 + 𝑟)𝜏

∞

𝜏=1

(3.3) 

Through this relation, Chen, Roll, & Ross (1986) suggest that common risk factors associated with 

returns should be variables which significantly impact expected cash flows, 𝐸[𝐶𝐹𝑡+𝜏], and/or dis-

count rates, 𝑟. They consider inflation, interest rates, as well as indicators related to business-cycles 

as risk factors that may cause pervasive shocks to expected cash flows and/or discount rates. 

Relevant common risk factors can also possibly be found in the literature for stock returns predicta-

bility. Rapach, Wohar, & Rangvid (2005) note that previously studied macro-economic variables 

among other things include the inflation rate, money stocks, aggregate output, the unemployment 

rate, interest rates, term spreads, and default spreads on bonds. Nevertheless, the macro-economic 

variables that are most commonly considered are the short-term interest rates (3-month T-bill and 1-

month T-bill), the term spread and the default spread. Fama & French (1989) suggest that short-

term interest rates can relate to current business conditions, while movements in the term spread and 

the default spread may relate to changes in the expectations about the short-term and long-term 

business conditions. Hence, these risk factors can be included in a factor model with great rationali-

ty. 

Tradable representations of the macro-economic factors considered so far can, for example, be the 

return of inflation-linked bonds for a real interest rate factor or the return of a portfolio consisting 

of long nominal bonds and short inflation-linked bonds for an inflation factor. These representa-

tions can be found as Exchange Traded Funds (ETFs) of asset class indices. The benefits of specify-

ing a factor model with such macroeconomic variables as factors include the theoretical attractive-

ness of explaining and interpreting the factors’ influence on stock returns. Nevertheless, issues exist 

with regards to low explanatory power, which has been highlighted, as one of the major shortcom-

ings of this class of factors (Ruppert & Matteson, 2015). 
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Single-Index Model 

The Single-Index Model is a well-established macroeconomic factor model developed by Sharpe 

(1963).1 The model is meant as an extension to the works of Markowitz (1952) to provide a simpli-

fied model of the relationship between stocks, and to provide evidence for the practical applications 

of the techniques of Markowitz (Sharpe, 1963). The model describes a linear relationship between 

the return of asset 𝑖 and a single common underlying factor explaining the systematic risk affecting 

all asset returns. The single factor is assumed to equal the return on a market portfolio, or more spe-

cifically the return on a broad stock market index (as a proxy for the market). The formal definition 

of the Single-Index Model is 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝑒𝑖,𝑡 (3.4) 

Equation (3.4) states that the excess return on any stock, 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡, can be decomposed into an in-

tercept, 𝛼𝑖, that is the excess return independent of the market’s performance, the asset’s sensitivity 

to market movements, 𝛽𝑖,𝑀, the market risk premium, described by the excess return on the market, 

𝑟𝑀,𝑡 − 𝑟𝑓,𝑡, and the idiosyncratic risk due to firm-specific factors, 𝑒𝑖,𝑡. The rationale for the Single-

Index Model is the simple notion that stocks are driven by the same economic influences. Hence, 

Equation (3.4) provides a relatively simple tool to quantify the forces driving assets’ returns. The 

specification in Equation (3.4) is closely related to that of the CAPM in Section 2.2, yet the Single-

Index Model is merely a statistical technique, while the CAPM is an economic equilibrium theory 

as highlighted by Bodie et al. (2009). 

Despite its popularity, Connor & Korajczyk (2010) suggest that in practice, the Single-Index Model 

does not describe all of the common variability across stocks. They point out that the simple separa-

tion of risk into two sources; systematic and idiosyncratic, may be an oversimplification. They sug-

gest that there seem to be additional benefits from using a model with multiple factors. The follow-

ing section will, therefore, describe several of the most well-known multi-factor models, belonging 

to the branch of fundamental factor models. 

                                                 
1 While Sharpe (1963) denotes the Single-Index Model the Diagonal Model, the Single-Index Model is also often re-

ferred to as the Market Model. 
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3.2.2 – Fundamental Factors 

Another way of modeling factors of security returns is by constructing a fundamental-based factor 

model. Fundamental-based factor models use observable asset characteristics (fundamentals) as 

factors. One of the first to suggest the use of standard accounting ratios (book-to-price ratios and 

market value of equity) in factor models were Rosenberg (1974). 

Throughout the literature, other authors have also found that fundamental ratios may play a role as 

factors in explaining returns and that market beta is not the only risk factor. Banz (1981) notes that 

by sorting stocks on market capitalization, small stocks have higher average returns than what mar-

ket betas suggest, calling for a size effect. Basu (1977) finds that when sorting stocks on earnings-

to-price (E/P) ratios, future returns on stocks with high earnings-to-price ratios are higher than what 

market betas indicate. In addition, Stattman (1980) and Rosenberg, Reid, & Lanstein (1985) find 

that stocks with high book-to-market equity (BVE/MVE) ratios have higher average returns than 

what market betas suggest, calling for a value effect. The findings of Bhandari (1988) advocate that 

high debt-equity (BVD/MVE) ratios lead to returns that are too high relative to market betas. 

The findings of the above-mentioned studies suggest that stock prices include information about 

expected returns left out by the market beta. This suggests that fundamental factors of E/P, 

BVE/MVE and BVD/MVE indeed play a role in explaining variability in stock returns and the pos-

sibility that multifactor models based on asset characteristics allow for a richer explanation of stock 

returns. 

Fama-French Three-Factor Model 

Fama & French (1993) find that stock returns of firms with a low market capitalization (small 

stocks) covary more with one another than stock returns of firms with a high market capitalization 

(big stocks). Moreover, they notice that returns on stocks with high book-to-market ratios (value 

stocks) covary more with one another than stocks with low book-to-market ratios (growth stocks). 

They argue that there are systematic risks involved with investing in the stocks of small firms and 

value stocks, not captured by the market factor, thus requiring additional risk factors. 

In several influential papers, Fama & French (1992, 1993, 1996) propose an estimation procedure 

for fundamental factor models, where assets (or portfolios) are sorted into groups based on certain 

characteristics. More specifically they form six portfolios based on market capitalization (two 
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groups) and book-to-market ratios (three groups). For the ease of understanding the sorting, the 

reader may see Figure 3.1 which illustrates the sorting methodology. 

Figure 3.1 – Fama-French Three-Factor Model Portfolio Sort: 

 

The SMB factor (Small minus Big) is constructed based on market capitalization as the difference 

between average returns of firms with a market capitalization below the median market capitaliza-

tion (Small firms) and average returns of firms with a market capitalization above the median mar-

ket capitalization (Big firms). 

The HML factor (High minus Low) is constructed based on the book-to-market ratio as the differ-

ence between average returns of firms with a book-to-market ratio higher than the 70th percentile 

(Value), and average returns of firms with a book-to-market ratio lower than the 30th percentile 

(Growth). 

Thus, Fama & French (1993) effectively construct mimicking portfolios for their factors since SMB 

and HML are the returns on portfolios that have long positions in one group of stocks and short po-

sitions in another group. As a result, they formulate the following three-factor model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝑒𝑖,𝑡 (3.5) 

where the factors constitute a market factor, a small-minus-big factor and a high-minus-low factor. 

Fama & French (1996) find that their three-factor model fits the U.S. stock market well over the 

period 1963 – 1993, the same conclusion is found with regards to many other countries (Fama & 

French, 2012). Nonetheless, Fama & French (2004) acknowledge the shortcomings of the model 

from a theoretical perspective. These shortcomings include empirical motivation for the factors 

since their relation to risks relevant to the investor is unclear. 

Fama & French (1996) suggest that the ability of the model to explain returns should be attributed 

to a premium on financial distress. There is a tendency that small value stocks are firms with poor 
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past performance, thus more likely to experience future financial distress. More commonly, small 

firms may be more vulnerable to recessions. In the event of a recession, investors value high returns 

the most, hence investors would require a higher expected return on investments in stocks of small 

firms. In general, value firms will have a more significant part of tangible assets, meaning that in 

recessions they may experience excess capacity, which demands a return. In contrast, growth firms 

rely on growth prospects for the future, which can more easily be deferred. It is thus the pro-

cyclicality of stocks on value firms that demands a higher expected return. Contrary, growth stocks 

and large stocks may have lower expected returns because they provide better protection against 

recessions (Munk, 2017). 

Carhart Four-Factor Model 

Jegadeesh & Titman (1993) discover that stocks which perform well relative to the market over the 

last 3 to 12 months tend to continue to perform well for the next few months, while the opposite 

applies for stocks that perform poorly. Hence, they conclude that stocks hold short-term momentum 

in returns. Acknowledging this, Carhart (1997) extends the Fama-French Three-Factor Model in 

Equation (3.5) to include a fourth momentum factor, UMD: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑖,𝑈𝑀𝐷𝑈𝑀𝐷𝑡 + 𝑒𝑖,𝑡 (3.6) 

The UMD factor (Up minus Down) is constructed based on stock returns over the last 2 to 12 

months as the difference between average returns of the firms with stock returns higher than the 70th 

percentile (firms that have recently gone up) and average returns of the firms with stock returns 

lower than the 30th percentile (firms that have recently gone down). 2 

Hvidkjaer (2006) finds evidence for a relation between the momentum effect and liquidity prob-

lems. On the other hand, Avramov, Chordia, Jostova, & Philipov (2007) emphasize that momentum 

profitability is large and significant among firms of low credit quality. Hence, an economic ra-

tionale for the momentum factor may be that it captures liquidity risk or credit risk. Nevertheless, 

Daniel & Moskowitz (2016) underline the issues related to employing a momentum-based strategy. 

They find that such a strategy will eventually crash and give very negative returns following market 

downturns and through periods of heavy volatility. 

                                                 
2 As we shall see in Section 4.1, we use the Momentum Factor (MOM) from the data library of French (2019), hence we 

describe his methodology for creating the factor. 



Page 27 of 129 

 

Fama-French Five-Factor Model 

Evidence provided by Novy-Marx (2013) and Titman, Wei, & Xie (2004) among others, highlight 

the inability of the three-factor model to explain average returns since the three factors do not ac-

count for variation in average returns related to profitability and investment. Novy-Marx (2013) 

finds that stocks of firms with high profitability have higher returns than stocks of firms with low 

profitability. Thus, he finds that gross profitability as measured by a firm’s gross profits relative to 

its asset base is a powerful predictor of the cross-section of average returns and that it has as much 

explanatory power as the book-to-market ratio. Moreover, Titman, Wei, & Xie (2004) examine the 

relationship between increases in capital investments and succeeding stock returns. Their findings 

are that firms that increase their level of capital investment aggressively tend to have lower stock 

returns. 

Motivated by this evidence Fama & French (2015) include two additional risk factors, profitability, 

and investment to their model extending the three-factor model in Equation (3.5) to a five-factor 

model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 +

𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑖,𝑅𝑀𝑊𝑅𝑀𝑊𝑡 + 𝛽𝑖,𝐶𝑀𝐴𝐶𝑀𝐴𝑡 + 𝑒𝑖,𝑡  (3.7)
 

The RMW factor (Robust minus Weak) is constructed based on profitability, as the difference be-

tween average returns of firms showing good profitability (robust firms) and average returns of 

firms showing bad profitability (weak firms). With reference to Fama & French (2015), the sorting 

ratio for profitability is calculated as 

𝑂𝑃𝑡−1 =
(𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐶𝑂𝐺𝑆 − 𝑆𝐺&𝐴 − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒)𝑡−1

𝐵𝑉𝐸𝑡−1

(3.8) 

and shows that profitability is measured as the ratio of revenue minus cost of goods sold (COGS), 

minus selling, general and administrative expenses, minus interest expenses relative to the book 

value of equity. The subscript 𝑡 − 1 indicates that accounting data for the fiscal year ending in year 

𝑡 − 1 is used. 

The CMA factor (Conservative minus Aggressive) is constructed based on firms’ degree of invest-

ment, as the difference between average returns of firms with low investment (conservative firms) 

and average returns of firms with high investment (aggressive firms). With reference to Fama & 

French (2015), the sorting ratio for investment is calculated as 
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𝐼𝑛𝑣𝑡−1 =
𝑇𝐴𝑡−1 − 𝑇𝐴𝑡−2

𝑇𝐴𝑡−2

(3.9) 

and shows that investment is measured as the relative change in the firm’s total assets from the fis-

cal year ending in year 𝑡 − 2 to the fiscal year ending in 𝑡 − 1.  

When extending the three-factor model to include the RMW factor and the CMA factor, Fama & 

French (2015) note that the HML factor becomes redundant, in the sample they consider. This is 

because the average return of the HML factor is captured by its exposures to the other factors. In 

instances, where abnormal returns (as measured by the intercept, 𝛼) are the only concern, they sug-

gest that a four-factor model excluding the HML factor may perform just about the same as the 

five-factor model. 

3.3 – Sub-Conclusion 

In the discussion of the prevailing explanation for the presence of factors in stock returns, two 

views are commonly taken within the finance literature. These include the rational (risk-based) ex-

planation and the irrational (behavioral) explanation. The former encompasses that assets have dif-

ferent expected returns because they vary more or less with numerous priced factors, where the lat-

ter includes that factors are merely anomalies caused by investor overreaction. 

Factors in stock returns can be identified by following various procedures. In this section, we have 

considered two approaches, which includes pre-specifying a theoretically founded factor model and 

testing it for empirically significance or discovering empirically significant factors and justifying 

them afterwards. 

Macroeconomic factors are the first branch of factors that we have considered. While these factors 

seem like good candidates due to their strong intuitive appeal, they have generally been shown to 

explain stock returns poorly. Nevertheless, a macroeconomic factor model that we find relevant for 

this study is the Single-Index Model, which is an established factor model within the finance litera-

ture, that includes a broad market index as the single factor. 

The second type of factors that we have reviewed is fundamental factors, which are factors based on 

simple accounting ratios and firm characteristics. A commonly applied approach for constructing 

such factors are the sorting methodology of Fama & French (1993). By sorting stocks on certain 

firm characteristic variables, factors are represented as returns of factor-mimicking portfolios. Fama 

& French (1993) specify their three-factor model to include a market, size and value factor. Carhart 
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(1997) extends this model to a four-factor model by including a momentum factor. More recently 

Fama & French (2015) have included a profitability factor and an investment factor in their original 

three-factor model. The models have been shown to explain average returns well and therefore pos-

sibly capture underlying risk premiums. However, these are more difficult to motivate theoretically.  

In conclusion, we find that the Single-Index Model, the Fama-French Three-Factor Model, the Car-

hart Four-Factor Model, and the Fama-French Five-Factor Model pose relevant for the mean-

variance factor framework that we intend to implement moving forward. 
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4 – Empirical Study 

Following the theoretical frameworks and the review on factor models, this section will lay the 

foundation for answering the proposed research questions in order to answer the overall problem 

statement. We will do this by describing our data sample, how the data is gathered and how the data 

sample has been prepared for the analysis. Furthermore, this section will form the analysis by pre-

senting the construction of our portfolios, and the basis for the portfolio backtesting and perfor-

mance evaluation. Lastly, an initial assessment of the data sample will be made, where possible 

econometric issues will be considered. 

4.1 – Data Sample 

Since we have chosen to implement and test our framework on the U.S. stock market, we limit our 

stock-universe to only include components of the Standard & Poor’s 500 Index (S&P 500 Index) at 

a particular point in time. The S&P 500 Index is an American stock market index that includes the 

500 largest U.S. publicly traded companies. It is regarded as a good representation of large-cap U.S. 

equities and covers more than 80% of the U.S. equity market in terms of market capitalization (S&P 

Dow Jones, 2019a). The S&P 500 index is weighted based on market capitalization and the shares 

included in the index are “free-floating” shares, which means that they can be held by the general 

public. 

According to S&P Dow Jones (2019b), the S&P 500 Index differs from other major indices by its 

diverse base of constituents and weighting practice. The constituents of the S&P 500 Index are cho-

sen via a committee, and when considering a new candidate for the index, the committee employs 

eight primary criteria for inclusion. S&P Dow Jones (2019c) documents that these criteria comprise: 

• Market Capitalization 

• Liquidity 

• Domicile 

• Public Float 

• Sector Classification 

• Financial Viability 

• Length of Time Publicly Traded  

• Stock Exchange 
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S&P Dow Jones (2019c) reports that the companies in the S&P 500 Index are selected by the com-

mittee, in such a way that they are representative of the industries in the economy of the U.S. Fur-

thermore, the S&P 500 Index is one of the most commonly followed equity indices and highly re-

garded as a proxy for the U.S. Equity Market (S&P Dow Jones, 2019b). For these reasons, we feel 

comfortable using the S&P 500 index as the investment universe of this study. 

Similarly, we choose only to include factors related to the U.S. economy. These factors constitute 

the factors of the Fama-French Three-Factor Model, the Carhart Four-Factor Model, and the Fama-

French Five-Factor Model. The methodology for the construction of these factors was described in 

Section 3.2 and will consequently not be presented here.  

4.1.1 – Data Gathering 

For the stock data, we gather a constituent list of the S&P 500 Index for the specific date of 01-01-

2019. This is done using Thomson Reuters (2019) by applying the code “S&PCOMP”. Based on 

this list we extract a time series of daily closing prices and name for each respective constituent. We 

choose to use Thomson Reuters (2019) to extract the data, since this data-provider gives us the ex-

plicit option of adjusting prices for corporate actions (dividends, stock splits, share buyback, etc.), 

and thus obtain adjusted closing prices. The time interval for the time series has been chosen as the 

base date (earliest date available), 02-01-1973 to 01-01-2019. We take this approach to ensure that 

we have at least several periods of 60 months data when forming the analysis, to perform rolling-

window regressions. The importance of using at least 60 months of data for each regression is sug-

gested by Cuthbertson & Nitzsche (2004) in order to obtain reliable beta estimates. 

Furthermore, we gather data on our factors from the data library of French (2019). From here, we 

obtain time series of returns of the Fama/French 3 Factors, Momentum Factor (Mom) and 

Fama/French 5 Factors. For the factors, we take a similar approach and extract the maximum data 

available. The earliest date available for the time series of returns is 07-1963, and the latest is 01-

2019. 

We also obtain time series on the risk-free rate from Kenneth French’s data library. This risk-free 

rate is the one-month Treasury bill rate from Ibbotson Associates.  

4.1.2 – Preparation of the Data Sample 

The management of our data and preparation of the data sample have mainly been done in Excel. 



Page 32 of 129 

 

The return 𝑟 for stock 𝑖 at time 𝑡 is given by 

𝑟𝑖,𝑡 =
𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1

𝑃𝑖,𝑡−1

(4.1) 

Where 𝑃𝑖,𝑡 and 𝑃𝑖,𝑡−1refer to the closing prices of security 𝑖 at time 𝑡 and 𝑡 − 1, corresponding to the 

first day of month 𝑡 and the first day of month 𝑡 − 1. Monthly returns are calculated throughout our 

data sample, from January 1974 to January 2019. Due to the fact that each parameter estimation 

requires 60 months of return observations, we will run the portfolio backtesting and performance 

evaluation from January 1979 to January 2019. 

The constituents of the S&P 500 Index that we gather for the first day of January 2019 have a dif-

ferent number of past observations, due to differences in their time being included in the index. We 

have therefore chosen to reduce the data sample to only include stocks, with the same number of 

past returns. This has been done to make the rolling estimation procedure feasible and the construc-

tion of the portfolios within the scope of this thesis. As a consequence, the number of stocks in the 

data sample is reduced from 500 to 188. Nevertheless, we are aware of that this creates a potential 

survivorship bias in our data sample. This issue will be discussed in detail in Section 7.1. Likewise, 

we reduce the time series of the factors and the risk-free rate accordingly, so they have the same 

length as the time series of the stock returns. 

As a result of the reduction, we find it relevant to gain an understanding of how the “prepared” data 

sample is structured and which stocks it includes. Firstly, the stocks do supposedly fulfill the selec-

tion criteria for the S&P 500 Index mentioned above. Hence, they must have a market capitalization 

above a certain level, be liquid stocks, be common stocks of U.S. Companies, be held in the hands 

of public investors, have a sector classification, be stocks of financially viable companies and have 

a particular history of being publicly traded. Secondly, Appendix A adds an industry classification 

to each stock in the final data sample and constructs an industry decomposition illustrated in a tree-

map. We observe that the final data sample is dominated by 36 companies in industrials (19%), 26 

firms in financials (14%), 23 companies in consumer discretionary (12%), 22 firms in consumer 

staples (12%) and 22 companies in utilities (12%). Hence, the firms within these industries make up 

the majority of the final data sample. 

Putting this into perspective, we find that the “unprepared” data sample does also include a high 

concentration of companies in financials. In contrast, the highest industry weights of the “unpre-
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pared” data sample are found within information technology and health care. The most significant 

changes in the industry composition, due to the way that we manage the data sample, are thus in the 

industries of information technology and health care. This may also seem obvious, since only in-

cluding stocks with time series of returns dating back to the 1970s, will eliminate a large part of 

technology and healthcare firms. On the other hand, the “prepared” data sample includes a higher 

concentration of companies within industrials and utilities. 

Nevertheless, we still deem the final data sample representative and appropriate for answering the 

problem statement of this study. These insights will pose valuable in the backtesting and perfor-

mance evaluation when we will make inferences about the portfolios we intend to construct. We 

will move on to form the analysis. 

4.2 – Forming the Analysis 

4.2.1 – Portfolio Construction 

The following section will present how we construct our portfolios, where the derivation of ex-

pected returns, the variance-covariance matrix, and portfolio weights are described in detail. Thus, 

for each portfolio, we will describe the procedure for estimating the parameters and afterwards port-

folio choice. The portfolios we want to construct include a portfolio based on the traditional ap-

proach to mean-variance analysis, which we denote the naïve Markowitz portfolio, a number of 

portfolios based on a factor approach to mean-variance analysis, which we call factor Markowitz 

portfolios and a portfolio based on equal portfolio weights, which we denote the equally weighted 

portfolio. 

For each of the portfolios, we intend to end up with a time series of returns in order to backtest and 

evaluate the performance of the portfolios. To arrive at this output, we apply a rolling input-

estimation procedure on 60 months of past data, which is equivalent to five years. The argument for 

applying a window of this length was proposed in Section 4.1, as a way to get more reliable pa-

rameter estimates. Perhaps, another more economically intuitive rationale for taking such an ap-

proach is that companies may undergo restructuring, for instance through mergers and acquisitions, 

divestments, etc. Companies can change significantly over time, and we would like to have our es-

timates account for this fact. 

The implementation of the portfolio construction is done in the programming language R for statis-

tical computing from R Core Team (2019), and the programming code has been included in Appen-
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dix J. Nonetheless, the objective of this section is to describe the implementation in such a matter, 

that it could be implemented in the reader’s software of choice.  

For the construction of either of our portfolios, we define a matrix of returns for the 188 stocks in 

our dataset. The columns of the matrix correspond to a series of returns for each of the 𝑁 stocks, 

while the rows represent time: 

𝒓 = [

𝑟1,1 ⋯ 𝑟1,𝑁

⋮ ⋱ ⋮
𝑟𝑇,1 ⋯ 𝑟𝑇,𝑁

] (4.2) 

The rationale for doing this is the possibility of conducting matrix operations, and because it makes 

the process of doing rolling operations through loops easier. 

Following these definitions, we will elaborate on the procedure for each of the portfolios separately. 

The Naïve Markowitz Portfolio 

The construction of the naïve Markowitz portfolio is based on the optimization problem formulated 

in Section 2.1. Hence the inputs consist of the expected returns and the variance-covariance matrix 

for all assets. We will apply the most common approach for obtaining these inputs, which is 

through estimation from historical sample data. With reference to the portfolio being naïve, we will 

estimate the expected returns, and the variance-covariance matrix based on the sample mean and the 

sample variance-covariance matrix, respectively. 

