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Abstract 

This study contributes to the existing literature on the potential direct employment effects as a 

result of the transition from non-renewable energy to renewable energy technologies. Contrary to 

most existing literature, this study takes a back-looking evaluative approach of understanding the 

nexus between employment and renewable energy implementation. We utilise the United 

Kingdom as a case study for the years 1998-2018 by applying an autoregressive distributed lag 

modelling framework to account for the dynamic nature of the transition, and any persistence in 

employment. Our findings indicate a positive and statistically significant coefficient of 0.055 for 

our independent variable of interest. This translates to a contemporaneous 0.055% increase in 

energy sector employment from a 1% positive shock to the share of renewable energy production. 

We also found our results to be robust after conducting subsample estimations and when 

substituting labour for employment in our estimation model. 

 

Keywords: Renewable energy, employment, autoregressive distributed lag, technology, 

innovation  
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1 Introduction 

Since the Industrial Revolution, steady energy supply has been essential to development and 

traditionally, non-renewable fossil fuels such as crude oil, natural gas and coal have dominated the 

global energy composition. In the recent past, there has been growing concerns about the negative 

effects associated with the consumption and reliance on non-renewable energy. Scientists have 

shown that the emissions from fossil fuels are causing climate change that in the long-term can 

lead to catastrophic consequences such as rising seas levels and the destruction of ecosystems. 

Additionally, non-renewable energy sources are depletable and the continued exploitation and 

dependence on these sources will eventually lead to energy shortages. There are also more 

economic concerns from countries that are overly dependent on the imports of fossil fuels from a 

few producing states and would prefer moving towards other forms of energy. 

Renewable energy as defined by the International Energy Agency includes solar, wind, 

hydropower, bioenergy, marine and geothermal energy (IEA, 2018). The recent rapid rise in the 

adoption of renewable energy has been largely driven by the desire for cleaner energy that is less 

destructive to the environment and to slow down climate change. Society is perhaps facing the 

biggest challenge in history in the form of climate change. International initiatives such as the Paris 

Agreement and the annual United Nations Climate Change Conference are leading the global drive 

for governments and corporations to slow down climate change and environmental damage 

through investing in and promoting renewable energy sources. 

Following the United Nations Framework Convention on Climate Change in 2015 that has adopted 

the Paris Agreement, member countries are committed to “holding the increase in the global 

average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit 

the temperature increase to 1.5°C above pre-industrial levels” (UNFCCC, 2015). Crucially, this 

drive towards sustainability and decarbonation means that the global energy industries are bound 

to transition from non-renewable, carbon rich energy sources, into higher reliance on renewable 

sources.  
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Renewable energy technology has reached a stage where it is sufficiently developed and is being 

implemented on a large-scale as a means of replacing non-renewable energy sources. Figure 1 

shows the global investment amounts for renewable energy technologies. Significant increases in 

renewable energy investments only started in 2010 and can be considered a relatively recent 

‘phenomena’. However, British Petroleum (2019) suggests that by 2040, renewable energy will be 

the main energy source globally. 

Figure 1: Global Renewable Energy Investment 

 

Source: Frankfurt School-UNEP Centre/BNEF (2018) ‘Global Trends in Renewable Energy Investment 2018’ 

Legend: Global annual investments in renewable energy by technologies between 2004-2017 in USD billion 

Even though the transition from non-renewable energy sources such as coal and oil to renewable 

energy has been touted as having large environmental, societal and health benefits, there have been 

growing concerns about the less apparent drawbacks that the energy transition may bring about. 

Many renewable energy advocates and governments claim that the introduction of renewable 

energy will create many new jobs associated with renewable energy but fail to acknowledge the 

equilibrium effects of adopting renewable energy. Renewable energy production replacing non-

renewable energy production means that existing non-renewable operations will cease and 

associated non-renewable jobs will be lost. As such, it is imperative that the employment effects 

of renewable energy adoption are not accounted for in isolation but rather the net employment 

effect of the transition from non-renewable energy to renewable energy technologies that should 

be focused on. 
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There is a general consensus among academics that the job creation effect is higher or equal to the 

job destruction effect. The introduction of renewable energy technologies should not only make 

up for the lost jobs but may also create more jobs as renewable energy is on average deemed more 

labour intensive. However, these claims are mostly based on forward-looking forecasts or specific 

renewable energy projects. There have been many formal forward-looking forecasts but no study 

that has taken a backward-looking approach to evaluate whether the transition has had a net 

positive or net negative employment effect. 

This study seeks to contribute to the ongoing discussion by empirically estimating the effect that 

the energy transition has had on net employment. This is done by conducting a historical case-

study on a country that has experienced a growth in renewable energy adoption while experiencing 

a decline in non-renewable energy production. The UK was selected as a suitable case-study 

candidate and an appropriate estimation model was constructed to formally estimate the net 

employment effect that the energy transition has had over the last 20 years (1998-2018). 

We believe that adopting a case study approach will best help us to understand the energy 

transitions in a specific environment and then allow us to draw some more generic conclusions. 

The paper begins by providing some background information and knowledge about the industry 

in Section 2. Section 3 covers existing literature about the energy transition and discusses some 

similar studies. Section 4 discusses the economic theories and foundations that allow us to identify 

the important factors that should be considered when studying energy sector employment. In 

Section 5 the formal statistical model is constructed and empirically estimated. Section 6 provides 

an extension to the findings in Section 5 to provide us with a more rounded understanding of the 

labour effects of the energy transition. Section 7 discusses the main findings of the study and 

proposes further studies that build on these findings. Section 8 concludes the paper. 
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2 Background 

This section provides background knowledge on the UK energy sector and more specifically, the 

transitioning of energy generation to renewable sources in the UK. 

Firstly, we investigate the academic and non-academic literature to outline the main drivers of 

renewable energy implementation. Next, we offer a brief overview of the trends within the UK 

energy sector in order to put theory into context. Lastly, we examine renewable energy as an 

innovation to gain insight into the potential future direction of the industry.  

2.1 Drivers of Renewable Energy 

Renewable energy is being deployed on a global basis, but this implementation is occurring at 

varying rates across countries. This section investigates the main determinants of its deployment. 

A publication by Hayes & Parker (2018) suggests that historically, renewable energy deployment 

was driven by the energy sector. In other words, implementation has occurred at the rate that makes 

economic sense to producers and is as a result based on supply push. Considering the nature of 

energy as a product, this makes sense as end-users are unable to distinguish between energy from 

different sources. The literature suggests that there are three main drivers of renewable energy 

implementation: costs, geographical features and political support. 

2.1.1 Costs 

Various academic sources highlight the increased cost of renewable energy implementation 

relative to conventional non-renewable energy as the main inhibitor of renewable energy growth. 

Renewable energy is mainly associated with electricity supply and due to the manner in which 

electricity markets work, renewable energy may only become feasible once the cost of distributing 

energy is comparable to conventional non-renewable energy sources (Energy UK, n.d). 
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Renewable energy deployment is highly capital intensive and historically, most developed nations 

are locked in on a path dependency in which conventional non-renewable energy sources dominate 

as a result of existing infrastructure. A shift towards renewable sources requires significant capital 

investments into adapting existing infrastructure. Despite the low marginal costs of renewable 

energy generation, one concern with renewable energy generation is that due to high capital costs, 

it remains relatively costly to distribute compared to conventional non-renewable energy sources.  

Alagappan et al. (2011) highlights that due to energy market regulations renewable energy requires 

revenue streams from the distribution of renewable energy to cover its Levelised Cost of Energy 

(LCOE) in order to be feasible. Levelised Cost of Energy represents the cost of supplying energy 

and captures both the discounted capital costs and marginal costs from supplying an additional 

unit of energy. The LCOE of renewable energy needs to be lowered to a level comparable to 

conventional non-renewable energy in order for renewable energy to be a competitive option. The 

LCOE of renewable energy is expected to decrease through economies of scale, allowing for the 

implementation of more renewable energy production. 

Aguirre & Ibikunle (2014) attempts to identify the main drivers of renewable energy share growth 

across 38 developed and developing countries. They find a statistically significant positive effect 

of renewable continuity on renewable energy as a share of energy produced. They measure the 

continuity as a dummy that takes the value of 1 when renewable energy accounts for 20% or more 

of the electricity supply, and 0 otherwise. They credit this effect to economies of scale and suggest 

that the LCOE is falling due to previous investments in technologies and infrastructure that benefit 

renewable energy in the future. 

2.1.2 Geographical Features 

The energy mix of countries hinges on their natural geographical features as renewable energy 

generation technologies are typically more land intensive compared to non-renewable energy 

technologies and may rely on specific geographical features to exist. Furthermore, the 

geographical features that are suitable for specific renewable energy technologies are finite and 

continued renewable energy deployment may have diminishing the geographical efficiency of a 

particular renewable energy type. This suggests that countries may initially focus on a single type 

of renewable energy technology but may diversify into other forms over time.  
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Aguirre & Ibikunle (2014) uses geographical data to create country-specific wind, solar and 

biomass potentials. They find the regression coefficients for the energy potential variables to be 

positive and highly statistically significant in explaining the growth of renewable energy as a 

fraction of total energy supply. This suggests that the manner in which renewable energy 

technologies are deployed depends on country-specific geographical factors in the early stages of 

the energy transition. 

2.1.3 Political Support 

Demand and supply must be equal at all times and price controls ensure that the prices of electricity 

are limited to the costs of supplying electricity (Ofgem, n.d). Government policies are often 

introduced to facilitate renewable energy deployment including two popular policy measures; 

Renewable Portfolio Standards (RPS) and Feed-In-Tariffs (FIT) (Ofgem, n.d). 

RPS act as a support scheme for large-scale energy projects by imposing obligations on energy 

suppliers and utility providers to source a fixed amount of renewable energy on an annual basis.  

FIT are mainly used for decentralised smaller scale energy projects. They are long-term contracts 

obligating energy suppliers to buy a certain amount of energy from small scale generators at a 

fixed price. FIT are typically considered more aggressive measures and are less politically 

sustainable in the long term. 

Alagappan et al. (2011) found that electricity markets where FIT are in place are more successful 

in deploying renewable energy supply. However, Aguirre & Ibikunle (2014) find FIT to be 

statistically insignificant in explaining renewable energy growth. Instead they find that other fiscal 

support schemes and international institutional commitments, such as the Kyoto protocol of 1997 

are highly statistically significant. Interestingly, they find policies such as direct investment, grants 

& subsidies as well as research, development & deployment statistically insignificant.  

This provides conflicting evidence on the exact policy measures that are successful in supporting 

renewable energy implementation. Whilst the evidence may be unclear about the effect of FIT, it 

is suggested that government support and international targets are important in explaining 

renewable energy growth. 
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2.2 Energy Sector Trends in the UK 

This section introduces an overview of the general trends in the UK’s energy sector to put the 

previous section into context. Specifically, it will outline renewable energy implementation in UK. 

The UK currently has a diverse energy composition in which non-renewable energy sources 

dominate. Figure 2 shows the UK’s energy mix in 2018. It can be observed that petroleum and 

natural gas account for 72% of total energy production. Coal accounts for only 1% of the energy 

supply while nuclear energy produces 11% of the supply. Renewable energy sources account for 

16% through bioenergy & waste and wind, solar & hydro energy.  

Figure 2 - UK Energy Production Mix, 2018 

 

Source: Department for Business, Energy & Industrial Strategy (2018) ‘Indigenous Production of Primary Fuels’ 

Legend: Energy production composition of the UK by source in 2018 

The UK has introduced both RPS and FIT schemes to support renewable energy growth. RPS was 

introduced in 2002 and have been steadily increasing whilst FIT was introduced in 2010. 
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Section 2.1 has mentioned that renewable energy growth is determined by the supply push which 

requires large investments. Since the Climate Change Act was implemented in 2008, the UK has 

experienced an upward trend in investments in renewable energy as seen in Figure 3. The figure 

reveals that offshore wind power and solar power have been the main targets of renewable energy 

investment and have almost double between 2008 and 2009 from approximately £5 billion to 

almost £10 billion. The increase continues until its peak of £20 billion in 2015 which coincides 

with the Paris Agreement. Following 2015, we observe a decline in investments. This is partly due 

to policy changes lowering FIT that has made new investments in onshore wind power and solar 

power less attractive (UK Energy, 2018). Lowering FIT means that energy suppliers are obliged 

to buy a lower quantity of green energy from generators. The reason for its removal however is 

that green energy in many cases now can compete with non-renewable energy 

Figure 3: UK Renewable energy investment 

 

Source: Energy UK (2018) ‘Energy in the UK’ 

Legend: Investment in renewable energy by technology in UK between 2008-2017 in £ million 

In World Energy Investments, The International Energy Agency (2018) suggests that globally, a 

third of the fall in investment spending is a result of the decline in the cost of renewable energy 

implementation. Figure 4 highlights this by presenting the LCOE and Investment costs of solar 

Photovoltaics between 2010 and 2017.  



Background 

 

14 

 

Figure 4: Solar Energy LCOE and Investment Costs 

 

Source: IRENA (2018) ‘Renewable Power Generation Costs in 2017’  

Legend: Levelised Cost of Energy and Investment Cost of solar photovoltaics between 2010 and 2017 in 2016 $/kW 

Figure 4 shows that both LCOE and total investment costs have been steadily declining since 2010. 

Between 2010 and 2017, both items have declined to around a quarter of their 2010 levels. The 

fall in LCOE indicates that it has become cheaper to supply solar power and is more likely to be 

able to compete with non-renewable energy sources. This decrease in LCOE and increase in 

competitiveness results in lower investment risks. This fall in risk leads to a lower required return 

of capital and by extension a decline in investment costs observed in the figure. This has also led 

to the increase in solar energy within the UK’s energy composition. 

Additionally, the large amounts of investments in wind power may be explained by the 

geographical feature of the UK. As an island kingdom, its coastlines offer large potentials for wind 

energy generation. 

Political agreements such as the Paris Agreement and the Climate Change Act in combinations 

with the declining costs of renewable energy and the geographical features of the UK have 

increased the attractiveness of investing in renewable energy. Despite the drive towards renewable 

energy implementation, its share in the total energy mix has remained relatively small. 
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Figure 5: Total Indigenous Production of Primary Fuels in Million Tonnes of Oil Equivalent, 

UK 

 

Source: Department for Business, Energy & Industrial Strategy (2018) ‘UK Energy in Brief 2018: Dataset’ 

Legend: Total production of primary fuels in UK by technologies in million tonnes of oil equivalent 

Figure 5 shows the total indigenous production of primary fuels in million tonnes of oil equivalent 

by production type. It is interesting to observe that energy production has been continuously 

decreasing in the past 20 years and that between 1998 and 2017, energy production almost halved. 

Production has particularly declined for petroleum, natural gas and coal, with coal constantly 

declining to almost being eliminated from the energy composition. This trend has been continuous 

since coal mines began to close across the UK in the 1970s. Only bioenergy & waste and wind, 

solar & hydro energy have experienced significant increases over the past 20 years. 

