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Resumé

Denne afhandling undersøger udvidelser af SABR-modellen til at h̊andtere implied volatili-

tetssmil i et negativt rentemiljø. Der gennemg̊as først den underliggende teori for at kunne

prise renteoptioner, hvorefter SABR-modellen, der kan modellere den ikke-konstante im-

plied volatilitet, introduceres. Vi tester estimationsmetoder og undersøger egenskaber for

SABR-modellen og dens parametre. Afhandlingen udvider den originale SABR-model med

to videreudviklede modeller, der kan h̊andtere negative renter. De to nye modeller, Shifted

SABR-model og Normal SABR-model, viser sig begge at kunne prise illikvide swaptioner

med høj præcision. Normal SABR-modellen udviser bedre egenskaber til tolkning og kvo-

tering af implied volatilitet i lavrentemiljøer og har desuden mere stabile parametre. Vi

vælger derfor at bruge denne model til at vise, hvordan man udfører risikostyring af re-

siduale risikokomponenter. Vi fokuserer især p̊a delta som risikom̊al og bruger denne til

at hedge og analysere en markedsposition. Vi konkluderer, at man kan opn̊a signifikante

forbedringer ved at benytte Normal SABR-modellen til risikostyring, samt at denne model

kan benyttes til at modellere volatilitetssmilet i negative rentemiljøer.
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1 INTRODUCTION

1 Introduction

The purpose of this thesis is to examine the SABR-model and analyse possible extensions

to the model in order to price and manage risk precisely in a negative interest environ-

ment. In the original Black framework implied volatility was thought to be constant across

different strikes (McDonald, 2013), this proved to be incorrect by empirical analysis of the

implied volatility surface. Instead the volatility surface was curved and often resembled a

smile, which is why we now refer to the volatility surface as the volatility smile. Several

models were developed to incorporate the new reality and this is where the SABR-model

was developed (Hagan et al., 2002). The SABR-model fits the implied volatility surface

and produces an implied volatility quote ready to be used in the existing pricing formu-

las, which is why the SABR model soon became a market standard (Balland and Tran,

2013). The original work by Hagan was not designed to handle negative values. This was

thought to be beneficial because neither stocks nor interest rates could become negative.

This changed after the financial crisis in 2008, where central banks aimed to lower the

interest rate to fuel the economy (Andrade, Phillippe, 2016). This finally resulted in neg-

ative interest rates in 2014, and the existing SABR model was no longer valid. This is

still the issue we face today in Europe, which is why this thesis will examine the existing

choices of SABR-models that can compute implied volatilities for negative strikes. Lastly,

we will show why it is paramount to apply a correct model for the volatility smile when

applying risk management to a long position in a swaption.

One of the challenges of this thesis has been to construct a computational module that

was able to price fixed income products. This module works behind the curtains of the

models and risk management analysis. The module handles everything from bootstrap-

ping curves to rolling out payments schedules to fitting the volatility smiles for the time

period of the analysis. The module utilises an Excel VBA library introduced in the M. Sc.

course Fixed Income Derivatives: Risk Management and Financial Institutions at Copen-

hagen Business School. As an addition to this module, we have computed functions to fit

SABR-models and compute residual risk measures in a negative interest rate environment.

We begin by setting up the fundamentals of interest rate derivatives in section 2 and laying

down the groundwork for the products we will price later. This includes curve calibration,

option pricing, mathematical framework and volatility. After having covered this theory,

we move on to caps and floors which are the basis of swaptions – our main product to

price. Once the groundwork is set up, we move to the volatility smile and the background

for its existence in section 3. This leads to the main model of the thesis in section 4;

the SABR-model. We define the SABR-model and explore the parameters in the model

4



1 INTRODUCTION

along with tests and a discussion on how to best estimate them. After we have chosen

an estimation method, we introduce two new versions of the SABR-model; the Shifted

SABR-model and the Normal SABR-model. Before we begin applying the models, we

describe the data sets used in the thesis in section 5. This gives an idea of how the market

has moved in the past years and why. The next step is to conduct an empirical analysis

in section 6, where we compare the models’ abilities to cope with negative interest rates.

We test the models both on the robustness of their parameters and their pricing accuracy.

We discuss the advantages and drawbacks of the models and choose one to use in section

7 on risk management. Here we see the effects of possible errors when estimating the

parameters of the SABR-model. We explore the classic Greeks and apply our knowledge

in a hedge, before we conclude on our results in section 8.

1.1 Methodology

The thesis processes information with methods commonly used within finance and eco-

nomics (Ryan et al., 2002). We work with quantitative data on various financial contracts

and interest rate derivatives, collected from the Bloomberg database. We see Bloomberg

as the leader within financial data with its numerous data series which are updated fre-

quently. In section 5 we will comment further on the data series used in the thesis.

We primarily use deduction in the thesis as we begin with a theory and seek to investigate

it with empirical data. One work method of the financial field is to start with core models,

test these on data and then move on to expand and adapt the models to better fit the

current financial situation. In this thesis, we start by looking at the classic Black set-up

with constant volatility, then see that constant volatility is not the market reality and

expand to the SABR-model. The SABR-model is valid for a while, but when the negative

interest rate environment sees the light of day, this model also needs renewal – introducing

the Shifted SABR-model and the Normal SABR-model in section 4. We then use our em-

pirical data to test these models and discuss their advantages and disadvantages in order

to choose a model to continue the work with.

In general, we seek to lay down the basic theory for financial asset pricing and then build

the thesis up by adding more expansions and models in the following section. We use

the empirical data to validate the link between theory and practise and then use the

positivistic and logical approach to argue our results and conclusions (Brier, 2005).
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2 SETTING UP FUNDAMENTALS

2 Setting up fundamentals

We begin the thesis by setting up the investment universe that we will be working in. In

this section we will cover some of the fundamental theory that precedes the main theory

on swaptions and the SABR-model. First we need to lay the groundwork for pricing by

explaining interest rates, the products that use interest rates and option pricing. Once

this is complete, we can combine our knowledge of swaps and options to price swaptions,

which will be our main product to price. But first, lets set up our investment universe.

2.1 Interest rates

Most of the interest derivative products are contracts written on the xIBOR – either indi-

rectly or directly. The xIBOR is a term for InterBank Offered Rates and is a set of rates

in which major banks can borrow on an unsecured basis from each other. The rates are

offered in different currencies and set by different organisations. The British Bankers As-

sociation sets for example the LIBOR every day at 11:00 GMT. These rates range from 1

business day to 12 months and are calculated as the truncated average of rates submitted

by a group of panel banks. Note that the xIBOR rates are not actually a traded rate

but rather a series of indicative rates. The following sections build on the lecture notes

from the course Fixed Income Derivatives: Risk Management and Financial Institutions

(Linderstøm, 2013).

When defining the xIBOR fixings, we first need to define some terms that are used; δ

is the coverage, L is the xIBOR fixing for the product, N is the notional and P (0, T ) is

the zero coupon bond (ZCB) running from time 0 to T. The ZCB is used to express the

xIBOR rate, as we can get the same return from borrowing one unit at the xIBOR rate

or sell 1
P (0,T ) ZCB, assuming that we have no arbitrage. The xIBOR fixings follow the

Money Market Convention as the interest paid a maturity on a notional N is calculated

as N · δ · L. The xIBOR is thus expressed as:

1 + δL(0, T ) =
1

P (0, T )
⇔ (2.1)

L(0, T ) =
1

δ

(
1

P (0, T )
− 1

)
(2.2)

This is also called the spot xIBOR, running from t = 0 to T. Using the above equation

containing ZCBs, we can define the forward xIBOR rate, which describes the future interest

rate contracted at time t and running from T to T + δ. The forward rate F (t, T, T + δ)
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2 SETTING UP FUNDAMENTALS

that can be contracted today at t = 0 is defined using ZCBs:

F (t, T, T + δ) =
1

δ

(
P (t, T )

P (t, T + δ)
− 1

)
(2.3)

The next step in pricing contracts written on xIBOR rates is to determine the present value

of the future payments. The present value of future xIBOR payments is the discounted

expected payoff under the forward Q-neutral probability measure:

PV of xIBOR payments = P (t, T + δ) · EQT+δ

t [(T, T + δ)] (2.4)

Using the Q-neutral probability measure means that the expected payoff is equal to the

forward rate. Note that we will cover probability measures along with other mathematical

framework in section 2.4.1.

E
QT+δ

t [L(T, T + δ)] = F (t, T, T + δ) (2.5)

This allows us to compute xIBOR payments using only ZCB prices. The xIBOR rates

are essential in order to compute and use interest rate swaps and swaptions. This will be

discussed in section 2.2.1.

2.2 Interest Rate Swaps

A plain vanilla interest rate swap (IRS) is the contract between two parties in which they

agree to exchange a series of fixed interest rate payments for a series of floating interest

rate payments over a pre-specified period of time. These two series are referred to as the

legs of the contract, where the floating leg is linked to the appropriate xIBOR. When

denoting an IRS, one refers to the fixed leg e.g. if one enters into a payer swap, one is

paying the fixed leg and receiving the floating leg. The two legs do not necessarily have

the same specifications, but the present value of all the payments must be the same for

the contract to be fair.

Curr. Index name Spot start Roll
Floating leg Fixed leg
Freq. Day count Freq. Day count

EUR Euribor 2B MF S 30/360 A 30/360
USD USD Libor 2B MF Q 30/360 S 30/360
GBP GBP Libor 0B MF S Act/360 S Act/360
DKK Cibor 2B MF S 30/360 A 30/360

Table 2.1: Standard market conventions of plain vanilla swaps, Linderstrøm (2015)

Table 2.1 shows the standard market conventions of plain vanilla swaps, which we will now
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2 SETTING UP FUNDAMENTALS

explain further. These conventions are essential to agree upon when two counter parties

are looking to agree on a price.

Spot start is present day in financial terms, meaning that if one enters into a spot start-

ing EUR interest rate swap, then it will begin in two business days from today.

Roll is a term used to describe how non-business days are handled. If a payment is due

on a non-business day then the payment day needs to be adjusted. The indices in table

2.1 are all Modified Following (MF), meaning that if an action is meant to occur on a

non-business day this action should happen on the following business day, unless this day

falls in the next month, then it should be the previous business day.

Frequency describes how often a payment is to be made on each leg. These are typically

annual (A), semi-annual (S) or quarterly (Q) and do not necessarily have to be the same

for the two legs.

Day count conventions determine how the coverage δ is calculated. Rates are usually

quoted per year, so the coverage will be between 0 and 1. There are different conventions

to use depending on the currency of the swap as shown in table 2.1, where the most

common ones are:

• 30/360 assumes that a year has 360 days and each month is 30 days. The coverage

is calculated as δ = 1
360(years · 360 + months · 30 + min[30, days])

• Act/360 assumes that a year has 360 days and the coverage is calculated as δ = days
360

• Act/365 is the same as Act/360 but assumes a year with 365 days, giving us δ = days
365

• Act/365.25 accounts for leap years and the coverage is δ = days
360.25

2.2.1 Pricing interest rate swaps

In the section we will cover how to price an interest rate swap. The swap starts at time TS

and matures at TE . It is written on a notional N and discounted with ZCBs. The market

standard is that swaps are traded with a spot start, meaning that t ≈ TS (Linderstøm,

2013). This means that the contract will start after two business days. The coverage δi

is the fraction of the year between the dates TS , ..., TE . Having defined the parameters of

the IRS, we use them to define the present value of the swap as the sum of coverages times

the forward rate times the notional discounted with the appropriate zero coupon price:
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2 SETTING UP FUNDAMENTALS

PVFloat
t =

E∑
i=S+1

δFloat
i F (t, Ti−1, Ti)NiP (t, Ti) (2.6)

For the fixed leg, we have the same parameters except that here the rate to be paid is

fixed as K instead of the forward rate as used in the floating leg. The coverage will of

course be defined as δFixed
i as the payment dates do not need be equal. The fixed leg is

discounted the same way as the floating leg – with the zero coupon price:

PVFixed
t =

E∑
i=S+1

δFixed
i KNiP (t, Ti) (2.7)

Now that the two legs have been defined, we will look at the present value of the contract.

For the payer, the fixed leg is a liability and the floating is an asset, since the owner will

pay the fixed rate and receive the floating. Hence the value of the payer swap is:

PVPayer
t =

E∑
i=S+1

δFloat
i F (t, Ti−1, Ti)NiP (t, Ti)−

E∑
i=S+1

δFixed
i KNiP (t, Ti) (2.8)

The timeline for an interest rate swap is illustrated in figure 2.1 below. The contract

is a payer swap, where the person who bought the contract is paying the fixed leg and

receiving the floating leg.

t TS

δK

δL(TS , TS+1)

δK

δL(TS+i−1, TS+i)

δK

δL(TE−1, TE)

TS+1 TS+i TE

Figure 2.1: Timeline of a forward starting payer interest rate swap (own creation)

The counterparty, the receiver, has an opposite view of the contract, we get the following

relationship between the two contracts: PVPayer = −PVReceiver.

In order for the present value of the two legs to be equal, we define the par swap rate

R(t, TS , TR) to be the fixed rate that ensures this condition:

R(t, TS , TE) =

∑E
i=S+1 δ

Float
i F (t, Ti−1, Ti)NiP (t, Ti)∑E
i=S+1 δ

Fixed
i NiP (t, Ti)

(2.9)
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2 SETTING UP FUNDAMENTALS

This leads to the party with the most favourable end of the contract to pay an upfront

premium as compensation for the contract being unfair.

Using the par-swap rate in equation (2.9) and rearranging equation (2.8) we can write the

price of a payer swap as

PVPayer
t = A(t, TS , TE)(R(t, TS , TE)−K) (2.10)

where A(t, TS , TE) =
∑
δFixed
i P (t, Ti) constitutes the annuity factor1. To see why this

way of stating the value of an IRS is smart, one can take the view of an fixed income

trader. If a trader wishes to realise his position, he can either pay/receiver the value of

the contract from the counterparty or he can enter into the corresponding receiver swap.

When entering into the corresponding receiver IRS, the two floating rates will cancel out

and the trader will be left with a series of fixed risk-free payments, also called an annuity.

The value of the annuity will thus be the difference between fixed rate K of the original

contract and the par-swap rate of the recently initiated IRS, discounted using the annuity

factor which is exactly equation (2.10).

From equation 2.10 another interesting property can be seen. An IRS sensitivity towards

changes in the par-swap rate is exactly the annuity factor, ∂PVPayer
t /∂R = A. This prop-

erty thus ensures that entering into the opposite swap position is a risk-free way of closing

a position (disregarding counterparty credit risk).

Interest rate swaps can be used to hedge loans with a floating rate. This is typically

done by companies, where they have a loan at the xIBOR rate plus a credit spread. If

a company wants to hedge the risk of an increase in the xIBOR rate, it can enter into a

payer swap meaning that it will receive the xIBOR rate in exchange for a fixed rate. The

company then uses the xIBOR payments for the interest on its loan and pays the fixed

rate of the contract it just entered, resulting in a fixed loan.

2.3 Curve calibration

We have now seen how to price interest rate swaps using ZCBs prices observable in the

market, but what about the cases when the market rates are not directly observable? This

is where the zero coupon yield curve comes in handy. We can use observable par swap

rates to calibrate a unique zero curve that can be used to compute forward rates for any

1Annuity factor can be viewed as a discounting function, that can be used to discount any form of cash
flow.
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2 SETTING UP FUNDAMENTALS

given time. This is done with a set of knot points i.e. market rates for different maturities

and a minimisation problem.

As an example to explain the calibration of a zero coupon yield curve (zero curve), we will

use the case of pricing a 10Y EUR IRS. The payments for the fixed leg are annual and for

the floating leg semi-annual, meaning that we have 10 fixed payments to discount and 20

floating payments which need a projection of the forward Euribor rates and discounting.

As mentioned earlier, the problem is that we cannot observe all 20 rates that make up the

interest rate swap and thus we need to calibrate the entire zero coupon yield curve. We

use the knot points observed in the market to construct the zero curve and then the zero

curve to interpolate between the knot points. It is also possible to extrapolate, meaning

that we can use the zero curve to find rates beyond the last knot point. Using interpolation

and extrapolation, it is possible to determine the entire zero coupon yield curve and thus

compute any discount factor and forward rate we find necessary.

