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We present a model with leverage and margin constraints that vary across investors and
time. We find evidence consistent with each of the model's five central predictions:
(1) Because constrained investors bid up high-beta assets, high beta is associated with low
alpha, as we find empirically for US equities, 20 international equity markets, Treasury
bonds, corporate bonds, and futures. (2) A betting against beta (BAB) factor, which is long
leveraged low-beta assets and short high-beta assets, produces significant positive risk-
adjusted returns. (3) When funding constraints tighten, the return of the BAB factor is low.
(4) Increased funding liquidity risk compresses betas toward one. (5) More constrained
investors hold riskier assets.
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leverage. For instance, many mutual fund families offer
balanced funds in which the “normal” fund may invest
around 40% in long-term bonds and 60% in stocks, whereas
the “aggressive” fund invests 10% in bonds and 90% in
stocks. If the “normal” fund is efficient, then an investor
could leverage it and achieve a better trade-off between
risk and expected return than the aggressive portfolio with
a large tilt toward stocks. The demand for exchange-traded
funds (ETFs) with embedded leverage provides further
evidence that many investors cannot use leverage directly.

This behavior of tilting toward high-beta assets sug-
gests that risky high-beta assets require lower risk-
adjusted returns than low-beta assets, which require
leverage. Indeed, the security market line for US stocks is
too flat relative to the CAPM (Black, Jensen, and Scholes,
1972) and is better explained by the CAPM with restricted
borrowing than the standard CAPM [see Black (1972,
1993), Brennan (1971), and Mehrling (2005) for an excel-
lent historical perspective].

Several questions arise: How can an unconstrained
arbitrageur exploit this effect, i.e., how do you bet against
beta? What is the magnitude of this anomaly relative to
the size, value, and momentum effects? Is betting against
beta rewarded in other countries and asset classes? How
does the return premium vary over time and in the cross
section? Who bets against beta?

We address these questions by considering a dynamic
model of leverage constraints and by presenting consistent
empirical evidence from 20 international stock markets,
Treasury bond markets, credit markets, and futures
markets.

Our model features several types of agents. Some
agents cannot use leverage and, therefore, overweight
high-beta assets, causing those assets to offer lower
returns. Other agents can use leverage but face margin
constraints. Unconstrained agents underweight (or short-
sell) high-beta assets and buy low-beta assets that they
lever up. The model implies a flatter security market line
(as in Black (1972)), where the slope depends on the
tightness (i.e., Lagrange multiplier) of the funding con-
straints on average across agents (Proposition 1).

One way to illustrate the asset pricing effect of the
funding friction is to consider the returns on market-
neutral betting against beta (BAB) factors. A BAB factor is
a portfolio that holds low-beta assets, leveraged to a beta
of one, and that shorts high-beta assets, de-leveraged to a
beta of one. For instance, the BAB factor for US stocks
achieves a zero beta by holding $1.4 of low-beta stocks and
shortselling $0.7 of high-beta stocks, with offsetting posi-
tions in the risk-free asset to make it self-financing.1 Our
model predicts that BAB factors have a positive average
return and that the return is increasing in the ex ante
tightness of constraints and in the spread in betas between
high- and low-beta securities (Proposition 2).
1 While we consider a variety of BAB factors within a number of
markets, one notable example is the zero-covariance portfolio introduced
by Black (1972) and studied for US stocks by Black, Jensen, and Scholes
(1972), Kandel (1984), Shanken (1985), Polk, Thompson, and Vuolteenaho
(2006), and others.
When the leveraged agents hit their margin constraint,
they must de-leverage. Therefore, the model predicts that,
during times of tightening funding liquidity constraints,
the BAB factor realizes negative returns as its expected
future return rises (Proposition 3). Furthermore, the model
predicts that the betas of securities in the cross section are
compressed toward one when funding liquidity risk is high
(Proposition 4). Finally, the model implies that more-
constrained investors overweight high-beta assets in their
portfolios and less-constrained investors overweight low-
beta assets and possibly apply leverage (Proposition 5).

Our model thus extends the Black (1972) insight by
considering a broader set of constraints and deriving the
dynamic time series and cross-sectional properties arising
from the equilibrium interaction between agents with
different constraints.

We find consistent evidence for each of the model's
central predictions. To test Proposition 1, we first consider
portfolios sorted by beta within each asset class. We find
that alphas and Sharpe ratios are almost monotonically
declining in beta in each asset class. This finding provides
broad evidence that the relative flatness of the security
market line is not isolated to the US stock market but that
it is a pervasive global phenomenon. Hence, this pattern of
required returns is likely driven by a common economic
cause, and our funding constraint model provides one such
unified explanation.

To test Proposition 2, we construct BAB factors within
the US stock market and within each of the 19 other
developed MSCI stock markets. The US BAB factor realizes
a Sharpe ratio of 0.78 between 1926 and March 2012.
To put this BAB factor return in perspective, note that its
Sharpe ratio is about twice that of the value effect and 40%
higher than that of momentum over the same time period.
The BAB factor has highly significant risk-adjusted returns,
accounting for its realized exposure to market, value, size,
momentum, and liquidity factors (i.e., significant one-,
three-, four-, and five-factor alphas), and it realizes a
significant positive return in each of the four 20-year
subperiods between 1926 and 2012.

We find similar results in our sample of international
equities. Combining stocks in each of the non-US countries
produces a BAB factor with returns about as strong as the
US BAB factor.

We show that BAB returns are consistent across coun-
tries, time, within deciles sorted by size, and within deciles
sorted by idiosyncratic risk and are robust to a number of
specifications. These consistent results suggest that coin-
cidence or data mining are unlikely explanations. How-
ever, if leverage constraints are the underlying drivers as in
our model, then the effect should also exist in other
markets.

Hence, we examine BAB factors in other major asset
classes. For US Treasuries, the BAB factor is a portfolio that
holds leveraged low-beta (i.e., short-maturity) bonds and
shortsells de-leveraged high-beta (i.e., long-term) bonds.
This portfolio produces highly significant risk-adjusted
returns with a Sharpe ratio of 0.81. This profitability of
shortselling long-term bonds could seem to contradict the
well-known “term premium” in fixed income markets.
There is no paradox, however. The term premium means



2 This effect disappears when controlling for the maximum daily
return over the past month (Bali, Cakici, and Whitelaw, 2011) and when
using other measures of idiosyncratic volatility (Fu, 2009).

3 The dividends and shares outstanding are taken as exogenous. Our
modified CAPM has implications for a corporation's optimal capital
structure, which suggests an interesting avenue of future research
beyond the scope of this paper.
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that investors are compensated on average for holding
long-term bonds instead of T-bills because of the need for
maturity transformation. The term premium exists at all
horizons, however. Just as investors are compensated for
holding ten-year bonds over T-bills, they are also compen-
sated for holding one-year bonds. Our finding is that the
compensation per unit of risk is in fact larger for the one-
year bond than for the ten-year bond. Hence, a portfolio
that has a leveraged long position in one-year (and other
short-term) bonds and a short position in long-term bonds
produces positive returns. This result is consistent with
our model in which some investors are leverage-
constrained in their bond exposure and, therefore, require
lower risk-adjusted returns for long-term bonds that give
more “bang for the buck”. Indeed, short-term bonds
require tremendous leverage to achieve similar risk or
return as long-term bonds. These results complement
those of Fama (1984, 1986) and Duffee (2010), who also
consider Sharpe ratios across maturities implied by stan-
dard term structure models.

We find similar evidence in credit markets: A leveraged
portfolio of highly rated corporate bonds outperforms a
de-leveraged portfolio of low-rated bonds. Similarly, using
a BAB factor based on corporate bond indices by maturity
produces high risk-adjusted returns.

We test the time series predictions of Proposition 3
using the TED spread as a measure of funding conditions.
Consistent with the model, a higher TED spread is asso-
ciated with low contemporaneous BAB returns. The lagged
TED spread predicts returns negatively, which is incon-
sistent with the model if a high TED spread means a high
tightness of investors' funding constraints. This result
could be explained if higher TED spreads meant that
investors' funding constraints would be tightening as their
banks reduce credit availability over time, though this is
speculation.

To test the prediction of Proposition 4, we use the
volatility of the TED spread as an empirical proxy for
funding liquidity risk. Consistent with the model's beta-
compression prediction, we find that the dispersion of
betas is significantly lower when funding liquidity risk
is high.

Lastly, we find evidence consistent with the model's
portfolio prediction that more-constrained investors hold
higher-beta securities than less-constrained investors
(Proposition 5). We study the equity portfolios of mutual
funds and individual investors, which are likely to be
constrained. Consistent with the model, we find that these
investors hold portfolios with average betas above one.
On the other side of the market, we find that leveraged
buyout (LBO) funds acquire firms with average betas
below 1 and apply leverage. Similarly, looking at the
holdings of Warren Buffett's firm Berkshire Hathaway,
we see that Buffett bets against beta by buying low-beta
stocks and applying leverage (analyzed further in Frazzini,
Kabiller, and Pedersen (2012)).

Our results shed new light on the relation between risk
and expected returns. This central issue in financial eco-
nomics has naturally received much attention. The stan-
dard CAPM beta cannot explain the cross section of
unconditional stock returns (Fama and French, 1992) or
conditional stock returns (Lewellen and Nagel, 2006).
Stocks with high beta have been found to deliver low
risk-adjusted returns (Black, Jensen, and Scholes, 1972;
Baker, Bradley, and Wurgler, 2011); thus, the constrained-
borrowing CAPM has a better fit (Gibbons, 1982; Kandel,
1984; Shanken, 1985). Stocks with high idiosyncratic
volatility have realized low returns (Falkenstein, 1994;
Ang, Hodrick, Xing, Zhang, 2006, 2009), but we find that
the beta effect holds even when controlling for idiosyn-
cratic risk.2 Theoretically, asset pricing models with bench-
marked managers (Brennan, 1993) or constraints imply
more general CAPM-like relations (Hindy, 1995; Cuoco,
1997). In particular, the margin-CAPM implies that high-
margin assets have higher required returns, especially
during times of funding illiquidity (Garleanu and
Pedersen, 2011; Ashcraft, Garleanu, and Pedersen, 2010).
Garleanu and Pedersen (2011) show empirically that
deviations of the law of one price arises when high-
margin assets become cheaper than low-margin assets,
and Ashcraft, Garleanu, and Pedersen (2010) find that
prices increase when central bank lending facilities reduce
margins. Furthermore, funding liquidity risk is linked to
market liquidity risk (Gromb and Vayanos, 2002;
Brunnermeier and Pedersen, 2009), which also affects
required returns (Acharya and Pedersen, 2005). We com-
plement the literature by deriving new cross-sectional and
time series predictions in a simple dynamic model that
captures leverage and margin constraints and by testing its
implications across a broad cross section of securities
across all the major asset classes. Finally, Asness, Frazzini,
and Pedersen (2012) report evidence of a low-beta effect
across asset classes consistent with our theory.

The rest of the paper is organized as follows. Section 2
lays out the theory, Section 3 describes our data and
empirical methodology, Sections 4–7 test Propositions 1–5,
and Section 8 concludes. Appendix A contains all proofs,
Appendix B provides a number of additional empirical
results and robustness tests, and Appendix C provides a
calibration of the model. The calibration shows that, to
match the strong BAB performance in the data, a large
fraction of agents must face severe constraints. An interest-
ing topic for future research is to empirically estimate
agents' leverage constraints and risk preferences and study
whether the magnitude of the BAB returns is consistent
with the model or should be viewed as a puzzle.
2. Theory

We consider an overlapping-generations (OLG) econ-
omy in which agents i¼1,…,I are born each time period t
with wealth Wi

t and live for two periods. Agents trade
securities s¼1,…,S, where security s pays dividends δst and
has xns shares outstanding.3 Each time period t, young
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agents choose a portfolio of shares x¼(x1,…,xS)′, investing
the rest of their wealth at the risk-free return rf, to
maximize their utility:

max x′ðEtðPtþ1þδtþ1Þ�ð1þrf ÞPtÞ�
γi

2
x′Ωtx; ð1Þ

where Pt is the vector of prices at time t, Ωt is the variance–
covariance matrix of Ptþ1þδtþ1, and γi is agent i's risk
aversion. Agent i is subject to the portfolio constraint

mi
t∑
s
xsPs

trWi
t ð2Þ

This constraint requires that some multiple mi
t of the total

dollars invested, the sum of the number of shares xs times
their prices Ps, must be less than the agent's wealth.

The investment constraint depends on the agent i. For
instance, some agents simply cannot use leverage, which is
captured by mi¼1 [as Black (1972) assumes]. Other agents
not only could be precluded from using leverage but also
must have some of their wealth in cash, which is captured
bymi greater than one. For instance, mi¼1/(1�0.20)¼1.25
represents an agent who must hold 20% of her wealth in
cash. For instance, a mutual fund could need some ready
cash to be able to meet daily redemptions, an insurance
company needs to pay claims, and individual investors
may need cash for unforeseen expenses.

Other agents could be able to use leverage but could
face margin constraints. For instance, if an agent faces a
margin requirement of 50%, then his mi is 0.50. With this
margin requirement, the agent can invest in assets worth
twice his wealth at most. A smaller margin requirement mi

naturally means that the agent can take greater positions.
Our formulation assumes for simplicity that all securities
have the same margin requirement, which may be true
when comparing securities within the same asset class
(e.g., stocks), as we do empirically. Garleanu and Pedersen
(2011) and Ashcraft, Garleanu, and Pedersen (2010) con-
sider assets with different margin requirements and show
theoretically and empirically that higher margin require-
ments are associated with higher required returns
(Margin CAPM).