In conclusion, an increase in investment attractiveness through political initiatives, attractive 

geographical features and declining costs is driving the elevating share of renewable energy in the 

UK’s energy composition. 
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2.3 Process Innovation & Creative Destruction 

This section draws on the academic literature on innovation to examine renewable energy as an 

innovation and categorise renewable energy based on various factors. This provides insights into 

the potential implications for the energy industry and provide an indication on how to measure this 

transition towards further adoption of the innovation.  

2.3.1 Types of Innovation 

Innovations are normally categorised to be either a product or process innovation (Shilling, 2017). 

Product innovations refer to the change in the product of a firm or industry while process 

innovations are new techniques of production for the firm or industry. Renewable energy being a 

different product than non-renewable energy indicates a product innovation but should be 

considered a process innovation as they only differ in their inputs. Hence, whether the inputs are 

coal, petroleum, solar or wind, the output remains energy, meaning the product consumed by end-

users remains the same.  

Process innovation typically introduces increased efficiency by means of a new and improved 

process. Despite increased financial costs, it can be argued that renewable energy is more efficient 

when it internalises a key externality, emissions. As such, it may be argued that renewable energy 

is more efficient through a decrease in economic cost to society and this increased efficiency 

allows us to consider the introduction of renewable energy to be a process innovation.  

Innovations can also be categorised as competence-enhancing or competence-destroying. An 

innovation that is competence-destroying does not build on existing competencies but instead 

renders existing competencies obsolete (Shilling, 2017). As such, under the assumption that 

renewable energy is a process innovation that makes the industry more efficient, it can be 

considered a competence-destroying innovation. 
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2.3.2 Technology Change and Diffusion 

Schumpeter (1943) discusses the dynamics of capitalism and socialism and refers to capitalism as 

being a constant economic change. Moreover, he suggests that capitalism is built upon the idea 

that “the capitalist engine” is kept running by the need to adapt in a dynamic social and natural 

environment to make economic sense. This includes innovating to remain efficient on an industry 

level and introduces the concept of creative destruction. With increasing social and political 

pressure forcing the energy industry to adapt, the emergence of renewable energy is destroying the 

need for and competencies of traditional non-renewable technologies. The introduction of 

renewable energy is likely to result in a systematic replacement effect in which non-renewable 

energy sources are made redundant. 

Considering the notion of renewable energy as a process innovation that is characterised by being 

competence-destroying, we can apply an S-curve of technological diffusion to interpret its 

continued emergence (Shilling, 2017). This shows the adoption of the technology through a 

population, and hence by extension the degree to which it may make non-renewable energy types 

redundant. The S-Curve is shown in Figure 6, with time on the horizontal axis and adoption of 

technology on the vertical axis. It shows that technologies initially go through an incubation stage 

in which the technology is developed and optimised and the level of adoption remains relatively 

constant. A phase of rapid growth follows until the technology reaches maturity at which it slowly 

inches towards the physical limit.  
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Figure 6: S-Curve of technological diffusion 

 

Source: Wong et al. (2016) ‘Technology Diffusion in the Telecommunications Services Industry in Malaysia’ 

Legend: The S-curve of technological diffusion of an innovation. The curve shows the consumption path of an 

innovation over time through three distinct stages 

Applying this framework to renewable energy, we plot the consumption of renewable energy in 

the UK over time. Figure 7 shows renewable energy consumption between 1965 and 2016. Figure 

7 suggests that renewable energy went through a long incubation period until approximately 1995 

after which the phase of rapid growth began as consumption increases exponentially. As renewable 

and non-renewable energy are substitutable, this period marks the beginning of the decline of non-

renewable energy in the energy sector. 

The S-curve predicts that the rapid growth period will continue until the technology reaches 

maturity and converges to its physical limit. Considering that energy is supplied in line with end-

user demands and disregarding energy imports and exports, the physical limit can be assumed to 

be the total energy consumption level within the UK. The rapid growth phase of renewable energy 

consumption is associated with the decreasing consumption of other energy sources and creative 

destruction in the energy sector appears to be in the process of making non-renewable energy 

obsolete. 
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Figure 7: Renewable Energy Consumption, UK 

 

Source: British Petroleum (2018) ‘British Petroleum Statistical Review of World Energy’ 

Legend: Renewable energy consumption in UK between 1975-2018 in TWh. Indicates the incubation and early 

stages of rapid growth 

Under the assumption that renewable energy is a process innovation in the phase of rapid growth, 

the energy industry may follow a technology cycle as proposed by Utterback & Abernathy (1975). 

In this model, non-renewable energy sources are referred to as the dominant design. Since the 

Industrial Revolution, which marks the beginning of commercial energy production, energy 

production technologies have become increasingly efficient. This is in line with the era of 

incremental change in which the technology is improved in terms of efficiency and penetration. 

Coal, as the historically most significant non-renewable energy source may be characterised as the 

dominant design while the emergence of renewables can be termed as a technological discontinuity 

resulting in an era of ferment. This is characterised by turbulence and uncertainty, as the sources 

of energy are shifting (Anderson & Tushman, 1990). This is apparent by the many variations of 

renewable energy sources of which the best is yet to be determined. Assuming that a single superior 

technology of renewable energy generation can be found, this will then displace coal as the 

dominant design after which it will enter the era of incremental change. As such, the energy 

industry may be assumed to follow similar technology cycles as other industries, albeit far slower 

and long term than most. The technology cycle is illustrated in Figure 8. 
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Figure 8: Technology Cycle 

 

Source: Shilling (2017) ‘Strategic Management of Technological Innovation’ 

Legend: The technology cycle stages (Utterback & Abernathy, 1975). Dominant design of a technology enters the 

era of incremental change in which it is gradually improved to become more efficient. A technological discontinuity 

disrupts the industry as it enters the era of ferment. Here different types of technologies compete, and a degree of 

substitution away from the dominant design occurs, until a new dominant design is selected. 

In conclusion, renewable energy is characterised as a process innovation with competence-

destroying features. By entering the period of rapid growth in the S-curve, renewable energy 

appears to be making non-renewable technologies obsolete. Based on theory, we would expect a 

complete substitution effect towards the new technology in the domestic energy industry. 
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3 Literature Review 

The previous section looked at how renewable energy is introduced into the energy mix while the 

following section reviews the literature to understand how renewable energy introduction may 

affect employment. Firstly, we examine the literature covering labour intensity differences, 

followed by assessing the channels through which the energy transition is creating and destroying 

jobs. The third part assesses the type of jobs required for different energy generation technologies 

followed by a brief overview of the studies conducted on renewable energy and its employment 

effects. This further justifies our empirical study and provides an indication of past results.  

3.1 Labour Intensity Differences 

The previous section outlined how the introduction of renewable energy is creating new jobs whilst 

reducing the demand for other energy technologies and their associated jobs. The job intensities 

of the different technologies directly affect the magnitude of job creation and destruction. Classic 

economic theory suggests that innovation is associated with labour- or capital-saving processes to 

improve productivity but it was previously argued that this is not necessarily true in the context of 

renewable energy. Academic literature mostly suggest that renewable energy generation is more 

labour intensive as compared to non-renewable energy types (del Rio & Burguillo, 2008; Wei et 

al., 2010).  

Del Rio & Burguillo (2008) note that non-renewable energy benefits from economies of scale and 

keeping labour constant, non-renewable energy sources may generate higher units of energy 

compared to renewable energy sources due to increased efficiency. This is supported by the 

findings of Wei et al. (2010) that suggest that renewable energy create more jobs per unit of energy 

than fossil fuels-based jobs in the US. They find that solar PV on average create 0.87 total job-

years per GWh whereas coal only creates 0.11 total job-years per GWh over the lifetime of their 

facilities. 
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On the flip side, Bowen (2012) notes that the increased labour intensity occurs only in the 

installation phase and following the installation phase, renewable energy may become more labour 

efficient than conventional non-renewable energy. Hughes (2011) argues that ‘green jobs’ are an 

illusion and suggests that although labour intensity is currently higher for renewable energy 

technologies than non-renewable energy technologies, this relationship is unlikely to hold in the 

future. As the central objective of renewable energy implementation is not to create jobs but to 

limit CO2 emissions, the industry targets cost minimisation including labour costs and over time, 

the renewable energy industry may aim to limit employment. Therefore, he suggests that the UK 

cannot gain a long-term net gain in jobs regardless of ‘green job’ promotion policies.  

3.2 Renewable Energy Job creation and Job Destruction 

Existing literature suggests renewable energy to be more labour intensive as compared to non-

renewable energy. However, the relative youth of the industry and the long lifetime of energy 

capital instalments means that there is no widely accepted way of measuring the potential for job 

creation. 

The channels through which jobs are created and lost may be broken into three categories and are 

summarized in Table 1 (IRENA, 2011; Lambert & Silva, 2012). 

The effects do not necessarily occur over the same time horizon and do not need to be of the same 

sign. Hillebrand et al. (2006) suggests that the timing and direction of the effects differ and argues 

that increased investments into the accumulation of capital results in immediate positive direct and 

indirect effects. However, the high capital costs of renewable energy will transfer into high LCOE 

and thereby causing increased electricity prices. This burden will be shifted to consumers which 

in turn lowers consumption and investment and ultimately resulting in negative induced effects. 

Moreover, they argue that the negative induced effects may offset the positive direct and indirect 

effects over time. 
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Table 1: Energy job effects 

Effect Mechanism 

Direct Effect 

The jobs related to the core activities of the renewable and non-renewable 

energy. This includes manufacturing, construction, project development 

and operation & maintenance.  

Indirect Effect 

These are the jobs involved in supplying to the energy sector. This includes 

extraction of raw materials for construction, positions in governmental 

bodies, consultancy firms and research agencies. 

Induced Effect 

These are the effects that occur as a result of the implementation of 

renewables. For example, how the wealth generated by the renewable 

industry is spent, or how the potential change in energy prices affect inputs 

for other businesses or sectors, and by extension, how this affects their 

employment capabilities. 

Source: IRENA (2011) ‘Renewable Energy Jobs: Status, Prospects & Policies’ 

Legend: Channels of employment effects through renewable energy deployment.  

Similarly, Frondel et al. (2011) suggests that renewable energy will create green jobs but that these 

jobs will be offset by broader economic implications. This is largely driven by the assumption that 

renewable energy implementation will result in the increase in energy prices, reducing the private 

consumers’ purchasing power and slowing down the economy. This will subsequently limit job 

growth and it is therefore suggested that many predictions with regards to green jobs are overly 

optimistic. 
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Nevertheless, contrary to these findings, Bowen (2012) highlights the necessity to focus on 

renewable energy production. It is suggested that any growing economy without focus on 

renewable energy production will be affected by environmental degradation and will lead to lower 

societal welfare and productivity. Therefore, he argues that the alternative to renewable energy 

will be worse in terms of employment as well as other macroeconomic factors. UNEP (2011) 

supports this argument by noting that the employment effects will have increasing returns over 

time. An economy that has “green policies” in place will experience higher positive employment 

effects compared to economies that do not. They do however note that this hinges on the 

assumption of a “green economy” being able to effectively re-skill and re-educate workers. 

3.3 Job Types 

Increased labour intensity resulting in positive direct and indirect effects may indicate that 

renewable technology innovations affect employment through labour productivity. However, 

renewable energy may have employment implications beyond productivity through a different mix 

of job types and skill requirements. Job types affect whether jobs are temporary or permanent, and 

skill requirements relate to the quality and wage levels associated with the jobs. Figure 9 shows 

the job types by energy technology as found by Pollin et al. (2009).  

Fossil fuel jobs are mainly found in extraction with coal having 41.6% of the jobs involved in 

extraction. By contrast, renewable energy jobs are mainly found in manufacturing with 47.4%, 

37.4% and 20.6% respectively for wind, solar and biomass. Manufacturing refers to the creation 

and servicing of spare parts. Construction is also a main job creator for renewable energy, with 

20.3% and 23.7% of jobs for wind and solar found in this category. 

All five technologies employ a significant portion of employees in the independent 

admin./professional category. Renewable energy jobs tend to have higher skill requirements 

(IRENA, 2011) and may be an indicator of higher quality jobs. A study in Germany found that 

40% of the renewable workforce have a university degree, compared to only 10% for the non-

renewable workforce (Lehr et al., 2011). The difference in job types and skill requirements may 

be an indicator of the renewable energy sector creating entirely different jobs as compared to non-

renewable energy. As such, renewable energy does not only affect employment through labour 

productivity but also through the creation of entirely different jobs.  
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Figure 9: Job types by energy technology 

 

Source: Pollin et al. (2009)’The Economic Benefits of Investing in Clean Energy’ 

Legend: Job compositions of energy technologies by job types.  

3.4 Past Research 

This section discusses previous research approaches used to analyse the energy employment 

dynamics. It highlights different methods used and their main potential drawbacks. Moreover, it 

notes the drawbacks of forecasts and justify the need to do an evaluating study. 

In spite of differing scope and approaches to understanding the relationship between renewable 

energy and employment, much of the previous work has been aimed at forecasting. With regards 

to forecasting, Lambert & Silva (2011) argues that two main approaches exist.  
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Firstly, input-output models can be used. Such models allow for the analysis of a shock to one 

sector on all other sectors and can determine the combined direct, indirect or induced effects. A 

significant drawback from these models is that they rely on static input coefficients, making them 

less applicable for dynamics over time. Therefore, they cannot account for economies of scale or 

real wage changes. Additionally, it assumes homogeneity across and within all sectors which 

complicates any interpretation made by the model, and the data requirements for input-output 

models are usually outdated. A good exemplification of this is the study by Caldes et al. (2009), 

which estimate various economic effects on the Spanish economy from solar energy 

implementation where only data up to the year 2000 was available. 

The second approach are analytical models that examines annual shifts in the data or more 

sophisticated timeseries modelling. They are more transparent than input-output models and 

simpler to understand. However, the biggest drawback of such models is that they can usually only 

be applied to analyse direct effects. Additionally, since the amount of data available is limited, 

these models often use extensive surveys which may be inherently biased. 

Forecasts commonly rely heavily on their assumptions. On top of that, different forecasts have 

very different assumptions and by extension, there are large variations in employment estimates. 