To construct the zero coupon yield curve, we need to solve a minimisation problem. The

problem is formulated as a least square minimisation problem where we have observed

the market quotes A = {a1, a2, ..., aN} and a set of parameters P = {p1, p2, ..., pM}. The

pricing method used in section 2.2.1 will be used here to compute a set of model quotes

B(P) = {b1, b2, ..., bN} depending on the parameters and the set of market quotes. The

goal is now to minimise the squared difference between the market quotes and model

quotes by altering the parameters, in this case the zero coupon bonds. The problem is

formulated as:

min
P

N∑
i=1

(ai − bi)2 (2.11)

To ensure nice properties in the minimisation problem, we will choose N = M i.e. the

number of knot points is equal to the number of market quotes.

2.3.1 Dual curves

A natural extension to the single curve set-up is the dual curve set-up. Before the intro-

duction of the dual curve set-up, the zero curve was used both to compute forward rates

and discount factors. This implies that the underlying rate from which the zero-rate is

derived of, in this case Euribor 6M, is risk-free. After the crash of Lehman Brothers in

2008, it was clear that the xIBOR rates were not risk-free but contained an element of

credit risk. Therefore the market standard became to separate the zero curve and the

discount curve.

11



2 SETTING UP FUNDAMENTALS

The zero curve is constructed in the same way as in the single curve set-up from the

par-swap rates that have the relevant xIBOR rate as the underlying asset. Remembering

that the xIBOR rate is a non-traded rate at which a group of panel banks expect to be

able to borrow money from one another. Therefore the zero curve contains an element of

credit risk and will therefore only be used to compute forward rates and not discount rates.

The discount curve is calculated from Overnight Index Swaps2 (OIS). The OIS rate is

still tied up to xIBOR, but is settled each day. This minimises the credit risk as it is quite

unlikely for bankruptcy to happen overnight. These rates are as close to a risk-free rate

as we can hope to get and thus the curve constructed from them can be used to discount

future cash flows. The methodology used to construct the discounting curve is identical

to the zero curve.

2.3.2 An example of curve calibration

The curve calibration from section 2.3 has been implemented and will be described in

this section. First the observable par swap rates A = {a1, a2, ..., a3} have been collected

from the Bloomberg database. We have collected two different series of par swap rates:

par swap rates from swaps with 6M Euribor as the underlying rate and Overnight Index

Swaps with 6M Euribor as the underlying rate. The data can be seen in table 2.2 below.

The quotes cover a number of different maturities that are not perfectly overlapping.

Maturity Par swap rates Overnight par swap rate

1Y -0.237% -0.352%

2Y -0.152% -0.271%

3Y -0.014% -0.165%

4Y 0.129% -0.011%

5Y 0.273% 0.094%

6Y 0.411% 0.252%

7Y 0.541% 0.377%

8Y 0.663% 0.497%

9Y 0.775% 0.606%

10Y 0.876% 0.707%

15Y 1.232% 1.069%

20Y 1.392% 1.237%

30Y 1.453% 1.317%

Table 2.2: Market quote inputs for calibration of the zero and discount curve, 03-12-2018 (Source:
Bloomberg)

2The Overnight Index Swaps is a par swap rate settled every night, minimising the credit risk
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2 SETTING UP FUNDAMENTALS

Constructing the dual curve set-up is very similar to the single curve set-up. For the sin-

gle curve set-up, the goal was to minimise the difference between model rates and market

rates by changing the zero curve. In the dual curve set-up the goal is to minimise both

the difference between the model rates based on 6M Euribor and market rates based on

6M Euribor while simultaneously minimising the difference between the model rates based

on OIS and market rates based on OIS, by changing both the zero curve and discounting

curve.

The model rates are based on equation (2.11) and the market rates can be seen in table

2.2. Note that the OIS rates are lower than the par swap rates, as they should be due to

their minimised credit risk. The results are visualised in figure 2.2.

As we are not interested in rates beyond our last market rate (30 years), we will not be

extrapolating. Interpolation is used to compute zero rates between the knot points and

thus create a continuous zero curve and discount curve. The interpolation method in use is

hermite spline. We use our set of knot points {t1, t2, ..., tN} to calculate the corresponding

zero rates {r1, r2, ..., rN}. The formula below lets us calculate any zero rate rt between

two knot points, where ti < t < ti+1

r(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3 (2.12)

We use the Hermite Spline interpolation because it insures a smoother curve due to the

polynomial functions compared to a standard linear interpolation.

Figure 2.2: Calibrated curves

From figure 2.2, we can see that we have successfully calibrated a dual curve set-up. The

curves are smooth which ensures arbitrage free pricing and there is a distinct difference

between the zero curve and discounting curve indicating that we are now taking the credit

13



2 SETTING UP FUNDAMENTALS

spread into account when pricing interest rate products. The calibrated curves are essential

to us when we move onto pricing swaptions, calibrating SABR-models and applying risk

management in the empirical analysis of this thesis.

2.4 Option pricing

As we move towards using the SABR-model, we first need to know how to price options

and then later swaptions as these are the financial contracts we will be pricing with SABR.

This section covers option pricing theory, mathematical framework and two option pricing

models; the Black model and the Normal model. This section is based on the option

theory in (Linderstøm, 2013), (Hull, 2018) and (McDonald, 2013).

The two classic types of options are a call option and a put option. The call option

gives the buyer the right, but not the obligation, to purchase the underlying asset at a

prespecified price on a future date. A put option is the opposite, giving the buyer the

right to sell the underlying asset at a prespecified price on a future date. The call option

is purchased if an investor expects the price of the underlying asset to increase and vice

versa for the put option. A call option is equivalent to holding a long position in the

underlying asset, where a put option is holding a short position. The contract runs from

t0 to T , where the investor decides at time T whether he wants to exercise his right to

purchase the underlying asset. If the investor decides to purchase the underlying asset, he

will pay the strike price K for the underlying asset. The right to purchase the asset can

only be exercised at T in European options, which is the type we will deal with. Another

type of options are American, where the investor can exercise his option at any time from

purchase of the option until it expires. The payoff for a call option is described in table

2.3 below.

Call Put

Payoff (VT −K)+ (K − VT )+

Exercised when VT > K K > VT

Table 2.3: Payoff for put and call options

The price of the asset at time T is stochastic, which causes the payoff to be stochastic as

well. While one could expect such a contract to be difficult to price, it is actually quite

possible. The way to go is simply to compute the expected value of the option’s payoff.

Before we begin pricing options, we first need to elaborate on why this method is valid

and introduce some probability measures and properties of stochastic processes.
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2.4.1 Mathematical framework

Before we begin introducing some of the pricing models, we first need to cover some math-

ematical areas that help set up the theoretical framework.

Arbitrage

When using pricing models, it is important to secure that the model does not allow arbi-

trage. Arbitrage is when an investor can buy a contract at the price of zero and receive a

non-negative payoff later for sure, and a positive payoff with a positive probability. The

definition of arbitrage is:

An arbitrage is a value process X(t) satisfying X(0) = 0 and for t > 0

P{X(t) ≤ 0} = 1 and P{X(t) > 0} > 0 (2.13)

For option pricing, arbitrage is described with a discount process d(t). Arbitrage exists if

an investor can start with X(0) and later at time t, the investment will have the value of

P

{
X(t) ≥ X(0)

d(t)

}
= 1 and P

{
X(t) >

X(0)

d(t)

}
> 0 (2.14)

When pricing financial products, the theoretical pricing models must be arbitrage-free.

This means that every pricing process must satisfy the martingale measures.

Martingales

A stochastic process is a martingale if EQt [fT ] = ft, meaning that the expected future

value of a process is the value of today and that the process is drift-less. The process is

under Q-probability, which means that we are in the risk-neutral world. In mathematical

finance, we distinguish between the real world and the risk-neutral world and the prob-

ability that is valid in each world. In the real world we have P-probability and in the

risk-free world Q-probability. These probability measures inform about the likeliness of

different values in a random variable. If a process is a martingale, then it is easier for us

to price because we know, what we expect of the future value.

Knowing our expectations of a martingale, then if fT /gT is a martingale, then it must

hold that
ft
gt

= Et

[
fT
gT

]
⇔ ft = gtEt

[
fT
gT

]
(2.15)

The last expression states that ft is a martingale with gt as numeraire. This property will

be useful later when we cover caps and floors in section 2.5. The numeraire can be of our
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choice, which will help simplify pricing formulas later on.

With arbitrage and martingales in place, we have the foundation for the First Fundamen-

tal Theorem of Asset Pricing: ”The model is free of arbitrage if and only if there exists

an equivalent martingale measure”. This is an important result because we can now price

any financial derivative by calculating the expected value of the payoff.

Brownian Motion

A Brownian motion is one of the essential building blocks when it comes to derivatives

pricing models. The process is also called a Wiener-process and is used to describe random

movements in financial models e.g. the movements of a stock price. The process is used

in the Bachelier model, which will be described later in section 2.4.2. The properties of a

Brownian motion X(t) are as follows:

• X(0) = 0

• For all t0 ≤ t1 ≤ · · · ≤ tn, we have that X(t1) − X(t0), X(t2) − X(t1), ..., X(tn) −
X(tn−1) are independent and random

• For any tn−1 < tn, we have that Xn −Xn−1 is normally distributed with

N (0, (tn − tn−1)σ2)

• t→ Xt is a continuous function

Now with the properties in place, we can see that the process X(t) is a martingale. This

means that the expected value of the process tomorrow, given the value of today, is in

fact the value of today – in mathematical terms E[X(tn+1)|X(tn) = X(tn). The second

property tells us that the Brownian motion follows the stochastic Markov process, meaning

that the value tomorrow does not depend on history but simply what the value is today

(Lawler, 2006).

2.4.2 Normal model

One of the simplest models for modelling negative interest rates is the Normal model, also

called the Bachelier model, and was first introduced by Louis Bachelier in 1900. The model

describes the movements of the forward rate ft with a differential stochastic equation:

dft = σNdWt (2.16)

where σN is the constant Normal volatility and Wt is a Wiener-process. Hence the move-

ment of the underlying rate depends only on the volatility and the Wiener-process. The
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solution to the stochastic equation is given by:

ft = f + σNWt where f = f0 (2.17)

We can price a call option with the Normal model with the following formula:

C = e−r(T−T )

[
(F −K)Φ(d) +

σ
√
T − t√
2π

e−d
2/2

]
(2.18)

where F is the underlying rate, K is the strike, Φ(·) is the normal distribution function

and

d =
F −K
σ
√
T − t

The model gives us the possibility to work with negative interest rates because of the nor-

mal distribution, but this is also one of the disadvantages of the model. The forward rate

may become very negative with a positive probability, which is in contrast to real-world

expectations. Interest rates are unlikely to move far away from zero and towards high

negative values.

Another drawback to the model is the assumption of constant volatility. This is a theme

that will be addressed later in section 3.

2.4.3 Black Model

The Black model is a simpler version of the well-known Black-Scholes-Merton model (Mc-

Donald, 2013). The Black model is used to price European fixed income options and

assumes that the option prices follow the lognormal process:

dft = σLNftdWt (2.19)

where the movement of the underlying rate depends on a constant volatility σLN , the

current forward par swap rate ft and a Wiener-process Wt. We can use most of the BSM-

equation, where the underlying asset is the futures prices and we discount both legs with

the risk-free rate:

C = e−r(T−t)[FΦ(d1)−KΦ(d2)] (2.20)
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where Φ(·) is a cumulative probability distribution function for a standardised normal

distribution and

d1 =
ln(F/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

The lognormal distribution of prices makes extreme cases very unlikely together with the

dependence of the current par swap rate, which was the problem with the Normal model.

However, the Black model does not work for negative interest rates which have been

occurring in current markets. The problem with the Black model is also that it assumes

constant volatility, which is not the case in the real word – an issue we will address in

section 3.

2.4.4 Volatility

This section will cover the two ways in which volatility can be quoted and an approxi-

mation to move between the two measures. We will introduce a second method to move

between the two types of volatilities and conduct an example of the calculations needed

to do so.

Black volatility

This volatility is used in the Black-model and is calculated relative to the forward rate. In

practice this means that if a forward rate is e.g. 1% and changes to 1.1%, then the Black

volatility is 10% as this is the relative change. As seen in section 2.4.3 the movements

of the underlying forward par swap rate are assumed to have a lognormal distribution as

seen in equation (2.19).

The problem with the Black volatility occurs when rates are close to zero. When a small

change occurs in a forward par swap rate close to zero, then it will result in a dramatic

Black volatility. We will later examine these large implied volatilities and their effect on

the pricing models in section 6.

Normal volatility

The normalised volatility, or Normal volatility in daily speech, solves the problem of rates

close to zero. Normal volatility is quoted in absolute terms and in basis points3, meaning

that if a forward rate is e.g. 1% and changes to 1.1%, then the Normal volatility is 0.1%

3One basis point (bps) is 1/10.000 or 1/100thof 1% and commonly used as a unit of measure when it
comes to changes in interest rates
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or 100 bps. This type of volatility is used in the Normal model and assumes that the

underlying par swap rate is normally distributed as seen in equation (2.16). The Normal

volatility tends to be smaller than the Black volatility as it is calculated as the changes in

actual basis points.

We will, however, have to use Black volatility when testing the original SABR and Shifted

SABR model. We have collected both Normal volatility and Black volatility quotes from

Bloomberg, but due to illiquidity, the implied Black volatility quotes lack data points for

deep ITM and OTM strikes. We will use an iterative method to get the missing implied

Black volatilities from the Normal volatilities.

Transforming Black volatility to Normal volatility

There exists an approximation for moving between Normal volatility and Black volatility

for At The Money options (ATM). When examining equation 2.21 below, we can see the

logic of this approximation. We transform the absolute Normal volatility to the relative

volatility by dividing with the forward par swap rate (Linderstøm, 2013).

σLN ≈
σN
ft

(2.21)

where ft is the forward par swap rate.

This approximation becomes increasingly imprecise when interest rates are around zero.

This is obviously a problem for us, since we will be working in an interest rate environ-

ment with negative and close to zero rates. Additionally, the approximation only works

for ATM volatilities, which is again a problem when computing a SABR model, which

requires OTM and ITM volatility quotes. (Linderstøm, 2013).

As an alternative to the approximation, one can use the fact that the price of the option,

when using the Normal model and the Black model, should be equal due to the no arbitrage

argument.

CN (F,K, t, T, σN ) = CB(F,K, t, T, σ∗B) (2.22)

From this relation, we can infer the Black volatility by solving the equation 2.22 in respect

to σ∗B. This has been done in practise by solving a least square minimisation problem

through iterations.

In table 2.4 we computed the Black volatility using both the approximation and the iter-
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ative method. When comparing the computed implied Black volatilities with the market

quotes, it is clear that the approximation becomes imprecise for away from ATM volatili-

ties. When comparing the computed implied Black volatilities from the iterative method,

we can conclude that this method is very precise. We will therefore use this method

whenever we need to fill gaps in the implied Black volatility market data.

Bps away

from ATM

Implied Nvol

(Market quotes)

Implied Bvol

(Market quotes)

Implied Bvol

(Approximation)

Implied Bvol

(Inferred from Prices)

-200 55.7 - 28.0% -

-100 58.7 44.3% 29.5% 44.3%

-50 60.4 36.9% 30.3% 36.9%

-25 61.3 34.5% 30.8% 34.5%

0 62.2 32.6% 31.2% 32.6%

25 63.2 31.1% 31.7% 31.1%

50 64.2 29.8% 32.2% 29.8%

100 66.3 27.9% 33.3% 27.9%

200 71.1 25.4% 35.7% 25.4%

400 81.6 - 41.0% 23.0%

Table 2.4: Implied volatilities, (Source: Bloomberg and own calculations)

When examining the implied volatilities in table 2.4, we can see a very interesting rela-

tion between Black volatilities and Normal volatilities. While the Normal volatilities are

greater for larger strikes, the Black volatilities are lower for larger strikes and vice versa

for smaller strikes.

