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Abstract 
 

We consider the exit routes of older employees out of employment around retirement age. 

Our administrative data are high dimensional as they cover weekly information about the 

Danish population from 2004 to 2016 and 397 variables from 16 linked administrative 

registers, covering a wide range of information such as demographic, socioeconomic, 

financial, criminal, labor and health information, etc. We use a flexible dependent 

competing risks quantile regression model to identify how exits to retirement, illness, 

unemployment, etc. are related to the information in the various registers. To help finding 

an appropriate model we use variants of the Lasso, in particular the (adaptive) group 

bridge applied to competing risks quantile regression model to identify the relevant 

administrative registers and within-register variables. To our knowledge, this is the first 

application of these methods to large scale administrative data and the problem of exit 

into retirement. It is found that selected registers and most within-register variables from 

the (adaptive) group bridge have reasonable interpretation and remain significant in the 

unpenalized competing risks quantile regression. By applying state-of-the-art statistical 

methods to large scale data, we obtain detailed insights into the conditional distribution 

of transitions from employment into retirement in the presence of high dimensional data 

and competing risks setting. 

 

Keywords: (Adaptive) group bridge; Dependent competing risks; Quantile regression; 

Retirement. 
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Chapter 1 
Introduction 
 

In an attempt to make the pension system fit for the future, politics in Denmark introduced 

more flexibility on the timing of retirement during the 2000s. This resulted for the 

employed in the possibility to decide on the retirement point once a certain age threshold 

is passed. This means, the point of retirement is no longer deterministic but possibly 

depending on a wealth of individual, economic and institutional factors. Previous analysis 

has mainly studied early retirement patterns, that is retirement before the official 

retirement age, while we consider both early and late retirement. The event to withdraw 

from employment may be in the discretion of the employed but can be also due to factors 

out of her control such as invalidity or dismissal. This calls for a model that permits for 

various exit routes. We adopt a flexible competing risks model that permits for 

dependencies between risks. By studying conditional quantiles, the determinants of an 

exit to the various routes are permitted to affect conditional distributions differently for 

long or short duration. This permits for important flexibilities as there are likely variables 

that play sizable roles at ages before the official retirement age but are not important at all 

afterwards and vice versa. In our analysis we combine state of the art distributional 

statistical methods with statistical regularization techniques to obtain a clearer picture 

about the factors that make people leaving their job earlier or later. It is common practice 

in social sciences and economics, that variables selection is undertaken sequentially or by 

means of variable inflation factors (VIF). However, these convenient approaches do not 

possess desirable statistical properties and therefore there are positive probabilities that 

selected variables do not belong to the model and that unselected variable actually 

belonged to the model even if the number of observations becomes very large. We adopt 

statistical approaches that permit for statistical regularization in high dimensional 

regressor spaces based on statistical learning. These techniques possess the oracle 

property and therefore have desirable statistical properties. 
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There is an extensive literature that considers transitions out of employment into 

(early) retirement (e.g. Lindeboom, 1998, Duval, 2003). Motivated by the ageing of the 

societies and subsequent restraints for the financial situation of the pension funds (Gruber 

and Wise, 1998), the question is analyzed how the institutional system can be shaped in 

order to avoid incentives to retire early. Beside direct (early) retirement, some form of 

other exit route through a bridging period in unemployment or disability may be chosen 

(see e.g. Miniaci and Stancanelli, 1998, Kyyra and Wilke, 2007, Fitzenberger and Wilke, 

2010, Bingley et al., 2012). Relevant literature for Denmark has considered general 

determinants of retirement (e.g. Filges et al., 2012, Larsen and Pedersen, 2013, Kallestrup-

Lamb et al., 2016). The use of duration models is limited to Christensen and Kallestrup-

Lamb (2012), who study in particular the role of the health status. Existing studies for 

Denmark use annual data and most do not cover data for years after 2008. Therefore, they 

cover the period where a less flexible system was in place. Due to the low frequency only 

discrete time or discrete choice models have been applied. 

We use linked administrative data provided by Statistics Denmark. The data contain 

weekly, monthly and annual observations for the period 2004-2016 of employees in 

Denmark. We select a subsample of employees aged 58 in 2008 who have stable working 

experience from 2004 to 2008 and are thus not assumed to retire due to limited career 

opportunities, limited work ability or long-term illness. There are 16 registers and 397 

variables in total, forming 16 groups and 2 to 58 variables in each group. The registers 

contain information on various personal, household and firm characteristics, including 

demographics, education, income, pension, employment, socioeconomic status, health, 

criminal records and a wealth of company (employer) statistics. We consider two main 

exit routes, which are exits to retirement (via disability pension, early retirement pay and 

old age pension) and other exits (via unemployment, illness, death, etc.). 86% of the exits 

in our sample are to retirement. We compute employment duration at the age of 59 as the 

number of weeks until an exit takes place. The exit route is indicated by the status of the 

individual when employment ends and a gap of 4 weeks is allowed. If the individual enters 
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into a retirement program or the other exit route before the end of employment, the first 

week of entrance rather than the last week of employment indicates the end of duration. 

By using weekly information for a period of 8 years, we have (nearly) continuous 

duration data. This permits us the application of quantile regression. In particular, we 

study a dependent competing risks problem where an older employee can make a 

transition into retirement or another state. As the timing of duration is likely correlated 

through unobservables conditional on the observables, we adopt the dependent competing 

risks model of Peng and Fine (2009). 

Since our data contain a wealth of linked registers and therefore numerous variables, 

it is not an easy task to select the relevant set of variables. In particular, many variables 

are categorical, such as industry information and geographic location. For this reason, we 

use variants of the Lasso (Tibshirani, 1996) to identify relevant variables in our model. 

The Lasso-type estimator is an attractive statistical approach because it has the oracle 

property, which means that the model selects only the relevant variables and the estimates 

for those variables equal the estimates from a model that only includes the relevant 

variables in probability under some regularity conditions. There is an extensive statistics 

literature about a number of variants of the Lasso that retain the oracle property in various 

settings. See Huang et al. (2012) for a survey. Zou (2006) introduces the adaptive lasso, 

which adds additional weights to the penalty to improve the selection. Huang et al. (2009) 

suggest the group bridge and Simon et al. (2013) suggest a sparse group lasso. These 

variants of the Lasso permit for group level and bi-level variable selection. Ahn and Kim 

(2018) combine the (adaptive) group bridge with competing risks quantile regression. We 

follow their approach in this paper. Being developed for problems and tested with data 

from medical sciences, it is unclear how it performs with our more heterogenous data 

structures. Our data are also characterized by a high degree of multicollinearities and it is 

to be seen how statistical learning can cope with this. The use of the Lasso in economic 

problems is still not widespread but increasing, though most applications are for standard 

mean regression or discrete choice models. Our quantile regression model is more 
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complex as it is estimated separately for different quantiles. Therefore, the resulting set of 

variables changes by quantile and due to the upper bound of cumulative incidences, the 

model can only be estimated for a constrained set of quantiles. As the adaptive group 

bridge permits consistent identification of non-zero groups and within-group variables 

while maintaining the oracle property, we explore how adaptive group bridge is helpful 

in identifying relevant registers and within-group variables for the economic problem at 

hand. This provides guidance which registers are actually relevant for the problem under 

investigation. 

Our study contributes to the literature as follows: It is the first study of these methods 

applied to large scale administrative data and analyzing exit into retirement. We are not 

aware that the (adaptive) group bridge has been applied in combination with competing 

risks quantile regression in the economics literature. For the analysis for Denmark we 

contribute by using weekly data, dependent competing risks and study a period where the 

latest retirement point is not deterministic. We explore the practical properties of 

combining a flexible and complex distributional model with statistical regularization 

methods. 

 The rest of the thesis is organized as follows. In chapter 2, we briefly review the 

existing literature about determinants of retirement in Denmark. In chapter 3, we give an 

overview of the main retirement programs in Denmark and some of their changes in order 

to extend working life in 2000s. In chapter 4, we describe the dataset including registers, 

individual variables, competing risks and durations, and then show the sample selection 

criteria and implementation issues. In chapter 5, we first briefly review existing 

techniques for variable selection, from sequential elimination to statistical regularization 

methods. Then we present the competing risks quantile regression framework and 

subsequently present the methodology we use in this thesis, which is a penalized 

competing risks quantile regression using (adaptive) group bridge following Ahn and Kim 

(2018). In chapter 6, we present and analyze the empirical results. In chapter 7, we give 

conclusions, discussions and suggestions for further research.  
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Chapter 2 
Literature Review 

 

In this chapter, we will review the literature about transitions to (early) retirement using 

Danish administrative data. Some studies focus on general determinants of retirement (e.g. 

Filges et al., 2012, Larsen and Pedersen, 2013, Kallestrup-Lamb et al., 2016), while others 

focus on a specific determinant (e.g. Danø et al., 2005, Christensen and Kallestrup-Lamb, 

2012). Most studies focus on individual retirement, while some focus on joint retirement 

of married couples (e.g. An et al., 2004, Bingley and Lanot, 2007). Some studies focus on 

pathways to (early) retirement (Larsen and Pedersen, 2005, Bingley et al., 2012), while 

others focus on late retirement (e.g. Amilon and Nielsen, 2010) and semi-retirement (e.g. 

Larsen and Pedersen, 2013). 

We find that for all these topics, most studies use discrete responses model (e.g. Filges 

et al., 2012, Larsen and Pedersen, 2013, Bingley et al., 2016, Kallestrup-Lamb et al., 2016) 

or failure time model (e.g. An et al., 2004, Christensen and Kallestrup-Lamb, 2012). Some 

studies only focus on aggregate statistics (e.g. Barslund, 2015, OECD, 2012a). Hardly 

any of the existing studies use data for years after 2008, when monthly employment 

statistics for employees (BFL) is available and a more flexible retirement system is in 

place, which could explain why most studies use discrete models with annual data. In 

short, to our knowledge, few studies have exploited the richness of comprehensive large 

scale individual administrative data and some studies appear to be relatively simple by 

today’s standards. 

 The uses of duration models include An et al. (2004) and Christensen and Kallestrup-

Lamb (2012). An et al. (2004) study the joint retirement decisions of Danish married 

couples. Specifically, they examine whether the retirement timing of married couple is 

determined individually or jointly. The study is based on annual data for 243 working 

couples from 1980 to 1990. Despite the low frequency of the data, they specify a 

continuous time model by treating data as grouped. The multivariate mixed proportional 
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hazard model that they introduce allows for both correlated unobserved heterogeneity and 

a positive probability on simultaneous termination of individual spells. In their model, 

each individual’s retirement decision depends not only on their own characteristics but 

also on their spouses’. Each spell shares the same start time and is influenced by both 

common factors and individual factors. Results show that financial and health variables 

play a significant role in explaining both individual retirement and joint retirement; 

complementarities in leisure time explains joint early retirement decisions; correlation in 

unobserved heterogeneity, such as common tastes, plays a larger role than other observed 

heterogeneity in explaining joint late retirement decisions. Overall, retirement is a 

household decision. 

 Christensen and Kallestrup-Lamb (2012) study the determinants of duration until 

retirement, in particular the impact of changes in health status on early retirement behavior. 

The study is based on annual panel data for working people from 1985 to 2001. They use 

both single and competing risks specifications with both nonparametric and parametric 

baseline hazards in the grouped duration analysis. The model allows for time-varying 

regressors and flexible unobserved heterogeneity specification. They show that 

demographic, labor market status, financial variables and in particular health measured 

by objective medical diagnosis all have significant effects on retirement behavior. In the 

competing risks specification, they define five exit routes, including disability, early 

retirement, two kinds of unemployment and others out of the labor force. Results show 

that disability retirement and early retirement, unemployment followed by early 

retirement and by other programs differ significantly in terms of health and other 

regressors. Because in the single risk specification where all retirement programs are 

lumped together, opposite effects of a variable on different exit routes may cancel out and 

result in an insignificant estimator, competing risks specification leads to results that are 

more relevant in this study. 

 Another interesting study by Kallestrup-Lamb et al (2016) focuses on the general 

determinants of retirement using the adaptive Lasso applied to logistic regression. The 
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study is based on annual data for working people for the year 1980 and 1998 and is the 

first application of Lasso-type estimators to this type and scale of data. They include 399 

individual variables covering demographic, socioeconomic, financial, health and labor 

market status, the lags of time-varying regressors, and characteristics of the spouse if the 

individual is married. All types of retirement are lumped together. The penalized logistic 

regression model uses both the logit and Lasso estimator as initial estimator and possesses 

the oracle property. Results show that the choice of initial estimator for adaptive Lasso 

matters in terms of the number of selected variables; the effect of age, income, labor 

market indicators, wealth and health are stable over time, gender, marital status and 

different tuning parameter, suggesting that Lasso-type estimators give quite reasonable 

results.  

 Gørtz (2012) specifies a discrete-time proportional hazard model to study the early 

retirement behavior of female teachers in the day-care sector. In particular, she focuses on 

the role of working condition and health. The model uses a piece-wise constant baseline 

hazard duration framework and accommodates fixed effects to allow for unobserved 

heterogeneity. Results show that health and some measures of working condition have 

significant effects on early retirement decision for the period 1997-2006. 

 Several studies use option value model to calculate the potential gains of staying in 

the labor force. Danø et al. (2005) study the early retirement behavior of single women 

and single men respectively. They find that women are more willing to retire early than 

men and their retirement decisions are influenced by different variables: for men, income 

and health are the main factors, while for women, education and unemployment 

experience also matter. Bingley et al. (2004) study the impact of financial incentives on 

the probability of retirement. They find that the low-wage earners are incentivized to retire 

early and high-wage earners are incentivized to continue working. In the policy simulation 

study, they find that raising the eligibility age of retirement program will increase the 

average retirement age. Bingley and Lanot (2007) study the economic determinants of 

joint retirement behavior of married couples. They find that women are more influenced 
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by changes in their own income and their spouses’ income than men, and couples tend to 

retire early together due to complimented leisure. Bingley et al. (2016) study pension 

programs incentives by health and education level. Results show that economic incentives 

are generally important, and more important for people in poor health and low education 

level to retire early.  

 The remaining studies use linear probability model or discrete choice model. Gupta 

and Larsen (2007) study the effect of health shock on retirement for men and the role of 

welfare program in this effect. Results show that an acute health shock has a significant 

effect on retirement and almost none of the welfare programs could mitigate this effect. 

Gupta and Larsen (2010) further compare the effect of health on retirement between 

survey-based self-reported health and register-based diagnosis. They find that diagnosis 

is more important than economic factors; the retirement decisions for men and women are 

affected by different types of diagnosis; self-reported health yields biased estimator. 

Larsen and Pedersen (2005) aggregate three pathways from work to early retirement and 

analyze the probability of retiring through each pathway. They find that the determinants 

of retirement are different for each pathway: early retirement through the employment and 

unemployment are the dominant pathways and are affected more by availability of the 

program; other pathways are equally affected by individual characteristics. For semi-

retirement and unretirement, Larsen and Pedersen (2013) find that demographic, 

education, unemployment experience, pension contributions and home ownership are 

significant factors and the effects are different for men and women. Filges et al. (2012) 

study the general determinants of retirement and focuses on the effect of unemployment 

in particular. They conclude that individual unemployment is highly significant and larger 

in magnitude than other demographic and education variables; program changes and 

cyclical situation also affect transition probabilities. 
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Chapter 3 
Institutional Settings 

 

Due to aging population, the public pension system is bearing higher financial pressure. 

In an attempt to make the pension system fit for the future, politics in Denmark with most 

European countries has introduced more flexibility on the timing of retirement during the 

2000s in order to motivate working longer through, e.g. semi-retirement or late retirement, 

etc. In this chapter, we give an overview of the main retirement programs through public 

pension and labor market pension system and some of their changes in the 2000s in order 

to extend working life. 

Old age pension (OAP), or state pension, is a universal pension that applies to every 

Danish national who has lived in Denmark for at least three years between the age of 15 

and 65 and is aimed to protect the elderly from poverty. Besides the pension itself, 

pensioners are eligible for some other benefits, such as housing benefit, heating benefit, 

health-related benefit, etc. The retirement age has gone through several changes. For 

people born before 1 July 1939, the retirement age is 67; for people born between 1 July 

1939 and 1 January 1963, the retirement age is shown in Table 3.1; for people born after 

1 January 1963, the retirement age is according to future life expectancy.  

The old age pension consists of a basic amount and a pension supplement and is 

means-tested. Although the test against income was reduced in the 2006 welfare reform, 

it is still unattractive to work and receive the state pension at the same time. For example, 

the pension supplement is reduced by 30% for annual income between 87,800 and 

356,700 for singles and between 175,900 and 435,000 for individuals married/cohabiting 

with a pensioner. When the income is above the threshold, the pension supplement is 

canceled. From 1 July 2004, a pension deferral policy was introduced to motivate people 

to continue working after retirement age. People can postpone the state pension and get a 

higher payment afterwards if they work for at least 750 hours a year in the deferral period. 

Note that before 2011, the qualifying working hours was 1500 in 2004 and 1000 in 2008. 
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The maximum deferral period is ten years and people can defer the pension for two times. 

Disability pension is another universal pension in Denmark, also called early Danish 

pension. It applies to Danish nationals who are between the ages of 18 and 65, have lived 

in Denmark for at least three years between the age of 15 and 65 and meet reduced work 

capacity criteria. After a disability pension reform in June 2012, the minimal age for 

disability pension is increased to 40 and people under 40 years old can only receive 

disability pension under special circumstances. Pensioners receive a certain amount 

depending on income level and receive some other housing and healthcare benefits. The 

reduced work capacity criteria require that due to social or health problems, the applicant 

is permanently unable to work under ordinary or flexible terms and unable to improve 

work capacity through treatment, activation, etc. An applicant needs to go through an 

assessment process and a rehabilitation program conducted by the municipal authorities 

to be entitled to the disability pension. The pension can be dormant or canceled, however, 

if in later periods the municipal authorities believe that the pensioner’s work capacity is 

significantly improved. 