Diaz et al. (2008) and Management Information Services (2009) both estimate the direct 

employment effect of renewable energy deployment in USA up to 2030 under different 

assumptions and produced vastly different forecasts. Diaz et al. (2008) estimates a direct gross 

employment effect of 802,000 jobs. This may be compared to Management Information Services 

that find a net direct effect of 1.15 million jobs in the same time period. Diaz et al. (2008) made 

the key assumption that 40% of electricity will be renewable by 2038 and that its growth will be 

linear. By contrast, Management Information Services assume a more aggressive growth in 

renewable energy which ultimately causes the inflated effect 

Although the forecasts vary greatly, the effects in most instances are estimated to be net positive 

or not statistically significant, depending on the time horizon. However, forecast studies are by 

definition forward-looking estimates and to our best knowledge, no study has taken a backward-

looking stance to estimate the employment effect. The lack of backward-looking studies means 

that forecasts are difficult to validate and we argue that evaluative studies are required in order to 

gain better insights into the job creation potential of renewable energy implementation. 
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4 Economic Theory 

We examine economic frameworks in order to understand what factors affect employment that 

will assist us in our empirical approach, by allowing us to isolate the employment effects from our 

variable of interest. Economic theory tends to focus on labour rather than employment. Even 

though they are not necessarily equivalent, they are fundamentally similar. Therefore, by 

examining labour theory we are able to draw similar conclusions with regards to the theoretical 

drivers of employment. 

Firstly, we assess the employment effects through the demand and supply of labour. Thereafter, 

we examine the Cobb-Douglas production function to understand the important determinants of 

labour and by extension employment. In light of this relationship, we examine how this can be 

relevant for innovation changes. Finally, this section establishes the important factors that should 

be considered when constructing our statistical model. 

4.1 Labour Demand and Supply 

The direct labour market effects may be illustrated by modifying the argument put forward by 

Bowen (2012). He analyses the effects that emissions limiting policies may have on “green jobs”. 

To demonstrate the potential effects that these policies may have, he uses a simple neoclassical 

model of labour demand and supply that can be seen in Figure 10. The Aggregate Demand (AD) 

curve for labour is a downward sloping function of real wages, and the Aggregate Supply (AS) 

curve of labour is an upward sloping function of real wages. The AD curve represents how firms 

decide on the optimal labour demand based on profit maximisation while the AS curve represents 

the willingness of individuals to participate in the workforce based on real wages.  
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In Bowen (2012), the labour market is initially in an equilibrium and production is dominated by 

non-renewable energy sources. Bowen argues that as an economy targets to limit emissions, 

policies are introduced that affect the profitability of non-renewable energy generation and will 

cause a downward shift of AD0 to AD1 while the AS curve remains fixed. This results in a lower 

aggregate labour quantity equilibrium, Q1 < Q0. However, as renewable energies gain a relative 

advantage, it will become more profitable which increases the demand for labour and causes a shift 

from AD1 to AD2,2. The magnitude of the shift is partially driven by the labour intensity of the 

respective technologies. As suggested in Section 3.1, renewable energy may be more labour 

intensive than conventional non-renewable energy. Conversely, lower relative labour intensity of 

renewable energy technologies will cause a shift from AD1 to AD2,1. Holding total output constant, 

the relative labour intensity of renewable energy technologies as compared to non-renewable 

energy will affect whether we observe a net positive or negative employment effect from the shift 

in the AD curve. 

Regardless, Section 3.3 found that different technologies demand different job types and skill 

requirements that affects the supply of labour. Depending on the industry structure, endowments 

and labour market institutions of the country, the AS may respond differently and hence affect the 

net employment effect (Bowen, 2012).  

As AD and AS are functions of real wages, real wages is an important factor in determining the 

level of labour input in the energy sector, on top of relative labour intensities. 
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Figure 10: Neoclassical labour market effects 

 

Source: Self-made based on Bowen (2012) 

Legend: Neoclassical labour market diagram to visualise the theoretical effects of the substituting non-renewable 

energy for renewable energy. Shows dynamics of aggregate demand and aggregate supply of labour based on 

regulatory changes.  

4.2 Cobb-Douglas Production 

The Cobb-Douglas production function establishes a link between output, labour, technology and 

capital stock and may be represented as: 

Equation 1: Cobb-Douglas Production Function 

𝑙𝑜𝑔⁡(𝑌) ⁡= 𝑙𝑜𝑔(𝐴)+⁡∝ 𝑙𝑜𝑔(𝐿) + ⁡𝛽𝑙𝑜𝑔⁡(𝐶) 
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where Y is output, A is a total productivity factor, L is labour, and C is capital stock, and are all 

non-negative (Cobb & Douglas, 1928). ∝ and 𝛽 are returns to scale parameters and are between 0 

and 1. Typically, A is associated with technology, aimed at making production more efficient. This 

may often be done through labour-saving technology development. Considering that we are 

investigating employment changes, it is the labour-saving technologies that affect employment 

through improved labour productivity and the lower relative need for labour inputs. 

Rearranging to represent labour on the left-hand side: 

Equation 2: Rearranged Cobb-Douglas function 

𝑙𝑜𝑔(𝐿) =
1

∝
(⁡𝑙𝑜𝑔(𝑌) − 𝑙𝑜𝑔(𝐴) − 𝛽𝑙𝑜𝑔⁡(𝐶)) 

The Cobb-Douglas production function is a generic production function that can be applied to 

different industry and products. In the context of the energy sector, labour employed is determined 

by the amount of energy produced, the capital assets of the sector and the labour-saving technology 

aimed at making production more efficient. However, given that the introduction of renewable 

energy is not aimed to be labour-saving, the energy transition effect may not be captured in the 

Cobb-Douglas production function. 

Van Reenen (1997) attempts to identify the effect of a technical change on job creation by utilising 

the Cobb-Douglas production function to empirically test the relationship. He tests this by using 

employment instead of labour across 598 firms. The innovation variables are created as counts of 

the number of innovations introduced per firm and per industry respectively. Additionally, he 

argues that for employment studies involving the UK, it is conventional to introduce two lags of 

employment due to adjustment costs in net employment changes. 
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In Section 2.3.1, we identified renewable energy to be considered a process innovation. Van 

Reenen (1997) argues that the type of innovation plays a role in determining the subsequent 

employment effect. Product innovations are thought to typically have a positive effect on 

employment as a new product will generate new demand, which requires additional labour and 

employment. In contrast, process innovations are characteristic by their ambiguity. They may aim 

to make production more efficient, which can be through labour-saving improvements that will 

lead to a negative effect on labour. However, if production is more efficient through a process 

innovation, total output is likely to increase and hence have a positive effect on labour. As such, 

these findings further justify the need to investigate the employment effects of renewable energy 

deployment.  

Based on the economic theories discussed in this section, factors such as output, capital, labour-

saving technology and real wages should be considered when studying labour, and by extension 

employment. As such, these factors will be included in our empirical study when constructing our 

statistical model in Section 5.1. 
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5 Methodology 

In this section, the previously discussed economic framework is transformed into a sound 

statistical approach for empirically investigating the effect that the energy transition has on energy 

sector employment. We first introduce the statistical model and the variables necessary to conduct 

a formal empirical study and then tackle various issues relating to time-series model estimation 

such as autoregressive processes, stationarity, cointegration and seasonality. Finally, estimation 

results of the selected model are presented, and additional robustness checks are conducted. 

5.1 Statistical Model 

From Section 4 we know that employment depends on output, capital, labour-saving technology 

(labour productivity) and real wages. Moreover, it was proposed that in the energy sector, the 

transition from non-renewable energy to renewable energy sources causes an additional effect as 

new jobs are introduced. As such, our statistical model adopts each of these factors and may be 

represented as: 

Equation 3: Statistical Model 

𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝐸𝑛𝑒𝑟𝑔𝑦⁡𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑂𝑢𝑡𝑝𝑢𝑡

+ 𝐿𝑎𝑏𝑜𝑢𝑟⁡𝑆𝑎𝑣𝑖𝑛𝑔⁡𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 + 𝑅𝑒𝑎𝑙⁡𝑊𝑎𝑔𝑒𝑠 + 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 

To estimate this statistical model, our chosen variables are discussed in the following section. 

5.2 Data 

This subsection describes the variables and the corresponding data that will be used in our 

statistical model including variable selection, data sources and data transformation. Table 2 

provides an overview of all variables incorporated in the empirical approach including their 

description and units of measurements.  
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5.2.1 Dependent Variable: Energy sector employment 

This study seeks to investigate the net direct effect of the renewable energy transition on renewable 

jobs. Therefore, the main dependent variables that we are interested in is the total energy sector 

employment in the UK. Total energy sector employment includes both jobs created and jobs 

destroyed through the transition and is as such a good measure of the overall net effect. The jobs 

created are mainly involved in the installation and manufacturing of renewable energy production 

while jobs removed are mainly associated with the extraction of non-renewable fossil fuels. For 

this measure, quarterly data from the Eurostat database has been used. The Eurostat database 

groups industry NACE codes into Main Industrial Groupings (MIGs) based on their end-use 

categories. For energy sector employment, the “MIG – Energy” employment statistics have been 

used for energy sector employment. The “MIG – Energy” category contains: 

• B05: Mining of coal and lignite; 

• B06: Extraction of crude petroleum and natural gas; 

• C19: Manufacture of coke and refined petroleum products; 

• D35: Electricity, gas, steam and air conditioning supply; 

• E36: Water collection, treatment and supply. 

This includes the main aspects we are trying to capture for our dependent variable and thus 

constitutes a sound variable. Energy sector employment is recorded as an index based on the base-

year of 2015. Energy sector employment is defined as the number of persons employed in the 

energy sector. 

To normalise our variable, the logarithm of energy sector employment was computed and named 

ENERGY_EMP. 

5.2.2 Independent Variable: Share of renewable energy production 

The transition of energy from non-renewable technologies to renewable energy technologies imply 

that renewable energy production has increased compared to non-renewable energy production. 

As previously discussed, this results in a replacement effect rather than a complementary 

production effect. In order to estimate our statistical model, an appropriate measure of the energy 

transition needs to be identified. A number of potential measures were considered but renewable 

energy production as a share of total energy production was ultimately chosen. 
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Renewable energy production as a share of total energy production was selected over raw 

renewable energy production volumes as it is a good indicator of the energy transition rather than 

the absolute production level of renewable energy. 

Share of renewable energy production has been chosen as the measure of renewable energy 

intensity over other potential variables such as share of renewable energy consumption and share 

of renewable energy investment. Firstly, energy production data is readily available and directly 

associated with energy sector employment. Renewable energy consumption has been used in other 

studies of the nexus between employment and renewable energy such as Apergis & Salim (2015) 

but we argue that renewable energy consumption is not a good indicator when considering energy 

sector employment as it is affected by the international energy trade. Using share of renewable 

energy consumption would not account for energy sold to and consumed outside the UK and may 

lead to overestimation of the employment effect. As such, share of renewable energy consumption 

is not appropriate for our model. 

Share of renewable energy investment is an alternative indicator for quantifying the renewable 

energy transition. It would allow for interesting interpretations from a policy perspective and 

indicate whether investing in renewable energy would result in a net gain of energy jobs. However, 

using share of renewable energy investment as an indicator of the energy transition does have its 

drawbacks. Investments are rarely made with the intention of immediate returns and some 

renewable energy projects such as hydroelectric dams face long durations between initial 

investment and final project commissioning. In an evaluative time-series study of renewable 

energy, which has only become significant in the last 20 years, taking into account such a gap 

between investment and completion would result in very few reliable observations which would 

reduce the power of the study. On top of that, renewable energy investment data for the UK is only 

accessible annually and from 2004 onwards. 

Quarterly energy production data has been retrieved from the UK’s Department of Business, 

Energy & Industrial Strategy (BEIS) statistical publication: Indigenous production of primary fuels 

(ET 1.1). BEIS’s energy production data is classified by energy type and we have composed 

renewable energy production as the sum of ‘Bioenergy & waste’ and ‘Wind, solar & hydro’ while 

non-renewable energy production is composed of ‘Coal’, ‘Petroleum’, ‘Natural Gas’ and 

‘Nuclear’. Our independent variable RE_SHARE is then constructed as: 
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Equation 4 

𝑅𝐸_𝑆𝐻𝐴𝑅𝐸 = 𝑙𝑜𝑔 (
𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒⁡𝑒𝑛𝑒𝑟𝑔𝑦

𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒⁡𝑒𝑛𝑒𝑟𝑔𝑦⁡ + ⁡𝑁𝑜𝑛 − 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒⁡𝑒𝑛𝑒𝑟𝑔𝑦
) 

5.2.3 Control Variables 

Based on the discussions in Section 4 and the statistical model constructed in Section 5.1, 

indicators for output, capital, labour saving technology and real wages should be used as control 

variables to isolate the transitionary effect and thereby improve the quality of our model. 

5.2.3.1 Total energy production 

The total amount of energy produced in the UK is used as an indicator of output and is expected 

to have a positive relationship with energy sector employment as labour is positively correlated 

with the production of energy. Quarterly energy production data has been retrieved from the UK’s 

Department of Business, Energy & Industrial Strategy (BEIS) statistical publication: Indigenous 

production of primary fuels (ET 1.1). BEIS’s energy production data is classified by energy type 

and our total energy production variable is the sum of all energy types. 

To normalise our variable, the logarithm of total energy production was computed and named 

TOTAL_PROD. 

5.2.3.2 Labour productivity 

As discussed previously, technology plays a part in the Cobb-Douglas production function and 

more specifically labour-saving technology is what affects labour inputs. In our estimation model, 

labour productivity has been chosen as the indicator for labour-saving technology. Technological 

changes that increase labour productivity will allow the same amount of output to be delivered by 

lower amounts of labour. As such, increased labour productivity in the energy sector could 

potentially lead to a decrease in energy sector employment.  
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To include labour productivity as a control in our model, we have retrieved quarterly labour 

productivity data for the UK from the Office for National Statistics (ONS)’s dataset: Labour 

productivity time series. The dataset consists of industry specific estimates of output per hour 

based on UK Standard Industrial Classification (SIC) 2007 codes. Due to EU legislation, SIC 2007 

codes and NACE codes are identical. Labour productivity is defined as output per hour (£ per 

hour) at current prices. 

For the labour productivity control variable to be consistent with our dependent variable, we want 

to retrieve and use labour productivity data based on the same NACE codes used to construct our 

dependent variable. We were able to retrieve labour productivity data for the following codes: 

• B06: Extraction of crude petroleum and natural gas; 

• C19: Manufacture of coke and refined petroleum products; 

• D35: Electricity, gas, steam and air conditioning supply. 

Unfortunately, data for the other two codes are not available. Nevertheless, we believe that 

including these productivity indicators in our model will still allow us to control for labour 

productivity effectively and is the best we can do with the data available. 

As labour productivity is mainly a control variable in our study and not a variable of interest, we 

are not interested in interpreting its coefficient post-regression. As such, we have decided against 

constructing a labour productivity composite of the three codes that we could retrieve as this would 

introduce unnecessary complications. Instead we will include all three labour productivity 

indicators as individual variables in our model. 

To normalise our variable, the logarithm of the three labour productivity measures were computed 

and named PRODUCTIVITY_1, PRODUCTIVITY_2 and PRODUCTIVITY_3 respectively. 

5.2.3.3 Real wages 

Another factor that can influence employment are real wages. A higher real wage can entice 

individuals to enter the labour market where they otherwise may not. Being a subset of general 

employment, energy sector employment may be positively impacted by an increase in real wages. 