This difference arises because the implied Black volatilities are measured in relative terms

and the implied Normal volatilities in absolute terms. This means that when strikes are

low, the relative volatility increases. The volatility does not increase solely because low

strikes exhibit higher volatility but also because of the fact that small changes in a low

strike will have a much larger relative effect, than small changes in a higher strike. This is

a major problem for using implied Black volatilities to interpret the volatility smile, since

we do not know if the changes are due to the relative change or due to a ”true” increase

in volatility. We will therefore mainly use Normal volatilities when interpreting the shape

of the volatility smile, but will have to use Black volatility for the models that require it.

2.5 Caps and Floors

Having covered option pricing theory, it is time to move on to interest rate option contracts.

The theory in this section is based on (Linderstøm, 2013). A caplet is a call option with

the forward xIBOR rate as the underlying asset. The caplet is written on L(T, T + δ)
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and can only be exercised at time T . The option payoff is fixed at the beginning of each

accrual period, but not paid undtil the end of the period – i.e. fixed-in-advance and paid-

in-arrears. We remember equation (2.5) from section 2.1 and can therefore value a caplet

at time T:

Caplet PVT = P (T, T + δ)δ(F (T, T, T + δ)−K)+ (2.23)

To find the present value of the caplet we use the properties covered in section 2.4.1 on

martingales. We use the ZCB as numeraire instead of trying to work out the expected

value of two stochastic rates. We use a ZCB that matures at T + δ (T-forward measure)

and thus obtain:

Caplet PVt = P (t, T + δ)δE
QT+δ

t

[
P (T, T + δ)(F (T, T, T + δ)−K)+

P (T, T + δ)

]
= P (t, T + δ)δE

QT+δ

t [F (T, T, T + δ)−K)+]

(2.24)

We assume that F (T, T, T + δ) is normally distributed and we can therefore write the

expected payoff using the probability properties of the Normal model to express the price

as

Caplet PVt = P (t, T + δ)δ

[
(F (t, T, T + δ)−K)Φ(d) +

σ
√
T − t√
2π

e−d
2/2

]
(2.25)

where

d =
F (t, T, T + δ)−K

σ
√
T − t

What we have in equation (2.25) above, is first discounting with the ZCB, the year fraction,

in the brackets we have the normally distributed expected payoff and lastly the variance

for the normal distribution. We can see from equation (2.25), that all we need to price the

caplet is a ZCB, forward xIBOR payments, a strike, time to maturity and a volatility. The

ZCB used for discounting and the forward xIBOR payment can be derived from the cali-

brated swap curves (covered in section 2.3). The strike and time to maturity are contract

specific. The volatility is therefore the only unknown variable at this point. There exists

a unique volatility that matches the market price of the caplet. We can therefore infer

the volatility from the market price. When inferring the volatility from market prices,

we refer to the volatility as the implied volatility. We stress that this is not the same as

realised volatility.

Just as there is a put option for every call option, there is also a floorlet for every caplet.

A floorlet is thus a put option with the forward xIBOR rate as the underlying asset. To

price a floorlet, we can use the put-call-parity which ensures a fair price for a put and call
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option with the same strike K:

Forward(K) = Call(K)− Put(K) (2.26)

Knowing the value of a forward contract is the present value of the discounted cash flow,

P (t, T + δ)δ(F (T, T, T + δ)−K), we can insert this in the put-call-parity with the value

of the caplet in equation (2.25) and solve for the floorlet (put), giving us the present value

of a floorlet in the Normal model:

Floorlet PVt = P (t, T + δ)δ

[
(K − F (t, T, T + δ))Φ(d) +

σ
√
T − t√
2π

e−d
2/2

]
(2.27)

where

d =
F (t, T, T + δ)−K

σ
√
T − t

A cap is a portfolio of caplets, and a floor is a portfolio of floorlets. To price these two

portfolios we simply need to add all the caplets and floorlets from starting time TS to the

time they mature at TE :

Cap PVt =

E∑
i=S+1

P (t, T + δ)δ

[
(F (t, T, T + δ)−K)Φ(d) +

σ
√
T − t√
2π

e−d
2/2

]
(2.28)

Floor PVt =
E∑

i=S+1

P (t, T + δ)δ

[
(K − F (t, T, T + δ))Φ(d) +

σ
√
T − t√
2π

e−d
2/2

]
(2.29)

Caps and floors are Over The Counter (OTC) products. In theory caps and floors can be

traded with any tenor xIBOR rate, the liquidity of the market is, however, concentrated

around the main xIBOR rates from the interest swap market.

Caps and floors are very similar to swaptions, which will be the main products used for

analysing the volatility smile in this thesis.

2.6 Swaptions

We have covered both swaps and options and now it is time to combine the two prod-

ucts to get a swaption. This section on swaptions is based on the swaption theory in

(Linderstøm, 2013). A swaption is the right, but not the obligation, to enter into a spot

starting interest rate swap with a specified fixed rate, called the strike, at a future point in

time. An example of this contract could be that a company knows it is going to enter into

a 5-year floating rate loan agreement, but prefers a fixed rate. Then it can buy a payer

swaption starting in 6 months, where it pays a fixed rate, e.g. 3% per year and receives the

xIBOR rate for 5 years. When the 6 months have passed the company can decide whether
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to exercise its right to buy the payer option. If the spot IRS is less than 3%, then the

company will enter into a regular swap and not exercise its swaption. If the spot IRS is

more than 3%, then the company will exercise its right to purchase the IRS in the swaption.

A payer swaption is having the option at time TS to enter into an interest rate swap that

matures at time TE . If we assume that the swaption is entered at t = 0, then the standard

notation of a swaption is that at time TS the holder of the swaption decides whether he

wants to execute his option to enter into the IRS. Note that he can only execute at the

expiry and not before. If he executes, then he will pay the fixed rate K and receive the

floating xIBOR rate for a period of TE − TS . An example is TS = 1Y and TE = 10Y : the

buyer will then have 1Y to determine if he wants to execute and if he does, he will enter

into a swap for 9Y and thus has purchased a 1Y9Y swaption.

Swaptions can be settled in two ways: physical or cash settlement. The pricing is still the

standard present value of the contract, but the calculation for the two types are different.

If the holder of the swaption chooses the physical settlement, he will receive the underlying

swap contract. The value of a payer swaption with physical settlement, using the pricing

technique as with interest rate swap, can be expressed as:

PVPhysical
TS

= A(TS , TS , TE)(R(TS , TS , TE)−K)+ (2.30)

where

A(TS , TS , TE) =
E∑

i=S+1

δiP (TS , Ti)

The owner of the payer swaption will choose to exercise the option if the present value is

greater than zero. As an alternative to receiving the physical underlying interest rate swap,

the owner of the option can choose a cash-settlement. When choosing the cash-settlement,

the owner simply receives the present value of the underlying swap. It is beyond the scope

of this thesis to analyse the difference in pricing between the two settlement types. We

will, however, note that the main difference between physical and cash settlement is how

future cash flows are discounted.

2.6.1 Swaption pricing

When pricing a swaption, we will use the same techniques as when pricing caplets and

floorlets. When pricing caps and floors we used a zero-coupon bond as numeraire, but for
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swaptions we will use the swap annuity, A(TS , TS , TE), as numeraire.

PVPayer
t = A(t, TS , TE)EAt

[
A(TS , TS , TE)(R(TS , TS , TE)−K)+

A(TS , TS , TE

]
(2.31)

Next we apply the probability distribution of the Normal model to quantify the expected

present value for a payer swaption:

PVPayer
t = A(t, TS , TE)

[
(R(t, TS , TE)−K)Φ(d) +

σ
√
T − t√
2π

e−d
2/2

]
(2.32)

where

d =
R(t, TS , TE)−K

σ
√
T − t

As with caps and floors, we use the put-call parity to quantify the present value of a

receiver swaption.

Forward Starting Payer Swap(K) = Payer Swaption(K)− Receiver Swaption(K)

(2.33)

And by isolation, we can calculate the present value of a receiver swaption.

PVReceiver
t = A(t, TS , TE)

[
(K −R(t, TS , TE))Φ(d) +

σ
√
T − t√
2π

e−d
2/2

]
(2.34)

2.6.2 An example of swaption pricing

Now we will price a swaption using the above formulas. We will be pricing in Excel and

use the same data set and our calibrated curves from section 2.3.2. The swaption we will

price is a spot starting interest rate swap written on Euribor 6M as the underlying asset.

The first step of pricing the swaption is to compute the fair value today of the underlying

swap that we will later have the option to buy. To compute the fair value of the swap,

we need to find the value of the floating and fixed leg. For the fixed leg we first need to

calculate the par swap rate (rate for fixed leg) that guarantees the fairness of the contract

and therefore a present value of zero for the swap. There are a few steps we need to go

through in order to calculate the par swap rate. First we roll out a payment schedule

and compute the coverages, then we construct a zero and discount curve to project future

payments and then we can compute par-swap rate.

Coverage

The coverage is the time between payments for the two legs. In this example we have
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annual payments for the fixed leg and semi-annual payments for the floating leg. We

construct a table that shows the payment dates and the coverage between the dates. If

the payment date is not on a business day, we use our day count rule which is Modified

Following.

Payment dates
Coverage

Fixed leg Floating leg

03-06-20 0.5

03-12-20 1 0.5

03-06-21 0.5

03-12-21 1 0.5

03-06-22 0.5

05-12-22 1.00556 0.50556

Table 2.5: Date schedule and coverages for the two legs, start date 03-12-18

Curve calibration

We will use the zero and discount curves calibrated in section 2.3. From the zero curve we

compute zero rates, and from the zero rates we compute for forward rates that constitute

the forward xIBOR payments. From the discount curve we compute ZCB prices that we

use to discount the future xIBOR payments.

Payment dates Zero rates Forward rate ZCB price

03-06-20 -0.2020% -0,1308% 1,0047

03-12-20 -0.1530% -0.0064% 1.0055

03-06-21 -0.0885% 0.1701% 1.0056

03-12-21 -0.0163% 0.3456% 1.0050

03-06-22 0.0549% 0.4829% 1.0032

05-12-22 0.1283% 0.6375% 1.0005

Table 2.6: Zero rates, ZCB prices and forward rates for the floating leg of the IRS (Source: own
calculations on data from Bloomberg)

We notice in table 2.6 that the ZCB prices are above zero. This is because the discounting

curve is negative in the short term. This results in a positive discount effect. We have

now calculated everything needed to compute the value of the floating leg. We input the

information in equation (2.6) and compute the value as:

PVFloat =
E∑

i=S+1

δFloat
i · F (t, Ti−1, T ) · P (t, Ti) = 0.7549% (2.35)

The value of the fixed leg obviously depends on the strike. The goal here is to find a strike
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that ensures a swap with a value of zero. This strike is exactly the par swap rate. We use

equation (2.9) to compute the par swap rate:

R(t, TS , TE) =
PVFloat∑E

i=S+1 δ
Fixed · P (t, Ti)

= 0.25026% (2.36)

We now have the par swap rate, which we will use as the strike for the fixed leg. The

present value of the fixed leg is a calculation similar to the floating leg, except that we

use the fixed rate instead of the forward rate. We set K = R(t, TS , TE) = 0.25026% and

calculate the present value of the fixed leg:

PVFixed =
E∑

i=S+1

δFixed
i ·K · P (t, Ti) = 0.7549% (2.37)

The two legs have the same present value, meaning that the contract has a present value

of zero and is fair.

Pricing the swaption

Now that we have the fair price of the IRS, we move on to pricing the swaption i.e. the

option to purchase the underlying IRS 1 year from the start date. We will use equation

(2.32) to price our swaption. The equation uses a lot of the same inputs and also an

implied volatility. The implied volatility for our swaption comes from the Bloomberg data

base for a 1Y3Y EUR swaption on December 3rd 2018 and has a value of 0.3435%. The

present value of the swaption ATM is

PVSwaption
t = 0.4113% (2.38)

Note that even though we have priced a payer swaption, the price of a receiver swaption

ATM is the same. The interpretation of the swaption price is that it costs us 0.41% of our

notional to have the option to buy the underlying swap. As an alternative we could buy

a forward starting swap, but then we would be forced to enter this swap one year from now.

We have now covered to fundamentals of pricing linear fixed income products and non-

linear products e.g. options. We now move onto the volatility smile.
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3 Volatility smile

The classic pricing models Black and the Normal model assume constant implied volatil-

ity, but empirical market data on implied volatility tells a different story – that implied

volatility is not constant and instead resembles the shape of a smile as a function of mon-

eyness e.g. in or out of the money (ITM/OTM). Implied volatility depends on different

strikes and often has the shape seen in figure 3.1. In the following section we will cover

the reasons for the existence of the smile and why the smile is important to include when

pricing financial products.

Figure 3.1: 6M Euribor swaption quoted in Normal volatility with different expiries and maturities,
28-01-2019, own creation (Data source: Bloomberg)

3.1 Reasons for the existence of the volatility smile

There are two main reasons for the existence of the volatility smile which we will cover in

this section. It is important to understand the background for the smile before we move

on to a pricing model, that takes the volatility smile into account. The two reasons are

the probability distribution of the underlying asset and the existence of buying pressure

for away from the money options (Hagan et al., 2002).

Probability distribution

When using a pricing model, whether it is the Normal model or the Black model, we

assume that the underlying asset follows a specific probability distribution. This distri-

bution is used to describe the probability of the underlying asset rising or falling. For the

Normal model we use the standard normal distribution and for the Black model, we use

the lognormal distribution. However, the empirical probability distribution does not nec-

essarily look like the model standards. Figure 3.2 shows the standard normal distribution
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and an example of what an empirical distribution might look like. One of the problems

lie within the tails of the distributions. If the underlying asset of an option is priced with

the assumption that it follows the normal distribution but actually follows the empirical

distribution of figure 3.2, then the probability of moving OTM is higher than anticipated

and the pricing of the option will be incorrect.

Even though we suspect the theoretical probability distributions are not perfect repre-

sentations of the reality, we still use them for two main reasons. Using these probability

distributions results in nice closed-form solutions and are easy to work with, especially

when computing risk measures like the Greeks and these models are already the market

standard for pricing options. The solution is instead to model the volatility smile to correct

the pricing of assets with a non-standard probability distribution.

Figure 3.2: Example of probability distributions

Buying pressure

Options are often used as an insurance against ”bad states” in the market. This creates a

buying pressure on OTM options which causes the price to increase due to classic supply

and demand (Bollen and Whaley, 2004). An example is pension funds that guarantee

their clients a certain pay-off or rate on their pensions. The pension funds then buy OTM

receiver swaptions to ensure that they are able to fulfil their contract with the clients

even in case of large drops in the interest rate market. This demand for OTM swaptions

drives the prices up and causes the volatility smile to often be higher for OTM swaptions

compared to ATM options.

There is also a buying pressure on ITM options with rates being very low in the current

market. Prices on options are a product of the expectations in the market and with rates

being very low in the current market, rate hikes are expected. Companies with loans
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protect themselves against rate hikes by buying ITM payer swaptions, contributing to the

right-hand-side of the smile in figure 3.1.

3.2 Importance of the volatility smile

We have now discussed the reasons for why the volatility smile exists and therefore it is

time to cover the importance of the volatility smile and the difference it makes in risk

management and pricing two types of illiquid options.

Risk Management

When working with options and investments, we often seek to hedge positions in order to

manage risk. The process is basically changing a parameter in the pricing model and see

how it affects the price of the product. This is a stress-testing of the parameters to see

where most of the risk lies and what we need to do in order to minimise the risk of the

investment. If an investor uses the classic Greeks to manage risk, he needs to use a model

that can handle the volatility smile or he might risk hedging his position incorrectly. We

will cover this topic thoroughly in section 7.

Pricing illiquid options

The importance of the volatility smile for illiquid options can be split into two groups:

exotic options and illiquid OTM/ITM options.

Within exotic options, we could for example look at a barrier option. This type of contract

has more than one strike and therefore raises the question of which implied volatility to

use when pricing the option. It would be incorrect to use the ATM volatility after the

barrier is hit, so we need an away from ATM volatility to calculate the correct price of

the exotic option. Note that this type of option will not be covered in this thesis.

The other group is illiquid OTM/ITM options, where we cannot observe the market price

and therefore we need an estimate of the implied volatility. Since we know that volatility

is not constant and we need to estimate the price of the illiquid options, we look for the

model that will give us the best possible estimate for the implied volatility.