 Early retirement pension, or post employment wage (PEW) program, is a voluntary 

labor market pension. People can choose to be fully insured or partially insured. The 

scheme was introduced in 1979 in order to balance the unemployment of young people 

and the employment of older people. Pensioners have the opportunity to retire before the 

state retirement age and maintain a decent income level. Eligibility requires membership 

of an unemployment insurance fund, continuous contributions for at least 30 years, 

employment higher than 1,924 working hours or income higher than 233,375 within the 

last three years, and residence in Denmark. Similar to the state pension, the minimum 

retirement age for early retirement pension has gone through several changes as is shown 

in Table 3.1. For people born before 1 January 1954, the early retirement age is 60, which 

means that the maximum duration of early retirement is 5 years; for people born later, the 

retirement age is gradually increased to 65 and the duration is gradually reduced to 3 years. 

The payment of early retirement pension differs according to previous income and 
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insurance level, and is reduced if the pensioner has income from labor market pension, 

individual pension, work, etc. The maximum payment is the minimum of 90% of previous 

income and 91% of the unemployment insurance benefit rate. For people born before July 

1 1959, they can choose to postpone the early retirement pay and get 100% of the 

unemployment insurance benefit rate, a tax-free premium for wages if they work for at 

least 1560 hours per year for fully insured and 1248 hours for partially insured, and start 

receiving early retirement pension no more than three years before the state retirement 

age. For people born before 1 January 1956, they can earn a set-off amount for other 

pension income in addition. 

Other exit routes to early retirement include civil servants’ pension, partial pension, 

etc. In this thesis we only consider the above mentioned three retirement programs as exit 

routes to retirement due to data availability. 

 

Table 3.1: Retirement age of old age pension and early retirement pension 

Date of birth Old age pension Early retirement pension 

1 Jul 1939 – 31 Dec 1953 65 60 

1 Jan 1954 – 30 Jun 1954 65.5 60.5 

1 Jul 1954 – 31 Dec 1954 66 61 

1 Jan 1955 – 30 Jun 1955 66.5 61.5 

1 Jul 1955 – 31 Dec 1955 67 62 

1 Jan 1956 – 30 Jun 1956 67 62.5 

1 Jul 1956 – 31 Dec 1958 67 63 

1 Jan 1959 – 30 Jun 1959 67 63.5 

1 Jul 1959 – 31 Dec 1962 67 64 

1 Jan 1963 – 68 65 

 Source: Borger.dk (2019) 
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Chapter 4 
Data Description 
 

The dataset we use is based on register data from Statistics Denmark (DST) and the 

DREAM database. It contains weekly, monthly and annual observations for 8178 

employees born in 1949 for the period 2004-2016. We use 397 variables from 16 registers 

of DST’s linked administrative data as regressors, and use DREAM to generate competing 

risks and durations. In this chapter, we first describe the registers and individual variables, 

then show how to define competing risks and compute durations. At last, we describe the 

sample selection criteria and implementation issues 

 

4.1  Registers and Variables 

 

Because individuals in the sample turn 60 in 2009 and start entering early retirement 

program, we use explanatory variables of 2008 to explain employment duration from 2009. 

We use 16 registers for the analysis. After converting categorical variables into dummy 

variables and going through some selection process, we have 2 to 58 variables for each 

register. Except for the employment statistics for employees (BFL) which has monthly 

information, the other registers are all observed annually. From the 16 registers, we have 

information covering a wide range of personal, household and firm characteristics, 

including demographics, education, income, pension, employment, socioeconomic status, 

health, criminal records and a wealth of company (employer) statistics, which could all 

possibly affect transitions from employment to retirement. 

 The 16 registers are the population statistics register (BEF, FAM), the education 

statistics register (UDDA), the criminal offences statistics register (KRIN), the health 

statistics registers (SGDP, SYIN), the income statistics registers (IND, LON), the pension 

statistics register (INPI), the labor market statistics register (AKM), the employment 
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statistics for employees registers (BFL, IDAN, IDAP), and the company (employer) 

statistics registers (FIRM, FIDF, IDAS). Table A.1 in appendix A.1 contains descriptive 

statistics of the variables. 

BEF is the population register. It contains information such as marital status, gender, 

geographical location, date of birth, citizenship, country of origin, household type, family 

type, etc. FAM contains number of children by age and number of people in the family. 

UDDA is the education register. It contains information on highest completed education 

and the institution. Education is divided into several categories following two 

classification rules: one is by subject area and the other is by level. 

 KRIN is the crime register. It contains the number, date and decision of criminal cases. 

Because there are only few cases each year and people are more likely to commit crime 

when they are young, we integrate the information from 1980 to 2008 to capture the long-

run effect of criminal offenses. For the health registers, SGDP and SYIN, we integrate 

information from 2007 to 2008 for similar reasons. SGDP contains duration and amount 

of sickness benefits payments, duration of absence, and type of absence. SYIN includes 

diagnosis codes, treatment duration, geographical location, etc. 

IND is the income register. It includes a large number of variables covering wage, tax, 

ATP contributions, debt, deposits, wealth, capital income, socioeconomic status, private 

pension, labor market pension, government transfer payments, etc. LON contains wage 

and employment statistics, including hourly wage, holiday pay, pension contributions, 

number of hours paid, number of holiday hours, number of paid absence hours, industry, 

occupation, sector, etc. INPI contains information on contributions to labor market 

pension and private pension schemes. 

AKM describes the population's affiliation to the labor market throughout the year. It 

contains information on ATP contributions, occupation, working hours, industry and 

socioeconomic status. BFL contains detailed employment statistics based on SKAT’s 

eIncome register, including ATP contributions, wage income, number of hours paid, 

geographical location, sector, industry, etc., and is aggregated into annual regressors. 
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The IDA database links individual data with company data through the individuals' 

employment. IDAP contains individual employment information including working 

experience, number of (supplementary) jobs, working hours for the main/secondary job, 

insured level, insured duration, etc. IDAN contains information on employment duration, 

employment change, and employment type. IDAS contains workplace statistics including 

number of full-time equivalent employees, number of employees, industry, number of 

workplaces in the company, etc. FIDF contains company statistics including industry, 

sector, number of full-time equivalent employees, number of employees at the end of 

November, geographical location, ownership, etc. 

Notice that some variables in different registers or within the same register contain 

the same or highly multicollinear values, which leads to high degree of multicollinearity. 

Our initial idea is to let (adaptive) group bridge select the relevant registers and variables. 

In the implementation stage, however, we find that high degree of multicollinearity is a 

problem for quantile regression even with Lasso. We choose to reduce multicollinearity 

beforehand by dropping variables with high VIF or with little variation. We also drop 

some variables with a large number of missing values, such as many company accounting 

statistics including gross profits, total assets, etc. Because this dataset only represents part 

of the information contained in each register, the relevant registers in the results should 

be interpreted with caution. 

 

4.2  Definition of Competing Risks and Computation of Duration 

 

The DREAM database is a comprehensive progress database based on the Ministry of 

Employment, the Ministry of Education, the CPR register and SKAT. The population of 

this database are individuals who received any government transfer payments from 1991. 

The type of payments is recorded weekly, including old age pension, disability pension, 

early retirement pension, unemployment benefits, sickness benefits, rehabilitation, cash 

benefits, wage subsidy, students’ grants, maternity benefits, etc. DREAM also contains 
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employment information and many personal characteristics. Here we only use the 

government transfer payments records to identify retirement time, different competing 

risks and select the sample. The advantage of using DREAM is to have (nearly) 

continuous employment duration statistics. 

 We specify two competing risks: retirement and the others. The retirement exit route 

include all individuals who at least work until 4 weeks before they receive old age pension, 

disability pension or early retirement pension, which means that those who are semi-

retired are also included and only the first entry is identified. Work here means having 

some positive working hours within a given month. The other exit route includes everyone 

else with exit to unemployment, illness, unknown labor market inactivity, death, etc. Table 

4.1 reports the number and share of observed transitions into the two risks in the sample. 

We can see that 86% of the sample directly enter a retirement program from employment. 

Among those individuals, 3272 (40.01%) enter the old age pension, 3755 (45.92%) enter 

the early retirement pension, and only 16 (0.20%) enter the disability pension. The low 

occurrence of disability pension is quite reasonable due to the sample selection process 

shown in the next section. There exist only a small number of censored observations in 

the sample (end of data in 2016). This result, together with the result that most people 

enter old age pension within a few weeks after the state retirement age, is quite unexpected 

because quite a lot of evidence show that there are more and more people choose to defer 

pension and unretire (Amilon and Nielsen, 2010), and it further reinforces the idea that 

the sample in this analysis cannot represent the full population of employees.  

 

Table 4.1: Number and share of transitions into risks 

Risk Number of observed spells Share (%) 

Retirement 7043 86.12 

Others 944 11.54 

Right-censored 191 2.34 

Total 8178 100.00 
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4.3  Computation of Duration 

 

We compute employment duration as the number of weeks from the first week of 2009 to 

the week when an exit takes place. The exit, or the end of employment, is identified by 

not working for two consecutive months. If the individual enters into a retirement program 

or the other exit route before the end of employment, the first week of entrance indicates 

the end of duration. If the individual enters into a retirement program or the other exit 

route after the end of employment, the last week of employment indicates the end of 

duration. Figure 4.1 shows the kernel density estimation of durations for right-censored 

observations and observations with exit to retirement. There is a sharp peak for durations 

between 260 and 315 weeks. That is because for this sample, those who enter old age 

pension do so within the first few weeks after they are eligible, at the age of 65, which 

corresponds to year 2014 and early 2015 respectively. Compared with old age pensioners, 

the distribution of duration for early retirement pensioners is more sparse. A smaller peak 

occurs during the second half of 2011, that is the time when the sample individuals reach 

the age of 62, suggesting that the early retirement pension deferral policy works well – 

people work until three years before the retirement age for better payment terms. 

 
Figure 4.1: Kernel density estimation of durations* 

                                                   
* The underlying duration is a 5-person moving average due to policy concerning data confidentiality, yet this estimated density 
curve is very similar to the one without averaging. 
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On the contrary, few employees choose to defer old age pension, and those who choose 

to defer old age pension do so for a rather long period, at least until the end of 2016 when 

the data ends. 

There is another way to compute durations. That is to follow the guidelines suggested 

by ILO (the International Labor Market Organization) – employment is prioritized higher 

than unemployment and other states outside the labor force, so people who work and 

receive retirement pension payments at the same time are categorized as working instead 

or retired. This will change the distribution of durations. The durations are more sparse 

over the whole period. 1344 more people are right-censored and there is a larger share of 

longer durations, which shows that many people choose to be semi-retired rather than 

unretired or completely retired. We do not use this specification because in this case, the 

censored observations will actually have two groups of people who keep working: one 

never enters a retirement program (unretired) and one enters a retirement program (semi-

retired), which will bring some confusion. 

Notice that there may exist measurement error when we need to convert the number 

of months from BFL into number of weeks to make it comparable with the weekly 

information in DREAM. The impact of this mismeasurement error is to be investigated. 

 

4.4  Sample Selection 

 

The idea of the sample selection process is to base the analysis on a group of employees 

who have stable work experience over a certain period and will not drop out of labor force 

due to limited career opportunities, limited work ability or long-term illness in the past. 

In this way, we avoid problems of modelling people who frequently transit between 

employment and unemployment and mitigate unobserved heterogeneity resulted from 

only using variables of year 2008 as regressors. 

 The stable work experience can be identified from the monthly working hour 

information in BFL. Since BFL only starts from year 2008, we also use the socioeconomic 
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classification in AKM and government payments transfers in DREAM to supplement the 

selection process. The selection criteria include: (1) the individual is full-time employed 

every month for at least 11 months in 2008; (2) the individual is classified as employees 

every year from 2004 to 2008; (3) the individual does not receive disability pension from 

1991 to 2008; (4) the individual does not enter the flex job scheme or service job scheme 

from 2004 to 2008; (5) the individual does not receive unemployment benefits or sickness 

benefits for more than 4 weeks in total every year from 2004 to 2008; (6) the individual 

does not receive unemployment benefits or sickness benefits consecutively for more than 

4 weeks from 2004 to 2008. 

 Because the DREAM database only includes those who have received certain type of 

government transfer payments from 1991, it by definition does not include people who 

are censored – unretired throughout the observation period. In order to take into account 

of this selection bias problem, we use annual pension payments in IND and monthly 

working hours in BFL to identify censored observations. The selection criteria include: 

(1) the individual is full-time employed every month for at least 11 months in 2008; (2) 

the individual is classified as employees every year from 2004 to 2008; (3’) the individual 

is not classified as pensioners from 2009 to 2016; (4’) the individual does not receive 

retirement pension payments from 2009 to 2016. The impact of these different selection 

criteria is to be investigated. 

 Finally, we merge the regressors from register data with durations of the selected 

sample. It turns out that the population of each register is different and some variables 

within each register have missing values. For each variable with missing values, we could 

either drop this variable or drop those missing observations. Different choices lead to 

different datasets and we need to make many choices. The dataset of this analysis is 

chosen because it has a large number of observations and regressors at the same time. If 

the missing observations have patterns or characteristics that are correlated with the 

unobserved heterogeneity, we will have sample selection bias problem. This potential 

selection bias problem is to be investigated.  
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Chapter 5 
Methodology 
 

In this chapter, we introduce the methodology of this analysis. It is a combination of two 

parts. First, we briefly review the variable selection techniques to help understanding of 

the (adaptive) group bridge penalties. Then we introduce the competing risks quantile 

regression framework by Peng and Fine (2009). At last we present the methodology of 

this thesis – penalized competing risks quantile regression with (adaptive) group bridge 

by Ahn and Kim (2018). 

 

5.1  Variable Selection Theory 

 

Due to the development of computational power and availability of data, high dimensional 

regression has become more and more relevant for future research. There are two common 

situations in high dimensional data analysis where the classical maximum likelihood 

estimation fails: (1) The number of variables exceeds the number of observations; (2) 

There exists high degree of multicollinearity in the design matrix. In these situations, one 

might wish an oracle to reveal the relevant explanatory variables and use only those 

relevant variables for maximum likelihood estimation, and that is where variable selection 

methods play a role.  

Traditional sequential elimination methods include subset selection based on 

likelihood ratio test or other tests and forward or backward stepwise selection based on 

information criteria such as Mallows’s 𝐶𝐶𝑝𝑝, Akaike information criterion (AIC), Bayesian 

information criterion (BIC), etc. The problems with these methods include: (1) Only a 

small number of variables are allowed, because computation grows exponentially with a 

base of 2 as the dimension increases; (2) The results are unstable because the selection is 

discrete and different selection sequence leads to different selection results; (3) The 
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resulted model may be overfitted and inaccurate, because post-selection inference based 

on maximum likelihood method ignores the error resulted from the selection process, and 

this is the main challenge for simultaneous variable selection and inference. In recent 

years, penalized regression and shrinkage methods have been introduced and gained much 

popularity when selecting relevant variables and carrying out statistical inference at the 

same time. 

The objective function, or the minimization problem of the penalized regression is 

𝑄𝑄(𝛽𝛽|𝑋𝑋,𝑦𝑦) = 𝐿𝐿(𝛽𝛽|𝑋𝑋, 𝑦𝑦) + 𝑃𝑃𝜆𝜆(𝛽𝛽), 

where 𝐿𝐿(𝛽𝛽|𝑋𝑋, 𝑦𝑦)  is the negative log-likelihood function which is the same as the 

standard maximum likelihood estimation, while for least squares estimation it is the sum 

of squared residuals, and 𝑃𝑃𝜆𝜆(𝛽𝛽) is the additional penalty term that depends on the non-

negative tuning parameter, or the regularization parameter 𝜆𝜆, and the coefficients. The 

penalty term is the core of penalized regression methods. Using different penalty terms, 

we can assign different beliefs to the structure and magnitude of the variables and obtain 

different models in the end. The common belief for the following shrinkage and selection 

models is to penalize large coefficients. 

Hoerl (1962) applies the ridge regularization method to regression analysis and the 

method is known as ridge regression afterwards. The penalty term of ridge regression is 

the ℓ2-norm of coefficients, 

𝑃𝑃𝜆𝜆(𝛽𝛽) = 𝜆𝜆‖𝛽𝛽‖2, 

where ‖𝛽𝛽‖ = �∑ 𝛽𝛽𝑘𝑘2𝐾𝐾
𝑘𝑘=1 , and 𝐾𝐾 is the number of explanatory variables. To make the 

penalty unaffected by the scales of different regressors, all regressors need to be 

standardized beforehand. The ridge regression has a closed form unique solution and 

shrinks the coefficients towards zero. The regularization parameter controls the level of 

shrinkage. As 𝜆𝜆  approaches zero, the log-likelihood function dominates the objective 

function and the coefficients approach the maximum likelihood estimator. As 𝜆𝜆 

approaches infinity, the penalty term dominates and the coefficients approach zero. The 

larger 𝜆𝜆, the higher penalty and smaller coefficients. An advantage of shrinkage methods 
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over traditional subset selection methods is that unlike subset selection methods where 

the change of model is discrete, the change in penalized regression models is continuous 

due to the continuity of regularization parameter. Many methods have been developed to 

choose the regularization parameter, including Mallows’s 𝐶𝐶𝑝𝑝, cross validation, AIC and 

BIC. The criteria consist of two parts: One measures within sample fit and another 

measures the complexity, or the degrees of freedom of the model. By choosing a proper 

regularization parameter, the ridge regression estimator has smaller mean squared error 

(MSE) than OLS through a combination of a larger bias and a smaller variance. However, 

the ridge regression only has the shrinkage property – it cannot set any coefficient to zero 

and thus cannot be used to select relevant variables. 

Tibshirani (1996) proposes the least absolute selection and shrinkage operator (Lasso). 