We are interested in the properties of the competitive
equilibrium in which the total demand equals the supply:

∑
i
xi ¼ xn ð3Þ

To derive equilibrium, consider the first order condition for
agent i:

0¼ EtðPtþ1þδtþ1Þ�ð1þrf ÞPt�γiΩxi�ψ i
tPt ; ð4Þ

where ψi is the Lagrange multiplier of the portfolio con-
straint. Solving for xi gives the optimal position:

xi ¼ 1
γi
Ω�1ðEtðPtþ1þδtþ1Þ�ð1þrf þψ i

tÞPtÞ: ð5Þ

The equilibrium condition now follows from summing
over these positions:

xn ¼ 1
γ
Ω�1ðEtðPtþ1þδtþ1Þ�ð1þrf þψ tÞPtÞ; ð6Þ

where the aggregate risk aversion γ is defined by 1/γ¼
Σi1/γi and ψ t ¼∑iðγ=γiÞψ i

t is the weighted average Lagrange
multiplier. (The coefficients γ/γi sum to one by definition of
the aggregate risk aversion γ.) The equilibrium price can
then be computed:

Pt ¼ EtðPtþ1þδtþ1Þ�γΩxn

1þrf þψ t
; ð7Þ

Translating this into the return of any security ritþ1 ¼
ðPi

tþ1þδitþ1Þ=Pi
t�1, the return on the market rMtþ1,

and using the usual expression for beta, βst ¼ covt
ðrstþ1; r

M
tþ1Þ=vartðrMtþ1Þ, we obtain the following results.

(All proofs are in Appendix A, which also illustrates the
portfolio choice with leverage constraints in a mean-
standard deviation diagram.)

Proposition 1 (high beta is low alpha).
(i)
 The equilibrium required return for any security s is

Etðrstþ1Þ ¼ rf þψ tþβstλt ð8Þ
where the risk premium is λt ¼ EtðrMtþ1Þ�rf �ψ t and ψt
is the average Lagrange multiplier, measuring the tight-
ness of funding constraints.
(ii)
 A security's alpha with respect to the market is
αst ¼ ψ tð1�βst Þ. The alpha decreases in the beta, βst .
(iii)
 For an efficient portfolio, the Sharpe ratio is highest for
an efficient portfolio with a beta less than one and
decreases in βst for higher betas and increases for lower
betas.
As in Black's CAPM with restricted borrowing (in which
mi¼1 for all agents), the required return is a constant plus
beta times a risk premium. Our expression shows expli-
citly how risk premia are affected by the tightness of
agents' portfolio constraints, as measured by the average
Lagrange multiplier ψt. Tighter portfolio constraints (i.e., a
larger ψt) flatten the security market line by increasing the
intercept and decreasing the slope λt.
Whereas the standard CAPM implies that the intercept

of the security market line is rf, the intercept here is
increased by binding funding constraints (through the
weighted average of the agents' Lagrange multipliers).
One could wonder why zero-beta assets require returns
in excess of the risk-free rate. The answer has two parts.
First, constrained agents prefer to invest their limited
capital in riskier assets with higher expected return.
Second, unconstrained agents do invest considerable
amounts in zero-beta assets so, from their perspective,
the risk of these assets is not idiosyncratic, as additional
exposure to such assets would increase the risk of their
portfolio. Hence, in equilibrium, zero-beta risky assets
must offer higher returns than the risk-free rate.
Assets that have zero covariance to the Tobin (1958)

“tangency portfolio” held by an unconstrained agent do
earn the risk-free rate, but the tangency portfolio is not the
market portfolio in our equilibrium. The market portfolio
is the weighted average of all investors' portfolios, i.e., an
average of the tangency portfolio held by unconstrained
investors and riskier portfolios held by constrained inves-
tors. Hence, the market portfolio has higher risk and
expected return than the tangency portfolio, but a lower
Sharpe ratio.
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The portfolio constraints further imply a lower slope λt
of the security market line, i.e., a lower compensation for a
marginal increase in systematic risk. The slope is lower
because constrained agents need high unleveraged returns
and are, therefore, willing to accept less compensation for
higher risk.4

We next consider the properties of a factor that goes
long low-beta assets and shortsells high-beta assets.
To construct such a factor, let wL be the relative portfolio
weights for a portfolio of low-beta assets with return
rLtþ1 ¼w′

Lrtþ1 and consider similarly a portfolio of high-
beta assets with return rHtþ1. The betas of these portfolios
are denoted βLt and βHt , where βLt oβHt . We then construct a
betting against beta (BAB) factor as

rBABtþ1 ¼
1
βLt

ðrLtþ1�rf Þ� 1
βHt

ðrHtþ1�rf Þ ð9Þ

this portfolio is market-neutral; that is, it has a beta of
zero. The long side has been leveraged to a beta of one, and
the short side has been de-leveraged to a beta of one.
Furthermore, the BAB factor provides the excess return on
a self-financing portfolio, such as HML (high minus low)
and SMB (small minus big), because it is a difference
between excess returns. The difference is that BAB is not
dollar-neutral in terms of only the risky securities because
this would not produce a beta of zero.5 The model has
several predictions regarding the BAB factor.

Proposition 2 (positive expected return of BAB). The expected
excess return of the self-financing BAB factor is positive

EtðrBABtþ1Þ ¼
βHt �βLt
βLtβ

H
t

ψ tZ0 ð10Þ

and increasing in the ex ante beta spread ðβHt �βLt Þ=ðβLtβHt Þ and
funding tightness ψt.

Proposition 2 shows that a market-neutral BAB portfolio
that is long leveraged low-beta securities and short higher-
beta securities earns a positive expected return on average.
The size of the expected return depends on the spread in
the betas and how binding the portfolio constraints are in
the market, as captured by the average of the Lagrange
multipliers ψt.
Proposition 3 considers the effect of a shock to the

portfolio constraints (or margin requirements), mk, which
can be interpreted as a worsening of funding liquidity,
4 While the risk premium implied by our theory is lower than the
one implied by the CAPM, it is still positive. It is difficult to empirically
estimate a low risk premium and its positivity is not a focus of our
empirical tests as it does not distinguish our theory from the standard
CAPM. However, the data are generally not inconsistent with our
prediction as the estimated risk premium is positive and insignificant
for US stocks, negative and insignificant for international stocks, positive
and insignificant for Treasuries, positive and significant for credits across
maturities, and positive and significant across asset classes.

5 A natural BAB factor is the zero-covariance portfolio of Black (1972)
and Black, Jensen, and Scholes (1972). We consider a broader class of BAB
portfolios because we empirically consider a variety of BAB portfolios
within various asset classes that are subsets of all securities (e.g., stocks in
a particular size group). Therefore, our construction achieves market
neutrality by leveraging (and de-leveraging) the long and short sides
instead of adding the market itself as Black, Jensen, and Scholes
(1972) do.
a credit crisis in the extreme. Such a funding liquidity
shock results in losses for the BAB factor as its required
return increases. This happens because agents may need to
de-leverage their bets against beta or stretch even further
to buy the high-beta assets. Thus, the BAB factor is
exposed to funding liquidity risk, as it loses when portfolio
constraints become more binding.

Proposition 3 (funding shocks and BAB returns). A tighter
portfolio constraint, that is, an increase in mk

t for some of k,
leads to a contemporaneous loss for the BAB factor

∂rBABt

∂mk
t

r0 ð11Þ

and an increase in its future required return:

∂EtðrBABtþ1Þ
∂mk

t

Z0 ð12Þ

Funding shocks have further implications for the cross
section of asset returns and the BAB portfolio. Specifically,
a funding shock makes all security prices drop together
(that is, ð∂Ps

t=∂ψ tÞ=Ps
t is the same for all securities s).

Therefore, an increased funding risk compresses betas
toward one.6 If the BAB portfolio construction is based
on an information set that does not account for this
increased funding risk, then the BAB portfolio's conditional
market beta is affected.

Proposition 4 (beta compression). Suppose that all random
variables are identically and independently distributed (i.i.d.)
over time and δt is independent of the other random
variables. Further, at time t�1 after the BAB portfolio is
formed and prices are set, the conditional variance of the
discount factor 1/(1þrfþψt) rises (falls) due to new informa-
tion about mt and Wt. Then,
(i)
6

ing
requ
have
rises
mak
diffe
case
towa
The conditional return betas βit�1 of all securities are
compressed toward one (more dispersed), and
(ii)
 The conditional beta of the BAB portfolio becomes
positive (negative), even though it is market neutral
relative to the information set used for portfolio
formation.
In addition to the asset-pricing predictions that we
derive, funding constraints naturally affect agents' portfo-
lio choices. In particular, more-constrained investors tilt
toward riskier securities in equilibrium and less-
constrained agents tilt toward safer securities with higher
reward per unit of risk. To state this result, we write next
Garleanu and Pedersen (2011) find a complementary result, study-
securities with identical fundamental risk but different margin
irements. They find theoretically and empirically that such assets
similar betas when liquidity is good, but when funding liquidity risk
the high-margin securities have larger betas, as their high margins
e them more funding sensitive. Here, we study securities with
rent fundamental risk, but the same margin requirements. In this
, higher funding liquidity risk means that betas are compressed
rd one.



Table 1
Summary statistics: equities.

This table shows summary statistics as of June of each year. The sample includes all commons stocks on the Center for Research in Security Prices daily
stock files (shrcd equal to 10 or 11) and Xpressfeed Global security files (tcpi equal to zero). Mean ME is the average market value of equity, in billions of US
dollars. Means are pooled averages as of June of each year.

Country Local market index Number of
stocks, total

Number of
stocks, mean

Mean ME (firm,
billion of US dollars)

Mean ME (market,
billion of US dollars)

Start year End year

Australia MSCI Australia 3,047 894 0.57 501 1989 2012
Austria MSCI Austria 211 81 0.75 59 1989 2012
Belgium MSCI Belgium 425 138 1.79 240 1989 2012
Canada MSCI Canada 5,703 1,180 0.89 520 1984 2012
Denmark MSCI Denmark 413 146 0.83 119 1989 2012
Finland MSCI Finland 293 109 1.39 143 1989 2012
France MSCI France 1,815 589 2.12 1,222 1989 2012
Germany MSCI Germany 2,165 724 2.48 1,785 1989 2012
Hong Kong MSCI Hong Kong 1,793 674 1.22 799 1989 2012
Italy MSCI Italy 610 224 2.12 470 1989 2012
Japan MSCI Japan 5,009 2,907 1.19 3,488 1989 2012
Netherlands MSCI Netherlands 413 168 3.33 557 1989 2012
New Zealand MSCI New Zealand 318 97 0.87 81 1989 2012
Norway MSCI Norway 661 164 0.76 121 1989 2012
Singapore MSCI Singapore 1,058 375 0.63 240 1989 2012
Spain MSCI Spain 376 138 3.00 398 1989 2012
Sweden MSCI Sweden 1,060 264 1.30 334 1989 2012
Switzerland MSCI Switzerland 566 210 3.06 633 1989 2012
United Kingdom MSCI UK 6,126 1,766 1.22 2,243 1989 2012
United States CRSP value-weighted index 23,538 3,182 0.99 3,215 1926 2012

7 SMB, HML, and UMD are from Ken French's data library, and the
liquidity risk factor is from Wharton Research Data Service (WRDS).

8 Our results are robust to the choice of benchmark (local versus
global). We report these tests in Appendix B.

9 These factors mimic their U.S counterparts and follow Fama and
French (1992, 1993, 1996). See Asness and Frazzini (2013) for a detailed
description of their construction. The data can be downloaded at http://
www.econ.yale.edu/�af227/data_library.htm.
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period's security payoffs as

Ptþ1þδtþ1 ¼ EtðPtþ1þδtþ1Þþb PM
tþ1þδMtþ1�EtðPM

tþ1þδMtþ1Þ
� �

þe

ð13Þ
where b is a vector of market exposures, and e is a vector of
noise that is uncorrelated with the market. We have the
following natural result for the agents' positions.

Proposition 5 (constrained investors hold high betas). Uncon-
strained agents hold a portfolio of risky securities that has a
beta less than one; constrained agents hold portfolios of risky
securities with higher betas. If securities s and k are identical
except that s has a larger market exposure than k, bs4bk,
then any constrained agent j with greater than average
Lagrange multiplier, ψ j

t4ψ t , holds more shares of s than k.
The reverse is true for any agent with ψ j

toψ t .

We next provide empirical evidence for Propositions
1–5. Beyond matching the data qualitatively, Appendix C
illustrates how well a calibrated model can quantitatively
match the magnitude of the estimated BAB returns.

3. Data and methodology

The data in this study are collected from several
sources. The sample of US and international equities has
55,600 stocks covering 20 countries, and the summary
statistics for stocks are reported in Table 1. Stock return
data are from the union of the Center for Research in
Security Prices (CRSP) tape and the Xpressfeed Global
database. Our US equity data include all available common
stocks on CRSP between January 1926 and March 2012,
and betas are computed with respect to the CRSP value-
weighted market index. Excess returns are above the US
Treasury bill rate. We consider alphas with respect to the
market factor and factor returns based on size (SMB),
book-to-market (HML), momentum (up minus down,
UMD), and (when available) liquidity risk.7

The international equity data include all available
common stocks on the Xpressfeed Global daily security
file for 19 markets belonging to the MSCI developed
universe between January 1989 and March 2012. We
assign each stock to its corresponding market based on
the location of the primary exchange. Betas are computed
with respect to the corresponding MSCI local market
index.8

All returns are in US dollars, and excess returns are
above the US Treasury bill rate. We compute alphas with
respect to the international market and factor returns
based on size (SMB), book-to-market (HML), and momen-
tum (UMD) from Asness and Frazzini (2013) and (when
available) liquidity risk.9

We also consider a variety of other assets. Table 2
contains the list of instruments and the corresponding
ranges of available data. We obtain US Treasury bond data
from the CRSP US Treasury Database, using monthly
returns (in excess of the one-month Treasury bill) on the

http://www.econ.yale.edu/~af227/data_library.htm
http://www.econ.yale.edu/~af227/data_library.htm
http://www.econ.yale.edu/~af227/data_library.htm


Table 2
Summary statistics: other asset classes.