More specifically, the expected return of stock 𝑖 is estimated as the simple arithmetic average of the 

past 60 monthly returns: 

𝐸[𝑟𝑖] =
1

𝑇
∑ 𝑟𝑖,𝑡

𝑇

𝑡=1

(4.3) 

which we bind into a vector of expected returns 

𝜇 = [
𝐸[𝑟1]

⋮
𝐸[𝑟𝑁]

] (4.4) 

Similarly, the variance-covariance matrix for all stocks is constructed based on the sample variance 

and sample covariance of the past 60 monthly returns. The sample variance of stock 𝑖 is given by 



Page 35 of 129 

 

𝜎𝑖
2 =

1

𝑇 − 1
∑(𝑟𝑖,𝑡 − 𝐸[𝑟𝑖])

2
𝑇

𝑡=1

(4.5) 

while the sample covariance between stock 𝑖 and stock 𝑗 is computed by 

𝜎𝑖,𝑗 =
1

𝑇 − 1
∑(𝑟𝑖,𝑡 − 𝐸[𝑟𝑖])

𝑇

𝑡=1

(𝑟𝑗,𝑡 − 𝐸[𝑟𝑗]) (4.6) 

The sample variance is located in the diagonal of the matrix, while the sample covariance is located 

in the off-diagonal, resulting in the following matrix 

𝚺 = [
𝜎1,1

2 ⋯ 𝜎1,𝑁

⋮ ⋱ ⋮
𝜎𝑁,1 ⋯ 𝜎𝑁,𝑁

2
] (4.7) 

With these inputs at hand, we utilize the closed-form solution for the tangency portfolio, formulated 

in Section 2.1, to compute the portfolio weights for the naïve Markowitz portfolio: 

𝑤𝑁𝑀𝑃 =
1

𝟏𝑇𝚺−𝟏(𝜇 − 𝑟𝑓𝟏)
𝚺−𝟏(𝜇 − 𝑟𝑓𝟏) (4.8) 

However, as we apply Equation (4.8), we encounter problems of singularity with respect to our var-

iance-covariance matrix. As stated in Section 2.1, the derivation of the portfolio weights implies 

non-singularity of the variance-covariance matrix or said differently, the existence of an inverse of 

the matrix. To understand why singularity is a problem, we will define what a singular matrix is 

below. 

Sydsæter, Strøm, & Berck (2005) state that a matrix 𝚺 is said to be singular if its determinant is 

equal to zero, formulated as 

|𝚺| = 0 

The determinant of a matrix can be defined as: 

|𝚺| = 𝜙1 ∗ 𝜙2 … 𝜙𝑁−1 ∗ 𝜙𝑁 

Where 𝜙 is satisfying: 

𝚺𝑐 = 𝜙𝑐 

The parameter 𝜙 is called the eigenvalue of matrix 𝚺 and 𝑐 is an eigenvector. 
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Matrix 𝚺 is then said to be invertible (𝚺−𝟏) if the determinant of the matrix is different from zero, 

thus  

|𝚺| ≠ 0 

Looping through our estimated variance-covariance matrices and applying Equation (4.8), we note 

that it is generally true that the inverse of the matrices does not exist due to singularity. In particu-

lar, we observe a limited number of positive eigenvalues. Hence, to make the optimization proce-

dure feasible, we would have to reduce our data sample even further. 

Ledoit & Wolf (2003) report similar problems with respect to the sample variance-covariance ma-

trix. More specifically they underline that when the number of stocks 𝑁, is larger than the number 

of time series observations 𝑇 (length of the estimation window), the sample variance-covariance 

matrix is always singular, although the true variance-covariance matrix is assumed to be non-

singular. Likewise, Cornuejols & Tütüncü (2007) find that when solving large mean-variance opti-

mization problems, the variance-covariance matrix is almost singular.  

In our application, we have 𝑁 = 188 and 𝑇 = 60 for each estimation iteration, where 𝑁 is particu-

larly larger than 𝑇, which may be a reason for why we encounter problems. As a consequence, we 

will impose a factor structure on the variance-covariance matrix, a solution which is also suggested 

by Ledoit & Wolf (2003). In the following section, we will thus specify several factor models and 

describe the implementation of a factor-based mean-variance analysis. 

The Factor Markowitz Portfolios 

The construction of the factor Markowitz portfolios is based on the procedure of Section 3.1, where 

the statistical properties of factor models were reviewed. As noted previously, we intend to con-

struct portfolios based on the Single-Index Model, the Fama-French Three-Factor Model, the Car-

hart Four-Factor Model, and the Fama-French Five-Factor Model. This will be done by imposing a 

factor structure on the expected returns and the variance-covariance matrix. 

The first step in the estimation procedure is to run regressions of the excess returns of each stock on 

the relevant factors. The regressions will take the form of the definitions of the factor models pre-

sented in Section 3.2: 

The Single-Index Model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝑒𝑖,𝑡 (4.9) 
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The Fama-French Three-Factor Model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝑒𝑖,𝑡 (4.10) 

The Carhart Four-Factor Model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑖,𝑈𝑀𝐷𝑈𝑀𝐷𝑡 + 𝑒𝑖,𝑡 (4.11) 

The Fama-French Five-Factor Model: 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 +

𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑖,𝑅𝑀𝑊𝑅𝑀𝑊𝑡 + 𝛽𝑖,𝐶𝑀𝐴𝐶𝑀𝐴𝑡 + 𝑒𝑖,𝑡 (4.12)
 

Practically, we make use of (4.2) and construct a new matrix of excess returns by subtracting a vec-

tor of risk-free rates as 

𝒓𝒆 = [

𝑟1,1 ⋯ 𝑟1,𝑁

⋮ ⋱ ⋮
𝑟𝑇,1 ⋯ 𝑟𝑇,𝑁

] − [

𝑟𝑓,1

⋮
𝑟𝑓,𝑇

] (4.13) 

Moreover, we define vectors of the relevant factors 

[

𝑟𝑀,1

⋮
𝑟𝑀,𝑇

] − [

𝑟𝑓,1

⋮
𝑟𝑓,𝑇

] = 𝑀𝑒 =  [

𝑟𝑀,1
𝑒

⋮
𝑟𝑀,𝑇

𝑒
] , 𝑆𝑀𝐵 =  [

𝑆𝑀𝐵1

⋮
𝑆𝑀𝐵𝑇

] , 𝐻𝑀𝐿 =  [
𝐻𝑀𝐿1

⋮
𝐻𝑀𝐿𝑇

]    

𝑈𝑀𝐷 = [
𝑈𝑀𝐷1

⋮
𝑈𝑀𝐷𝑇  

] , 𝑅𝑀𝑊 = [
𝑅𝑀𝑊1

⋮
𝑅𝑀𝑊𝑇

] , 𝐶𝑀𝐴 = [
𝐶𝑀𝐴1

⋮
𝐶𝑀𝐴𝑇  

] 

We regress the past 60 months of excess returns for each stock onto the past 60 monthly observa-

tions of the factors. We follow this procedure until we have conducted 480 regressions, since we 

want to evaluate our portfolios from January 1979 to January 2019. 

From each regression, we extract the factor loadings and bind these into the following matrix 

𝜷 = [

𝛽1,1 ⋯ 𝛽1,𝑁

⋮ ⋱ ⋮
𝛽𝐾,1 ⋯ 𝛽𝐾,𝑁

] (4.14) 

In line with the theoretical premise of uncorrelated error terms, we also extract the residuals from 

each regression, calculate the sample variances of the residuals, and similarly bind these to produce 

the following diagonal matrix 
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𝚺𝐞 = [

𝜎𝑒1
2 0 0

0 ⋱ 0
0 0 𝜎𝑒𝑁

2
] (4.15) 

Where 𝜎𝑒𝑖

2  denotes the variance of the residuals from regression 𝑖. Moreover, sample variances and 

sample covariances are computed for all relevant factors, and bound to construct the following ma-

trix: 

𝚺𝑭 = [

𝜎𝐹1,1
2 ⋯ 𝜎𝐹1,𝐾

⋮ ⋱ ⋮
𝜎𝐹𝐾,1

⋯ 𝜎𝐹𝐾,𝐾
2

] (4.16) 

With 𝜷, 𝚺𝒆and 𝚺𝑭 at hand, we calculate the variance-covariance matrix of our stocks, by applying 

Equation (3.2): 

𝚺 = 𝜷𝑻𝚺𝑭𝜷 + 𝚺𝒆 = [
𝜎1,1

2 ⋯ 𝜎1,𝑁

⋮ ⋱ ⋮
𝜎𝑁,1 ⋯ 𝜎𝑁,𝑁

2
] (4.17) 

In order to compute the expected return for each stock, we must define APT equivalent formula-

tions of the aforementioned factor models. A crucial assumption of the equilibrium versions of 

these models is that 𝛼𝑖 will equal zero. In accordance with Equation (2.21), we therefore write 

The Single-Index Model: 

𝐸[𝑟𝑖] = 𝑟𝑓 + 𝛽𝑖,𝑀(𝐸[𝑟𝑀] − 𝑟𝑓) (4.18) 

The Fama-French Three-Factor Model: 

𝐸[𝑟𝑖] = 𝑟𝑓 + 𝛽𝑖,𝑀(𝐸[𝑟𝑀] − 𝑟𝑓) + 𝛽𝑖,𝑆𝑀𝐵𝐸[𝑆𝑀𝐵] + 𝛽𝑖,𝐻𝑀𝐿𝐸[𝐻𝑀𝐿] (4.19) 

The Carhart Four-Factor Model: 

𝐸[𝑟𝑖] = 𝑟𝑓 + 𝛽𝑖,𝑀(𝐸[𝑟𝑀] − 𝑟𝑓) + 𝛽𝑖,𝑆𝑀𝐵𝐸[𝑆𝑀𝐵] + 𝛽𝑖,𝐻𝑀𝐿𝐸[𝐻𝑀𝐿] + 𝛽𝑖,𝑈𝑀𝐷𝐸[𝑈𝑀𝐷] (4.20) 

The Fama-French Five-Factor Model: 

𝐸[𝑟𝑖] = 𝑟𝑓 + 𝛽𝑖,𝑀(𝐸[𝑟𝑀] − 𝑟𝑓) + 𝛽𝑖,𝑆𝑀𝐵𝐸[𝑆𝑀𝐵] +

𝛽𝑖,𝐻𝑀𝐿𝐸[𝐻𝑀𝐿] + 𝛽𝑖,𝑅𝑀𝑊𝐸[𝑅𝑀𝑊] + 𝛽𝑖,𝐶𝑀𝐴𝐸[𝐶𝑀𝐴] (4.21)
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To compute the expectation of each factor, we calculate the simple arithmetic average of the past 60 

months of factor observations. With the factor loadings, the expectation of factors and the risk-free 

rate at hand, we calculate expected returns and bind these into a vector 

𝜇 = [
𝐸[𝑟1]

⋮
𝐸[𝑟𝑁]

] (4.22) 

Progressing further, we apply the closed-form solution for the tangency portfolio, to compute the 

portfolio weights for each factor Markowitz portfolio: 

𝑤𝐹𝑀𝑃 =
1

𝟏𝑇𝚺−𝟏(𝜇 − 𝑟𝑓𝟏)
𝚺−𝟏(𝜇 − 𝑟𝑓𝟏) (4.23) 

However, as we apply Equation (4.23) on the expected returns and the variance-covariance matrices 

through time, we observe questionable outputs. We see instances where the portfolio weights are 

very large with positive signs, and others are very large with negative signs.  

Appendix B shows scatterplots of the weights for each factor Markowitz portfolio through time. 

While the portfolio weights of the Single-Index Markowitz portfolio do not show any extreme be-

havior, the weights across the multifactor Markowitz portfolios do indicate high positions in certain 

stocks, at specific points in time. Taking a practical perspective, such extreme weights would imply 

unrealistic use of leverage, despite that our weights are restricted to sum to one. 

Feng & Palomar (2016) encounter similar problems and emphasize that in case short selling is al-

lowed, one needs to limit the amount of leverage to avoid ridiculous weights. Therefore, we intend 

to implement an optimization procedure that will prohibit the extreme behavior of the portfolio 

weights by imposing certain constraints. Hence, in the next section, we will consider how this can 

be formulated and solved as a convex optimization problem. 

The Constrained Factor Markowitz Portfolios 

Henceforward, we will denote the former (unstable) solution, the unconstrained solution, and the 

implementation we consider below, the constrained solution. The constrained solution is carried out 

following Feng & Palomar (2016) and implemented using Fu, Narasimhan, & Boyd (2017). 

We have decided to impose the constraint of not allowing short selling, in this case, the portfolio 

weights are restricted from being negative. We find this a not too unrealistic restriction since some 

investors face such a constraint in practice. We have also decided not to put further constraints on 
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the portfolio weights, given that we want to end up with a solution as close to the solution given by 

Equation (4.23). 

Continuing with the factor-based parameter estimates found above, we want to solve the following 

optimization problem: 

max  
𝑤

 
𝑤𝑇𝜇 − 𝑟𝑓

√𝑤𝑇𝚺𝑤
(4.24) 

𝑠. 𝑡.  𝑤𝑇𝟏 = 1 

Hence, the objective is to maximize the Sharp Ratio. Y. Feng & Palomar (2016) state that since the 

Sharpe ratio is non-concave, (4.24) is not a convex problem. Instead, they suggest rewriting the 

problem in convex form. Since we have 𝑤𝑇𝟏 = 1, the problem can be expressed as  

max  
𝑤

𝑤𝑇(𝜇 − 𝑟𝑓𝟏)

√𝑤𝑇𝚺𝑤
(4.25) 

𝑠. 𝑡.  𝑤𝑇𝟏 = 1 

Stated in this way, the objective function becomes scale invariant with respect to 𝑤. Hence, we can 

adjust the constraint 𝑤𝑇𝟏 = 1 to 𝑤𝑇𝟏 > 0 and set 𝑤𝑇(𝜇 − 𝑟𝑓𝟏) equal to an expected return target. 

We let the target be the mean of each period’s expected returns. This is done to make the expected 

return target adjust in each period in order to prevent numerical errors and make the optimization 

feasible. 

As a result of this, we can further rewrite the problem into a convex form: 

min  
𝑤

𝑤𝑇𝚺𝑤 (4.26) 

𝑤𝑇(𝜇 − 𝑟𝑓𝟏) = (𝜇 − 𝑟𝑓𝟏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑤𝑇𝟏 > 0 

To impose the restriction of no short sales, we specify that 𝑤 ≥ 0 must apply to the solution. How-

ever, since we relaxed the constraint of 𝑤𝑇𝟏 = 1, the weights we obtain may not necessarily sum to 

one. Recall, that we formulated the objective function to be scale invariant with respect to 𝑤. In 

order to force the weights to sum to one, the solution must be normalized through 
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w𝐶𝐹𝑀𝑃 =
𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

(4.27) 

However, we must emphasize, that the solution is not the same tangency portfolio as found by 

Equation (4.23). The solution we obtain is a maximum Sharpe ratio portfolio that lies within the 

area of feasible portfolios. Naturally, in a 𝜇, 𝜎 − diagram, the portfolio we find will be located to 

the right of the efficient frontier, which the tangency portfolio is tangent to. This is a consequence 

of the restriction we have imposed on the portfolio weights. 

This procedure is applied on the expected returns and the variance-covariance matrices through 

time, for each factor portfolio respectively. With the portfolio weights at hand, we are finally able to 

construct a time series of realized portfolio returns, by multiplying each stock’s weight in the factor 

Markowitz portfolio by its respective realized return. 

As a final note, the constraints that one may impose on the convex optimization problem can easily 

be extended to restrictions of more practical concern. Y. Feng & Palomar (2016) note that beside 

capital budget (𝑤𝑇𝟏 = 1) and no-shorting (𝑤 ≥ 0), the constraints can also include turnover (to 

control transaction costs) as well as upper and lower bounds on the portfolio weights. However, as 

noted above, our intention is to arrive at a solution as close to the unconstrained tangency portfolio 

as possible. 

The Equally Weighted Portfolio 

The construction of the equally weighted portfolio is based on (4.13) and a vector of portfolio 

weights, where the weights are simply calculated as 
1

𝑁
. Hence, we loop through the matrix of real-

ized returns and apply the vector of portfolio weights through time to arrive at a timeseries of re-

turns for the equally weighted portfolio. 

4.2.2 – Portfolio Backtesting 

Based on the historical returns of the proposed portfolios, we construct several measures as part of 

the portfolio backtesting. These include the cumulative return index, high-water mark, and draw-

down as defined in Pedersen (2015). For each of these measures, we create time series and graph 

these to illustrate the variability and cyclicality of the portfolios. The cumulative return index of the 

portfolio is calculated as  

𝑅𝐼𝑡 = 𝑅𝐼𝑡−1 ∗ 𝑅𝑡−1,𝑡 (4.28) 
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where 𝑅𝐼𝑡 denotes the cumulative return index at time 𝑡 and 𝑅𝑡−1,𝑡 represents the gross-return from 

month 𝑡 − 1 to 𝑡. We construct the index to have an initial value of 100 in January 1979. 

The high-water mark is based on the changes in the cumulative return index and indicates the high-

est cumulative return index of the portfolio achieved in the past. It demonstrates whether the portfo-

lio’s ability to perform persists, and is calculated as 

𝐻𝑊𝑀𝑡 = max 𝑅𝐼𝑆𝑠≤𝑡
 (4.29) 

where time 𝑠 is a point in time earlier than time 𝑡. With the cumulative return index and high-water 

mark at hand, we can also calculate the drawdown of the portfolio. Drawdown is a central risk 

measure as it shows the cumulative loss since the losses initiated. Formulated differently, draw-

down is the loss incurred since the high-water mark. The relative drawdown is given by 

𝐷𝐷𝑡 =
𝐻𝑊𝑀𝑡 − 𝑅𝐼𝑡

𝐻𝑊𝑀𝑡

(4.30) 

In case the portfolio is at its high-water mark, 𝐷𝐷𝑡 will have a value of zero, otherwise 𝐷𝐷𝑡 will be 

a positive number. Thus, the drawdown will persist as long as the cumulative return index remains 

below the historical peak. Equation (4.30) uses the most recent high-water mark as a metric for loss. 

Nonetheless, drawdown may also be calculated in relation to other points in time, for instance the 

cumulative return index at the start of the year. Applying the same logic of Equation (4.30), we may 

also consider the maximum drawdown as 

𝑀𝐷𝐷𝑇 = max 𝐷𝐷𝑡𝑡≤𝑇
  (4.31)

where time 𝑡 is a point in time earlier than time 𝑇. The maximum drawdown is an indicator used to 

evaluate the downside risk of an investment. 

4.2.3 – Performance Evaluation 

In order to evaluate the performance of the portfolios, we will employ several relevant performance 

measures. Throughout this section, we will describe the theoretical rationale underlying these per-

formance measures and how they may be implemented. Portfolio performance evaluation common-

ly refers to how a specific portfolio has performed in relation to a comparison portfolio. The evalua-

tion may conclude that the portfolio has been overperforming, underperforming or has performed 

equally relative to its comparison portfolio. 
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Several reasons exist for why portfolio performance can be important to assess. An investor may 

want to evaluate the attractiveness of a specific portfolio composition. He/she may be holding a 

different portfolio and have an interest in the relative performance of his/her portfolio, to examine 

the need for rebalancing (Samarakoon & Hasan, 2006). Another, perhaps more practical reason can 

be that in case a portfolio is managed (actively) by a portfolio manager, reviewing performance can 

function to qualify how good a job the manager has done in managing the portfolio. For actively 

managed portfolios, it is not uncommon to link the manager’s compensation to portfolio perfor-

mance (Bodie et al., 2009). 

According to Samarakoon & Hasan (2006) two standard methods for evaluating portfolio perfor-

mance include conventional methods and risk-adjusted methods. 

Conventional Methods 

Conventional methods encompass comparing the periodic return on an investment portfolio with 

that of a particular benchmark portfolio, where the latter usually takes form of either a broad market 

index portfolio or a relevant style-benchmark portfolio. However, this method creates a problem 

with respect to differences in the level of risk. Better performance may be attributed to the invest-

ment portfolio carrying a higher level of risk than its benchmark portfolio. Hence, such an approach 

may produce invalid conclusions about the relative performance of an investment portfolio. 

Risk-Adjusted Methods  

Instead, returns have to be adjusted for the risk taken in order to make meaningful inferences about 

relative portfolio performance. But how can we adjust for the risk taken? We will turn to several 

risk-adjusted performance measures, which account for the differences in risk levels by adjusting 

returns for the risk taken. In their respective sections, we will describe the Sharpe ratio, the Modi-

gliani Risk-Adjusted Performance, Jensen’s alpha, and the Information ratio. We have chosen the 

Sharpe ratio as our first performance statistic since we assume full investment in each of our portfo-

lios. Hence, we deem the total standard deviation of the portfolio the appropriate risk measure. Due 

to the limitations of the Sharpe ratio we include the Modigliani Risk-Adjusted Performance as well. 

To supplement these two statistics, we include Jensen’s alpha to see how our portfolios perform 

relative to their market risk. Since our factor Markowitz portfolios may be more exposed to idio-

syncratic risk, we also choose to include the Information ratio. 
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Sharpe Ratio 

Through Section 2.1 on Mean-Variance Portfolio Theory, we documented the optimization proce-

dure, where an investor chooses optimal weights to invest in risky assets, with regards to obtaining 

the maximum Sharpe ratio. This Sharpe ratio is the theoretical version of the performance measure, 

based on forecasts of expected returns and the portfolio variance, as described in Sharpe (1966). In 

this section, we will instead consider the empirical version based on excess returns. This perfor-

mance metric is defined as 

𝑆𝑅𝑝 =
𝑟̅𝑝 − 𝑟̅𝑓

𝜎(𝑟𝑝 − 𝑟𝑓)
 (4.32) 

where 𝑟̅𝑝 denotes the average portfolio return,  𝑟̅𝑓 the average risk-free rate, and 𝜎(𝑟𝑝 − 𝑟𝑓), the 

sample standard deviation of the excess returns of the portfolio. The average portfolio return is giv-

en by the arithmetic mean 

𝑟̅𝑝 =
1

𝑇
∑ 𝑟𝑝,𝑡

𝑇

𝑡=1 

(4.33) 

while the sample standard deviation of portfolio returns is defined as 

𝜎𝑝 = √
1

𝑇 − 1
∑(𝑟𝑝,𝑡 − 𝑟̅𝑝)

2
𝑇

𝑡=1 

(4.34) 

The performance measure is a reward-to-variability ratio, evaluating historic average excess return 

per unit risk taken. One may compare the Sharpe ratio of two (or more) portfolios, where the high-

est ranked portfolio is assumed to be the one with the highest historical Sharpe ratio.  

Modigliani Risk-Adjusted Performance 

While the Sharpe ratio may be used for ranking the performance of several portfolios, Modigliani & 

Modigliani (1997) underline the difficulties of interpreting the numerical value of the Sharpe ratio. 

In response to this, they propose a related performance statistic that has a more economically intui-

tive interpretation. The measure is known as the Modigliani risk-adjusted performance (denoted by 

𝑀2 or M2), and defined as  



Page 45 of 129 

 

𝑀2 = 𝑟̅𝑝∗ = 𝑟̅𝑝

𝜎𝑀

𝜎𝑝
+ (1 −

𝜎𝑀

𝜎𝑝
) 𝑟̅𝑓 (4.35) 

The intuition behind the performance statistic is to adjust the return of the portfolio for risk expo-

sure. Equation (4.35) shows that the adjusted portfolio, 𝑝∗, is a combination of the unadjusted port-

folio and the risk-free asset. The weights on the unadjusted portfolio and the risk-free asset are de-

fined respectively as, 
𝜎𝑀

𝜎𝑝
 and (1 −

𝜎𝑀

𝜎𝑝
), in order to scale the portfolio to have the same standard 

deviation as the market portfolio, thus making these two comparable. We may also note that by 

construction 

𝜎𝑝∗ = 𝑤𝑝𝜎𝑝 =
𝜎𝑀

𝜎𝑝
𝜎𝑝 = 𝜎𝑀 (4.36) 

Going forward, we use the Modigliani risk-adjusted performance in excess of the average risk-free 

rate, 𝑀2 − 𝑟̅𝑓. 