The penalty term of the Lasso is the ℓ1-norm of coefficients, 

𝑃𝑃𝜆𝜆(𝛽𝛽) = 𝜆𝜆‖𝛽𝛽‖1, 

where ‖𝛽𝛽‖1 = ∑ |𝛽𝛽𝑘𝑘|𝐾𝐾
𝑘𝑘=1  , and 𝐾𝐾  is the number of explanatory variables. Using the 

absolute value of the coefficients as penalty terms, the Lasso can shrink all coefficients 

towards zero and set the coefficients of some variables to zero, thus achieving shrinkage 

and selection at the same time. The regularization parameter 𝜆𝜆 has similar properties as 

the ridge regression. The only difference is that as 𝜆𝜆 approaches infinity, the coefficients 

are all zero. Also, the Lasso does not have a closed form solution and the solution may be 

non-unique. Since the Lasso estimator is continuous in 𝜆𝜆 , we can draw a continuous 

coefficient path for all variables from the maximum value of 𝜆𝜆 where all coefficients are 

zero to the minimum value of 𝜆𝜆. The methods to choose regularization parameter are the 

same as the ridge regression. Although under some conditions (Zhao and Yu, 2006), the 

Lasso selects relevant variables consistently, Fan and Li (2001) show that the Lasso has 

several shortcomings: (1) It leads to biased estimates and tends to overshrink large 

coefficients; (2) It tends to select irrelevant variables and thus has high false positive 

selection rates. 

 In order to reduce the bias and improve selection of the Lasso, Zou (2006) introduces 
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the adaptive Lasso. The idea of adaptive Lasso is to assign different weights to the penalty 

terms such that large coefficients are penalized less heavily than small coefficients. The 

penalty term of adaptive Lasso is the same as the Lasso but with additional weights, 

𝑃𝑃𝜆𝜆(𝛽𝛽) = 𝜆𝜆 ∑ 𝑤𝑤𝑘𝑘|𝛽𝛽𝑘𝑘|𝐾𝐾
𝑘𝑘=1 , 

where 𝑤𝑤𝑘𝑘 = 1/|𝛽𝛽𝑘𝑘�|, 𝐾𝐾 is the number of explanatory variables, and 𝛽𝛽𝑘𝑘� is a consistent 

initial estimator for 𝛽𝛽𝑘𝑘. If the initial estimator for 𝛽𝛽𝑘𝑘 approaches zero, 𝑤𝑤𝑘𝑘 approaches 

infinity and the adaptive Lasso estimator for 𝛽𝛽𝑘𝑘  is zero. Zou (2006) proves that the 

adaptive Lasso with the maximum likelihood estimator as initial estimator has the oracle 

property under some regularity conditions. It is possible use different weight formulas and 

different initial estimators while retaining the oracle property. The (adaptive) Lasso 

estimator can select relevant individual variables, but does not perform well when 

variables have group structure, such as dummy variables formed from a categorical 

variable, or in our case, variables within each register. For variables with group structure, 

rather than identifying relevant individual variables, we sometimes only want to identify 

relevant groups and set the coefficients of all variables in the irrelevant groups to zero. 

But in this case, the (adaptive) Lasso also selects variables of irrelevant groups. 

Yuan and Lin (2006) extend the Lasso to group variable selection and introduce the 

group Lasso. The idea is quite straightforward – to penalize on the group level instead of 

on the individual level. Suppose that the 𝐾𝐾 explanatory variables can be divided into 𝐽𝐽 

groups. In each group there are 𝐴𝐴𝑗𝑗  explanatory variables denoted by 𝛽𝛽𝑗𝑗𝑘𝑘  where 𝑘𝑘 =

1, … ,𝐴𝐴𝑗𝑗. The penalty term of group Lasso is the ℓ1-norm of groups with ℓ2-norm of 

coefficients within each group, 

𝑃𝑃𝜆𝜆(𝛽𝛽) = 𝜆𝜆 ∑ �𝐴𝐴𝑗𝑗�𝛽𝛽𝑗𝑗�
𝐽𝐽
𝑗𝑗=1 , 

where �𝛽𝛽𝑗𝑗� = �∑ 𝛽𝛽𝑗𝑗𝑘𝑘2
𝐴𝐴𝑗𝑗
𝑘𝑘=1 . The weights �𝐴𝐴𝑗𝑗 adjust for sizes of groups and thus all else 

equal, groups with more variables will not be more likely to be selected than groups with 

less variables. The group Lasso reduces to the Lasso if all groups contain only one variable 
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and thus shares the similar shortcomings of the Lasso on a group level. Because the ℓ2-

norm of coefficients is zero if and only if all the coefficients are zero, the group Lasso is 

able to drop an entire group. Within a group, the penalty term allows shrinkage, but does 

not allow selection on the individual level, similar to the ridge regression. So, the group 

Lasso either selects or drops all variables of a group. However, in many cases, only some 

variables within each group are relevant for the outcome and we want to include only 

those relevant individual variables in the analysis.  

In order to select relevant individual variables with group structure, Huang et al. (2009) 

propose the group bridge method and further extend the Lasso to bi-level selection, which 

means to select both relevant groups and relevant individual variables within those groups. 

The penalty term of group bridge is a non-convex bridge penalty (Fu, 1998) applied to 

groups with ℓ1-norm of coefficients within each group, 

𝑃𝑃𝜆𝜆(𝛽𝛽) = 𝜆𝜆 ∑ 𝐴𝐴𝑗𝑗
1−𝛾𝛾�𝛽𝛽𝑗𝑗�1

𝛾𝛾𝐽𝐽
𝑗𝑗=1 , 

where �𝛽𝛽𝑗𝑗�1
𝛾𝛾

= �∑ |𝛽𝛽𝑗𝑗𝑘𝑘|𝐴𝐴𝑗𝑗
𝑘𝑘=1 �

𝛾𝛾
, and 𝛾𝛾 is the bridge penalty that is between zero and one 

and set to be 1 2⁄  in their paper. By changing the penalty for within-group individual 

variables, an individual variable can be selected or omitted according to the effects from 

both itself and its group. The group bridge reduces to the Lasso if the bridge penalty is set 

to be one and there is only one variable in each group. Huang et al. (2009) prove the group 

selection consistency, but do not prove selection consistency for individual variables 

within groups. Due to the ℓ1-type penalty, the group bridge shares similar shortcomings 

of the Lasso at individual level. There exist other types of non-convex penalties, such as 

SCAD (Fan and Li, 2001), MCP (Zhang, 2010), group MCP (Breheny and Huang, 2009), 

etc. See Huang et al. (2012) for a survey on group selection and bi-level selection methods. 

 It is still not an easy task to carry out inference with the Lasso-type estimator. Existing 

methods include sample splitting (Meinshausen et al., 2009), covariance test (Lockhart et 

al., 2014), post-selection inference (Lee et al., 2016), etc. See Taylor and Tibshirani (2015) 

for a survey. The inference method of this thesis is to use unpenalized regression models 

with the selected variables, which are believed to be the relevant variables if the Lasso-
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type estimator has the oracle property (Hastie et al., 2015). 

There is an extensive statistics literature about a number of variants of the Lasso that 

achieve the oracle property in various settings, such as elasticity net (Zou and Hastie, 

2003), sparse group Lasso (Simon et. al., 2013), fused Lasso (Tibshirani, 2005), 

hierarchical Lasso (Zhao et al., 2009), etc. See two books from Bühlmann and Van De 

Geer (2011) and Hastie et al. (2015) respectively for a comprehensive guide to statistical 

methods for high-dimensional data, with a focus on Lasso. The Lasso-type estimators 

have also been applied to various regression models, such as the standard linear regression, 

proportional hazards regression, logistic regression, etc. In this thesis, we use one variant 

of the Lasso that achieves selection consistency at both group level and within-group 

individual variable level – adaptive group bridge applied to competing risks quantile 

regression model, introduced by Ahn and Kim (2018), which is shown in chapter 5.3. 

 

5.2  Competing Risks Quantile Regression 

 

Koenker and Bassett (1978) introduce the quantile regression model. Instead of focusing 

on the conditional mean, they estimate the conditional quantiles of the explained variable. 

Quantile regression model is more complex than mean regression because it is estimated 

separately for different quantiles and gives a detailed analysis of the distribution of the 

explained variables. Let the conditional distribution of the explained variable 𝑌𝑌  be 

𝐹𝐹𝑌𝑌(𝑦𝑦|𝑋𝑋) = 𝑃𝑃𝑃𝑃 (𝑌𝑌 ≤ 𝑦𝑦|𝑋𝑋)  and 𝑋𝑋  is a 𝑁𝑁 × 𝐾𝐾  matrix of regressors. The 𝜏𝜏  conditional 

quantile of 𝐹𝐹𝑌𝑌(𝑦𝑦|𝑋𝑋) is 𝑄𝑄𝑌𝑌(𝜏𝜏|𝑋𝑋) = 𝐹𝐹𝑌𝑌−1(𝜏𝜏|𝑋𝑋) = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑦𝑦:𝐹𝐹𝑌𝑌(𝑦𝑦|𝑋𝑋) ≥ 𝜏𝜏}. Assume a simple 

linear representation of the conditional quantile 𝑄𝑄𝑌𝑌(𝜏𝜏|𝑋𝑋) = 𝑋𝑋𝛽𝛽(𝜏𝜏)  where 𝛽𝛽(𝜏𝜏)  is a 

vector of coefficients with length 𝐾𝐾. The estimator �̂�𝛽(𝜏𝜏) can be obtained by minimizing 

∑ �𝜏𝜏 − 𝟙𝟙�𝑦𝑦𝑖𝑖≤𝑥𝑥𝑖𝑖′𝑏𝑏(𝜏𝜏)�� (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑏𝑏(𝜏𝜏))𝑁𝑁
𝑖𝑖=1 ≝ ∑ 𝜌𝜌𝜏𝜏(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑏𝑏(𝜏𝜏))𝑁𝑁

𝑖𝑖=1   with respect to 𝑏𝑏(𝜏𝜏) , 

where 𝜌𝜌𝜏𝜏(𝑢𝑢) ≝ (𝜏𝜏 − 𝟙𝟙{𝑢𝑢≤0})𝑢𝑢 is known as the check function and 𝟙𝟙(∙) is an indicator 

function. 
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Quantile regression has been applied to various regression models, including linear, 

nonlinear, nonparametric model with cross section, time series and panel data. Duration 

data are usually censored and thus need special care. See Fitzenberger and Wilke (2015) 

for a survey on quantile regression methods and Fitzenberger and Wilke (2005) on 

quantile regression for duration analysis. Competing risks model refers to duration 

analysis with several potential failure types, or risks for one individual and only one 

failure type is observed if this observation is not censored. In this thesis there are two 

competing risks where an older employee can make a transition into retirement or another 

state. 

Peng and Fine (2009) apply quantile regression to competing risks and introduce the 

competing risks quantile regression model. Different from independent competing risks 

proportional hazards model (Fine and Gray, 1999), this model can accommodate the 

dependency between competing risks, and thus allow duration to be correlated through 

unobservables conditional on the observables. Dlugosz and Wilke (2017) first apply this 

model to German maternity duration data and find that dependent competing risks 

quantile regression gives quite different results from independent competing risks 

proportional hazards model. We adopt this approach to have a flexible specification of 

dependencies between risks. With quantile regression, the regressors can affect 

conditional quantiles differently for long or short durations. This provides flexibilities 

further for heterogeneous effects on transitions for different durations or different 

retirement programs, which is exactly what we observe in chapter 6.2 that many variables 

play sizable roles in one’s early 60s but are not important at all afterwards. 

 Because we do not want to assume independent competing risks or specify a certain 

type of dependence form, the data generating process is unidentified (Peterson, 1976). 

The cumulative incidence curve avoids this problem by describing the distribution of 

observed transitions. Because it is not the marginal distribution of durations, the 

cumulative incidence curve is also known as subdistribution and cannot be higher than 
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the share of observed transitions. In competing risks quantile regression, Peng and Fine 

(2009) use cumulative incidence curve to define the quantiles. 

 Consider a model with R types of competing risks 𝑃𝑃 = 1, … ,𝑅𝑅. Let 𝑇𝑇𝑟𝑟 and C denote 

event time and an independent censoring point, which in our case is the end of observation 

period and is a constant. Let 𝜖𝜖 = 𝑎𝑎𝑃𝑃𝑎𝑎𝑚𝑚𝑖𝑖𝑖𝑖𝑟𝑟{𝑇𝑇𝑟𝑟}  and 𝑈𝑈 = 𝑚𝑚𝑖𝑖𝑖𝑖𝑟𝑟{𝑇𝑇𝑟𝑟} . The observed 

duration is 𝑇𝑇 = 𝑚𝑚𝑖𝑖𝑖𝑖 (𝑈𝑈,𝐶𝐶) . The observed failure type is ∆= 𝟙𝟙{𝑈𝑈≤𝐶𝐶}𝜖𝜖 . The cumulative 

incidence for risk 𝑃𝑃  is 𝐹𝐹𝑟𝑟(𝑡𝑡|𝑋𝑋) = 𝑃𝑃𝑃𝑃 (𝑇𝑇𝑟𝑟 ≤ 𝑡𝑡,∆= 𝑃𝑃|𝑋𝑋) . The 𝜏𝜏  conditional quantile of 

𝐹𝐹𝑟𝑟(𝑡𝑡|𝑋𝑋)  is 𝑄𝑄𝑟𝑟(𝜏𝜏|𝑋𝑋) = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑡𝑡:𝐹𝐹𝑟𝑟(𝑡𝑡|𝑋𝑋) ≥ 𝜏𝜏} . Assume 𝑄𝑄𝑟𝑟(𝜏𝜏|𝑋𝑋) = 𝑎𝑎�𝑋𝑋𝛽𝛽𝑟𝑟(𝜏𝜏)� , where 

𝑎𝑎(∙) is a known monotone link function and 0 < 𝜏𝜏𝐿𝐿 ≤ 𝜏𝜏 ≤ 𝜏𝜏𝑈𝑈 < 1. The sample analogue 

of (𝑇𝑇,∆,𝐶𝐶,𝑋𝑋)  is denoted as (𝑡𝑡𝑖𝑖 , 𝛿𝛿𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑥𝑥𝑖𝑖) . In the case of no censoring, similar to the 

linear quantile regression model, the estimator �̂�𝛽𝑟𝑟(𝜏𝜏)  can be obtained by minimizing 

∑ 𝜌𝜌𝜏𝜏(𝑎𝑎−1(𝑡𝑡𝑖𝑖∗) − 𝑥𝑥𝑖𝑖′𝑏𝑏(𝜏𝜏))𝑁𝑁
𝑖𝑖=1   with respect to 𝑏𝑏(𝜏𝜏) , where 𝑥𝑥𝑖𝑖  is a 𝐾𝐾 × 1  vector of 

regressors and 𝑡𝑡𝑖𝑖∗ = 𝟙𝟙{𝛿𝛿𝑖𝑖=𝑟𝑟}𝑡𝑡𝑖𝑖 + 𝟙𝟙{𝛿𝛿𝑖𝑖≠𝑟𝑟} × ∞ , which is equivalent to solving equation 

𝑁𝑁−12 ∑ 𝑥𝑥𝑖𝑖′ �𝟙𝟙�𝑔𝑔−1(𝑡𝑡𝑖𝑖)≤𝑥𝑥𝑖𝑖
′𝑏𝑏(𝜏𝜏),𝛿𝛿𝑖𝑖=𝑟𝑟� − 𝜏𝜏�𝑁𝑁

𝑖𝑖=1 = 0. In the case of independent censoring, �̂�𝛽𝑟𝑟(𝜏𝜏) 

is the solution to 𝑆𝑆𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) = 0, where 

𝑆𝑆𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) = 𝑁𝑁−12� 𝑥𝑥𝑖𝑖′ �
𝟙𝟙�𝑔𝑔−1(𝑡𝑡𝑖𝑖)≤𝑥𝑥𝑖𝑖

′𝑏𝑏(𝜏𝜏),𝛿𝛿𝑖𝑖=𝑟𝑟�

𝐺𝐺�(𝑡𝑡𝑖𝑖)
− 𝜏𝜏�

𝑁𝑁

𝑖𝑖=1
 

and 𝐺𝐺�(𝑡𝑡𝑖𝑖)  is the Kaplan-Meier estimator for 𝑃𝑃𝑃𝑃(𝐶𝐶 ≥ 𝑇𝑇|𝑋𝑋) . Because 𝑆𝑆𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) = 0 

may not have an exact solution due to noncontinuity, Peng and Fine (2009) define a 

generalized solution and show that the generalized solution is equivalent to minimizing 

the following ℓ1-type convex function 

𝑈𝑈𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) = ∑ 𝟙𝟙{𝛿𝛿𝑖𝑖=𝑟𝑟} �
𝑔𝑔−1(𝑡𝑡𝑖𝑖)−𝑥𝑥𝑖𝑖

′𝑏𝑏(𝜏𝜏)
𝐺𝐺�(𝑡𝑡𝑖𝑖)

�𝑁𝑁
𝑖𝑖=1

+ �𝑀𝑀 − 𝑏𝑏(𝜏𝜏)′ ∑
−𝑥𝑥𝑖𝑖𝟙𝟙�𝛿𝛿𝑖𝑖=𝑟𝑟�
𝐺𝐺�(𝑡𝑡𝑖𝑖)

𝑁𝑁
𝑖𝑖=1 �

+|𝑀𝑀 − 𝑏𝑏(𝜏𝜏)′ ∑ 2𝑥𝑥𝑖𝑖𝜏𝜏𝑁𝑁
𝑖𝑖=1 |

, 

where 𝑀𝑀  is a very large positive number. They prove consistency and asymptotic 

normality of �̂�𝛽𝑟𝑟(𝜏𝜏) under some regularity conditions. Besides, they propose consistent 
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variance and covariance estimators, a trimmed mean statistic to summarize the effect over 

quantiles, and a constant test regarding whether a regressor has a constant effect on 

cumulative incidence quantiles. The trimmed mean effect estimator is represented as 
∫ 𝛽𝛽�(𝜏𝜏)𝑑𝑑𝜏𝜏𝜏𝜏𝑈𝑈
𝜏𝜏𝐿𝐿
𝜏𝜏𝑈𝑈−𝜏𝜏𝐿𝐿

 and a Wald-type test is derived for inference. In practice, we use Riemann sum 

to approximate the integral such that the estimated trimmed mean effect is 
∑ 𝛽𝛽�(𝜏𝜏)∆𝜏𝜏𝜏𝜏𝑈𝑈
𝜏𝜏𝐿𝐿
𝜏𝜏𝑈𝑈−𝜏𝜏𝐿𝐿

. For 

the constant test, the null hypothesis is 𝐻𝐻0:𝛽𝛽(𝜏𝜏) = 𝜌𝜌0, 𝜏𝜏 ∈ [𝜏𝜏𝐿𝐿 , 𝜏𝜏𝑈𝑈] , where 𝜌𝜌0  is an 

unspecified constant, and a test statistic is derived following the trimmed mean.  