National wage data was used instead of energy sector specific wages. Industry specific wage data 

was only available at the ‘alphabet’ level (SIC 2007) and not the 2-digit level that we require for 

the variable to be consistent with our dependent variable. 
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Quarterly wage data for the UK has been retrieved from the ONS’ database: Gross weekly earnings 

of full-time employees (EARN04). The database provides ‘median weekly wage of full-time 

employees’ which is a measure of nominal wages and has to be converted to real-terms. 

To convert nominal wages to real wages, we adopt the ‘Consumer Price Inflation including Owner-

Occupiers’ Housing Costs’ (CPIH) index. The CPIH index is based on the standard ‘Consumer 

Price Index’ (CPI) but adjusted to reflect changes in average residential rents. CPIH data for the 

UK is retrieved from the ONS’ database: Consumer price inflation time series (MM23). 

The real wage is then calculated as an index by normalising the median weekly wage with the 

CPIH index as shown in Equation 5. 

Equation 5 

𝑊𝐴𝐺𝐸𝑆⁡ = 𝑙𝑜𝑔 (
𝑀𝑒𝑑𝑖𝑎𝑛⁡𝑤𝑒𝑒𝑘𝑙𝑦⁡𝑤𝑎𝑔𝑒

𝐶𝑃𝐼𝐻
) 

5.2.3.4 Interest rates 

As previously discussed, capital is also an important factor in the study of labour. The relative cost 

at which capital can be employed in the production of energy can directly influence the amount of 

capital employed in production and due to the substitutability of capital and labour, indirectly 

influence the amount of labour needed. As such, the cost of capital should be controlled for when 

investigating energy sector employment and is used as the indicator for capital in our statistical 

model. 

Specifically, interest rates has been chosen as the indicator for the cost of capital as quarterly data 

is readily available. Quarterly average yields for 10-year UK Government bonds was retrieved 

from the Bank of England’s database (IUQAMNPY). To normalise our variable, the logarithm of 

the interest rate was computed and named INTEREST. 
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Table 2: Data Summary 

Type Name Description Unit of Measurement 

Dependent variable (y) ENERGY_EMP Energy sector employment 
Number of employees 

(2015 Index) 

Independent variable 
(x) 

RE_SHARE 
Share of renewable energy 

production 
Percentage of total 

production 

Control variable 1 (z1) TOTAL_PROD Total energy production 
Million tonnes of oil 

equivalent 

Control variable 2 (z2) PRODUCTIVITY_1 Labour productivity (B06) £ per hour of labour 

Control variable 3 (z3) PRODUCTIVITY_2 Labour productivity (C19) £ per hour of labour 

Control variable 4 (z4) PRODUCTIVITY_3 Labour productivity (D35) £ per hour of labour 

Control variable 5 (z5) WAGES Real wages 
Mean weekly earnings 

(price adjusted) 

Control variable 6 (z6) INTEREST Interest rates 
Percentage (quarterly 

average) 
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5.3 Descriptive Statistics 

Table 3: Descriptive Statistics 
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5.3.1 Dependent Variable: Energy sector employment 

Figure 11 shows a plot of energy sector employment as well as the output from renewable and 

non-renewable sources over the time-period of this study. The top panel shows energy sector 

employment, from which it can be seen that energy sector employment experiences a large amount 

of variation over the total sample period. Initially, we observe a relatively large decrease between 

1998 - 2005 that bottoms out at 65.1 in Q2 of 2005. The decrease in energy sector employment 

from 1998 to 2005 can be attributed to the decreasing trend in total energy production in the UK, 

in particular non-renewable energy. Coal and gas production peaked in 1999 and 2000, as the UK 

benefitted from the largest offshore drilling region in the world in the North Sea (Planete Energies, 

2015).  

Following this period, there has been a general upward trend, with the exceptions of the 2008 

financial crisis and a period in 2014. The 2008 dip due to the financial crisis is unsurprising due to 

a general increase in unemployment in this period across the entire economy. It is this general 

increase in employment following 2005 that serves as a further motivation for our study. The 

second panel in Figure 11 shows energy production from renewable sources. It can be observed 

that from 2005, renewable energy production starts gaining traction. Intriguingly, this increase in 

the production of renewable energy from 2005 coincide with the turnaround in energy sector 

employment. 

Energy sector employment peaks in our two final observations, with a 2015 index value of 106.5. 

As renewable energy production continues to increase, it is reasonable to expect energy sector 

employment to continue increasing.  
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Figure 11: Dependent variable & energy production 

 

Legend: Plots of the Energy Employment, Total Renewable Energy Production and Total Non-Renewable Energy 

Production series for the periods Q1 1998 to Q1 2018. 

5.3.2 Independent Variable: Share of renewable energy production  

As seen in Figure 11, the relative youth of renewable energy in the UK energy mix means that we 

can observe a small share of renewable energy production in the initial years of our study. The 

share of renewable energy production ranges between 0.91% and 17.43% within the sample 

period. Figure 12 shows the share over time which is generally an upward trend with the lowest 

share (0.91%) observed in the first time-period and the highest share (17.43%) at the last 

observation. 
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As previously argued, it can be seen that the share is relatively constant in the initial years. From 

around 2005 onwards, when renewable energy share passes the 2% mark, more variation is 

introduced. A clear point at which the share of renewable energy production picks up is following 

the introduction of the Climate Change Act in 2008. The beginning of 2009 introduces a period in 

which the share of renewable energy production grows exponentially. On top of that, the data 

begins to exhibit clear seasonality. The inherent quarterly seasonality of renewable energy sources, 

and general energy demand means that variation increases. Wind turbines generate larger amounts 

of energy during autumn and winter months when it is windier and solar PV generates more energy 

during summer when there are more hours of sunlight. The shift towards renewable energy 

alternatives means that seasonality will become more apparent.  

Figure 12: Renewable energy share of total energy production 

 

Legend: 81 observations over the periods Q1 1998 to Q1 2018 



Faxholm & Liew (2019) 

 

43 

 

5.3.3 Control Variables 

Table 3 displays the key descriptive statistics for all the variables in our study. Starting with the 

first control variable, total energy production is shown to have a mean and median of 48.37 and 

45.42 respectively. It ranges from a minimum of 24.4 to a maximum of 80.98 million tonnes of oil 

equivalent, indicating a relatively high standard deviation and sample variance of 17.06 and 

291.04. 

The following three labour productivity measures show large differences in their descriptive 

statistics. The first productivity measure (extraction of crude petroleum and natural gas) exhibits 

the largest mean and median compared to the other productivity measures, with values of 694.08 

and 641.71. Along with the second productivity measure (manufacturing of coke, and refined 

petroleum products), they exhibit large variation, with standard deviations relatively close to their 

mean and median values. The last productivity measure (electricity, gas, steam and air 

conditioning supply) is far more constant, with a lower standard deviation relative to the mean and 

median. It is also far lower in its range, between 49.4 and 124.25.  

Real wages possess a relatively small standard deviation of 0.25 compared to its mean of 4.78. 

This suggests that it has not changed much over our sample period. This is also evident as it only 

ranges between 4.17 and 5.16. 

The final control variable, 10-year government bond yields, holds a mean and median of 3.74 and 

4.28 respectively. This variable shows large variation with a standard deviation of 1.43 with values 

ranging between 0.84 and 6.04. 

In general, we observe negative kurtosis for all variables other than real wages and labour 

productivity 2. This suggests that we are unlikely to encounter many outliers which would skew 

our results.  

The standard errors of our variables indicate that our sample observations are close to the true 

population observations. RE share has the largest standard error compared to its mean, which is 

unsurprising given its nature as a ratio.  
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5.4  Model Specification 

After specifying the statistical model and identifying the appropriate indicators to be used in the 

model, we would like to address any relevant model specification issues. Firstly, it is unlikely that 

our dependent variable, energy sector employment, is static and a dynamic model specification 

may be necessary to accurately model it. Additionally, this section addresses common issues with 

time-series data such as stationarity, cointegration and seasonality to ensure that our estimation 

model is well-specified. 

5.4.1 Autoregressive Distributed Lag (ARDL) Approach 

Van Reelen (1997) has argued that there is a dynamic relationship between innovations and 

employment. In our case, the move from non-renewable energy to renewable energy technologies 

may have a dynamic effect on employment. It is not unreasonable to assume that our independent 

variable of interest, RE_SHARE, may therefore hold a dynamic relationship with our dependent 

variable, ENERGY_EMP. Changes in RE_SHARE is likely to affect employment 

contemporaneously as well as in future periods due to employment contracts. Furthermore, due to 

rigidities in employment markets, it is also reasonable to assume that ENERGY_EMP is affected 

by its own past, as also suggested by Van Reelen (1997). Hence, the ARDL approach offers an 

appropriate single equation solution to model this relationship.  

The general ARDL model takes the following form: 

Equation 6 

𝑦𝑡 = 𝑎0 + 𝐴(𝐿)𝑦𝑡−1 + 𝐶(𝐿)𝑥𝑡 + 𝜀𝑡⁡ 

A(L) and C(L) are polynomials in the lag operator for our dependent and independent variables 

respectively. Therefore, the main aim is to estimate the parameters A(L) and C(L), in a 

parsimonious manner. The polynomial C(L) is of particular interest to us, as it represents how a 

change in 𝑥𝑡 affects the time path of 𝑦𝑡. In other words, how many periods, a change in 𝑥𝑡 affects 

𝑦𝑡 directly. Conversely, the A(L) polynomial represents the decay in changes to our dependent 

variable.  
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To estimate an ARDL, two central assumptions should be satisfied. Firstly, it is crucial that all 

variables included are stationary processes with white noise errors. This is dealt with in Section 

5.4.2 and is satisfied. Secondly, it is assumed that 𝑥𝑡 is exogenous to 𝑦𝑡  in order to be an appropriate 

explanatory variable. This means that the innovations of 𝑦𝑡 do not affect 𝑥𝑡, as they are not 

simultaneously determined. Additionally, the εt⁡error term of the model should be normally 

distributed and not serially correlated for the ARDL model to be considered well-specified. 

5.4.1.1 Exogeneity of Independent Variable 

We argue that our independent variable, RE_SHARE is exogenous to the dependent variable, 

ENERGY_EMP. Endogeneity exists if RE_SHARE is determined by ENERGY_EMP but we 

argue that the share of renewable energy production is not determined by number of people 

working in the sector. The share of renewable energy production in the UK is mainly determined 

by the factors discussed in Section 2.1 and not the availability of its inputs. 

As such, we can conclude that our dependent variable, RE_SHARE, at least is weakly exogenous 

and the ARDL assumptions are satisfied. 

5.4.2 Stationarity 

To satisfy the first assumption of the ARDL approach, we need to ensure stationarity across all 

variables. A stationary process is a stochastic process whose distribution does not change over 

time. Not only does using non-stationarity series not satisfy the assumptions of the ARDL 

modelling approach but can also lead to cointegration relationships across variables (discussed 

further in Section 5.4.5). 

As we are conducting a time-series study, it is likely that the variables in our study are originally 

non-stationary (dependent on time). Therefore, the following section tests and conducts the 

necessary transformations to ensure stationarity of our variables. To test for stationarity, both a 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and an Augmented Dickey Fuller (ADF) test have 

been employed. The KPSS test is a Lagrange-multiplier (LM) test of stationarity for time series 

with a null hypothesis of stationarity and an alternative hypothesis of non-stationarity 

(Kwiatkowski et al., 1992). The ADF test is a unit-root test for stationarity with a null hypothesis 

that a unit-root is present and as such the time series is non-stationary (Said & Dickey, 1984). 
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By using two distinct tests, we can reasonably conclude on the stationarity of the variables. An 

overview of the respective test statistics and methods of dealing with non-stationarity are 

summarised in Table 4. 

5.4.2.1 Energy sector employment 

The KPSS test on ENERGY_EMP produced a test-statistic of 0.9375 which is higher than the 

critical values at all the standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, 

we can reject the null hypothesis of stationarity at the 1% significance level. 

After observing the data, we initially conducted the ADF test with the inclusion of a drift and trend 

term and found that neither of them was significant. We removed the drift and trend terms and 

conducted the ADF test again. The ADF test produced a test-statistic of 0.5184 which is lower in 

absolute magnitudes than the critical values at all the standard significance levels (10%: -3.15, 5%: 

-3.45, 1%: -4.04). As such, we fail to reject the null hypothesis of non-stationarity at all standard 

significance level. As both the KPSS and ADF test suggest non-stationarity, we take the necessary 

steps to make ENERGY_EMP stationary. 

As the drift and trend terms of the initial ADF test were not significant, is it unlikely that 

ENERGY_EMP is trend stationary and the detrending approach cannot be used to address non-

stationarity. The alternative approach to stationarising a time series is through first-differencing 

provided the series is integrated of order 1 and higher orders of differencing if the series is 

integrated of higher orders.  

Upon first differencing, we tested the transformed ENERGY_EMP for stationarity by applying the 

KPSS test and ADF test again. The KPSS test produced a test-statistic of 0.3006 which is lower 

than the critical values at all the standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739), 

and we therefore fail to reject the null hypothesis of stationarity. The ADF test produced a test-

statistic of -4.3397 which is lower than the critical values at all the standard significance levels 

(10%: -1.61, 5%: -1.95, 1%: -2.6). As such, we can reject the null hypothesis of non-stationarity 

at all standard significance levels and conclude that the first differenced variable is stationary after 

conducting both tests. 
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5.4.2.2 Share of renewable energy production 

When applying the KPSS test on RE_SHARE, the produced test-statistic of 2.12 is higher than the 

critical values at all the standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, 

we can reject the null hypothesis of stationarity at the 1% significance level.  

We conducted the ADF test with the inclusion of a drift and trend term and found that the test-

statistics for the drift and trend terms were highly significant even at the 1% significance level.  

On top of that, the test-statistic of the lagged RE_SHARE term was -5.2279 which is higher in 

absolute magnitude than the critical values at all the standard significance levels (10%: -3.15, 5%: 

-3.45, 1%: -4.04). As such, we can reject the null hypothesis of non-stationarity at all standard 

significance levels when we include the drift and trend terms. The combination of non-stationarity 

indicated by KPSS, and stationarity when including drift and trend terms in ADF, indicates that 

RE_SHARE is trend stationary (i.e. a stationary process when its linear trend is removed). 

After establishing that RE_SHARE is a trend stationary process, the appropriate way to transform 

and stationarise RE_SHARE is to detrend it. We detrended RE_SHARE and then once again tested 

it for stationarity by conducting the KPSS and ADF test. The KPSS test produced a test-statistic 

of 0.2868 which is lower than the critical values at all the standard significance levels (10%: 0.347, 

5%: 0.463, 1%: 0.739). As such, we cannot reject the null hypothesis of stationarity. The ADF test 

without the drift and trend term produced a test-statistic of -5.2426 which is higher in absolute 

magnitude than the critical values at all the standard significance levels (10%: -1.61, 5%: -1.95, 

1%: -2.6). As such, we can reject the null hypothesis of non-stationarity at all standard significance 

levels and conclude that RE_SHARE is now a stationary process. 