This table reports the securities included in our data sets and the corresponding date range.

Asset class Instrument Frequency Start year End year

Equity indices Australia Daily 1977 2012
Germany Daily 1975 2012
Canada Daily 1975 2012
Spain Daily 1980 2012
France Daily 1975 2012
Hong Kong Daily 1980 2012
Italy Daily 1978 2012
Japan Daily 1976 2012
Netherlands Daily 1975 2012
Sweden Daily 1980 2012
Switzerland Daily 1975 2012
United Kingdom Daily 1975 2012
United States Daily 1965 2012

Country bonds Australia Daily 1986 2012
Germany Daily 1980 2012
Canada Daily 1985 2012
Japan Daily 1982 2012
Norway Daily 1989 2012
Sweden Daily 1987 2012
Switzerland Daily 1981 2012
United Kingdom Daily 1980 2012
United States Daily 1965 2012

Foreign exchange Australia Daily 1977 2012
Germany Daily 1975 2012
Canada Daily 1975 2012
Japan Daily 1976 2012
Norway Daily 1989 2012
New Zealand Daily 1986 2012
Sweden Daily 1987 2012
Switzerland Daily 1975 2012
United Kingdom Daily 1975 2012

US Treasury bonds Zero to one year Monthly 1952 2012
One to two years Monthly 1952 2012
Two to three years Monthly 1952 2012
Three to four years Monthly 1952 2012
Four to five years Monthly 1952 2012
Four to ten years Monthly 1952 2012
More than ten years Monthly 1952 2012

Credit indices One to three years Monthly 1976 2012
Three to five year Monthly 1976 2012
Five to ten years Monthly 1991 2012
Seven to ten years Monthly 1988 2012

Corporate bonds Aaa Monthly 1973 2012
Aa Monthly 1973 2012
A Monthly 1973 2012
Baa Monthly 1973 2012
Ba Monthly 1983 2012
B Monthly 1983 2012
Caa Monthly 1983 2012
Ca-D Monthly 1993 2012
Distressed Monthly 1986 2012

Commodities Aluminum Daily 1989 2012
Brent oil Daily 1989 2012
Cattle Daily 1989 2012
Cocoa Daily 1984 2012
Coffee Daily 1989 2012
Copper Daily 1989 2012
Corn Daily 1989 2012
Cotton Daily 1989 2012
Crude Daily 1989 2012
Gasoil Daily 1989 2012
Gold Daily 1989 2012
Heat oil Daily 1989 2012
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Table 2 (continued )

Asset class Instrument Frequency Start year End year

Hogs Daily 1989 2012
Lead Daily 1989 2012
Nat gas Daily 1989 2012
Nickel Daily 1984 2012
Platinum Daily 1989 2012
Silver Daily 1989 2012
Soymeal Daily 1989 2012
Soy oil Daily 1989 2012
Sugar Daily 1989 2012
Tin Daily 1989 2012
Unleaded Daily 1989 2012
Wheat Daily 1989 2012
Zinc Daily 1989 2012
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Fama Bond portfolios for maturities ranging from one to
ten years between January 1952 and March 2012. Each
portfolio return is an equal-weighted average of the
unadjusted holding period return for each bond in the
portfolio. Only non-callable, non-flower notes and bonds
are included in the portfolios. Betas are computed with
respect to an equally weighted portfolio of all bonds in the
database.

We collect aggregate corporate bond index returns
from Barclays Capital's Bond.Hub database.10 Our analysis
focuses on the monthly returns (in excess of the one-
month Treasury bill) of four aggregate US credit indices
with maturity ranging from one to ten years and nine
investment-grade and high-yield corporate bond portfo-
lios with credit risk ranging from AAA to Ca-D and
Distressed.11 The data cover the period between January
1973 and March 2012, although the data availability varies
depending on the individual bond series. Betas are com-
puted with respect to an equally weighted portfolio of all
bonds in the database.

We also study futures and forwards on country equity
indexes, country bond indexes, foreign exchange, and
commodities. Return data are drawn from the internal
pricing data maintained by AQR Capital Management LLC.
The data are collected from a variety of sources and
contain daily return on futures, forwards, or swap con-
tracts in excess of the relevant financing rate. The type of
contract for each asset depends on availability or the
relative liquidity of different instruments. Prior to expira-
tion, positions are rolled over into the next most-liquid
contract. The rolling date's convention differs across con-
tracts and depends on the relative liquidity of different
maturities. The data cover the period between January
1963 and March 2012, with varying data availability
depending on the asset class. For more details on the
computation of returns and data sources, see Moskowitz,
Ooi, and Pedersen (2012), Appendix A. For equity indexes,
country bonds, and currencies, the betas are computed
with respect to a gross domestic product (GDP)-weighted
portfolio, and for commodities, the betas are computed
10 The data can be downloaded at https://live.barcap.com.
11 The distress index was provided to us by Credit Suisse.
with respect to a diversified portfolio that gives equal risk
weight across commodities.

Finally, we use the TED spread as a proxy for time
periods when credit constraints are more likely to be
binding [as in Garleanu and Pedersen (2011) and others].
The TED spread is defined as the difference between the
three-month Eurodollar LIBOR and the three-month US
Treasuries rate. Our TED data run from December 1984 to
March 2012.

3.1. Estimating ex ante betas

We estimate pre-ranking betas from rolling regressions
of excess returns on market excess returns. Whenever
possible, we use daily data, rather than monthly data, as
the accuracy of covariance estimation improves with the
sample frequency (Merton, 1980).12 Our estimated beta for
security i is given by

β̂
ts
i ¼ ρ̂

ŝi
ŝm

; ð14Þ

where ŝi and ŝm are the estimated volatilities for the stock
and the market and ρ̂ is their correlation. We estimate
volatilities and correlations separately for two reasons.
First, we use a one-year rolling standard deviation for
volatilities and a five-year horizon for the correlation to
account for the fact that correlations appear to move more
slowly than volatilities.13 Second, we use one-day log
returns to estimate volatilities and overlapping three-day
log returns, r3di;t ¼∑2

k ¼ 0 lnð1þritþkÞ, for correlation to con-
trol for nonsynchronous trading (which affects only corre-
lations). We require at least six months (120 trading days)
of non-missing data to estimate volatilities and at least
three years (750 trading days) of non-missing return data
for correlations. If we have access only to monthly data, we
use rolling one and five-year windows and require at least
12 and 36 observations.

Finally, to reduce the influence of outliers, we follow
Vasicek (1973) and Elton, Gruber, Brown, and Goetzmann
(2003) and shrink the time series estimate of beta ðβTSi Þ
12 Daily returns are not available for our sample of US Treasury
bonds, US corporate bonds, and US credit indices.

13 See, for example, De Santis and Gerard (1997).

https://live.barcap.com
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toward the cross-sectional mean ðβXSÞ:

β̂i ¼wiβ̂
TS
i þð1�wiÞβ̂

XS ð15Þ

for simplicity, instead of having asset-specific and time-
varying shrinkage factors as in Vasicek (1973), we set
w¼0.6 and βXS¼1 for all periods and across all assets.
However, our results are very similar either way.14

Our choice of the shrinkage factor does not affect how
securities are sorted into portfolios because the common
shrinkage does not change the ranks of the security betas.
However, the amount of shrinkage affects the construction of
the BAB portfolios because the estimated betas are used to
scale the long and short sides of portfolio as seen in Eq. (9).

To account for the fact that noise in the ex ante betas
affects the construction of the BAB factors, our inference is
focused on realized abnormal returns so that any mis-
match between ex ante and (ex post) realized betas is
picked up by the realized loadings in the factor regression.
When we regress our portfolios on standard risk factors,
the realized factor loadings are not shrunk as above
because only the ex ante betas are subject to selection
bias. Our results are robust to alternative beta estimation
procedures as we report in Appendix B.

We compute betas with respect to a market portfolio,
which is either specific to an asset class or the overall
world market portfolio of all assets. While our results hold
both ways, we focus on betas with respect to asset class-
specific market portfolios because these betas are less
noisy for several reasons. First, this approach allows us to
use daily data over a long time period for most asset
classes, as opposed to using the most diversified market
portfolio for which we only have monthly data and only
over a limited time period. Second, this approach is
applicable even if markets are segmented.

As a robustness test, Table B8 in Appendix B reports
results when we compute betas with respect to a proxy for a
world market portfolio consisting of many asset classes. We
use the world market portfolio from Asness, Frazzini, and
Pedersen (2012).15 The results are consistent with our main
tests as the BAB factors earn large and significant abnormal
returns in each of the asset classes in our sample.
3.2. Constructing betting against beta factors

We construct simple portfolios that are long low-beta
securities and that shortsell high-beta securities (BAB factors).
To construct each BAB factor, all securities in an asset class are
ranked in ascending order on the basis of their estimated
beta. The ranked securities are assigned to one of two
portfolios: low-beta and high-beta. The low- (high-) beta
14 The Vasicek (1973) Bayesian shrinkage factor is given by
wi ¼ 1�s2i;TS=ðs2i;TSþs2XSÞ where s2i;TS is the variance of the estimated beta
for security i and s2XS is the cross-sectional variance of betas. This
estimator places more weight on the historical times series estimate
when the estimate has a lower variance or when there is large dispersion
of betas in the cross section. Pooling across all stocks in our US equity
data, the shrinkage factor w has a mean of 0.61.

15 See Asness, Frazzini, and Pedersen (2012) for a detailed description
of this market portfolio. The market series is monthly and ranges from
1973 to 2009.
portfolio is composed of all stocks with a beta below (above)
its asset class median (or country median for international
equities). In each portfolio, securities are weighted by the
ranked betas (i.e., lower-beta securities have larger weights in
the low-beta portfolio and higher-beta securities have larger
weights in the high-beta portfolio). The portfolios are reba-
lanced every calendar month.

More formally, let z be the n�1 vector of beta ranks
zi¼rank(βit) at portfolio formation, and let z¼ 1′

nz=n be the
average rank, where n is the number of securities and 1n is
an n�1 vector of ones. The portfolio weights of the low-
beta and high-beta portfolios are given by

wH ¼ kðz�zÞþ
wL ¼ kðz�zÞ� ð16Þ

where k is a normalizing constant k¼ 2=1′
njz�zj and xþ

and x� indicate the positive and negative elements of a
vector x. By construction, we have 1′

nwH ¼ 1 and 1′
nwL ¼ 1.

To construct the BAB factor, both portfolios are rescaled to
have a beta of one at portfolio formation. The BAB is the
self-financing zero-beta portfolio (8) that is long the low-
beta portfolio and that shortsells the high-beta portfolio.

rBABtþ1 ¼
1
βLt

ðrLtþ1�rf Þ� 1
βHt

ðrHtþ1�rf Þ; ð17Þ

where rLtþ1 ¼ r′tþ1wL; rHtþ1 ¼ r′tþ1 wH ; β
L
t ¼ β′twL; and βHt ¼ β′twH .

For example, on average, the US stock BAB factor is long
$1.4 of low-beta stocks (financed by shortselling $1.4 of
risk-free securities) and shortsells $0.7 of high-beta stocks
(with $0.7 earning the risk-free rate).

3.3. Data used to test the theory's portfolio predictions

We collect mutual fund holdings from the union of the
CRSP Mutual Fund Database and Thomson Financial CDA/
Spectrum holdings database, which includes all registered
domestic mutual funds filing with the Securities and Exchange
Commission. The holdings data run from March 1980 to
March 2012. We focus our analysis on open-end, actively
managed, domestic equity mutual funds. Our sample selection
procedure follows that of Kacperczyk, Sialm, and Zheng
(2008), and we refer to their Appendix for details about the
screens that were used and summary statistics of the data.

Our individual investors' holdings data are collected
from a nationwide discount brokerage house and contain
trades made by about 78 thousand households in the
period from January 1991 to November 1996. This data
set has been used extensively in the existing literature on
individual investors. For a detailed description of the
brokerage data set, see Barber and Odean (2000).

Our sample of buyouts is drawn from the mergers and
acquisitions and corporate events database maintained by
AQR/CNH Partners.16 The data contain various items,
including initial and subsequent announcement dates,
and (if applicable) completion or termination date for all
takeover deals in which the target is a US publicly traded
16 We would like to thank Mark Mitchell for providing us with
these data.



17 We keep the international portfolio country neutral because we
report the result of betting against beta across equity indices BAB
separately in Table 8.
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firm and where the acquirer is a private company. For
some (but not all) deals, the acquirer descriptor also
contains information on whether the deal is a leveraged
buyout (LBO) or management buyout (MBO). The data run
from January 1963 to March 2012.

Finally, we download holdings data for Berkshire Hath-
away from Thomson-Reuters Financial Institutional (13f)
Holding Database. The data run from March 1980 to
March 2012.

4. Betting against beta in each asset class

We now test how the required return varies in the
cross-section of beta-sorted securities (Proposition 1) and
the hypothesis that the BAB factors have positive average
returns (Proposition 2). As an overview of these results,
the alphas of all the beta-sorted portfolios considered in
this paper are plotted in Fig. 1. We see that declining
alphas across beta-sorted portfolios are general phenom-
ena across asset classes. (Fig. B1 in Appendix B plots the
Sharpe ratios of beta-sorted portfolios and also shows a
consistently declining pattern.)

Fig. 2 plots the annualized Sharpe ratios of the BAB
portfolios in the various asset classes. All the BAB portfo-
lios deliver positive returns, except for a small insignif-
icantly negative return in Austrian stocks. The BAB
portfolios based on large numbers of securities (US stocks,
international stocks, Treasuries, credits) deliver high risk-
adjusted returns relative to the standard risk factors
considered in the literature.