We use the R package cmprskQR by Dlugosz (2016) and revise one function for the 

estimation. See the revised function in appendix A.2. We use the exponential function as 

the link function 𝑎𝑎(∙). The model is estimated for 𝜏𝜏 ∈ [𝜏𝜏𝐿𝐿 , 𝜏𝜏𝑈𝑈] with a step size of 0.01, 

where 𝜏𝜏𝐿𝐿 is 0.01 and  𝜏𝜏𝑈𝑈 is determined automatically as a value that corresponds to an 

cumulative incidence that is lower than its plateau value (Dlugosz and Wilke, 2017), 

resulting from condition C4 of Peng and Fine (2009). 

 

5.3  (Adaptive) Group Bridge in Competing Risks Quantile Regression 

 

Ahn and Kim (2018) introduce the adaptive group bridge and apply it to competing risks 

quantile regression. Similar to the change from the standard Lasso to the adaptive Lasso, 

the adaptive group bridge modifies the ℓ1-type penalty of within-group coefficients to a 

weighted ℓ1 -type penalty. The setup is the same as group Lasso and group bridge 

mentioned in chapter 5.1. The penalty term of adaptive group bridge is 

𝑃𝑃𝜆𝜆(𝛽𝛽) = 𝜆𝜆 ∑ 𝐴𝐴𝑗𝑗
1−𝛾𝛾�𝛽𝛽𝑗𝑗�1

𝛾𝛾𝐽𝐽
𝑗𝑗=1 , 

where �𝛽𝛽𝑗𝑗�1
𝛾𝛾

= �∑ 𝑤𝑤𝑗𝑗𝑘𝑘|𝛽𝛽𝑗𝑗𝑘𝑘|𝐴𝐴𝑗𝑗
𝑘𝑘=1 �

𝛾𝛾
, 𝑤𝑤𝑗𝑗𝑘𝑘 = 1

�𝛽𝛽�𝑗𝑗𝑗𝑗�
𝑣𝑣, 𝛽𝛽�𝑗𝑗𝑘𝑘 is an initial consistent estimator for 

𝛽𝛽𝑗𝑗𝑘𝑘, 𝑤𝑤𝑗𝑗𝑘𝑘 is the individual level weight for the 𝑘𝑘𝑡𝑡ℎ variable within group 𝑗𝑗 and 𝑣𝑣 ≥ 0, 

𝐴𝐴𝑗𝑗
1−𝛾𝛾 is the group level weight, and 𝛾𝛾 is the bridge penalty that is between zero and one. 

The group bridge is the case where 𝑣𝑣 = 0. 
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 Combining the adaptive group bridge penalty with the objective function of 

competing risks quantile regression 𝑈𝑈𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏)  in chapter 5.2, Ahn and Kim (2018) 

propose a penalized objective function 

𝑊𝑊𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) = 𝑈𝑈𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) + 𝑃𝑃𝜆𝜆�𝑏𝑏(𝜏𝜏)�

= 𝑈𝑈𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) + 𝜆𝜆 ∑ 𝐴𝐴𝑗𝑗
1−𝛾𝛾 �∑ �

�𝑏𝑏𝑗𝑗𝑗𝑗(𝜏𝜏)�

�𝛽𝛽�𝑗𝑗𝑗𝑗(𝜏𝜏)�
𝑣𝑣� �

𝐴𝐴𝑗𝑗
𝑘𝑘=1 �

𝛾𝛾
𝐽𝐽
𝑗𝑗=1  

. 

Minimization of 𝑊𝑊𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) itself is not easy due to the non-convexity of this function. 

Similar to Huang et al. (2009), Ahn and Kim (2018) propose in Lemma 2.2 that through 

variable augmentation, minimizing 𝑊𝑊𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) with respect to 𝑏𝑏(𝜏𝜏) is equivalent to 

minimizing 𝑊𝑊�𝑁𝑁(𝑏𝑏(𝜏𝜏),𝜃𝜃, 𝜏𝜏) with respect to (𝑏𝑏(𝜏𝜏),𝜃𝜃) 

𝑊𝑊�𝑁𝑁(𝑏𝑏(𝜏𝜏),𝜃𝜃, 𝜏𝜏) = 𝑈𝑈𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) + 𝜉𝜉 ∑ ��𝜃𝜃𝑗𝑗
𝐴𝐴𝑗𝑗
�
1−1𝛾𝛾 ∑ �

�𝑏𝑏𝑗𝑗𝑗𝑗(𝜏𝜏)�

�𝛽𝛽�𝑗𝑗𝑗𝑗(𝜏𝜏)�
𝑣𝑣� �

𝐴𝐴𝑗𝑗
𝑘𝑘=1 �𝐽𝐽

𝑗𝑗=1 + 𝜉𝜉 ∑ 𝜃𝜃𝑗𝑗
𝐽𝐽
𝑗𝑗=1

𝜃𝜃𝑗𝑗 = 𝐴𝐴𝑗𝑗
1−𝛾𝛾 �1−𝛾𝛾

𝛾𝛾
�
𝛾𝛾
�∑ �

�𝛽𝛽𝑗𝑗𝑗𝑗(𝜏𝜏)�

�𝛽𝛽�𝑗𝑗𝑗𝑗(𝜏𝜏)�
𝑣𝑣� �

𝐴𝐴𝑗𝑗
𝑘𝑘=1 �

𝛾𝛾 , 

where 𝜉𝜉 is the tuning parameter and a reparameterization of 𝜆𝜆. They prove that under 

some conditions, in the competing risks quantile regression framework, the group bridge 

selects group variables consistently; the adaptive group bridge not only selects group 

variables consistently, but also selects within-group individual variables consistently, and 

thus possesses the oracle property. 

In the simulation study and real data analysis, Ahn and Kim (2018) set 𝛾𝛾 to be 1 2⁄  

and 𝑣𝑣  to be 1 . Following them, we use these values in the algorithm of solving the 

minimization problem. The (adaptive) group bridge algorithm is: 

1. Choose a certain quantile. 

2. Use the group bridge estimator or the unpenalized competing risks quantile regression 

estimator as the initial estimator 𝛽𝛽�𝑗𝑗𝑘𝑘(𝜏𝜏)  to compute the individual weights for 

adaptive group bridge estimator. For the group bridge estimator, the individual 

weights do not appear. 

3. Following Friedman et al. (2010), choose a grid of 100 values for the tuning parameter 



29 
 

𝜉𝜉𝑛𝑛 that is uniformly spaced on the log scale. The upper bound is the smallest value 

where none of the variables is selected and the lower bound is the upper bound over 

1000. For each value of the tuning parameter, repeat the following steps for 𝑡𝑡 = 1, … 

until practical convergence indicated by ��̂�𝛽𝑡𝑡(𝜏𝜏) − �̂�𝛽𝑡𝑡−1(𝜏𝜏)�
1 < 0.001, and save the 

estimated coefficients �̂�𝛽(𝜏𝜏) after practical convergence: 

a) Compute 𝜃𝜃𝑗𝑗
(𝑡𝑡) = �𝐴𝐴𝑗𝑗 ∑ �

�𝛽𝛽𝑗𝑗𝑗𝑗
(𝑡𝑡−1)(𝜏𝜏)�

�𝛽𝛽�𝑗𝑗𝑗𝑗(𝜏𝜏)�
� �

𝐴𝐴𝑗𝑗
𝑘𝑘=1   for all groups 𝑗𝑗 = 1, … , 𝐽𝐽 , where 

for the first iteration 𝛽𝛽𝑗𝑗𝑘𝑘
(0)(𝜏𝜏) = 𝛽𝛽�𝑗𝑗𝑘𝑘(𝜏𝜏). 

b) Solve the minimization problem of (adaptive) group bridge 

�̂�𝛽𝑡𝑡(𝜏𝜏) = 𝑎𝑎𝑃𝑃𝑎𝑎𝑚𝑚𝑖𝑖𝑖𝑖
𝑏𝑏(𝜏𝜏)

 𝑈𝑈𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) + 𝜉𝜉𝑛𝑛 ∑ � 𝐴𝐴𝑗𝑗
𝜃𝜃𝑗𝑗

(𝑡𝑡) ∑ �
�𝑏𝑏𝑗𝑗𝑗𝑗(𝜏𝜏)�

�𝛽𝛽�𝑗𝑗𝑗𝑗(𝜏𝜏)�
� �

𝐴𝐴𝑗𝑗
𝑘𝑘=1 �𝐽𝐽

𝑗𝑗=1

= 𝑎𝑎𝑃𝑃𝑎𝑎𝑚𝑚𝑖𝑖𝑖𝑖
𝑏𝑏(𝜏𝜏)

 𝑈𝑈𝑁𝑁(𝑏𝑏(𝜏𝜏), 𝜏𝜏) + 𝜉𝜉𝑛𝑛 ∑ ∑ 𝑤𝑤𝑗𝑗𝑗𝑗�𝑏𝑏𝑗𝑗𝑗𝑗(𝜏𝜏)�
𝐴𝐴𝑗𝑗
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1

, 

where 𝑤𝑤𝑗𝑗𝑘𝑘 = 𝐴𝐴𝑗𝑗
𝜃𝜃𝑗𝑗

(𝑡𝑡)�𝛽𝛽�𝑗𝑗𝑗𝑗(𝜏𝜏)�
. 

4. Now we have 100 estimates �̂�𝛽(𝜏𝜏) for 100 values of the tuning parameter respectively. 

To choose the optimal tuning parameter, we compute the BIC-type criterion following 

Ahn and Kim (2018)* 
2
𝑛𝑛
𝑈𝑈𝑁𝑁(�̂�𝛽(𝜏𝜏), 𝜏𝜏) + 𝑝𝑝𝑛𝑛 𝑙𝑙𝑖𝑖(𝐾𝐾) 𝑙𝑙𝑛𝑛(𝑁𝑁)

2𝑁𝑁
, 

where 𝐾𝐾 is the number of explanatory variables, 𝑁𝑁 is the number of observations, 

and 𝑝𝑝𝑛𝑛 is the number of nonzero coefficients or selected variables to model degrees 

of freedom. The tuning parameter that leads to the smallest criterion value gives the 

optimal estimates �̂�𝛽(𝜏𝜏). 

Notice that due to the combination of quantile regression and the variable selection 

technique, both the estimates and the selected variable set change by quantile. Due to the 

computational intensity, we only choose three different quantiles for estimation. After the 

                                                   
* Other methods exist. For example, Ahn et al. (2018) apply the generalized cross validation method following Huang et al. (2014) 
to choose the tuning parameter. 
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selection process, we use the unpenalized competing risks quantile regression for 

estimation and inference. Following Ahn and Kim (2018) and Peng and Fine (2009), we 

explore how (adaptive) group bridge is helpful in identifying relevant registers and within-

register variables in competing risks quantile regression to obtain a complete view of the 

conditional distribution of observed employment durations with exit to retirement. R code 

for the (adaptive) group bridge estimator is provided in appendix A.2.  
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Chapter 6 
Results 
 

In this chapter, we present and discuss the empirical results. First we look at the estimation 

results from (adaptive) group bridge for three quantiles and make inference using 

unpenalized competing risks quantile regression with the selected variables. Then we 

present estimated coefficients and estimated cumulative incidence quantiles over equally-

spaced quantiles to have a detailed view of the conditional distribution of coefficients and 

observed transitions into retirement respectively across quantiles. 

 

6.1  (Adaptive) Group Bridge 

 

For the (adaptive) group bridge estimation, we analyze three quantiles: 0.11, 0.25 and 

0.31. For each of these quantiles, we use three selection methods: group bridge, adaptive 

group bridge using group bridge as the initial estimator, and adaptive group bridge using 

competing risks quantile regression as the initial estimator. Table 6.1 shows the estimation 

results. Only variables that are selected by at least one of the three methods are included 

in the table. The last column for each quantile is the estimation results from the 

unpenalized competing risks quantile regression. For better inference, we keep only one 

of the highly correlated variables, such as ‘employed: highest level’ and ‘occupation: 

highest level’. We provide definition and links from Statistics Denmark of some variables 

in Table A.2 in appendix A.1. 

We can see that for 𝜏𝜏 = 0.11, all methods select 3 registers and 10 to 15 within-

register variables. The group bridge estimator is more likely to shrink the magnitude of 

the estimates compared with adaptive group bridge; however, this phenomenon is less 

apparent for the other quantiles. The selection results for 𝜏𝜏 = 0.25 is similar to those for 

𝜏𝜏 = 0.11, yet for 𝜏𝜏 = 0.31, the results change considerably, only 1 to 3 registers and 1 to 
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4 within-register variables are selected. For all quantiles, adaptive group bridge with 

group bridge as initial estimator has the largest model size and group bridge estimator 

select the least. Estimates using (adaptive) group bridge all have the same sign for all 

quantiles. Most selected variables are significant in the competing risks quantile 

regression, but few have different signs. In all, all three methods reduce dimension 

considerably; although the selection results change across quantiles, the selected registers 

and within-register variables share some similarity; there is no clear comparison of 

selection quality among the three methods; the selection results have reasonable 

interpretation and are consistent with many studies. 

Of the 16 registers, the education, health, crime and firm registers are not selected. 

We are left with registers covering labor market, employment, population and financial 

statistics. This seems to contradict some studies. But there are some explanations. First, 

education is known to have ambiguous effects on retirement. Second, the sample of this 

study consists of rather healthy individuals and from the data we know that only few 

people have criminal records, which could explain the omission of health and crime 

information. And there are actually few studies mention the effects of firm characteristics. 

For the labor market register AKM, some occupation and industry variables are 

selected. Except people in the energy supply industry and in work that requires the 

highest-level skills, the other selected occupations and industries all have a negative sign, 

suggesting higher probability of transitions into retirement. However, it seems that most 

industries and occupations are not important for retirement transitions. Work experience, 

unemployment experience, etc. are also not selected possibly because the sample consists 

of employees with rather similar work experience and little unemployment experience. 

For the population register BEF, the variable ‘date of birth’ is computed as the number 

of weeks from the first week of a year to the date when one is born in order to capture the 

effect of age eligibility. For example, the value of this variables is 5 if one is born on 2 

February. It is selected by almost all methods and all quantiles and is highly significant, 

suggesting that the employment duration is very sensitive to the date a person is born. The 
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positive sign shows that people born earlier has shorter duration than those who born later 

in a year, suggesting that many people retire just after they satisfy age requirement. 

The variable ‘male’ is only selected by group bridge, and it appears insignificant in 

all quantiles. This finding contradicts many studies which show that gender plays an 

important role in retirement decisions. One reason could be that the effect of gender is 

wiped out by other variables, such as occupation, industry, etc. In particular the variable 

‘reference person in family’, which refers to the women in a family of heterosexual couple 

and the oldest person in other families, by definition is highly correlated with gender. It is 

selected for the first two quantiles and is significant for quantile 0.11. The negative 

coefficient suggests that everything else equal, females or the oldest person in a family 

have a higher probability of observing a transition into retirement at shorter durations. 

 Adaptive group bridge with group bridge as initial estimator is the only method that 

includes IDAP register. There is only one variable ‘insured’ selected in this register, but it 

is highly significant in the competing risks quantile regression. This variable suggests 

whether one is insured or not, but it has a confusing description in Statistics Denmark, 

which makes the definition unclear. It is interesting that these methods select a variable 

that does not have a clear interpretation but seems to be important and survive the tests. 

 Adaptive group bridge with group bridge as initial estimator does not select the 

income register IND, and the other methods select within-group variables less consistently 

compared with AKM and BEF. Some variables are highly correlated, such as the variable 

‘AM-income’ and ‘salary income’, etc., and thus is eliminated from the unpenalized 

regression. The income variables all have positive sign for all quantiles, suggesting that 

people with higher income tend to work longer, corresponding to the case where 

substitution effect dominates in the tradeoff between leisure and income. On the other 

hand, the variable ‘property value’ has a negative sign in the competing risks quantile 

regression model, showing evidence of income effect, consistent with Kallestrup-Lamb 

et al. (2016). Contributions to pension schemes, the PEW in particular, have a negative 

effect on employment durations for lower quantiles. Debt value is only selected by group 
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bridge but remain significant for all quantiles. The positive sign reflects the need to work 

longer for people who have more debt, which is reasonable if wage income exceeds 

retirement pension income. 

However, we have to mention that the choice of tuning parameter plays an important 

role in the estimation process. If we change the tuning parameter, the selection results 

change. See Figure 6.1 for the value of BIC-type criterion for the adaptive group bridge 

estimator using competing risks quantile regression as the initial estimator for the 0.11 

quantile. We can see that although there exists a global minimum, the curve is relatively 

flat for a wide range of 𝜆𝜆 around the global minimum, which means that we could get 

very different selection results if we use another tuning parameter which has very similar 

criterion value. The curves for other methods and other quantiles exist similar pattern. 

This pattern casts doubt on the optimal value for tuning parameter and the resulted 

selection results, so we should treat results in Table 6.1 with caution if we want to use the 

selected variables for further analysis. 

Figure 6.1: Adaptive group bridge with initial estimator from CRQR for 0.11 quantile 
Note: CRQR refers to competing risks quantile regression. 

6.2  Competing Risks Quantile Regression 

For the competing risks quantile regression, we use variables that at least appear in Table 

6.1 once and drop variables that are highly correlated. In the end we select 22 variables. 
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Of the 22 variables, we select 20 variables that are significant for at least some of the 

quantiles and show the estimated cumulative incidence curve in Figure 6.2 and estimated 

coefficients at a grid of quantiles that is equally spaced on [𝜏𝜏𝐿𝐿 , 𝜏𝜏𝑈𝑈] with a step size of 

0.01 in Figure 6.3. Apart from the detailed conditional distribution across quantiles from 

Figure 6.3, Table 6.2 shows some summary statistics for all the 22 variables, including 

trimmed mean effects and inference statistics of the constant test. 

