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Dynamic Trading with Predictable Returns and
Transaction Costs

NICOLAE GÂRLEANU and LASSE HEJE PEDERSEN∗

ABSTRACT

We derive a closed-form optimal dynamic portfolio policy when trading is costly and
security returns are predictable by signals with different mean-reversion speeds. The
optimal strategy is characterized by two principles: 1) aim in front of the target and
2) trade partially towards the current aim. Specifically, the optimal updated portfo-
lio is a linear combination of the existing portfolio and an “aim portfolio,” which is
a weighted average of the current Markowitz portfolio (the moving target) and the
expected Markowitz portfolios on all future dates (where the target is moving). Intu-
itively, predictors with slower mean-reversion (alpha decay) get more weight in the aim
portfolio. We implement the optimal strategy for commodity futures and find superior
net returns relative to more naive benchmarks.
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Active investors and asset managers — such as hedge funds, mutual funds, and proprietary

traders — try to predict security returns and trade to profit from their predictions. Such

dynamic trading often entails significant turnover and transaction costs. Hence, any active

investor must constantly weigh the expected benefit of trading against its costs and risks. An

investor often uses different return predictors, for example, value and momentum predictors,

and these have different prediction strengths and mean-reversion speeds — put differently,

different “alphas” and “alpha decays.” The alpha decay is important because it determines

how long the investor can enjoy high expected returns, and therefore affects the trade-off

between returns and transaction costs. For instance, while a momentum signal may predict

that the IBM stock return will be high over the next month, a value signal might predict

that Cisco will perform well over the next year.

This paper addresses how the optimal trading strategy depends on securities’ current

expected returns, the evolution of expected returns in the future, securities’ risks and return

correlations, and their transaction costs. We present a closed-form solution for the optimal

dynamic portfolio strategy, giving rise to two principles: 1) aim in front of the target, and

2) trade partially towards the current aim.

To see the intuition for these portfolio principles, note that the investor would like to

keep his portfolio close to the optimal portfolio in the absence of transaction costs, which

we call the “Markowitz portfolio.” The Markowitz portfolio is a moving target, since the

return-predicting factors change over time. Due to transaction costs, it is obviously not

optimal to trade all the way to the target all the time. Hence, transaction costs make it

optimal to slow down trading and, interestingly, to modify the aim, and thus not to trade

directly towards the current Markowitz portfolio. Indeed, the optimal strategy is to trade

towards an “aim portfolio,” which is a weighted average of the current Markowitz portfolio

(the moving target) and the expected Markowitz portfolios on all future dates (where the

target is moving).

Panel A of Figure 1 illustrates the construction of the optimal portfolio of two securities.1

The solid line illustrates the expected path of the Markowitz portfolio, starting with large
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positions in both security 1 and security 2, and gradually converging towards its long-term

mean (for example, the market portfolio). The aim portfolio is a weighted average of the

current and future Markowitz portfolios so it lies in the “convex hull” of the solid line. The

optimal new position is achieved by trading partially towards this aim portfolio. Another [Figure 1]

way to state our portfolio principle is that the best new portfolio is a combination of 1)

the current portfolio (to reduce turnover), 2) the Markowitz portfolio (to partly get the best

current risk-return trade-off), and 3) the expected optimal portfolio in the future (a dynamic

effect).

While new to finance, these portfolio principles have close analogues in other fields such

as the guidance of missiles towards moving targets, hunting, and sports. The most famous

example from the sports world is perhaps the following quote, illustrated in Panel D of

Figure 1:

“A great hockey player skates to where the puck is going to be, not where it is.”

— Wayne Gretzky

Similarly, hunters are reminded to “lead the duck” when aiming their weapon as seen in

Panel E.2

Panel B of Figure 1 illustrates the expected trade at the next trading date, and Panel C

shows how the optimal position is expected to chase the Markowitz portfolio over time. The

expected path of the optimal portfolio resembles that of a guided missile chasing an enemy

airplane in so-called “lead homing” systems, as seen in Panel F.

The optimal portfolio is forward-looking and depends critically on each return predictor’s

mean-reversion speed (alpha decay). To see this in Figure 1, note the convex J-shape of the

expected path of the Markowitz portfolio: The Markowitz position in security 1 decays more

slowly than that in security 2, as the predictor that currently “likes” security 1 is more

persistent. Therefore, the aim portfolio loads more heavily on security 1, and consequently

the optimal trade buys more shares in security 1 than it would otherwise.

We show that it is in fact a general principle that predictors with slower mean-reversion

(alpha decay) get more weight in the aim portfolio. An investor facing transaction costs

3



should trade more aggressively on persistent signals than on fast mean-reverting signals: the

benefits from the former accrue over longer periods, and are therefore larger.