Jensen’s Alpha 

Jensen’s alpha (Jensen, 1968) is one of the most frequently applied performance measures and 

measures the part of return that is left unexplained by the systematic risk of the portfolio. The em-

pirical version of Jensen’s alpha is commonly measured by the intercept, 𝛼𝑝, in the following re-

gression 

𝑟𝑝,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑝 + 𝛽𝑝(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝑒𝑝,𝑡 (4.37) 

Jensen’s alpha measures the average excess abnormal return, and in case we observe an 𝛼𝑝 > 0, the 

portfolio earns a return in excess of the systematic risk taken. Contrary, if 𝛼𝑝 < 0 the portfolio has 

underperformed in relation to the systematic risk of the portfolio. The regression in Equation (4.37) 

can be extended to either of the multifactor models explained in Section 3.2. However, the criteria 

for superior performance is still 𝛼𝑝 > 0. 

The major short coming of Jensen’s alpha is that it is an estimate, meaning that uncertainty is asso-

ciated with the value of it. When we estimate 𝛼𝑝 in Equation (4.37), we are interested in whether it 

is statistically different from zero, which can be determined by conducting a test of the following 

hypotheses 

𝐻0: 𝛼𝑝 = 0 
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𝐻𝐴: 𝛼𝑝 ≠ 0 

We compute a t-statistic for the estimate of alpha,  𝛼̂𝑝, as 

𝑡𝛼̂𝑝
=

𝛼̂𝑝 − 𝛼𝐻0

𝜎(𝛼̂𝑝)
(4.38) 

A t-statistic larger than 2 corresponds to an alpha that is statistically significant from zero. On the 

other hand, a t-statistic below 2 indicates an alpha that is not statistically significant from zero. In 

the latter case, a positive alpha could be achieved through luck (Pedersen, 2015). 

Information Ratio 

Portfolios that carry positive alpha may deviate significantly from the well-diversified market port-

folio. This implies a reduction in diversification and more exposure to the idiosyncratic risk of cer-

tain assets. Hence, one must evaluate the tradeoff between abnormal excess return as measured by 

𝛼𝑝 and increased idiosyncratic risk exposure. According to Bodie et al. (2009) the information ratio 

quantifies this trade-off. The information ratio is also known as the Risk-Adjusted Abnormal Return 

or Risk-Adjusted Alpha, and calculated as 

𝐼𝑅𝑝 =
𝛼𝑝

𝜎(𝑒𝑝)
(4.39) 

with 𝛼𝑝, being the intercept in Equation (4.37) and 𝜎(𝑒𝑝), the sample standard deviation of the re-

siduals in Equation (4.37). 

4.3 – Econometric Theory and Initial Assessment 

This section will evaluate the statistical techniques we employ to implement the portfolio construc-

tion of the factor models as outlined in Section 4.2. Therefore, the data sample will be assessed in 

the light of econometric theory, which includes an introduction to the Ordinary Least Square (OLS) 

regression, the assumptions underlying the OLS regression, as well as an evaluation of whether the 

assumptions are fulfilled. The assumptions are necessary to evaluate, because violations will lead to 

unreliable parameter estimates. 

In Section 4.2 we explained how the portfolio construction concerned regressing the past 60 months 

of excess returns onto the past 60 monthly observations of the factors. This procedure will be done 

for each of the 188 stocks in our data sample, over each of the 480 rolling estimation windows. We 
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will therefore end up running 480 ∗ 188 = 90.240 regressions in total. In theory, each of these 

regressions would require separate model checking. Obviously, this is not feasible or something that 

we intend to do. However, whenever it is possible, we will perform the model checking on the 

broadest level possible. As we shall see, this is possible when we assess the assumptions relating to 

the dependent variable and the explanatory variables. When we assess the assumptions relating to 

specific regressions, we will include three regressions for each factor model, made on different 

stocks, at different points in time. The rationale for doing this, relates to our ambition of assessing 

the econometric issues regarding the statistical tools we use, but not correcting for possible issues as 

stated in Section 1.2. Hence, we will assume that the conclusions of this section can be generalized 

to all the regressions we run as part of the portfolio construction. 

The Assumptions Underlying the OLS Regression 

A linear regression model relates the change in the dependent 𝑌 variable to one (or more) explana-

tory 𝑋 variables. Formally, we may define the multivariate linear regression as follows: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝐾𝑋𝐾 + 𝑒 (4.40) 

With reference to Wooldridge (2016) and Fox (2016), the multivariate linear regression relies on 

the following assumptions: 

Assumption 1 – Random Sampling 

The multivariate linear regression in Equation (4.40) is based upon a random sample from the popu-

lation of 𝑁 observations. 

Assumption 2 – Linearity in the Parameters 

The model in the population is the linear model described by Equation (4.40), where the coeffi-

cients, 𝛽, are the unknown parameters. And therefore: 

Assumption 3 – Zero Conditional Mean 

𝐸[𝑒|𝑋𝑘] = 𝐸[𝑒] = 0, ∀𝑘 ∈  [0, 𝐾]  (4.41) 

The explanatory 𝑋 variables and the error term, 𝑒, are independent and the error term, 𝑒, has an ex-

pected value of zero. 

Assumption 4 – Homoscedasticity 
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𝑉𝑎𝑟[𝑒|𝑋𝑘] = 𝜎𝑒
2, ∀𝑘 ∈  [0, 𝐾] (4.42) 

The error term, 𝑒, has the same constant variance given all the explanatory variables. 

In addition to Assumption 3 and Assumption 4, the error terms are assumed to be normally distrib-

uted with zero conditional mean and constant variance: 

𝑒 ~ 𝑁(0, 𝜎𝑒
2) (4.43) 

Assumption 5 – No Perfect Multicollinearity 

No linear relationship exists between the explanatory 𝑋 variables. If two or more explanatory varia-

bles have an exact linear relationship, then it is not possible to estimate the model using an OLS 

regression. 

Wooldridge (2016) states that an estimated parameter fulfilling all five assumptions is said to be the 

“best linear unbiased estimator” (BLUE) of the theoretical parameter. 
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4.3.1 – OLS Regression 

Before evaluating fulfillment of the assumptions outlined above, we will present a brief description 

of the OLS Regression and how the estimation technique works. 

Taking the conditional expectation of Equation (4.40) leaves us with 

𝐸[𝑌|𝑋𝑘] = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝐾𝑋𝐾, ∀𝑘 ∈  [0, 𝐾] (4.44) 

which is the formula used for deriving the fitted values of 𝑌. According to Ruppert & Matteson 

(2015) the idea underlying OLS regression, is that 𝛽̂ are the least square estimates that minimize the 

following relation: 

∑{𝑌 − (𝛽̂0 + 𝛽̂1𝑋1 + 𝛽̂2𝑋2 + ⋯ + 𝛽̂𝐾𝑋𝐾)}

𝐾

𝑘

2

(4.45) 

They state that the least square estimates, 𝛽̂, are the ones that minimize the distance between the 

fitted value on the multivariate regression hyperplane and the actual value of 𝑌. 

4.3.2 – Econometric Issues 

Following the description of the assumptions underlying the OLS regression and the concept behind 

the estimation procedure, we will now evaluate whether the conditions regarding the model are ful-

filled. The evaluation will be structured into three sections. The first part will examine the data 

sample of excess returns in order to draw relevant conclusions. During this section, we will initially 

assess the statistical distribution of our data and the first assumption regarding Random Sampling. 

The second part will examine the regression residuals in order to evaluate the second, third and 

fourth assumptions regarding Linearity in the Parameters, Zero Conditional Mean and Homosce-

dasticity. The third part will evaluate the explanatory variables for each factor model in order to 

assess the fulfillment of the fifth assumption of No Perfect Collinearity. 

In statistics, one of the strongest techniques to analyze samples of data is merely to plot the data in 

various ways (Ruppert & Matteson, 2015). For simplicity and because this thesis is intended as a 

financial study rather than a statistical one, we will apply this technique to draw relevant conclu-

sions. 
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The Excess Returns 

Normality 

As a first impression of our data sample, we examine its statistical distribution. Thus, we create a 

time series by making a linear combination of all the excess returns on the stocks, at each point in 

time, throughout the full data sample. The rationale for doing this is that it gives us an efficient way 

of assessing the statistical distribution of the excess returns on each stock. In the case that the excess 

returns on each stock are normally distributed, then a linear combination of the excess returns will 

also be normally distributed. This is true since linear transformations preserve normality (Ruppert & 

Matteson, 2015). 

Figure 4.1 – Density Plot of a Linear Combination of Excess Stock Returns 

 

In Figure 4.1 a plot of the density of the linear combination of excess stock returns has been created 

using a kernel density estimator, due to the difficulties of interpreting a distribution through a histo-

gram. Evaluating Figure 4.1, we see that the density is left skewed and appears to have fat tails. 

Hence, the distribution of the linear combination of excess stock returns does not seem to be nor-

mal. 
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Figure 4.2 – QQ-plot of a Linear Combination of Excess Stock Returns 

 

To determine how the linear combination of the excess stock returns is distributed, we can also em-

ploy a so-called QQ-Plot, where “QQ” is an abbreviation for “Quantile-Quantile”. As the name 

suggests, the plot compares quantiles of two different distributions against each other (Fox, 2016). 

In case the two distributions being compared are similar, the dots in the plot will lie approximately 

on a straight line. In Figure 4.2, a QQ-plot has been produced for the linear combination of excess 

stock returns, where the vertical axis displays the sample quantiles, and the horizontal axis shows 

the theoretical quantiles. Furthermore, confidence interval bands for the normal distribution have 

been added to the plot, as indicated by the dotted blue lines. The red dots in Figure 4.2 take a non-

linear form, which suggest that the linear combination of excess stock returns is not normally dis-

tributed. Furthermore, it is apparent that the red dots are breaching the confidence interval bands in 

each tail, thus indicating a distribution with fatter tails than the normal distribution, as we similarly 

saw in Figure 4.1. The “convex-concave” curvature that we observe in Figure 4.2 is also noted by 

Ruppert & Matteson (2015) to be associated with heavier tails than the normal distribution. 

We may also assess the properties of the distribution we observe graphically by considering the 

numerical measures of Skewness (Sk) and Kurtosis (Kur). With reference to Ruppert & Matteson 

(2015), these two statistics are defined as: 
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𝑆𝑘̂ =
1

𝑇
∗ ∑ (

𝑌𝑡 − 𝑌̅

𝜎
)

𝑇

𝑡=1

3

(4.46) 

𝐾𝑢𝑟̂ =
1

𝑇
∗ ∑ (

𝑌𝑡 − 𝑌̅

𝜎
)

𝑇

𝑡=1

4

(4.47) 

where 𝑌𝑡 denotes the observation at time 𝑡, 𝑌̅ the sample mean and 𝜎 the sample standard deviation.  

Skewness measures the symmetry in the distribution; hence perfect symmetry implies zero skew-

ness. Kurtosis measures how the probability mass is concentrated in the center of the distribution, 

and how much of the probability mass that is located in the tails of the distribution. The normal dis-

tribution has a kurtosis of 3 and for this reason, most statistical software reports the excess kurtosis, 

which is the kurtosis in excess of 3. The linear combination of the excess stock returns has a skew-

ness of -0.595 and an excess kurtosis of 3.377, thus indicating a distribution different from the nor-

mal distribution and adding to the conclusions suggested by Figure 4.1 and Figure 4.2. 

Random Sampling 

The first assumption underlying the OLS regression formally states that we should have a random 

data sample. When observing the linear combination of the excess stock returns, we examine 

whether independence exists between the current value, 𝑌𝑡 and the next value, 𝑌𝑡+1. Such an inde-

pendence is the idea of randomness. To assess whether this assumption is fulfilled, we will create a 

plot of autocorrelations between the data points in the time series. This is also referred to as an au-

tocorrelation (ACF) plot. 

However, before constructing the ACF plot, we acknowledge the fact that stock returns from time 

to time are dependent on each other, thus exhibiting autocorrelation. Campbell, Lo, & MacKinlay 

(1997) find that returns over different periods are not statistically independent. They emphasize that 

returns on stock portfolios show positive autocorrelation over short time periods, i.e., daily, weekly 

and monthly periods. They note that this is particularly true for returns over very short time periods. 

We construct the ACF plot following Ruppert & Matteson (2015). First, we define the sample auto-

covariance function, 𝛾(ℎ), as: 

𝛾(ℎ) = 𝑇−1 ∑ (𝑌𝑡 − 𝑌̅)(𝑌𝑡−ℎ − 𝑌̅)

𝑇

𝑡=ℎ+1

(4.48) 



Page 53 of 129 

 

where 𝑇 denotes the number of time periods and ℎ is the time lag, Equation (4.48) gives us the au-

tocovariance between 𝑌𝑡 and 𝑌𝑡−ℎ. With the autocovariance function at hand, we define the sample 

autocorrelation function,  𝜌̂(ℎ), as: 

𝜌̂(ℎ) =
𝛾(ℎ)

𝛾(0)
(4.49) 

Figure 4.3 – ACF Plot of a Linear Combination of Excess Stock Returns 

 

It becomes evident from the ACF plot in Figure 4.3 that the autocorrelation at time lag 0 is 1, which 

is always true, since an observation has a correlation of 1 with itself. This may also be inferred from 

the autocorrelation function in Equation (4.49), by setting ℎ equal to zero. We can conclude that 

almost all of the autocorrelations are under the confidence limits (indicated by the dotted blue 

lines). Moreover, we do not observe any apparent patterns in the autocorrelations. If the data are in 

fact random, we expect to see no such patterns. The autocorrelation around time lag 14 and time lag 

16 seem to be slightly outside the confidence limits. However, this is not something that should 

draw any concern with respect to whether we have a random data sample or not. We can thus con-

clude that there are no significant autocorrelations and that the linear combination of the excess 

stock returns is indeed independent. Hence, we have a random data sample. 
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The Residuals 

Linearity in the Parameters, Zero Conditional Mean and Homoscedasticity 

To assess whether the second assumption of linearity in the parameters, the third assumption of zero 

conditional mean and the fourth assumption of homoscedasticity are satisfied, we turn to examine 

the regression residuals. Fulfillment of the third and fourth assumptions will also indicate whether 

the second assumption is satisfied. Checking for zero conditional mean and homoscedasticity in the 

regression residuals can be done by plotting the fitted, 𝑌̂, values against the standardized regression 

residuals to see if any patterns emerge and detect possible anomalies. This procedure is well de-

scribed in both Ruppert & Matteson (2015) and Fox (2016), which we will use as references 

throughout this section. They describe that the reason for standardizing the residuals is that the raw 

residuals are measured in the same units as the dependent variable and thus difficult to interpret 

across different regression models. A standardized residual is defined as  

𝑒𝑡̂

𝜎𝑒√1 − ℎ𝑠,𝑡

(4.50) 

Here ℎ𝑠,𝑡 is called a “hat” value. The value can be interpreted from the equation below: 

𝑌𝑡̂ = ∑ ℎ𝑠,𝑡𝑌𝑠

𝑇

𝑠=1

(4.51) 

where ℎ𝑠,𝑡 is a measure of the contribution of the observed value, 𝑌𝑠, on the fitted value, 𝑌𝑡̂. 

In Appendix C, plots of the fitted values, 𝑌̂, against the standardized residuals have been created. 

For each of the four factor models described in Section 4.2, three plots have been made, where each 

plot is based on a regression done on different stocks, at different points in time. Observing the in-

dividual data points in the plots, we can conclude that no odd trends or patterns exist that should 

raise our concern. By smoothing the data points (as indicated by the blue line in the plots), we see 

that they almost pass through zero, which indicates that the residuals have zero conditional mean 

and that the linear model in Equation (4.40) fits our data relatively well. Furthermore, we see that 

the dots form a horizontal band, which according to Johnson & Wichern (2007) suggest homosce-

dasticity. An explanation for why we do not see entirely straight smoothing lines is due to the influ-

ence of outliers. The outliers are pulling the smoothing line away from zero. As a consequence of 

that the OLS regression is being done on stock market data, we are not able to correct for the outli-
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ers by removing them. Moving forward, we therefore assume that the outliers do not cause any 

econometric issues for the OLS regression. 

In conclusion, we assume that the residuals have zero conditional mean and constant variance (ho-

moscedasticity), thus satisfying the third and fourth assumptions of the OLS regression. As a result, 

we can also infer that the assumption of linearity in the parameters is satisfied.  

Normally Distributed Residuals 

To evaluate the distribution of the residuals, we can apply the same method used to determine the 

distribution of the linear combination of excess stock returns. QQ-plots with confidence interval 

bands for the normal distribution are presented in Appendix D. In the same way as previously, three 

plots have been made for each of the four factor models, where each plot is based on a regression 

done on different stocks, at different points in time. Examining the plots in Appendix D, we observe 

that the data points (as indicated by the red dots) for the most part are not breaching the confidence 

interval bands. As emphasized in the previous section, several outliers do exist among the residuals, 

which we also observe in the QQ-plots. Similarly, we will assume that the outliers do not cause any 

issues for the OLS regression. We thus assume that the residuals are normally distributed. 

No Perfect Multicollinearity 

The notion of multicollinearity is that we cannot include two or more explanatory variables in the 

OLS regression that are highly correlated.3 In the case where a high degree of multicollinearity is 

present, it becomes hard to estimate the separate effects of the explanatory variables (Ruppert & 

Matteson, 2015). To check for multicollinearity in the OLS regression, we apply the methodology 

by Ruppert & Matteson (2015). As a first step, we define the variance inflation factor (VIF) as: 

𝑉𝐼𝐹 =
1

1 − 𝑅2
(4.52) 

where 𝑅2 is defined as: 

𝑅2 =
∑ (𝑌𝑡̂ − 𝑌̅)

2𝑇
𝑡=1

∑ (𝑌𝑡 −  𝑌̅)2𝑇
𝑡=1

(4.53) 

                                                 
3 We note that for regressions specified upon the Single-Index Model, the condition of multicollinearity is not an issue 

since the model does only include one explanatory variable, which is the excess return on the market. 
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The idea of using the VIF is that if the OLS regression includes 𝑝 explanatory variables, we will 

regress one of the explanatory variables onto the 𝑝 − 1 other explanatory variables. We will report 

the 𝑅2 of this regression and calculate the VIF using Equation (4.52). 

Evaluating Equation (4.52), we can conclude that  

lim
𝑅2→1

𝑉𝐼𝐹 = ∞ 

Hence, a VIF close to 1 is a good sign of no perfect multicollinearity. 

Figure 4.4 – Variance Inflation Factors for the Explanatory Variables in the Fama-French Three-

Factor Model 

 

In Figure 4.4, the VIF levels have been calculated for the explanatory variables of the Fama-French 

Three-Factor Model and illustrated in a histogram. Examining the figure, we see that the explanato-

ry variables of the Fama-French Three-Factor Model demonstrate relatively low VIF levels. More 

specifically, the majority of the VIF levels are below 2, indicating a 𝑅2 below 0.5 according to 

Equation (4.52). 
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Figure 4.5 – Variance Inflation Factors for the Explanatory Variables in the Carhart Four-Factor 

Model 

 

Similarly, Figure 4.5 illustrates the VIF levels for the explanatory variables of the Carhart Four-

Factor Model. We observe an almost identical pattern to that of Figure 4.4, with similar VIF levels. 

However, we note the presence of slightly higher VIF levels compared to Figure 4.4. 

Figure 4.6 – Variance Inflation Factors for the Explanatory Variables in the Fama-French Five-

Factor Model 

 

Lastly, the VIF levels for the explanatory variables of the Fama-French Five-Factor Model have 

been produced in Figure 4.6. Despite a moderate number of VIF levels below 2, we generally ob-

serve a higher level of VIFs with this model specification. According to Equation (4.52), a VIF of 8 
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equals a 𝑅2 of 0.875. This suggests that several of the explanatory variables of regressions specified 

upon the Fama-French Five-Factor Model exhibit multicollinearity. From an econometric point of 

view, this model specification may thus be problematic. These findings can possibly relate to the 

issue of redundancy of the HML factor, when including the RMW and CMA factors in the Fama-

French Three-Factor Model, as reported by Fama & French (2015). 

Finally, the plot in Appendix E illustrates that the highest VIF levels occur for the explanatory vari-

ables of HML, RMW, CMA. By specifying regressions based upon the Fama-French Five-Factor 

Model, we can conclude that it is mainly for the HML, RMW and CMA factors that multicollineari-

ty appear to be an issue. 

A model with a high degree of multicollinearity may explain variability in the dependent variable 

more poorly, than a model where the explanatory variables with a high degree of multicollinearity 

are left out. Hence, Ruppert & Matteson (2015) suggest that the usual way of correcting for multi-

collinearity is to reduce the number of explanatory variables. However, because we take the models 

as given, we acknowledge the issues, but do not intend to correct for them. In conclusion, we as-

sume that the condition of no perfect multicollinearity is generally satisfied across the OLS regres-

sions we run. 

4.4 – Sub-Conclusion 

In this section, we have described how several factor models can be implemented in the mean-

variance analysis. The expected returns and the variance-covariance matrix are calculated based on 

the factor loadings, the expected returns and the variance-covariance matrix of the factors, as well 

as the diagonal variance-covariance matrix of the residuals. 

We have discovered that an unconstrained mean-variance optimization procedure produces extreme 

weights. Therefore, we also describe how a constrained procedure can be implemented. More spe-

cifically, the constrained procedure involves the realistic restriction of not allowing short sales. In 

addition, we have found the traditional mean-variance analysis unfeasible to implement, due to sin-

gular variance-covariance matrices, when applied on a high number of assets. 

Furthermore, we have evaluated the assumptions underlying the OLS regression that we use to es-

timate the input parameters for the factor-based mean-variance analysis. We have shown that the 

dependent variable, which can be represented as a linear combination of the excess stock returns is 

not normally distributed. Additionally, we can conclude that the data are randomly sampled. By 
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examining the regression residuals, we infer that the assumptions of zero conditional mean and con-

stant variance (homoscedasticity) are fulfilled. Moreover, we find that the condition of normally 

distributed residuals is fulfilled. Nevertheless, multicollinearity in the regressions specified upon the 

Fama-French Five-Factor Model is recognized as a problem. The issue arises because of the rela-

tionship between the HML, RMW and CMA factors, which is also previously recognized in the 

literature. However, we assume that the assumption of no perfect multicollinearity is fulfilled across 

the regressions we run. 

In conclusion, the econometric issues that we find are assumed to be of lower importance, and the 

OLS regressions and application of them are considered valid. We will apply the framework we 

have proposed and implement the analysis. Hence, the next section will describe the initial interpre-

tation of the output and perform the portfolio backtesting. 
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5 – Analysis and Results 

5.1 – Initial Interpretation of Output 

This section will function as an initial interpretation of the output we obtain from following the im-

plementation described in the Section 4.2. The output encompasses portfolio weights and portfolio 

excess returns for the constructed portfolios, for the time period from January 1979 to January 

2019. 

5.1.1 – Portfolios Weights 

As a first step, we examine the constrained factor Markowitz portfolio weights, illustrated in the 

scatterplots of Appendix F. At first glance, we see differences in the dispersion of the weights for 

each portfolio, across the time period. 

Table 5.1 – Summary Statistics for the Portfolio Weights 

 

For the portfolio based on the Single-Index Model, relatively small concentrations in individual 

stocks are seen throughout the whole time period compared to the other portfolios. The average 

portfolio weight is 0.53%, while the standard deviation is 0.31%. The lowest portfolio weight is 

zero, due to the constraint of no short selling, while the highest is 2.38%. Thus, the weights of this 

portfolio are the ones that look most similar to how the weights of an equally weighted portfolio 

would look. 

In contrast, the portfolio based on the Fama-French Three-Factor Model includes several points in 

time, where considerable positions are taken in individual stocks. This is particularly true for the 

years around 1982, 1991, 2004 and in the years from 2009 to 2013. The average portfolio weight is 

0.53%, while the standard deviation is 1.56%. The lowest portfolio weight is zero, while the highest 

is 44.28%. 