We have discussed the underlying reasons for the existence of the volatility smile; buying

pressure and non-standard probability distributions. We will now move on to our main

model to model the implied volatility smile: the SABR-model.
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4 The SABR-model

To manage the volatility smile, Hagan et. al. published a paper in 2002 introducing

the Stochastic Alpha Beta Rho Model. The SABR-model provides a closed-form algebraic

formula for the implied volatility depending on the strikeK and the forward price f (Hagan

et al., 2002). The SABR-model is the industry standard for modelling implied volatility

for interest rate options and exhibits high flexibility due to its number of parameters

that together shape the curvature and level of the smile (Balland and Tran, 2013). In

this section we will cover the classic SABR-model, the parameters of the model and two

expansions to deal with negative interest rates. We will analyse and discuss the different

versions of the SABR-model in order to choose one to continue with when moving into

further analysis and risk management.

4.1 The classic SABR-model

The SABR-model is a two factor model that describes the stochastic movements of both

the forward rate f and the volatility α̂. The processes are described as

dF̂t = α̂tF̂
β
t dW 1

t , F̂ (0) = f (4.1)

dα̂t = vα̂t dW
2
t , α̂(0) = α (4.2)

where W 1
t and W 2

t are Wiener-processes. The movement of the forward rate F̂t depends

on the volatility α̂ and the current forward rate with an exponent of β, which is between 0

and 1. The movement of the volatility α̂ depends on the current level of volatility and the

parameter ν, which is the ”volatility of the volatility”. We will discuss these parameters

in section 4.2 along with ρ which is the correlation between the two Wiener-processes:

dW 1
t dW

2
t = ρdt (4.3)

The SABR-model can accurately fit the implied volatility for any option that has a single

exercise date tex meaning that it is very effective in pricing swaptions and caplets/floorlets.

There is in extension of the SABR-model which can fit the volatility surface of European

options with multiple exercise dates, called the dynamic SABR-model. Since we wish to

price swaptions, we will stick to the classic SABR-model in this thesis. The SABR-model

calculates an implied volatility for a given strike and forward rate. We can then use the

implied volatility to correctly price options. The core SABR-model uses Black volatility,

but it can actually also provide us with Normal volatility.
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SABR-model with Black volatility

Equation 4.4 provides us with Black volatility, which we can use as input for implied

volatility in the Black-formula to correctly price an option:

σB(K, f) =
α

(fK)(1−β)/2
(

1 + (1−β)2

24 log2(f/K) + (1−β)4

1920 log4(f/K) + · · ·
) · ( z

x(z)

)

·
{

1 +

[
(1− β)2

24

α2

(fK)1−β +
1

4

ρβvα

(fK)(1−β)/2
+

2− 3ρ2

24
v2

]
· tex + · · ·

}
(4.4)

where

z =
v

α
(fK)(1−β)/2 log(f/K)

x(z) = log

{√
1− 2ρz + z2 + z − ρ

1− ρ

}

When we have the case of ATM options, meaning that the option is struck at K = f , then

the SABR-formula reduces to

σATM = σB(f, f) =
α

f1−β

{
1 +

[
(1− β)2

24

α2

f2−2β
+

1

4

ρβαv

f (1−β)
+

2− 3ρ2

24
v2

]
· tex + · · ·

}
(4.5)

The omitted terms ”+ · · · ” are a part of the approximation that is the SABR-model, but

are so small that they do not make a significant difference and thus we will not be imple-

menting this expansion.

SABR-model with Normal volatility

The SABR-model providing us with Normal volatility is referred to as the stochastic β

model in (Hagan et al., 2002). The processes are the same as for the SABR-model with

Black volatility, but the formula providing the Normal volatility is different and expressed

here:

σN =
α(1− β)(f −K)

f1−β −K1−β ·
(

z

x(z)

)
·

{
1 +

[
−β(2− β)α2

24
√
fK

2−2β
+

ρανβ

4
√
fK

1−β +
2− 3ρ2

24
ν2

]
tex + · · ·

}
(4.6)
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where

z =
ν

α

f −K√
fK

x(z) = log

(√
1− 2ρz + z2 − ρ+ z

1− ρ

)

The classic SABR formula using Normal volatility in equation (4.6) will constitute the

starting point when we derive the Normal SABR-model in section 4.5.

4.2 Exploring the parameters

This section covers how the different parameters in the SABR-model affect the level, slope,

and curvature of the volatility smile. The start value of each parameter is seen below and

then changed both up and down in each testing of the parameter. The values are selected

with inspiration from (Linderstøm, 2013).

f = 3% α = 0.03 β = 0.6 ρ = −0.3 v = 0.3

f In figure 4.1 three volatility smiles have been plotted with different levels of ATM.

From the implied volatility of the ATM level, the backbone can be computed. The

backbone is the movement of the ATM volatility when the underlying forward rates

moves, where the skew and smile are the movements for a fixed strike K when the

underlying forward rates moves. Therefore, the backbone describes the changes

in volatility when forward rates are either high or low, where the skew and smile

describe how much the volatility changes when a particular option moves in and out

of the money.

Figure 4.1: Shifted f and visualisation of the backbone effect with a β = 0.6 (own creation)
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The backbone is almost entirely determined by the exponent β. As seen, when

comparing figure 4.1 and figure 4.2, the greater the β, the flatter the backbone.

We can therefore use the β exponent to analyse market properties. A low β would

mean that the market exhibits high volatilities for low interest rates, while a high β

indicates that the level of the underlying assets can be neglected.

Figure 4.2: Shifted f and visualisation of the backbone effect with β = 1 (own creation)

α This parameter is the initial volatility in the model and is depicted in figure 4.3.

The effect of this parameter is as can be expected – higher initial volatility results

in higher implied volatility. The parameter primarily affects the level of the curve

and secondarily the slope, meaning that the higher α, the greater the slope and the

steeper the curvature of the graph. All three graphs have their minimum close to

the ATM strike of 3%.
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Figure 4.3: Effect on implied volatility for different values of α (own creation)

β From figure 4.4 we can see that β has the greatest impact on the level of the smile

and a secondary effect on the curvature. From the figure we can see that the higher

the β, the lower the level of the smile, and the higher the beta, the greater the

curvature.

The effect of β is very similarity to the effect of ρ to the shape of the smile. This is

why β is often fixed when estimating the parameters of the SABR model. This will

be covered in depth in section 4.3.

Figure 4.4: Effect on implied volatility for different values of β (own creation)

ν ν is the ”volatility of the volatility” and affects the curvature of the smile. For a

higher value of ν, the smile becomes more pronounced and for a lower value it has
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a flatter structure. There is also an effect in the steepness of the curve, so a higher

value for ν causes a steeper curve.

Figure 4.5: Effect on implied volatility for different values of ν (own creation)

ρ We know from equation (4.3) that ρ is the correlation between the movements of

the forward rate and the volatility, meaning that we have ρ ∈ [−1; 1]. The starting

point for ρ is a negative value of -0.3. We see the effect of a shifted ρ in figure 4.6

and notice that the smiles move around the ATM strike of 3%.

An interesting property of ρ, that is visible when shifting the parameter both in a

positive and a negative direction, is that the operational sign dictates the movements

of the volatility when bumping the underlying forwards rates. When the correlation

is negative, the volatility decreases with an increase of the underlying forward rates,

and vice versa. These movements relates to the intuition from equation (4.3), that

describes the relationship between the forward rates and the volatility.
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Figure 4.6: Effect on implied volatility for different values of ρ (own creation)

We have now seen how the different parameters in the SABR-model affect the shape and

level of the smile. We will now move on to estimating the parameters.

4.3 Estimating SABR Parameters

There are several suggested methods of fitting the SABR-model. The different methods

differentiate themselves on how to estimate or select β and α. β can either be fixed to

a best guess or fitted along with the other parameters. α can either be estimated using

equation (4.8) or by fitting it along with the other parameters.

All parameters α, β, ρ, ν can be estimated by solving a least square minimisation problem.

To apply the minimisation problem we need a calibrated swap curve, implied volatility

quotes σ̂i and corresponding strikes Ki. Mathematically, we define the least square min-

imisation problem as follows (Linderstøm, 2013):

min
Ω

=
n∑
i=1

(σ̂i−σN (Ki, f, α, β, ρ, ν))2

0 ≤ β ≤ 1, −1 ≤ρ ≤ 1, 0 ≤ ν, 0 ≤ α

(4.7)

As an example, we will test the different fitting methods on data from the 03-12-2018 on

a 10Y10Y Euribor 6M swaption. We have calibrated a zero and discounting curve in the

same fashion as in the example in section 2.3.2. For the standard SABR we need implied

Black volatility quotes and their corresponding strike (See table 4.1 below).
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Bps away from ATM 400 200 100 50 25 0 -25 -50 -100 -200

Strike in procent 7,5% 5,5% 4,5% 4,0% 3,7% 3,5% 3,2% 3,0% 2,5% 1,5%

Implied Black Volatility 15,6% 16,2% 16,8% 17,3% 17,6% 17,9% 18,4% 18,8% 20,0% 24,1%

Table 4.1: Shifted market quotes in implied Black volatility with different strike levels for a 10Y10Y
Euribor 6M swaption on 03-12-2018 (Source: Bloomberg and own calculations)

We will now move on to testing the different methods of fitting the SABR parameters to

match the implied volatility market quotes.

4.3.1 Influence of β

As stated when examining the properties of β, the effect of β to the volatility smile is

very similar to the parameter ρ. It is therefore not crucial that the estimate of β is spot

on when determining the shape of the smile. To demonstrate this, we have fitted the

SABR parameters while fixing β to β = {0, 0.5, 1} and then estimating the remaining

three parameters by solving the least square minimisation problem. The results can be

seen in the table 4.2 below.

β 0.50 0.00 1.00

α 0.03 0.01 0.88

ν 0.16 0.15 1.06

ρ -0.11 0.57 -0.56

Table 4.2: Parameters for the SABR-model for β = {0, 0.5, 1}

In figure 4.7 we see the volatility smiles calculated from the parameters in table 4.2. Note

that the smile stays almost the same, even though the parameters change. All three cases

of β and the computed parameters fit the market data quite well. From the figure it

appears that the choice of β does not have a big impact on the result close to ATM and

deep OTM. If we look to deep ITM, we see that β has a slightly larger effect. However,

pricing deep in or out of the money is not something we concern ourselves with in the

short term, since the par swap rate then should decrease by 3% which is highly unlikely.

If we were to look long term, we would recalibrate to get a more precise estimation. This

all points to the possibility of fixing β in advance and not estimating it along with the

other parameters, which we believe to be a smart move as an estimation of β with the

other parameters could cause a risk of overfitting the smile. We will return to overfitting

later in section 4.3.3.
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Figure 4.7: Smile fitting for different values of β. The other parameters can be seen in table 4.2,
own creation (Data source: Bloomberg)

4.3.2 Two methods of estimating α

The volatility parameter α can be derived in two ways: by solving a minimisation problem

and by inverting the ATM SABR-formula in equation (4.5). The first method is our clas-

sic minimisation problem, where we estimate α with equation (4.3). The second method

is proposed in (Hagan et al., 2002), where the ATM SABR-formula is inverted numerically.

Computing α with minimisation

We use the minimisation problem from (4.3), where we set β = 0.5 and minimise the

squared error between the SABR volatilities and the market volatilities with regards to

α, ν and ρ. The estimation is performed for the base example, a 10Y10Y EUR swaption.

The results and a comparison to the second method can be seen in table 4.3 and figure 4.8.

Solving for α

We use the ATM SABR-formula from equation (4.5) and use algebra to invert the equation

and solve so that all variables on one side and are equal to zero.

σATM =
α

f1−β

{
1 +

[
(1− β)2

24

α2

f2−2β
+
ρβνα

4f1−β +
2− 3ρ2

24
ν2

]
· tex

}
(4.8)

⇔ 0 = A · α3 +B · α2 + C · α− σATMf
1−β (4.9)
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where

A =

[
(1− β)2T

24f2−2β

]
, B =

[
ρβνT

4f1−β

]
and C =

[
1 +

2− 3ν2

24
ν2 · tex

]
(4.10)

To solve this equation for α we need to find the root of the polynomial. There is a

possibility of three roots, but for realistic parameter values we will typically only have one

real root. If we get more than one, we will choose the smallest positive root (West, 2005).

In practice the steps to take are as follows:

1. Choose initial values for β, ν and ρ

2. Solve equation (4.9) for α

3. Use α in the minimisation problem and minimise with regards to ν and ρ

4. Repeat step 2 and 3 until the sum of squared errors is at an acceptable level

The method is in steps, where we repeat some steps until the solution is acceptable. In

table 4.3, we see some different values for the parameters and the squared error. We

selected the start values to be the same as in the example from section 4.2 and β = 0.5.

Then we solved equation (4.9) to get the α for the first estimation, which was used to

estimate ρ and ν in the SABR set-up. The squared error is shown in the last column and

improves every time the steps are repeated. We then used the new ρ and ν to estimate

a new α and repeated these steps until the squared error was close to the minimisation

solution. The results for the solving can be seen in the appendix in table 10.1.

α ρ ν Squared error

Start values 0.03 -0.3 0.3

First estimation 0.06351 -0.6490 1.0965 0.0482

Final estimation 0.060123 -0.6376 1.0888 0.0469

Estimation by

minimisation
0.0578 -0.6285 1.0836 0.0466

Table 4.3: Parameter values from estimating α for a 10Y10Y EUR swaption using minimisation
and solving approach (own calculations)

The parameters in table 4.3 are depicted by the volatility smiles in figure 4.8. We see

the improvement in the squared error deep ITM, but around ATM, the graphs are very

similar. The estimation for α by minimisation gives the smallest squared error and is the

simpler approach. Looking at the graph, the minimisation fit of α is also the one closest

to the market data. Since there is not a big difference between the squared errors, we will

use the simpler minimisation approach as estimation method for α.
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Figure 4.8: Volatility smiles from estimating α for a 10Y10Y EUR swaption using minimisation
and solving approach (own calculations)

4.3.3 Estimation choice

We have gone through some choices to consider when estimating some of the parameters in

the SABR-model. We will estimate α along with ν and ρ using the minimisation problem

since it is a simpler approach and gives us a lower squared error than estimating α using

the equation approach. We have looked at β and seen that it seems to be fine to select

β in advance. However, we will try to fit a smile while estimating β alongside the other

parameters.

This is done with the minimisation problem but now also with regards to β. The result

of this fitting is visible in figure 4.9, where we see a graph that fits the market data very

well. The squared error for estimation with free β is very low at 0.0081, where the squared

error for the estimation with β = 0.5 is 0.0466. While it is tempting to let β be free and

estimate it alongside the other parameters, it poses a risk of too much market noise in the

estimation. The squared error indicates that the estimation fits this set of market data

particularly well, meaning that it might be overfitting and thus have a problem being used

on any other data set. If we use the overfitted model to price the same products a few

days later, then we risk pricing them wrong because the market noise might be different.

We need a more general estimation without modelling unnecessary market noise (Hagan

et al., 2002), so we will proceed with setting β = 0.5 and estimate α, ν and ρ with the

minimisation problem from equation (4.3).
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Figure 4.9: Estimation of the SABR-model, 10Y10Y EUR swaption

Showing the risk of overfitting β could be done with more frequently updated data, like

daily or interdaily data, where we have weekly updates in our dataset. However, it is

beyond the scope of this thesis to investigate this branch further, so we will put this

subject to rest with the argument of fitting market noise made by (Hagan et al., 2002).

Later in the thesis, we find that we will proceed to work with the Normal SABR-model,

where β = 0, thus eliminating the subject of β estimation.

4.4 Shifted SABR-model

When SABR was originally developed, rates were very high and it was hard to imagine

them ever becoming close to zero or even negative. Within the past years rates have

dropped a great deal and even become negative, which causes problems for the classic

SABR-model. We do not expect rates to drop forever, since very negative rates would

cause money to be withdrawn from the banking system, creating a pressure on deposits.

We expect there to be some lower barrier on negative rates, making the Shifted SABR-

model one of the solutions to the problem of negative rates (Hagan et al., 2014).