The key role played by each return predictor’s mean-reversion is an important new im-

plication of our model. It arises because transaction costs imply that the investor cannot

easily change his portfolio and therefore must consider his optimal portfolio both now and

in the future. In contrast, absent transaction costs, the investor can reoptimize at no cost

and needs to consider only current investment opportunities without regard to alpha decay.

Our specification of transaction costs is sufficiently rich to allow for both purely transitory

and persistent costs. With persistent transaction costs, the price changes due to the trader’s

market impact persist for a while. Since we focus on market-impact costs, it may be more

realistic to consider such persistent effects, especially over short time periods. We show that

with persistent transaction costs, the optimal strategy remains to trade partially towards

an aim portfolio and to aim in front of the target, though the precise trading strategy is

different and more involved.

Finally, we illustrate our results empirically in the context of commodity futures markets.

We use returns over the past five days, 12 months, and five years to predict returns. The five-

day signal is quickly mean-reverting (fast alpha decay), the 12-month signal mean-reverts

more slowly, whereas the five-year signal is the most persistent. We calculate the optimal

dynamic trading strategy taking transaction costs into account and compare its performance

to both the optimal portfolio ignoring transaction costs and a class of strategies that perform

static (one-period) transaction cost optimization. Our optimal portfolio performs the best

net of transaction costs among all the strategies that we consider. Its net Sharpe ratio is

about 20% better than that of the best strategy among all the static strategies. Our strategy’s

superior performance is achieved by trading at an optimal speed and by trading towards an

aim portfolio that is optimally tilted towards the more persistent return predictors.

We also study the impulse-response of the security positions following a shock to return

predictors. While the no-transaction-cost position immediately jumps up and mean-reverts

with the speed of the alpha decay, the optimal position increases more slowly to minimize
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trading costs and, depending on the alpha decay speed, may eventually become larger than

the no-transaction-cost position, as the optimal position is reduced more slowly.

The paper is organized as follows. Section I describes how our paper contributes to

the portfolio selection literature that starts with Markowitz (1952). We provide a closed-

form solution for a model with multiple correlated securities and multiple return predictors

with different mean-reversion speeds. The closed-form solution illustrates several intuitive

portfolio principles that are difficult to see in the models following Constantinides (1986),

where the solution requires complex numerical techniques even with a single security and

no return predictors (i.i.d. returns). Indeed, we uncover the role of alpha decay and the

intuitive aim-in-front-of-the-target and trade-towards-the-aim principles, and our empirical

analysis suggests that these principles are useful.

Section II lays out the model with temporary transaction costs and the solution method.

Section III shows the optimality of aiming in front of the target and trading partially towards

the aim. Section IV solves the model with persistent transaction costs. Section V provides

a number of theoretical applications, while Section VI applies our framework empirically to

trading commodity futures. Section VII concludes. All proofs are in the appendix.

I. Related Literature

A large literature studies portfolio selection with return predictability in the absence

of trading costs (see, for example, Campbell and Viceira (2002) and references therein).

Alpha decay plays no role in this literature, nor does it play a role in the literature on

optimal portfolio selection with trading costs but without return predictability following

Constantinides (1986).

This latter literature models transaction costs as proportional bid-ask spreads and re-

lies on numerical solutions. Constantinides (1986) considers a single risky asset in a partial

equilibrium and studies transaction cost implications for the equity premium.3 Equilibrium

models with trading costs include Amihud and Mendelson (1986), Vayanos (1998), Vayanos

and Vila (1999), Lo, Mamaysky, and Wang (2004), and Gârleanu (2009), as well as Acharya
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and Pedersen (2005), who also consider time-varying trading costs. Liu (2004) determines

the optimal trading strategy for an investor with constant absolute risk aversion (CARA)

and many independent securities with both fixed and proportional costs (without predictabil-

ity). The assumptions of CARA and independence across securities imply that the optimal

position for each security is independent of the positions in the other securities.

Our trade-towards-the-aim strategy is qualitatively different from the optimal strategy

with proportional or fixed transaction costs, which exhibits periods of no trading. Our

strategy mimics a trader who is continuously “floating” limit orders close to the mid-quote

— a strategy that is used in practice. The trading speed (the limit orders’ “fill rate” in our

analogy) depends on the size of transaction costs the trader is willing to accept (that is, on

where the limit orders are placed).

In a third (and most related) strand of literature, using calibrated numerical solutions,

trading costs are combined with incomplete markets by Heaton and Lucas (1996), and with

predictability and time-varying investment opportunity sets by Balduzzi and Lynch (1999),

Lynch and Balduzzi (2000), Jang et al. (2007), and Lynch and Tan (2011). Grinold (2006)

derives the optimal steady-state position with quadratic trading costs and a single predictor

of returns per security. Like Heaton and Lucas (1996) and Grinold (2006), we also rely on

quadratic trading costs.