 Figure 6.2 shows the estimated conditional cumulative incidence curve for a reference 

individual defined by setting all variables to sample averages.* According to the model, 

we cannot obtain estimates for the entire durations, but 𝜏𝜏𝑈𝑈 (0.58) is much lower than the 

share of observed transitions into retirement (86.12% in Table 4.1). One possible 

explanation is that for higher quantiles, that is longer durations, people enter into old age 

pension intensively at some time points. From the data, we can see a large mass for 

durations at several time points from week 260 to 310 (see Figure 4.1), so the share of 

transitions effective for analysis is actually lower than 86.12%. We can see a shaper 

increase in the middle quantiles, showing evidence that many people choose to defer early 

retirement pension for two years and then enter intensively at around 160 weeks from 

2009. 

Figure 6.2: Estimated cumulative incidence curve for the reference individual 

* This may not be the best approach given presence of dummy variables. But most patterns are similar across different
specifications of the dummy variables for the reference individual, such as the sharper increase in the middle. 

0 50 100 150 200 250

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Duration (in weeks)

C
um

ul
at

iv
e 

In
ci

de
nc

e



 
38 

 

Figure 6.3 shows a detailed conditional distribution of estimated coefficients across 

quantiles. We can see that although the signs of all variables keep unchanged, the 

magnitude and significance level change across quantiles. The first two occupation 

variables are significant for lower quantiles, suggesting that these two occupations only 

increase the cumulative incidence, or decrease employment duration for people who retire 

the earliest, that is people who choose not to defer the early retirement pension for two 

years. The military occupation, on the contrary, have a negative and significant effect for 

almost all quantiles. Municipal employment and basic level employment have significant 

negative effects for both early retirement and old age pension, but are insignificant in the 

middle part where people who choose to defer early retirement pension. Being divorced 

and employed at the highest level have significant effects to decrease cumulative 

incidences for those who retire the earliest, but is insignificant afterwards. The variable 

‘Date of birth’ has a decreasing positive effect over quantiles, suggesting that people who 

retire the earliest are most affected by the age eligibility of the PEW program. For people 

who retire later, it seems that more factors come into play and the role of age eligibility 

becomes smaller and smaller. Although it is unclear what the variable ‘insured’ means, it 

remains strong, positive and significant for almost all quantiles, so does the income 

variable. Although the magnitude of the coefficient of contributions to union, UI, and 

PEW does not change significantly across quantiles, we observe a drastic change for 

contributions to PEW. Similar to the variable ‘Date of birth’, contributions to PEW has a 

negative effect on observed transition probabilities that is decreasing in magnitude, which 

is reasonable given that for people who defer early retirement pension and enter old age 

pension, the contributions to early retirement scheme should matter less compared with 

those who retire the earliest. ATP contributions does not have a significant effect for most 

quantiles. Debt value has a strong positive and significant effect for most quantiles. 

Pension income is only significant for the lower and a small part of the middle quantile. 
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(Continued) 

Figure 6.3: Selected estimates of the competing risks quantile regression 
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(Continued) 

Figure 6.3: Selected estimates of the competing risks quantile regression (Continued) 
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Figure 6.3: Selected estimates of the competing risks quantile regression (Continued) 

Note: The solid staircase line refers to the estimated coefficients. The dotted staircase lines refer to the 95% 

asymptotic confidence intervals. The flat solid line refers to the trimmed mean effect. The flat dotted line 

refers to the value of zero. 

 

Table 6.2 shows a summary of the trimmed mean effects and inference statistics of 

the constant test for the estimates. We can see that only three variables have insignificant 

trimmed mean effects and two of them are not included in Figure 6.3 due to being 

insignificant for almost all quantiles. 15 out of 19 variables are significant at 1% 

significance level and the rest are significant at 5% or 10% significance level, showing 

that most selected variables are of high quality and play important roles in transition from 

employment into retirement. The constant test shows that consistent with what we observe 

visually in Figure 6.3, 6 variables ‘occupation: operation/transport’, ‘occupation: manual’, 

‘employed: highest level’, ‘date of birth’, ‘divorced’ and ‘contributions to PEW’ have 

highly significant test results, suggesting that the estimated coefficients vary significantly 
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across quantiles. Half of the variables show constant effects on conditional quantiles, and 

the rest have test results that are significant at 5% or 10% significance level. These results 

highlight the relevance of competing risks quantile regression in providing detailed 

information on the heterogeneous effects of regressors on different cumulative incidence 

quantiles, in other words for people who enter different retirement programs, and thus 

could provide suggestions on late retirement policy targeted at different group of people.  

 

Table 6.2: Trimmed mean effects and constant test results 

Regi- 
sters 

Within-register variables 
Trimmed 
mean 
effect 

SE of 
trimmed 
mean effect 

P-value of 
trimmed 
mean effect 

P-value of 
constant 
test 

AKM Occupation: Operation/Transport -0.191 0.080 0.017 0.003 
Occupation: Manual -0.206 0.060 0.001 0.000 
Occupation: Military -0.932 0.172 0.000 0.080 
Municipal employment -0.091 0.027 0.001 0.110 
Industry: Energy supply 0.124 0.073 0.089 0.190 
Industry: Education -0.076 0.027 0.005 0.018 
Industry: Healthcare -0.050 0.033 0.130 0.110 
Employed: Highest level 0.101 0.024 0.000 0.000 
Employed: Basic level -0.095 0.029 0.001 0.022 

BEF Date of birth 0.009 0.001 0.000 0.000 
Divorced 0.096 0.031 0.002 0.002 
Reference person in family -0.132 0.036 0.000 0.017 
Household: Married couple -0.122 0.024 0.000 0.720 
Male 0.016 0.038 0.670 0.280 

IDAP Insured 0.172 0.038 0.000 0.270 
IND AM-income (million) 0.627 0.086 0.000 0.950 

Other capital income (million) 0.208 0.218 0.340 0.410 
ATP contributions (thousand) -0.028 0.015 0.062 0.950 
Contributions to PEW (thousand) -0.130 0.007 0.000 0.000 
Contributions to union, UI, and 
PEW (thousand) 

-0.011 0.004 0.003 0.330 

Debt value (million) 0.084 0.018 0.000 0.980 
Pension income (million) 0.840 0.362 0.020 0.036 
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Chapter 7 
Conclusions and Discussion 
 

We adopt a flexible dependent competing risks setting to analyze the observed transitions 

from employment to retirement. We present how (adaptive) group bridge is helpful for bi-

level variable selection in the competing risks quantile regression. To our knowledge, this 

is the first application of these methods to high-dimensional administrative data on the 

retirement problem. The data we use are register data and DREAM dataset provided by 

Statistics Denmark. Using (adaptive) group bridge, we select 4 registers and 28 within-

register variables out of 16 registers and 397 within-register variables. The selected 

variables contain demographic, socioeconomic, financial and labor market information, 

have reasonable interpretation and also remain significant in the unpenalized competing 

risks quantile regression. From the competing risks quantile regression model, we find 

that the magnitude and significance level of estimated coefficients of most variables 

change significantly across quantiles, suggesting heterogeneous effects on transitions 

from employment into retirement for different durations and thus different retirement 

programs. Consistent with these results, in the (adaptive) group bridge, few variables are 

always selected over quantiles. These results suggest that the (adaptive) group bridge 

could reduce the dimension considerably and fit the competing risks quantile regression 

well, so it could be a promising method in the statistical toolbox for this type of problem. 

Although we do not analyze the other exit routes out of employment, the results from 

one risk alone could provide evidence for the need of competing risks quantile regression. 

Thanks to the quantile regression technique, we do not face the problem Christensen and 

Kallestrup‐Lamb (2012) find that lumping all retirement programs together could result 

in cancellation of opposite effects from certain variables on different retirement program. 

The reason is that in our sample, most people enter into either early retirement pension or 

old age pension, which are clearly separated in terms of durations, and the quantile 

regression technique can help us distinguish the heterogeneous effect of variables on 
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different cumulative incidence quantiles and thus avoid cancellation.  

However, we do face some other problems. The potential multicollinearity, 

measurement error and selection bias problems resulted from the data preparation process 

are already discussed in chapter 4, and the potential instability problem resulted from the 

BIC-type criterion is discussed in chapter 6.1. Another problem associated with 

multicollinearity is that we cannot fully understand the role of a register if the within-

register variables that are important but highly correlated with variables from other 

registers are dropped. (Adaptive) group bridge allows the same variable to appear in 

different groups, but in our case, we have different but highly correlated variables, so 

additional work is needed to handle this problem. 

Other questions and model extensions we can think of include: As Kallestrup-Lamb 

et al. (2016) point out, we should treat oracle property with caution. To what degree could 

we trust the selection results and how do those selected variables compare with 

conventional variables or variables from economic theory? As for model extensions, could 

we add an economic model at the bottom of competing risks quantile regression and will 

the results be different if we do so? Is it possible to allow for time-varying regressors and 

panel data structure? Is it possible to model the data generating process rather than the 

observed transition while using a flexible risks dependence specification? How to model 

unretirement in competing risks quantile regression given few observations? 

Besides those open-ended questions, there are some practical improvements that are 

not too difficult to achieve: (1) We could add interaction terms to capture the 

heterogeneous effect of regressors among different wage groups, different gender, etc.; (2) 

We could add lags of regressors to capture dynamic effects; (3) We could add 

characteristics of spouses to capture the joint behavior of couples; (4) We could identify 

people who use unemployment as a pathway to retirement and include them in the 

retirement exit route; (5) We could identify people who choose to be semi-retired, that is 

to still work after entering into a retirement program and study separately transitions from 

employment to semi-retirement. 
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Appendix 
 

A.1 Tables 

 

Table A.1: Descriptive statistics 
 Sample Right-

censored Retirement Others 

Variables Mean SD Mean SD Mean SD Mean SD 
Duration 200.3 101.0 418.0 0 204.3 94.52 126.6 81.02 
AKM_atpsum2 1,176 121.9 1,184 122.0 1,176 123.5 1,171 108.8 
AKM_discoalle_13_2 0.108 0.311 0.168 0.374 0.099 0.299 0.165 0.372 
AKM_discoalle_13_5 0.111 0.314 0.047 0.212 0.115 0.319 0.095 0.294 
AKM_discoalle_13_6 0.060 0.238 0.021 0.144 0.063 0.243 0.046 0.209 
AKM_discoalle_13_8 0.042 0.200 0.026 0.16 0.043 0.203 0.037 0.189 
AKM_discoalle_13_9 0.032 0.177 0.005 0.072 0.032 0.175 0.041 0.199 
AKM_discoalle_13_10 0.062 0.241 0.021 0.144 0.065 0.246 0.049 0.215 
AKM_discoalle_1 0.011 0.105 0.000 0.000 0.009 0.093 0.032 0.176 
AKM_discoalle_3 0.282 0.450 0.529 0.500 0.278 0.448 0.266 0.442 
AKM_discotype1 0.186 0.389 0.314 0.465 0.185 0.388 0.172 0.377 
AKM_discotype2 0.361 0.480 0.257 0.438 0.374 0.484 0.288 0.453 
AKM_discotype3 0.007 0.085 0.005 0.072 0.007 0.084 0.010 0.097 
AKM_discotype4 0.441 0.497 0.424 0.496 0.430 0.495 0.526 0.500 
AKM_funk_timeant 1,967 202.7 2,007 241.7 1,967 204.6 1,961 177.9 
AKM_nace_5 0.008 0.090 0.005 0.072 0.009 0.092 0.005 0.073 
AKM_nace_6 0.021 0.143 0.047 0.212 0.021 0.142 0.018 0.133 
AKM_nace_7 0.085 0.279 0.042 0.201 0.083 0.275 0.111 0.315 
AKM_nace_8 0.047 0.212 0.011 0.102 0.047 0.211 0.057 0.232 
AKM_nace_12 0.009 0.097 0.000 0.000 0.010 0.099 0.008 0.092 
AKM_nace_13 0.049 0.215 0.173 0.379 0.043 0.204 0.064 0.244 
AKM_nace_13_4 0.012 0.108 0.016 0.125 0.012 0.107 0.013 0.112 
AKM_nace_13_11 0.046 0.210 0.026 0.160 0.047 0.212 0.045 0.206 
AKM_nace_13_14 0.028 0.166 0.021 0.144 0.028 0.165 0.031 0.173 
AKM_nace_13_15 0.150 0.357 0.131 0.338 0.147 0.354 0.173 0.378 
AKM_nace_16 0.190 0.392 0.230 0.422 0.193 0.395 0.155 0.362 
AKM_nace_17 0.166 0.372 0.157 0.365 0.175 0.380 0.100 0.300 
AKM_nace_18 0.020 0.139 0.016 0.125 0.020 0.142 0.014 0.117 
AKM_nacea_3 0.099 0.299 0.068 0.253 0.096 0.295 0.128 0.334 
AKM_nacea_10 0.044 0.205 0.031 0.175 0.042 0.200 0.064 0.244 
AKM_nacea_19 0.020 0.139 0.016 0.125 0.021 0.144 0.010 0.097 
AKM_nacei_1 0.942 0.235 0.874 0.332 0.946 0.225 0.918 0.274 
AKM_nacei_2 0.015 0.122 0.031 0.175 0.014 0.117 0.020 0.141 
AKM_nacei_14 0.011 0.103 0.011 0.102 0.010 0.098 0.019 0.137 
AKM_socio13_4 0.283 0.450 0.529 0.500 0.278 0.448 0.269 0.444 
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 Sample Right-
censored Retirement Others 

Variables Mean SD Mean SD Mean SD Mean SD 
AKM_socio13_5 0.287 0.452 0.173 0.379 0.293 0.455 0.269 0.444 
AKM_socio13_6 0.259 0.438 0.105 0.307 0.265 0.441 0.245 0.430 
BEF_birthday 25.99 14.75 24.25 14.64 25.91 14.73 26.91 14.86 
BEF_citizenship 0.989 0.104 0.995 0.072 0.989 0.103 0.986 0.117 
BEF_civilstatus_1 0.763 0.425 0.743 0.438 0.763 0.425 0.770 0.421 
BEF_civilstatus_2 0.033 0.178 0.031 0.175 0.034 0.181 0.024 0.154 
BEF_civilstatus_3 0.128 0.334 0.141 0.349 0.128 0.334 0.128 0.334 
BEF_familystatus 0.047 0.212 0.047 0.212 0.049 0.215 0.038 0.192 
BEF_familytype_1 0.743 0.437 0.723 0.449 0.743 0.437 0.744 0.437 
BEF_familytype_3 0.071 0.257 0.136 0.344 0.066 0.248 0.099 0.298 
BEF_hustype_1 0.500 0.500 0.372 0.485 0.518 0.500 0.396 0.489 
BEF_hustype_2 0.100 0.300 0.047 0.212 0.105 0.307 0.074 0.262 
BEF_hustype_3 0.696 0.460 0.675 0.469 0.697 0.460 0.691 0.462 
BEF_hustype_4 0.062 0.242 0.068 0.253 0.063 0.243 0.055 0.228 
BEF_male 0.582 0.493 0.791 0.408 0.558 0.497 0.717 0.451 
BEF_origin 0.972 0.164 0.974 0.160 0.973 0.162 0.967 0.178 
BEF_region_1 0.101 0.301 0.168 0.374 0.096 0.295 0.122 0.327 
BEF_region_2 0.100 0.299 0.089 0.285 0.099 0.298 0.109 0.312 
BEF_region_3 0.105 0.307 0.188 0.392 0.101 0.302 0.118 0.322 
BEF_region_4 0.008 0.088 0.011 0.102 0.008 0.089 0.006 0.080 
BEF_region_5 0.057 0.233 0.058 0.234 0.056 0.230 0.068 0.252 
BEF_region_6 0.105 0.307 0.094 0.293 0.105 0.306 0.111 0.315 
BEF_region_7 0.081 0.272 0.068 0.253 0.082 0.274 0.073 0.260 
BEF_region_8 0.124 0.330 0.052 0.223 0.128 0.335 0.109 0.312 
BEF_region_9 0.146 0.353 0.136 0.344 0.148 0.355 0.137 0.344 
BEF_region_10 0.071 0.258 0.063 0.243 0.073 0.259 0.065 0.246 
BFL_atp_beloeb 2,441 688.4 2,397 651.3 2,436 692.6 2,484 662.4 
BFL_bredt_beloeb (1K) 424.1 168.5 551.3 231.7 414.7 149.2 468.9 251.3 
BFL_indberettede_timer 2,037 2,251 2,119 1,204 2,030 1,945 2,066 3,922 
BFL_loentimer 1,973 201.1 2,016 236.3 1,973 203.2 1,965 174.6 
BFL_smalt_beloeb (1K) 420.2 166.5 543.3 199.4 411.0 148.4 464.4 249.7 
BFL_atpcode_1 0.720 0.449 0.749 0.435 0.714 0.452 0.763 0.426 
BFL_atpcode_2 0.028 0.164 0.026 0.160 0.029 0.167 0.019 0.137 
BFL_atpcode_3 0.331 0.470 0.429 0.496 0.334 0.472 0.288 0.453 
BFL_atpcode_4 0.065 0.246 0.042 0.201 0.065 0.246 0.070 0.255 
BFL_branche07_3 0.103 0.303 0.073 0.261 0.099 0.299 0.135 0.341 
BFL_branche07_4 0.015 0.120 0.021 0.144 0.014 0.117 0.019 0.137 
BFL_branche07_5 0.009 0.095 0.005 0.072 0.010 0.099 0.005 0.073 
BFL_branche07_6 0.024 0.153 0.052 0.223 0.023 0.149 0.027 0.161 
BFL_branche07_7 0.091 0.288 0.042 0.201 0.088 0.284 0.122 0.327 
BFL_branche07_8 0.050 0.217 0.021 0.144 0.049 0.216 0.059 0.236 
BFL_branche07_10 0.047 0.212 0.052 0.223 0.045 0.207 0.066 0.248 
BFL_branche07_11 0.056 0.230 0.052 0.223 0.056 0.230 0.057 0.232 
BFL_branche07_12 0.016 0.126 0.000 0.000 0.017 0.128 0.015 0.121 
BFL_branche07_13 0.053 0.224 0.188 0.392 0.048 0.214 0.064 0.244 
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 Sample Right-
censored Retirement Others 