With the shifted SABR-model, we add a positive constant s to the process describing the

forward rate, so that the lower boundary for the forward rate F is −s. The processes in

the shifted SABR-model are described as

dF̂ = α̂(F̂ + s)β dW1, F̂ (0) = f (4.11)

dα̂ = vα̂ dW2, α̂(0) = α (4.12)
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where the two processes are correlated by

dW1dW2 = ρdt (4.13)

We also add s to the strike K and the calibrated zero curve, but the rest of the SABR-

model remains the same. The constant s needs to be selected in advance, which is one of

the main drawbacks, because we do not know how negative the rates might be and this

could result in a need for adjustment in s later on. This model will be tested later on

alongside classic the SABR-model and the Normal SABR-model.

4.5 Normal SABR-model

Another extension of the SABR-model is the Normal SABR-model, which is in connection

with the Normal model from section 2.4.2. This version can model negative rates and is

derived by letting β → 0 (Hagan et al., 2002). First we do this for the processes modelling

the movements of the forward rate and the volatility, meaning that the process of the

forward rate no longer depends on the current forward rate:

dF̂ = α̂ dW1, F̂ (0) = f (4.14)

dα̂ = vα̂ dW2, α̂(0) = α (4.15)

where the two processes are correlated by

dW1dW2 = ρdt (4.16)

Now we recall equation (4.6) to find the formula for calculating Normal volatility in the

SABR-model:

σN =
α(1− β)(f −K)

f1−β −K1−β ·
(

z

x(z)

)
·

{
1 +

[
−β(2− β)α2

24
√
fK

2−2β
+

ρανβ

4
√
fK

1−β +
2− 3ρ2

24
ν2

]
tex + · · ·

}
(4.17)

where

z =
ν

α

f −K
√
fK

β
and x(z) = log

(√
1− 2ρz + z2 − ρ+ z

1− ρ

)

Now we let β → 0 to obtain the Normal SABR-model. We start by looking at the first

factor in equation (4.17) and see that for β → 0, the numerator goes towards α(f −K)

while the denominator goes towards f − K and thus only α remains in the first factor
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as the rest is equal to 1. The second factor remains almost the same as β appears in

the expression for z where the denominator goes towards 1 when β → 0. Looking at

the brackets, we see that the first and second term go towards zero, leaving the third

term unchanged. This results in the Normal SABR-model, capable of modelling negative

interest rates:

σN = α
z

x(z)
·
{

1 +
2− 3ρ2

24
· ν2 · tex

}
(4.18)

where

z =
ν

α
(f −K) and x(z) = log

(√
1− 2ρz + z2 − ρ+ z

1− ρ

)

We now have three versions of the SABR-model; the classic SABR-model, the Shifted

SABR-model and the Normal SABR-model. These three models will be compared in

section 6 to identify their strengths and weaknesses.
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5 Data

The purpose of this section is to present and discuss the data sets used in this thesis. We

have two types of data: swap data and swaption data. All data sets have been collected

from the Bloomberg Terminal. As one of the most used data bases, we expect Bloomberg

to give an accurate picture of the traded products in the market (Duyvesteyn and de Zwart,

2015).

5.1 Swap data

We have two sets of swap data. The first is a semi-annual interest rate swap written 6M

Euribor data set and the second is an Overnight Index Swaps data set (OIS). Both swap

rates are quoted in par-swap rates for a wide range of different maturities. The data sets

will be referred to as EUR swap data and OIS data.

5.1.1 Euribor Swap

Our first swap data set consists of daily closing quotes for EUR swaps. The quotes are

par-swap rates of a fixed-for-floating vanilla interest rate swap with the 6M Euribor rate

as the underlying reference rate. We have collected swap rates from January 1st 2010 to

January 1st 2019 with maturities of 1-10Y, 15Y, 20Y and 30Y. The EUR swaps are used to

construct the zero curve and hence to construct expected future xIBOR payments, which

is used to price swaptions.

EUSA1 EUSA2 EUSA3 EUSA4 EUSA5

03-12-2018 -0.24% -0.15% -0.01% 0.13% 0.27%

04-12-2018 -0.24% -0.16% -0.03% 0.11% 0.25%

05-12-2018 -0.23% -0.14% -0.01% 0.13% 0.27%

06-12-2018 -0.23% -0.14% -0.02% 0.12% 0.26%

07-12-2018 -0.23% -0.14% -0.01% 0.12% 0.26%

Table 5.1: One week of 6M Euribor swaps quotes, including Bloomberg tickers (Source: Bloomberg)

When looking at table 5.1 we can see that the par swap rates increase with the maturity of

the swap, which tells us that the zero curve should be upward sloping. This corresponds

well with the constructed zero curve in section 2.3.

To show the development of the EUR swap, we have plotted the time series in figure 5.1

below.
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Figure 5.1: Time series of a 2Y fixed-for-floating interest rate swap written on 6M Euribor (Data
source: Bloomberg)

In figure 5.1 we see the par swap rates for a 2Y fixed-for-floating plain vanilla Euribor 6M

swap. We see that rates started to move towards zero around 2014 and actually became

negative in late 2014 and the beginning of 2015, which did not seem possible until that

very time. Negative rates caused a lot of problems for the existing pricing models and

especially the classic SABR-model, which was designed for an environment of 5% base

rates and the lognormal distribution, meaning that negative rates were not even an option

(Balland and Tran, 2013). This called for action to adapt the pricing models to this new

low and negative interest rate environment, which is the main area this thesis seeks to

discuss.

In addition, it is interesting for us to look at the volatility of the EUR swap. We also seek

to accurately model realised volatilities in this thesis. Even though the realised volatility of

the swap is not the same as the implied volatility of a swaption corresponding, there is still

somewhat of a link, since the expectancy in implied volatility stems from the previously

realised volatility and the future realised volatility has some of its base in implied volatility.

It is important to note that the two are not the same, but are connected.
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Figure 5.2: Daily realised volatility for a 2Y fixed-for-floating interest rate swap written on 6M
Euribor (Data source: Bloomberg)

From figure 5.2 we can see that the realised volatility decreases in recent years. This

should be visible when comparing realised volatilities of swaptions in 2010 and 2018. This

is an effect of the actions the European Central Bank (ECB) has taken since the financial

crisis in 2008 which will be described in section 5.3. The expectations to the volatility are

both a product of previous realised volatility but also of the statements made by ECB.

The target rate has both been decreased and kept steady by ECB, which results in the

decreasing movements in figure 5.2.

5.1.2 Overnight Index Swap

The second swap data set consists of Overnight Index Swaps (OIS). OIS is, as the name

dictates, a swap that settles over night. The fact that the swap settles over night is very

important, since this property reduces the credit risk of the swap. This is why we use OIS

when constructing the discounting curve.

The OIS from our dataset is written on 6M Euribor with the Bloomberg ticker EUSWE.

We have collected EUR swaps from January 1st 2010 to January 1st 2019 for swaps with

maturities of 1-10Y, 15Y, 20Y and 30Y.

EUSWE1 EUSWE2 EUSWE3 EUSWE4 EUSWE5

03-12-2018 -0.352% -0.271% -0.165% -0.011% 0.094%

04-12-2018 -0.348% -0.278% -0.161% -0.032% 0.120%

05-12-2018 -0.348% -0.265% -0.144% -0.011% 0.112%

06-12-2018 -0.348% -0.269% -0.149% -0.018% 0.116%

07-12-2018 -0.340% -0.264% -0.143% -0.014% 0.117%

Table 5.2: One week of 6M Euribor OIS quotes for 1Y-5Y, including Bloomberg tickers (Source:
Bloomberg)
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When comparing table 5.1 with table 5.2 above, one can indeed see that the OIS rates are

lower than the EUR swap rates. This fits perfectly with the minimisation of credit risk in

the OIS rates.

5.2 Swaption data

We have collected a series of daily mid-quote ATM swaptions quoted in both annual im-

plied Normal and Black volatility. We have collected swaption quotes from January 1st

2010 to January 1st 2019 for swaptions with a wide range of combinations of expiries and

maturities of 1-10Y, 15Y, 20Y and 30Y. This market data will be used when exploring

the ATM volatility of swaptions.

In addition to ATM implied volatility quotes, we have also collected for different strikes

both ITM and OTM. These quotes will be used to fit and analyse the volatility smile. The

differences and levels of OTM/ITM implied Black and Normal volatilities have already

been covered in section 2.4.4, we will therefore switch our focus to the ATM volatilities and

what information these quotes can provide. Note that our data set containing OTM/ITM

away from the money volatilities is weekly data.

EUNE11 EUNE15 EUNE110 EUNE55 EUNE510

03-12-2018 21.81 41.07 43.115 61.89 59.99

04-12-2018 21.91 40.6 42.895 61.39 59.76

05-12-2018 21.36 40.88 42.9 61.39 59.48

06-12-2018 21.39 41.13 43.115 61.39 59.64

07-12-2018 21.28 40.97 43.03 61.39 59.44

Table 5.3: ATM implied Normal volatilities for 1 and 5 years expiries with 1, 5 and 10 year
maturities. Source: Bloomberg

From table 5.2 we can see that volatility increases both with expiries and maturities. As

all quotes are annualised, we can interpret the rising of volatilities to be because the mar-

ket expects higher volatility in the coming years.

From figure 5.3 we can see that the implied Normal volatility decreases through the years.

This corresponds very well with the realised volatility of the 2Y EUR swap in figure 5.2.

We can therefore see that there is a link between implied and realised volatility.
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Figure 5.3: Time series of 1Y2Y swaption quotes in implied Normal volatilities in bps (Data source:
Bloomberg)

5.3 Macroeconomic perspective

We have now covered the data sets needed to do an empirical analysis of the SABR-model.

The performance of a model is highly dependent on the data and we have therefore ensured

that the data comes from a reliable source. In this section we will examine the underlying

macroeconomic reasons for the historically low interest rate environment. A major driver

for the European interest rate is the European Central Bank (ECB). We will therefore

discuss the impact of the target rate of ECB and the quantitative easing program initiated

by ECB in January 2015 (Andrade, Phillippe, 2016).

Firstly, ECB have continuously reduced their target rate since the financial crisis in 2008.

This was done to accelerate the European economy. By reducing the interest rate, ECB

made it cheaper for both nations and corporations to borrow money.

In addition to lowering the target rate, ECB implemented quantitative easing by initiat-

ing an Asset Purchase Programme. Through the program, ECB bought large amounts of

treasury bills and corporate bonds. This was done to flush the market with cash, and as

a result of this, the interest rate was lowered even further. Interest rates of bonds decline

when there is a high demand, and the quantitative easing programme therefore reduced

the cost of borrowing for both nations and corporations.

The effect of the target rate and the quantitative easing is clearly visible in our swap data.

When looking at the 2Y Euribor 6M swap in figure 5.1, we can see that the par swap rate

has been steadily declining throughout the entire period.

In addition, we can see the macroeconmic decisions when looking at implied volatilities
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of our swaption data. We can see this effect in figure 5.3, that shows declining implied

volatilities of a 1Y2Y swaption. There are two drivers behind the lowered implied volatility,

one is obviously the low target interest rates, but also the signals and announcements from

ECB play a key role for the implied volatility of swaptions. In September 2014 ECB cut

the target rate by 20 basis points, but also stated that the target rate would remain steady

for the foreseeable future. An announcement like this has a great impact on the volatility

of swaptions, and when looking closely at figure 5.3, we can see that the implied volatility

drops significantly after the announcement.

5.4 Historical volatility smiles

In section 3.1 we discussed the underlying reason for the existence of the volatility smile.

In addition to the identified reasons i.e. underlying probability distribution of pricing

models and buying pressure, we can also use the macroeconomic perspective and market

expectations to explain and derive interesting properties of the market. This can be done

by looking at the level and curvature of the volatility smile historically and across expiries

and tenors.

(a) 1Y1Y (b) 1Y10Y

(c) 10Y1Y (d) 10Y10Y

Figure 5.4: Historical volatilities for different maturities and tenors (Data source: Bloomberg)
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The graphs in figure 5.4 above show the volatility smiles from 2011 until today for a 1Y1Y,

1Y10Y, 10Y1Y and 10Y10Y Euribor 6M swaption. We have removed the smiles for the

years, 2012, 2014, 2016, 2017 and 2018 because they were similar to some of the other

smiles, and therefore a disturbing factor when examining the graphs.

The first thing we will look at is the level of the implied Normal volatilities. It is clear

from the four graphs that the level of the implied volatility was higher in 2011 and then

decreasing toward 2019. This development is clearly connected to the monetary policy of

the European Central Bank (ECB) described in section 5.3. Back in 2011, ECB frequently

lowered the interest rates to boost the economy and thus causing an increase in the realised

volatility, while the current monetary policy is to keep the interest rates steady (European

Central Bank, 2019). This statement is also supported by the realised volatility of a 2Y

swap in figure 5.2.

The second interesting pattern we see is that the curvature of the smile seemed straighter

and in an upwards sloping direction back in 2011 compared to 2019. This could be con-

nected to market expectations, which could result in buying pressure. In 2011, most

investors were confident that interest rates would be lowered, and market participants

like pension funds could have applied buying pressure to swaptions with high strikes, and

thus creating an upwards sloping volatility smile. In 2019, where the monetary policy in

Europe is to keep the interest rates stable, the market participants like pension funds and

large corporations might be applying buying pressure on both higher and lower strikes

around ATM, thus creating, to some extent, a more classic volatility smile.

The third point we will make comes from comparing the smiles of swaptions with different

expiries and tenors. In general, longer dated swaptions exhibit flatter smiles as can be

seen in figures 5.4b and 5.4d. This is most likely a consequence of the market participants

simply not knowing what will happen in 10 or 20 years. It is difficult for an investor to

make a qualified guess on where the interest rates and their volatility will be so far in the

future. The pricing of these options will therefore be flatter when the uncertainty of the

market is so high.

Now that we know more about the data sets we will be using and the macroeconomic

factors present, we will begin our empirical analysis of the three versions of the SABR-

model.
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6 Empirical analysis

In this section we will perform an empirical analysis of the three versions of the SABR-

model. We will fit the models under negative interest rates, test parameter stability and do

both an in-sample and out-of-sample test to compare the models. Based on the findings

of the comparison, we will choose a model to use when applying risk management to

swaptions in secition 7.

6.1 Comparing the models for negative interest rates

To test our three models in a negative interest rate environment, we will use the same

calibrated curves as we found in section 2.3, where negative rates are present. Classic and

shifted SABR will be computed in Black volatility and Normal SABR will be computed

in Normal volatility. We will fit the three models using the selected estimation method

from section 4.3.3 i.e. fixing β = 0.5 and computing α, ρ and ν using the minimisation

approach.

6.1.1 Classic SABR-model

We first use our classic SABR-model to model the implied volatility. Even though we know

that this version cannot proper model negative rates, it is important to do it and visualise

the results to understand all aspects of the model. Figure 6.1.1 shows a 10Y10Y payer

swaption modelled with the classic SABR-model and the problems caused by negative

rates as we move deep ITM. As this is a payer swaption, we pay the fixed rate and receive

the floating rate. We then change the strike by different amounts of basis points (from

-300 to +400 basis points) to see how the volatility changes when we move in and out of

the money. ATM is the par swap rate and when we move to higher strikes we are OTM,

as we then would be paying a higher fixed rate than is fair and thus losing money. For the

opposite situation, when the strike becomes lower we move ITM as we would be paying a

lower fixed rate than the fair par swap rate and this would be in our favour, hence ITM.
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Figure 6.1: Classic SABR for 10Y10Y EUR swaption

The volatility smile is very high when we are deep ITM, because the volatility is quoted

in Black volatility and is a relative size. As we move closer to zero, the movements have

a larger impact on the implied volatility as they make up a bigger part of the very low

strike. For higher strikes, the movements have a smaller impact on the implied volatility,

causing the smile to be less expressed.

It is clear to see when the strike becomes negative, since the classic SABR-model cannot

deal with negative rates. The graph for classic SABR dives around -200 bps, because the

par swap rate is 1.99% and we hit negative strikes here.

6.1.2 Shifted SABR-model

The shifted SABR-model is shifted by s = 1.5% in both the strike and par swap rate as the

model from equation (4.13) dictates. The method is identical to the classic SABR except

for the shift in the model. This shift is also done for the calibrated zero curve that we

use to price the fair par swap rate. Note that we do not shift the discount curve because

this would cause a harder discounting and incorrect modelling of the implied volatility.