A fourth strand of literature derives the optimal trade execution, treating the asset and

quantity to trade as given exogenously (see, for example, Perold (1988), Bertsimas and Lo

(1998), Almgren and Chriss (2000), Obizhaeva and Wang (2006), and Engle and Ferstenberg

(2007)).

Finally, quadratic programming techniques are also used in macroeconomics and other

fields, and usually the solution comes down to algebraic matrix Riccati equations (see, for ex-

ample, Ljungqvist and Sargent (2004) and references therein). We solve our model explicitly,

including the Riccati equations.
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II. Model and Solution

We consider an economy with S securities traded at each time t ∈ {0, 1, 2, ...}. The

securities’ price changes between times t and t + 1 in excess of the risk-free return, pt+1 −

(1 + rf )pt, are collected in an S × 1 vector rt+1 given by

rt+1 = Bft + ut+1. (1)

Here, ft is a K × 1 vector of factors that predict returns,4 B is an S ×K matrix of factor

loadings, and ut+1 is the unpredictable zero-mean noise term with variance vart(ut+1) = Σ.

The return-predicting factor ft is known to the investor already at time t and it evolves

according to

∆ft+1 = −Φft + εt+1, (2)

where ∆ft+1 = ft+1 − ft is the change in the factors, Φ is a K × K matrix of mean-

reversion coefficients for the factors, and εt+1 is the shock affecting the predictors with

variance vart(εt+1) = Ω. We impose on Φ standard conditions sufficient to ensure that f is

stationary.

The interpretation of these assumptions is straightforward: the investor analyzes the se-

curities and his analysis results in forecasts of excess returns. The most direct interpretation

is that the investor regresses the return on security s on the factors f that could be past

returns over various horizons, valuation ratios, and other return-predicting variables, and

thus estimates each variable’s ability to predict returns as given by βsk (collected in the

matrix B). Alternatively, one can think of each factor as an analyst’s overall assessment of

the various securities (possibly based on a range of qualitative information) and B as the

strength of these assessments in predicting returns.

Trading is costly in this economy and the transaction cost (TC) associated with trading

7



∆xt = xt − xt−1 shares is given by

TC(∆xt) =
1

2
∆x>t Λ∆xt, (3)

where Λ is a symmetric positive-definite matrix measuring the level of trading costs.5 Trading

costs of this form can be thought of as follows. Trading ∆xt shares moves the (average)

price by 1
2
Λ∆xt, and this results in a total trading cost of ∆xt times the price move, which

gives TC. Hence, Λ (actually, 1/2Λ, for convenience) is a multidimensional version of Kyle’s

lambda, which can also be justified by inventory considerations (for example, Grossman

and Miller (1988) or Greenwood (2005) for the multiasset case). While this transaction-

cost specification is chosen partly for tractability, the empirical literature generally finds

transaction costs to be convex (for example, Engle, Ferstenberg, and Russell (2008), Lillo,

Farmer, and Mantegna (2003)), with some researchers actually estimating quadratic trading

costs (for example, Breen, Hodrick, and Korajczyk (2002)).

Most of our results hold with this general transaction cost function, but some of the

resulting expressions are simpler in the following special case.

ASSUMPTION 1. Transaction costs are proportional to the amount of risk, Λ = λΣ.

This assumption means that the transaction cost matrix Λ is some scalar λ > 0 times

the variance-covariance matrix of returns, Σ, as is natural and, in fact, implied by the model

of Gârleanu, Pedersen, and Poteshman (2009). To understand this, suppose that a dealer

takes the other side of the trade ∆xt, holds this position for a period of time, and “lays it

off” at the end of the period. Then the dealer’s risk is ∆x>t Σ∆xt and the trading cost is the

dealer’s compensation for risk, depending on the dealer’s risk aversion reflected by λ.

The investor’s objective is to choose the dynamic trading strategy (x0, x1, ...) to maximize
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the present value of all future expected excess returns, penalized for risks and trading costs,

max
x0,x1,...

E0

[∑
t

(1− ρ)t+1
(
x>t rt+1 −

γ

2
x>t Σxt

)
− (1− ρ)t

2
∆x>t Λ∆xt

]
, (4)

where ρ ∈ (0, 1) is a discount rate and γ is the risk aversion coefficient.6

We solve the model using dynamic programming. We start by introducing a value func-

tion V (xt−1, ft) measuring the value of entering period t with a portfolio of xt−1 securities

and observing return-predicting factors ft. The value function solves the Bellman equation:

V (xt−1, ft) = max
xt

{
−1

2
∆x>t Λ∆xt + (1− ρ)

(
x>t Et[rt+1]−

γ

2
x>t Σxt + Et[V (xt, ft+1)]

)}
. (5)

The model in its general form can be solved explicitly:

PROPOSITION 1 The model has a unique solution and the value function is given by

V (xt, ft+1) = −1

2
x>t Axxxt + x>t Axfft+1 +

1

2
f>t+1Affft+1 + A0. (6)

The coefficient matrices Axx, Axf , and Aff are stated explicitly in (A.15), (A.18), and

(A.22), and Axx is positive definite.7

III. Results: Aim in Front of the Target

We next explore the properties of the optimal portfolio policy, which turns out to be

intuitive and relatively simple. The core idea is that the investor aims to achieve a certain

position, but trades only partially towards this aim portfolio due to transaction costs. The

aim portfolio itself combines the current optimal portfolio in the absence of transaction

costs and the expected future such portfolios. The formal results are stated in the following

propositions.
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PROPOSITION 2 (Trade Partially Towards the Aim) (i) The optimal portfolio is

xt = xt−1 + Λ−1Axx (aimt − xt−1) , (7)

which implies trading at a proportional rate given by the the matrix Λ−1Axx towards the aim

portfolio,

aimt = A−1xxAxfft. (8)

(ii) Under Assumption 1, the optimal trading rate is the scalar a/λ < 1, where

a =
−(γ(1− ρ) + λρ) +

√
(γ(1− ρ) + λρ)2 + 4γλ(1− ρ)2

2(1− ρ)
. (9)

The trading rate is decreasing in transaction costs λ and increasing in risk aversion γ.

This proposition provides a simple and appealing trading rule. The optimal portfolio is

a weighted average of the existing portfolio xt−1 and the aim portfolio:

xt =
(

1− a

λ

)
xt−1 +

a

λ
aimt. (10)

The weight of the aim portfolio — which we also call the “trading rate” — determines how

far the investor should rebalance towards the aim. Interestingly, the optimal portfolio always

rebalances by a fixed fraction towards the aim (that is, the trading rate is independent of

the current portfolio xt−1 or past portfolios). The optimal trading rate is naturally greater

if transaction costs are smaller. Put differently, high transaction costs imply that one must

trade more slowly. Also, the trading rate is greater if risk aversion is larger, since a larger

risk aversion makes the risk of deviating from the aim more painful. A larger absolute risk

aversion can also be viewed as a smaller investor, for whom transaction costs play a smaller

role and who therefore trades closer to her aim.

Next, we want to understand the aim portfolio. The aim portfolio in our dynamic setting

turns out to be closely related to the optimal portfolio in a static model without transaction

costs (Λ = 0), which we call the Markowitz portfolio. In agreement with the classical
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findings of Markowitz (1952),

Markowitz t = (γΣ)−1Bft. (11)

As is well known, the Markowtiz portfolio is the tangency portfolio appropriately leveraged

depending on the risk aversion γ.

PROPOSITION 3 (Aim in Front of the Target) (i) The aim portfolio is the weighted

average of the current Markowitz portfolio and the expected future aim portfolio. Under

Assumption 1, this can be written as follows, letting z = γ/(γ + a):

aimt = zMarkowitz t + (1− z)Et(aimt+1). (12)

(ii) The aim portfolio can also be expressed as the weighted average of the current Markowitz

portfolio and the expected Markowitz portfolios at all future times. Under Assumption 1,

aimt =
∞∑
τ=t

z(1− z)τ−tEt (Markowitz τ ) . (13)

The weight z of the current Markowitz portfolio decreases with the transaction costs (λ) and

increases in risk aversion (γ).

We see that the aim portfolio is a weighted average of current and future expected

Markowitz portfolios. While, without transaction costs, the investor would like to hold the

Markowitz portfolio to earn the highest possible risk-adjusted return, with transaction costs

the investor needs to economize on trading and thus trade partially towards the aim, and

as a result he needs to adjust his aim in front of the target. Proposition 3 shows that the

optimal aim portfolio is an exponential average of current and future (expected) Markowitz

portfolios, where the weight on the current (and near-term) Markowitz portfolio is larger if

transaction costs are smaller.

The optimal trading policy is illustrated in detail in Figure 1 (as discussed briefly in

the introduction). Since expected returns mean-revert, the expected Markowitz portfolio
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converges to its long-term mean, illustrated at the origin of the figure. We see that the aim

portfolio is a weighted average of the current and future Markowitz portfolios (that is, the

aim portfolio lies in the convex cone of the solid curve). As a result of the general alpha decay

and transaction costs, the current aim portfolio has smaller positions than the Markowitz

portfolio, and, as a result of the differential alpha decay, the aim portfolio loads more on

asset 1. The optimal new position is found by moving partially towards the aim portfolio as

seen in the figure.

To further understand the aim portfolio, we can characterize the effect of the future

expected Markowitz portfolios in terms of the different trading signals (or factors), ft, and

their mean-reversion speeds. Naturally, a more persistent factor has a larger effect on future

Markowitz portfolios than a factor that quickly mean-reverts. Indeed, the central relevance

of signal persistence in the presence of transaction costs is one of the distinguishing features

of our analysis.