For the portfolio based on the Carhart Four-Factor Model, we similarly observe certain stock posi-

tions of significant size. This is particularly true during the beginning of the time period. However, 

S.I. FF3 C4 FF5 E.W.

Average 0.53% 0.53% 0.53% 0.53% 0.53%

Standard Devation 0.31% 1.56% 1.84% 2.04% 0.00%

Minimum 0.00% 0.00% 0.00% 0.00% 0.53%

Maximum 2.38% 44.28% 56.69% 52.75% 0.53%
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the highest weights occur at similar points in time as for the portfolio’s three-factor counterpart. The 

average portfolio weight is 0.53%, while the standard deviation is 1.84%. The lowest portfolio 

weight is zero, while the highest is 56.69%. 

The portfolio based on the Fama-French Five-Factor model does also have substantial weights in 

the first part of the time period, where an even higher dispersion is seen. High weights are also ob-

served in the years from 2009 to 2013. The average portfolio weight is 0.53%, while the standard 

deviation is 2.04%. The lowest weight is zero, while the highest is 52.75%. 

With identical average weights, we are not able to conclude much about the overall level of weights 

across the portfolios. However, the portfolio based on the Fama-French Five-Factor Model shows 

the highest dispersion in its portfolio weights, while the portfolio based on the Single-Index Model 

shows the lowest dispersion in portfolio weights, as indicated by the standard deviation.  

Nevertheless, the weights of the factor Markowitz portfolios should be seen in the light of the 

equally weighted portfolio. Over the entire time period, this portfolio is constructed to have posi-

tions of 1/𝑁 in all stocks, hence 0.53% with the 188 stocks included in our data sample. The major 

difference, relative to most of the factor Markowitz portfolios, is that the small weights throughout 

the time period make the portfolio extremely diversified. Therefore, it will not suffer from specific 

stocks performing bad, but on the other hand, it will not benefit as much from individual stocks 

performing good. The interesting question is then, whether the model we have implemented is able 

to estimate the expected returns and the variance-covariance matrix more precisely, and process 

signals in such a way that we benefit from holding specific stock positions. This is an important 

consideration for the factor Markowitz portfolios, because of the more concentrated positions in 

specific stocks, as observed in Table 5.1. 

Furthermore, we may assess the monthly changes in the portfolio weights, as this can provide us 

with an indication about the possible turnover in the portfolios and need for rebalancing over time. 

The changes in the portfolio weights (denoted as 𝛥Weights) are illustrated through scatterplots in 

Appendix G. As expected, the changes in the weights of the portfolio based on the Single-Index 

Model are minimal. Across the remaining factor Markowitz portfolios, we generally observe a simi-

lar level of changes in the portfolio weights, with absolute values under 10%. However, at certain 

points throughout the time period, substantial changes in the portfolio weights occur. Larger chang-

es tend to cluster around specific moments in time, with values ranging from 10% to 40%, in abso-

lute terms.  
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The scatterplots seem to suggest relatively high turnover for the portfolio based on the Carhart 

Four-Factor Model and relatively low turnover for the portfolio based on the Single-Index Model 

across time. In perspective, the equally weighted portfolio is constructed to have zero ΔWeights at 

all times.4 In the case of high turnover and frequent need for rebalancing, the portfolios may incur 

higher (unaccounted-for) transaction costs. Hence, we desire a relatively stable portfolio composi-

tion over time. However, since only gross performance is considered in this thesis, the practical 

implications related to portfolio turnover and associated trading costs will be left for a discussion in 

Section 7.1 

5.1.2 – Portfolios Excess Returns 

For each of the constructed portfolios, returns in excess of the risk-free rate have been calculated in 

the tables of Appendix H, for the time period from January 1979 to January 2019. Recall, that the 

portfolios are constructed to have monthly holding periods. The tables, therefore, show monthly 

excess returns in percentages. The tables apply conditional formatting, by which excess returns 

found to be relatively high takes on a blue contrast, while returns found to be relatively low takes on 

a red contrast. 

At first sight, we observe that the excess returns vary considerably from month to month, across the 

constructed portfolios. Through specific holding periods the portfolios deliver positive excess re-

turns, wherein others they deliver negative excess returns. The tables include several periods with 

positive and negative continuity in excess returns. Thus, in the next section, we will consider how 

variability in excess returns coincide with shifting market conditions and turbulent periods of the 

stock market. 

  

                                                 
4 This does not necessarily mean that the equally weighted portfolio does not require rebalancing. Consider the case 

where specific stocks have risen or fallen significantly, in such a case the investor must rebalance the portfolio accord-

ingly, so the wealth invested in each stock still represents 1/𝑁 of the portfolio’s total value. Therefore, ΔWeights may 

only provide us with an indication of the actual turnover in the portfolio. 
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Monthly statistics for each portfolio have been summarized in Table 5.2, shown below 

Table 5.2 – Summary Statistics for the Portfolio Excess Returns 

 

Starting at the Single-Index Markowitz portfolio, the average monthly excess return is 0.73%, 

which corresponds to an annual excess return of 12 ∗ 0.73% ≈ 8.78%. The monthly standard devi-

ation of the excess returns is 4.62%, scaled to √12 ∗ 4.62% ≈ 16.01% annually.5 During the time 

period, the highest observed monthly excess return is 16.89%, while the lowest is -24.38 %. The 

skewness and excess kurtosis of the monthly excess returns are -0.50 and 3.19 respectively. 

For the Fama-French Three-Factor Markowitz portfolio, the average monthly excess return equals 

0.66%, corresponding to 7.97% yearly. The portfolio’s monthly standard deviation is 4.42%, scaled 

to 15.32% annually. During the time period, the highest observed monthly excess return is 19.75%, 

while the lowest is -23.79%. The skewness and excess kurtosis of the monthly excess returns are -

0.61 and 3.74 respectively. 

The Carhart Four-Factor Markowitz portfolio delivers an average monthly excess return of 0.77%, 

annualized to 9.26%. The portfolio’s monthly standard deviation is 4.55%, corresponding to an an-

nual standard deviation of 15.77%. The highest monthly excess return is 18.42%, with the lowest 

being -16.52%. Skewness and excess kurtosis of the monthly excess returns amount to -0.47 and 

1.74 respectively. 

The average monthly excess return of the Fama-French Five-Factor Markowitz portfolio is 0.68%, 

which corresponds to 8.15% on a yearly basis. The monthly standard deviation of the portfolio is 

4.15%, equivalent to an annual standard deviation of 14.38%. The highest monthly excess return is 

                                                 
5 More practically, we multiply the average monthly excess return by 12 to get the average annual excess return (thus, 

ignoring compounding). To get the annual volatility, we multiply the monthly volatility by √12, as a result of that vola-

tility scales with √𝑇. 

S.I. FF3 C4 FF5 E.W.

Average 0.73% 0.66% 0.77% 0.68% 0.79%

Standard Devation 4.62% 4.42% 4.55% 4.15% 4.49%

Minimum -24.38% -23.79% -16.52% -19.01% -23.89%

Maximum 16.89% 19.75% 18.42% 16.40% 17.52%

Skewness -0.50 -0.61 -0.47 -0.64 -0.59

Excess Kurtosis 3.19 3.74 1.74 2.84 3.45
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16.40%, while the lowest is -19.01%. The skewness and excess kurtosis of the monthly excess re-

turns are -0.64 and 2.48 respectively. 

Lastly, the equally weighted portfolio provides an average monthly excess return of 0.79%, equiva-

lent to a yearly excess return of 9.54%. The portfolio’s monthly standard deviation is 4.49%, corre-

sponding to a yearly standard deviation of 15.55%. The highest monthly excess return is 17.52%, 

with the lowest being -23.89%. Skewness and excess kurtosis of the monthly excess returns amount 

to -0.59 and 3.45 respectively. 

It becomes apparent that during the time period, the equally weighted portfolio has the highest aver-

age excess return, while the lowest average excess return is observed for the Fama-French Three-

Factor Markowitz portfolio. On the other hand, the highest standard deviation is seen for the Single-

Index Markowitz portfolio, while the Fama-French Five-Factor Markowitz portfolio has the lowest 

standard deviation. In addition, we note that the excess returns across all the portfolios possess neg-

ative skewness. More specifically, if we were to observe the distribution of the excess returns for 

each portfolio, more distribution-mass would be in the left tail of the distribution, suggesting more 

extreme excess returns, especially on the downside. This is particularly true for the excess returns of 

the Fama-French Five-Factor Markowitz portfolio, which has the highest negative skewness. Fur-

thermore, we observe positive excess kurtosis across all the portfolios. This suggests that the distri-

butions of portfolio excess returns have fatter tails. We may therefore occasionally experience outli-

ers (either positive or negative excess returns). On the other hand, the Fama-French Three-Factor 

Markowitz portfolio holds the highest positive excess kurtosis. 

In contrast to merely interpreting the monthly excess returns of the portfolios independently over 

time and through summary statistics, the next section will put the returns into perspective by con-

ducting a backtest for each of the constructed portfolios, in perspective to the overall stock market. 

5.2 – Portfolio Backtesting 

The following section will conduct a backtest for each of the constructed portfolios, from January 

1979 to January 2019. As described in Section 4.2 the portfolio backtesting will consist of graphing 

the cumulative return index, high-water marks and drawdowns over time. This ought to give an 

impression of how the portfolios have done during periods of market turbulence, both alone but also 

in comparison to each other. Even though an assessment of the market portfolio will be done, em-

phasis will be put on the comparative performance between the factor Markowitz portfolios and the 
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equally weighted portfolio, as a consequence of the thesis’ overall problem statement. Accordingly, 

the first part of this section will observe how a portfolio formed on the market has fared throughout 

the evaluation period and elaborate on certain periods of market turmoil in order to understand the 

behavior and the market risk of the portfolios we have constructed. 

The Market Portfolio 

Figure 5.1 – Cumulative Return Index, High-Water Mark, and Drawdown for the Market Portfolio 

(Excess of the Risk-Free Rate) 

 

Examining Figure 5.1, we see a gradually increasing cumulative return index from the beginning of 

the evaluation period, with specific periods of market disturbance during the first few decades. The 

first considerable drawdown occurs around the beginning of the year 1981, where the stock market 

suffers due to the early 1980s recessions in the US. For several years the US experience a severe 

aggravation of economic conditions, which becomes evident in the market portfolio through the 

decrease in cumulative return index and the drawdown of relatively high magnitude and duration. 

In the following years, the stock market experiences steady growth towards the global stock market 

crash of the year 1987, also referred to as Black Monday. In contrast, this downturn presents itself 

as a steep and rapid decline in the stock market, yet over a short time span of several weeks. Hence, 

the market portfolio’s cumulative return index takes a sharp dip, as suggested by the large but short-

lived drawdown, followed by a modest recovery. 
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Afterwards, the cumulative return index of the market portfolio progressively increases, with a low-

er and brief drawdown around the year 1990 supposedly due to the Persian Gulf War. For over a 

decade and towards the burst of the dot-com bubble the market portfolio dramatically appreciates. 

The significant rise in the stock market during the 1990s is fueled by favorable economic conditions 

as well as a boom in technology firms. At the peak, the market portfolio sets an all-time high-water 

mark of 751% at the beginning of the year 2000, which will not be surpassed until the year 2013. 

Following the burst of the dot-com bubble in the year 2000, the market portfolio experiences the 

most prolonged period of a falling cumulative return index. This also becomes evident in the draw-

down reaching 50% around the year 2002 which, in terms of magnitude, is the second highest dur-

ing the 40-year backtesting period. 

From the bottom and up until the financial crisis, the market portfolio establishes a foothold and 

recovers. However, at the height of the year 2007, the market portfolio’s cumulative return index 

declines sharply, while its drawdown increases towards its maximum. As apparent in Figure 5.1, the 

drawdown reaches above 50% in the trough. 

Since then, the cumulative return index of the market portfolio has steeply increased, with several 

corrections underway. The portfolio experiences a moderate decline around the year 2011, which 

perhaps can be attributed uncertainty about the European Sovereign debt crisis’ influence on the US 

economy, as well as the downgrading of the US Federal Government’s Credit Rating. Nonetheless, 

the period moving forward is characterized by a positive uptrend in the stock market. Hence the 

market portfolio reaches a maximum high-water mark around 1600% in 2018. From here, stock 

market volatility starts to erupt, and fears of economic slowdown and rising interest rates begin to 

emerge explaining the variability in the cumulative return index seen towards the end of Figure 5.1. 

The market portfolio ends at a cumulative return index of 1412% in January 2019. 
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The Single-Index Markowitz Portfolio 

Figure 5.2 – Cumulative Return Index, High-Water Mark, and Drawdown for the Single-Index 

Markowitz Portfolio (Excess of the Risk-Free Rate) 

 

From the onset of the evaluation period, the Single-Index Markowitz portfolio experiences several 

drawdowns during the first few decades, supposedly due to the same events affecting the market 

portfolio. The portfolio shows stability in the progression of the cumulative return index and has 

quite a similar performance to that of the general stock market until the end of the 1990s. The port-

folio does not seem to catch the last part of the positive trend apparent in the stock market towards 

the end of the dot-com bubble. From the beginning of the 1990s and towards the burst of the dot-

com bubble, the Single-Index Markowitz portfolio sees an increase in the cumulative return index 

from 216% to 564%. 

This may perhaps be attributed to the composition of stocks in the data sample that the portfolios 

are constructed upon. Recall, the examination of the data sample in Section 4.1, where we found a 

lower concentration of stocks in the information technology industry. The boom of the 1990s was 

among other things fueled by the exponential growth in internet and technology stocks, which our 

data sample to some degree shows an absence of. In support of this proposition, the portfolio does 

not suffer as much by the burst of the bubble in the year 2000 as the stock market. 
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From the early years of the 2000s and up until the financial crisis, the cumulative return index of the 

portfolio steadily builds up. However, the portfolio encounters a moderate drawdown around the 

beginning of the year 2003. Besides attributing this to the aftermath of the dot-com crash, another 

possible cause could be the various accounting scandals hitting major U.S. companies, damaging 

investor confidence and leading to nervous stock markets. 

At the peak of the U.S. credit bubble, the cumulative return index of the portfolio has climbed 

steadily to a new high-water mark of 1030%. Nonetheless, the market turbulence of 2007–2009 

makes the drawdown of the Single-Index Markowitz portfolio surge and reach its maximum of 54% 

in 2009, which causes a decline in the cumulative return index to 473%.  

In the period from the trough and towards the end of the time period, the cumulative return index of 

the portfolio sees a steep but volatile increase with several corrections along the way. Thus, higher 

variability in the cumulative return is observed towards the end. This may relate to the conclusion 

of Table 5.2, where the Single-Index Markowitz portfolio shows the highest standard deviation. 

Throughout the latter part of the backtesting period, the Single-Index Markowitz portfolio achieves 

its maximum high-water mark of 2353% in early 2018 and ends at a cumulative return index of 

1975% in January 2019. 
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The Fama-French Three-Factor Markowitz Portfolio 

Figure 5.3 – Cumulative Return Index, High-Water Mark, and Drawdown for the Fama-French 

Three-Factor Markowitz Portfolio (Excess of the Risk-Free Rate) 

 

From the beginning of the backtest, the cumulative return index of the Fama-French Three-Factor 

portfolio fares almost equal to that of the Single-Index Markowitz portfolio and the general stock 

market. However, the cumulative return index generally sees a slightly higher level, while the 

drawdowns experienced in these years are of lower magnitude but longer duration. 

From the 1990s and towards the turn of the millennium the cumulative return index sees a relatively 

low increase from 272% to 374% (perhaps due to the same reasons as explained for the Single-

Index Markowitz portfolio). In Figure 5.3, we observe that when the stock market is peaking, as a 

result of the dot-com bubble, the Fama-French Three-Factor portfolio experiences an extended 

drawdown, which the portfolio will first recover from in the year 2004. 

Until the burst of the U.S. credit bubble, the portfolio reaches a high-water mark of 871%. Never-

theless, from this height, the cumulative return index drops, and the drawdown rises towards its 

maximum of 52% in the year 2009. From the trough and towards the end of the time period, the 

Fama-French Three-Factor portfolio has a harder time recovering, which can be seen by the flatter 

growth in the cumulative return index. However, in comparison to the Single-Index Markowitz 
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portfolio, the fare through the latter part of the backtesting period is characterized as less volatile, 

with fewer spikes in the cumulative return index. Thus, the Fama-French Three-Factor Markowitz 

portfolio achieves its maximum high-water mark of 1658% in late 2018 and ends at a cumulative 

return index of 1495% in January 2019. 

The Carhart Four-Factor Markowitz Portfolio 

Figure 5.4 – Cumulative Return Index, High-Water Mark, and Drawdown for the Carhart Four-

Factor Markowitz Portfolio (Excess of the Risk-Free Rate) 

 

The Carhart Four-Factor Markowitz portfolio shows a consistently increasing cumulative return 

index with similar developments to that of the portfolio’s three-factor counterpart, from the start of 

the backtesting period. From the end of the 1990s and through the dot-com bubble, the portfolio 

does also suffer from an extended drawdown. From the beginning of the year 2000 the cumulative 

return index increases from 389% to 963% before the onset of the financial crisis. As anticipated, 

the drawdown of the Carhart Four-Factor Markowitz portfolio rises, peaking at its maximum of 

52% around the year 2009, due to the burst of the U.S. credit bubble. 

An essential difference between the Carhart Four-Factor Markowitz portfolio and the other factor 

Markowitz portfolios becomes visible in the aftermath of the financial crisis. The portfolio yet re-

gains ground, and towards the end of the backtesting period, the portfolio delivers a period of high 
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growth in the cumulative return index, exceeding the other factor Markowitz portfolios by far. Mov-

ing forward, the cumulative return index surges, where earlier high-water marks continuously are 

being burst. The positive trend is initiated at 457% in the year 2009, from where the portfolio 

reaches its maximum high-water mark of 2674% in late 2018. However, as we observed for the 

Single-Index Markowitz portfolio, the cumulative return index shows higher fluctuations towards 

the end of the backtesting period. The portfolio thus finishes at a cumulative return index of 2432% 

in January 2019. 

Putting Figure 5.4 into perspective, the backtest can perhaps be explained by Table 5.2. The Carhart 

Four-Factor Markowitz portfolio has the highest average monthly excess return across all factor 

Markowitz portfolios. Despite the relatively high standard deviation of the portfolio, the portfolio 

carries the lowest negative skewness. This may suggest a relatively lower frequency of extreme 

negative excess returns, which can explain the portfolio’s sound performance. The performance of 

the Carhart Four-Factor Markowitz portfolio may also be attributed to the inclusion of the momen-

tum (UMD) factor. Perhaps, the portfolio is able to process signals of short-term momentum and 

assigning higher weights to recent winners and lower weights to recent losers. 
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The Fama-French Five-Factor Markowitz Portfolio 

Figure 5.5 – Cumulative Return Index, High-Water Mark, and Drawdown for the Fama-French 

Five-Factor Markowitz Portfolio (Excess of the Risk-Free Rate) 

 

In Figure 5.5 we observe that the Fama-French Five-Factor portfolio shows similar performance to 

that of the previous portfolios, during the first decade. From the end of the 1980s and towards the 

end of the 1990s, the cumulative return index of the portfolio gradually increases slightly above that 

of the other factor Markowitz portfolios. The Fama-French Five-Factor Markowitz portfolio seems 

better at catching the general upturn in the stock market compared to the other factor Markowitz 

portfolios. Hence, the cumulative return index increases from 331% in the year 1990 to 716% just 

before the turn of the millennium. As a result, the portfolio is more resistant to the significant down-

turns occurring around the year 2000 and year 2003 and retains a relatively high cumulative return 

index throughout the early 2000s. 

In the following years and until the burst of the U.S. credit bubble, the Fama-French Five-Factor 

Markowitz portfolio experiences a steady and steep increase in the cumulative return index the to 

1066% in the year 2007, surpassing the preceding portfolios in the same time frame. From this 

height, the drawdown of the portfolio surges towards its maximum of 53% in the year 2009, as a 

result of the market turbulence of 2007 - 2009. 
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Following the trough and onwards, the cumulative return index of the portfolio sees a flatter, but 

stable increase compared to Single-Index- and Carhart Four-Factor Markowitz portfolios. The fare 

of the portfolio towards the end of the time period is less volatile, where the cumulative return index 

goes from 522% in 2009 to 1911% in the start of the year 2018, which also marks the maximum 

high-water mark across the backtesting period. The portfolio ends at a cumulative return index of 

1699% in January 2019. 

The Equally Weighted Portfolio 

Figure 5.6 – Cumulative Return Index, High-Water Mark, and Drawdown for the Equally Weighted 

Portfolio (Excess of the Risk-Free Rate) 

 

Lastly, we consider the equally weighted portfolio in Figure 5.6. During the initial part of the 

backtesting period, much of the same variability encountered by the former portfolios also affects 

this portfolio. Nevertheless, the equally weighted portfolio outclasses the previous portfolios with 

respect to the cumulative return index, and until the end of the 1990s, the portfolio accumulates a 

return index of 781%. 

Through the peak and burst of the dot-com bubble, the progression in the portfolio’s cumulative 

return index begins to flatten, and increased volatility is witnessed. The equally weighted portfolio 

thus experiences a few years of turmoil during the start 2000s, yet it recovers and takes another 
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steep leap forward towards the peak of the U.S. credit bubble. From the early 2000s, the cumulative 

return index of the portfolio rises to an impressive 1381% in 2007. 

Throughout the financial crisis, the drawdown of the equally weighted portfolio reaches a maximum 

of 53%. Contrary to the portfolios previously considered, the duration of the drawdown is lower, 

suggesting a better ability to recover, which perhaps can be attributed to a diversification benefit 

resulting from the lower portfolio weights. This may thus explain the superior performance of the 

portfolio so far. 

Following the bottom of the crisis, the portfolio experiences a decade of rapid growth in the cumu-

lative return index. During the last decade, several corrections are observed along the way.  None-

theless, the development of the cumulative return index is steepening even further following every 

correction. In the latter part of the backtesting period, the cumulative return index of the equally 

weighted portfolio surges from 651% in the year 2009 to 3200% at the beginning of the year 2018, 

which is the highest high-water mark across all portfolios. The portfolio ends at a superior cumula-

tive return index of 2748% in January 2019. 

The findings of the backtest are consistent with the results of Table 5.2. The equally weighted port-

folio has the highest average monthly excess return among the constructed portfolios, yet it also 

carries a relatively high standard deviation. In spite of the expected diversification benefits as a re-

sult of lower concentrations in each stock, the volatile development towards the end of the backtest 

may explain the higher standard deviation of the portfolio. 

5.3 – Sub-Conclusion 

In conclusion, the weights across the constructed factor Markowitz portfolios vary considerably 

throughout the time period. The Single-Index Markowitz portfolio generally shows the lowest port-

folios weights, while the multifactor Markowitz portfolios take considerable positions in specific 

stocks, at certain points in time. The portfolio weights of the Carhart Four-Factor Markowitz portfo-

lio see the highest fluctuations during the time period, suggesting a potentially high turnover. In 

contrast, the weights of the Single-Index Markowitz portfolio are more stable and less disperse. 

Judging by the summary statistics for each portfolio, we may conclude that the equally weighted 

portfolio and the Carhart Four-Factor Markowitz portfolio have the highest average monthly excess 

returns across the entire sample. While the Single-Index Markowitz portfolio displays the highest 

standard deviation, the Fama-French Five-Factor Markowitz portfolio demonstrates the lowest 
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standard deviation. In spite of this, it will be interesting to examine the portfolios’ relative risk-

adjusted performance in the next section, where we will adjust the average excess returns for the 

volatility of the portfolios. Furthermore, we can conclude that it is a general premise that all portfo-

lios are left skewed and exhibit positive excess kurtosis. 