Even though RE_SHARE is stationary after detrending, we would like to further transform 

RE_SHARE so that its coefficient can be better interpreted post-regressions. We transform 

RE_SHARE by first-differencing it so that it is consistent with our dependent variable, 

ENERGY_EMP, and we can interpret their coefficients ‘one-for-one’. As the process was already 

stationary prior to taking first difference, it can be assumed to remain stationary. 

5.4.2.3 Control variable: Total energy production 

The KPSS test when applied to total energy production produced a test-statistic of 2.01412 which 

is higher than the critical values at all the standard significance levels (10%: 0.347, 5%: 0.463, 

1%: 0.739). As such, we can reject the null hypothesis of stationarity at the 1% significance level. 
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Similar to before, ADF test was initially conducted with the inclusion of a drift and trend term. 

Again, we found the test-statistics for the drift and trend terms to be highly significant at the 1% 

significance level which points towards TOTAL_PROD being trend stationary. On top of that, the 

test-statistic of the lagged TOTAL_PROD term was -4.3466 which is higher in absolute magnitude 

than the critical values at all the standard significance levels (10%: -3.15, 5%: -3.45, 1%: -4.04). 

As such, we can reject the null hypothesis of non-stationarity at all standard significance levels 

when we include the drift and trend. 

We detrended TOTAL_PROD and tested it for stationarity by conducting the KPSS and ADF tests 

again. The KPSS test produced a test-statistic of 0.2317 which is lower than the critical values at 

all the standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we cannot reject 

the null hypothesis of stationarity and conclude that TOTAL_PROD is now stationary. The ADF 

test without the drift and trend term produced a test-statistic of -4.4255 which is higher in absolute 

magnitude than the critical values at all the standard significance levels (10%: -1.61, 5%: -1.95, 

1%: -2.6). As such, we can reject the null hypothesis of non-stationarity at all standard significance 

levels and conclude that the transformed TOTAL_PROD variable is now stationary. 

5.4.2.4 Control variable: Labour productivity 1 

The KPSS test produced a test-statistic of 0.3973 which is higher than the critical values at the 

10% significance level but lower than the critical values at the 5% and 1% significance levels 

(10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we can only reject the null hypothesis at the 10% 

significance level. We argue that the result of this test is inconclusive and justifies the need for 

another stationarity test.  

Similar to before, we initially conducted the ADF test with the inclusion of a drift and trend term 

and found that neither of them was significant. We removed the drift and trend terms and 

conducted the ADF test again. The ADF test produced a test-statistic of 0.4249 which is lower in 

absolute magnitude than the critical values at all the standard significance levels (10%: -1.61, 5%: 

-1.95, 1%: -2.6). As such, we cannot reject the null hypothesis of non-stationarity at all standard 

significance levels. We therefore conclude the variable is non-stationary. 
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Given the lack of significance in the drift and trend term in the ADF test, the appropriate method 

of making PRODUCTIVITY_1 stationary is to take the first difference. The transformed 

PRODUCTIVITY_1 is tested for stationarity by conducting the KPSS and ADF tests again. The 

KPSS test produced a test-statistic of 0.0848 which is lower than the critical values at all the 

standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we cannot reject the 

null hypothesis of stationarity. The ADF test produced a test-statistic of -6.2201 which is higher 

in absolute magnitude than the critical values at all the standard significance levels (10%: -1.61, 

5%: -1.95, 1%: -2.6). As such, we can reject the null hypothesis of non-stationarity at all standard 

significance levels and conclude that PRODUCTIVITY_1 is now stationary. 

5.4.2.5 Control variable: Labour productivity 2 

The KPSS test produced a test-statistic of 0.8719 which is higher than the critical values at all the 

standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we can reject the null 

hypothesis of stationarity at the 1% significance level. 

Again, we initially conducted the ADF test with the inclusion of a drift and trend term and found 

that neither of them was significant. We removed the drift and trend terms and conducted the ADF 

test again. The ADF test produced a test-statistic of -0.0073 which is lower in absolute magnitude 

than the critical values at all the standard significance levels (10%: -1.61, 5%: -1.95, 1%: -2.6). As 

such, we cannot reject the null hypothesis of non-stationarity at all standard significance levels and 

conclude that PRODUCTIVITY_2 non-stationarity. 

To make PRODUCTIVITY_2 stationary, PRODUCTIVITY_2 was first differenced. The 

transformed PRODUCTIVITY_2 is tested for stationarity by conducting the KPSS and ADF tests 

again. The KPSS test produced a test-statistic of 0.0408 which is lower than the critical values at 

all the standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we cannot reject 

the null hypothesis of stationarity and conclude that PRODUCTIVITY_2 is now stationary. The 

ADF test produced a test-statistic of -5.3221 which is higher in absolute magnitude than the critical 

values at all the standard significance levels (10%: -1.61, 5%: -1.95, 1%: -2.6). As such, we can 

reject the null hypothesis of non-stationarity at all standard significance levels and conclude that 

PRODUCTIVITY_2 is now stationary. 
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5.4.2.6 Control variable: Labour productivity 3 

The KPSS test produced a test-statistic of 1.1557 which is higher than the critical values at all the 

standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we can reject the null 

hypothesis of stationarity at the 1% significance level and conclude that the PRODUCTIVITY_3 

variable is non-stationary. 

Similar to before, we initially conducted the ADF test with the inclusion of a drift and trend term 

and found that neither of them was significant. We removed the drift and trend terms and 

conducted the ADF test again. The ADF test produced a test-statistic of 0.7128 which is lower in 

absolute magnitude than the critical values at all the standard significance levels (10%: -1.61, 5%: 

-1.95, 1%: -2.6). As such, we cannot reject the null hypothesis of non-stationarity at all standard 

significance levels and conclude that it is non-stationary. 

To make PRODUCTIVITY_3 stationary, PRODUCTIVITY_3 was first differenced. The KPSS 

test produced a test-statistic of 0.0404 which is lower than the critical values at all the standard 

significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we cannot reject the null 

hypothesis of stationarity. The ADF test produced a test-statistic of -4.9089 which is higher in 

absolute magnitude than the critical values at all the standard significance levels (10%: -1.61, 5%: 

-1.95, 1%: -2.6). As such, we can reject the null hypothesis of non-stationarity at all standard 

significance levels and conclude that PRODUCTIVITY_3 is now stationary. 

5.4.2.7 Control variable: Real wages 

The KPSS test produced a test-statistic of 1.1091 which is higher than the critical values at all the 

standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we can reject the null 

hypothesis of stationarity at the 1% significance level and conclude that the WAGES variable is 

non-stationary. 
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Similar to before, we initially conducted the ADF test with the inclusion of a drift and trend term 

and found that neither of them was significant. We removed the drift and trend terms and 

conducted the ADF test again. The ADF test produced a test-statistic of 1.7885 which is higher in 

absolute magnitude than the critical values at the 10% significance levels but lower than the critical 

values at the 5% and 1% significance levels (10%: -1.61, 5%: -1.95, 1%: -2.6). As such, we can 

only reject the null hypothesis at the 10% significance level. We argue that the result of this test is 

inconclusive but as the KPSS test above has indicated that WAGES is non-stationary, 

transformation of WAGES is necessary to make it stationary. 

To make WAGES stationary, WAGES was first differenced. The transformed WAGES is tested 

for stationarity by conducting the KPSS and ADF tests again. The KPSS test produced a test-

statistic of 0.6533 which is lower than the critical value at the 1% significance level but higher 

than the critical values at the 10% and 5% significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). 

As such, we can reject the null hypothesis of stationarity at the 5% significance level but not the 

1% significance level. We argue that the result of this test is inconclusive and justifies the need for 

another stationarity test. The ADF test produced a test-statistic of -7.1877 which is higher in 

absolute magnitude than the critical values at all the standard significance levels (10%: -1.61, 5%: 

-1.95, 1%: -2.6). As such, we can reject the null hypothesis of non-stationarity at all standard 

significance levels. Given that KPSS test concluded that WAGES was stationary at the 5% 

significance level and the ADF test indicated stationarity, we can conlude that WAGES is now 

stationary. 

5.4.2.8 Control variable: Interest rates 

The KPSS test produced a test-statistic of 1.7632 which is higher than the critical values at all the 

standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we can reject the null 

hypothesis of stationarity at the 1% significance level and conclude that the INTEREST variable 

is non-stationary. 
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Similar to before, we initially conducted the ADF test with the inclusion of a drift and trend term 

and found that neither of them was significant. We removed the drift and trend terms and 

conducted the ADF test again. The ADF test produced a test-statistic of -1.4449 which is lower in 

absolute magnitude than the critical values at all the standard significance levels (10%: -1.61, 5%: 

-1.95, 1%: -2.6). As such, we cannot reject the null hypothesis of non-stationarity at all standard 

significance levels. 

To make INTEREST stationary, INTEREST was first differenced. The transformed INTEREST 

is then test for stationarity by conducting the KPSS and ADF tests again. The KPSS test produced 

a test-statistic of 0.0642 which is lower than the critical values at all the standard significance 

levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we cannot reject the null hypothesis of 

stationarity. The ADF test produced a test-statistic of -6.5503 which is higher in absolute 

magnitude than the critical values at all the standard significance levels (10%: -1.61, 5%: -1.95, 

1%: -2.6). As such, we can reject the null hypothesis of non-stationarity at all standard significance 

levels and conclude that INTEREST is now stationary.
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Table 4: Stationarity Overview 
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5.4.3 Autoregressive (AR) Process 

To estimate the order of the A(L) polynomial in Equation 6, we need to establish the order of the 

AR(p) process that ENERGY_EMP follows. To evaluate ENERGY_EMP, plots of the ACF and 

PACF were observed. 

Figure 13: ACF and PACF - ENERGY_EMP 

 

Blue lines: 5% significance-level 

Figure 13 shows the ACF and PACF of the stationary dependent variable. When a variable is an 

AR(p) process, its ACF plot will show an exponential decay while the PACF plot will show p 

significant spikes. The number of significant spikes in the PACF provides an indication of the 

order of the AR(p) process that ENERGY_EMP follows and the order of the A(L) polynomial to 

be included in the ARDL model. Based on Figure 13, no clear pattern may be observed. Therefore, 

we cannot determine the order of its AR(p) through visual inspection. 

An alternative approach to determining the optimal order of the AR process of ENERGY_EMP is 

to compare across different options, using AIC and BIC. We therefore estimated six alternative 

AR processes, including lags between zero and five. When comparing for AIC, an AR(2) process 

performs the best. By contrast, when comparing using BIC, an AR(0) appears optimal by a narrow 

margin.  
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As these techniques give us inconsistent results, we will implement a model that allows us to 

account for the persistent nature of ENERGY_EMP. Further, we will check for the appropriate lag 

length of ENERGY_EMP to include based on the information criterions. 

5.4.4 Cross-correlogram 

In order to investigate the correlation between the stationary dependent and independent variables, 

a cross-correlogram can be applied, as depicted in Figure 14. The cross-correlogram displays the 

cross-correlations between our dependent variable, and the lags and leads of the independent 

variable. In doing so, we are able to observe the potential candidates for the C(L) function in the 

ARDL. From Figure 14, we can interpret that every forth lag of RE_SHARE is correlated with 

ENERGY_EMP. 

Figure 14: Cross-correlogram of lagged and lead RE_SHARE on ENERGY_EMP 

 

Blue lines: 5% significance-level 
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A potential explanation for why we only observe a single spike per year may be due to the 

difference in seasonality between our dependent and independent variable. As previously seen, our 

independent variable exhibits a seasonal process. As such, the significant lags of RE_SHARE (t-

4, t-8, t-12, etc.) are affecting ENERGY_EMP through the seasonal AR process of the independent 

variable RE_SHARE. This implies that including more than four lags of RE_SHARE would be 

overinclusion and will make the contemporaneous RE_SHARE estimator downward biased. As 

such, we should not include lags of more than four periods for RE_SHARE. 

5.4.5 Cointegration 

Both of our variables of interest are initially non-stationary but after testing, we concluded that 

ENERGY_EMP and RE_SHARE are both stationary processes post transformation. 

Cointegration exists when the residual of regressing a non-stationary variable on another non-

stationary variable is stationary (Engle & Granger, 1987). This indicates that the two variables 

move together over time and there may be a long-run relationship between the two variables. It is 

possible that a cointegrating relationship may exist between two initially non-stationary processes, 

ENERGY_EMP and RE_SHARE. If so, regressing our initial ENERGY_EMP on our initial 

RE_SHARE will lead to stationary residuals. If variables are cointegrated and this is not accounted 

for through an error correction model, the resulting estimates may be biased (Engle & Granger, 

1987). 

5.4.5.1 Engle-Granger two-step procedure 

To test for a cointegrating relationship between ENERGY_EMP and RE_SHARE, the Engle-

Granger two-step procedure can be applied (Engle & Granger, 1987). In the first step, we regress 

our initial non-stationary ENERGY_EMP against our initial non-stationary RE_SHARE and save 

the residuals. Next, we conduct an ADF test for stationarity on the saved residuals. If the residuals 

are stationary, we can conclude that there is a cointegrating relationship between ENERGY_EMP 

and RE_SHARE. The ADF test gives us a test-statistic of -1.6729 which is lower in absolute 

magnitude than the critical values at the 5% significance level (10%: -1.61, 5%: -1.95, 1%: -2.6). 

As such, at the 5% significance level, we are unable to reject the null hypothesis of non-stationarity 

of the residuals. Therefore, we may conclude that residuals are not stationary and that 

ENERGY_EMP and RE_SHARE are not cointegrated. 
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5.4.5.2 ARDL Bounds testing approach 

By using the Engle-Granger test we found the lack of a cointegrating relationship between our 

dependent and independent variable of interest. Nevertheless, a cointegrating relationship may 

exist across all the variables we would like to include in our model (dependent variable, 

independent variable and control variables).  

To test for cointegration across all our variables, we have used the ARDL bounds testing approach 

(Pesaran et al., 2001). The bounds test is testing for the absence of a long-run equilibrium 

relationship between the variables by conducting a joint F-test on Equation 7 with a null hypothesis 

of 𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 𝜃5 = 𝜃6 = 𝜃7 = 𝜃8 = 0. Rejection of the null hypothesis implies the 

potential existence of a long-run cointegrating relationship. The critical values for the bounds test 

are taken from Pesaran et al. (2001) where the lower bound values assume that the variables are 

purely I(0) while the upper bound values assume that the variables are purely I(1). If the F-statistic 

falls outside the bounds, we are able to conclude on the cointegrating relationship and if the F-

statistic falls within the bounds, inference would be inconclusive. 