PROPOSITION 4 (Weight Signals Based on Alpha Decay) (i) Under Assumption

1, the aim portfolio is the Markowitz portfolio built as if the signals f were scaled down based

on their mean-reversion Φ:

aimt = (γΣ)−1B

(
I +

a

γ
Φ

)−1
ft. (14)

(ii) If the matrix Φ is diagonal, Φ = diag(φ1, ..., φK), then the aim portfolio simplifies as the

Markowitz portfolio with each factor fkt scaled down based on its own alpha decay φk:

aimt = (γΣ)−1B

(
f 1
t

1 + φ1a/γ
, . . . ,

fKt
1 + φKa/γ

)>
. (15)

(iii) A persistent factor i is scaled down less than a fast factor j, and the relative weight of

i compared to that of j increases in the transaction cost, that is, (1 + φja/γ)/(1 + φia/γ)

increases in λ.

This proposition shows explicitly the close link between the optimal dynamic aim portfolio

in light of transaction costs and the classic Markowitz portfolio. The aim portfolio resembles
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the Markowitz portfolio, but the factors are scaled down based on transaction costs (captured

by a), risk aversion (γ), and, importantly, the mean-reversion speed of the factors (Φ).

The aim portfolio is particularly simple under the rather standard assumption that the

dynamics of each factor fk depend only on its own level (not the level of the other factors),

that is, Φ = diag(φ1, ..., φK) is diagonal, so that equation (2) simplifies to scalars:

∆fkt+1 = −φkfkt + εkt+1. (16)

The resulting aim portfolio is very similar to the Markowitz portfolio, (γΣ)−1Bft. Hence,

transaction costs imply that one optimally trades only part of the way towards the aim, and

that the aim downweights each return-predicting factor more the higher is its alpha decay

φk. Downweighting factors reduces the size of the position, and, more importantly, changes

the relative importance of the different factors. This feature is also seen in Figure 1. The

convexity of the path of expected future Markowitz portfolios indicates that the factors that

predict a high return for asset 2 decay faster than those that predict asset 1. Put differently,

if the expected returns of the two assets decayed equally fast, then the Markowitz portfolio

would be expected to move linearly towards its long-term mean. Since the aim portfolio

downweights the faster-decaying factors, the investor trades less towards asset 2. To see this

graphically, note that the aim lies below the line joining the Markowitz portfolio with the

origin, thus downweighting asset 2 relative to asset 1. Naturally, giving more weight to the

more persistent factors means that the investor trades towards a portfolio that not only has

a high expected return now, but also is expected to have a high expected return for a longer

time in the future.

We end this section by considering what portfolio an investor ends up owning if he always

follows our optimal strategy.

PROPOSITION 5 (Position Homing In) Suppose that the agent has followed the op-

timal trading strategy from time −∞ until time t. Then the current portfolio is an exponen-
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tially weighted average of past aim portfolios. Under Assumption 1,

xt =
t∑

τ=−∞

a

λ

(
1− a

λ

)t−τ
aimτ . (17)

We see that the optimal portfolio is an exponentially weighted average of current and past

aim portfolios. Clearly, the history of past expected returns affects the current position,

since the investor trades patiently to economize on transaction costs. One reading of the

proposition is that the investor computes the exponentially weighted average of past aim

portfolios and always trades all the way to this portfolio (assuming that his initial portfolio

is right, otherwise the first trade is suboptimal).

IV. Persistent Transaction Costs

In some cases the impact of trading on prices may have a nonnegligible persistent com-

ponent. If an investor trades weekly and the current prices are unaffected by his trades

during the previous week, then the temporary transaction cost model above is appropriate.

However, if the frequency of trading is large relative to the the resiliency of prices, then the

investor will be affected by persistent price impact costs.

To study this situation, we extend the model by letting the price be given by p̄t = pt+Dt

and the investor incur the cost associated with the persistent price distortion Dt in addition

to the temporary trading cost TC from before. Hence, the price p̄t is the sum of the price

pt without the persistent effect of the investor’s own trading (as before) and the new term

Dt, which captures the accumulated price distortion due to the investor’s (previous) trades.