Variables Mean SD Mean SD Mean SD Mean SD 
BFL_branche07_14 0.040 0.196 0.042 0.201 0.041 0.197 0.036 0.186 
BFL_branche07_15 0.179 0.383 0.230 0.422 0.176 0.381 0.192 0.394 
BFL_branche07_16 0.215 0.411 0.298 0.459 0.217 0.412 0.183 0.387 
BFL_branche07_17 0.173 0.379 0.157 0.365 0.183 0.386 0.106 0.308 
BFL_branche07_18 0.022 0.146 0.021 0.144 0.022 0.148 0.018 0.133 
BFL_branche07_19 0.041 0.198 0.037 0.188 0.043 0.204 0.021 0.144 
BFL_fictitious_4 0.023 0.151 0.026 0.160 0.025 0.156 0.011 0.102 
BFL_function_1 0.111 0.314 0.188 0.392 0.106 0.308 0.128 0.334 
BFL_function_2 0.122 0.327 0.283 0.452 0.122 0.327 0.094 0.292 
BFL_function_4 0.077 0.266 0.120 0.326 0.078 0.268 0.060 0.238 
BFL_function_6 0.280 0.449 0.162 0.370 0.292 0.455 0.218 0.413 
BFL_function_8 0.021 0.142 0.026 0.160 0.021 0.145 0.014 0.117 
BFL_function_9 0.007 0.083 0.005 0.072 0.007 0.086 0.003 0.056 
BFL_function_12 0.051 0.220 0.047 0.212 0.051 0.219 0.053 0.224 
BFL_function_13 0.437 0.496 0.440 0.498 0.425 0.494 0.524 0.500 
BFL_impute 0.200 0.400 0.288 0.454 0.195 0.396 0.222 0.416 
BFL_incometype_3 0.007 0.085 0.005 0.072 0.008 0.087 0.004 0.065 
BFL_province_1 0.202 0.402 0.335 0.473 0.193 0.395 0.239 0.427 
BFL_province_2 0.140 0.347 0.141 0.349 0.138 0.345 0.153 0.360 
BFL_province_3 0.067 0.250 0.141 0.349 0.063 0.243 0.082 0.274 
BFL_province_4 0.007 0.085 0.005 0.072 0.008 0.086 0.005 0.073 
BFL_province_5 0.043 0.204 0.063 0.243 0.043 0.204 0.040 0.197 
BFL_province_6 0.091 0.288 0.063 0.243 0.092 0.289 0.091 0.288 
BFL_province_7 0.083 0.275 0.084 0.278 0.084 0.277 0.072 0.259 
BFL_province_8 0.134 0.341 0.063 0.243 0.138 0.345 0.123 0.328 
BFL_province_9 0.149 0.356 0.178 0.384 0.150 0.357 0.142 0.349 
BFL_province_10 0.080 0.271 0.068 0.253 0.081 0.273 0.071 0.257 
BFL_province_11 0.104 0.306 0.084 0.278 0.108 0.310 0.082 0.274 
BFL_sector_3 0.034 0.180 0.021 0.144 0.033 0.178 0.042 0.202 
BFL_sector_4 0.013 0.115 0.021 0.144 0.014 0.117 0.007 0.086 
BFL_sector_6 0.367 0.482 0.393 0.490 0.353 0.478 0.464 0.499 
BFL_sector_7 0.044 0.205 0.037 0.188 0.045 0.206 0.042 0.202 
BFL_sector_16 0.124 0.329 0.199 0.400 0.120 0.325 0.136 0.343 
BFL_sector_17 0.106 0.308 0.262 0.441 0.105 0.307 0.079 0.271 
BFL_sector_18 0.077 0.267 0.120 0.326 0.078 0.268 0.060 0.238 
BFL_sector_20 0.283 0.450 0.162 0.370 0.294 0.456 0.220 0.415 
BFL_sector_21 0.010 0.098 0.011 0.102 0.010 0.098 0.010 0.097 
BFL_sector_23 0.010 0.098 0.005 0.072 0.009 0.096 0.013 0.112 
BFL_sector_24 0.047 0.211 0.058 0.234 0.048 0.214 0.034 0.181 
FAM_antb_1 0.021 0.181 0.131 0.512 0.018 0.162 0.021 0.183 
FAM_antb_2 0.015 0.123 0.037 0.188 0.014 0.118 0.020 0.141 
FAM_antb_3 0.043 0.214 0.115 0.336 0.041 0.212 0.038 0.192 
FAM_antb_4 0.092 0.307 0.199 0.438 0.087 0.299 0.106 0.328 
FAM_antpersf 1.976 0.647 2.267 0.972 1.967 0.633 1.986 0.662 
FIDF_bagatel_1 0.991 0.095 0.974 0.160 0.991 0.095 0.994 0.080 
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 Sample Right-
censored Retirement Others 

Variables Mean SD Mean SD Mean SD Mean SD 
FIDF_bagatel_3 0.009 0.095 0.026 0.160 0.009 0.094 0.006 0.080 
FIDF_branche07_3 0.097 0.295 0.068 0.253 0.094 0.292 0.123 0.328 
FIDF_branche07_4 0.012 0.107 0.011 0.102 0.011 0.105 0.015 0.121 
FIDF_branche07_6 0.020 0.141 0.052 0.223 0.020 0.139 0.017 0.129 
FIDF_branche07_7 0.085 0.278 0.047 0.212 0.082 0.274 0.113 0.317 
FIDF_branche07_8 0.046 0.210 0.011 0.102 0.046 0.209 0.056 0.230 
FIDF_branche07_10 0.046 0.210 0.031 0.175 0.044 0.205 0.066 0.248 
FIDF_branche07_11 0.047 0.211 0.026 0.160 0.047 0.213 0.045 0.206 
FIDF_branche07_12 0.009 0.095 0.000 0.000 0.010 0.098 0.007 0.086 
FIDF_branche07_13 0.044 0.204 0.157 0.365 0.039 0.193 0.058 0.234 
FIDF_branche07_14 0.010 0.097 0.005 0.072 0.009 0.093 0.016 0.125 
FIDF_branche07_15 0.442 0.497 0.346 0.477 0.453 0.498 0.383 0.486 
FIDF_branche07_16 0.096 0.294 0.209 0.408 0.097 0.295 0.067 0.250 
FIDF_branche07_17 0.015 0.121 0.011 0.102 0.016 0.123 0.011 0.102 
FIDF_branche07_19 0.019 0.136 0.016 0.125 0.020 0.141 0.010 0.097 
FIDF_funk_1 0.084 0.277 0.100 0.300 0.081 0.272 0.105 0.307 
FIDF_funk_3 0.095 0.294 0.204 0.404 0.097 0.296 0.064 0.244 
FIDF_funk_5 0.075 0.263 0.120 0.326 0.076 0.264 0.057 0.232 
FIDF_funk_7 0.278 0.448 0.147 0.355 0.289 0.453 0.218 0.413 
FIDF_funk_9 0.009 0.097 0.011 0.102 0.010 0.098 0.007 0.086 
FIDF_funk_10 0.010 0.097 0.005 0.072 0.010 0.101 0.005 0.073 
FIDF_funk_12 0.048 0.213 0.026 0.160 0.048 0.213 0.053 0.224 
FIDF_funk_13 0.396 0.489 0.387 0.488 0.384 0.487 0.487 0.500 
FIDF_gf_aarsv_2 6367 9378 6525 11182 6379 9288 6242 9652 
FIDF_gf_ansatte_2 (1K) 7.819 11.67 7.886 13.56 7.848 11.57 7.592 12.03 
FIDF_province_1 0.274 0.446 0.288 0.454 0.268 0.443 0.314 0.464 
FIDF_province_3 0.077 0.266 0.052 0.223 0.080 0.271 0.057 0.232 
FIDF_province_4 0.124 0.329 0.131 0.338 0.123 0.328 0.132 0.339 
FIDF_province_5 0.075 0.264 0.178 0.384 0.072 0.259 0.079 0.271 
FIDF_province_8 0.070 0.256 0.042 0.201 0.071 0.257 0.070 0.255 
FIDF_province_9 0.056 0.230 0.047 0.212 0.056 0.231 0.054 0.226 
FIDF_province_11 0.109 0.312 0.094 0.293 0.108 0.310 0.119 0.324 
FIDF_region_2 0.176 0.381 0.141 0.349 0.178 0.383 0.168 0.374 
FIDF_region_3 0.169 0.375 0.126 0.332 0.173 0.378 0.153 0.360 
FIDF_region_4 0.478 0.500 0.602 0.491 0.468 0.499 0.529 0.499 
FIDF_virkfkod_2 0.008 0.090 0.005 0.072 0.008 0.091 0.006 0.080 
FIDF_virkfkod_4 0.349 0.477 0.335 0.473 0.337 0.473 0.442 0.497 
FIDF_virkfkod_6 0.022 0.146 0.016 0.125 0.021 0.142 0.032 0.176 
FIDF_virkfkod_7 0.009 0.097 0.011 0.102 0.010 0.098 0.007 0.086 
FIDF_virkfkod_9 0.042 0.201 0.031 0.175 0.045 0.206 0.027 0.161 
FIDF_virkfkod_11 0.010 0.098 0.005 0.072 0.010 0.098 0.011 0.102 
FIDF_virkfkod_16 0.098 0.297 0.115 0.320 0.095 0.293 0.112 0.316 
FIDF_virkfkod_17 0.074 0.262 0.120 0.326 0.075 0.264 0.057 0.232 
FIDF_virkfkod_18 0.277 0.448 0.147 0.355 0.289 0.453 0.218 0.413 
FIDF_virkfkod_20 0.093 0.290 0.204 0.404 0.093 0.291 0.065 0.246 
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 Sample Right-
censored Retirement Others 

Variables Mean SD Mean SD Mean SD Mean SD 
FIDF_year 21.55 23.92 22.66 28.13 21.27 23.49 23.39 25.99 
FIRM_bd_1 0.634 0.482 0.639 0.482 0.648 0.478 0.525 0.500 
FIRM_mk_2 0.327 0.469 0.335 0.473 0.312 0.463 0.440 0.497 
IDAS_aarsvrk 398.9 898.1 591.2 1,296 386.5 868.2 452.9 1,007 
IDAS_antaar 614.7 1,401 961.7 2,101 597.4 1,356 673.4 1,536 
IDAS_antnov 464.4 1,065 703.9 1,558 451.1 1,032 515.6 1,175 
IDAS_antnovbi 23.65 65.56 38.53 97.6 23.09 64.17 24.82 67.48 
IDAS_branche_2 0.119 0.324 0.089 0.285 0.116 0.321 0.148 0.356 
IDAS_branche_3 0.022 0.145 0.052 0.223 0.021 0.144 0.017 0.129 
IDAS_branche_4 0.137 0.344 0.058 0.234 0.133 0.34 0.178 0.383 
IDAS_branche_5 0.043 0.202 0.031 0.175 0.041 0.197 0.061 0.240 
IDAS_branche_6 0.047 0.212 0.026 0.160 0.048 0.213 0.046 0.209 
IDAS_branche_8 0.078 0.269 0.194 0.396 0.073 0.261 0.093 0.291 
IDAS_branche_9 0.505 0.500 0.518 0.501 0.515 0.500 0.426 0.495 
IDAS_branche_10 0.038 0.191 0.031 0.175 0.040 0.196 0.022 0.148 
IDAS_filial_1 0.180 0.384 0.199 0.400 0.173 0.378 0.224 0.417 
IDAS_filial_2 0.063 0.243 0.073 0.261 0.064 0.244 0.056 0.230 
IDAS_filial_3 0.045 0.207 0.042 0.201 0.046 0.209 0.039 0.194 
IDAS_filial_4 0.024 0.154 0.031 0.175 0.024 0.152 0.029 0.167 
IDAS_filial_5 0.021 0.143 0.037 0.188 0.020 0.139 0.028 0.164 
IDAS_filial_6 0.018 0.132 0.026 0.160 0.018 0.132 0.016 0.125 
IDAS_filial_7 0.008 0.089 0.005 0.072 0.009 0.092 0.004 0.065 
IDAS_filial_9 0.631 0.482 0.565 0.497 0.639 0.480 0.591 0.492 
IDAS_idtilb_1 0.735 0.441 0.660 0.475 0.738 0.440 0.733 0.443 
IDAS_idtilb_2 0.231 0.422 0.314 0.465 0.227 0.419 0.243 0.429 
IDAS_idtilb_3 0.009 0.092 0.000 0.000 0.009 0.094 0.007 0.086 
IDAS_idtilb_4 0.020 0.141 0.011 0.102 0.021 0.145 0.014 0.117 
IDAN_ansdage 357.7 40.64 359.5 36.73 357.8 40.29 356.7 43.91 
IDAN_ansxtilb_1 0.099 0.299 0.089 0.285 0.098 0.297 0.111 0.315 
IDAN_ansxtilb_3 0.030 0.171 0.037 0.188 0.027 0.163 0.051 0.220 
IDAN_ansxtilb_4 0.033 0.178 0.026 0.160 0.034 0.182 0.022 0.148 
IDAN_ansxtilb_6 0.826 0.379 0.827 0.379 0.829 0.377 0.803 0.398 
IDAN_type1 0.143 0.351 0.272 0.446 0.140 0.347 0.146 0.353 
IDAN_type2 0.066 0.248 0.141 0.349 0.066 0.248 0.052 0.222 
IDAN_type3 0.031 0.174 0.094 0.293 0.030 0.171 0.028 0.164 
IDAN_type5 0.013 0.112 0.058 0.234 0.012 0.109 0.007 0.086 
IDAN_year 10.26 9.332 9.895 8.917 10.45 9.411 8.969 8.703 
IDAP_atpar 27.60 3.645 26.93 4.594 27.71 3.483 26.94 4.444 
IDAP_ejnov 0.192 0.558 0.435 0.885 0.186 0.548 0.189 0.532 
IDAP_erhver (1K) 26.30 4.267 25.76 5.119 26.36 4.144 25.92 4.914 
IDAP_erhver79 7.163 3.462 5.545 3.524 7.211 3.435 7.133 3.571 
IDAP_exit 0.068 0.253 0.089 0.285 0.065 0.247 0.087 0.282 
IDAP_insured 0.947 0.224 0.874 0.332 0.963 0.189 0.842 0.365 
IDAP_labyear 27.67 4.250 27.45 4.032 27.75 4.126 27.15 5.090 
IDAP_member 0.942 0.233 0.874 0.332 0.962 0.192 0.813 0.391 
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IDAP_memyear 22.81 7.776 20.92 9.107 23.42 7.300 18.70 9.452 
IDAP_nsup 0.017 0.168 0.073 0.316 0.017 0.169 0.008 0.103 
IDAP_pjob_dage 357.6 41.02 359.5 36.73 357.7 40.51 356.3 45.42 
IDAP_ploentimer 1,889 231.8 1,900 208.4 1,889 227.0 1,887 269.0 
IDAP_satp79 2,695 1,256 2,099 1,367 2,712 1,242 2,685 1,308 
IDAP_sjob_dage 18.14 75.20 30.82 89.66 18.46 76.16 13.14 63.61 
IDAP_sloentimer 29.23 174.8 35.52 120.8 30.12 179.3 21.36 148.0 
IND_aekvivadisp_13 (1K) 314.4 144.4 393.2 299.1 311.1 136.5 322.9 148.8 
IND_aindk94 (1K) 420.0 166.5 542.5 196.2 410.9 148.4 463.5 250.2 
IND_andoverforsel 186.4 1,761 551.3 2,848 190.5 1,786 81.49 1,178 
IND_ankapper (1K) 44.20 44.73 70.16 56.53 42.76 43.61 49.67 48.13 
IND_arbfors (1K) 13.02 3.353 12.32 4.120 13.35 3.036 10.68 4.339 
IND_askpli (1K) 0.248 4.293 0.160 2.175 0.223 2.635 0.451 10.34 
IND_atpsaml 2,441 688.7 2,395 652.6 2,435 692.6 2,491 664.8 
IND_bankakt (1K) 159.1 279.1 220.4 367.5 157.8 276.6 156.5 275.6 
IND_bankgaeld (1K) 152.5 338.4 197.1 335.6 143.8 317.3 208.4 462.8 
IND_befordr (1K) 6.084 11.89 6.382 12.48 5.945 11.74 7.055 12.82 
IND_beskst13_3 0.045 0.208 0.100 0.300 0.041 0.198 0.066 0.248 
IND_beskst13_4 0.954 0.209 0.895 0.307 0.959 0.199 0.933 0.250 
IND_corfryns (1K) 4.168 14.81 6.281 19.37 3.852 13.79 6.104 20.06 
IND_dispon_13 (1K) 276.7 144.7 392.8 379.1 270.9 129.3 296.3 156.3 
IND_dispon_ny (1K) 281.8 147.3 402.4 383.4 275.7 131.6 302.4 159.6 
IND_ejendom (1K) 1,390 1,730 2,550 5,440 1,330 1,510 1,580 1,690 
IND_fagfkdb 4,077 2,180 4,252 2,612 4,137 2,141 3,599 2,309 
IND_fosfufrd (1K) 9.336 27.13 18.11 104.1 8.893 21.92 10.87 24.31 
IND_fradrag (1K) 84.59 85.94 120.1 174.5 81.76 81.28 98.54 89.82 
IND_indbeeft 4,285 1,639 3,626 2,163 4,489 1,380 2,904 2,413 
IND_kapindkp (1K) -24.24 41.86 -34.19 96.66 -22.81 38.24 -32.95 47.78 
IND_kapitialt (1K) 50.43 50.14 80.48 65.60 48.78 48.70 56.61 54.58 
IND_kapitpriv (1K) 50.62 49.54 79.21 63.77 49.04 48.21 56.64 53.74 
IND_koejd (1K) 1,380 1,770 2,520 4,970 1,320 1,490 1,620 2,300 
IND_korydial 151.3 1,635 542.3 2,847 153.6 1,656 55.15 1,024 
IND_kursakt (1K) 33.23 208.7 59.88 179.0 30.69 208.4 46.80 215.6 
IND_lejev_egen_bolig 
(1K) 36.02 36.12 56.71 45.73 34.97 35.28 39.66 38.53 