We have chosen the ARDL bounds testing approach over the Johansen cointegration testing 

approach (Johansen, 1988) as it is more flexible. The ARDL bounds testing approach allows 

variables to be stationary at different levels (I (0) or I (1)) while the Johansen test requires the 

variables to all have the same order of integration. In Section 5.4.2 we found that RE_SHARE and 

TOTAL_PROD are trend stationary which means that they are integrated at order 0, whilst the 

remaining variables are integrated at order 1. Therefore, the ARDL bounds test is more suited for 

our modelling approach. On top of that, the Johansen test suffers from low power when the sample 

size is not large. 

To perform the bounds test, we first run the following model: 

Equation 7 

∆𝑦𝑡 =⁡𝛽0 + 𝛽1∆𝑦𝑡−1 + 𝛽1∆𝑦𝑡−2 + 𝛽2∆𝑥𝑡−1 + 𝛽3∆𝑧1𝑡−1 + 𝛽4∆𝑧2𝑡−1 + 𝛽5∆𝑧3𝑡−1 ⁡+ 𝛽6∆𝑧4𝑡−1

+ 𝛽7∆𝑧5𝑡−1 + 𝛽8∆𝑧6𝑡−1 + 𝜃1𝑦𝑡−1 + 𝜃2𝑥𝑡−1 + 𝜃3𝑧1𝑡−1 + 𝜃4𝑧2𝑡−1 + 𝜃5𝑧3𝑡−1

+ 𝜃6𝑧4𝑡−1 + 𝜃7𝑧5𝑡−1 + 𝜃8𝑧6𝑡−1 + 𝜖𝑡 
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𝑦 = 𝐸𝑁𝐸𝑅𝐺𝑌_𝐸𝑀𝑃 (Pre-transformation) 

𝑥 = 𝑅𝐸_𝑆𝐻𝐴𝑅𝐸 (Pre-transformation) 

𝑧1 = 𝑇𝑂𝑇𝐴𝐿_𝑃𝑅𝑂𝐷 (Pre-transformation) 

𝑧2 = 𝑃𝑅𝑂𝐷𝑈𝐶𝑇𝐼𝑉𝐼𝑇𝑌1 (Pre-transformation) 

𝑧3 = 𝑃𝑅𝑂𝐷𝑈𝐶𝑇𝐼𝑉𝐼𝑇𝑌2 (Pre-transformation) 

𝑧4 = 𝑃𝑅𝑂𝐷𝑈𝐶𝑇𝐼𝑉𝐼𝑇𝑌3 (Pre-transformation) 

𝑧5 = 𝑊𝐴𝐺𝐸𝑆 (Pre-transformation) 

𝑧6 = 𝐼𝑁𝑇𝐸𝑅𝐸𝑆𝑇 (Pre-transformation)

When we run the model in Equation 7 and conduct an F-test on the coefficients of the lagged-level 

variables, we obtain a F-statistic of 1.939. Figure 15 reflects the critical values based on Table 

CI(iii) in Pesaran et al. (2001). The critical values for the lower bound when using eight variables 

are 1.95 at the 10% significance level, 2.22 at the 5% significant level and 2.48 at the 1% 

significance level. The critical values for the upper bound are 3.06 at the 10% level, 3.39 at the 5% 

significance level and 4.10 at the 1% significance level. With a F-statistic of 1.939 which is lower 

than all the lower bound critical values, we can conclude that there is no significant cointegrating 

relationship across our variables. 

Figure 15: Bounds test critical values 

 

Source: Pesaran et al. (2001) ‘Bounds testing approaches to the analysis of level relationships’ 

5.4.6 Seasonality 

As previously observed, it is possible that there exists seasonality in our data due to quarterly data 

being used. Considering that our area of study involves energy production, and especially 

renewable energy production that may be affected by weather patterns, it is necessary to account 

for such seasonal patterns in our model. We apply two different techniques for controlling for 

seasonality. 
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5.4.6.1 Seasonal lag term 

The first method to control for seasonality in our model is to include a seasonal lag term of 𝑦𝑡−4 

to the right-hand side of the equation. The coefficient for 𝑦𝑡−4 will capture any annual persistence 

of the dependent variable. The benefits of this method for accounting for seasonality is that it only 

adds one additional term into our model rather than three additional terms by using seasonal 

dummies and as such results in a more parsimonious model. However, inclusion of such a seasonal 

lag term may complicate interpretations for our other lagged independent variables. 

5.4.6.2 Seasonal dummies 

The more conventional approach to controlling for seasonality is the inclusion of seasonal 

dummies; one dummy for each quarter except the baseline Q1. The seasonal dummies will be 

added to our model and tested for joint-significance to test for seasonality in our model. This 

method is relatively straightforward and easy to implement. However, it will require three 

additional dummy variables to be added to the model and may lead to the model being less 

parsimonious. Nevertheless, we apply both techniques separately to check and control for 

seasonality in our model. 

5.5 Initial Regressions 

5.5.1 Accounting for Possible Seasonality 

As explained in Section 5.4.6, we will try to account for seasonality using two distinct approaches. 

We will start out by including 𝑦𝑡−4 into a simple regression of 𝑦𝑡 on 𝑥𝑡 to investigate the potential 

presence of seasonality in our dependent variable. Subsequently, we use the seasonal dummies 

approach. 

Equation 8 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−4 + 𝛽2𝑥𝑡 

By implementing the model above, we found yt−4 to be not statistically significant at all standard 

significance levels (1%, 5% and 10%) with a P-value of 0.4782. This suggests it is unlikely that 

our dependent variable, energy sector employment, possesses seasonal properties. 



Methodology 

 

60 

 

Equation 9 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙⁡𝐷𝑢𝑚𝑚𝑖𝑒𝑠 

We then included seasonal dummies instead of the yt−4 term and found them to be neither 

individually, nor jointly-significant with an F-statistic of 0.5342 and P-value of 0.6602. This 

suggests that there is no significant seasonality in the dependent variable that we can identify in 

our model and we may not need to be overly concerned about it. Nevertheless, we will continue to 

include the seasonal dummies in the model and conduct further tests when our dynamic 

specification and control variables have been included. 

5.5.2 Dynamic Specification: Determining Number of Lags 

As previously stated, the aim of the ARDL model specification is to estimate the optimal A(L) and 

C(L) polynomials. The findings in Section 5.4.3 suggested an A(L) polynomial up to order two, 

and in Section 5.4.4, the cross-correlogram suggests that lags of up to four periods should be 

considered for the C(L) polynomial. As such, a good starting point for determining the dynamic 

specification of our model is to include two lags of the dependent and four lags of the independent 

variable as shown in Equation 10. 

Equation 10 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + 𝛽3𝑥𝑡 + 𝛽4𝑥𝑡−1 + 𝛽5𝑥𝑡−2 + 𝛽6𝑥𝑡−3 + 𝛽7𝑥𝑡−4

+ 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙⁡𝐷𝑢𝑚𝑚𝑖𝑒𝑠 

The model was estimated, and a step-wise elimination method was adopted. The stepwise 

elimination method was conducted by removing statistically insignificant lagged x variables and 

comparing the BIC of the models. Thus, we started by removing 𝑥𝑡−4. If the coefficient of a lagged 

x term is not significant and removing it improves the BIC of the model, we deem including that 

term unnecessary and remove it permanently. We continue this step-wise elimination for all our 

lagged x terms and find that all the lagged x terms are not significant and that including them makes 

our model perform worst. As such, we have excluded the lagged x terms and will only keep 

contemporaneous x in our model. 
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After deciding to only keep contemporaneous x in our model, we performed the same stepwise 

elimination to lagged y variables. We find that when two lags of y are included (yt−1 and yt−2), 

both of the lagged terms are statistically significant at the 10% significance level. To ensure that 

this model is statistically sound, the residuals of the estimates were tested for serial correlation 

using the Breusch-Godfrey test for serial correlation. The test-statistic of 12.327 and p-value of 

0.2638 does not allow us to reject the null hypothesis of no serial correlation. Equation 11 shows 

the model that we have arrived at. 

Equation 11 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + 𝛽3𝑥𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙⁡𝐷𝑢𝑚𝑚𝑖𝑒𝑠 

The correlogram in Section 5.4.4 suggested statistically significant correlation between our 

dependent variable and every fourth lag of our independent variable. As such, we test whether 

introducing only the fourth lag of RE_SHARE (𝑥𝑡−4)  on top of contemporaneous RE_SHARE 

might affect 𝑦𝑡 by estimating the following model: 

Equation 12 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + 𝛽3𝑥𝑡 + 𝛽4𝑥𝑡−4 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙⁡𝐷𝑢𝑚𝑚𝑖𝑒𝑠 

We found that by estimating this model, both the coefficients of 𝑥𝑡 and 𝑥𝑡−4 are insignificant. 

Moreover, the BIC of our model increases from -322.3805 to -309.6956, which indicates that 

adding 𝑥𝑡−4 makes the model worse. This suggests that 𝑥𝑡−4 does not directly affect our dependent 

variable but may affect contemporaneous 𝑥𝑡 which in turn affects our dependent variable. As such, 

we will not include 𝑥𝑡−4 in the further model specifications. 

As such, we find that Equation 11 best represents the dynamic specification and ARDL polynomial 

for the relationship between ENERGY_EMP and RE_SHARE. 
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5.6 Full Model Estimation 

In our efforts to estimate an ARDL model, we specified our A(L) and C(L) polynomial to be of 

order two and zero respectively. Additionally, we then include our six control variables presented 

earlier. As such, our model is now represented by Equation 13.   

Equation 13 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + 𝛽3𝑥𝑡 + 𝛽4𝑧1𝑡 + 𝛽5𝑧2𝑡 + 𝛽6𝑧3𝑡 + 𝛽7𝑧4𝑡 + 𝛽8𝑧5𝑡 + 𝛽9𝑧6𝑡

+ 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙⁡𝐷𝑢𝑚𝑚𝑖𝑒𝑠 

Table 5: Regression Overview 

 
Model 1 

Seasonality 1 
Model 2 

Seasonality 2 

Model 3 
Dynamic 

specification 

Model 4 
Full Model w/ 

seasonality 

Model 5 
Final model 

ENERGY_EMP (𝒚𝒕−𝟏)   ✓ ✓ ✓ 

ENERGY_EMP (𝒚𝒕−𝟐)   ✓ ✓ ✓ 

RE_SHARE (𝒙𝒕) ✓ ✓ ✓ ✓ ✓ 

ENERGY_EMP (𝒚𝒕−𝟒) ✓     

Seasonal Dummies  ✓ ✓ ✓  

Control Variables    ✓ ✓ 

R2 0.05901 0.067 0.1794 0.3977 0.3868 

No. of Observations 80 80 80 80 80 
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The model was estimated, and the seasonal dummies were once again tested for joint-significance. 

The joint F-test gave a F-statistic of 0.3929 and a P-value of 0.7585 which is once again not 

statistically significant. For the final model, seasonal dummies were removed as it is deemed to 

improve our model specification. When the seasonal dummies were removed, the BIC improved 

from -320.3656 to -332.0339. The final model was estimated as represented by Equation 14. Table 

5 provides an overview of all the key models estimated. 

Equation 14 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + 𝛽3𝑥𝑡 + 𝛽4𝑧1𝑡 + 𝛽5𝑧2𝑡 + 𝛽6𝑧3𝑡 + 𝛽7𝑧4𝑡 + 𝛽8𝑧5𝑡 + 𝛽9𝑧6𝑡  

5.6.1 Results 

Table 6: Results Overview 

 
Model 1 

Seasonality 1 
Model 2 

Seasonality 2 

Model 3 
Dynamic 

specification 

Model 4 
Full model w/ 

seasonality 

Model 5 
Final model 

Intercept 
0.001926 

(0.003113) 
0.008532 

(0.006176) 
0.007342 

(0.005994) 
0.0060341 

(0.0063109) 
0.002368 

(0.002651) 

ENERGY_EMP (𝒚𝒕−𝟏)   
0.225701* 
(0.115973) 

0.1506061 
(0.1106818) 

0.175003* 
(0.101834) 

ENERGY_EMP (𝒚𝒕−𝟐)   
0.204784* 
(0.117810) 

0.2868785** 
(0.1097921) 

0.271385*** 
(0.101396) 

RE_SHARE (𝒙𝒕) 
0.039075* 
(0.020701) 

0.029988 
(0.025759) 

0.036664 
(0.025516) 

0.0514694** 
(0.0242439) 

0.055072*** 
(0.017628) 

ENERGY_EMP (𝒚𝒕−𝟒) 
0.81756 

(0.114691) 
    

Seasonal Dummies  ✓ ✓ ✓  

Control Variables    ✓ ✓ 

AIC -328.0964 -346.0428 -341.2342 -353.3595 -357.9577 

BIC -318.7735 -331-7506 -322.3805 -320.3656 -332.0339 

Significance levels: *10% level, **5% level, ***1% level. 
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The results of the five variations of our model are presented in Table 6. Models 1 and 2 were used 

to check for seasonality in our dependent variable while Model 3 adopts our estimated A(L) and 

C(L) polynomials for a dynamic specification. Model 4 adds the previously specified control 

variables to our dynamic specification model and Model 5 is our final model. 

Other than the models used for specification testing (models 1-3), the coefficient of the 

independent variable remains statistically significant and of similar magnitude in Models 4 and 5. 

In our final model (Model 5), the coefficient of RE_SHARE is 0.055072 and is highly significant 

(1% significance level). The coefficient is higher in our final model than when controls are not 

included (Model 3) which signals the presence of a downward omitted variable bias when we do 

not include the control variables 

When comparing the information criterion across the six models, we can observe that the AIC and 

BIC are the lowest in our final model. This suggests that the final model is better specified 

compared to the other models. As such, based on the information criteria, we can conclude that 

our final model is statistically the best specified model as compared to the other models. 

The full results of Model 5 are presented in Table 7. 
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Table 7: Final Model Results 

 Estimate Standard Error t-value P-value Significance 

Intercept 0.002368 0.002651 0.893 0.37475  

ENERGY_EMP (𝒚𝒕−𝟏) 0.175003 0.101834 1.719 0.09025 * 

ENERGY_EMP (𝒚𝒕−𝟐) 0.271385 0.101396 2.676 0.00932 *** 

RE_SHARE (𝒙𝒕) 0.055072 0.017628 3.124 0.00262 *** 

TOTAL_PROD (𝒛𝟏𝒕) 0.011161 0.23463 0.476 0.63584  

PRODUCTIVITY_1 (𝒛𝟐𝒕) -0.59723 0.014432 -4.138 0.0000985 *** 

PRODUCTIVITY_2 (𝒛𝟑𝒕) 0.030076 0.013525 2.224 0.02949 ** 

PRODUCTIVITY_3 (𝒛𝟒𝒕) -0.019913 0.033544 -0.594 0.55473  

WAGES (𝒛𝟓𝒕) -0.040496 0.208055 -0.195 0.84626  

INTEREST (𝒛𝟔𝒕) 0.010444 0.022227 0.470 0.63995  

Significance levels: *10% level, **5% level, ***1% level. 