The shift enables the model to deal with negative rates and it reacts differently than the

original SABR-model, when we move close to -200 basis points. Shifted SABR-model

provides an overall smooth volatility smile that fits the market volatilities nicely. It has

the same curve upwards deep ITM as the original SABR-model, which is due to the same

dynamics in Black volatility as mentioned in the previous section.
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Figure 6.2: Shifted SABR for 10Y10Y EUR swaption

6.1.3 Normal SABR-model

The Normal SABR-model is estimated using the minimisation method for equation (4.18)

and with β = 0. We use the data set containing away from the money Normal swaption

volatilities and use our minimisation approach to compute the parameters for the Normal

SABR-model. Then we compute all the implied volatilities for the different strikes and

obtain graph depicted in figure 6.3.

Figure 6.3: Normal SABR for 10Y10Y EUR swaption

We see in figure 6.3 that the calculated volatilities fit the market volatilities very well and

express a smile curving upwards as we move out of the money. This dynamic fits well with

the theory from section 3.1; a buying pressure on OTM options. With rates being very

low in the current market, rate hikes are expected and thus create the buying pressure

on OTM options. We notice, that it is more expensive to buy ATM options than ITM
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options. This is due to the low expectations for a decrease in rates since they are so low

at the moment that expectations are only for them to stay the same or increase.

In this comparison for the three versions of the SABR-model, we have seen three very

different smiles. The smiles for classic and Shifted SABR are sloping upwards when mov-

ing into the money, which contradicts our theory on OTM buying pressure. The shape

of these smiles is due to the quotation of volatility. We have addressed this issue before,

but there effect of the quotation is even more visible here. The volatilities for the classic

SABR-model, as we move close to a par swap rate of zero, become extremely high; as

the par swap rate becomes smaller, the relative change becomes bigger. The quotation of

relative changes in volatility makes the smile difficult to interpret as one could mistakenly

argue a buying pressure on ITM options, when in fact the buying pressure is on OTM

options.

When we look at the Shifted SABR-model, the curve is still curving upwards in ITM, but

not with volatilities as high as for classic SABR. This is due to the shift and the rates not

being as close to zero as for the classic SABR. The Black volatility is very dependant on

how big the shift is. If an investor chooses to use the Shifted SABR-model, he needs to

agree on a shift with the counterparty of his financial contract and also make sure that

the shift is big enough, so that he does not have to reshift later on.

The smile for the Normal SABR-model is curving upwards OTM as expected from the

theory. We argue it easier to interpret and work with as there is no need to make any

decisions prior to using the model.

For the next tests, we will exclude the Classic SABR-model as it cannot model negative

interest rates. We will continue our work with both the Shifted SABR-model and Normal

SABR-model and test their pricing accuracy in the next section.

6.2 Testing the models

For this section we will first test the stability of the parameters of the two remaining

SABR-models. We do this to test how often one needs to calibrate the SABR-model in

order to price accurately. Secondly, we will test the pricing accuracy of the models both

in a In-Sample Test and in a Out-Of-Sample Test. Since the models are quoted in two

different volatilities, we will test the models by comparing their pricing accuracy in Euro

to see how well they perform.
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6.2.1 Stability of parameters

We will test the stability of the parameters by fitting SABR models per week throughout

2018 and into the first month of 2019. We will continue to use our 10Y10Y EUR swaption

for the tests.

Parameter stability in the Shifted SABR-model

In figure 6.4 below we can see the changes of the parameters in percentage from one week

to the next. We see that the change to α is the lowest with a standard deviation of 0.6%,

ν exhibits a standard deviation of 3.6% and ρ exhibits a standard deviation of 18.2%. The

stability of the parameters in the Shifted SABR-model is thus quite different from the

Normal SABR-model. What we see is that the parameters that influence the smile cur-

vature, ν and ρ, exhibit larger standard deviations in the Shifted SABR-model compared

to the Normal SABR-model. This is a natural consequence of the how Black volatility

is measured in relative terms. When the strikes are close to zero, the relative volatility

increases, and thus the parameters of the shifted SABR models will change to a greater

extend to accommodate for these changes to the curvature of the smile.

Figure 6.4: Change throughout the data period in Shifted SABR parameteres with a β = 0.5 for
a 10Y10Y Euribor swaption (own calculation)

Parameter stability in the Normal SABR-model

In figure 6.5 below we can see the changes of the parameters in percentage from one week

to the next. We can see that the biggest changes is to α and ρ, while ν is fairly stable.

α exhibits a standard deviation of 6.2%, ρ exhibits a standard deviation of 5.9% while ν

exhibits a standard deviation of 1.6% .
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Figure 6.5: Change throughout the data period in Normal SABR parameters with a β = 0.0 for a
10Y10Y Euribor swaption (own calculations)

In (Hagan et al., 2002), Hagan argues that α, the ATM volatility, should be updated fre-

quently in a fast paced market. How frequently depends on the market, but in some cases

several times a day. He also argues that the remaining parameters should be updated at

least once a week. Our analysis builds on weekly data, and from the magnitude of the

changes, it seems reasonable to update every parameter at least every week.

From our analysis we see that we need to update the parameters of the SABR-model at

least once a week. It would have been interesting to extend the analysis if we had daily or

interdaily volatility quotes. We also see that the Shifted SABR-parameters exhibit a higher

standard deviation for the parameters controlling the curvature of the smile, particularly ρ.

The parameter stability can however not stand alone. In section 7.1 we will examine how

much the price changes when the parameters change.

6.2.2 In-Sample pricing accuracy

The second test we cover is an In-Sample test. To test the accuracy of the two models,

we first fit a SABR-model to every Monday in 2018, then we calculate the price of a

10Y10Y swaption using the implied volatility from the SABR-model. Lastly we compare

the computed price with the market price to see how accurately we can price using implied

volatilities from the SABR-model.
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In table 6.1 we see the prices for a 10Y10Y EUR payer swaption with a 100.000 Euro no-

tional calculated with volatilities from the Shifted SABR-model. We compare the market

prices with the model prices and see the difference in Euros below. The model prices and

the market prices fit quite well, especially around ATM. When we move further away from

ATM the difference becomes slightly larger, but overall we have been able to accurately

price swaptions using the Shifted SABR-model.

Shifted SABR-model

Basis points 400 200 100 50 25 ATM -25 -50 -100 -200

Market prices 535.7 1,822.2 3,402.3 4,612.5 5,349.9 6,184.5 7,121.4 8,163.9 10,567.9 16,536.1

Model prices 540.7 1,814.4 3,391.7 4,605.6 5,346.2 6,184.7 7,125.6 8,172.0 10,580.2 16,532.3

Difference 5.0 -7.8 -10.5 -6.9 -3.7 0.1 4.2 8.1 12.3 -3.8

Table 6.1: Prices in Euro for Shifted SABR-model calculated with Black volatilities for a 10Y10Y
EUR swaption with a 100.000 Euro notional on 03/12/2018 (Source: Bloomberg and own calcula-
tions)

In table 6.2 we see the same swaption as above but for the Normal SABR-model and

calculated with Normal volatilities. The differences between the market prices and model

prices are a bit bigger than for the Shifted SABR-model. We see again that the pattern

of inaccuracies being larger as we move away from ATM, but in general the fit is also very

good.

Normal SABR-model

Basis points 400 200 100 50 25 ATM -25 -50 -100 -200

Market prices 535.7 1,822.2 3,402.3 4,612.5 5,349.9 6,184.5 7,121.4 8,163.9 10,567.9 16,536.1

Model prices 529.1 1,841.4 3,420.7 4,621.3 5,351.9 6,179.2 7,109.2 8,146.2 10,547.1 16,548.0

Difference -6.6 19.2 18.4 8.8 2.0 -5.3 -12.2 -17.7 -20.8 11.9

Table 6.2: Prices in Euro for Normal SABR-model calculated with Normal volatilities for a 10Y10Y
EUR swaption with a 100.000 Euro notional on 03/12/2018 (Source: Bloomberg and own calcula-
tions)

We now compute the differences in pricing over a whole year to get a more thorough

in-sample test. The differences between the market prices and model prices have been

summed in absolute values, so that the negative and positive values do not cancel each

other out. In table 6.3 we see the aggregated differences in the market and model prices

for the two models. As earlier in the single-date example, we notice that the Shifted

SABR-model has a lower error than the Normal SABR-model. However, we do not find

this alarming since the difference is quite small for a sum over 53 data points for a 100.000

Euro notional.
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Aggregated differences

Basis points 400 200 100 50 25 ATM -25 -50 -100 -200

Shifted SABR 284.2 449.4 607.2 397.0 211.1 14.9 248.4 465.8 701.1 217.8

Normal SABR 337.1 996.3 964.7 458.7 103.7 278.6 641.4 930.7 1,086.4 619.2

Difference 52.8 546.8 357.5 61.7 -107.5 263.7 393.0 464.8 385.3 401.4

Table 6.3: Aggregated absolute differences between market prices and model prices for a 10Y10Y
EUR swaption with a 100.000 Euro notional for 2018 (Source: Own calculations)

While the In-Sample test provides some measure of the accuracy of the models, we will

also conduct an Out-Of-Sample test to see how well the models perform when we remove

one or more data points.

6.2.3 Out-Of-Sample pricing accuracy

For this test, we look at the accuracy of the pricing with the SABR-models, where we re-

move data points close to ATM and away from ATM. In practice, we conduct two versions

of the test; one where we remove data points far away from ATM and another where we

remove data points close to ATM. This will let us know more about how well the models

do on pricing, when all data points are not available. This test is extremely relevant for

the performance of the models, since the purpose of the models is to price products where

we do not have market prices.

The approach is to remove the data point from the minimisation problem and solve the

model as we have done before. Now we use the SABR-parameters to estimate the volatil-

ity for the data point we have removed. This will give us a new Out-Of-Sample SABR-

volatility to use when pricing the swaption. The approach is the same for both examples

below. We have selected an away from the money point at +400 basis points and a close

to ATM point at -25 basis points. We will compute the differences in the prices, both for

a single date and aggregated over a whole year.

Test for +400 basis points

The results for this example are visible in table 6.4. Here we see the results for both

the Shifted SABR-model and the Normal SABR-model. If we compare the differences in

prices for both Shifted and Normal from market to model, we see that the out-of-sample

point has a higher difference than the in-sample case. The difference is not very big in

the one day example, but aggregates to a more significant number over a whole year. We

see that Shifted SABR fits better away from the money, but worse around ATM. For this

test, we argue that both models work reasonably well.
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Shifted SABR-model

Basis points 400 200 100 50 25 ATM -25 -50 -100 -200

Market prices 535.7 1,822.2 3,402.3 4,612.5 5,349.9 6,184.5 7,121.4 8,163.9 10,567.9 16,536.1

Model prices 558.3 1,828.8 3,397.3 4,606.2 5,344.8 6,181.6 7,121.6 8,167.6 10,577.0 16,534.2

Difference 22.6 6.5 -5.0 -6.3 -5.2 -2.9 0.2 3.7 9.1 -1.8

Aggregated diff. 1,273.6 371.4 288.7 362.0 295.4 163.5 16.2 215.1 518.1 105.7

Normal SABR-model

Basis points 400 200 100 50 25 ATM -25 -50 -100 -200

Market prices 535.7 1,822.2 3,402.3 4,612.5 5,349.9 6,184.5 7,121.4 8,163.9 10,567.9 16,536.1

Model prices 499.2 1,815.8 3,410.8 4,620.8 5,355.7 6,186.3 7,118.5 8,156.4 10,554.8 16,541.2

Difference -36.5 -6.4 8.6 8.3 5.7 1.8 -2.8 -7.5 -13.1 5.1

Aggregated diff. 1,871.2 339.8 447.2 436.6 301.6 97.9 148.6 392.5 684.4 263.7

Table 6.4: Data for Out-Of-Sample test for 10Y10Y EUR swaption +400 bps on 03/12/2018
(Source: Bloomberg and own calculations)

Test for -25 basis points

Now we test closer to ATM to see what effect it has on the precision of the models. The

first thing we notice from the results in table 6.5 is that the aggregated difference is much

lower for this example close to ATM than it was for the previous example far from ATM.

In fact, it would be difficult to spot which data points are the ones being tested as the

results fit very nicely in with the remaining data points. It also seems that the models fit

equally well in proportion to their own data sets.

Shifted SABR-model

Basis points 400 200 100 50 25 ATM -25 -50 -100 -200

Market prices 535.7 1,822.2 3,402.3 4,612.5 5,349.9 6,184.5 7,121.4 8,163.9 10,567.9 16,536.1

Model prices 540.5 1,814.7 3,392.4 4,606.4 5,347.0 6,185.5 7,126.4 8,172.7 10,580.7 16,532.3

Difference 4.8 -7.6 -9.9 -6.1 -2.9 1.0 5.0 8.8 12.8 -3.7

Aggregated diff. 271.9 436.1 570.5 351.8 163.9 59.6 294.2 507.9 731.2 214.5

Normal SABR-model

Basis points 400 200 100 50 25 ATM -25 -50 -100 -200

Market prices 535.7 1822.2 3402.3 4612.5 5349.9 6184.5 7121.4 8163.9 10567.9 16536.1

Model prices 529.4 1840.8 3419.2 4619.4 5349.9 6177.1 7107.1 8144.1 10545.3 16547.3

Difference -6.3 18.6 17.0 6.9 0.0 -7.4 -14.3 -19.8 -22.7 11.2

Aggregated diff. 321.8 963.7 885.0 357.8 13.3 391.2 754.4 1039.7 1175.1 594.0

Table 6.5: Data for Out-Of-Sample test for 10Y10Y EUR swaption -25 bps on 03/12/2018 (Source:
Bloomberg and own calculations)

Looking at the results from these tests, we can now conclude that both models man-

age to compute market data accurately. This is both for in-sample and out-of-sample test.

The Shifted SABR-model has a slightly more accurate fit for the in-sample test with a

lower difference to the market prices, both in the daily example and with aggregated data.
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For out-of-sample, we also get good results especially close to ATM. Even though we get

the highest differences in the example far away from the money, we still argue that both

models can be used to price options where we do not have market data available. Before

choosing a model to do further work with, we will do a final comparison.

6.3 Summing up the models

We have now completed a series of tests for the two versions of the SABR-model and now

the time has come for us to choose which one we will continue to work with. None of the

models are perfect and both show advantages and drawbacks. In this section we will make

the final comparison and discuss which model shows the most promise and thus, which

one we will use for section 7 on Risk Management.

6.3.1 Shifted SABR-model

This version of the SABR-model is simple in its adaptation and manages to model negative

rates quite well. The lognormal probability distribution ensures realistic values because it

removes the possibility of large negative values.

When testing the robustness of the parameters, we found that α and ν were stable, which

is positive, but on the other hand ρ was very unstable and had a significantly higher

standard deviation than any of the other parameters in both models. The Shifted SABR-

model performed very well in the in-sample test as it was able to model prices with high

accuracy. It also did well for the out-of-sample test close to ATM. The worst result was

for the example far away from ATM, where it was easy to spot which data point was taken

out of the sample. However, for a notional of that size, the result is still a success.

As mentioned in section 4.4, one of the drawbacks of the model is the need to select the

shift s in advance since we need to select a shift big enough that the model does not need

reshifting later on. We have tested the size of the shift and it does not make a big impact

on the prices, so one can choose the shift quite freely. The results from a large shift are

visible in the appendix in table 10.2. This is, however, something that needs to be ad-

dressed when entering into a contract using the Shifted SABR-model. The counterparties

need to agree on the shift, as it has a big impact on the volatility when quoting in Black

volatility as is custom in the Shifted SABR-model.

The relative quotation makes Black volatility difficult to interpret, because we need to

read results with regards to the level of the volatility. When we work with interest rates
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close to zero, a small change in the rates has a much larger effect on volatility than if we

were working with high levels of interest rates.

6.3.2 Normal SABR-model

The Normal SABR-model models both negative interest rates and rates close to zero with-

out difficulty. It models after the normal distribution, which is drawback of the model

because this makes it possible for rates to become infinitely negative.