IND_lignfrdp (1K) 32.02 13.87 32.26 14.40 32.15 13.69 30.98 14.99 
IND_loenmio 150.1 2,610 251.0 2,843 138.5 2,536 215.8 3,065 
IND_loenmv (1K) 422.4 170.0 548.7 226.2 413.1 151.8 466.2 249.9 
IND_loenskpl (1K) 421.2 166.4 543.7 196.1 412.0 148.4 465.1 249.5 
IND_netovskud (1K) 5.252 55.78 36.15 262.6 4.178 34.32 7.013 63.92 
IND_netovskud_13 (1K) -0.030 49.69 18.66 200.4 -0.401 38.88 -1.043 44.26 
IND_oblakt (1K) 44.09 203.0 87.54 366.1 42.53 196.4 46.98 204.6 
IND_oblgaeld (1K) 448.6 660.9 806.3 1,500 422.1 601.1 574.3 767.2 
IND_overforsindk (1K) 2.383 19.29 5.138 51.71 2.259 17.53 2.757 19.77 
IND_perindkp (1K) 377.2 162.4 493.6 261.5 368.7 143.7 417.4 236.1 
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IND_peroevrigformue (1K) 8.336 159.2 67.52 404.9 5.672 145.4 16.23 167.7 
IND_qaktivf_ny05 (1K) 1,630 1,880 2,920 5,490 1,570 1,670 1,840 1,850 
IND_qpassivn (1K) 608.5 870.8 1,010 1,590 573.5 819.3 788.0 989.0 
IND_qpensialt (1K) 2.144 19.15 4.571 51.68 2.016 17.41 2.612 19.44 
IND_qpenspri (1K) 1.021 14.83 4.571 51.68 0.917 12.74 1.079 12.44 
IND_qrentud2 (1K) 36.37 54.59 60.03 79.09 34.06 50.76 48.83 70.97 
IND_qtjpens (1K) 1.070 11.95 0.000 0.000 1.046 11.65 1.470 14.99 
IND_rentbank (1K) 6.664 15.03 9.641 21.00 6.575 14.69 6.720 16.00 
IND_rentudio 197.3 3,710 10.97 128.2 168.1 2,646 453.3 8,185 
IND_rentupri (1K) 21.96 28.54 34.40 39.62 20.91 27.11 27.30 34.45 
IND_rntiovir 160.4 3,306 751.1 4,897 122.4 3,037 323.9 4,575 
IND_rudgbank (1K) 9.972 19.00 14.41 25.95 9.329 17.66 13.88 25.38 
IND_samskat_1 0.237 0.425 0.262 0.441 0.237 0.425 0.233 0.423 
IND_samskat_2 0.748 0.434 0.733 0.444 0.748 0.434 0.750 0.433 
IND_skattot_13 (1K) 134.4 118.0 229.1 239.8 128.7 104.0 157.3 160.9 
IND_sluskat (1K) 136.6 119.1 231.6 240.3 131.0 105.0 159.6 162.5 
IND_virkkod_1 0.931 0.254 0.848 0.360 0.937 0.243 0.900 0.300 
IND_virkkod_2 0.040 0.197 0.120 0.326 0.036 0.185 0.060 0.238 
IND_virkordind (1K) -0.413 46.89 14.24 120.5 -0.687 45.18 -1.331 29.23 
INPI_arbpen10 (1K) 22.98 27.58 33.89 33.54 23.06 26.66 20.25 32.09 
INPI_arbpen11 (1K) 17.63 49.19 24.37 49.26 16.60 45.46 23.96 70.72 
INPI_arbpen12 (1K) 12.91 55.80 22.25 83.88 11.55 51.40 21.18 75.81 
INPI_arbpen14 (1K) 5.188 10.53 4.795 11.44 5.198 10.44 5.199 11.07 
INPI_arbpen15 1,223 5,506 569.0 2,728 1,227 5,555 1,321 5,554 
INPI_arbpen16 690.5 1,901 1,427 2,839 680.8 1,866 614.3 1,891 
INPI_pripen11 (1K) 1.734 14.89 3.171 12.85 1.594 10.22 2.488 33.31 
INPI_pripen12 (1K) 6.761 37.49 14.29 103.9 6.161 21.43 9.718 81.01 
INPI_pripen13 150.7 581.1 69.69 348.8 156.5 590.7 123.6 543.8 
INPI_pripen15 (1K) 3.667 10.04 3.495 10.59 3.693 10.04 3.507 9.932 
INPI_qpripen (1K) 13.84 42.51 21.96 104.6 13.05 27.18 18.10 88.96 
INPI_qpripenl (1K) 8.989 40.66 17.73 104.1 8.168 24.17 13.35 88.01 
KRIN_age 1.089 6.943 1.665 8.604 0.927 6.378 2.185 9.894 
KRIN_crime 0.025 0.155 0.037 0.188 0.021 0.144 0.048 0.213 
KRIN_length 2.880 121.9 37.91 521 2.002 97.03 2.338 59.4 
KRIN_nocrime 0.035 0.256 0.063 0.418 0.029 0.226 0.070 0.387 
KRIN_ubstrfko_1 0.009 0.095 0.011 0.102 0.008 0.090 0.015 0.121 
KRIN_ubstrfko_2 0.018 0.131 0.026 0.160 0.015 0.120 0.037 0.189 
KRIN_year8090 0.009 0.097 0.011 0.102 0.009 0.093 0.014 0.117 
KRIN_year9000 0.014 0.116 0.031 0.175 0.012 0.107 0.027 0.161 
LON_bfer (1K) 57.51 31.58 69.06 24.03 56.30 28.97 64.18 46.66 
LON_bfra (1K) 9.020 9.822 9.280 17.10 8.842 9.279 10.30 11.52 
LON_braarb_3 0.098 0.298 0.079 0.270 0.095 0.293 0.126 0.332 
LON_braarb_4 0.014 0.115 0.016 0.125 0.013 0.112 0.018 0.133 
LON_braarb_5 0.018 0.132 0.005 0.072 0.019 0.135 0.016 0.125 
LON_braarb_6 0.022 0.147 0.052 0.223 0.022 0.146 0.018 0.133 
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LON_braarb_7 0.089 0.284 0.042 0.201 0.086 0.281 0.115 0.320 
LON_braarb_8 0.047 0.212 0.011 0.102 0.047 0.211 0.057 0.232 
LON_braarb_10 0.044 0.205 0.031 0.175 0.042 0.200 0.064 0.244 
LON_braarb_11 0.048 0.214 0.052 0.223 0.049 0.215 0.045 0.206 
LON_braarb_12 0.009 0.095 0.000 0.000 0.010 0.097 0.007 0.086 
LON_braarb_13 0.047 0.212 0.147 0.355 0.043 0.202 0.060 0.238 
LON_braarb_14 0.016 0.127 0.016 0.125 0.016 0.127 0.017 0.129 
LON_braarb_15 0.157 0.364 0.136 0.344 0.155 0.362 0.178 0.383 
LON_braarb_16 0.192 0.394 0.225 0.419 0.196 0.397 0.158 0.365 
LON_braarb_17 0.175 0.380 0.162 0.370 0.185 0.388 0.110 0.313 
LON_braarb_18 0.019 0.138 0.016 0.125 0.020 0.142 0.013 0.112 
LON_braarb_19 0.020 0.141 0.016 0.125 0.022 0.146 0.011 0.102 
LON_ferie_sh 41.00 24.97 49.27 23.94 40.14 23.54 45.71 33.31 
LON_funk_1 0.120 0.325 0.173 0.379 0.108 0.311 0.196 0.397 
LON_funk_2 0.282 0.450 0.545 0.499 0.277 0.448 0.267 0.443 
LON_funk_3 0.292 0.455 0.178 0.384 0.297 0.457 0.271 0.445 
LON_funk_4 0.111 0.314 0.047 0.212 0.115 0.319 0.095 0.294 
LON_funk_5 0.063 0.242 0.021 0.144 0.066 0.248 0.047 0.211 
LON_funk_7 0.041 0.197 0.026 0.160 0.042 0.200 0.036 0.186 
LON_funk_8 0.033 0.178 0.005 0.072 0.032 0.176 0.043 0.204 
LON_funk_9 0.075 0.264 0.021 0.144 0.078 0.268 0.065 0.246 
LON_gene 4.734 16.12 6.580 21.93 4.712 15.88 4.525 16.56 
LON_gtil (1K) 6.596 20.68 9.023 30.88 6.554 19.95 6.425 23.30 
LON_gw 345.1 182.9 429.0 209.0 337.6 173.9 384.7 228.2 
LON_jubgrat (1K) 1.352 24.47 4.933 62.46 1.142 21.09 2.198 32.90 
LON_nw 237.2 118.1 297.3 146.6 232.6 112.4 259.3 144.6 
LON_pens (1K) 75.81 78.37 92.69 65.42 73.39 72.62 90.43 112.7 
LON_pension 53.32 55.48 64.39 45.45 51.69 52.28 63.20 75.64 
LON_persgode (1K) 1.821 9.490 3.843 16.17 1.586 8.653 3.163 12.89 
LON_pgod 2.754 14.23 5.728 23.69 2.414 13.04 4.691 19.16 
LON_sector_1 0.458 0.498 0.450 0.499 0.446 0.497 0.547 0.498 
LON_sector_2 0.188 0.391 0.319 0.467 0.187 0.390 0.174 0.379 
LON_sector_3 0.362 0.481 0.257 0.438 0.375 0.484 0.288 0.453 
LON_smftj (1K) 334.3 127.8 417.1 144.2 327.7 117.2 366.6 179.2 
LON_timbet (1K) 94.72 1,220 312.5 1,990 97.62 1,250 29.07 659.8 
LON_timferie 183.0 28.82 180.3 28.40 183.5 27.89 180.1 34.93 
LON_timfra 45.57 49.71 39.83 87.94 45.31 46.85 48.64 58.83 
LON_timover 17.72 71.94 21.74 69.91 17.59 71.39 17.84 76.30 
LON_timprae 1,630 194.4 1,623 243.6 1,632 187.6 1,611 229.4 
LON_timsh 61.54 10.00 60.35 12.37 61.62 9.661 61.13 11.81 
LON_timuge 42.60 15.14 41.61 14.00 42.66 15.17 42.36 15.16 
LON_ureglm (1K) 11.25 25.84 17.12 30.05 10.69 24.86 14.23 31.21 
SGDP_antdage 0.299 6.071 4.471 24.55 0.107 2.679 0.886 11.85 
SGDP_arbghp 113.3 2020 1334 6951 47.71 746.7 355.3 4594 
SGDP_fraviaar 0.551 7.532 5.508 27.59 0.326 3.429 1.230 15.65 
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SGDP_sagsart_1 0.016 0.125 0.052 0.223 0.015 0.121 0.016 0.125 
SGDP_startsag_1 0.016 0.124 0.052 0.223 0.015 0.120 0.016 0.125 
SYIN_diag23_3 0.011 0.104 0.026 0.160 0.010 0.099 0.016 0.125 
SYIN_diag23_4 0.014 0.119 0.021 0.144 0.014 0.118 0.016 0.125 
SYIN_diag23_6 0.010 0.098 0.016 0.125 0.009 0.096 0.013 0.112 
SYIN_diag23_8 0.036 0.187 0.052 0.223 0.034 0.181 0.050 0.218 
SYIN_diag99_11 0.011 0.103 0.016 0.125 0.010 0.100 0.014 0.117 
SYIN_diag99_12 0.013 0.115 0.021 0.144 0.013 0.111 0.018 0.133 
SYIN_diag99_15 0.020 0.139 0.026 0.160 0.019 0.138 0.022 0.148 
SYIN_hosregion_1 0.009 0.095 0.016 0.125 0.009 0.093 0.012 0.107 
SYIN_hosregion_2 0.009 0.095 0.005 0.072 0.009 0.096 0.008 0.092 
SYIN_hosregion_3 0.011 0.103 0.037 0.188 0.010 0.099 0.013 0.112 
SYIN_hosregion_6 0.009 0.096 0.011 0.102 0.009 0.096 0.010 0.097 
SYIN_hosregion_8 0.008 0.092 0.005 0.072 0.009 0.093 0.007 0.086 
SYIN_hosregion_9 0.011 0.104 0.011 0.102 0.010 0.099 0.019 0.137 
SYIN_iantdg 0.222 1.174 0.330 1.306 0.204 1.047 0.329 1.846 
SYIN_idiag_1 0.081 0.274 0.110 0.314 0.079 0.270 0.093 0.291 
SYIN_idiag_2 0.010 0.098 0.016 0.125 0.009 0.095 0.013 0.112 
SYIN_indm_1 0.056 0.230 0.089 0.285 0.054 0.226 0.068 0.252 
SYIN_indm_2 0.033 0.179 0.037 0.188 0.033 0.177 0.038 0.192 
SYIN_kapitlnr_2 0.011 0.104 0.021 0.144 0.010 0.101 0.014 0.117 
SYIN_year_1 0.043 0.203 0.042 0.201 0.042 0.200 0.053 0.224 
SYIN_year_2 0.045 0.207 0.068 0.253 0.043 0.204 0.050 0.218 
UDDA_eduarea_1 0.142 0.349 0.047 0.212 0.143 0.350 0.148 0.356 
UDDA_eduarea_2 0.026 0.158 0.031 0.175 0.025 0.155 0.032 0.176 
UDDA_eduarea_3 0.096 0.295 0.037 0.188 0.098 0.297 0.098 0.297 
UDDA_eduarea_4 0.034 0.180 0.110 0.314 0.032 0.175 0.033 0.178 
UDDA_eduarea_7 0.032 0.175 0.058 0.234 0.030 0.172 0.037 0.189 
UDDA_eduarea_8 0.240 0.427 0.126 0.332 0.245 0.430 0.227 0.419 
UDDA_eduarea_9 0.015 0.120 0.052 0.223 0.014 0.117 0.014 0.117 
UDDA_eduarea_11 0.095 0.293 0.115 0.320 0.091 0.288 0.114 0.318 
UDDA_eduarea_12 0.078 0.268 0.084 0.278 0.076 0.265 0.090 0.286 
UDDA_eduarea_13 0.061 0.238 0.131 0.338 0.060 0.237 0.051 0.220 
UDDA_eduarea_14 0.011 0.105 0.031 0.175 0.011 0.102 0.012 0.107 
UDDA_eduarea_15 0.139 0.346 0.152 0.360 0.145 0.352 0.093 0.291 
UDDA_eduarea_16 0.009 0.093 0.011 0.102 0.009 0.094 0.006 0.080 
UDDA_edulevel_2 0.141 0.348 0.047 0.212 0.143 0.350 0.147 0.355 
UDDA_edulevel_3 0.412 0.492 0.236 0.425 0.420 0.494 0.391 0.488 
UDDA_edulevel_4 0.047 0.212 0.021 0.144 0.046 0.210 0.060 0.238 
UDDA_edulevel_5 0.271 0.444 0.277 0.449 0.274 0.446 0.245 0.430 
UDDA_edulevel_6 0.120 0.325 0.382 0.487 0.109 0.312 0.146 0.353 
UDDA_inst_1 0.009 0.093 0.011 0.102 0.008 0.088 0.016 0.125 
UDDA_inst_3 0.007 0.084 0.016 0.125 0.007 0.085 0.004 0.065 
UDDA_inst_4 0.047 0.212 0.178 0.384 0.044 0.204 0.046 0.209 
UDDA_inst_7 0.012 0.110 0.031 0.175 0.010 0.099 0.027 0.161 
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UDDA_inst_10 0.015 0.120 0.052 0.223 0.013 0.113 0.019 0.137 
UDDA_inst_13 0.008 0.087 0.016 0.125 0.008 0.087 0.005 0.073 
UDDA_inst_18 0.009 0.093 0.016 0.125 0.008 0.090 0.013 0.112 
UDDA_inst_20 0.028 0.165 0.068 0.253 0.025 0.157 0.039 0.194 
UDDA_inst_26 0.514 0.500 0.733 0.444 0.507 0.500 0.520 0.500 

 

Table A.2: Definition and links of selected variables 
Variables Definition 
Occupations Danish occupation code category 8, 9, 0 and 2 
https://www.dst.dk/da/Statistik/dokumentation/nomenklaturer/disco-08 

Municipal employment Source of employee occupation code category 2 
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/discotyp 

Industries Industry code category D, P and Q 
https://www.dst.dk/da/Statistik/dokumentation/nomenklaturer/dansk-branchekode-db07 

Socioeconomic classifications Socioeconomic classification code category 132, 134 
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/socio13 

Family status A person's position in the family category 1: reference person 
https://www.dst.dk/da/Statistik/dokumentation/Times/forebyggelsesregistret/plads 
Household type Household composition type category 3: A married couple 
https://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-befolkning-og-valg/hustype 

Insured Insurance code category D and H 
https://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-
arbejdsmarked/forsikringskategori-kode 

AM-income (million) Labor market contribution-related income 
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/aindk94 

Capital income (million) Total capital income excluding equity income 
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/kapitialt 

Other capital income (million)  
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/ankapper 

ATP contributions (thousand) 
 

https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/atpsaml 

Contributions to PEW (thousand) 
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/indbeeft 

Property value (million) 
 

https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/koejd 

Debt value (million) Market value of bond debt 
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/oblgaeld 

Pension income (million) 
 

https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/qpensialt 

Interest expense (million) Interest expense relating to mortgage debt 
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/rentupri 

https://www.dst.dk/da/Statistik/dokumentation/nomenklaturer/disco-08
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/discotyp
https://www.dst.dk/da/Statistik/dokumentation/nomenklaturer/dansk-branchekode-db07
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/socio13
https://www.dst.dk/da/Statistik/dokumentation/Times/forebyggelsesregistret/plads
https://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-befolkning-og-valg/hustype
https://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-arbejdsmarked/forsikringskategori-kode
https://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-arbejdsmarked/forsikringskategori-kode
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/aindk94
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/kapitialt
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/ankapper
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/atpsaml
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/indbeeft
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/koejd
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/oblgaeld
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/qpensialt
https://www.dst.dk/da/Statistik/dokumentation/Times/personindkomst/rentupri
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A.2 R Code 

 
library(cmprskQR);library(quantreg);library(survival);library(haven);library(dplyr);library(muhaz);libra
ry(MASS);library(Matrix) 
 