We have found the following variables to be statistically significant in our analysis: 

• Lagged energy sector employment (𝑦𝑡−1) 

• Lagged energy sector employment (𝑦𝑡−2) 

• Share of renewable energy production (𝑥𝑡) 

• Labour productivity (B06) (𝑧2𝑡) 

• Labour productivity (C19) (𝑧3𝑡) 

Despite statistical insignificance of the remaining control variables, we opted against their 

removal. Section 4 highlighted the theoretical need for them to be included and if excluded would 

result in a possible omitted variable bias. 
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Figure 16: Residuals Diagnostics 

 

Legend: Residual plot, ACF of residuals and distribution of residuals 

To further ensure that our final model is correctly specified, diagnostics on the residuals of the 

final model were conducted. As previously discussed in Section 5.4.1, the εt⁡error term of the 

ARDL should be normally distributed and not serially correlated for the ARDL model to be 

considered well-specified. Residuals that are serially-correlated or have a non-normal distribution 

may indicate that the estimates are inconsistent, and that some information is still contained in the 

residuals. This would indicate the existence of a better-specified model. In the bottom right of 

Figure 16 we can see that the residuals are generally normally distributed and are not significantly 

skewed. The ACF of the residuals only displays one significant spike at the 5% significance level. 

At a 5% significance level, there is a one in twenty chance of error in the ACF and the one 

significant spike may be ignored. 

The plot of the residuals does not show any particular trend or persistence and are indicative of a 

white noise process. A formal Breusch-Godfrey serial correlation test was conducted which 

produced a test-statistic of 6.2623 with a P-value of 0.1804. Under the null hypothesis of no serial 

correlation, this may not be rejected at a 10% level of significance.  
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Additionally, a formal heteroskedasticity test was conducted to ensure that the residuals are 

homoscedastic. Heteroskedasticity in our model will cause the estimated variance in our model to 

be biased and affect our inferences (Breusch & Pagan, 1979). A Breusch-Pagan test for 

heteroskedasticity produced a test-statistic of 5.3124 with a P-value of 0.8063 which does not 

allow us to reject the null hypothesis of homoskedasticity. As such, we can conclude that there is 

no heteroskedasticity present in our final model and there is no indication of the estimated 

variances to be biased. 

The residual diagnostics confirm our assumption of well-behaved residuals in the ARDL approach 

and indicates that the model is correctly specified. 

The results from the final model (Table 7) produces a statistically significant coefficient of 

0.055072 for our main variable of interest, share of renewable energy production. This implies that 

there is a positive contemporaneous relationship between change in share of renewable energy 

production in the UK and change in the amount of energy sector employment over the time-period 

of the study. Our model suggests that on average, a 1% increase in the share of renewable energy 

production in the UK leads to an approximate 0.055% contemporaneous increase in the number of 

people employed in the energy sector. This is in line with previous research suggesting a small 

positive direct net gain in employment from the increased reliance on renewable energy. 
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Figure 17: Impulse Response 

 

Legend: Impulse response of energy sector employment as a result of a 1% upward shock in the share of renewable 

energy production 

The two lagged dependent variable terms added into the ARDL model both remain statistically 

significant in our final model even after the control variables were added. The coefficients for 𝑦𝑡−1 

and 𝑦𝑡−2 were 0.175003 and 0.271385 respectively. As both the right and left-hand side of the 

equation are first-differenced, the coefficients are interpreted as the rate of decay of the change in 

RE_SHARE (Enders, 2014). Figure 17 shows the impulse response of our dependent variable from 

a 1% positive shock to our independent variable. It may be observed that a 1% shock to the share 

of renewable energy production can have a decaying persistent effect on energy sector employment 

that almost converges to zero after around five quarters. 
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5.7 Structural Breaks 

As discussed in Section 5.3.1, ENERGY_EMP had been decreasing from 1998 to 2005 and then 

experienced a turnaround and has been increasing from 2006 to 2018. This is indicative of a 

structural break within our time-period and should formally be evaluated. 

5.7.1 Identifying Structural Breaks 

To formally identify the presence of a structural break in the data, the algorithm developed by Bai 

& Perron (2003) was used. This algorithm simultaneously estimates the regressions of our 

independent variable against our dependent variable at multiple potential breakpoints, such that 

the residual sum of squares is minimised. This procedure established a breakpoint, as shown in 

Figure 18. Specifically, the procedure suggests a possible structural break in Q2 of 2006 which is 

in line with our initial impressions. 

Figure 18: Possible Structural Breakpoint 

 

Legend: Suggested breakpoint in data based on algorithm by Bai & Perron (2003) 
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5.7.2 Subsample Estimation 

As a structural break has been identified in Section 5.7.1 above, we would like to conduct 

subsample estimations as a means of checking the robustness of the results produced in Section 

5.6. Subsample estimates that are similar to the results in Section 5.6 would be indicative that the 

identified structural break is not of a large concern and that our full-sample results are robust. 

Considering the nature of the data for our independent variable, only the post-break estimation was 

deemed to be statistically appropriate. Prior to the breakpoint, our independent variable exhibits 

limited variation as shown in Section 5.3.2 and consists of only 33 observation. Therefore, any 

inference testing on the coefficients risk being inefficient and not meaningful. 

We then conducted a subsample estimation with the 47 observations for the time-period 2006Q2 

to 2018Q1 using the same model specification as in Equation 14. The results are shown in Table 

8. 

We acknowledge that estimating the same model using only 47 observations compared to our 

initial 80 observations may make the estimates less efficient. It may however serve as a robustness 

check for the validity of our model and the significance of our independent variable, share of 

renewable energy production. 

The estimate produces a coefficient of 0.055298 for RE_SHARE which is similar to the coefficient 

of 0.055072 that was produced by the full sample estimation. RE_SHARE loses some significance, 

but it is still statistically significant at the 5% significance level. Interestingly, the two control 

variables that were initially statistically significant (PRODUCTIVITY_1 and 

PRODUCTIVITY_2) remain significant with similar coefficients. Meanwhile, the two lagged 

terms of the dependent variable (𝑦𝑡−1 and 𝑦𝑡−2) lose their statistical significance even at a 10% 

level of significance. This indicates that ENERGY_EMP in the subsample may possess a different 

AR process as compared to the full sample but will not be investigated further in this study. 
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Table 8: Subsample Estimation Results (2006Q2 – 2018Q1) 

 Subsample estimation Full sample estimation 

 Estimate 
Standard 

Error 
Significance Estimate 

Standard 
Error 

Significance 

Intercept 0.007250 0.004204 * 0.002368 0.002651  

ENERGY_EMP (𝒚𝒕−𝟏) -0.029262 0.136438  0.175003 0.101834 * 

ENERGY_EMP (𝒚𝒕−𝟐) 0.169246 0.132706  0.271385 0.101396 *** 

RE_SHARE (𝒙𝒕) 0.055298 0.022210 ** 0.055072 0.017628 *** 

TOTAL_PROD (𝒛𝟏𝒕) 0.012606 0.033265  0.011161 0.23463  

PRODUCTIVITY_1 (𝒛𝟐𝒕) -0.048579 0.017771 *** -0.59723 0.014432 *** 

PRODUCTIVITY_2 (𝒛𝟑𝒕) 0.053986 0.019203 *** 0.030076 0.013525 ** 

PRODUCTIVITY_3 (𝒛𝟒𝒕) -0.18281 0.041759  -0.019913 0.033544  

WAGES (𝒛𝟓𝒕) 0.025229 0.288071  -0.040496 0.208055  

INTEREST (𝒛𝟔𝒕) 0.003825 0.025201  0.010444 0.022227  

Observations 47 80 

Significance levels: *10% level, **5% level, ***1% level. 
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6 Extension 

Our dependent variable, energy sector employment, is a measure of employment that accounts for 

the number of people employed by the energy sector. However, it does not take into account the 

number of hours worked by each individual or the total volume of labour being used in the 

production of energy in the UK. Even though we have found a positive relationship between the 

share of renewable energy production and energy sector employment, it is possible that employees 

are now working less as compared to before. As such, the energy transition towards renewable 

energy may lead to higher employment but not necessarily higher labour input. This would indicate 

that the labour is simply split across more employees, and therefore the labour efficiency of 

renewable energy would not be significantly less than non-renewable energy. 

The following extension will simultaneously act as a robustness check to ensure that our previously 

attained results are not invalid by introducing labour (hours of work) instead of employment as 

our dependent variable in a similar ARDL model. 

6.1 Hours of Work 

Figure 19: Employment vs Labour 

 

Legend: Plot comparing the movement of energy sector employment and energy sector labour between the periods 

Q1 1998 to Q1 2018 
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Hours of work is defined as the total number of hours worked in the energy sector and is measured 

as an index based on the base-year of 2015 similar to our initial dependent variable. Likewise, 

quarterly data was retrieved from the Eurostat database groups for the “MIG – Energy” industry 

classification. To normalise our variable, the logarithm of hours of work was computed and saved 

as HOURS_WORKED. 

Figure 19 shows that HOURS_WORKED and ENERGY_EMP generally followed a similar 

pattern between 1998 and 2018 with HOURS_WORKED showing signs of seasonality as 

compared to a relatively smooth ENERGY_EMP.  

6.2 Model Estimation 

We conducted the ADF stationarity test on HOURS_WORKED and found it to be trend stationary. 

We detrended HOURS_WORKED and tested it for stationarity by conducting the KPSS and ADF 

test again. The KPSS test produced a test-statistic of 0.3437 which is lower than the critical values 

at all the standard significance levels (10%: 0.347, 5%: 0.463, 1%: 0.739). As such, we cannot 

reject the null hypothesis of stationarity. The ADF test produced a test-statistic of  

-3.0825 which is higher in absolute magnitude than the critical values at all the standard 

significance levels (10%: -1.61, 5%: -1.95, 1%: -2.6). As such, we can reject the null hypothesis 

of non-stationarity at all standard significance levels and conclude that HOURS_WORKED is now 

a stationary process. 

Similar to what was done to RE_SHARE, we would like to further transform HOURS_WORKED 

so that its coefficient can be better interpreted post-regressions. We transform HOURS_WORKED 

by first-differencing it and as the process was already stationary prior to taking first difference, it 

can be assumed to remain stationary. 

To ensure that the ARDL model is not misspecified as a result of using a different right-hand side 

variable, A(L) and C(L) polynomials should be reestimated. The stepwise elimination approach 

previously used in Section 5.5.2 was conducted on the new dependent variable. 
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As a result of stepwise elimination, including only the contemporaneous effect and the first lags 

of both y and x returned the best performing model according to the information criteria (AIC and 

BIC) and statistical significance of coefficients. Equation 15 best represents the dynamic 

specification when using HOURS_WORKED as our dependent variable instead of 

ENERGY_EMP. 

Equation 15 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽3𝑥𝑡 + 𝛽4𝑥𝑡−1 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙⁡𝐷𝑢𝑚𝑚𝑖𝑒𝑠 

Equation 16 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑥𝑡 + 𝛽3𝑥𝑡−1 + 𝛽4𝑧1𝑡 + 𝛽5𝑧2𝑡 + 𝛽6𝑧3𝑡 + 𝛽7𝑧4𝑡 + 𝛽8𝑧5𝑡 + 𝛽9𝑧6𝑡

+ 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙⁡𝐷𝑢𝑚𝑚𝑖𝑒𝑠 

The same six control variables were added to the ARDL model as shown in Equation 16. The 

seasonal dummies were tested for joint significance using a joint F-test. The resulting F-statistic 

of 5.6771 and a P-value of 0.001605 indicates that the seasonal dummies are jointly statistically 

significant at a 1% level of significance. This suggests that contrary to our initial dependent 

variable, our new dependent variable, hours of work, possesses seasonal properties. As such, the 

seasonal dummies were not removed as they are necessary to control for seasonality in our data. 
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6.3 Results 

Table 9: Extension Model Results 

 Estimate Standard Error t-value P-value Significance 

Intercept -0.025786 0.009416 -2.739 0.007924 *** 

ENERGY_EMP (𝑦𝑡−1) -0.439640 0.090640 -4.850 0.000008 *** 

RE_SHARE (𝑥𝑡) -0.004513 0.033600 -0.134 0.893574  

RE_SHARE (𝑥𝑡−1) 0.1151174 0.032809 3.510 0.000812 *** 

TOTAL_PROD (𝑧1𝑡) -0.012252 0.042842 -0.286 0.775787  

PRODUCTIVITY_1 (𝑧2𝑡) -0.073518 0.022556 -3.259 0.001767 *** 

PRODUCTIVITY_2 (𝑧3𝑡) -0.004939 0.019684 -0.251 0.802660  

PRODUCTIVITY_3 (𝑧4𝑡) -0.147954 0.049099 -3.013 0.003662 *** 

WAGES (𝑧5𝑡) 0.123408 0.305998 0.403 0.688035  

INTEREST (𝑧6𝑡) 0.016309 0.031347 0.520 0.604612  

Seasonal Dummies F-statistic: 5.6771 0.001605 *** 

R2 0.5504 

Observations 80 

Significance levels: *10% level, **5% level, ***1% level. 

The results from the model does not produce a statistically significant contemporaneous coefficient 

for our main variable of interest 𝑥𝑡, but a highly statistically significant coefficient of 0.1151174 

for its lagged value 𝑥𝑡−1. This suggests the existence of a positive relationship between the change 

in share of renewable energy production in the UK and the change in the number of hours worked 

one period after, but not contemporaneously. This is interesting as it differs from the results that 

we obtained when using energy sector employment as the dependent variable. 
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On average, a 1% increase in the share of renewable energy production in the UK leads to an 

approximate 0.115% increase in the total number of hours worked in the energy sector in the next 

quarter. 

Figure 20: Residual Diagnostics 

 

Legend: Residual plot, ACF of residuals and distribution of residuals 

As before, residual diagnostics were conducted to verify that the residuals are well-behaved and 

that the model is well specified. 

The residual diagnostics confirm our assumption of well-behaved residuals in the ARDL approach 

and indicates that the model is correctly specified. 

In the bottom right of Figure 20 we can see that the residuals are generally normally distributed 

and are not significantly skewed. The ACF of the residuals shows no significant spikes at the 5% 

significance level and this suggests no serial correlations between residuals. The plot of the 

residuals does not show any particular trend or persistence and are indicative of a white noise 

process. A formal Breusch-Godfrey serial correlation test was conducted which produced a test-

statistic of 4.5852 with a P-value of 0.3326. Under the null hypothesis of no serial correlation, this 

may not be rejected at a 10% level of significance and we can conclude that there is no significant 

serial correlation in the residuals. 
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Additionally, a formal heteroskedasticity test was conducted to ensure that the residuals are 

homoscedastic. A Breusch-Pagan test for heteroskedasticity produced a test-statistic of 9.6507 

with a P-value of 0.6466 which does not allow us to reject the null hypothesis of homoskedasticity. 