Finally, based on portfolio backtesting from January 1979 to January 2019, we discover that the 

portfolios fare quite differently through shifting and adverse market conditions. In some periods the 

portfolios are more cyclical, whereas in others they are not. In terms of cumulative excess return, 

the equally weighted portfolio exhibits the best performance across all the constructed portfolios, 

while the Carhart Four-Factor Markowitz portfolio outperforms the other factor Markowitz portfo-

lios. 

However, as emphasized previously, returns in isolation do not tell the complete story about per-

formance. Although the cumulative return index illustrates what a portfolio potentially could have 

earned and drawdown brings along viable insights about downside risk, returns must be adjusted for 

risk in order to make meaningful assessments of performance across different portfolios. Therefore, 

the next section will complete a performance evaluation based on several well-known performance 

metrics. 
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6 – Performance Evaluation 

6.1 – Performance Evaluation 

Following the initial interpretation of the output from the portfolio construction and the backtesting 

of the portfolios, this section will conduct a performance evaluation based on the performance met-

rics described in Section 4.2. The section is structured to first conduct the performance evaluation 

over the full time period, followed by evaluations over several sub-periods. 

6.1.1 – Full Evaluation Period 

In Table 6.1 below, the performance metrics for evaluating the portfolios’ performance can be 

found. The metrics have been calculated for the time period from January 1979 to January 2019, 

which constitutes the full evaluation period. The average excess returns and volatilities have been 

annualized in order to arrive at yearly performance metrics for the portfolios. 

Table 6.1 – Performance Evaluation, 1979 – 2019 (Full Sample)6 

 

In Section 5 it already became apparent that the equally weighted portfolio carried the highest aver-

age excess return over the full time period, and in terms of excess returns ranked the best perform-

ing portfolio. Adjusting the average excess return for the risk of the portfolio, we see that this is still 

                                                 
6 The portfolio beta reported in this section is not the beta from Equation (4.37). Instead it is constructed as a periodic 

average of 𝛽𝑝𝑓,𝑀 = ∑ 𝑤𝑖𝛽𝑖,𝑀
𝑁
𝑖=1 . For comparability, the portfolio beta of the equally weighted portfolio uses 𝛽𝑖,𝑀 from 

the Single-Index Model and 𝑤𝑖 = 1/𝑁 for each stock. For future reference, the factor loadings for each portfolio are 

calculated in Appendix I. 

S.I. FF3 C4 FF5 E.W. Market

Average exReturn 8.78% 7.97% 9.26% 8.15% 9.54% 7.82%

Volatility 16.01% 15.32% 15.77% 14.38% 15.55% 15.23%

Alpha 1.56% 2.46% 3.63% 2.94% 2.57% -

(t-stat) 1.27 1.41 2.00 1.80 2.12 -

Portfolio Beta 0.99 0.70 0.65 0.75 0.91 1

Sharpe Ratio 0.55 0.52 0.59 0.57 0.61 0.51

M
2 

- rf
8.35% 7.91% 8.94% 8.62% 9.34% 7.82%

Information Ratio 0.20 0.22 0.32 0.29 0.34 -
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the case since the portfolio has the highest Sharpe ratio of 0.61. In the light of the portfolio’s level 

of average excess return, the volatility is thus relatively low. As suggested previously, this may be 

attributed to some form a diversification benefit stemming from the low and constant portfolio 

weights. The portfolio beta of the equally weighted portfolio at 0.91 is close to 1, suggesting co-

movement with the market. 

By comparing the Sharpe ratios across the factor Markowitz portfolios, the Carhart Four-Factor 

Markowitz portfolio outperforms with the highest Sharpe ratio of 0.59. Nonetheless, the portfolio 

provides the least market sensitive portfolio due to its low portfolio beta of 0.65. Scaling the two 

aforementioned portfolios to have the same risk as the market, the portfolios deliver excess returns 

of 8.94% and 9.34% respectively, which are approximately 1 percentage points above that of the 

market. Moreover, both portfolios achieve positive and statistically significant alphas in contrast to 

the other portfolios. The alphas constitute 3.63% and 2.57% respectively. Adjusting the alphas for 

the idiosyncratic risk of the portfolios, the conclusion remains the same. The information ratio of 

the equally weighted portfolio is higher than that of the Carhart Four-Factor Markowitz portfolio, 

amounting to 0.32 and 0.34 respectively. Hence, in terms of risk-adjusted alpha, the equally 

weighted portfolio also demonstrates superiority. 

Table 6.1 reports an identical performance of the Fama-French Five-Factor and the Single-Index 

Markowitz portfolios over the evaluation period, where the Single-Index portfolio is the most cycli-

cal portfolio as indicated by its portfolio beta close to 1. Furthermore, we note that it is a general 

premise that the multifactor Markowitz portfolios have a lower sensitivity towards the market. 

The portfolio demonstrating the worst performance is the Fama-French Three-Factor Markowitz 

portfolio, which becomes evident through its low Sharpe ratio of 0.52. The Sharpe ratio translates 

into a 𝑀2 − 𝑟𝑓 of 7.91%, which is only 0.1 percentage points above that of the market. Relative to 

the volatility of the other portfolios, we may conclude that the poor performance is due to the port-

folio’s low average excess return of 7.97%. 

6.1.1 – Sub-Periods 

The most common interpretation of performance measures and evaluation of their statistical signifi-

cance implicitly assume that return observations are independently and identically distributed. More 

specifically this assumption implies that observations of returns are independently drawn from the 

same distribution with constant mean and variance (Bodie et al., 2009). For a passive or relatively 
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stable investment strategy, this condition may not be too implausible. However, Munk (2017) sug-

gests that in case an investment strategy varies considerably during the performance evaluation pe-

riod, it makes little sense to calculate performance measures for the full period. Another, perhaps 

more intuitive rationale for separating the entire sample into smaller periods is that market condi-

tions can change significantly over the 40 years that our data span. Evaluating portfolio perfor-

mance during periods with different investment environments can thus add robustness to the con-

clusion. Accordingly, we have divided the full evaluation period from January 1979 to January 

2019 into four sub-periods of 10 years in order to make meaningful inferences about the perfor-

mance of the portfolios. Hence, the following section will evaluate the first and earliest period, 

which is from January 1979 to January 1989. 

Table 6.2 – Performance Evaluation, 1979 – 1989 

 

According to Table 6.2, the Fama-French Five-Factor portfolio outcompetes the other portfolios 

over the evaluation period from January 1979 to January 1989 with respect to the Sharpe ratio. The 

portfolio has a Sharpe ratio of 0.63, and in terms of 𝑀2 − 𝑟𝑓 earns 10.91%, which is about 3 per-

centage points higher than the excess return of the market. Based on the same metrics, the Carhart 

Four-Factor Markowitz portfolio demonstrates an almost identical performance. However, this port-

folio is affected by its higher volatility of 18.37%, which in fact is the highest across all portfolios. 

Moreover, Table 6.2 shows a similar performance between the Fama-French Three-Factor portfolio 

and the equally weighted portfolio. 

The Single-Index Markowitz portfolio has the least attractive performance during this evaluation 

period, as judged by its relatively low Sharpe ratio. While the other portfolios demonstrate a 𝑀2 −

S.I. FF3 C4 FF5 E.W. Market

Average exReturn 7.65% 9.97% 11.30% 11.27% 9.55% 7.93%

Volatility 17.06% 17.38% 18.37% 17.77% 16.97% 17.11%

Alpha 0.21% 3.81% 4.52% 4.79% 2.13% -

(t-stat) 0.11 1.06 1.27 1.36 1.18 -

Portfolio Beta 0.98 0.65 0.64 0.71 0.94 1

Sharpe Ratio 0.45 0.57 0.61 0.63 0.56 0.46

M
2 

- rf
7.71% 9.84% 10.55% 10.91% 9.66% 7.93%

Information Ratio 0.04 0.34 0.41 0.44 0.38 -
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𝑟𝑓 above that of the market, this portfolio returns approximately 0.2 percentage points below that of 

the market. This is a consequence of the portfolio’s relatively low average excess return of 7.65%. 

Lastly, we note that alphas across all portfolios are positive, yet none of them are statistically signif-

icant. In spite of this, the alphas as well as the information ratios lead to similar rankings for the 

portfolios. 

Table 6.3 – Performance Evaluation, 1989 – 1999 

 

In the portfolio backtesting we find that the period from January 1989 to January 1999 is character-

ized as an extended period of economic prosperity. This also becomes apparent in Table 6.3 through 

the generally higher performance metrics, compared to the ten-year evaluation period considered 

earlier. In general, we recognize that the best performing portfolios do also exhibit the highest ex-

posure to the market. 

Despite the high Sharpe ratio of the market, the Fama-French Five-Factor Markowitz portfolio 

demonstrates the best performance across all portfolios through its Sharpe ratio just above 1. This 

indicates that the portfolio more than compensates the investor for the total risk taken. Regarding 

the 𝑀2 − 𝑟𝑓, the portfolio delivers 13.44%, which is about 1 percentage point higher than the excess 

return of the market. The equally weighted portfolio and the Single-Index Markowitz portfolio do 

also achieve high Sharpe ratios of 0.99 and 0.94 respectively. The portfolios have 𝑀2 − 𝑟𝑓 above 

that of the market, however they carry relatively more systematic risk, as indicated by their higher 

portfolio betas. 

S.I. FF3 C4 FF5 E.W. Market

Average exReturn 12.09% 7.43% 6.98% 10.87% 12.54% 12.67%

Volatility 12.85% 11.05% 11.05% 10.67% 12.60% 13.57%

Alpha 1.24% 0.55% 1.13% 3.73% 1.77% -

(t-stat) 0.69 0.20 0.38 1.53 1.06 -

Portfolio Beta 0.98 0.75 0.58 0.85 0.92 1

Sharpe Ratio 0.94 0.67 0.63 1.02 0.99 0.93

M
2 

- rf
12.78% 9.11% 8.56% 13.80% 13.51% 12.67%

Information Ratio 0.23 0.07 0.12 0.50 0.35 -
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Across all portfolios, positive but statistically insignificant alphas are observed. The information 

ratios lead to a similar ranking of the portfolios, and thus the same conclusion as the one we derive 

from the Sharpe ratios and the 𝑀2 − 𝑟𝑓. 

The Carhart Four-Factor Markowitz portfolio exhibits the lowest average excess return, resulting in 

a Sharpe ratio of 0.63 and a 𝑀2 − 𝑟𝑓 about 4 percentage points below that of the market. Conse-

quently, this portfolio demonstrates the worst performance across the portfolios in this evaluation 

period. In addition, the portfolio has the lowest co-movement with the market, as indicated by the 

low portfolio beta of 0.58. 

Table 6.4 – Performance Evaluation, 1999 – 2009 

 

In Table 6.4 we observe that all portfolios have very high risk and low average excess returns, 

which translate into very low risk-adjusted performance metrics, compared to the performance 

evaluations of the preceding sub-periods. During the time span from January 1999 to January 2009, 

two major events struck the U.S. stock market resulting in severe declines, including the dot-com 

crash as well as the financial crisis. The effects of these events are particularly apparent in the per-

formance numbers of the market, where very high volatility and a negative average excess return 

are present, resulting in a Sharpe ratio of -0.17. 

As we elaborated upon in the portfolio backtesting, the lack of upturn during the 1990s and absence 

of high drawdowns during the early 2000s make it likely that the way we prepare the data sample 

leads to a reduction in companies that pose to be particularly vulnerable during this time period. 

The existence of such a bias in the data sample and its implications will be discussed in Section 7.1. 

For this reason, the performance evaluation over this evaluation period will focus more on the rela-

S.I. FF3 C4 FF5 E.W. Market

Average exReturn 2.26% 3.28% 3.48% 0.11% 2.91% -2.60%

Volatility 16.77% 16.76% 16.54% 13.62% 15.55% 15.73%

Alpha 4.38% 4.79% 5.16% 1.37% 4.78% -

(t-stat) 1.27 1.07 1.24 0.38 1.41 -

Portfolio Beta 0.87 0.59 0.56 0.72 0.68 1

Sharpe Ratio 0.13 0.20 0.21 0.01 0.19 -0.17

M
2 

- rf
2.12% 3.08% 3.31% 0.12% 2.94% -2.60%

Information Ratio 0.67 0.58 0.49 0.14 0.74 -
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tive performance between the factor Markowitz portfolios and the equally weighted portfolio, and 

less on the performance of the portfolios in relation to that of the overall stock market. 

Given the highest average excess return of 3.48% and moderate volatility of 16.54%, the Carhart 

Four-Factor Markowitz portfolio delivers the highest Sharpe ratio of 0.21 and thus the best perfor-

mance among the constructed portfolios. In addition, the Fama-French Three-Factor Markowitz 

portfolio and the equally weighted portfolio do also show relatively high Sharpe ratios of 0.20 and 

0.19. On the other hand, the Fama-French Five-Factor Markowitz portfolio demonstrates the worst 

performance due to its minimal average excess return, despite it having the lowest volatility across 

the portfolios. 

Finally, the alphas across all portfolios are above zero. However, since none of them are statistically 

significant, the alphas along with the information ratios may not lead to any reliable inferences 

about performance. 

Table 6.5 – Performance Evaluation, 2009 – 2019 

 

The time period from January 2009 towards the end of the sample marks a lengthy bull run, where 

the stock market experiences a sharp upswing. This is also evident in the performance of the mar-

ket, where Table 6.5 shows a Sharpe ratio of 0.95. 

Across the constructed portfolios, the Carhart Four-Factor Markowitz portfolio demonstrates the 

best performance numbers. The portfolio exhibits the highest Sharpe ratio of 0.94 primarily due to 

its very high average excess return of 15.27%. However, if the portfolio is scaled to have the same 

S.I. FF3 C4 FF5 E.W. Market

Average exReturn 13.11% 11.22% 15.27% 10.34% 13.16% 13.28%

Volatility 16.98% 15.41% 16.17% 14.48% 16.71% 14.00%

Alpha -1.74% -1.12% 3.66% 0.18% -1.45% -

(t-stat) -0.80 -0.41 1.05 0.06 -0.68 -

Portfolio Beta 1.14 0.83 0.82 0.69 1.08 1

Sharpe Ratio 0.77 0.73 0.94 0.71 0.79 0.95

M
2 

- rf
10.81% 10.19% 13.22% 10.00% 11.02% 13.28%

Information Ratio -0.26 -0.14 0.35 0.02 -0.22 -
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risk as the market, the excess return amounts to 13.22%, which is just below the excess return of the 

market. 

Table 6.5 displays a quite similar performance between the Single-Index Markowitz portfolio and 

the equally weighted portfolio, with Sharpe ratios amounting to 0.77 and 0.79 respectively. The 

portfolio betas of these portfolios indicate a higher sensitivity towards the market, at 1.14 and 1.08 

correspondingly. Since these portfolios deliver lower average excess returns than the market, this 

may be an explanation for the presence of negative alphas. 

The Fama-French Five-Factor Markowitz portfolio displays the lowest average excess return of 

10.34%. Despite its relatively low volatility, the portfolio ends at Sharpe ratio of 0.71 and has thus 

demonstrated the worst performance during this evaluation period. 

6.2 – Sub-Conclusion 

Based on the performance evaluation for the full evaluation period, which is over the time period 

from January 1979 to January 2019, we conclude that the equally weighted portfolio exhibits the 

best risk-adjusted performance. Across the factor Markowitz portfolios, the portfolio constructed 

upon the Carhart Four-Factor Model demonstrates excellent performance as well. It is generally true 

that all portfolios carry substantial volatility and that the best performing portfolios only compen-

sate the investor for a little more than half of the risk taken. Nevertheless, the multifactor Marko-

witz portfolios generally display a lower level of systematic risk. 

Separating the full sample into several sub-periods allow us to track the portfolios through different 

investment climates. Across all portfolios, we discover that the Fama-French Five-Factor Marko-

witz portfolio overperforms in the first two sub-periods. During the last two sub-periods, the Car-

hart Four-Factor Markowitz portfolio exhibits the greatest performance, while the Fama-French 

Five-Factor Markowitz portfolio demonstrates the worst. These findings are consistent with the 

conclusion of the portfolio backtesting in Section 5.2.  

In general, we may conclude that the Single-Index Markowitz and the Fama-French Three-Factor 

portfolio demonstrate a modest performance. The full evaluation period, as well as the sub-periods 

provide evidence for this. Hence, portfolios constructed upon factor structures of fewer factors, may 

possibly forego important signals that some of the extended factor models are able to capture. 
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7 – Discussion 

7.1 – Discussion 

Following the analysis, this section will put the results into perspective by discussing several poten-

tial issues with regards to the implementation and data sampling. Furthermore, the practical rele-

vance and implications in this context will also be discussed, for perspective. 

7.1.1 – Statistical Significance 

As underlined in Section 3.1, we choose to estimate factor models by time series regression. There-

fore, an expected source of uncertainty relates to the accuracy of the estimates of the factor load-

ings. The analyses of Section 5 and Section 6 are based on the premise, that we can rely on the indi-

vidual stock’s sensitivity to the relevant factors, as indicated by their factor loadings. In case the 

estimates of the factor loadings are not statistically significant, then wide confidence intervals are 

associated with the estimates. This has consequences for the estimates of the expected returns and 

the variance-covariance matrix. In the worst case, this will influence how the mean-variance opti-

mization procedure assigns weights to specific stocks and thus how the portfolios are composed. 

In order to evaluate the accuracy of the factor loadings, we will observe their associated p-values 

and thus test whether they are statistically significantly different from zero. For a factor loading to 

be statistically significant, the associated p-value must be below a certain level of significance. 

Table 7.1 – Number of Statistically Significant Factor Loadings for Each Factor Portfolio (in %) 

 

Table 7.1 illustrates the relative number of statistically significant factor loadings across all regres-

sions we run, for each of the four factor Markowitz portfolios. Each column indicates the percent-

age of statistically significant loadings, for a particular factor loading, while the Total column repre-

sents the total part of statistically significant factor loadings. In Table 7.1 we observe that across all 

factor Markowitz portfolios, the market factor loading carries the highest explanatory power since 

ExMkt SMB HML UMD RMW CMA Total

S.I. 85,22% - - - - - 85,22%

FF3 86,17% 19,14% 27,83% - - - 44,38%

C4 85,36% 18,61% 24,64% 19,54% - - 37,04%

FF5 83,92% 17,62% 19,18% - 12,32% 13,64% 29,34%
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around 85% of the loadings are found to be statistically significant. This suggests that the excess 

market return does seem to explain the variation of excess returns in our data sample quite well.  

On the other hand, we notice that as the factor models are extended to include more factors, the total 

number of statistically significant factor loadings decline. Moving from the Single-Index- to the 

Fama-French Five-Factor Markowitz portfolio, the total level of statistically significant factor load-

ings declines from 85.22% to 29.34%. The immediate explanation for the limited explanatory pow-

er could be due to “overfitting”. Hence, the inclusion of additional factors leads to the regression 

model fitting random noise in the data sample (Ruppert & Matteson, 2015). This may cause prob-

lems for the estimates of the expected returns and the variance-covariance matrix, since these are 

derived directly from the factor loadings as we saw in Section 4.2. Unreliable signals are thus con-

veyed to the optimization algorithm, which potentially could lead to misallocation of wealth be-

tween the stocks in the portfolio. 

Conversely, the portfolios constructed upon a higher number of factors, did fare well through sever-

al periods of the portfolio backtesting and performance evaluation. From the previous section, we 

recall that the Fama-French Five-Factor Markowitz portfolio did demonstrate the best performance 

during the first two decades, while the Carhart Four-Factor Markowitz portfolio exhibited the best 

performance during the last two decades. This challenge the idea about the multifactor models not 

being parsimonious, since the additional factors could perhaps capture important signals and allow 

for better stock picking. 

7.1.2 – Data Biases 

A well-known disclaimer of many investment firms is that past performance is never an indicator of 

future performance. Because the analysis and results are based on historical data, it is hard to say 

how the portfolios will fare in the future. The intention of using 40 years of data was to get a gen-

eral idea about how several portfolios constructed upon different factor-based mean-variance anal-

yses performed through various market conditions. 

When evaluating a trading strategy, it is of great importance that the data on which the strategy is 

tested on, possess as few biases as possible. Two biases do potentially exist within our data sample. 

These include survivorship bias and lookahead bias. Survivorship bias arises when performance 

evaluations only include companies, which have survived but do not account for firms that no long-

er exist. Lookahead bias stems from using information that is not available at the time of the trade. 
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On the other hand, the way we have structured the portfolio implementation works as out-of-sample 

testing in contrast to merely conducting in-sample testing, and therefore mitigates an optimization 

bias. 

Survivorship Bias 

As described in Section 4.1, we use the current index membership of the S&P 500 Index at a specif-

ic point in time for the implementation of the analysis. This has the consequence of imposing a sur-

vivorship bias in the data sample. Survivorship bias arises when only firms that have survived are 

included in a back-test or performance evaluation (Bodie et al., 2009). By only using the current 

members of the S&P 500 Index, the firms that have gone bankrupt are implicitly removed from the 

analysis. Furthermore, as we prepare the data sample to only include firms with equally long time 

series of returns, the bias is heightened. 

Section 4.1 found that the committee behind the S&P 500 Index has an extensive screening process 

in place to maintain an index of healthy companies. Companies that no longer meet their selection 

process as a representative of the large-cap U.S. stock market are removed from the index. The data 

sample does therefore not only include firms which have survived during the 40 years our sample 

runs, but also robust and financially viable firms, that have shown excellent performance. This bias-

es the portfolio backtesting and performance evaluation to look better. 

A solution to mitigate the survivorship bias is to base the portfolio construction on constituents of 

the S&P 500 Index at every point in time. Hence, the portfolio from January 1979 to February 1979 

should be based on the index constituents with 60 months of past return observations. Moving one 

month forward, the portfolio should be restructured with the new constituents, that have 60 months 

of past return observations and so forth. Given the limited scope of this thesis, we did not follow 

such an approach due to data availability and time resources. 

In any case, we would not be able to eliminate the bias in our data sample completely. Recall, that 

part of the portfolio construction involves running regressions of the past 60 months of return data 

to get statistically reliable, but also economically meaningful factor loadings. Thus, firms must have 

survived for 5 years to be included in the analysis. It is important to underline that this may not be 

as big of a problem when forming portfolios based on stocks of the S&P 500 Index. However, ap-

plying the factor-based mean-variance analysis that we have proposed, on other investment univers-

es with less rigorous screening mechanisms, this can be an issue. A potential trade-off therefore 
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exists between minimizing the bias and getting more reliable parameter estimates. Reducing the 

length of the estimation window can mitigate the bias but produce less reliable factor loadings. In 

contrast, increasing the estimation window may lead to more reliable factor loadings, but heighten 

the bias. The conclusion must arguably be that a survivorship bias to some degree is inevitable 

when this approach is taken towards portfolio construction.  

Look-ahead Bias 

Another bias that may be present within our data sample is look-ahead bias, which occurs when 

information or data is being used that would not have been available during the period being ana-

lyzed (Ang, 2014). At the portfolio formation in 1979, we would have no chance of choosing the 

particular firms in our data sample. Furthermore, we would not have known that these firms would 

show particularly good performance going forward. As a consequence of this bias, the results of the 

portfolio backtesting and performance evaluation may look better than the trading strategy would 

do going forward. The solution we presented above to mitigate the survivorship bias can also func-

tion to reduce the look-ahead bias. Rather than using the current membership of the S&P 500 Index, 

the data sample should be based on the actual constituent changes over time. 

Lastly, we may recognize that information issues do exist regarding the use of the factor data from 

French (2019) for the historical backtest and performance evaluations. While the idea of using a 

broad market index as the only factor was presented by Sharpe in 1963, the value and the size factor 

were first discovered by Fama & French in 1993. The momentum factor was identified by Carhart 

in 1997, while the profitability and investment factors were first discovered by Fama & French in 

2015. In the time periods where we evaluate the portfolio’s performance, some of the factors can 

thus be argued not to have been discovered, and it may be unrealistic to assume that we can trade on 

them. 