The parameters of the Normal SABR-model were in general stable, where especially ν

performed well. When we looked at the in-sample test, the model did well and managed

to get close to the market data, which is very positive. It did not perform as well as

the Shifted SABR-model for the aggregated differences, but considering the scale of the

numbers, we would also argue that this test is a success. For the out-of-sample test the

Normal SABR-model performed better for the example close to ATM than it did for the

example far away from ATM – i.e. the same pattern as the Shifted SABR-model.

We see the quotation of Normal volatility being an advantage, since this type is easier to

interpret as it does not change depending on the size of the volatility. We can thus in-

terpret market expectations directly from the volatility smile quoted in Normal volatility.

The curvature of the smile with Normal volatility also lines up nicely with the theory on

the topic, being another advantage of using this type of volatility.

To sum up, both versions of the SABR-model manage to model negative interest rates

with high precision but neither of them are perfect. Since we find it more convenient to

not having to choose a shift and logical to interpret results quoted in Normal volatility,

we will continue with the Normal SABR-model for section 7 on Risk Management.
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7 Risk Management

This section will cover the risk management of swaptions. We will first show the sensitivity

of the SABR parameters. We will then cover the classic Greek risk measures and show

how to use the risk measures to reduce the risk of a long position in a swaption. We will

do this by buying a swaption in the beginning of 2018, and then using a discrete delta

hedge to show how to remove the delta risk of the swaption. We will see that using the

SABR-model when computing risk measures is critical to identifying the proper risks of a

position and in extension, the efficiency of a hedge.

7.1 Sensitivity of SABR parameters

This section is dedicated to examine the risk of an error when estimating the SABR pa-

rameters. We will test how much the price of a swaption changes when we change each of

the SABR parameters individually. We have tested the sensitivity for a fixed expiry while

varying the tenor and strike of the swaption.

To compute the sensitivity, we first calibrated the Normal SABR parameters, using the

approach in section 4.3. Then we compute the swaption price using the SABR parameters

to compute the implied Normal volatility. Next step is to increase the SABR parameter

with 1% and recalculate the price. Mathematically we define the sensitivity, with respect

to ν, by the equation below

∆ν = PSwaption1 (F,K, t, T, σ(α, ν · δ, ρ))− PSwaption2 (F,K, t, T, σ(α, ν, ρ) (7.1)

Since α and the Greek vega describe the same movements, we will not explore α further in

this section as its sensitivity will be covered in section 7.2. Instead we will analyse ν and ρ.

Sensitivity for ν

The first parameter we have tested the sensitivity for is ν, where we have increased the

parameter in the Normal SABR-model, while maintaining α and ρ at their computed

levels. We used the bumped ν to calculate new prices for the swaption and calculated the

differences in the prices for the bumped and unbumped contract. The results are visible

in figure 7.1.
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Figure 7.1: Change in the price of 10YXY swaption by bumping ν in the underlying Normal
SABR-model by one percent

Here we see that ν is strictly positive, meaning that if we estimate ν higher than it should

be, the price of the swaption will be higher. This fits well with our exploration of the

parameters in section 4.2 where we saw that a higher ν caused an increase in the volatility.

Since α and ν have some of the same effects, we cannot discuss ν without comparing it to

α. In the appendix, α is illustrated in figure 10.1, but the effect of α for a 10Y10Y swap-

tion is also visible in figure 7.6 for Greek vega. Turning our attention back to ν, we see

that ν has a bigger influence on strikes away from ATM and also a bigger influence than

α does. This is because α causes a parallel change in the volatility smile, while ν has an

effect on the curvature of the smile. Overall, ν has a bigger effect in nominal terms than α.

Sensitivity for ρ

Now we look at ρ and what happens to the price if it is estimated higher. To help us with

this, we remember the formula for the Normal SABR-model in equation 4.18:

σN = α
z

x(z)
·
{

1 +
2− 3ρ2

24
· ν2 · tex

}
(7.2)

where

z =
ν

α
(f −K) and x(z) = log

(√
1− 2ρz + z2 − ρ+ z

1− ρ

)
We look at the effects of ρ on the volatility in equation (7.2) above. If we start by looking at

the curly brackets, we have ρ in the numerator and if ρ increases, the numerator becomes
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smaller and the whole fraction becomes smaller as well, meaning that this will cause the

volatility to decrease. Looking at the fraction in the second factor, we see that ρ is a part

of x(z) in the denominator and we turn to the expression for x(z). The fraction in x(z) is

a bit tricky, as ρ is in both the numerator and the denominator, but we see that the effect

of the numerator is larger, making the whole expression larger when ρ increases. Since

x(z) is in the denominator in our expression for the volatility, it will in the end have a

decreasing effect on the volatility. Therefore we see that if ρ increases, the volatility will

decrease causing the price to decrease. This effect is visible in figure 7.2 below.

Figure 7.2: Change in the price of 10YXY swaption by bumping ρ in the underlying Normal
SABR-model by one percent

The figure shows strictly negative values for ρ as expected from the analysis of the equation.

The parameter has a larger effect on longer maturities as well as deep ITM and deep

OTM options. So if we estimate ρ higher than it should be, the price of the option will

be undervalued.

7.2 Greeks

In this section we will take a closer look at the risk measures in the SABR set-up for

differering volatility, but also pay a brief visit to the classic set-up with constant volatility.

The Greeks are the similar for both set-ups and we will briefly comment on the classic

set-up before beginning our calculations in the SABR set-up, except for delta, where we

will calculate both the classic delta and SABR delta. We will both cover formulas and

compute examples of the relevant Greeks. For this section we will be using theory from

(Linderstøm, 2013) and (Hagan et al., 2002).
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Classic delta

The price sensitivity of an option for a movement in the underlying asset f is called delta

(∆). Delta is calculated by taking the first derivative of the option price with respect to

the underlying asset. For swaption we differentiate equation (2.32) with respect to the par

swap rate and obtain:
∂PVt(·)
∂R(·)

= A(t, TS , TE) · Φ(d) (7.3)

We notice that the delta of our swaption is very similar to the delta of the underlying

swap. The difference is the probability distribution chosen in the option pricing method.

The delta risk measure can be used as information regarding the risk of a position, but

can also be used to remove risk of changes in the underlying asset. This is called delta

hedging, which is widely used in the industry. In section 7.3.3 we will apply delta hedging

and show how it reduces risk.

When computing delta for a swaption, the common way to do it, is by computing the

Dollar Value of 1 Basis Points (DV01). DV01 is an alternative to the differentiation in

equation (7.3). The approach to this method is to bump each knot point in the zero and

discount curve and compute the difference to the original price. Mathematically we can

write the DV01 by

DV01 =
1

10, 000

∂V (P )

∂P
≈ 1

10, 000

V (P + ε)− V (P )

ε
(7.4)

where V (P ) is the value of the swaption depending on P which is the calibrated model

quotes and ε is the value that we bump the curve with. Doing this calculation for all

model quotes gives us a set of values for delta illustrated in figure 7.3.
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Figure 7.3: Delta for different expiries and a maturity of 10Y payer swaption with par swap rates
depending on the expiry and a notional of 100,000 Euro

We see here that delta is positive for a payer swaption as an increase in the underlying

rate will cause an increase in the expected payoff. Since we are bumping both the zero

and discount curve, there are two effects accompanying an increase in the underlying as-

set. The first effect is the increase in the zero curve, which will give an increase in the

forward rate and thus the expected payoff. The second effect is caused by the increase in

the discount curve, meaning a harder discounting which will lower the expected payoff.

The second effect is visible deep ITM as there is a decrease in delta, showing us that the

discounting effect is dominant here. In general, when we are deep ITM, delta is close to

the actual value of the increase in the underlying asset and will thus have a large effect

on the swaption price since we are already sure we will be exercising the swaption. If we

move towards ATM, we see that delta is the most sensitive here because an movement in

the underlying asset could make the whole difference of whether the option is exercised

or not. When we move to the right-hand side of ATM, we see that an increase in the

underlying asset will have a smaller and smaller effect on the price and when we move

deep OTM, delta is close to zero as we are so far away from ATM that we will not exercise

the option.

Note that our par swap rates (ATM) here are different for each strike and will be lower

for shorter expiries because our zero curve is upwards sloping.

With longer time to expiry, the effect of delta flattens as there is more uncertainty in the

future and there is still a lot of time for the underlying asset to move before it is time

to exercise. A movement here is therefore not significant since the underlying asset could

simply move back because of the long time to maturity.
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SABR delta

Calculating the SABR delta is similar to calculating the Black delta except for one crucial

step; changing volatility. In Black delta we used the ATM volatility for all strikes, but

when calculating the SABR delta we need to have differing volatilities depending on the

strikes. We use the SABR parameters computed in section 6.1.3 and the changing strikes

to calculate the different Normal volatilities, then we calculate the original prices for the

xY10Y swaptions. Next up, we need to bump the zero and discount curve by 1 basis

point, calculate the bumped Normal volatilities and the new bumped prices as we did for

the classic delta before. The difference between the original price and the bumped price

is the SABR delta. The shape of the curves are very similar to the classic delta, therefore

we will not spend time on a similar analysis. The figure for SABR delta can be seen in

figure 10.2 in the appendix. Instead, we will look at the difference between the unbumped

prices with constant volatility and the SABR delta, which can be seen in figure 7.4.

(a) Difference for bumped 10Y10Y EUR swaptions (b) Normal volatility for SABR and constant

Figure 7.4: (Left) Difference in swaption price when using the SABR-model and constant volatility.
(Right) Implied volatility curve

Figure 7.4 shows the effect of having non-constant volatility. We know figure 7.4b from

section 6.1.3 and have added the level of the constant volatility to the graph. Figure 7.4a

shows the difference in price between the original prices from the earlier section on classic

delta and the price for the bumped 10Y10Y EUR swaption. Here we see the errors caused

by constant volatility, where deep OTM options are priced too low and should be priced

higher, while deep ITM options are priced too high. Since ATM are the same for the two

pricing methods, the difference here is zero. We see an upward slope of the curve deep

ITM in figure 7.4a because of the flattening of the curve in figure 7.4b.
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Gamma

Gamma (Γ) is the second derivative of the swaption price with respect to the par swap

rate and thus the sensitivity towards movements in delta. In practice, we get the following

expression:

Gamma DV012 =
1

10, 0002

∂2V (P )

∂P 2
≈ 1

10, 0002

V (P + ε) + V (P − ε)− 2 · V (P )

ε2
(7.5)

In practice we bump the zero and discount curve both up and down with 1 basis point

and use the new prices to calculate gamma for different strikes. The results are depicted

in figure 7.5 below.

Figure 7.5: Gamma for xY10Y payer swaption with par swap rate depending on the expiry and a
notional of 100,000

The graph for gamma is generally positive as seen in figure 7.5. The graph is interpreted

while keeping the graph for delta in mind as gamma shows the movements of delta. If we

look at close to ATM, we see that the shorter expiries have a large gamma here. This is

due the large movement in delta as an increase in the underlying asset will make a big

difference in whether we choose to exercise or not. We see that when we are deep ITM,

we have negative values for gamma. As mentioned earlier, this is due to the dominating

effect of the discount curve where the payoff will be discounted harder. The curves for

gamma flatten as time to expiry increases as the uncertainty of gamma increases as well.

Note that the classic gamma as described here and SABR gamma are very similar, which

is why we have chosen not to do a section on both.

Vega

Vega is the sensitivity of a change in the implied volatility. In this section, we will not

spend too much time on vega in the classic set-up, but briefly describe the method and
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then focus on vega in the SABR set-up. For the classic set-up with constant implied

volatility, the way to calculate vega is by bumping the implied volatility by 1% for Black

volatility and 1 basis point for Normal volatility. Then we calculate the bumped prices

and compute vega by calculating the difference in the prices.

For the SABR set-up with non-constant implied volatility, we need to have a different

approach due to the fact that the implied volatility is now a function of α, ρ and ν instead

of a fixed implied volatility. Since the Black and Normal vega are computed by perform-

ing a parallel shift of the implied volatility by one unit (e.g. one percent or one basis

point), we will mimic this approach by bumping our SABR parameters in a fashion that

results in a parallel shift of the implied volatility. When recalling the effect of the different

parameters to the volatility smile in section 4.3, it is apparent that we should bump the

SABR parameter α to perform a parallel shift of the volatility curve. We bump α up by

1% for the expiries we have available (2-5Y, 7Y, 10Y and 15Y) and rerun the calculations

to find the new bumped volatilities and prices (Linderstøm, 2013). The values for vega

are shown in figure 7.6.

Figure 7.6: Vega for xY10Y payer swaption with par swap rate depending on expiry and a notional
of 100,000

The first thing to notice is that vega is positive, which is due to the limited downside of

a swaption. Vega is increasing for longer expiries due to the same effect, as we here have

longer time to benefit from an increase in the volatility. If we look at around ATM, we

see that vega is at its highest here for the individual curves. An increase in the volatility

has the largest effect on the price here, because it could make the whole difference on

whether we choose to exercise or not. The graphs all have a slight tilt, where deep ITM

is lower than deep OTM. An increase in volatility is more needed deep OTM, as we need
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the volatility to move the underlying asset so much that it moves into the money. We also

appreciate an increase in volatility for deep ITM as this could possibly move our contract

even deeper into the money, but we still have something to loose when we are ITM. On

the contrary, when we are deep OTM we have nothing to loose and everything to win,

causing the higher value in vega in this area.

Theta

Theta (Θ) describes the sensitivity in the price depending on time to maturity. The calcu-

lation is based on what happens to the price when there is one business day less to expiry.

In general, theta is negative due to the nature of the option; a limited downside and un-

limited upside, so less time to use this dynamic is not preferable. For short expiries, theta

can become positive due to an effect described earlier – the discounting effect. This effect

is opposite for theta and short expiries as shorter time to expiry will cause lesser discount-

ing of the expected payoff. We have calculated theta and the results are shown in figure 7.7

Figure 7.7: Theta for xY10Y payer swaption with par swap rate depending on expiry and a notional
of 100,0000

If we start by looking at the right-most part of the graph in figure 7.7, where we are deep

OTM, we see that theta is close to zero, especially for short expiries. A day less to expiry

does not matter much here, because we know that will not be exercising anyway because

we are so deep OTM. Moving towards ATM, theta becomes increasingly negative because

with one day less, the underlying asset will have less time to move into the money and

thus the value of the contract decreases. This effect is more visible for short expiries and

flattens for longer expiries because of uncertainty in the long run. For the 1M expiry, theta

is very negative for ATM because one day less can be determining whether we exercise

or not. For long expiries deep ITM, theta is still negative because we wish for more time
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to benefit from the limited downside and thus have as much time as possible to move

even deeper into the money. Looking at theta for short expiries deep ITM, we notice the

positive value for 1Y which is due to the lessened discounting effect described earlier. This

effect would normally also show for the shorter expiries of 1M and 6M, but due to negative

interest rates this is not the case for this example.

We have now seen the effects of what happens if the model estimates the parameters incor-

rectly. The effects are bigger for long maturities and the further away from ATM we are.

A further exploration of this will not be performed in this thesis, but we see the possibility

for further analysis of this subject along with the parameter stability test conducted in

section 6.2.1.

The Greeks gave us knowledge on the various risks in option pricing and lay ground for

the next section on investment strategies and hedging. We especially found the SABR

delta interesting and will continue the work with this greek in the next section.

7.3 Empirical example on risk management

Having covered different risk measures of the Normal SABR-model, we will now use this

knowledge in practice with an empirical example. In the example, we will go through

how to take a position with a financial contract and how to price the swaption and swap

associated with it. To correctly price the financial products, we will use the Normal SABR-

model to calculate the implied volatilities and finally use the Greeks to analyse the Profit

& Loss (P&L) of the investment strategies along with a hedge to improve our investment.

7.3.1 Buy-and-hold strategy

In our example we will take a long position in a 1Y10Y payer swaption, since we would

like to work with a product that expires within our data frame and is time relevant. The

value of the swaption will depend on the forward rates Ft, the discount rates Pt, the

expiry date TE , the strike K and finally the implied Normal volatility σNt . Note that

the implied Normal volatilities will be computed using the Normal SABR-model and can

change due to two reasons. One is that the general level of implied volatility of the 1Y10Y

swaption can change. The other being that the volatility changes because the underlying

swap moves in and out of the money and thus moves along the volatility smile. The rest

of the variables will change with the market and thus be different for each passing day.