As such, we can conclude that there is no heteroskedasticity present in our final model and that the 

estimated variances are not biased. 

The residual diagnostics confirm our assumption of well-behaved residuals in the ARDL approach 

and indicates that the model is correctly specified. 

6.3.1 Employment vs Labour 

Table 10: Employment vs Labour Results 

 Employment as Dependent Variable Labour as Dependent Variable 

 Estimate 
Standard 

Error 
Significance Estimate 

Standard 
Error 

Significance 

Intercept 0.002368 0.002651  -0.025786 0.009416 *** 

ENERGY_EMP (𝑦𝑡−1) 0.175003 0.101834 * -0.439640 0.090640 *** 

ENERGY_EMP (𝑦𝑡−2) 0.271385 0.101396 *** - - - 

RE_SHARE (𝑥𝑡) 0.055072 0.017628 *** -0.004513 0.033600  

RE_SHARE (𝑥𝑡−1) - - - 0.1151174 0.032809 *** 

TOTAL_PROD (𝑧1𝑡) 0.011161 0.23463  -0.012252 0.042842  

PRODUCTIVITY_1 (𝑧2𝑡) -0.59723 0.014432 *** -0.073518 0.022556 *** 

PRODUCTIVITY_2 (𝑧3𝑡) 0.030076 0.013525 ** -0.004939 0.019684  

PRODUCTIVITY_3 (𝑧4𝑡) -0.019913 0.033544  -0.147954 0.049099 *** 

WAGES (𝑧5𝑡) -0.040496 0.208055  0.123408 0.305998  

INTEREST (𝑧6𝑡) 0.010444 0.022227  0.016309 0.031347  

Seasonal Dummies - F-statistic: 5.6771 *** 

Observations 80 80 

Significance levels: *10% level, **5% level, ***1% level. 
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Table 10 shows the results from using employment and labour as dependent variables. As 

previously mentioned, our independent variable, share of renewable energy production, affects 

employment and labour at different periods. When there is a shock in the share of renewable energy 

production, employment is contemporaneously affected while labour is only affected one period 

later. The magnitudes of the effects also defer with the lagged effect on labour being more than 

twice as large as the contemporaneous effect on employment. 

Another interesting difference when modelling employment and labour is that employment is 

estimated as an AR(2) process while labour is estimated to be an AR(1) process. This suggests that 

there is more persistence in employment than labour and that the rate of decay of a change in 

RE_SHARE might be less rapid in employment than labour. 

Figure 21: Impulse Response 

 

Legend: Impulse response of energy sector employment and energy sector hours worked as a result of a 1% upward 

shock in the share of renewable energy production 
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Figure 21 shows the impulse response of a 1% upward shock in RE_SHARE on ENERGY_EMP 

and HOURS_WORKED. We can see that the delayed jump in HOURS_WORKED is of a much 

larger amplitude compared to ENERGY_EMP. However, we also observe a rapid decay such that 

HOURS_WORKED is lower than ENERGY_EMP after two periods. Visually we can observe 

that the area under the HOUR_WORKED curve is significantly larger than the ENERGY_EMP 

curve. This suggests that the total effect of an increase in the share of renewable energy production 

is larger on labour compared to employment. As the total increase in number of hours worked is 

larger than the total increase in employment, not only are more people being employed as a result 

of the energy transition, but the average number of hours worked by employees in the energy sector 

have increased. A possible reason why employment is affected contemporaneous and before labour 

is that firms have to first hire new employees and train them before putting them to work. 
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7 Discussion 

This section presents and highlights key findings of the study and any implications that these 

findings may have. We also acknowledge the potential weaknesses that our study might have and 

propose certain topics that future researchers can look into that will shine more light onto our area 

of study. 

7.1 Implications 

The main objective set out at the beginning of the study is to understand the employment effect of 

the transition from non-renewable to renewable energies. This study finds that the share of 

renewable energy production has a positive and statistically significant effect on the number of 

people employed in the energy sector. As such, it is suggested that the energy transition results in 

a direct net positive employment effect in the energy sector. 

The findings suggest that despite jobs being lost, the job creation effect from renewable energy 

implementation outweighs the jobs lost. As such, policy-makers should expect an expansion in 

energy sector jobs by transitioning to renewable energy technologies. Nevertheless, as highlighted 

in Section 3.3, the job types vary significantly between energy technologies. Despite a net 

employment gain, the jobs lost may still leave parts of the workforce vulnerable because of their 

lack of appropriate skills to find a new job. Policy-makers may want to shift focus from preserving 

redundant non-renewable jobs to retraining and re-educating workers to satisfy the requirements 

of renewable energy jobs. Considering the generally higher level of skill requirement for 

renewable energy jobs as discussed in Section 3.3, retraining would not only improve the quantity 

of jobs, but may also improve the quality for jobs. 

Nonetheless, it is important to note the delimitations of this study. Specifically, it takes the 

approach of understanding the energy transition by focusing on a single country and conducting a 

case study on the UK for the period between 1998 and 2018. As such, the estimated effects of the 

energy transition on energy sector employment may vary depending on underlying country-

specific factors or the composition of renewable energy technologies adopted. 
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Other than the positive effect of the energy transition on job creation, it also highlights the relative 

labour inefficiency of renewable energy production. In line with the arguments of Hughes (2011), 

there is an incentive for profit maximising renewable energy producers to reduce the cost of 

producing renewable energy. They will want to improve labour efficiency and reduce labour costs 

associated with production. On top of that, renewable energy technologies are still relatively new 

and renewable energy production has the potential to become more efficient as the sector matures. 

Moving forward, the increase in labour efficiency of renewable energy technologies will affect the 

positive relationship between energy sector employment and the share of renewable energy 

production that has been observed in this study. Countries that are later adopters of renewable 

energy may not be able to gain any positive net employment effect from switching away from non-

renewable energies. 

However, we argue that the findings of this study still provide a good indication that there has been 

and can still be a positive employment effect by moving from non-renewable to renewable energy 

production. 

7.2 Challenges & Weaknesses 

Even though we have constructed our empirical model based on sound theoretical and statistical 

foundations, no model is perfect and less so when studying a relatively new field. In this section, 

we highlight potential challenges and weaknesses that our approach may possess and should be 

considered when drawing conclusions from the results.  

7.2.1 Omitted Variable Bias 

When designing a study, the risk of misspecification is always present, and we acknowledge that 

model misspecification may be present in our final model. Our model runs the risk of omitted 

variable bias as energy sector employment may be affected by many observable and unobservable 

variables that we have not included in our final model. Omitted variables can make our estimates 

biased and invalidate them. We have leveraged existing literature and economic theory to 

determine the appropriate variables to include when modelling energy sector employment. We 

therefore believe that significant omitted variable bias is unlikely. Nevertheless, we acknowledge 

that the literature on the energy transition is still in its youth and there may be some relationships 

and factors that have not yet been identified and as result have not been incorporated in our study. 
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7.2.2 Measurement Error 

Previous studies on energy employment that did not employ the input-output framework have 

opted for survey level data to analyse the regional effects over time (Blanco & Rodrigues, 2009; 

Sastresa et al., 2010). On a national level it may be difficult to accurately measure energy sector 

employment as data may capture jobs that are not directly involved in energy production. Such an 

example is employees of energy producing companies such as kitchen and janitorial staff that are 

not involved in energy production but may have been classified otherwise. As such, there may be 

measurement error in our study.  

7.2.3 Data Availability 

The potential for model misspecification is directly linked to challenges with regards to data 

availability. IRENA (2011) highlights the deficiencies in renewable energy employment data by 

referring to it as being weak and notes that reliable data will be expensive to obtain. Renewable 

energy is in its youth and due to this immaturity of the industry, data is only available for a limited 

number of years. Due to this restriction, we have opted to utilise quarterly data. Even when using 

quarterly data, we only have 80 observations (20 years) which may not be considered high. We 

acknowledge that this is not ideal and if available, a longer period of data should be used to get 

more efficient estimators. The problem related to a low number of observations was also 

highlighted in Section 5.7 where we did not proceed with the estimation of the pre-breakpoint 

subsample that only had 33 observations. 

The lack of data availability also poses challenges in the identification of controls. The controls 

added for real wages and cost of capital (interest rates) are national-level data rather than industry 

specific. It is possible that there exist significant differences between national and industry-specific 

values that may affect the quality of the estimation results. Nevertheless, national-level data was 

used as they were deemed to be appropriate proxies for industry-specific data. 
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7.2.4 Varying Labour Intensities of Different Technology Types 

As discussed in Section 3.1, the labour intensity of energy production not only varies between the 

renewable energy and non-renewable energy segments but also between different technology types 

within the segments. Our study focuses on the independent variable, share of renewable energy 

production, which implicitly assumes that all renewable energy technologies employed in the UK 

possess the same or similar labour intensities. This is highly unlikely to be true in the case of the 

UK which adopts various types of renewable energy technologies and has a changing composition 

in the total energy mix over the period of our study. As such, it is likely that the results of this 

study would be different if the energy mix in the UK was significantly different over the period of 

our study. We argue that the estimation results are still relevant as the goal of this study is to 

conduct a backward-looking analysis of the overall employment impact of the energy transition in 

the UK. 

7.3 Further research 

This study established a positive relationship between the share of renewable energy production 

and energy sector employment. However, to the best of our knowledge, there have been no directly 

comparable studies. Forecasts have suggested a positive relationship as discussed in Section 3.4, 

but the lack of evaluating studies makes comparisons complicated. Hence, to gain deeper insights 

into the nexus between employment and energy technology, further research should be conducted. 

Firstly, future studies should attempt to apply a similar framework as ours on other countries. In 

the event that similar effects are found for other countries, it will point towards a generalised 

positive net employment effect of shifting towards renewable energy technologies. Such findings 

would support local policy implementation aimed at increasing energy employment through 

renewable energy deployment.  

Future research should also attempt to establish a general relationship across countries. It was 

suggested in Section 3.1 that labour intensity may only be greater for renewable energy 

technologies in the early stages of implementation. Assuming different levels of renewable energy 

dependence across countries, such research would indicate whether the level of renewable energy 

share affects employment by using a wider range of values in the independent variable. 
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Combining cross-sectional and time-series observations through the likes of panel data may also 

produce interesting findings. A panel data study would allow for the use of annual data due to the 

increased number of observations and thus avoid problems of seasonality in the independent 

variable. Additionally, panel data would ignore any country-specific differences in the findings. 

As such, the findings may be more accurate by isolating the employment effects. Therefore, such 

findings would provide stronger policy implications for countries that are just starting to 

implement renewable energy technologies. 

Considering the multitude of energy technology types that produce the same product, more focus 

should also be placed in investigating the empirical differences in employment effects of the 

various technologies. Such research would provide policy makes with a better insight when 

deciding upon policies to promote particular renewable energy types. 

Lastly, assuming that the relationship established in this study holds, research should investigate 

the implications of our findings. Specifically, research should critically assess the positive 

relationship between energy sector employment and the energy transition. This can be done by 

assessing the quality of the jobs created in the renewable energy subsector as compared to the jobs 

destroyed in the non-renewable energy subsector. Our findings only point towards higher 

employment, but previous findings suggest that these additional jobs may be associated with 

higher skill requirement. As such, understanding the dynamics of the energy transition’s impact 

on the quality of jobs could shine some light on the development among employees in the energy 

sector. If job quality is not improved, it is possible to argue that the increased labour requirements 

is a disadvantage of renewable energy adoption due to lower labour efficiency.  
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8 Conclusion 

This study sets out to investigate the net direct energy employment effect resulting from the 

transition from non-renewable energy to renewable energy technologies in the UK. This was done 

by taking an alternative approach as compared to existing academic literature through a backward-

looking evaluative study rather than a forward-looking approach. This approach allows us to attain 

a more accurate understanding of the interaction between a shift in energy sources and 

employment. The UK was selected as the suitable case-study candidate and a statistical model was 

constructed based on factors identified through established theoretical frameworks such as labour 

demand and supply theory, as well as the Cobb-Douglas production function. 

The estimates of our ARDL model found a statistically significant relationship between share of 

renewable energy production and energy sector employment with a contemporaneous 0.055% 

increase in energy sector employment from a 1% positive shock to the share of renewable energy 

production. The magnitude and sign of our findings are in line with most previous forward-looking 

studies that find a slight net positive employment effect. Subsample estimation accounting for the 

structural break in our data produces similar results and signifies that our estimates are robust. 

Labour was also used in place of employment as our dependent variable and similarly a positive 

effect was found. The higher magnitude of the effect on labour as compared to employment also 

points towards energy sector employees working more as a result of the energy transition. 

In conclusion, this study provides a thorough understanding of the potential employment benefits 

that a shift from non-renewable to renewable energy technologies has on the energy sector, both 

empirically and theoretically. This provides intriguing further insights into one of the most relevant 

topics of discussion in today’s world. Although further research is necessary to better understand 

the role that the energy transition plays, these findings can be of great importance to policy-makers 

as we can expect to experience a continuous journey toward a greener future. 
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10 Appendix 

Appendix A – Regression using lagged dependent variable for 

seasonality 

 Estimate Standard Error t-value P-value Significance 

Intercept 0.0003254 0.0032054 0.102 0.9194  

ENERGY_EMP (𝑦𝑡−4) 0.0817563 0.1146907 0.713 0.4782  

RE_SHARE (𝑥𝑡) 0.030754 0.0207013 1.888 0.0631 * 

R2 0.05901 

Observations 80 

Significance levels: *10% level, **5% level, ***1% level. 

Appendix B – Regression using seasonal dummies  

 Estimate Standard Error t-value P-value Significance 

Intercept 0.007303 0.006531 1.118 0.267  

RE_SHARE (𝑥𝑡) 0.02988 0.025759 1.164 0.248  

Seasonal Dummies F-statistic: 0.5342 0.6602  

R2 0.067 

Observations 80 

Significance levels: *10% level, **5% level, ***1% level. 
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Appendix C – Dynamic Specification  

 Estimate Standard Error t-value P-value Significance 

Intercept 0.003684 0.010614 0.347 0.7297  

ENERGY_EMP (𝑦𝑡−1) 0.238168 0.121480 1.961 0.0542 * 

ENERGY_EMP (𝑦𝑡−2) 0.196909 0.121259 1.624 0.1092  

RE_SHARE (𝑥𝑡) 0.034057 0.041463 0.821 0.4144  

RE_SHARE (𝑥𝑡−1) 0.011759 0.043938 0.268 0.7898  

RE_SHARE (𝑥𝑡−2) 0.021489 0.046198 0.465 0.6434  

RE_SHARE (𝑥𝑡−3) 0.025474 0.042066 0.606 0.5469  

RE_SHARE (𝑥𝑡−4) 0.037729 0.039725 0.950 0.3458  

Seasonal Dummies F-statistic: 0.3795 0.7681  

R2 0.2087 

Observations 80 

Significance levels: *10% level, **5% level, ***1% level. 

 