Trading an amount ∆xt pushes prices by C∆xt such that the price distortion becomes

Dt+C∆xt, where C is Kyle’s lambda for persistent price moves. Further, the price distortion

mean-reverts at a speed (or “resiliency”) R. Hence, the price distortion next period (t + 1)

is

Dt+1 = (I −R) (Dt + C∆xt) . (18)
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The investor’s objective is as before, with a natural modification due to the price distor-

tion:

E0

[∑
t

(1− ρ)t+1
(
x>t
[
Bft −

(
R + rf

)
(Dt + C∆xt)

]
− γ

2
x>t Σxt

)
+ (1− ρ)t

(
−1

2
∆x>t Λ∆xt + x>t−1C∆xt +

1

2
∆x>t C∆xt

)]
. (19)

Let us explain the various new terms in this objective function. The first term is the position

xt times the expected excess return of the price p̄t = pt + Dt given inside the inner square

brackets. As before, the expected excess return of pt is Bft. The expected excess return due

to the post-trade price distortion is

Dt+1 − (1 + rf )(Dt + C∆xt) = −(R + rf ) (Dt + C∆xt) . (20)

The second term is the penalty for taking risk as before. The three terms on the second line

of (19) are discounted at (1 − ρ)t because these cash flows are incurred at time t, not time

t + 1. The first of these is the temporary transaction cost as before. The second reflects

the mark-to-market gain from the old position xt−1 from the price impact of the new trade,

C∆xt. The last term reflects that the traded shares ∆xt are assumed to be executed at the

average price distortion, Dt + 1
2
C∆xt. Hence, the traded shares ∆xt earn a mark-to-market

gain of 1
2
∆x>t C∆xt as the price moves up an additional 1

2
C∆xt.

The value function is now quadratic in the extended state variable (xt−1, yt) ≡ (xt−1, ft, Dt):

V (x, y) = −1

2
x>Axxx+ x>Axyy +

1

2
y>Ayyy + A0.

As before, there exists a unique solution to the Bellman equation. The following proposition

characterizes the optimal portfolio strategy.8

PROPOSITION 6 The optimal portfolio xt is

xt = xt−1 +M rate (aimt − xt−1) , (21)
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which tracks an aim portfolio, aimt = Maimyt. The aim portfolio depends on the return-

predicting factors and the price distortion, yt = (ft, Dt). The coefficient matrices M rate and

Maim are given in the Appendix.

The optimal trading policy has a similar structure to before, but the persistent price impact

changes both the trading rate and the aim portfolio. The aim is now a weighted average of

current and expected future Markowitz portfolios, as well as the current price distortion.

Figure 2 illustrates graphically the optimal trading strategy with temporary and persis-

tent price impacts. Panel A uses the parameters from Figure 1, Panel B has both temporary [Figure 2]

and persistent transaction costs, while Panel C has a purely persistent price impact.9 Specif-

ically, suppose that Kyle’s lambda for the temporary price impact is Λ = wΛ̃ and Kyle’s

lambda for the persistent price impact is C = (1 − w)Λ̃, where we vary w to determine

how much of the total price impact is temporary versus persistent and where Λ̃ is a fixed

matrix. Panel A has w = 1 (pure temporary costs), Panel B has w = 0.5 (both temporary

and persistent costs), and Panel C has w = 0 (pure persistent costs).

We see that the optimal portfolio policy with persistent transaction costs also tracks the

Markowitz portfolio while aiming in front of the target. It can be shown more generally

that the optimal portfolio under a persistent price impact depends on the expected future

Markowitz portfolios (that is, aims in front of the target). This is similar to the case of a

temporary price impact, but what is different with a purely persistent price impact is that

the initial trade is larger and, even in continuous time, there can be jumps in the portfolio.

This is because, when the price impact is persistent, the trader incurs a transaction cost

based on the entire cumulative trade and is more willing to incur it early to start collecting

the benefits of a better portfolio. (The resilience still makes it cheaper to postpone part

of the trade, however). Furthermore, the cost of buying a position and selling it shortly

thereafter is much smaller with a persistent price impact.
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V. Theoretical Applications

We next provide a few simple and useful examples of our model.

Example 1: Timing a Single Security

A simple case is when there is only one security. This occurs when an investor is timing

his long or short view of a particular security or market. In this case, Assumption 1 (Λ = λΣ)

is without loss of generality since all parameters are scalars, and we use the notation σ2 = Σ

and B = (β1, ..., βK). Assuming that Φ is diagonal, we can apply Proposition 4 directly to

get the optimal timing portfolio:

xt =
(

1− a

λ

)
xt−1 +

a

λ

1

γσ2

K∑
i=1

βi

1 + φia/γ
f it . (22)

Example 2: Relative-Value Trades Based on Security Characteristics

It is natural to assume that the agent uses certain characteristics of each security to

predict its returns. Hence, each security has its own return-predicting factors (in contrast,

in the general model above, all of the factors could influence all of the securities). For

instance, one can imagine that each security is associated with a value characteristic (for

example, its own book-to-market) and a momentum characteristic (its own past return). In

this case, it is natural to let the expected return for security s be given by

Et(r
s
t+1) =

∑
i

βif i,st , (23)

where f i,st is characteristic i for security s (for example, IBM’s book-to-market) and βi is

the predictive ability of characteristic i (that is, how book-to-market translates into future

expected return, for any security), which is the same for all securities s. Further, we assume

that characteristic i has the same mean-reversion speed for each security, that is, for all s,

∆f i,st+1 = −φif i,st + εi,st+1. (24)
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We collect the current values of characteristic i for all securities in a vector f it =
(
f i,1t , ..., f i,St

)>
,

for example, book-to-market of security 1, book-to-market of security 2, etc.