4.1. Stocks

Table 3 reports our tests for US stocks. We consider ten
beta-sorted portfolios and report their average returns,
alphas, market betas, volatilities, and Sharpe ratios. The
average returns of the different beta portfolios are similar,
which is the well-known relatively flat security market
line. Hence, consistent with Proposition 1 and with Black
(1972), the alphas decline almost monotonically from the
low-beta to high-beta portfolios. The alphas decline when
estimated relative to a one-, three-, four-, and five-factor
model. Moreover, Sharpe ratios decline monotonically
from low-beta to high-beta portfolios.

The rightmost column of Table 3 reports returns of the
betting against beta factor, i.e., a portfolio that is long
leveraged low-beta stocks and that shortsells de-leveraged
high-beta stocks, thus maintaining a beta-neutral portfo-
lio. Consistent with Proposition 2, the BAB factor delivers a
high average return and a high alpha. Specifically, the BAB
factor has Fama and French (1993) abnormal returns of
0.73% per month (t-statistic¼7.39). Further adjusting
returns for the Carhart (1997) momentum factor, the BAB
portfolio earns abnormal returns of 0.55% per month
(t-statistic¼5.59). Last, we adjust returns using a five-
factor model by adding the traded liquidity factor by
Pastor and Stambaugh (2003), yielding an abnormal BAB
return of 0.55% per month (t-statistic¼4.09, which is
lower in part because the liquidity factor is available
during only half of our sample). While the alpha of the
long-short portfolio is consistent across regressions, the
choice of risk adjustment influences the relative alpha
contribution of the long and short sides of the portfolio.

Our results for US equities show how the security
market line has continued to be too flat for another four
decades after Black, Jensen, and Scholes (1972). Further,
our results extend internationally. We consider beta-
sorted portfolios for international equities and later turn
to altogether different asset classes. We use all 19 MSCI
developed countries except the US (to keep the results
separate from the US results above), and we do this in two
ways: We consider international portfolios in which all
international stocks are pooled together (Table 4), and we
consider results separately for each country (Table 5). The
international portfolio is country-neutral, i.e., the low-
(high-) beta portfolio is composed of all stocks with a beta
below (above) its country median.17

The results for our pooled sample of international
equities in Table 4 mimic the US results. The alpha and
Sharpe ratios of the beta-sorted portfolios decline
(although not perfectly monotonically) with the betas,
and the BAB factor earns risk-adjusted returns between
0.28% and 0.64% per month depending on the choice of
risk adjustment, with t-statistics ranging from 2.09 to 4.81.

Table 5 shows the performance of the BAB factor within
each individual country. The BAB delivers positive Sharpe
ratios in 18 of the 19 MSCI developed countries and
positive four-factor alphas in 13 out of 19, displaying a
strikingly consistent pattern across equity markets. The
BAB returns are statistically significantly positive in six
countries, while none of the negative alphas is significant.
Of course, the small number of stocks in our sample in
many of the countries makes it difficult to reject the null
hypothesis of zero return in each individual country.

Table B1 in Appendix B reports factor loadings. On
average, the US BAB factor goes long $1.40 ($1.40 for
international BAB) and shortsells $0.70 ($0.89 for interna-
tional BAB). The larger long investment is meant to make
the BAB factor market-neutral because the stocks that are
held long have lower betas. The BAB factor's realized
market loading is not exactly zero, reflecting the fact that
our ex ante betas are measured with noise. The other
factor loadings indicate that, relative to high-beta stocks,
low-beta stocks are likely to be larger, have higher book-
to-market ratios, and have higher return over the prior 12
months, although none of the loadings can explain the
large and significant abnormal returns. The BAB portfolio's
positive HML loading is natural since our theory predicts
that low-beta stocks are cheap and high-beta stocks are
expensive.

Appendix B reports further tests and additional robust-
ness checks. In Table B2, we report results using different
window lengths to estimate betas and different bench-
marks (local, global). We split the sample by size (Table B3)
and time periods (Table B4), we control for idiosyncratic
volatility (Table B5), and we report results for alternative



Fig. 1. Alphas of beta-sorted portfolios. This figure shows monthly alphas. The test assets are beta-sorted portfolios. At the beginning of each calendar
month, securities are ranked in ascending order on the basis of their estimated beta at the end of the previous month. The ranked securities are assigned to
beta-sorted portfolios. This figure plots alphas from low beta (left) to high beta (right). Alpha is the intercept in a regression of monthly excess return. For
equity portfolios, the explanatory variables are the monthly returns from Fama and French (1993), Asness and Frazzini (2013), and Carhart (1997)
portfolios. For all other portfolios, the explanatory variables are the monthly returns of the market factor. Alphas are in monthly percent.
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definitions of the risk-free rate (Table B6). Finally, in Table
B7 and Fig. B2 we report an out-of-sample test. We collect
pricing data from DataStream and for each country in
Table 1 we compute a BAB portfolio over sample period
not covered by the Xpressfeed Global database.18 All of the
results are consistent: Equity portfolios that bet against
betas earn significant risk-adjusted returns.
4.2. Treasury bonds

Table 6 reports results for US Treasury bonds. As before,
we report average excess returns of bond portfolios
formed by sorting on beta in the previous month. In the
cross section of Treasury bonds, ranking on betas with
18 DataStream international pricing data start in 1969, and Xpress-
feed Global coverage starts in 1984.
respect to an aggregate Treasury bond index is empirically
equivalent to ranking on duration or maturity. Therefore,
in Table 6, one can think of the term “beta,” “duration,” or
“maturity” in an interchangeable fashion. The right-most
column reports returns of the BAB factor. Abnormal
returns are computed with respect to a one-factor model
in which alpha is the intercept in a regression of monthly
excess return on an equally weighted Treasury bond
excess market return.

The results show that the phenomenon of a flatter security
market line than predicted by the standard CAPM is not
limited to the cross section of stock returns. Consistent with
Proposition 1, the alphas decline monotonically with beta.
Likewise, Sharpe ratios decline monotonically from 0.73 for
low-beta (short-maturity) bonds to 0.31 for high-beta (long-
maturity) bonds. Furthermore, the bond BAB portfolio deli-
vers abnormal returns of 0.17% per month (t-statistic¼6.26)
with a large annual Sharpe ratio of 0.81.
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Fig. 2. Betting against beta (BAB) Sharpe ratios by asset class. This figures shows annualized Sharpe ratios of BAB factors across asset classes. To construct
the BAB factor, all securities are assigned to one of two portfolios: low beta and high beta. Securities are weighted by the ranked betas and the portfolios are
rebalanced every calendar month. Both portfolios are rescaled to have a beta of one at portfolio formation. The BAB factor is a self-financing portfolio that is
long the low-beta portfolio and shorts the high-beta portfolio. Sharpe ratios are annualized.
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Because the idea that funding constraints have a sig-
nificant effect on the term structure of interest could be
surprising, let us illustrate the economic mechanism that
could be at work. Suppose an agent, e.g., a pension fund,
has $1 to allocate to Treasuries with a target excess return
of 2.9% per year. One way to achieve this return target is to
invest $1 in a portfolio of Treasuries with maturity above
ten years as seen in Table 6, P7. If the agent invests in one-
year Treasuries (P1) instead, then he would need to invest
$11 if all maturities had the same Sharpe ratio. This higher
leverage is needed because the long-term Treasures are 11
times more volatile than the short-term Treasuries. Hence,
the agent would need to borrow an additional $10 to lever
his investment in one-year bonds. If the agent has leverage
limits (or prefers lower leverage), then he would strictly
prefer the ten-year Treasuries in this case.

According to our theory, the one-year Treasuries there-
fore must offer higher returns and higher Sharpe ratios,
flattening the security market line for bonds. Empirically,
short-term Treasuries do offer higher risk-adjusted returns
so the return target can be achieved by investing about $5
in one-year bonds. While a constrained investor could still
prefer an un-leveraged investment in ten-year bonds,
unconstrained investors now prefer the leveraged low-
beta bonds, and the market can clear.
While the severity of leverage constraints varies across
market participants, it appears plausible that a five-to-one
leverage (on this part of the portfolio) makes a difference
for some large investors such as pension funds.

4.3. Credit

We next test our model using several credit portfolios and
report results in Table 7. In Panel A, columns 1 to 5, the test
assets are monthly excess returns of corporate bond indexes
by maturity. We see that the credit BAB portfolio delivers
abnormal returns of 0.11% per month (t-statistic¼5.14) with a
large annual Sharpe ratio of 0.82. Furthermore, alphas and
Sharpe ratios decline monotonically.

In columns 6 to 10, we attempt to isolate the credit
component by hedging away the interest rate risk. Given
the results on Treasuries in Table 6, we are interested in
testing a pure credit version of the BAB portfolio. Each
calendar month, we run one-year rolling regressions of
excess bond returns on the excess return on Barclay's US
government bond index. We construct test assets by going
long the corporate bond index and hedging this position
by shortselling the appropriate amount of the government
bond index: rCDSt �rft ¼ ðrt�rft Þ� θ̂t�1ðrUSGOVt �rft Þ, where
θ̂t�1 is the slope coefficient estimated in an expanding



Table 3
US equities: returns, 1926–2012.

This table shows beta-sorted calendar-time portfolio returns. At the beginning of each calendar month, stocks are ranked in ascending order on the basis
of their estimated beta at the end of the previous month. The ranked stocks are assigned to one of ten deciles portfolios based on NYSE breakpoints. All
stocks are equally weighted within a given portfolio, and the portfolios are rebalanced every month to maintain equal weights. The right-most column
reports returns of the zero-beta betting against beta (BAB) factor. To construct the BAB factor, all stocks are assigned to one of two portfolios: low beta and
high beta. Stocks are weighted by the ranked betas (lower beta security have larger weight in the low-beta portfolio and higher beta securities have larger
weights in the high-beta portfolio), and the portfolios are rebalanced every calendar month. Both portfolios are rescaled to have a beta of one at portfolio
formation. The betting against beta factor is a self-financing portfolio that is long the low-beta portfolio and short the high-beta portfolio. This table
includes all available common stocks on the Center for Research in Security Prices database between January 1926 and March 2012. Alpha is the intercept
in a regression of monthly excess return. The explanatory variables are the monthly returns from Fama and French (1993) mimicking portfolios, Carhart
(1997) momentum factor and Pastor and Stambaugh (2003) liquidity factor. CAPM¼Capital Asset Pricing Model. Regarding the five-factor alphas the Pastor
and Stambaugh (2003) liquidity factor is available only between 1968 and 2011. Returns and alphas are in monthly percent, t-statistics are shown below the
coefficient estimates, and 5% statistical significance is indicated in bold. Beta (ex ante) is the average estimated beta at portfolio formation. Beta (realized) is
the realized loading on the market portfolio. Volatilities and Sharpe ratios are annualized.

Portfolio P1
(low beta)

P2 P3 P4 P5 P6 P7 P8 P9 P10
(high beta)

BAB

Excess return 0.91 0.98 1.00 1.03 1.05 1.10 1.05 1.08 1.06 0.97 0.70
(6.37) (5.73) (5.16) (4.88) (4.49) (4.37) (3.84) (3.74) (3.27) (2.55) (7.12)

CAPM alpha 0.52 0.48 0.42 0.39 0.34 0.34 0.22 0.21 0.10 �0.10 0.73
(6.30) (5.99) (4.91) (4.43) (3.51) (3.20) (1.94) (1.72) (0.67) (�0.48) (7.44)

Three-factor alpha 0.40 0.35 0.26 0.21 0.13 0.11 �0.03 �0.06 �0.22 �0.49 0.73
(6.25) (5.95) (4.76) (4.13) (2.49) (1.94) (�0.59) (�1.02) (�2.81) (�3.68) (7.39)

Four-factor alpha 0.40 0.37 0.30 0.25 0.18 0.20 0.09 0.11 0.01 �0.13 0.55
(6.05) (6.13) (5.36) (4.92) (3.27) (3.63) (1.63) (1.94) (0.12) (�1.01) (5.59)

Five-factor alpha 0.37 0.37 0.33 0.30 0.17 0.20 0.11 0.14 0.02 0.00 0.55
(4.54) (4.66) (4.50) (4.40) (2.44) (2.71) (1.40) (1.65) (0.21) (�0.01) (4.09)

Beta (ex ante) 0.64 0.79 0.88 0.97 1.05 1.12 1.21 1.31 1.44 1.70 0.00
Beta (realized) 0.67 0.87 1.00 1.10 1.22 1.32 1.42 1.51 1.66 1.85 �0.06
Volatility 15.70 18.70 21.11 23.10 25.56 27.58 29.81 31.58 35.52 41.68 10.75
Sharpe ratio 0.70 0.63 0.57 0.54 0.49 0.48 0.42 0.41 0.36 0.28 0.78

Table 4
International equities: returns, 1984–2012.

This table shows beta-sorted calendar-time portfolio returns. At the beginning of each calendar month, stocks are ranked in ascending order on the basis
of their estimated beta at the end of the previous month. The ranked stocks are assigned to one of ten deciles portfolios. All stocks are equally weighted
within a given portfolio, and the portfolios are rebalanced every month to maintain equal weights. The rightmost column reports returns of the zero-beta
betting against beta (BAB) factor. To construct the BAB factor, all stocks are assigned to one of two portfolios: low beta and high beta. The low- (high-) beta
portfolio is composed of all stocks with a beta below (above) its country median. Stocks are weighted by the ranked betas (lower beta security have larger
weight in the low-beta portfolio and higher beta securities have larger weights in the high-beta portfolio), and the portfolios are rebalanced every calendar
month. Both portfolios are rescaled to have a beta of one at portfolio formation. The betting against beta factor is a self-financing portfolio that is long the
low-beta portfolio and short the high-beta portfolio. This table includes all available common stocks on the Xpressfeed Global database for the 19 markets
listed in Table 1. The sample period runs from January 1984 to March 2012. Alpha is the intercept in a regression of monthly excess return. The explanatory
variables are the monthly returns of Asness and Frazzini (2013) mimicking portfolios and Pastor and Stambaugh (2003) liquidity factor. CAPM¼Capital
Asset Pricing Model. Regarding the five-factor alphas the Pastor and Stambaugh (2003) liquidity factor is available only between 1968 and 2011. Returns are
in US dollars and do not include any currency hedging. Returns and alphas are in monthly percent, t-statistics are shown below the coefficient estimates,
and 5% statistical significance is indicated in bold. Beta (ex-ante) is the average estimated beta at portfolio formation. Beta (realized) is the realized loading
on the market portfolio. Volatilities and Sharpe ratios are annualized.