Optimization Bias 

In the case where parameters have been optimized, there is a possibility that an optimization bias 

may arise. Pedersen (2015) states that when a trading strategy has been optimized and backtested 

within the same time period, the performance of the strategy is biased to look better since the pa-

rameters are optimal for that particular period. This is also known as in-sample testing in contrast to 

out-of-sample testing. 
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In out-of-sample testing, the parameters have been optimized on one data sample and tested on an-

other. In Section 4.2 we described how we apply a rolling window estimation as part of the portfo-

lio construction. Taking such an approach works like out-of-sample testing, which mitigates the 

optimization bias mentioned above. Each time period, we estimate parameters based on older data, 

simulate the portfolio’s performance over the next month, estimate new parameters based on a 

shifted time window, simulate the portfolio’s performance over the next month and so forth. In oth-

er words, we take a segment of our data to optimize and another segment of the data to validate the 

optimization. This leads to added robustness since the performance of the portfolio is validated 

across many sub-samples and thus through different market conditions and periods of time. 

7.1.3 – Practical Issues 

Transaction Costs 

Recall, the analysis of the changes in the portfolio weights of Section 5.1. In the case of extensive 

rebalancing, the portfolios may suffer from higher trading costs. As outlined in the problem state-

ment, this study intends to examine portfolio performance, without taking transaction costs into 

account. Nonetheless, transaction costs are inevitably an important aspect of portfolio evaluation in 

practice and can influence performance greatly. 

According to Collins & Fabozzi (1991), transaction costs may include direct costs like broker 

commissions, for example, intermediaries charging fees for buying and selling securities, exchange 

fees, settlement fees, clearing fees, etc. On the other hand, they may also encompass more indirect 

costs like market impact, i.e., the deviation between the actual execution price and the price that 

would have existed in the absence of the trade. Collins & Fabozzi (1991) state that while commis-

sions and fees are fixed and readily observable, market impact is neither fixed nor measurable. 

Nonetheless, they find that the former type of transaction costs is much smaller than the latter. 

Perold & Robert S. Salomon (1991) report that costs related to market impact is proportional to the 

size of the trade being executed. When the size of the trade is substantial and represents a big part of 

the total trading volume in the stock, costs related to market impact can be significant. This is a 

consequence of that large trades may move the stock price substantially. Section 4.1 found that the 

committee behind the S&P 500 Index employs the criteria of market capitalization and liquidity 

when considering a new candidate for the index. Hence, costs related to market impact may not 

pose that big of an issue for the stocks included in our portfolios. 



Page 88 of 129 

 

However, the naïve assumption of being able to transact at constant prices are somewhat unrealistic. 

We must therefore always anticipate that when we trade, the price will move against us. This is par-

ticularly relevant for the portfolios that see the highest changes in portfolio weights, as this may 

indicate trades of larger size.  

In Section 5.1 we found that the multifactor Markowitz portfolios generally experience higher fluc-

tuations in their portfolio weights, while the Single-Index Markowitz portfolio achieves more stable 

portfolio weights.7 The Single-Index Markowitz portfolio would thus incur lower transaction costs, 

which could perhaps suggest better applicability of the portfolio in practice. Nevertheless, we must 

expect that the portfolios will encounter direct but also indirect transaction costs, which will affect 

their performance. 

On a final note, we recognize that changes in the portfolio composition could in principle be explic-

itly modeled through the convex optimization technique described in Section 4.2. However, this 

must be a start for further research. 

7.2 – Sub-Conclusion 

Throughout the earlier parts of this study, it became clear that several of the multifactor Markowitz 

portfolios did relatively well both during the full evaluation period, but also through several sub-

periods. However, we may conclude that the high level of statistically insignificant factor loadings 

challenges the rationale for the excellent performance of these portfolios. The factor loadings form 

the foundation for the estimation of the expected returns and the variance-covariance matrix. Hence, 

they greatly influence how the mean-variance optimization procedure derives the portfolio weights. 

Furthermore, we have discussed several relevant data biases, where survivorship bias and lookahead 

bias are present within our data sample. An immediate solution to mitigate these biases would be to 

consider historical constituents of the S&P 500 Index and include firms that have gone bankrupt. 

Additionally, the investment universe could be extended to include stocks with different character-

istics than that of the S&P 500 members. Despite the existence of such biases, it must be empha-

sized that we investigate the relative performance between portfolios based on the same biased data 

sample. Therefore, we consider this issue less decisive for answering the problem statement. 

                                                 
7
 We also note that this is the case for the unconstrained solution to Single-Index Markowitz portfolio, where the portfo-

lio weights are stable and exhibit non-extreme behavior. 
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Lastly, we have discussed the practical implications related to portfolio turnover and associated 

trading costs. Despite that transaction costs are unaccounted for in this study, they do inevitably 

pose an important consideration in practice. The portfolio compositions of the multifactor Marko-

witz portfolios are generally less stable, which presumably heightens transaction costs. Despite the 

modest performance of the Single-Index Markowitz portfolio, the fact that it requires less extensive 

rebalancing may imply lower transaction costs, and thus better practical applicability. 

Nonetheless, the implications we have discussed so far may influence some of the results of the 

study. However, since it is hardly possible to consider all aspects when forming the analysis, these 

findings form an interesting foundation for further research. 
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8 – Conclusion 

8.1 – Conclusion 

The primary aim of this thesis was to investigate how mean-variance asset allocation can benefit 

from factors in stock returns on the U.S. stock market. 

Based on a review of the academic literature within the field of factor models, we consider two 

classes of relevant factors, namely macroeconomic factors and fundamental factors. While macroe-

conomic factors have a strong theoretical appeal, they have generally been found to explain varia-

bility in stock returns insufficiently. On the other hand, the explanation for the ability of fundamen-

tal factors to explain returns are more unclear, yet they have been more successful in explaining 

variability in stock returns. Hence, we choose several well-known factor models for the analysis 

with regards to constructing portfolios. These factor models include Sharpe (1963), Fama & French 

(1993, 2015) and Carhart (1997). 

We investigate and describe a framework for implementing factor models into the mean-variance 

analysis and evaluate the framework in an econometric context. We calculate the expected returns 

and the variance-covariance matrix based on factor loadings, the expected returns and the variance-

covariance matrix of the factors, as well as the diagonal variance-covariance matrix of the residuals. 

Our findings constitute that an unconstrained solution to the factor-based mean-variance optimiza-

tion procedure produces unrealistic results. Hence, we propose a constrained and more realistic so-

lution. Moreover, we find no econometric issues regarding the implementation of the framework. 

Applying the proposed factor-based mean-variance analysis, we construct portfolios that are re-

balanced monthly and evaluate their performance from January 1979 to January 2019. Based on 

portfolio backtesting we discover that the portfolios fare differently through changing market condi-

tions. In conclusion, the equally weighted portfolio yields the highest cumulative return index, 

while the Carhart Four-Factor Markowitz portfolio does also provide an attractive alternative. In 

terms of risk-to-reward, the conclusion remains. The highest risk-adjusted return is achieved by the 

equally weighted portfolio, followed by the Carhart Four-Factor Markowitz portfolio. However, 

separating the full evaluation period into several sub-periods results in additional findings. The 

Fama-French Five-Factor Markowitz portfolio demonstrates superior performance on a risk-

adjusted basis during the first two decades. During the last two decades, the Carhart Four-Factor 

Markowitz portfolio achieves the highest risk-adjusted performance. 
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The evaluations over the sub-periods are indicators of that a factor-based mean-variance analysis 

can lead to better performance than an equally weighted portfolio, and thus benefit from relevant 

factors. However, the justification for the better performance has been a matter of discussion in this 

thesis. 

We have discussed the statistically significance of the factor loadings and raised the question of 

whether the portfolios constructed upon a higher number of factors are able to capture important 

signals and thus pick stocks better. Moreover, several data biases have been discussed that might 

cause concern for our results. Hence, mitigating these biases completely would heighten the validity 

of our results. Furthermore, we have considered the aspect of transaction costs, which has led us to 

believe that the Single-Index Markowitz portfolio perhaps have good applicability in practice. This 

is a result of the portfolio’s more stable composition reducing turnover and thus transaction costs. 

In conclusion, we have proposed a more stable alternative to the traditional mean-variance analysis. 

As we have seen throughout this study, the traditional mean-variance analysis regularly encounters 

problems with respect to singular variance-covariance matrices, when applied on a high number of 

assets. Such problems did not occur in our implementation, as none of the variance-covariance ma-

trices estimated across the factor portfolios turned out to be singular. For these reasons, the factor-

based mean-variance analysis appears to be an attractive choice for practical applications rather 

than the traditional framework. 

On a final note, we recommend using this study as a foundation for further research surrounding the 

mean-variance analysis and factor models through some suggested further areas of research that we 

believe would be interesting to expand upon. These are proposed in the following section. 

8.2 – Further Research 

Several parts of the thesis could be expanded through further research. These include the use of 

other factor models, forming portfolios upon different investment universes and imposing additional 

realistic constraints. 

A reasonable start would be to apply the factor-based mean-variance analysis upon factor models, 

where several of the factors with less explanatory power have been removed. In particular, the value 

factor (HML) was found to be redundant when combined with the profitability (RMW) and invest-

ment (CMA) factors. In addition, Schwert (2003) reports that the size factor (SMB) has decreased 

considerably or even disappeared since it was first discovered. While this study has merely consid-
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ered several of the most established factor models within the finance literature, evidence has been 

found for the existence of other factors in stock returns. Hence, forthcoming research could inte-

grate other factors into the mean-variance analysis and investigate how portfolios formed upon 

these would perform. However, as emphasized by Feng, Giglio, & Xiu (2019) the vast number of 

potential risk factors proposed in the finance literature should be used with caution. Further research 

must therefore be aware of the explanatory power of the factors, and whether they truly capture new 

dimensions of risk. 

Secondly, this study focusses solely on constructing portfolios from stocks of the S&P 500 Index. 

For future research, the investment universe could be extended to include stocks with different 

characteristics than that of the constituents of S&P 500 Index. Hence, it would be interesting to in-

vestigate the performance of portfolios formed upon less liquid, mid or small-cap stocks. Taking 

such an approach could potentially strengthen the conclusions we arrive at. Furthermore, Fama & 

French (2012) document their factors to be persistent in other countries, as well as globally. There-

fore, another interesting way of expanding the analysis could be to apply the factor-based mean-

variance analysis on stock markets in different countries. This could be done with ease since time 

series of developed market factors and returns are available from the data library of French (2019). 

Still, further research must be aware of differences in the explanatory power of the factors for dif-

ferent regions as underlined by Fama & French (2012). 

Thirdly, in relation to practical applicability, further research could impose more realistic con-

straints on the convex optimization problem regarding regulations, capital budgets, investor prefer-

ences, etc. While the restriction of not allowing short sales may be relevant for many funds and in-

stitutional investors, turnover constraints can also be imposed to limit aforementioned transaction 

costs in the rebalancing. Lastly, upper and lower bounds on concentrations in specific stocks could 

be imposed to comply with fund policies and financial regulation. 
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Appendices 

Appendix A – Data Sample Industry Decomposition 

Industry Decomposition based on the Global Industry Classification Standard (GICS) 
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Appendix B – Unconstrained Factor Markowitz Portfolio Weights 

Unconstrained Portfolio Weights of the Single-Index Markowitz Portfolio 

 

 

Unconstrained Portfolio Weights of the Fama-French Three-Factor Markowitz Portfolio 
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Unconstrained Portfolio Weights of the Carhart Four-Factor Markowitz Portfolio 

 

 

Unconstrained Portfolio Weights of the Fama-French Five-Factor Markowitz Portfolio 
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Appendix C – Fitted Values against Standardized Residuals for Each Factor Regression 

Single-Index Model 

 

Fama-French Three-Factor Model 

 

Carhart Four-Factor Model 

 

Fama-French Five-Factor Model 
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Appendix D – QQ-plots of Standardized Residuals for Each Factor Regression 

Single-Index Model 

 

 

Fama-French Three-Factor Model 
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Carhart Four-Factor Model 

 

 

Fama-French Five-Factor Model 
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Appendix E – Variance Inflation Factors of the HML, CMA and RMW Factors 
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Appendix F – Constrained Factor Markowitz Portfolio Weights 

Constrained Portfolio Weights of the Single-Index Markowitz Portfolio 

 

 

Constrained Portfolio Weights of the Fama-French Three-Factor Markowitz Portfolio 
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Constrained Portfolio Weights of the Carhart Four-Factor Markowitz Portfolio 

 

 

Constrained Portfolio Weights of the Fama-French Five-Factor Markowitz Portfolio 
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Appendix G – ΔWeights for the Factor Markowitz Portfolios 

ΔWeights of the Single-Index Markowitz Portfolio 

 

 

ΔWeights of the Fama-French Three-Factor Markowitz Portfolio 
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ΔWeights of the Carhart Four-Factor Markowitz Portfolio 

 

 

ΔWeights of the Fama-French Five-Factor Markowitz Portfolio 
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Appendix H – Portfolio Excess Returns 

Excess Returns of the Single-Index Markowitz Portfolio 

  

1979 - 4.2% -4.5% 3.2% 0.7% -2.2% 2.3% 2.7% 5.3% -3.2% -8.0% 3.5%

1980 1.3% 3.9% -6.9% -8.0% 3.1% 5.3% 3.3% 8.5% -0.6% 2.1% -0.7% 2.4%

1981 0.2% -4.6% 3.9% 5.0% -0.9% 0.2% -3.7% -3.3% -7.3% -5.7% 6.2% 1.2%

1982 -2.9% -4.0% -2.7% 0.1% 2.7% -5.1% -2.9% 0.1% 9.2% 3.1% 12.9% 5.3%

1983 -1.2% 2.9% 4.8% 1.9% 4.7% 2.0% 2.6% -4.6% -0.5% 1.7% -2.5% 2.8%

1984 -1.1% -3.8% -4.9% 0.2% 0.7% -5.7% -0.2% -0.3% 9.1% -2.8% 1.4% -2.6%

1985 2.8% 8.7% 1.8% -2.2% -2.7% 6.7% 1.6% 1.0% -2.6% -4.1% 3.2% 5.8%

1986 3.9% 3.2% 6.4% 4.3% -0.7% 3.4% 1.5% -7.7% 6.9% -8.3% 5.0% 0.6%

1987 -2.9% 15.3% 3.2% 1.2% -2.9% 0.1% 4.4% 3.6% 2.7% 0.5% -24.4% -7.3%

1988 6.8% 4.6% 5.6% -2.6% 0.3% 0.7% 2.8% -1.1% -4.8% 4.5% 0.4% -3.5%

1989 2.0% 5.4% -3.1% 2.7% 4.0% 3.5% -1.6% 6.7% 2.6% -1.9% -3.8% 1.4%

1990 0.3% -7.5% 0.7% 1.3% -2.4% 8.4% -0.9% -2.4% -11.2% -4.9% -4.6% 9.8%

1991 2.5% 6.1% 8.0% 1.8% 2.1% 3.4% -3.2% 1.7% 2.2% -1.5% 1.1% -2.6%

1992 9.7% 1.0% 1.8% -1.8% 1.1% 0.9% -1.2% 2.8% -1.9% 0.9% 3.0% 2.8%

1993 1.5% 1.1% 0.0% 2.6% -1.9% 1.7% -0.7% -0.4% 3.3% -0.7% 1.3% -1.8%

1994 1.6% 2.4% -1.9% -4.5% 1.0% 0.1% -1.8% 2.5% 2.2% -3.1% 0.6% -4.1%

1995 2.3% 2.4% 3.4% 2.7% 0.8% 3.4% 1.3% 2.1% 0.7% 2.1% -0.5% 4.3%

1996 1.0% 3.0% 0.8% 1.7% -0.2% 0.8% 1.0% -4.4% 1.1% 4.3% 1.6% 6.6%

1997 -1.8% 3.3% 1.3% -3.6% 4.3% 5.2% 5.5% 5.3% -3.9% 5.7% -2.3% 4.1%

1998 0.4% 1.1% 4.6% 4.3% -0.2% -2.9% 1.3% -5.1% -10.5% -1.5% 15.2% 2.3%

1999 1.8% -1.9% -0.8% 1.4% 11.7% -3.6% 3.1% -4.4% -2.1% -6.7% 3.5% -1.1%

2000 -1.8% -1.7% -6.6% 12.3% 0.3% 1.8% -3.6% 0.7% 4.1% -2.4% 4.3% -0.7%

2001 6.3% 1.7% -3.3% -4.7% 8.1% 2.4% -3.4% 0.1% -3.5% -12.1% 5.8% 6.2%

2002 3.7% 0.4% 3.6% 2.5% -3.0% -3.4% -7.2% -9.9% 3.1% -8.2% 4.7% 8.3%

2003 -6.2% -3.5% -2.2% 1.2% 8.1% 8.2% 0.4% 3.2% 4.9% -0.3% 6.7% 1.4%

2004 3.4% 1.5% 3.5% -1.6% -2.1% 1.1% 1.7% -1.7% -1.0% 4.0% 0.3% 6.5%

2005 0.1% -1.2% 2.4% -3.0% -2.0% 3.9% -0.1% 5.5% -1.4% 0.3% -1.8% 5.7%

2006 -1.8% 3.5% 1.7% 0.9% 1.2% -1.2% -1.2% -1.9% 2.8% 1.0% 2.4% 1.7%

2007 1.2% 3.1% -1.7% 0.6% 3.8% 3.0% -1.4% -4.2% -0.5% 3.4% -4.1% -1.2%

2008 -1.6% -1.9% -4.6% 2.8% 3.2% -1.0% -8.6% 0.3% 3.0% -9.2% -17.9% -15.0%

2009 12.8% -8.1% -16.7% 16.9% 15.3% 6.0% -2.3% 10.2% 0.8% 2.9% 1.1% 6.6%

2010 2.2% -1.5% 3.4% 5.7% 4.1% -11.0% -3.6% 10.2% -3.8% 6.2% 2.9% 2.7%

2011 4.9% 2.3% -0.2% 3.5% 1.9% -3.1% 2.3% -6.5% -5.9% -9.2% 12.5% 2.9%

2012 1.4% 5.7% 2.5% 2.2% -0.1% -8.0% 5.5% 0.9% 1.9% 2.2% 1.0% -0.7%

2013 2.0% 7.1% 1.2% 3.3% 1.2% 2.7% -1.1% 6.6% -5.0% 4.2% 4.1% 1.4%

2014 3.2% -5.6% 6.5% 2.9% -0.1% 2.0% 2.3% -3.6% 3.9% -3.7% 5.0% 1.9%

2015 1.3% -1.9% 4.6% -2.4% 1.0% 0.1% -0.9% -0.2% -8.0% -0.6% 8.9% 0.6%

2016 -3.5% -5.4% 3.5% 5.6% 2.7% 1.1% -0.3% 3.1% 1.3% -1.1% -2.7% 7.3%

2017 1.3% 1.8% 5.1% -2.1% 0.9% 1.6% 0.6% -0.1% -1.4% 3.5% 1.1% 2.8%

2018 1.3% 4.3% -6.3% -2.9% 1.8% 1.2% -1.2% 3.7% 1.8% 0.7% -6.9% 2.9%

2019 -11.1% - - - - - - - - - - -

1 2 3 4 5 6 7 8 9 10 11 12

Monthly Returns (%)

Y
ea

r

Month
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Excess Returns of the Fama-French-Three Factor Markowitz Portfolio 

 

  

1979 - 19.8% -3.9% 5.6% 6.6% -1.3% 1.6% 2.6% 8.6% -4.2% -12.0% 6.6%

1980 0.9% 4.6% -5.6% -13.0% 0.9% 4.9% 7.2% 7.9% 7.0% 2.1% -0.2% 0.8%

1981 -2.9% -6.6% 3.0% 8.2% 1.4% 4.1% -4.2% -5.2% -5.0% -8.5% 9.3% 3.6%

1982 -3.7% -2.3% -4.0% 5.0% 0.2% -5.1% -3.9% 0.4% 1.7% 2.3% 10.2% 8.0%

1983 -2.1% 3.2% 2.9% 7.6% 5.5% 1.8% 3.6% -3.9% -1.0% 3.2% 0.3% 1.4%

1984 -1.8% -0.3% -4.7% -2.4% 0.4% -3.9% -0.9% -0.6% 4.3% 2.8% 1.6% 0.9%

1985 1.9% 3.0% 1.9% 2.5% -1.2% 6.8% 2.4% -1.7% -1.3% -4.0% 5.7% 3.4%

1986 4.0% 5.4% 5.7% 3.1% -2.4% 1.5% 4.3% 0.0% 7.3% -7.9% 2.3% -0.1%

1987 -3.9% 11.5% -0.9% -1.5% -3.5% 0.5% 2.0% 0.6% -0.8% -3.4% -15.3% -6.3%

1988 0.8% 10.0% -2.1% -4.9% -1.2% 3.9% 0.1% -1.3% -2.2% 1.3% 3.5% -1.7%

1989 0.3% 1.2% -2.8% 2.0% 3.0% 3.8% 1.5% 4.8% -2.4% -1.0% 0.5% 1.6%

1990 3.8% -6.1% -1.6% -1.8% -5.1% 3.2% -0.3% 2.2% -10.2% 1.4% 7.3% -1.3%

1991 -0.7% -3.4% 2.5% 0.8% 0.9% -2.8% -0.3% 3.5% 2.3% 3.6% -0.6% 2.4%

1992 7.9% -6.1% -1.1% -1.3% 4.5% 1.3% -0.2% 5.2% -2.1% -1.3% -0.9% -0.6%

1993 2.1% 2.8% 3.6% 2.3% 1.8% 0.6% -0.3% 2.0% 2.0% -0.2% -2.4% -6.5%

1994 1.3% 1.4% -4.8% -3.7% 1.9% -1.8% -1.4% 3.9% -1.8% -3.2% 1.6% -3.7%

1995 0.5% 1.2% 3.2% 1.4% 1.4% 4.0% -0.3% 1.7% 2.1% 0.4% -0.6% 3.3%

1996 1.4% 2.2% 0.9% 2.4% 0.7% -0.7% -0.4% -3.8% 2.3% 3.4% 2.1% 7.0%

1997 -1.0% 3.4% 1.4% -3.9% 2.0% 4.4% 4.4% 4.5% -1.3% 6.3% -0.6% 2.4%

1998 2.4% -1.6% 3.9% 5.5% -0.6% -2.6% 1.0% -6.4% -9.6% 1.4% 4.7% 2.1%

1999 1.2% -6.5% -1.6% 0.9% 6.1% -2.8% 0.7% -4.5% -1.9% -6.7% 6.0% -3.8%

2000 -5.3% -1.4% -7.6% 12.1% -0.4% -0.1% -2.3% 0.6% 5.7% -3.5% 3.8% -1.2%

2001 7.5% -0.7% -0.4% -3.6% 8.4% 2.7% -3.2% -1.0% -0.1% -10.4% 3.7% 3.1%

2002 4.7% 0.2% 4.0% 2.6% -0.1% -3.6% -3.9% -7.5% 3.3% -5.4% 0.8% 1.6%

2003 2.4% -1.2% -0.5% 5.5% 6.6% 1.5% 2.9% -3.7% 0.6% 4.0% 5.1% 4.5%

2004 1.3% 4.9% 3.5% 2.6% -5.2% 1.4% 1.5% 0.9% 2.0% 3.8% 2.0% 6.7%

2005 2.5% 0.1% 2.4% -2.4% 2.6% 2.6% 1.1% 3.4% -1.1% 0.2% -5.9% 4.5%

2006 -0.9% 2.8% 0.9% -0.8% -2.0% 0.7% 0.7% 2.3% 0.8% -0.2% 2.0% 3.5%

2007 0.1% 2.1% -0.2% 3.6% 1.9% 1.3% -1.9% -3.2% -0.1% 3.5% -2.6% -0.8%

2008 -1.9% 0.0% -6.3% 3.1% 2.3% -3.8% -10.7% 2.1% 3.6% 5.7% -17.6% -23.8%

2009 14.2% -10.0% -16.2% 15.5% 9.2% 6.2% 1.4% 1.3% -0.1% 3.3% -3.2% 6.3%

2010 -0.2% -4.6% 1.6% 2.7% 4.9% -9.8% -5.6% 7.8% -0.2% 3.7% 0.4% 0.9%

2011 8.7% 7.5% 3.2% 2.5% 1.7% -3.1% 2.9% -2.6% -6.4% -9.3% 10.7% 2.7%

2012 3.8% 2.4% 1.6% 5.1% -2.1% -7.2% 4.7% 2.2% 4.7% 2.1% -0.4% 3.9%

2013 -0.7% 9.2% 3.4% 3.0% -0.5% 2.1% -0.4% 6.0% -5.7% 2.6% 4.7% 1.5%

2014 2.2% -5.2% 7.1% 4.1% 1.0% 1.9% 2.5% -3.8% 3.5% -2.0% 4.4% 2.4%

2015 0.0% 0.6% 1.8% -2.8% 1.8% 0.1% -2.4% 3.1% -7.1% 2.6% 7.1% -0.6%

2016 -0.1% 0.3% 0.9% 5.1% -1.1% -0.1% 4.2% 0.4% -2.8% -1.7% -1.9% 2.5%

2017 2.4% -0.5% 4.8% -1.9% 0.2% 2.0% -0.4% 0.3% -1.4% 1.4% 1.1% 2.8%

2018 0.4% 2.5% -6.0% -2.0% 1.2% 0.3% 0.3% 3.8% 2.3% 1.0% -5.0% 3.6%

2019 -8.5% - - - - - - - - - - -
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Excess Returns of the Carhart Four-Factor Markowitz Portfolio 