This setup based on security characteristics is a special case of our general model. To

map it into the general model, we stack all the various characteristic vectors on top of each

other into f :

ft =


f 1
t

...

f It

 . (25)

Further, we let IS×S be the S-by-S identity matrix and express B using the Kronecker

product:

B = β> ⊗ IS×S =


β1 0 0 βI 0 0

0
. . . 0 · · · 0

. . . 0

0 0 β1 0 0 βI

 . (26)

Thus, Et(rt+1) = Bft. Also, let Φ = diag(φ ⊗ 1S×1) = diag(φ1, ..., φ1, ..., φI , ..., φI). With

these definitions, we apply Proposition 4 to get the optimal characteristic-based relative-

value trade as

xt =
(

1− a

λ

)
xt−1 +

a

λ
(γΣ)−1

I∑
i=1

1

1 + φia/γ
βif it . (27)

Example 3: Static Model

Consider an investor who performs a static optimization involving current expected re-

turns, risk, and transaction costs. Such an investor simply solves

max
xt

x>t Et(rt+1)−
γ

2
x>t Σxt −

λ

2
∆x>t Σ∆xt, (28)
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with solution

xt =
λ

γ + λ
xt−1 +

γ

γ + λ
(γΣ)−1Et(rt+1) = xt−1 +

γ

γ + λ
(Markowitz t − xt−1) . (29)

This optimal static portfolio in light of transaction costs differs from our optimal dynamic

portfolio in two ways: (i) the weight on the current portfolio xt−1 is different, and (ii) the

aim portfolio is different since in the static case the aim portfolio is the Markowitz portfolio.

The first shortcoming of the static portfolio (point (i)), namely that it does not account for

the future benefits of the position, can be fixed by changing the transaction cost parameter

λ (or risk aversion γ or both).

However, the second shortcoming (point (ii)) cannot be fixed in this way. Interestingly,

with multiple return-predicting factors, no choice of risk aversion γ and trading cost λ

recovers the dynamic solution. This is because the static solution treats all factors the same,

while the dynamic solution gives more weight to factors with slower alpha decay. We show

empirically in Section VI that even the best choice of γ and λ in a static model may perform

significantly worse than our dynamic solution. To recover the dynamic solution in a static

setting, one must change not only γ and λ, but also the expected returns Et(rt+1) = Bft by

changing B as described in Proposition 4.

Example 4: Today’s First Signal is Tomorrow’s Second Signal

Suppose that the investor is timing a single market using each of the several past daily

returns to predict the next return. In other words, the first signal f 1
t is the daily return for

yesterday, the second signal f 2
t is the return the day before yesterday, and so on for K past

time periods. In this case, the trader already knows today what some of her signals will look

like in the future. Today’s yesterday is tomorrow’s day-before-yesterday:

f 1
t+1 = ε1t+1

fkt+1 = fk−1t for k > 1.

19



Put differently, the matrix Φ has the form

I − Φ =


0 0

1 0
. . . . . .

0 1 0

 .

Suppose for simplicity that all signals are equally important for predicting returns B =

(β, ..., β) and use the notation σ2 = Σ. Then we can use Proposition 4 to get the optimal

trading strategy

xt =
(

1− a

λ

)
xt−1 +

a

λ

1

σ2
B (γ + aΦ)−1 ft

=
(

1− a

λ

)
xt−1 +

a

λ

β

γσ2

K∑
k=1

(
1−

(
a

γ + a

)K+1−k
)
fkt . (30)

Hence, the optimal portfolio gives the largest weight to the first signal (yesterday’s return),

the second largest to the second signal, and so on. This is intuitive, since the first signal will

continue to be important the longest, the second signal the second longest, and so on.

VI. Empirical Application: Dynamic Trading of Com-

modity Futures

In this section we illustrate our approach using data on commodity futures. We show

how dynamic optimizing can improve performance in an intuitive way, and how it changes

the way new information is used.

A. Data

We consider 15 different liquid commodity futures, which do not have tight restrictions

on the size of daily price moves (limit up/down). In particular, as seen in Table I, we [Table I]
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collect data on Aluminum, Copper, Nickel, Zinc, Lead, and Tin from the London Metal

Exchange (LME), Gasoil from the Intercontinental Exchange (ICE), WTI Crude, RBOB

Unleaded Gasoline, and Natural Gas from the New York Mercantile Exchange (NYMEX),

Gold and Silver from the New York Commodities Exchange (COMEX), and Coffee, Cocoa,

and Sugar from the New York Board of Trade (NYBOT). (Note that we exclude futures

on various agriculture and livestock that have tight price limits.) We consider the sample

period 01/01/1996 to 01/23/2009, for which we have data on all the above commodities.10

For each commodity and each day, we collect the futures price measured in U.S. dollars

per contract. For instance, if the gold price is $1,000 per ounce, the price per contract is

$100,000, since each contract is for 100 ounces. Table I provides summary statistics on each

contract’s average price, the standard deviation of price changes, the contract multiplier (for

example, 100 ounces per contract in the case of gold), and daily trading volume.