The expiry date and the strike are constant, along with the maturity of the underlying

asset due to the contract we have taken a long position in. Note that if it were a different
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financial contract, these variables would have different values. The price of the swaption,

on the day it is purchased, is:

PS1Y10Y
t = S1Y10Y

t (Ft, Pt, T
E ,K, σNt ) (7.6)

When one day has passed the price of the swaption will be:

PS1Y10Y
t+1 = S1Y10Y

t+1 (Ft+1, Pt+1, T
E ,K, σNt+1) (7.7)

The buy-and-hold strategy is simply to buy the 1Y10Y swaption and hold it until expiry.

We compute the daily returns for each day in 2018 from 02/01/2018 where we take our

long position:

P&Lt =
PS1Y 10Y

t

PS1Y 10Y
t−1

− 1 (7.8)

The daily returns are accumulated to see what value our swaption has at expiry. The

accumulated returns are visible in figure 7.8 below. In figure 7.8 below we have illustrated

the accumulated return for the purchased swaption. Note that since we accumulate the

returns, we assume that we are reinvesting potential earnings.

Figure 7.8: Accumulated return for a 1Y10Y EUR swaption starting on 02/01/2018 with a 100,000
euro notional, the last value is labelled

As the variables (forward rates, discount rates, time to expiry and implied volatility) move,

so does the value of our swaption. Towards the end of the expiry, the swaption is OTM

and has a value of zero, so we would not exercise our option to purchase the underlying

swap. Before we look at P&L for the buy-and-hold position, we will investigate the classic

risk factors. We have calculated the Greeks and will now analyse them using the graph in

figure 7.9 below.
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Figure 7.9: Greeks for a 1Y10Y EUR swaption starting on 02/01/2018 with a 100,000 euro notional.
Delta and vega are on the left axis, gamma and theta on the right (own creation)

Starting with delta, we see that it is strictly positive and moving quite a lot. With a pos-

itive delta we benefit from an increase in the underlying swap and therefore we wish for

delta to increase. Delta is mostly moving in values between 30 and 50, but then decreasing

at the end. Towards expiry, the swaption is very deep OTM, meaning that delta is close

to zero. Being close to zero when the swaption is deep OTM is expected delta behaviour

and can also be seen in figure 7.3.

Moving on to vega, we also have a positive effect as we benefit from an increase in volatil-

ity. As mentioned earlier, this increase can come from two effects; changes in the market

volatility or as the underlying swap moves in and out of the money along the volatility

smile. In general, vega decreases when the underlying swap moves away from the ATM

and as we are deep OTM close to expiry, vega is close to zero.

For the next Greek, we look at the secondary axis as these effects are smaller than the

previous two Greeks. Gamma is the most steady of the Greeks, moving close to zero and

thus suspected to be a low risk factor. We will therefore not spend much more time on

gamma. One final comment on gamma is the slight increase as we move close to expiry

which is common for gamma.

Last but not least, we have theta, which is our only negative greek. Theta has a negative

carry4 and consistently causes a decrease in the value of the swaption. Towards the expiry

theta moves towards zero as the underlying swap is so deep OTM that theta has little to

no effect on the value of the swaption. Looking back at figure 7.7, this is a general effect

for theta for various expiries.

4Carry is the cost or benefit from holding an asset when nothing changes and a day goes by. Theta has
a negative effect on the value of the swaption even though all other variables stay the same.
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We suspect that delta is one of the biggest risk factors, but before we begin delta hedging

we will do a decomposition of the P&L for the buy-and-hold strategy to see what the

different risk factors are and how they impact the swaption.

7.3.2 Decomposing P&L for buy-and-hold

In this section we will take a closer look at why we experienced the loss on our buy-

and-hold strategy. Note that it could just as well have been a gain, but for the scenario

transpiring from the data for 2018, the swaption came out with a loss. We will look at

the impacts caused by the different variables to explain why the graph in figure 7.8 looks

the way it does and how we might pursue a different strategy to minimize the loss or even

turn it into a gain. First we explain the different impacts of the variables and how to

calculate dem.

To calculate the effect of the interest rates moving, we calculate the price of the swaption

for time t and t + 1, but a bit different than usual for t + 1. We use all the same inputs

as for t except for the zero curve and discount curve, where we use the ones for t+ 1. We

then calculate the difference between the two prices for the swaption and are left with the

impact of the interest rates. In practice the calculation is:

Impact of interest rates = PPayer
t (Ft+1, Pt+1)− PPayer

t (Ft, Pt) (7.9)

For the impact of time, we simply use theta as we have calculated it in section 7.2. There

is one small difference when it comes to calculating from Friday to Monday as we only use

business days. Here we need to multiply theta by three to make sure we have accounted

for the effect of all the days in a week:

Impact of time = Θt (7.10)

Lastly we have the impact of volatility which is calculated similar to the impact of the

interest rates. We compute the price of the swaption for time t and t+ 1 using the inputs

for t in both cases, but for the latter, we use the volatility for t + 1 and calculate the

difference. This gives us the impact of the volatility on the swaption:

Impact of volatility = PPayer
t (σt+1)− PPayer

t (σt) (7.11)

The impacts of the variables have been summed monthly as a weekly summation made it

difficult to see what was happening in the graph. The results can be seen in figure 7.10.

74



7 RISK MANAGEMENT

Figure 7.10: Impacts of variables for a 1Y10Y EUR swaption starting on 02/01/2018 with a 100,000
euro notional

We can see from figure 7.10 that our three different impacts explain the P&L well. The

difference between the explained P&L and the realised P&L is called the unexplained

P&L. The unexplained P&L is an effect of swaptions being non-linear products where

second-order derivatives, like gamma, affect the price.

Starting with the impact of the volatility, we see that it is not very significant. In fact, the

volatility is difficult to see in the graph, but nonetheless it is there, it just does not move

very much. From the start of the swaption to expiry, the volatility moves from a value of

62.8 to 63.1 quoted in Normal volatility.

Next up, we have the impact of time which has a steady negative impact on the swaption

value. This is a natural effect of having less time to utilise the optionality in the swaption

and is known as theta decay5.

As expected there is a big impact from the movements in interest rates. This impact is big

on a month-to-month basis, but if we look at the total impact, the result is much smaller.

If we take the absolute values of the impact of interest rates, we get a total movement of

16,581 euros, while the total impact of interest rates in fact is 75 euros. Even though the

summed impact of interest rate is not great, due to the monthly impacts offsetting each

other, we still recognise impact of interest rates as a major risk factor. In this case, the

downwards movements of interest rates causes the swaption to end OTM, and is therefore

worthless. There is a decrease of the interest rates when constructing the zero curves on

the start date and expiry date of the swaption. This is visible in the appendix in figure

10.3.

5Theta decay or time decay is the rate of change in the option value as it comes closer to expiry
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For this reason, we perform a delta hedge to reduce the exposure towards movements in

the underlying interest rates.

7.3.3 Delta hedging

In this section we will take the view of a European investment bank. A client wishes to

take a short position in a specific swaption, a 1Y10Y payer swaption, and we then take

the opposite side of the deal; a long position in 1Y10Y the payer swaption. Now we are

exposed to risk, having bought this swaption and seek to minimise that risk. The most

straight-forward way to do this would be to take a short position the exact same swaption

from another market participant, but this would not be the most profitable way to handle

the risk. First of all, we would be paying extra due to the bid-ask spread in the swaption

market and thus our potential profit would decrease – our profit currently being the bid-

ask spread. Second, since swaptions are over-the-counter products (OTC), we might not

be able to short the exact same swaption, let alone at a reasonable price. Instead we will

use a combination of swaps and options to hedge our position. Swaps have a high delta

and are very liquid, which means that the bid-ask spread will be smaller. Another reason

to use swaps is that they are approximately a delta-one product6. Options can be used to

hedge the non-linear risk factors such as gamma, vega and theta. One of the most ideal

products to hedge these risk factors is an ATM straddle7 since ATM straddles have high

gamma, vega and theta and a low delta.

If we wish to hedge both linear and non-linear exposures, it is important that we hedge

the non-linear exposures first. If we hedge delta-risk first and then our non-linear risks,

then we will add additional delta risk and thus off setting our delta hedge. Instead, the

proper way would be to first hedge the non-linear risk factors and then use a swap to

hedge the delta risk. Using swaps to hedge the delta risk will not offset the non-linear risk

factors because a swap has no gamma, vega or theta. In this thesis, we will limit ourselves

to delta hedging and thus use swaps to do so.

As we seek to hedge a 1Y10Y payer swaption, we will hedge with a 1Y10Y forward starting

payer swap. We could have used a different swap, but choosing one with the same expiry

and maturity has the same delta ladder8 as our swaption and this is in our favour as this

6A delta-one product is a product with delta equal to one. Swaps are only approximately equal to one
due to discounting

7A straddle is an option on both a payer and receiver swaption with the same strike
8A delta ladder is the change in the option price when the underlying asset changes by 1 bps. The

delta is calculated for each tenor of the option, which make up the delta ladder and summed is DV01
(Linderstøm, 2013)
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puts less strain on our computations. Using the same forward starting swap also means

that we are hedged against changes in the steepness of the zero curve. If we did not match

the delta ladder, then we would only be hedged against parallel shifts in the zero curve

(Linderstøm, 2013).

From calculations in section 7.3.1, we know that DV01 for the swaption on the first day

is EUR 46.63, which means that we need to short the amount of underlying swap that

increases with EUR 46.63 when the interest rate increases by 1 basis point. The DV01 of

the swap on the first day is 97.92 and now need to calculate how much of the swap we

need to short in order to have a value of 46.63. The amount needed is called w:

w =
DV01Swaption

DV01Swap
=

46.63

97.92
= 0.476256 (7.12)

In order to hedge our swaption, we need to short 0.476256 · N . However, taking a short

position in a payer swap gives the same hedge as taking a long position in a receiver swap

and we prefer the latter due to common market practice (Linderstøm, 2013). Now we can

calculate the P&L of the delta hedge:

P&L∆ hedge = (St+1 − St) · w = (257.7− 0) · 0.476256 = 122.716 (7.13)

Taking a long position in a receiver swap on this amount will give our hedge a value of

EUR 122.716 and the impact of the interest rate for the same day is −120.27, meaning

that our whole portfolio has a value of EUR 2.44. We complete these calculations for the

whole period and end up with the complete hedge displayed in figure 7.11.

Figure 7.11: P&L for a delta hedged 1Y10Y EUR swaption starting on 02/01/2018 with a 100,000
euro notional

Figure 7.11 shows the quality of our delta hedge. The blue pins show the P&L of our

delta hedge position i.e. our long position in a 1Y10Y receiver swap and the green pins
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show the impact of interest rates for our 1Y10Y payer swaption. Our hedge moves quite

well with the impact of the interest rates, but is not perfect. This is due to swaptions

being non-linear products. When the interest rates change, then delta will change and

thus gamma as well, causing our delta hedge to not be perfect. This issue can be fixed

with a delta-gamma hedge, but will not be covered in this thesis.

With our delta hedge we have achieved the effect we wished for; when the swaption looses

money due to interest rate impacts, our hedge makes almost the same amount of money.

The effect of the delta hedge can be seen in figure 7.12 where we have combined the P&L

of the 1Y10Y payer swaption and 1Y10Y receiver swap.

Figure 7.12: Accumulated return for a delta hedged 1Y10Y EUR swaption starting on 02/01/2018
with a 100,000 euro notional, the last value is labelled

We have not managed to turn the loss into profit for our long position in the 1Y10Y swap-

tion, but we have cut our losses in half. Our delta hedge against the negative impact of

interest rates has been a success, but we still loose money due to theta decay and the lack

of volatility. We remember that buying an option is buying the opportunity to acquire

the underlying asset, but if this opportunity does not turn out to be profitable, then we

loose money.

Using all the theory from previous sections, we have successfully priced swaptions and

swaps and shown how to delta hedge an investment in a realistic set-up with actual market

data and strategies.
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8 Conclusion

We have successfully adapted the classic SABR-model to price precisely and apply risk

management in the current low and negative interest rate environment. The process

started with the fact that implied volatility is not constant as first assumed in the original

pricing models Black and Normal model. Implied volatility is shaped like a smile or a

smirk depending on the market situation and for now it is a smile that is slightly more

expressed for OTM options. The volatility smile is a product of the probability distribu-

tion of the underlying asset and a buying pressure on OTM options. In order to price

options correctly, we need a model that gives us several implied volatilities depending on

what the value of the strike is – enter the SABR-model. The classic SABR-model solves

issue of constant volatility by providing a flexible and precise closed-form solution to cal-

culate differing implied volatilities. The classic SABR-model worked for a period of time,

but as the financial crisis came in 2008, the market changed and interest rates decreased

ultimately hitting negative rates in 2014, even though this was unheard of until then. To

solve the issue of negative rates, we chose to work with the Shifted SABR-model and the

Normal SABR-model. An empirical comparison of the two models was performed. The

result was that the models priced equally well both for an in-sample test and an out-of

sample test. Even though the two models performed equally well, we chose to apply em-

pirical risk management to the Normal SABR-model due to the advantages of working

with Normal volatility. The empirical risk management analysis showed that the Nor-

mal SABR-model is subject to significant risk of errors when estimating the parameters.

We therefore concluded that the parameters need to be updated at least weekly. When

simulating a buy-and-hold position, we saw that a swaption position is heavily exposed

toward movements in the underlying interest rates, that high volatility is significant for

the success of a long position in a payer swaption and that theta decay reduces potential

profits. Lastly we demonstrated how to reduce the delta risk of the 1Y10Y swaption po-

sition. This resulted in an almost delta neutral position that performed significantly better.

A major area in this thesis is volatility – both differing implied volatility leading to

the volatility smile, but also the discussion of Black volatility versus Normal volatility.

Through the comparison of Black and Normal volatility, we concluded that Black volatil-

ity results in quotation problems for low interest rates, which can result in very large

implied volatilities. When looking at the historical volatility, we saw the decrease in

volatility as an effect of the monetary policy of ECB and even though ECB announced

the end of the Asset Purchasing Programme in December 2018, ECB still intends to keep

interest rates steady and at a low level (European Central Bank, 2019).
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We tested several different methods for estimating the SABR parameters, and found that

a fixed beta and the minimisation approach for the remaining parameters, α, ρ and ν

yielded the best results.

Both the Shifted SABR-model and Normal SABR-model performed well when testing

in-sample and out-of-sample pricing, but the shape of their volatility smiles were different.

While the Black volatility smile was curving upwards deep ITM, the Normal volatility

smile was curving upwards deep OTM. This is due to the fact that Black volatility is

quoted in relative volatility while Normal volatility is quoted in absolute volatility. There-

fore, the implied Black volatility will increase for low strikes, even though the actual price

decreases for low strikes. This constitutes a major problem for the Black volatility, because

it makes it harder to interpret market conditions and prices.

Another issue arises when using Black volatility and the Shifted SABR-model. We argued

that one must communicate the magnitude of the shift to align implied volatility quotes

with the counterparty. Lastly, when using the Shifted SABR-model, one must make sure

to shift far enough, so that an extra shift in the future will not be needed.

When applying risk management to swaptions, we concluded that it was paramount to

factor in the volatility smile. This resulted in the difference between the classic delta and

SABR delta. The SABR delta was used to perform the delta hedge to the buy-and-hold

strategy, ultimately resulting in a successful hedge.

To sum up, the thesis demonstrated how to price and risk manage financial products in

low and negative interest rate environments using extensions to the SABR-model and at

the same time take non-constant volatility into account.

8.1 Further work

In this section we will briefly reflect on which topics and questions could be interesting to

do further work with. While we limited ourselves to two extensions to the classic SABR-

model, we could explore other extensions to find one that models implied volatilities even

better than the ones in this thesis. This could be other extensions that can model negative

interest rates e.g. the Free-Boundary SABR-model or the Mixed SABR-model.

Furthermore, additional interesting analyses could be performed if we acquired daily or

interdaily swaption quotes and did an analysis of exactly how often the SABR-models

need recalibrating in order to price accurately. Lastly, while we limited ourselves to delta

hedging, another area to explore further could be delta-gamma hedging.
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