 

 

 

1979 - 2.6% 2.2% 8.1% 4.5% 2.0% 5.2% 0.9% 9.1% -3.9% -7.8% 7.0%

1980 4.1% 5.8% -3.0% -16.5% 5.0% 3.0% 7.5% 8.3% 8.5% 6.2% 3.3% 7.9%

1981 -7.3% -13.4% 6.9% 7.3% -3.0% 3.2% -4.8% -3.5% -3.2% -11.2% 11.3% 2.8%

1982 -5.1% -5.9% -8.5% 4.3% 0.3% -4.6% -4.4% 0.5% 7.4% 1.7% 5.6% 7.9%

1983 -2.3% 5.7% 2.2% 10.9% 8.9% 2.9% 4.0% -3.4% -0.5% 2.1% -2.8% 5.7%

1984 -1.0% -1.5% -2.6% -1.1% -0.3% -5.0% -0.2% -3.4% 5.0% 0.1% 0.8% 5.2%

1985 1.1% 5.3% 2.8% 2.3% -0.8% 9.5% 1.0% -2.3% -1.5% -3.4% 5.7% 5.5%

1986 2.1% 4.7% 6.4% 4.7% -2.7% 1.4% 6.4% -0.5% 5.3% -9.6% 3.2% -0.1%

1987 -4.1% 9.6% -0.3% -1.5% -4.5% -1.9% 2.6% -1.1% 0.9% -2.2% -13.8% -5.5%

1988 0.5% 9.9% -2.4% -4.6% -1.1% 3.8% 0.1% -1.5% -2.4% 1.6% 3.2% -2.0%

1989 0.2% 1.1% -2.8% 1.8% 2.8% 3.6% 2.2% 4.9% -2.8% -0.9% 0.4% 1.2%

1990 2.8% -7.0% -1.8% -1.6% -5.5% 3.1% 0.5% 1.9% -10.2% 1.4% 5.7% 0.4%

1991 0.2% -3.1% 2.6% 1.2% 0.9% -2.5% 0.1% 3.4% 2.1% 3.8% -0.8% 2.2%

1992 8.1% -4.9% -1.6% -1.4% 4.4% 2.2% 0.0% 7.3% 0.1% 0.7% -0.6% -3.1%

1993 3.9% 1.9% 3.6% 0.8% 0.2% -2.3% 2.1% 2.3% 1.4% -0.1% -1.0% -7.1%

1994 0.3% -0.1% -5.5% -4.1% 2.2% -4.1% -2.4% 6.9% -3.8% -2.2% 0.4% -0.1%

1995 1.1% 6.2% -2.4% -0.1% 0.5% 4.9% -0.4% 1.4% -0.2% 4.1% 0.9% 1.7%

1996 3.1% 2.4% -2.0% -0.4% -1.7% -0.7% 1.8% -4.1% 1.4% 2.2% 1.6% 5.3%

1997 0.7% 2.2% 0.8% -3.8% 0.9% 3.9% 4.2% 4.6% -1.2% 5.4% 0.0% 3.5%

1998 3.1% -2.0% 3.2% 6.1% -1.2% -1.9% 1.2% -6.5% -5.0% 2.5% 3.7% 1.7%

1999 1.1% -6.8% -3.2% 0.1% 4.1% -0.9% -0.1% -4.3% -2.5% -5.7% 4.5% -2.9%

2000 -4.9% 1.5% -7.9% 8.8% -0.5% 1.6% 1.8% 3.3% 8.4% 2.5% 3.3% 0.0%

2001 4.5% -5.5% 5.0% -3.2% 6.9% 1.0% -1.0% -2.9% 1.4% -8.1% 3.3% 1.9%

2002 4.8% -0.2% 1.6% 1.7% 0.6% -4.0% -1.2% -8.1% 3.1% -16.0% 18.4% 9.7%

2003 -7.7% -1.7% -2.8% 2.1% 7.2% 3.6% 0.6% -4.3% 2.1% 1.4% 7.5% 5.2%

2004 1.1% 3.5% 3.1% 2.1% -5.6% 1.1% 1.3% 1.3% 2.3% 3.7% 2.3% 6.5%

2005 2.5% 0.2% 2.4% -2.4% 2.6% 2.6% 0.6% 3.5% -1.6% 0.0% -5.8% 4.6%

2006 -1.1% 2.3% 1.5% -0.8% -2.0% 0.7% 0.6% 2.2% 0.9% -0.2% 2.0% 3.4%

2007 0.1% 2.1% -0.3% 3.5% 1.9% 1.3% -1.8% -3.1% 0.0% 3.6% -2.7% -0.8%

2008 -0.7% -2.5% -2.4% 1.7% 2.5% 0.5% -5.4% -5.0% 0.7% -7.9% -16.0% -13.7%

2009 10.3% -12.0% -14.5% 11.1% 3.1% 5.6% 0.7% 1.4% -0.9% 3.1% -2.5% 5.2%

2010 6.5% 6.9% 8.8% 13.1% 7.3% -10.9% -5.7% 7.9% 0.1% 8.4% 1.0% 7.4%

2011 8.3% 9.1% 4.5% 2.8% 1.2% -1.4% 2.9% -1.2% -6.6% -10.9% 11.0% 3.2%

2012 -0.3% 5.6% 0.2% -1.9% -1.5% -5.4% 5.2% 2.4% 5.4% 1.2% -0.1% 7.0%

2013 -1.3% 9.3% 0.8% 0.2% 1.6% 4.1% -0.7% 6.3% -4.7% 4.0% 3.3% 1.0%

2014 2.3% -5.3% 7.2% 4.3% 0.8% 2.1% 2.5% -4.1% 3.5% -1.9% 5.9% 1.8%

2015 0.6% 1.1% -0.6% -1.7% 0.7% 0.2% -2.4% 4.2% -7.3% 3.6% 5.6% -0.7%

2016 0.5% 2.3% 0.3% 6.2% -1.5% 0.3% 5.1% -0.3% -3.8% -1.9% -1.1% 0.6%

2017 3.6% -0.4% 5.1% -1.8% 0.6% 2.5% -1.8% 0.7% -1.3% 0.7% 1.2% 4.5%

2018 -0.2% 1.5% -5.3% -1.2% 1.5% -0.7% 1.0% 3.2% 2.9% 0.2% -3.3% 3.0%

2019 -8.7% - - - - - - - - - - -
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Excess Returns of the Fama-French-Five Factor Markowitz Portfolio 

 

 

 

1979 - 4.2% -1.9% 4.8% -0.2% 0.1% 2.7% 4.3% 6.3% -3.7% -10.3% 1.8%

1980 2.1% 7.9% -3.1% -19.0% 4.1% 2.5% 6.8% 7.3% 6.2% 3.1% 1.0% -0.4%

1981 -4.4% -3.3% 1.5% 11.2% 2.5% 3.8% -3.8% -6.5% -3.6% -9.2% 10.2% 5.1%

1982 -6.7% -4.4% -4.4% 6.5% -2.8% -4.2% -3.6% 0.5% 3.6% 1.9% 7.6% 8.1%

1983 -4.6% 1.0% 4.1% 12.0% 5.5% -0.6% 4.6% -3.6% -2.5% 4.6% -0.8% 4.3%

1984 -1.9% -1.7% -2.8% -0.1% 0.1% -3.0% 0.3% -3.0% 3.2% 2.6% 2.5% 3.1%

1985 -0.4% 2.9% 2.0% 2.0% 1.2% 7.5% 1.2% -0.3% -1.6% -2.4% 5.2% 6.0%

1986 2.6% 1.8% 7.5% 5.1% -2.0% 4.8% 5.1% -2.9% 6.2% -6.3% 2.2% -1.0%

1987 -2.5% 12.5% -0.1% 3.6% -3.1% 1.2% 3.2% 3.5% 1.9% -1.3% -17.8% -7.2%

1988 2.5% 9.2% 2.1% 0.6% 2.2% 1.4% -0.5% 1.4% -2.4% 10.3% -8.3% -3.4%

1989 2.3% 2.5% 1.0% 1.9% 3.3% 2.8% 3.9% 4.8% -2.2% 1.1% 0.5% 2.7%

1990 1.4% -7.5% -0.2% -2.1% -3.4% 5.3% 0.4% 6.4% -4.3% -2.4% -2.1% 0.6%

1991 -1.6% -3.7% 8.2% 1.0% 3.1% -2.5% -1.4% 1.8% 1.6% 1.0% -1.3% -4.4%

1992 5.0% -2.5% -0.5% -0.8% 2.4% -2.0% -2.5% 2.7% -0.7% -1.7% 4.7% 2.1%

1993 5.8% 3.1% 0.6% 2.1% 0.2% 0.9% 1.4% 0.9% 5.4% -0.2% -1.0% -6.2%

1994 2.4% -0.2% -4.1% -3.0% 1.5% -1.6% -1.1% 4.0% 0.8% -1.8% 0.5% -5.0%

1995 0.1% 2.3% 3.7% 4.5% 0.8% 3.7% 1.5% 2.7% 1.9% 1.7% -0.6% 3.4%

1996 2.4% 1.6% 2.6% 2.2% 0.5% 0.3% 0.7% -4.1% 2.6% 3.7% 2.9% 6.0%

1997 0.2% 3.7% 2.8% -4.2% 4.8% 4.9% 4.3% 5.1% -4.0% 5.3% 0.7% 3.8%

1998 2.6% -1.2% 2.1% 6.1% -0.6% -1.7% 2.1% -4.5% -8.0% 0.6% 5.2% 3.5%

1999 0.3% -4.9% -1.6% 0.0% 5.8% -2.0% 0.9% -4.3% -1.8% -7.5% 4.7% -3.6%

2000 -6.4% -2.5% -8.7% 10.1% 0.7% 3.6% 0.7% -0.2% 4.6% 1.4% 6.2% 0.7%

2001 3.4% -6.0% 1.7% -5.2% 5.8% 2.1% -2.5% -1.7% 0.9% -8.7% 2.5% 1.1%

2002 2.9% 0.6% 1.5% 2.2% 0.0% -1.8% -4.7% -6.4% 3.1% -3.5% 1.5% -0.3%

2003 2.4% 0.5% -1.2% 3.4% 2.9% 6.7% -0.5% -2.8% 1.0% 3.2% 5.0% 3.5%

2004 1.7% 3.4% 4.3% 0.9% -0.4% 0.6% 0.1% -1.2% 0.9% 3.0% 0.9% 6.5%

2005 1.8% 0.2% 2.3% -2.3% 0.7% 2.3% -0.7% 3.3% -1.5% 0.3% -4.5% 4.3%

2006 -0.6% 2.3% 0.4% -1.2% -1.1% 0.2% 0.3% 1.2% 2.4% 0.1% 1.4% 2.2%

2007 0.5% 1.3% -1.4% 1.4% 2.2% 0.2% -4.0% -3.0% -0.1% 3.9% -1.8% -1.2%

2008 -0.9% -2.0% -3.2% 2.7% 2.2% -1.1% -8.2% -2.1% 2.5% -5.4% -16.9% -14.4%

2009 7.2% -11.0% -12.8% 16.4% 0.6% 7.1% 2.3% 3.8% -0.2% 3.3% 3.3% 4.0%

2010 -3.1% -0.5% 0.9% 6.2% 1.5% -8.9% -2.0% 7.5% -1.7% 4.3% 1.4% 1.7%

2011 7.0% -1.5% -1.0% 1.3% 3.7% 0.9% 2.7% -4.1% -2.9% -5.0% 11.1% -1.2%

2012 3.2% 3.2% 5.1% 6.9% -0.3% -4.1% 7.1% -3.9% 5.8% 2.4% 2.0% -1.4%

2013 1.2% 3.4% 1.9% 7.3% 2.9% -6.2% -2.5% 7.3% -6.7% 1.8% 4.0% -2.8%

2014 1.0% -3.0% 6.2% 4.7% 2.0% 0.1% 2.2% -4.3% 4.5% -1.2% 6.2% 2.6%

2015 1.0% 1.9% -2.5% -2.2% 0.9% -0.4% -2.7% 3.6% -7.2% 2.7% 5.9% -0.7%

2016 0.2% -0.2% 1.3% 4.9% -0.8% -1.5% 4.0% 0.5% -2.9% -1.6% -1.7% 1.3%

2017 3.0% -0.5% 4.9% -1.8% 0.2% 2.1% -0.1% 0.3% -1.1% 1.5% 1.7% 2.5%

2018 1.4% 3.1% -6.0% -1.3% 1.4% 0.0% -0.1% 3.4% 1.4% -0.9% -3.8% 3.2%

2019 -8.2% - - - - - - - - - - -
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Excess Returns of the Equally Weighted Portfolio 

 

  

1979 - 5.6% -4.0% 4.5% 1.6% -2.1% 3.1% 2.7% 6.1% -2.6% -8.5% 4.9%

1980 2.0% 4.8% -6.8% -9.2% 3.9% 5.6% 3.2% 9.6% 0.5% 1.9% -0.6% 2.0%

1981 0.7% -4.5% 3.3% 5.5% -0.5% 0.8% -3.6% -3.2% -6.9% -5.8% 6.9% 1.4%

1982 -2.8% -3.4% -2.2% 0.3% 3.1% -4.9% -2.7% 0.2% 9.2% 3.1% 12.3% 6.1%

1983 -1.4% 2.8% 4.7% 1.7% 4.9% 2.2% 2.9% -4.4% -0.9% 1.8% -2.2% 2.6%

1984 -1.4% -3.3% -4.6% -0.4% 0.9% -5.2% -0.5% -0.4% 8.5% -2.2% 1.7% -2.1%

1985 2.7% 7.8% 2.0% -1.2% -2.3% 6.8% 2.0% 0.5% -2.3% -3.9% 3.5% 5.6%

1986 3.6% 3.1% 6.3% 4.4% -0.2% 3.3% 1.9% -7.7% 6.6% -7.9% 4.8% 0.3%

1987 -3.3% 15.1% 3.0% 1.2% -2.6% 0.2% 3.8% 3.8% 2.5% 0.0% -23.9% -7.5%

1988 6.5% 4.8% 5.7% -2.1% 0.5% 1.0% 3.2% -1.0% -4.7% 3.9% 0.6% -3.4%

1989 2.2% 4.9% -2.3% 3.2% 3.9% 3.7% -1.0% 6.4% 2.6% -1.5% -4.1% 1.5%

1990 0.7% -7.2% 0.9% 1.0% -2.9% 8.7% -1.1% -2.1% -10.9% -5.2% -4.3% 9.3%

1991 2.2% 6.5% 8.5% 1.5% 2.3% 3.4% -3.3% 1.8% 2.1% -1.1% 1.3% -2.3%

1992 8.9% 1.4% 1.5% -1.9% 1.4% 1.3% -1.4% 3.2% -1.9% 1.4% 3.4% 2.8%

1993 2.1% 1.8% 0.5% 2.8% -1.3% 2.1% -0.5% -0.1% 4.1% -0.4% 0.8% -2.1%

1994 1.4% 3.0% -2.1% -4.3% 1.0% 0.1% -1.5% 2.5% 2.1% -3.0% 0.7% -4.1%

1995 1.7% 2.6% 3.2% 2.9% 0.7% 3.5% 1.4% 2.4% 0.7% 1.7% -0.8% 3.6%

1996 1.3% 2.8% 0.7% 1.5% 0.3% 0.3% 0.5% -5.2% 1.3% 4.0% 1.8% 6.9%

1997 -1.4% 3.2% 0.9% -3.5% 3.8% 5.6% 5.2% 6.1% -3.1% 5.4% -1.9% 3.4%

1998 0.3% 0.8% 4.8% 4.6% -0.2% -3.3% 1.3% -5.8% -10.6% -0.5% 13.7% 2.4%

1999 1.9% -2.0% -2.0% 1.6% 11.2% -2.8% 2.4% -3.7% -2.0% -6.2% 2.2% -1.2%

2000 -1.7% -1.4% -6.1% 11.3% 1.9% 2.5% -4.0% 0.5% 4.8% -0.5% 4.0% 0.2%

2001 6.1% -0.9% -1.8% -3.8% 7.5% 2.3% -3.4% -0.1% -1.9% -10.2% 4.9% 4.5%

2002 3.3% 0.7% 3.5% 2.8% -1.5% -3.7% -6.1% -10.5% 3.7% -7.1% 3.3% 6.3%

2003 -3.6% -3.3% -2.5% 2.0% 6.6% 8.5% 0.4% 1.3% 4.3% 0.7% 5.4% 1.9%

2004 3.5% 1.7% 3.4% -0.9% -1.5% 0.7% 1.3% -1.1% 0.1% 3.1% 0.7% 6.3%

2005 0.6% -0.4% 2.4% -2.4% -1.4% 3.5% 0.7% 4.3% -1.2% 0.4% -3.1% 4.9%

2006 -1.2% 3.7% 0.6% 0.8% 0.5% -0.9% -0.8% -1.0% 2.7% 0.4% 2.5% 2.2%

2007 0.6% 3.0% -1.7% 1.2% 3.3% 2.7% -1.5% -4.3% -0.3% 3.4% -3.1% -1.2%

2008 -0.8% -2.0% -3.9% 2.2% 3.1% -0.8% -8.6% 0.7% 2.8% -7.7% -17.8% -15.7%

2009 12.2% -8.9% -16.0% 17.5% 13.6% 6.7% -2.2% 10.1% 1.6% 3.0% 0.3% 6.7%

2010 2.4% -0.5% 3.1% 5.9% 4.3% -11.0% -3.5% 9.8% -4.2% 6.2% 2.3% 2.7%

2011 5.8% 2.2% -0.1% 3.3% 1.8% -3.2% 2.0% -6.1% -6.6% -9.9% 12.9% 2.9%

2012 1.6% 5.9% 2.8% 2.5% -0.3% -8.3% 6.0% 0.3% 2.4% 2.4% 1.1% -0.7%

2013 2.0% 7.4% 1.1% 3.6% 1.0% 2.9% -1.0% 6.6% -5.0% 3.8% 4.0% 1.4%

2014 3.0% -5.2% 6.8% 3.1% 0.1% 1.7% 2.3% -3.8% 4.1% -3.6% 4.7% 1.6%

2015 1.3% -1.2% 3.5% -2.0% 0.9% 0.0% -1.4% 0.2% -7.6% -0.1% 8.0% 0.4%

2016 -3.2% -4.1% 3.5% 6.1% 2.0% 0.8% 1.0% 2.7% 0.1% -0.7% -2.4% 5.7%

2017 1.9% 1.4% 5.0% -2.0% 0.7% 1.5% 0.0% 0.4% -1.4% 2.9% 0.8% 3.5%

2018 0.9% 3.5% -5.9% -2.3% 2.2% 1.0% -0.3% 3.0% 2.0% 0.1% -5.6% 2.6%

2019 -11.0% - - - - - - - - - - -

1 2 3 4 5 6 7 8 9 10 11 12

Monthly Returns (%)

Month

Y
ea

r



Page 114 of 129 

 

Appendix I – Portfolio Factor Loadings 

Factor Loadings of the Equally Weighted Portfolio 

 

 

Factor Loadings of the Single-Index Markowitz Portfolio 

 

 

Factor Loadings of the Fama-French Three-Factor Markowitz Portfolio 

 

 

Factor Loadings of the Carhart Four-Factor Markowitz Portfolio 

 

  

Time Period exMkt

1979 - 1989 0.94

1989 - 1999 0.92

1999 - 2009 0.68

2009 - 2019 1.08

Full Sample 0.91

Time Period exMkt

1979 - 1989 0.98

1989 - 1999 0.98

1999 - 2009 0.87

2009 - 2019 1.14

Full Sample 0.99

Time Period exMkt SMB HML

1979 - 1989 0.65 0.76 0.64

1989 - 1999 0.75 -0.27 0.67

1999 - 2009 0.59 0.14 0.75

2009 - 2019 0.83 -0.09 -0.11

Full Sample 0.70 0.13 0.49

Time Period exMkt SMB HML UMD

1979 - 1989 0.64 0.68 0.53 0.28

1989 - 1999 0.58 -0.25 0.54 0.36

1999 - 2009 0.56 0.12 0.61 0.05

2009 - 2019 0.82 0.07 -0.05 0.03

Full Sample 0.65 0.15 0.40 0.18
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Factor Loadings of the Fama-French Five-Factor Markowitz Portfolio 

 

  

Time Period exMkt SMB HML RMW CMA

1979 - 1989 0.71 0.73 0.53 1.10 0.64

1989 - 1999 0.85 0.13 0.19 0.96 0.98

1999 - 2009 0.72 0.22 0.02 0.59 0.64

2009 - 2019 0.69 -0.18 0.05 0.07 0.08

Full Sample 0.75 0.23 0.20 0.68 0.59
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Appendix J – R-Code 

General Code 

######################################################## 

## Data Analysis for Master Thesis By                 ##   

## Julius Voigt Foelsgaard & Soeren Gybel Frederiksen ## 

######################################################## 

 

## Clear Environment ## 

rm(list=ls(all=TRUE)) 

 

## Install Packages for analysis ## 

install.packages("readxl") 

install.packages("MASS") 

install.packages("CVXR") 

 

## Attach packages ## 

library(CVXR)  

library(readxl) 

library(MASS) 

 

## Generate Empty Arrays ##  

Roll_reg = NULL 

BetaMatrix = NULL 

Epsilonmatrix = NULL 

Mean_factors = NULL 

sigma_F = NULL 

cov_equities = NULL 

sigmamatrix = NULL 

EXPECTED_RETURN = NULL 

Markowitz_weights = NULL 

Markowitz_weights_cons = NULL 

Markowitz_exReturns_cons = NULL 

Beta_portfolio=NULL 

pvalues=NULL 

portfolio_exReturns = NULL 

 

############################### 

## Load data from excel file ## 

############################### 

## Choose data file ## 

exStock_returns<-read_excel(file.choose(),sheet = "SP500excessstockreturns") 

 

## Generate excess return vectors for each stock ## 

StockA<-exStock_returns$StockA 

 

## Create excess return matrix for looping ## 

exReturn_matrix<-cbind(‘vectors of excess stock returns‘) 
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Code for the Single-Index Markowitz Portfolio 

## Create factor vectors ## 

SI<-read_excel(file.choose(),sheet = "Single_Index");exMkt<-SI$exMkt 

 

## Number of stocks & observations ## 

nr_stocks<-ncol(exReturn_matrix) 

nr.obs<-nrow(exReturn_matrix) 

nr_loop_regression<-479    

 

##################################### 

## Rolling Regression Single-Index ## 

##################################### 

 

for (i in 0:nr_loop_regression) { 

  for (j in 1:nr_stocks) { 

    Roll_reg = lm(exReturn_matrix[(i+1):(i+60),j]~exMkt[(i+1):(i+60)]) 

    BetaMatrix = rbind(BetaMatrix,Roll_reg$coef) 

    Epsilonmatrix = rbind(Epsilonmatrix,var(c(Roll_reg$resid))) 

    pvalues = rbind(pvalues,summary(Roll_reg)$coef[,4]) 

  } 

    Mean_factors = rbind(Mean_factors,mean(exMkt[(i+1):(i+60)])) 

    sigma_F = rbind(sigma_F,var(exMkt[(i+1):(i+60)]))   

} 

 

########################################################## 

## Create Expected Returns & Variance-Covariance Matrix ## 

########################################################## 

 

nr_stocksloop<-nrow(BetaMatrix)-nr_stocks 

 

## Create diagonal variance-covariance matrix of residuals ## 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

  sigmamatrix = rbind(sigmamatrix,diag(c(Epsilonmatrix[(i+1):(i+nr_stocks)]))) 

} 

 

## Create variance-covariance matrix ## 

## Please notice that in the beta-matrix we have the number of stocks (N) in the rows 

and the number of  

##factors (K) in the columns, therefore we transpose the left beta vector and not the 

right as Equation (4.17) states. 