Portfolio P1
(low beta)

P2 P3 P4 P5 P6 P7 P8 P9 P10
(high beta)

BAB

Excess return 0.63 0.67 0.69 0.58 0.67 0.63 0.54 0.59 0.44 0.30 0.64
(2.48) (2.44) (2.39) (1.96) (2.19) (1.93) (1.57) (1.58) (1.10) (0.66) (4.66)

CAPM alpha 0.45 0.47 0.48 0.36 0.44 0.39 0.28 0.32 0.15 0.00 0.64
(2.91) (3.03) (2.96) (2.38) (2.86) (2.26) (1.60) (1.55) (0.67) (�0.01) (4.68)

Three-factor alpha 0.28 0.30 0.29 0.16 0.22 0.11 0.01 �0.03 �0.23 �0.50 0.65
(2.19) (2.22) (2.15) (1.29) (1.71) (0.78) (0.06) (�0.17) (�1.20) (�1.94) (4.81)

Four-factor alpha 0.20 0.24 0.20 0.10 0.19 0.08 0.04 0.06 �0.16 �0.16 0.30
(1.42) (1.64) (1.39) (0.74) (1.36) (0.53) (0.27) (0.35) (�0.79) (�0.59) (2.20)

Five-factor alpha 0.19 0.23 0.19 0.09 0.20 0.07 0.05 0.05 �0.19 �0.18 0.28
(1.38) (1.59) (1.30) (0.65) (1.40) (0.42) (0.33) (0.30) (�0.92) (�0.65) (2.09)

Beta (ex ante) 0.61 0.70 0.77 0.83 0.88 0.93 0.99 1.06 1.15 1.35 0.00
Beta (realized) 0.66 0.75 0.78 0.85 0.87 0.92 0.98 1.03 1.09 1.16 �0.02
Volatility 14.97 16.27 17.04 17.57 18.08 19.42 20.42 22.05 23.91 27.12 8.07
Sharpe ratio 0.50 0.50 0.48 0.40 0.44 0.39 0.32 0.32 0.22 0.13 0.95
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regression using data from the beginning of the sample
and up to month t�1. One interpretation of this returns
series is that it approximates the returns on a credit
default swap (CDS). We compute market returns by taking
the equally weighted average of these hedged returns, and
we compute betas and BAB portfolios as before. Abnormal



Table 5
International equities: returns by country, 1984–2012.

This table shows calendar-time portfolio returns. At the beginning of each calendar month, all stocks are assigned to one of two portfolios: low beta and
high beta. The low- (high-) beta portfolio is composed of all stocks with a beta below (above) its country median. Stocks are weighted by the ranked betas,
and the portfolios are rebalanced every calendar month. Both portfolios are rescaled to have a beta of one at portfolio formation. The zero-beta betting
against beta (BAB) factor is a self-financing portfolio that is long the low-beta portfolio and short the high-beta portfolio. This table includes all available
common stocks on the Xpressfeed Global database for the 19 markets listed in Table 1. The sample period runs from January 1984 to March 2012. Alpha is
the intercept in a regression of monthly excess return. The explanatory variables are the monthly returns of Asness and Frazzini (2013) mimicking
portfolios. Returns are in US dollars and do not include any currency hedging. Returns and alphas are in monthly percent, and 5% statistical significance is
indicated in bold. $Short (Long) is the average dollar value of the short (long) position. Volatilities and Sharpe ratios are annualized.

Country Excess
return

t-Statistics
Excess return

Four-factor
alpha

t-Statistics
alpha

$Short $Long Volatility Sharpe ratio

Australia 0.11 0.36 0.03 0.10 0.80 1.26 16.7 0.08
Austria �0.03 �0.09 �0.28 �0.72 0.90 1.44 19.9 �0.02
Belgium 0.71 2.39 0.72 2.28 0.94 1.46 16.9 0.51
Canada 1.23 5.17 0.67 2.71 0.85 1.45 14.1 1.05
Switzerland 0.75 2.91 0.54 2.07 0.93 1.47 14.6 0.61
Germany 0.40 1.30 �0.07 �0.22 0.94 1.58 17.3 0.27
Denmark 0.41 1.47 �0.02 �0.07 0.91 1.40 15.7 0.31
Spain 0.59 2.12 0.23 0.80 0.92 1.44 15.6 0.45
Finland 0.65 1.51 �0.10 �0.22 1.08 1.64 24.0 0.33
France 0.26 0.63 �0.37 �0.82 0.92 1.57 23.7 0.13
United Kingdom 0.49 1.99 �0.01 �0.05 0.91 1.53 13.9 0.42
Hong Kong 0.85 2.50 1.01 2.79 0.83 1.38 19.1 0.54
Italy 0.29 1.41 0.04 0.17 0.91 1.35 11.8 0.30
Japan 0.21 0.90 0.01 0.06 0.87 1.39 13.3 0.19
Netherlands 0.98 3.62 0.79 2.75 0.91 1.45 15.4 0.77
Norway 0.44 1.15 0.34 0.81 0.85 1.33 21.3 0.25
New Zealand 0.74 2.28 0.62 1.72 0.94 1.36 18.1 0.49
Singapore 0.66 3.37 0.52 2.36 0.79 1.24 11.0 0.72
Sweden 0.77 2.29 0.22 0.64 0.89 1.34 19.0 0.48

Table 6
US Treasury bonds: returns, 1952–2012.

This table shows calendar-time portfolio returns. The test assets are the Center for Research in Security Prices Treasury Fama bond portfolios. Only non
callable, non flower notes and bonds are included in the portfolios. The portfolio returns are an equal-weighted average of the unadjusted holding period
return for each bond in the portfolios in excess of the risk-free rate. To construct the zero-beta betting against beta (BAB) factor, all bonds are assigned to
one of two portfolios: low beta and high beta. Bonds are weighted by the ranked betas (lower beta bonds have larger weight in the low-beta portfolio and
higher beta bonds have larger weights in the high-beta portfolio) and the portfolios are rebalanced every calendar month. Both portfolios are rescaled to
have a beta of one at portfolio formation. The BAB factor is a self-financing portfolio that is long the low-beta portfolio and shorts the high-beta portfolio.
Alpha is the intercept in a regression of monthly excess return. The explanatory variable is the monthly return of an equally weighted bond market
portfolio. The sample period runs from January 1952 to March 2012. Returns and alphas are in monthly percent, t-statistics are shown below the coefficient
estimates, and 5% statistical significance is indicated in bold. Volatilities and Sharpe ratios are annualized. For P7, returns are missing from August 1962 to
December 1971.

Portfolio P1
(low beta)

P2 P3 P4 P5 P6 P7
(high beta)

BAB

Maturity (months) one to 12 13–24 25–36 37–48 49–60 61–120 4120
Excess return 0.05 0.09 0.11 0.13 0.13 0.16 0.24 0.17

(5.66) (3.91) (3.37) (3.09) (2.62) (2.52) (2.20) (6.26)
Alpha 0.03 0.03 0.02 0.01 �0.01 �0.02 �0.07 0.16

(5.50) (3.00) (1.87) (0.99) (�1.35) (�2.28) (�1.85) (6.18)
Beta (ex ante) 0.14 0.45 0.74 0.98 1.21 1.44 2.24 0.00
Beta (realized) 0.16 0.48 0.76 0.98 1.17 1.44 2.10 0.01
Volatility 0.81 2.07 3.18 3.99 4.72 5.80 9.26 2.43
Sharpe ratio 0.73 0.50 0.43 0.40 0.34 0.32 0.31 0.81
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returns are computed with respect to a two-factor model
in which alpha is the intercept in a regression of monthly
excess return on the equally weighted average pseudo-
CDS excess return and the monthly return on the Treasury
BAB factor. The addition of the Treasury BAB factor on the
right-hand side is an extra check to test a pure credit
version of the BAB portfolio.

The results in Panel A of Table 7 columns 6 to 10 tell the
same story as columns 1 to 5: The BAB portfolio delivers
significant abnormal returns of 0.17% per month (t-
statistics¼4.44) and Sharpe ratios decline monotonically
from low-beta to high-beta assets.

Last, in Panel B of Table 7, we report results in which the
test assets are credit indexes sorted by rating, ranging from
AAA to Ca-D and Distressed. Consistent with all our previous
results, we find large abnormal returns of the BAB portfolios
(0.57% per month with a t-statistics¼3.72) and declining
alphas and Sharpe ratios across beta-sorted portfolios.



Table 7
US credit: returns, 1973–2012.

This table shows calendar-time portfolio returns. Panel A shows results for US credit indices by maturity. The test assets are monthly returns on corporate
bond indices with maturity ranging from one to ten years, in excess of the risk-free rate. The sample period runs from January 1976–March 2012. Unhedged
indicates excess returns and Hedged indicates excess returns after hedging the index's interest rate exposure. To construct hedged excess returns, each
calendar month we run one-year rolling regressions of excess bond returns on the excess return on Barclay's US government bond index. We construct test
assets by going long the corporate bond index and hedging this position by shorting the appropriate amount of the government bond index. We compute
market excess returns by taking an equal weighted average of the hedged excess returns. Panel B shows results for US corporate bond index returns by
rating. The sample period runs from January 1973 to March 2012. To construct the zero-beta betting against beta (BAB) factor, all bonds are assigned to one
of two portfolios: low beta and high beta. Bonds are weighted by the ranked betas (lower beta security have larger weight in the low-beta portfolio and
higher beta securities have larger weights in the high-beta portfolio) and the portfolios are rebalanced every calendar month. Both portfolios are rescaled
to have a beta of 1 at portfolio formation. The zero-beta BAB factor is a self-financing portfolio that is long the low-beta portfolio and short the high-beta
portfolio. Alpha is the intercept in a regression of monthly excess return. The explanatory variable is the monthly excess return of the corresponding
market portfolio and, for the hedged portfolios in Panel A, the Treasury BAB factor. Distressed in Panel B indicates the Credit Suisse First Boston distressed
index. Returns and alphas are in monthly percent, t-statistics are shown below the coefficient estimates, and 5% statistical significance is indicated in bold.
Volatilities and Sharpe ratios are annualized.

Panel A: Credit indices, 1976–2012

Unhedged Hedged

Portfolios One to
three years

Three to
five years

Five to
ten years

Seven to
ten years

BAB One to
three years

Three to
five years

Five to
ten years

Seven to
ten years

BAB

Excess return 0.18 0.22 0.36 0.36 0.10 0.11 0.10 0.11 0.10 0.16
(4.97) (4.35) (3.35) (3.51) (4.85) (3.39) (2.56) (1.55) (1.34) (4.35)

Alpha 0.03 0.01 �0.04 �0.07 0.11 0.05 0.03 �0.03 �0.05 0.17
(2.49) (0.69) (�3.80) (�4.28) (5.14) (3.89) (2.43) (�3.22) (�3.20) (4.44)

Beta (ex ante) 0.71 1.02 1.59 1.75 0.00 0.54 0.76 1.48 1.57 0.00
Beta (realized) 0.61 0.85 1.38 1.49 �0.03 0.53 0.70 1.35 1.42 �0.02
Volatility 2.67 3.59 5.82 6.06 1.45 1.68 2.11 3.90 4.15 1.87
Sharpe ratio 0.83 0.72 0.74 0.72 0.82 0.77 0.58 0.35 0.30 1.02

Panel B: Corporate bonds, 1973–2012

Portfolios Aaa Aa A Baa Ba B Caa Ca-D Distressed BAB

Excess return 0.28 0.31 0.32 0.37 0.47 0.38 0.35 0.77 �0.41 0.44
(3.85) (3.87) (3.47) (3.93) (4.20) (2.56) (1.47) (1.42) (�1.06) (2.64)

Alpha 0.23 0.23 0.20 0.23 0.27 0.10 �0.06 �0.04 �1.11 0.57
(3.31) (3.20) (2.70) (3.37) (4.39) (1.39) (�0.40) (�0.15) (�5.47) (3.72)

Beta (ex ante) 0.67 0.72 0.79 0.88 0.99 1.11 1.57 2.22 2.24 0.00
Beta (realized) 0.17 0.29 0.41 0.48 0.67 0.91 1.34 2.69 2.32 �0.47
Volatility 4.50 4.99 5.63 5.78 6.84 9.04 14.48 28.58 23.50 9.98
Sharpe ratio 0.75 0.75 0.68 0.77 0.82 0.50 0.29 0.32 �0.21 0.53
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4.4. Equity indexes, country bond indexes, currencies,
and commodities

Table 8 reports results for equity indexes, country bond
indexes, foreign exchange, and commodities. The BAB port-
folio delivers positive returns in each of the four asset classes,
with an annualized Sharpe ratio ranging from 0.11 to 0.51. We
are able to reject the null hypothesis of zero average return
only for equity indexes, but we can reject the null hypothesis
of zero returns for combination portfolios that include all or
some combination of the four asset classes, taking advantage
of diversification. We construct a simple equally weighted
BAB portfolio. To account for different volatility across the
four asset classes, in month t we rescale each return series to
10% annualized volatility using rolling three-year estimates
up to month t�1 and then we equally weight the return
series and their respective market benchmark. This portfolio
construction generates a simple implementable portfolio that
targets 10% BAB volatility in each of the asset classes. We
report results for an all futures combo including all four asset
classes and a country selection combo including only equity
indices, country bonds and foreign exchange. The BAB all
futures and country selection deliver abnormal return of
0.25% and 0.26% per month (t-statistics¼2.53 and 2.42).