### Initial Estimator from Competing Risks Quantile Regression 
 
tempdata<-cbind(time=ftime,cause=fstatus,X) 
ftime<-tempdata$time 
fstatus<-tempdata$cause 
X<-tempdata[,3:400] 
sds<-apply(X,2,sd) 
means<-apply(X,2,mean) 
X<-t((t(X)-means)/sds) 
X<-cbind(rep(1,dim(X)[1]),X) 
cvt.length<-ncol(X) 
num<-nrow(X) 
cencode<-0 
outcome<-1 
FT1<-as.numeric(fstatus==outcome) 
FT1.csurv.x<-FT1 
n.cvt.1<-crossprod(-X,FT1.csurv.x) 
X.FT1.csurv.x<-X*FT1.csurv.x 
 
tol<-0.0001 
gamma<-0.5 
cj<-c(1,rep(36^(1-gamma),36),rep(24^(1-gamma),24),rep(58^(1-gamma),58),rep(5^(1-
gamma),5),rep(47^(1-gamma),47),rep(2^(1-gamma),2),rep(24^(1-gamma),24),rep(10^(1-
gamma),10),rep(15^(1-gamma),15),rep(56^(1-gamma),56),rep(12^(1-gamma),12),rep(8^(1-
gamma),8),rep(48^(1-gamma),48),rep(5^(1-gamma),5),rep(21^(1-gamma),21),rep(27^(1-gamma),27)) 
curr.tau<-0.11 
n.cvt.2<-apply(2*X*curr.tau,2,sum) 
max.lmt<-max(c(abs(n.cvt.1),abs(n.cvt.2)))+10000 
pseudo.resp<-c(ftime*FT1.csurv.x,max.lmt,max.lmt) 
pseudo.cvt<-rbind(X.FT1.csurv.x,as.vector(n.cvt.1),as.vector(n.cvt.2)) 
fit<-rq.fit.fnb(pseudo.cvt,pseudo.resp,tau = 0.5) 
 
### Group Bridge Estimator 
 
bic<-rep(0,length(Lambda)) 
pnum<-rep(0,length(Lambda)) 
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betabridge<-matrix(0,length(initial),length(Lambda)) 
BGB<-matrix(0,length(tau.seq),length(initial)) 
 
Lambda<-exp(seq(log(0.05),log(50),by=(log(50)-log(0.05))/100)[-101]) 
initial<-fit$coefficient 
for(j in 1:length(Lambda)){ 
  betapost<-initial;betapre<-rep(100,length(initial));i1<-1 
  while(sum(abs(betapost-betapre))>0.001){ 
    betapre<-betapost;weightbeta<-rep(0,length(initial)); 
    weightbeta[1]<-abs(betapost[1])^gamma 
    weightbeta[2:37]<-sum(abs(betapost[2:37]))^gamma 
    weightbeta[38:61]<-sum(abs(betapost[38:61]))^gamma 
    weightbeta[62:119]<-sum(abs(betapost[62:119]))^gamma 
    weightbeta[120:124]<-sum(abs(betapost[120:124]))^gamma 
    weightbeta[125:171]<-sum(abs(betapost[125:171]))^gamma 
    weightbeta[172:173]<-sum(abs(betapost[172:173]))^gamma 
    weightbeta[174:197]<-sum(abs(betapost[174:197]))^gamma 
    weightbeta[198:207]<-sum(abs(betapost[198:207]))^gamma 
    weightbeta[208:222]<-sum(abs(betapost[208:222]))^gamma 
    weightbeta[223:278]<-sum(abs(betapost[223:278]))^gamma 
    weightbeta[279:290]<-sum(abs(betapost[279:290]))^gamma 
    weightbeta[291:298]<-sum(abs(betapost[291:298]))^gamma 
    weightbeta[299:346]<-sum(abs(betapost[299:346]))^gamma 
    weightbeta[347:351]<-sum(abs(betapost[347:351]))^gamma 
    weightbeta[352:372]<-sum(abs(betapost[352:372]))^gamma 
    weightbeta[373:399]<-sum(abs(betapost[373:399]))^gamma 
    weight1<-(((1-gamma)/gamma)^gamma*cj*weightbeta)^(1-1/gamma)*cj^(1/gamma)*Lambda[j] 
    fit.lasso<-rq.fit.lasso(pseudo.cvt,pseudo.resp,tau=0.5,lambda=weight1) 
    betapost<-fit.lasso$coefficient;i1<-i1+1 
    if(i1>200)break 
  } 
  betapost[abs(betapost)<tol]<-0;betabridge[,j]<-betapost; 
  betabridge[-1,j]<-betapost[-1]/sds 
  pnum[j]<-sum(1*(betapost!=0)) 
  bic[j]<-checkrev(pseudo.resp,pseudo.cvt,betapost) 
} 
bic1<-2*bic/num+pnum*log(num)/num/2*log(length(initial)) 
choice<-(1:length(Lambda))[bic1==min(bic1)][1]; 
BGB<-betabridge[,choice] 
   
### Adaptive Group Bridge with Group Bridge as Initial Estimator 
 
betaSageGB<-matrix(0,length(initial),length(Lambda)) 
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for(j in 1:length(Lambda)){ 
  initial<-betabridge[,j]+0.00001;adapweight<-abs(betabridge[,j])+0.00001; 
  betapost<-initial;betapre<-rep(100,length(initial));i1<-1 
  while(sum(abs(betapost-betapre))>0.001){ 
    betapre<-betapost;weightbeta<-rep(0,length(initial)); 
    weightbeta[1]<-abs(betapost[1]/adapweight[1])^gamma 
    weightbeta[2:37]<-sum(abs(betapost[2:37]/adapweight[2:37]))^gamma 
    weightbeta[38:61]<-sum(abs(betapost[38:61]/adapweight[38:61]))^gamma 
    weightbeta[62:119]<-sum(abs(betapost[62:119]/adapweight[62:119]))^gamma 
    weightbeta[120:124]<-sum(abs(betapost[120:124]/adapweight[120:124]))^gamma 
    weightbeta[125:171]<-sum(abs(betapost[125:171]/adapweight[125:171]))^gamma 
    weightbeta[172:173]<-sum(abs(betapost[172:173]/adapweight[172:173]))^gamma 
    weightbeta[174:197]<-sum(abs(betapost[174:197]/adapweight[174:197]))^gamma 
    weightbeta[198:207]<-sum(abs(betapost[198:207]/adapweight[198:207]))^gamma 
    weightbeta[208:222]<-sum(abs(betapost[208:222]/adapweight[208:222]))^gamma 
    weightbeta[223:278]<-sum(abs(betapost[223:278]/adapweight[223:278]))^gamma 
    weightbeta[279:290]<-sum(abs(betapost[279:290]/adapweight[279:290]))^gamma 
    weightbeta[291:298]<-sum(abs(betapost[291:298]/adapweight[291:298]))^gamma 
    weightbeta[299:346]<-sum(abs(betapost[299:346]/adapweight[299:346]))^gamma 
    weightbeta[347:351]<-sum(abs(betapost[347:351]/adapweight[347:351]))^gamma 
    weightbeta[352:372]<-sum(abs(betapost[352:372]/adapweight[352:372]))^gamma 

weightbeta[373:399]<-sum(abs(betapost[373:399]/adapweight[373:399]))^gamma 
weight1<-(((1-gamma)/gamma)^gamma*cj*weightbeta)^(1-

1/gamma)*cj^(1/gamma)/abs(adapweight)*Lambda[j] 
    fit.lasso<-rq.fit.lasso(pseudo.cvt,pseudo.resp,tau=0.5,lambda=weight1) 
    betapost<-fit.lasso$coefficient;i1<-i1+1 
    if(i1>200)break 
  } 
  betapost[abs(betapost)<tol]<-0;betaSageGB[,j]<-betapost; 
  betaSageGB[-1,j]<-betapost[-1]/sds 
  pnum[j]<-sum(1*(betapost!=0)) 
  bic[j]<-checkrev(pseudo.resp,pseudo.cvt,betapost) 
} 
bic1<-2*bic/num+pnum*log(num)/num/2*log(length(initial)) 
choice<-(1:length(Lambda))[bic1==min(bic1)][1]; 
BSageGB<-betaSageGB[,choice] 
   
### Adaptive Group Bridge with Initial Estimator from Competing Risks Quantile Regression 
 
Lambda<-exp(seq(log(0.02),log(20),by=(log(20)-log(0.02))/100)[-101]) 
betaSageQ<-matrix(0,length(initial),length(Lambda)) 
initial<-fit$coefficients;adapweight<-abs(fit$coefficients); 
for(j in 1:length(Lambda)){ 
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  betapost<-initial;betapre<-rep(100,length(initial));i1<-1 
  while(sum(abs(betapost-betapre))>0.001){ 
    betapre<-betapost;weightbeta<-rep(0,length(initial)); 
    weightbeta[1]<-abs(betapost[1]/adapweight[1])^gamma 
    weightbeta[2:37]<-sum(abs(betapost[2:37]/adapweight[2:37]))^gamma 
    weightbeta[38:61]<-sum(abs(betapost[38:61]/adapweight[38:61]))^gamma 
    weightbeta[62:119]<-sum(abs(betapost[62:119]/adapweight[62:119]))^gamma 
    weightbeta[120:124]<-sum(abs(betapost[120:124]/adapweight[120:124]))^gamma 
    weightbeta[125:171]<-sum(abs(betapost[125:171]/adapweight[125:171]))^gamma 
    weightbeta[172:173]<-sum(abs(betapost[172:173]/adapweight[172:173]))^gamma 
    weightbeta[174:197]<-sum(abs(betapost[174:197]/adapweight[174:197]))^gamma 
    weightbeta[198:207]<-sum(abs(betapost[198:207]/adapweight[198:207]))^gamma 
    weightbeta[208:222]<-sum(abs(betapost[208:222]/adapweight[208:222]))^gamma 
    weightbeta[223:278]<-sum(abs(betapost[223:278]/adapweight[223:278]))^gamma 
    weightbeta[279:290]<-sum(abs(betapost[279:290]/adapweight[279:290]))^gamma 
    weightbeta[291:298]<-sum(abs(betapost[291:298]/adapweight[291:298]))^gamma 
    weightbeta[299:346]<-sum(abs(betapost[299:346]/adapweight[299:346]))^gamma 
    weightbeta[347:351]<-sum(abs(betapost[347:351]/adapweight[347:351]))^gamma 
    weightbeta[352:372]<-sum(abs(betapost[352:372]/adapweight[352:372]))^gamma 

weightbeta[373:399]<-sum(abs(betapost[373:399]/adapweight[373:399]))^gamma 
weight1<-(((1-gamma)/gamma)^gamma*cj*weightbeta)^(1-

1/gamma)*cj^(1/gamma)/abs(adapweight)*Lambda[j] 
    fit.lasso<-rq.fit.lasso(pseudo.cvt,pseudo.resp,tau=0.5,lambda=weight1) 
    betapost<-fit.lasso$coefficient;i1<-i1+1 
    if(i1>200)break 
  } 
  betapost[abs(betapost)<tol]<-0;betaSageQ[,j]<-betapost; 
  betaSageQ[-1,j]<-betapost[-1]/sds 
  pnum[j]<-sum(1*(betapost!=0)) 
  bic[j]<-checkrev(pseudo.resp,pseudo.cvt,betapost) 
} 
bic1<-2*bic/num+pnum*log(num)/num/2*log(length(initial)) 
choice<-(1:length(Lambda))[bic1==min(bic1)][1]; 
BSageQ<-betaSageQ[,choice]   
 
checkrev<-function(yy,xx,betatemp){ 
  tempsum<-crossprod(t(xx),betatemp) 
  sum1<-sum(abs(yy-tempsum)) 
  return(sum1) 
} 
 
### Revised Code for R-Package 
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crrQR.int.new <- function(ftime, fstatus, X, tau.L, tau.U, tau.step,  outcome = 1,   
                        cencode = 0,  noconst=FALSE, variance=TRUE, offset=0, max.lmt=10^8,  
                        rq.method="br", orig.num=nrow(X), ...){ 
   
  eddcmp <- function(M){ 
    ev <- eigen(M) 
    return(list(evectors=ev$vectors, evalues=ev$values, im.evalues=NULL)) 
  } 
   
  if(!noconst){ 
    X <- cbind(rep.int(1, dim(X)[1]), X) 
    dimnames(X)[[2]][1] <- "const" 
  } 
   
  cvt.length <- ncol(X) 
  tau.seq <- seq(tau.L, tau.U, tau.step) 
  L.tau.seq <- length(tau.seq) 
  num <- nrow(X) 
  FT0 <- as.numeric(fstatus==cencode) 
  cens <- (sum(FT0)>0) 
  FT1 <- as.numeric(fstatus==outcome)   
  smallest <- .Machine$double.eps^0.5 
  FT1.csurv.x <- FT1 
  pseudo.resp  <- c((ftime-offset)*FT1.csurv.x, max.lmt, max.lmt) 
  n.cvt.1 <- crossprod(-X, FT1.csurv.x) 
  est.beta.seq <- NULL 
 
  if(variance){ 
    est.var.seq <- NULL 
    inf.est.func <- list() 
    ind.conv.var <- rep(1, cvt.length) 
    est.var <- rep(0, cvt.length) 
    curr.inf <- array(rep(0, num*(cvt.length)), c(num, cvt.length)) 
    compare.vec <- rank(-ftime, ties.method="max") 
    compare.mat <- (ftime>=t(array(rep(ftime,num), c(num, num))))*1 
  } 
 
  L.bsq <- 1 
  ind.conv <- 1 
  X.FT1.csurv.x <- X*FT1.csurv.x 
   
  goon <- TRUE 
  while(goon){ 
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    est.beta <- rep(0, cvt.length) 
    curr.tau <- tau.seq[L.bsq] 
    n.cvt.2 <- apply(2*X*curr.tau, 2, sum) 
    pseudo.cvt <- rbind(X.FT1.csurv.x, as.vector(n.cvt.1), as.vector(n.cvt.2)) 
    est.beta.obj <- rq.fit.br(pseudo.cvt, pseudo.resp, ci=FALSE) 

est.beta <- est.beta.obj$coef 
ind.conv<-

as.numeric(abs(est.beta.obj$residuals[num+1L])>1)*as.numeric(abs(est.beta.obj$residuals[num+2])>1) 
 
    if(ind.conv==1){ 
      est.beta.seq <- rbind(est.beta.seq, est.beta) 
 
      if(variance){ 
        helper <- as.numeric((ftime) < X %*% as.vector(est.beta)) * FT1.csurv.x 
        tmp.1 <- ((helper-curr.tau)*X) 
        var.matrix.cmp.1 <- crossprod(tmp.1, tmp.1)/num 
        ZI.mat <- X*helper 
        tmp.2.1 <- t(t(ZI.mat)%*%compare.mat) 
        tmp.2 <- FT0*(tmp.2.1/compare.vec) 
        var.matrix.cmp.2 <- crossprod(tmp.2, tmp.2)/num 
        var.matrix <- var.matrix.cmp.1-var.matrix.cmp.2 
        var.dcmp <- eddcmp(var.matrix) 
        sigma.sqrt <- (var.dcmp$evector%*%diag(sqrt(var.dcmp$evalues),  
                                             length(var.dcmp$evalues),  
                                             length(var.dcmp$evalues))%*%solve(var.dcmp$evector)) 
        est.beta.var <- NULL 
        ind.conv.var <- NULL 
 
        for(k in 1:cvt.length){ 
          pseudo.cvt.var <- rbind(X.FT1.csurv.x, as.vector(n.cvt.1), as.vector(n.cvt.2)+2*sigma.sqrt[, 
k]*sqrt(num)) 
          est.beta.var.obj <- rq.fit.br(pseudo.cvt.var, pseudo.resp, ci=FALSE) 
          ind.conv.var <- c(ind.conv.var, as.numeric(abs(est.beta.var.obj$residuals[num+1])>1)* 
                            as.numeric(abs(est.beta.var.obj$residuals[num+2])>1)) 
          est.beta.var <- cbind(est.beta.var, est.beta.var.obj$coef-est.beta) 
        } 
         
        if(sum(ind.conv.var)==cvt.length){ 
          est.var <- diag(tcrossprod(est.beta.var, est.beta.var)) 
          est.inv.deriv.matrx <- est.beta.var%*%solve(sigma.sqrt)*sqrt(num) 
          est.inv.deriv.matrx <- (est.inv.deriv.matrx+t(est.inv.deriv.matrx))/2 
          curr.inf <- tcrossprod(tmp.1-tmp.2, est.inv.deriv.matrx) 
        } else{ 
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          goon <- FALSE 
        } 
        inf.est.func[[L.bsq]] <- curr.inf 
        est.var.seq <- rbind(est.var.seq, est.var) 
      } 
      L.bsq <- L.bsq+1 
    } else{ 
      goon <- FALSE 
    } 
 
    goon <- (L.bsq<=L.tau.seq & goon) 
     
    cat('.') 
  } 
  cat('done.\n') 
   
  if(L.bsq<L.tau.seq){ 
    cat('\n') 
    cat('stopping at tau=') 
    cat(tau.seq[L.bsq]) 
    cat('\n') 
    L.tau.seq <- L.bsq-1 
    if(L.bsq<=1) return(list(tau.seq=NULL, L.bsq=0)) 
    tau.seq <- tau.seq[1:L.tau.seq] 
    tau.U <- tau.seq[L.tau.seq] 
  } 
   
  dimnames(est.beta.seq)[[1]] <- tau.seq 
  if(variance) dimnames(est.var.seq)[[1]] <- tau.seq 
   
  ret <- list(call=match.call(),  
            beta.seq=est.beta.seq,  
            tau.seq=tau.seq,  
            cvt.length=cvt.length,  
            n=num,  
            n.missing=orig.num-num) 
  if(variance){ 
    ret$var.seq=est.var.seq 
    ret$inf.func=inf.est.func 
  } 
 
  class(ret) <- c("crrQR") 
  return(ret) 
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