 

for (k in seq(0,nr_stocksloop,nr_stocks)){ 

  cov_equities = rbind(cov_equities,(BetaMatrix[(k+1):(k+nr_stocks),2]  

%*% t(BetaMatrix[(k+1):(k+nr_stocks),2]) * sigma_F[k/nr_stocks+1,1]) 

                          + sigmamatrix[(k+1):(k+nr_stocks),1:nr_stocks]) 

} 
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## Create expected returns ## 

for (i in 0:nr_loop_regression) { 

  for (j in 1:nr_stocks) { 

    EXPECTED_RETURN = rbind(EXPECTED_RETURN,sum((BetaMatrix[j+(nr_stocks*i),2]  

* Mean_factors[(i+1),1]))) 

  } 

} 

 

############################################ 

## Unconstrained Factor Markowitz Weights ## 

############################################ 

 

ones<-rep(1,nr_stocks) 

 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

    Markowitz_weights = 

rbind(Markowitz_weights,(solve(cov_equities[(i+1):(i+nr_stocks),0:ncol(cov_equities)]) 

%*%                                               EX-

PECTED_RETURN[(i+1):(i+nr_stocks)])/(as.numeric(t(EXPECTED_RETURN[(i+1):(i+nr_stocks)]) 

%*%                                               

solve(cov_equities[(i+1):(i+nr_stocks),0:ncol(cov_equities)]) %*% ones))) 

} 

 

########################################### 

##  Constrained Factor Markowitz Weights ## 

########################################### 

 

## Define optimization function & quadratic problem ## 

portolioMaxSharpeRatio <- function(mu, Sigma) { 

  w_ <- Variable(nrow(Sigma)) 

  prob <- Problem(Minimize(quad_form(w_, Sigma)), 

                  constraints = list(w_ >= 0, t(mu) %*% w_ == mean(mu))) 

  result <- solve(prob) 

  return(as.vector(result$getValue(w_)/sum(result$getValue(w_)))) 

} 

 

## Generate constrained Markowitz weights by solving quadratic problem ## 

 

for (i in seq(0,nr_stocksloop,nr_stocks)) { 

  Markowitz_weights_cons = cbind(Markowitz_weights_cons, portolioMaxSharpeRa-

tio(EXPECTED_RETURN[(i+1):(i+nr_stocks)],cov_equities[(i+1):(i+nr_stocks),1:ncol(cov_eq

uities)])) 

} 
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############################ 

## Create Portfolio Betas ## 

############################ 

 

for(i in seq(0,nr_stocksloop,nr_stocks)){ 

    Beta_portfolio = rbind(Beta_portfolio,t(BetaMatrix[(i+1):(i+nr_stocks),2]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks]) 

} 

 

############################################ 

## Generate Time-series of Excess Returns ## 

############################################ 

 

Markowitz_weights_cons_n = as.numeric(Markowitz_weights_cons) 

 

## Generate portfolio excess returns ## 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

  Markowitz_exReturns_cons = rbind(Markowitz_exReturns_cons,  

exReturn_matrix[((i/nr_stocks)+62),0:ncol(exReturn_matrix)] %*% Marko-

witz_weights_cons_n[(i+1):(i+nr_stocks)]) 

} 

 

 

 

  



Page 120 of 129 

 

Code for Fama-French Three-Factor Markowitz Portfolio 

## Create factor vectors ## 

FF3<-read_excel(file.choose(),sheet = "FF3_m");SMB<-FF3$SMB;HML<-FF3$HML;exMkt<-

FF3$exMkt 

 

## Number of stocks & observations ## 

nr_stocks<-ncol(exReturn_matrix) 

nr.obs<-nrow(exReturn_matrix) 

nr_loop_regression<-479 

 

############################ 

## Rolling Regression FF3 ## 

############################ 

 

for (i in 0:nr_loop_regression) { 

  for (j in 1:nr_stocks) { 

    Roll_reg = 

lm(exReturn_matrix[(i+1):(i+60),j]~exMkt[(i+1):(i+60)]+SMB[(i+1):(i+60)]+HML[(i+1):(i+6

0)]) 

    BetaMatrix = rbind(BetaMatrix,Roll_reg$coef) 

    Epsilonmatrix = rbind(Epsilonmatrix,var(c(Roll_reg$resid))) 

    pvalues = rbind(pvalues,summary(Roll_reg)$coef[,4]) 

  } 

    Mean_factors = 

rbind(Mean_factors,c(mean(exMkt[(i+1):(i+60)]),mean(SMB[(i+1):(i+60)]),mean(HML[(i+1):(

i+60)]))) 

    sigma_F = 

rbind(sigma_F,var(cbind(exMkt[(i+1):(i+60)],SMB[(i+1):(i+60)],HML[(i+1):(i+60)])))    

} 

 

########################################################## 

## Create Expected Returns & Variance-Covariance Matrix ## 

########################################################## 

 

nr_stocksloop<-nrow(BetaMatrix)-nr_stocks 

 

## Create diagonal variance-covariance matrix of residuals ## 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

  sigmamatrix =rbind(sigmamatrix,diag(c(Epsilonmatrix[(i+1):(i+nr_stocks)]))) 

} 

 

## Create variance-covariance matrix ## 

## Please notice that in the beta-matrix we have the number of stocks (N) in the rows 

and the number of  

##factors (K) in the columns, therefore we transpose the left beta vector and not the 

right as Equation (4.17) states. 

for (k in seq(0,nr_stocksloop,nr_stocks)){ 

  cov_equities = rbind(cov_equities,BetaMatrix[(k+1):(k+nr_stocks),2:ncol(BetaMatrix)] 

%*%                        



Page 121 of 129 

 

sig-

ma_F[((k/(nr_stocks/ncol(sigma_F)))+1):((k+nr_stocks)/(nr_stocks/ncol(sigma_F))),1:3] 

%*% t(BetaMatrix[(k+1):(k+nr_stocks),2:ncol(BetaMatrix)]) + sigmama-

trix[(k+1):(k+nr_stocks),1:nr_stocks]) 

} 

 

## Create expected returns ## 

for (i in 0:nr_loop_regression) { 

  for (j in 1:nr_stocks) { 

    EXPECTED_RETURN = 

rbind(EXPECTED_RETURN,sum((BetaMatrix[j+(nr_stocks*i),2:ncol(BetaMatrix)] * 

Mean_factors[(i+1),1:ncol(Mean_factors)]))) 

  } 

} 

 

############################################ 

## Unconstrained Factor Markowitz Weights ## 

############################################ 

 

ones<-rep(1,nr_stocks) 

 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

    Markowitz_weights = 

rbind(Markowitz_weights,(solve(cov_equities[(i+1):(i+nr_stocks),0:ncol(cov_equities)]) 

%*%                                                 EX-

PECTED_RETURN[(i+1):(i+nr_stocks)])/(as.numeric(t(EXPECTED_RETURN[(i+1):(i+nr_stocks)]) 

%*%                                             

solve(cov_equities[(i+1):(i+nr_stocks),0:ncol(cov_equities)]) %*% ones))) 

} 

 

########################################### 

##  Constrained Factor Markowitz Weights ## 

########################################### 

 

## Define optimization function & quadratic problem ## 

portolioMaxSharpeRatio <- function(mu, Sigma) { 

  w_ <- Variable(nrow(Sigma)) 

  prob <- Problem(Minimize(quad_form(w_, Sigma)), 

                  constraints = list(w_ >= 0, t(mu) %*% w_ == mean(mu))) 

  result <- solve(prob) 

  return(as.vector(result$getValue(w_)/sum(result$getValue(w_)))) 

} 

 

## Generate constrained Markowitz weights by solving quadratic problem ## 

for (i in seq(0,nr_stocksloop,nr_stocks)) { 

  Markowitz_weights_cons = cbind(Markowitz_weights_cons, portolioMaxSharpeRa-

tio(EXPECTED_RETURN[(i+1):(i+nr_stocks)],cov_equities[(i+1):(i+nr_stocks),1:ncol(cov_eq

uities)])) 

} 
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############################ 

## Create portfolio betas ## 

############################ 

 

for(i in seq(0,nr_stocksloop,nr_stocks)){ 

    Beta_portfolio = rbind(Beta_portfolio,c(t(BetaMatrix[(i+1):(i+nr_stocks),2]) %*% 

Markowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                            t(BetaMatrix[(i+1):(i+nr_stocks),3]) %*% 

Markowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                            t(BetaMatrix[(i+1):(i+nr_stocks),4]) %*% 

Markowitz_weights_cons[,(i+nr_stocks)/nr_stocks])) 

} 

 

############################################ 

## Generate Time-series of Excess Returns ## 

############################################ 

Markowitz_weights_cons_n = as.numeric(Markowitz_weights_cons) 

 

## Generate portfolio excess returns ## 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

  Markowitz_exReturns_cons = rbind(Markowitz_exReturns_cons, exRe-

turn_matrix[((i/nr_stocks)+62),0:ncol(exReturn_matrix)] %*% Marko-

witz_weights_cons_n[(i+1):(i+nr_stocks)]) 

} 
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Code for the Carhart Four-Factor Markowitz Portfolio 

## Create factor vectors ## 

FF3mom<-read_excel(file.choose(),sheet = "FF3mom_m");SMB<-FF3mom$SMB;HML<-

FF3mom$HML;exMkt<-FF3mom$exMkt;Mom<-FF3mom$Mom 

 

## Number of stocks & observations ## 

nr_stocks<-ncol(exReturn_matrix) 

nr.obs<-nrow(exReturn_matrix) 

nr_loop_regression<-479 

 

################################## 

## Rolling Regression FF3 + Mom ## 

################################## 

 

for (i in 0:nr_loop_regression) { 

  for (j in 1:nr_stocks) { 

    Roll_reg = 

lm(exReturn_matrix[(i+1):(i+60),j]~exMkt[(i+1):(i+60)]+SMB[(i+1):(i+60)]+HML[(i+1):(i+6

0)]+Mom[(i+1):(i+60)]) 

    BetaMatrix = rbind(BetaMatrix,Roll_reg$coef) 

    Epsilonmatrix = rbind(Epsilonmatrix,var(c(Roll_reg$resid))) 

    pvalues = rbind(pvalues,summary(Roll_reg)$coef[,4]) 

  } 

    Mean_factors = 

rbind(Mean_factors,c(mean(exMkt[(i+1):(i+60)]),mean(SMB[(i+1):(i+60)]),mean(HML[(i+1):(

i+60)]),mean(Mom[(i+1):(i+60)]))) 

    sigma_F = 

rbind(sigma_F,var(cbind(exMkt[(i+1):(i+60)],SMB[(i+1):(i+60)],HML[(i+1):(i+60)],Mom[(i+

1):(i+60)])))    

} 

 

########################################################## 

## Create Expected Returns & Variance-Covariance Matrix ## 

########################################################## 

 

nr_stocksloop<-nrow(BetaMatrix)-nr_stocks 

 

## Create diagonal variance-covariance matrix of residuals ## 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

  sigmamatrix =rbind(sigmamatrix,diag(c(Epsilonmatrix[(i+1):(i+nr_stocks)]))) 

} 

 

## Create variance-covariance matrix ## 

## Please notice that in the beta-matrix we have the number of stocks (N) in the rows 

and the number of  

##factors (K) in the columns, therefore we transpose the left beta vector and not the 

right as Equation (4.17) states. 

for (k in seq(0,nr_stocksloop,nr_stocks)){ 

  cov_equities = rbind(cov_equities,BetaMatrix[(k+1):(k+nr_stocks),2:ncol(BetaMatrix)] 
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%*% sig-

ma_F[((k/(nr_stocks/ncol(sigma_F)))+1):((k+nr_stocks)/(nr_stocks/ncol(sigma_F))),1:4] 

%*% t(BetaMatrix[(k+1):(k+nr_stocks),2:ncol(BetaMatrix)]) + sigmama-

trix[(k+1):(k+nr_stocks),1:nr_stocks]) 

} 

 

## Create expected returns ## 

for (i in 0:nr_loop_regression) { 

  for (j in 1:nr_stocks) { 

    EXPECTED_RETURN = 

rbind(EXPECTED_RETURN,sum((BetaMatrix[j+(nr_stocks*i),2:ncol(BetaMatrix)] * 

Mean_factors[(i+1),1:ncol(Mean_factors)]))) 

  } 

} 

 

############################################ 

## Unconstrained Factor Markowitz Weights ## 

############################################ 

 

ones<-rep(1,nr_stocks) 

 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

    Markowitz_weights = 

rbind(Markowitz_weights,(solve(cov_equities[(i+1):(i+nr_stocks),0:ncol(cov_equities)]) 

%*%                                           EX-

PECTED_RETURN[(i+1):(i+nr_stocks)])/(as.numeric(t(EXPECTED_RETURN[(i+1):(i+nr_stocks)]) 

%*%                                             

solve(cov_equities[(i+1):(i+nr_stocks),0:ncol(cov_equities)]) %*% ones))) 

} 

 

########################################### 

##  Constrained Factor Markowitz Weights ## 

########################################### 

 

## Define optimization function & quadratic problem ## 

portolioMaxSharpeRatio <- function(mu, Sigma) { 

  w_ <- Variable(nrow(Sigma)) 

  prob <- Problem(Minimize(quad_form(w_, Sigma)), 

                  constraints = list(w_ >= 0, t(mu) %*% w_ == mean(mu))) 

  result <- solve(prob) 

  return(as.vector(result$getValue(w_)/sum(result$getValue(w_)))) 

} 

 

## Generate constrained Markowitz weights by solving quadratic problem ## 

for (i in seq(0,nr_stocksloop,nr_stocks)) { 

  Markowitz_weights_cons = cbind(Markowitz_weights_cons, portolioMaxSharpeRa-

tio(EXPECTED_RETURN[(i+1):(i+nr_stocks)],cov_equities[(i+1):(i+nr_stocks),1:ncol(cov_eq

uities)])) 

} 
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############################ 

## Create Portfolio Betas ## 

############################ 

 

for(i in seq(0,nr_stocksloop,nr_stocks)){ 

  Beta_portfolio = rbind(Beta_portfolio,c(t(BetaMatrix[(i+1):(i+nr_stocks),2]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                          t(BetaMatrix[(i+1):(i+nr_stocks),3]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                          t(BetaMatrix[(i+1):(i+nr_stocks),4]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                          t(BetaMatrix[(i+1):(i+nr_stocks),5]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks])) 

} 

 

############################################ 

## Generate Time-series of Excess Returns ## 

############################################ 

 

Markowitz_weights_cons_n = as.numeric(Markowitz_weights_cons) 

 

## Generate portfolio excess returns ## 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

  Markowitz_exReturns_cons = rbind(Markowitz_exReturns_cons, exRe-

turn_matrix[((i/nr_stocks)+62),0:ncol(exReturn_matrix)] %*% Marko-

witz_weights_cons_n[(i+1):(i+nr_stocks)]) 

} 
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Code for the Fama-French Five-Factor Markowitz Portfolio 

## Create factor vectors ## 

FF5<-read_excel(file.choose(),sheet = "FF5_m");exMkt<-FF5$exMkt;SMB<-FF5$SMB;HML<-

FF5$HML;RMW<-FF5$RMW;CMA<-FF5$CMA 

 

## Number of stocks & observations ## 

nr_stocks<-ncol(exReturn_matrix) 

nr.obs<-nrow(exReturn_matrix) 

nr_loop_regression<-479 

 

############################ 

## Rolling Regression FF5 ## 

############################ 

 

for (i in 0:nr_loop_regression) { 

  for (j in 1:nr_stocks) { 

    Roll_reg = 

lm(exReturn_matrix[(i+1):(i+60),j]~exMkt[(i+1):(i+60)]+SMB[(i+1):(i+60)]+HML[(i+1):(i+6

0)]+RMW[(i+1):(i+60)]+CMA[(i+1):(i+60)]) 

    BetaMatrix = rbind(BetaMatrix,Roll_reg$coef) 

    Epsilonmatrix = rbind(Epsilonmatrix,var(c(Roll_reg$resid))) 

    pvalues = rbind(pvalues,summary(Roll_reg)$coef[,4]) 

  } 

    Mean_factors = 

rbind(Mean_factors,c(mean(exMkt[(i+1):(i+60)]),mean(SMB[(i+1):(i+60)]),mean(HML[(i+1):(

i+60)]),mean(RMW[(i+1):(i+60)]),mean(CMA[(i+1):(i+60)]))) 

    sigma_F = 

rbind(sigma_F,var(cbind(exMkt[(i+1):(i+60)],SMB[(i+1):(i+60)],HML[(i+1):(i+60)],RMW[(i+

1):(i+60)],CMA[(i+1):(i+60)])))    

} 

 

########################################################## 

## Create Expected Returns & Variance-Covariance Matrix ## 

########################################################## 

 

nr_stocksloop<-nrow(BetaMatrix)-nr_stocks 

 

## Create diagonal variance-covariance matrix of residuals ## 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

  sigmamatrix =rbind(sigmamatrix,diag(c(Epsilonmatrix[(i+1):(i+nr_stocks)]))) 

} 

 

## Create variance-covariance matrix ## 

## Please notice that in the beta-matrix we have the number of stocks (N) in the rows 

and the number of  

##factors (K) in the columns, therefore we transpose the left beta vector and not the 

right as Equation (4.17) states. 

for (k in seq(0,nr_stocksloop,nr_stocks)){ 

  cov_equities = rbind(cov_equities,BetaMatrix[(k+1):(k+nr_stocks),2:ncol(BetaMatrix)] 
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%*%         sig-

ma_F[((k/(nr_stocks/ncol(sigma_F)))+1):((k+nr_stocks)/(nr_stocks/ncol(sigma_F))),1:5] 

%*% t(BetaMatrix[(k+1):(k+nr_stocks),2:ncol(BetaMatrix)]) + sigmama-

trix[(k+1):(k+nr_stocks),1:nr_stocks]) 

} 

 

## Create expected returns ## 

for (i in 0:nr_loop_regression) { 

  for (j in 1:nr_stocks) { 

    EXPECTED_RETURN = 

rbind(EXPECTED_RETURN,sum((BetaMatrix[j+(nr_stocks*i),2:ncol(BetaMatrix)] * 

Mean_factors[(i+1),1:ncol(Mean_factors)]))) 

  } 

} 

 

############################################ 

## Unconstrained Factor Markowitz Weights ## 

############################################ 

 

ones<-rep(1,nr_stocks) 

 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

    Markowitz_weights = 

rbind(Markowitz_weights,(solve(cov_equities[(i+1):(i+nr_stocks),0:ncol(cov_equities)]) 

%*%                                          EX-

PECTED_RETURN[(i+1):(i+nr_stocks)])/(as.numeric(t(EXPECTED_RETURN[(i+1):(i+nr_stocks)]) 

%*%                                               

solve(cov_equities[(i+1):(i+nr_stocks),0:ncol(cov_equities)]) %*% ones))) 

} 

 

########################################### 

##  Constrained Factor Markowitz Weights ## 

########################################### 

 

## Define optimization function & quadratic problem ## 

portolioMaxSharpeRatio <- function(mu, Sigma) { 

  w_ <- Variable(nrow(Sigma)) 

  prob <- Problem(Minimize(quad_form(w_, Sigma)), 

                  constraints = list(w_ >= 0, t(mu) %*% w_ == mean(mu))) 

  result <- solve(prob) 

  return(as.vector(result$getValue(w_)/sum(result$getValue(w_)))) 

} 

 

## Generate constrained Markowitz weights by solving quadratic problem ## 

for (i in seq(0,nr_stocksloop,nr_stocks)) { 

  Markowitz_weights_cons = cbind(Markowitz_weights_cons, portolioMaxSharpeRa-

tio(EXPECTED_RETURN[(i+1):(i+nr_stocks)],cov_equities[(i+1):(i+nr_stocks),1:ncol(cov_eq

uities)])) 

} 
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############################ 

## Create Portfolio Betas ## 

############################ 

 

for(i in seq(0,nr_stocksloop,nr_stocks)){ 

  Beta_portfolio = rbind(Beta_portfolio,c(t(BetaMatrix[(i+1):(i+nr_stocks),2]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                          t(BetaMatrix[(i+1):(i+nr_stocks),3]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                          t(BetaMatrix[(i+1):(i+nr_stocks),4]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                          t(BetaMatrix[(i+1):(i+nr_stocks),5]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks], 

                                          t(BetaMatrix[(i+1):(i+nr_stocks),6]) %*% Mar-

kowitz_weights_cons[,(i+nr_stocks)/nr_stocks])) 

} 

 

############################################ 

## Generate Time-series of Excess Returns ## 

############################################ 

 

Markowitz_weights_cons_n = as.numeric(Markowitz_weights_cons) 

 

## Generate portfolio excess returns ## 

for (i in seq(0,nr_stocksloop,nr_stocks)){ 

  Markowitz_exReturns_cons = rbind(Markowitz_exReturns_cons, exRe-

turn_matrix[((i/nr_stocks)+62),0:ncol(exReturn_matrix)] %*% Marko-

witz_weights_cons_n[(i+1):(i+nr_stocks)]) 

} 
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Code for the Equally Weighted Portfolio 

################################ 

## Equally Weighted Portfolio ## 

################################ 

 

nr_stocks<-ncol(exReturn_matrix) 

nr.obs<-nrow(exReturn_matrix) 

nr_loop<-479 

portfolio_weights <- rep(1/nr_stocks,nr_stocks) 

 

## Generate portfolio excess returns ## 

 

for(i in (0:nr_loop)){ 

  portfolio_exReturns = rbind(portfolio_exReturns, 

t(exReturn_matrix[(i+62),0:ncol(exReturn_matrix)]) %*% portfolio_weights) 

} 

 

############################ 

## Create Portfolio Betas ## 

############################ 

 

SI<-read_excel(file.choose(),sheet = "Single_Index");exMkt<-SI$exMkt 

 

for (i in 0:nr_loop) { 

  for (j in 1:nr_stocks) { 

    Roll_reg = lm(exReturn_matrix[(i+1):(i+60),j]~exMkt[(i+1):(i+60)]) 

    BetaMatrix = rbind(BetaMatrix,Roll_reg$coef) 

  } 

} 

 

for(i in seq(0,(nrow(BetaMatrix)-nr_stocks),nr_stocks)){ 

  Beta_portfolio = rbind(Beta_portfolio,t(BetaMatrix[(i+1):(i+nr_stocks),2]) %*% 

portfolio_weights) 

} 

 

 

 