4.5. Betting against all of the betas

To summarize, the results in Tables 3–8 strongly sup-
port the predictions that alphas decline with beta and BAB
factors earn positive excess returns in each asset class.
Fig. 1 illustrates the remarkably consistent pattern of
declining alphas in each asset class, and Fig. 2 shows the
consistent return to the BAB factors. Clearly, the relatively
flat security market line, shown by Black, Jensen, and
Scholes (1972) for US stocks, is a pervasive phenomenon
that we find across markets and asset classes. Averaging all
of the BAB factors produces a diversified BAB factor with a
large and significant abnormal return of 0.54% per month
(t-statistics of 6.98) as seen in Table 8, Panel B.

5. Time series tests

In this section, we test Proposition 3's predictions for
the time series of BAB returns: When funding constraints



Table 8
Equity indices, country bonds, foreign exchange and commodities: returns, 1965–2012.

This table shows calendar-time portfolio returns. The test assets are futures, forwards or swap returns in excess of the relevant financing rate.
To construct the betting against beta (BAB) factor, all securities are assigned to one of two portfolios: low beta and high beta. Securities are weighted by the
ranked betas (lower beta security have larger weight in the low-beta portfolio and higher beta securities have larger weights in the high-beta portfolio),
and the portfolios are rebalanced every calendar month. Both portfolios are rescaled to have a beta of one at portfolio formation. The BAB factor is a self-
financing portfolio that is long the low-beta portfolio and short the high-beta portfolio. Alpha is the intercept in a regression of monthly excess return. The
explanatory variable is the monthly return of the relevant market portfolio. Panel A reports results for equity indices, country bonds, foreign exchange and
commodities. All futures and Country selection are combo portfolios with equal risk in each individual BAB and 10% ex ante volatility. To construct combo
portfolios, at the beginning of each calendar month, we rescale each return series to 10% annualized volatility using rolling three-year estimate up to moth
t�1 and then equally weight the return series and their respective market benchmark. Panel B reports results for all the assets listed in Tables 1 and 2. All
bonds and credit includes US Treasury bonds, US corporate bonds, US credit indices (hedged and unhedged) and country bonds indices. All equities
includes US equities, all individual BAB country portfolios, the international stock BAB, and the equity index BAB. All assets includes all the assets listed in
Tables 1 and 2. All portfolios in Panel B have equal risk in each individual BAB and 10% ex ante volatility. Returns and alphas are in monthly percent,
t-statistics are shown below the coefficient estimates, and 5% statistical significance is indicated in bold. $Short (Long) is the average dollar value of the
short (long) position. Volatilities and Sharpe ratios are annualized. nDenotes equal risk, 10% ex ante volatility.

BAB portfolios Excess return t-Statistics
excess return

Alpha t-Statistics
alpha

$Short $Long Volatility Sharpe
ratio

Panel A: Equity indices, country bonds, foreign exchange and commodities
Equity indices (EI) 0.55 2.93 0.48 2.58 0.86 1.29 13.08 0.51
Country bonds (CB) 0.03 0.67 0.05 0.95 0.88 1.48 2.93 0.14
Foreign exchange (FX) 0.17 1.23 0.19 1.42 0.89 1.59 9.59 0.22
Commodities (COM) 0.18 0.72 0.21 0.83 0.71 1.48 19.67 0.11
All futures (EIþCBþFXþCOM)n 0.26 2.62 0.25 2.52 7.73 0.40
Country selection (EIþCBþFX)n 0.26 2.38 0.26 2.42 7.47 0.41

Panel B: All assets
All bonds and creditn 0.74 6.94 0.71 6.74 9.78 0.90
All equitiesn 0.63 6.68 0.64 6.73 10.36 0.73
All assetsn 0.53 6.89 0.54 6.98 8.39 0.76
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become more binding (e.g., because margin requirements
rise), the required future BAB premium increases, and the
contemporaneous realized BAB returns become negative.

We take this prediction to the data using the TED
spread as a proxy of funding conditions. The sample runs
from December 1984 (the first available date for the TED
spread) to March 2012.

Table 9 reports regression-based tests of our hypoth-
eses for the BAB factors across asset classes. The first
column simply regresses the US BAB factor on the lagged
level of the TED spread and the contemporaneous change
in the TED spread.19 We see that both the lagged level and
the contemporaneous change in the TED spread are
negatively related to the BAB returns. If the TED spread
measures the tightness of funding constraints (given by ψ in
the model), then the model predicts a negative coefficient
for the contemporaneous change in TED [Eq. (11)] and a
positive coefficient for the lagged level [Eq. (12)]. Hence, the
coefficient for change is consistent with the model, but the
coefficient for the lagged level is not, under this interpreta-
tion of the TED spread. If, instead, a high TED spread
indicates that agents' funding constraints are worsening,
then the results would be easier to understand. Under this
interpretation, a high TED spread could indicate that banks
are credit-constrained and that banks tighten other inves-
tors' credit constraints over time, leading to a deterioration
of BAB returns over time (if investors do not foresee this).
19 We are viewing the TED spread simply as a measure of credit
conditions, not as a return. Hence, the TED spread at the end of the return
period is a measure of the credit conditions at that time (even if the TED
spread is a difference in interest rates that would be earned over the
following time period).
However, the model's prediction as a partial derivative
assumes that the current funding conditions change while
everything else remains unchanged, but, empirically, other
things do change. Hence, our test relies on an assumption
that such variation of other variables does not lead to an
omitted variables bias. To partially address this issue,
column 2 provides a similar result when controlling for a
number of other variables. The control variables are the
market return (to account for possible noise in the ex ante
betas used for making the BAB portfolio market neutral),
the one-month lagged BAB return (to account for possible
momentum in BAB), the ex ante beta spread, the short
volatility returns, and the lagged inflation. The beta spread
is equal to (βS�βL)/(βSβL) and measures the ex ante beta
difference between the long and short side of the BAB
portfolios, which should positively predict the BAB return
as seen in Proposition 2. Consistent with the model,
Table 9 shows that the estimated coefficient for the beta
spread is positive in all specifications, but not statistically
significant. The short volatility returns is the return on a
portfolio that shortsells closest-to-the-money, next-to-
expire straddles on the S&P500 index, capturing potential
sensitivity to volatility risk. Lagged inflation is equal to the
one-year US CPI inflation rate, lagged one month, which is
included to account for potential effects of money illusion
as studied by Cohen, Polk, and Vuolteenaho (2005),
although we do not find evidence of this effect.

Columns 3–4 of Table 9 report panel regressions for
international stock BAB factors and columns 5–6 for all the
BAB factors. These regressions include fixed effects and
standard errors are clustered by date. We consistently find
a negative relation between BAB returns and the TED
spread.



Table 9
Regression results.

This table shows results from (pooled) time series regressions. The left-hand side is the month t return of the betting against beta (BAB) factors.
To construct the BAB portfolios, all securities are assigned to one of two portfolios: low beta and high beta. Securities are weighted by the ranked betas
(lower beta security have larger weight in the low-beta portfolio and higher beta securities have larger weights in the high-beta portfolio), and the
portfolios are rebalanced every calendar month. Both portfolios are rescaled to have a beta of one at portfolio formation. The BAB factor is a self-financing
portfolio that is long the low-beta portfolio and short the high-beta portfolio. The explanatory variables include the TED spread and a series of controls.
Lagged TED spread is the TED spread at the end of month t�1. Change in TED spread is equal to TED spread at the end of month t minus Ted spread at the
end of month t�1. Short volatility return is the month t return on a portfolio that shorts at-the-money straddles on the S&P 500 index. To construct the
short volatility portfolio, on index options expiration dates we write the next-to-expire closest-to-maturity straddle on the S&P 500 index and hold it to
maturity. Beta spread is defined as (HBeta�LBeta)/(HBetan LBeta) where HBeta (LBeta) are the betas of the short (long) leg of the BAB portfolio at portfolio
formation. Market return is the monthly return of the relevant market portfolio. Lagged inflation is equal to the one-year US Consumer Price Index inflation
rate, lagged one month. The data run from December 1984 (first available date for the TED spread) to March 2012. Columns 1 and 2 report results for US
equities. Columns 3 and 4 report results for international equities. In these regressions we use each individual country BAB factors as well as an
international equity BAB factor. Columns 5 and 6 report results for all assets in our data. Asset fixed effects are included where indicated, t-statistics are
shown below the coefficient estimates and all standard errors are adjusted for heteroskedasticity (White, 1980). When multiple assets are included in the
regression, standard errors are clustered by date and 5% statistical significance is indicated in bold.

US equities International equities, pooled All assets, pooled

Left-hand side: BAB return (1) (2) (3) (4) (5) (6)

Lagged TED spread �0.025 �0.038 �0.009 �0.015 �0.013 �0.018
(�5.24) (�4.78) (�3.87) (�4.07) (�4.87) (�4.65)

Change in TED spread �0.019 �0.035 �0.006 �0.010 �0.007 �0.011
(�2.58) (�4.28) (�2.24) (�2.73) (�2.42) (�2.64)

Beta spread 0.011 0.001 0.001
(0.76) (0.40) (0.69)

Lagged BAB return 0.011 0.035 0.044
(0.13) (1.10) (1.40)

Lagged inflation �0.177 0.003 �0.062
(�0.87) (0.03) (�0.58)

Short volatility return �0.238 0.021 0.027
(�2.27) (0.44) (0.48)

Market return �0.372 �0.104 �0.097
(�4.40) (�2.27) (�2.18)

Asset fixed effects No No Yes Yes Yes Yes
Number of observations 328 328 5,725 5,725 8,120 8,120
Adjusted R² 0.070 0.214 0.007 0.027 0.014 0.036
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6. Beta compression

We next test Proposition 4 that betas are compressed
toward one when funding liquidity risk is high. Table 10
presents tests of this prediction. We use the volatility of
the TED spread to proxy for the volatility of margin
requirements. Volatility in month t is defined as the
standard deviation of daily TED spread innovations,

sTEDt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑sAmonth tðΔTEDs�ΔTEDtÞ2

q
. Because we are com-

puting conditional moments, we use the monthly volatility
as of the prior calendar month, which ensures that the
conditioning variable is known at the beginning of the
measurement period. The sample runs from December
1984–March 2012.

Panel A of Table 10 shows the cross-sectional dispersion
in betas in different time periods sorted by the TED
volatility for US stocks, Panel B shows the same for inter-
national stocks, and Panel C shows this for all asset classes
in our sample. Each calendar month, we compute cross-
sectional standard deviation, mean absolute deviation, and
inter-quintile range of the betas for all assets in the
universe. We assign the TED spread volatility into three
groups (low, medium, and high) based on full sample
breakpoints (top and bottom third) and regress the times
series of the cross-sectional dispersion measure on the full
set of dummies (without intercept). In Panel C, we compute
the monthly dispersion measure in each asset class and
average across assets. All standard errors are adjusted for
heteroskedasticity and autocorrelation up to 60 months.

Table 10 shows that, consistent with Proposition 4, the
cross-sectional dispersion in betas is lower when credit
constraints are more volatile. The average cross-sectional
standard deviation of US equity betas in periods of low
spread volatility is 0.34, and the dispersion shrinks to 0.29
in volatile credit environment. The difference is statistically
significant (t-statistics¼�2.71). The tests based on the other
dispersion measures, the international equities, and the other
assets all confirm that the cross-sectional dispersion in beta
shrinks at times when credit constraints are more volatile.

Appendix B contains an additional robustness check.
Because we are looking at the cross-sectional dispersion of
estimated betas, one could worry that our results was
driven by higher beta estimation errors, instead of a higher
variance of the true betas. To investigate this possibility,
we run simulations under the null hypothesis of a constant
standard deviation of true betas and test whether the
measurement error in betas can account for the compres-
sion observed in the data. Fig. B3 shows that the compres-
sion observed in the data is much larger than what could
be generated by estimation error variance alone. Naturally,
while this bootstrap analysis does not indicate that the



Table 10
Beta compression.

This table reports results of cross-sectional and time-series tests of beta compression. Panels A, B and C report cross-sectional dispersion of betas in US
equities, international equities, and all asset classes in our sample. The data run from December 1984 (first available date for the TED spread) to March
2012. Each calendar month we compute cross sectional standard deviation, mean absolute deviation, and inter quintile range of betas. In Panel C we
compute each dispersions measure for each asset class and average across asset classes. The row denoted all reports times series means of the dispersion
measures. P1 to P3 report coefficients on a regression of the dispersion measure on a series of TED spread volatility dummies. TED spread volatility is
defined as the standard deviation of daily changes in the TED spread in the prior calendar month. We assign the TED spread volatility into three groups
(low, neutral, and high) based on full sample breakpoints (top and bottom one third) and regress the times series of the cross-sectional dispersion measure
on the full set of dummies (without intercept). t-Statistics are shown below the coefficient estimates, and 5% statistical significance is indicated in bold.
Panels D, E and F report conditional market betas of the betting against beta (BAB) portfolio based on TED spread volatility as of the prior month. The
dependent variable is the monthly return of the BAB portfolios. The explanatory variables are the monthly returns of the market portfolio, Fama and French
(1993), Asness and Frazzini (2013), and Carhart (1997) mimicking portfolios, but only the alpha and the market betas are reported. CAPM indicates the
Capital Asset Pricing Model. Market betas are allowed to vary across TED spread volatility regimes (low, neutral, and high) using the full set of dummies.
Panels D, E and F report loading on the market factor corresponding to different TED spread volatility regimes. All assets report results for the aggregate
BAB portfolio of Table 9, Panel B. All standard errors are adjusted for heteroskedasticity and autocorrelation using a Bartlett kernel (Newey and West, 1987)
with a lag length of sixty months.

Cross-sectional dispersion Standard deviation Mean absolute deviation Interquintile range

Panel A: US equities

All 0.32 0.25 0.43
P1 (low TED volatility) 0.34 0.27 0.45
P2 0.33 0.26 0.44
P3 (high TED volatility) 0.29 0.23 0.40
P3 minus P1 �0.05 �0.04 �0.05
t-Statistics (�2.71) (�2.43) (�1.66)

Panel B: International equities

All 0.22 0.17 0.29
P1 (low TED volatility) 0.23 0.18 0.30
P2 0.22 0.17 0.29
P3 (high TED volatility) 0.20 0.16 0.27
P3 minus P1 �0.04 �0.03 �0.03
t-Statistics (�2.50) (�2.10) (�1.46)

Panel C: All assets

All 0.45 0.35 0.61
P1 (low TED volatility) 0.47 0.37 0.63
P2 0.45 0.36 0.62
P3 (high TED volatility) 0.43 0.33 0.58
P3 minus P1 �0.04 �0.03 �0.06
t-Statistics (�3.18) (�3.77) (�2.66)

Conditional market beta

Alpha P1 (low TED volatility) P2 P3 (high TED volatility) P3�P1

Panel D: US equities

CAPM 1.06 �0.46 �0.19 �0.01 0.45
(3.61) (�2.65) (�1.29) (�0.11) (3.01)

Control for three factors 0.86 �0.40 �0.02 0.08 0.49
(4.13) (�3.95) (�0.19) (0.69) (3.06)

Control for four factors 0.66 �0.28 0.00 0.13 0.40
(3.14) (�5.95) (0.02) (1.46) (4.56)

Panel E: International equities

CAPM 0.60 �0.09 0.02 0.06 0.16
(2.84) (�1.30) (0.64) (1.28) (1.87)

Control for three factors 0.59 �0.09 0.02 0.05 0.14
(3.23) (�1.22) (0.74) (1.09) (1.70)

Control for four factors 0.35 �0.04 0.05 0.07 0.11
(2.16) (�1.16) (1.51) (2.03) (2.24)

Panel F: All assets

CAPM 0.54 �0.13 �0.07 0.01 0.14
(4.96) (�2.64) (�1.82) (0.21) (2.34)
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beta compression observed in Table 10 is likely due to
measurement error, we cannot rule out all types of
measurement error.

Panels D, E, and F report conditional market betas of
the BAB portfolio returns based on the volatility of the
credit environment for US equities, international equities,
and the average BAB factor across all assets, respectively.
The dependent variable is the monthly return of the BAB
portfolio. The explanatory variables are the monthly
returns of the market portfolio, Fama and French (1993)
mimicking portfolios, and Carhart (1997) momentum
factor. Market betas are allowed to vary across TED
volatility regimes (low, neutral, and high) using the full
set of TED dummies.

We are interested in testing Proposition 4(ii), studying
how the BAB factor's conditional beta depends on the TED-
volatility environment. To understand this test, recall first
that the BAB factor is market neutral conditional on the
information set used in the estimation of ex ante betas
(which determine the ex ante relative position sizes of the
long and short sides of the portfolio). Hence, if the TED
spread volatility was used in the ex ante beta estimation,
then the BAB factor would be market-neutral conditional on
this information. However, the BAB factor was constructed
using historical betas that do not take into account the effect
of the TED spread and, therefore, a high TED spread volatility
means that the realized betas will be compressed relative to
the ex ante estimated betas used in portfolio construction.
Therefore, a high TED spread volatility should increase the
conditional market sensitivity of the BAB factor (because the
long side of the portfolio is leveraged too much and the short
side is deleveraged too much). Indeed, Table 10 shows that
when credit constraints are more volatile, the market beta of
Table 11
Testing the model's portfolio predictions, 1963–2012.

This table shows average ex ante and realized portfolio betas for different grou
managed domestic equity mutual funds as well as results a sample of individual
(private equity) and for Berkshire Hathaway. We compute both the ex ante beta o
compute the ex-ante beta, we aggregate all quarterly (monthly) holdings
ex-ante betas (equally weighted and value weighted based on the value of th
To compute the realized betas, we compute monthly returns of an aggregate po
between reporting dates (quarterly for mutual funds, monthly for individual investo
value of their holdings. The realized betas are the regression coefficients in a time
for Research in Security Prices value-weighted index. In Panel B we compute ex a
date. t-Statistics are shown to right of the betas estimates and test the null hypot
autocorrelation using a Bartlett kernel (Newey and West, 1987) with a lag length

Investor, method Sample period

Panel A: Investors likely to be constrained
Mutual funds, value weighted 1980–2012
Mutual funds, equal weighted 1980–2012
Individual investors, value weighted 1991–1996
Individual investors, equal weighted 1991–1996

Panel B: Investors who use leverage
Private equity (all) 1963–2012
Private equity (all), equal weighted 1963–2012
Private equity (LBO, MBO), value weighted 1963–2012
Private equity (LBO, MBO), equal weighted 1963–2012
Berkshire Hathaway, value weighted 1980–2012
Berkshire Hathaway, equal weighted 1980–2012
the BAB factor rises. The right-most column shows that the
difference between low- and high-credit volatility environ-
ments is statistically significant (t-statistic of 3.01). Controlling
for three or four factors yields similar results. The results for
our sample of international equities (Panel E) and for the
average BAB across all assets (Panel F) are similar, but they are
weaker both in terms of magnitude and statistical significance.

Importantly, the alpha of the BAB factor remains large
and statistically significant even when we control for the
time-varying market exposure. This means that, if we
hedge the BAB factor to be market-neutral conditional on
the TED spread volatility environment, then this condi-
tionally market-neutral BAB factor continues to earn
positive excess returns.

7. Testing the model's portfolio predictions

The theory's last prediction (Proposition 5) is that
more-constrained investors hold higher-beta securities
than less-constrained investors. Consistent with this pre-
diction, Table 11 presents evidence that mutual funds and
individual investors hold high-beta stocks while LBO firms
and Berkshire Hathaway buy low-beta stocks.

Before we delve into the details, let us highlight a
challenge in testing Proposition 5. Whether an investor's
constraint is binding depends both on the investor's ability
to apply leverage (mi in the model) and on its unobser-
vable risk aversion. For example, while a hedge fund could
apply some leverage, its leverage constraint could never-
theless be binding if its desired volatility is high (especially
if its portfolio is very diversified and hedged).

Given that binding constraints are difficult to observe
directly, we seek to identify groups of investors that are
ps of investors. Panel A reports results for our sample of open-end actively-
retail investors. Panel B reports results for a sample of leveraged buyouts
f their holdings and the realized beta of the time series of their returns. To
in the mutual fund (individual investor) sample and compute their
eir holdings). We report the time series averages of the portfolio betas.
rtfolio mimicking the holdings, under the assumption of constant weight
rs). We compute equally weighted and value-weighted returns based on the
series regression of these excess returns on the excess returns of the Center
nte betas as of the month-end prior to the initial takeover announcements
hesis of beta¼1. All standard errors are adjusted for heteroskedasticity and
of 60 months. A 5% statistical significance is indicated in bold.

Ex ante beta of positions Realized beta of positions

Beta t-Statistics
(H0: beta¼1)

Beta t-Statistics
(H0: beta¼1)

1.08 2.16 1.08 6.44
1.06 1.84 1.12 3.29
1.25 8.16 1.09 3.70
1.25 7.22 1.08 2.13

0.96 �1.50
0.94 �2.30
0.83 �3.15
0.82 �3.47
0.91 �2.42 0.77 �3.65
0.90 �3.81 0.83 �2.44



20 As further consistent evidence, younger people and people with
less financial wealth (who might be more constrained) tend to own
portfolios with higher betas (Calvet, Campbell, and Sodini, 2007, Table 5).
Further, consistent with the idea that leverage requires certain skills and
sophistication, Grinblatt, Keloharju, and Linnainmaa (2011) report that
individuals with low intelligence scores hold higher-beta portfolios than
individuals with high intelligence scores.
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plausibly constrained and unconstrained. One example of
an investor that could be constrained is a mutual fund. The
1940 Investment Company Act places some restriction on
mutual funds' use of leverage, and many mutual funds are
prohibited by charter from using leverage. A mutual funds'
need to hold cash to meet redemptions (mi41 in the
model) creates a further incentive to overweight high-beta
securities. Overweighting high-beta stocks helps avoid
lagging their benchmark in a bull market because of the
cash holdings (some funds use futures contracts to “equi-
tize” the cash, but other funds are not allowed to use
derivative contracts).

A second class of investors that could face borrowing
constraints is individual retail investors. Although we do
not have direct evidence of their inability to employ
leverage (and some individuals certainly do), we think
that (at least in aggregate) it is plausible that they are
likely to face borrowing restrictions.

The flipside of this portfolio test is identifying relatively
unconstrained investors. Thus, one needs investors that
could be allowed to use leverage and are operating below
their leverage cap so that their leverage constraints are not
binding. We look at the holdings of two groups of
investors that could satisfy these criteria as they have
access to leverage and focus on long equity investments
(requiring less leverage than long/short strategies).

First, we look at the firms that are the target of bids by
leveraged buyout (LBO) funds and other forms of private
equity. These investors, as the name suggest, employ
leverage to acquire a public company. Admittedly, we do
not have direct evidence of the maximum leverage
available to these LBO firms relative to the leverage they
apply, but anecdotal evidence suggests that they achieve
a substantial amount of leverage.

Second, we examine the holdings of Berkshire Hath-
away, a publicly traded corporation run by Warren Buffett
that holds a diversified portfolio of equities and employs
leverage (by issuing debt, via insurance float, and other
means). The advantage of using the holdings of a public
corporation that holds equities such as Berkshire is that we
can directly observe its leverage. Over the period from
March 1980 to March 2012, its average book leverage,
defined as (book equityþtotal debt) / book equity, was
about 1.2, that is, 20% borrowing, and the market leverage
including other liabilities such insurance float was about
1.6 (Frazzini, Kabiller, and Pedersen, 2012). It is therefore
plausible to assume that Berkshire at the margin could
issue more debt but choose not to, making it a likely
candidate for an investor whose combination of risk
aversion and borrowing constraints made it relatively
unconstrained during our sample period.

Table 11 reports the results of our portfolio test.
We estimate both the ex ante beta of the various investors'
holdings and the realized beta of the time series of their
returns. We first aggregate all holdings for each investor
group, compute their ex-ante betas (equal and value
weighted, respectively), and take the time series average.
To compute the realized betas, we compute monthly
returns of an aggregate portfolio mimicking the holdings,
under the assumption of constant weight between report-
ing dates. The realized betas are the regression coefficients
in a time series regression of these excess returns on the
excess returns of the CRSP value-weighted index.

Panel A shows evidence consistent with the hypothesis
that constrained investors stretch for return by increasing
their betas. Mutual funds hold securities with betas above
one, and we are able to reject the null hypothesis of betas
being equal to one. These findings are consistent with
those of Karceski (2002), but our sample is much larger,
including all funds over 30-year period. Similar evidence is
presented for individual retail investors: Individual inves-
tors tend to hold securities with betas that are significantly
above one.20

Panel B reports results for our sample of private equity.
For each target stock in our database, we focus on its
ex ante beta as of the month-end prior to the initial
announcements date. This focus is to avoid confounding
effects that result from changes in betas related to the
actual delisting event. We consider both the sample of all
private equity deals and the subsample that we are able to
positively identify as LBO/MBO events. Since we only have
partial information about whether each deal is a LBO/MBO,
the broad sample includes all types of deals where a
company is taken private. The results are consistent with
Proposition 5 in that investors executing leverage buyouts
tend to acquire (or attempt to acquire in case of a non-
successful bid) firms with low betas, and we are able to
reject the null hypothesis of a unit beta.

The results for Berkshire Hathaway show a similar
pattern: Warren Buffett bets against beta by buying stocks
with betas significantly below one and applying leverage.
8. Conclusion

All real-world investors face funding constraints such
as leverage constraints and margin requirements, and
these constraints influence investors' required returns
across securities and over time. We find empirically that
portfolios of high-beta assets have lower alphas and
Sharpe ratios than portfolios of low-beta assets. The
security market line is not only flatter than predicted by
the standard CAPM for US equities (as reported by Black,
Jensen, and Scholes (1972)), but we also find this relative
flatness in 18 of 19 international equity markets, in
Treasury markets, for corporate bonds sorted by maturity
and by rating, and in futures markets. We show how this
deviation from the standard CAPM can be captured using
betting against beta factors, which could also be useful as
control variables in future research (Proposition 2). The
return of the BAB factor rivals those of all the standard
asset pricing factors (e.g., value, momentum, and size) in
terms of economic magnitude, statistical significance, and
robustness across time periods, subsamples of stocks, and
global asset classes.
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Extending the Black (1972) model, we consider the
implications of funding constraints for cross-sectional and
time series asset returns. We show that worsening funding
liquidity should lead to losses for the BAB factor in the
time series (Proposition 3) and that increased funding
liquidity risk compresses betas in the cross section of
securities toward one (Proposition 4), and we find con-
sistent evidence empirically.

Our model also has implications for agents' portfolio
selection (Proposition 5). To test this, we identify investors
that are likely to be relatively constrained and uncon-
strained. We discuss why mutual funds and individual
investors could be leverage constrained, and, consistent
with the model's prediction that constrained investors go
for riskier assets, we find that these investor groups hold
portfolios with betas above one on average.

Conversely, we show that leveraged buyout funds and
Berkshire Hathaway, all of which have access to leverage,
buy stocks with betas below one on average, another
prediction of the model. Hence, these investors could be
taking advantage of the BAB effect by applying leverage to
safe assets and being compensated by investors facing
borrowing constraints who take the other side. Buffett bets
against beta as Fisher Black believed one should.
Appendix A. Analysis and proofs

Before we prove our propositions, we provide a basic
analysis of portfolio selection with constraints. This ana-
lysis is based on Fig. A1. The top panel shows the mean-
standard deviation frontier for an agent with mo1, that is,
an agent who can use leverage. We see that the agent can
leverage the tangency portfolio T to arrive at the portfolio
T . To achieve a higher expected return, the agent needs to
leverage riskier assets, which gives rise to the hyperbola
segment to the right of T . The agent in the graph is
assumed to have risk preferences giving rise to the optimal
portfolio C. Hence, the agent is leverage constrained so he
chooses to apply leverage to portfolio C instead of the
tangency portfolio.

The bottom panel of Fig. A1 similarly shows the mean-
standard deviation frontier for an agent with m41, that is,
an agent who must hold some cash. If the agent keeps the
minimum amount of money in cash and invests the rest in
the tangency portfolio, then he arrives at portfolio T′.
To achieve higher expected return, the agent must invest
in riskier assets and, in the depicted case, he invests in
cash and portfolio D, arriving at portfolio D′.

Unconstrained investors invest in the tangency portfo-
lio and cash. Hence, the market portfolio is a weighted
average of T and riskier portfolios such as C and D.
Therefore, the market portfolio is riskier than the tangency
portfolio.
A.1. Proof of Proposition 1

Rearranging the equilibrium-price Eq. (7) yields

Etðrstþ1Þ ¼ rf þψ tþγ
1
Ps
t
e′sΩxn
¼ rf þψ tþγ
1
Ps
t
covtðPs

tþ1þδstþ1; Ptþ1þδtþ1
� �

′xnÞ

¼ rf þψ tþγcovtðrstþ1; r
M
tþ1ÞP′

tx
n ð18Þ

where es is a vector with a one in row s and zeros
elsewhere. Multiplying this equation by the market port-
folio weights ws ¼ xnsPs

t=∑jxnjP
j
t and summing over s gives

EtðrMtþ1Þ ¼ rf þψ tþγvartðrMtþ1ÞP′
tx

n ð19Þ

that is,

γP′
tx

n ¼ λt
vartðrMtþ1Þ

ð20Þ

Inserting this into Eq. (18) gives the first result in the
proposition. The second result follows from writing the
expected return as

Etðrstþ1Þ�rf ¼ ψ tð1�βst Þþβst ðEtðrMtþ1Þ�rf Þ ð21Þ

and noting that the first term is (Jensen's) alpha. Turning
to the third result regarding efficient portfolios, the Sharpe
ratio increases in beta until the tangency portfolio is
reached and decreases thereafter. Hence, the last result
follows from the fact that the tangency portfolio has a beta
less than one. This is true because the market portfolio is
an average of the tangency portfolio (held by uncon-
strained agents) and riskier portfolios (held by constrained
agents) so the market portfolio is riskier than the tangency
portfolio. Hence, the tangency portfolio must have a lower
expected return and beta (strictly lower if and only if some
agents are constrained). □

A.2. Proof of Propositions 2–3

The expected return of the BAB factor is

EtðrBABtþ1Þ ¼
1
βLt

ðEtðrLtþ1Þ�rf Þ� 1
βHt

ðEtðrHtþ1Þ�rf Þ

¼ 1
βLt

ðψ tþβLt λtÞ�
1
βHt

ðψ tþβHt λtÞ

¼ βHt �βLt
βLtβ

H
t

ψ t ð22Þ

Consider next a change in mk
t . Such a change in a time

t margin requirement does not change the time t betas for
two reasons. First, it does not affect the distribution of
prices in the following period tþ1. Second, prices at time
t are scaled (up or down) by the same proportion due to
the change in Lagrange multipliers as seen in Eq. (7).
Hence, all returns from t to tþ1 change by the same
multiplier, leading to time t betas staying the same.

Given Eq. (22), Eq. (12) in the proposition now follows
if we can show that ψt increases in mk because this lead to

∂EtðrBABtþ1Þ
∂mk

t

¼ βHt �βLt
βLtβ

H
t

∂ψ t

∂mk
t

40 ð23Þ

Further, because prices move opposite required returns,
Eq. (11) then follows. To see that an increase in mk

t
increases ψt, note that the constrained agents' asset
expenditure decreases with a higher mk

t . Indeed, summing
the portfolio constraint across constrained agents [where



Fig. A1. Portfolio selection with constraints. The top panel shows the mean-standard deviation frontier for an agent with mo1 who can use leverage, and
the bottom panel shows that of an agent with m41 who needs to hold cash.

A. Frazzini, L.H. Pedersen / Journal of Financial Economics 111 (2014) 1–2522
Eq. (2) holds with equality] gives

∑
i constrained

∑
s
xi;sPs

t ¼ ∑
i constrained

1
mi

Wi
t ð24Þ
Because increasing mk decreases the right-hand side,
the left-hand side must also decrease. That is, the total
market value of shares owned by constrained agents
decreases.
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Next, we show that the constrained agents' expendi-
ture is decreasing in ψ. Hence, because an increase in mk

t
decreases the constrained agents' expenditure, it must
increase ψt as we wanted to show.

∂
∂ψ

∑
i constrained

P′
tx

i ¼ ∑
i constrained

∂Pt

∂ψ
′xiþP′

t
∂xi

∂ψ

� �
o0 ð25Þ

to see the last inequality, note that clearly ð∂Pt=∂ψÞ′xio0
since all the prices decrease by the same proportion [seen
in Eq. (7)] and the initial expenditure is positive. The
second term is also negative because

∑
i constrained

P′
t
∂
∂ψ

xi ¼ ∑
i constrained

P′
t
∂
∂ψ

1
γi
Ω�1

� EtðPtþ1þδtþ1Þ�ð1þrf þψ i
tÞ
EtðPtþ1þδtþ1Þ�γΩxn

1þrf þψ

� �

¼ �P′
t
∂
∂ψ

Ω�1 ∑
i constrained

1
γi
ð1þrf þψ i

tÞ
EtðPtþ1þδtþ1Þ�γΩxn

1þrf þψ

¼ �P′
t
∂
∂ψ

Ω�1 1
γ
ðqð1þrf ÞþψÞ EtðPtþ1þδtþ1Þ�γΩxn

1þrf þψ

¼ � EtðPtþ1þδtþ1Þ�γΩxn

1þrf þψ

� �
′
∂
∂ψ

Ω�1 1
γ
ðqð1þrf ÞþψÞ EtðPtþ1þδtþ1Þ�γΩxn

1þrf þψ

¼ � 1
1þrf þψ

1
γ

∂
∂ψ

qð1þrf Þþψ

1þrf þψ
ðEtðPtþ1þδtþ1Þ

�γΩxnÞ′Ω�1ðEtðPtþ1þδtþ1Þ�γΩxnÞo0 ð26Þ
where we have defined q¼∑i constrainedðγ=γiÞo1 and used
that ∑i constrainedðγ=γiÞψ i ¼∑iðγ=γiÞψ i ¼ ψ since ψi¼0 for
unconstrained agents. This completes the proof. □

A.3. Proof of Proposition 4

Using the Eq. (7), the sensitivity of prices with respect
to funding shocks can be calculated as

∂Ps
t

Ps
t
=∂ψ t ¼ � 1

1þrf þψ t
ð27Þ

which is the same for all securities s. Intuitively, shocks
that affect all securities the same way compress betas
toward one. To see this more rigorously, we write prices
as:

Pi
t ¼

EtðPi
tþ1þδitþ1Þ�γe′iΩxn

1þrf þψ t

¼ aiztþztEtðPi
tþ1Þ

¼ aiðztþztEðztþ1ÞþztEðztþ1ÞEðztþ2Þþ⋯Þ
¼ aiπt ð28Þ

where we use the following definitions and that random
variables are i.i.d. over time:

ai ¼ Eðδitþ1Þ�γe′iΩxn

zt ¼
1

1þrf þψ t

πt ¼ ztþztEðztþ1ÞþztEðztþ1ÞEðztþ2Þþ⋯¼ zt
1�Eðztþ1Þ

ð29Þ
with these definitions, we can write returns as
rit ¼ ðPi

tþδitÞ=Pi
t�1 ¼ ðaiπtþδitÞ=aiπt�1 and calculate condi-

tional beta as follows (using that new information about
mt and Wt affect only the conditional distribution of πt):

βit�1 ¼
covt�1ðrit ; rMt Þ
vart�1ðrMt Þ

¼ covt�1ððaiπtþδitÞ=aiπt�1; ðaMπtþδMt Þ=aMπt�1Þ
vart�1ðaMπtþδMt Þ=aMπt�1

¼ vart�1ðπtÞþð1=aiaMÞcovt�1ðδit ; δMt Þ
vart�1ðπtÞþð1=ðaMÞ2Þvart�1ðδMt Þ

ð30Þ

Here, we use that δst and πt are independent since the
dividend is paid to the old generation of investors while πt
depends on the margin requirements and wealth of the
young generation of investors.

We see that the beta depends on the security-specific
cash flow covariance, covt�1ðδit ; δMt Þ, and the market-wide
discount rate variance, vart�1(πt). For securities with beta
below (above) one, the beta is increasing (decreasing) in
vart�1(πt). Hence, a higher vart�1(πt) compresses betas,
and the reverse is true for a lower vart�1(πt).

Further, if betas are compressed toward one after the
formation of the BAB portfolio, then BAB will realize a positive
beta as its long side is more leveraged than its short side.
Specifically, suppose that the BAB portfolio is constructed
based on estimated betas ðβ̂Lt ; β̂

H
t Þ using data from a period

with less variance of ψt so that β̂
L
t oβLt oβHt o β̂

H
t . Then the

BAB portfolio will have a beta of

βBABt ¼ 1
vartðrMtþ1Þ

covt
1

β̂
L
t

ðrLtþ1�rf Þ� 1

β̂
H
t

ðrHtþ1�rf Þ; rMtþ1

 !

¼ βLt

β̂
L
t

� βHt

β̂
H
t

40 □ ð31Þ

A.4. Proof of Proposition 5

To see the first part of the proposition, note that an
unconstrained investor holds the tangency portfolio,
which has a beta less than one in the equilibrium with
funding constraints, and the constrained investors hold
riskier portfolios of risky assets, as discussed in the proof
of Proposition 1.

To see the second part of the proposition, note that
given the equilibrium prices, the optimal portfolio is

xi ¼ 1
γi
Ω�1 EtðPtþ1þδtþ1Þ�ð1þrf þψ i

tÞ
EtðPtþ1þδtþ1Þ�γΩxn

1þrf þψ t

� �

¼ γ

γi
1þrf þψ i

t

1þrf þψ t
xnþ ψ t�ψ i

t

1þrf þψ t

1
γi
Ω�1EtðPtþ1þδtþ1Þ ð32Þ

The first term shows that each agent holds some (positive)
weight in the market portfolio x* and the second term
shows how he tilts his portfolio away from the market. The
direction of the tilt depends on whether the agent's
Lagrange multiplier ψ i

t is smaller or larger than the
weighted average of all the agents' Lagrange multipliers
ψt. A less-constrained agent tilts toward the portfolio
Ω�1EtðPtþ1þδtþ1Þ (measured in shares), while a more-
constrained agent tilts away from this portfolio. Given the
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expression (13), we can write the variance-covariance
matrix as

Ω¼ s2Mbb′þΣ ð33Þ
where Σ¼var(e) and s2M ¼ varðPM

tþ1Þ. Using the Matrix
Inversion Lemma (the Sherman-Morrison-Woodbury for-
mula), the tilt portfolio can be written as

Ω�1EtðPtþ1þδtþ1Þ

¼ Σ�1�Σ�1bb′Σ�1 1
s2Mþb′Σ�1b

 !
EtðPtþ1þδtþ1Þ

¼ Σ�1EtðPtþ1þδtþ1Þ�Σ�1bb′Σ�1EtðPtþ1þδtþ1Þ
1

s2Mþb′Σ�1b

¼ Σ�1EtðPtþ1þδtþ1Þ�yΣ�1b ð34Þ

where y¼ b′Σ�1EtðPtþ1þδtþ1Þ=ðs2Mþb′Σ�1bÞ is a scalar.
It holds that ðΣ�1bÞs4ðΣ�1bÞk because bs4bk and because
s and k have the same variances and covariances in Σ,
implying that (Σ�1)s,j¼(Σ�1)k,j for jas,k and (Σ�1)s,s¼
(Σ�1)k,kZ(Σ�1)s,k¼(Σ�1)k,s. Similarly, it holds that
[Σ�1Et(Ptþ1þδtþ1)]so[Σ�1Et(Ptþ1þδtþ1)]k since a higher
market exposure leads to a lower price (as seen below).
So, everything else equal, a higher b leads to a lower weight
in the tilt portfolio.

Finally, security s also has a higher return beta than k
because

βit ¼
PM
t covðPi

tþ1þδitþ1; P
M
tþ1þδMtþ1Þ

Pi
tvarðPM

tþ1þδMtþ1Þ
¼ PM

t

Pi
t

bi ð35Þ

and a higher bi means a lower price:

Pi
t ¼

EtðPi
tþ1þδitþ1Þ�γðΩxnÞi

1þrf þψ t

¼ EtðPi
tþ1þδitþ1Þ�γðΣxnÞi�bib′xnγs2M

1þrf þψ t
□ ð36Þ

Appendix B and C

See the internet appendix at http://jfe.rochester.edu/
appendix.htm
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