We use the most liquid futures contract of all maturities available. By always using data

on the most liquid futures, we are implicitly assuming that the trader’s position is always

held in these contracts. Hence, we are assuming that when the most liquid futures contract

nears maturity and the next contract becomes more liquid, the trader “rolls” into the next

contract, that is, replaces the position in the near contract with the same position in the

far contract. Given that rolling does not change a trader’s net exposure, it is reasonable

to abstract from the transaction costs associated with rolling. (Traders in the real world

do in fact behave in this fashion. There is a separate roll market, which entails far smaller

costs than independently selling the “old” contract and buying the “new” one.) When

we compute price changes, we always compute the change in the price of a given contract

(not the difference between the new contract and the old one), since this corresponds to

an implementable return. Finally, we collect data on the average daily trading volume per

contract as seen in the last column of Table I. Specifically, we obtain an estimate of the

average daily volume of the most liquid contract traded electronically and outright (that is,

not including calendar-spread trades) in December 2010 from an asset manager based on

underlying data from Reuters.
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B. Predicting Returns and Other Parameter Estimates

We use the characteristic-based model described in Example 2 in Section V, where each

commodity characteristic is its own past return at various horizons. Hence, to predict returns,

we run a pooled panel regression:

rst+1 = 0.001 + 10.32 f 5D,s
t + 122.34 f 1Y,s

t − 205.59 f 5Y,s
t + ust+1 ,

(0.17) (2.22) (2.82) (−1.79)
(31)

where the left-hand side is the daily commodity price changes and the right-hand side con-

tains the return predictors: f 5D is the average past five days’ price change divided by the

past five days’ standard deviation of daily price changes, f 1Y is the past year’s average daily

price change divided by the past year’s standard deviation, and f 5Y is the analogous quantity

for a five-year window. Hence, the predictors are rolling Sharpe ratios over three different

horizons; to avoid dividing by a number close to zero, the standard deviations are winsorized

below the tenth percentile of standard deviations. We estimate the regression using feasible

generalized least squares and report the t-statistics in brackets.

We see that price changes show continuation at short and medium frequencies and re-

versal over long horizons.11 The goal is to see how an investor could optimally trade on

this information, taking transaction costs into account. Of course, these (in-sample) re-

gression results are only available now and a more realistic analysis would consider rolling

out-of-sample regressions. However, using the in-sample regression allows us to focus on

the economic insights underlying our novel portfolio optimization. Indeed, the in-sample

analysis allows us to focus on the benefits of giving more weight to signals with slower alpha

decay, without the added noise in the predictive power of the signals arising when using

out-of-sample return forecasts.
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The return predictors are chosen so that they have very different mean-reversion:

∆f 5D,s
t+1 = −0.2519f 5D,s

t + ε5D,st+1

∆f 1Y,s
t+1 = −0.0034f 1Y,s

t + ε1Y,st+1 (32)

∆f 5Y,s
t+1 = −0.0010f 5Y,s

t + ε5Y,st+1 .

These mean-reversion rates correspond to a 2.4-day half-life for the five-day signal, a 206-day

half-life for the one-year signal, and a 700-day half-life for the five-year signal.12

We estimate the variance-covariance matrix Σ using daily price changes over the full

sample, shrinking the correlations 50% towards zero. We set the absolute risk aversion to

γ = 10−9, which we can think of as corresponding to a relative risk aversion of one for an agent

with $1 billion under management. We set the time discount rate to ρ = 1−exp(−0.02/260),

corresponding to a 2% annualized rate.

Finally, to choose the transaction cost matrix Λ, we make use of price impact estimates

from the literature. In particular, we use the estimate from Engle, Ferstenberg, and Russell

(2008) that trades amounting to 1.59% of the daily volume in a stock have a price impact of

about 0.10%. (Breen, Hodrick, and Korajczyk (2002) provide a similar estimate.) Further,

Greenwood (2005) finds evidence that a market impact in one security spills over to other

securities using the specification Λ = λΣ, where we recall that Σ is the variance-covariance

matrix. We calibrate Σ as the empirical variance-covariance matrix of price changes, where

the covariance is shrunk 50% towards zero for robustness.

We choose the scalar λ based on the Engle, Ferstenberg, and Russell (2008) estimate

by calibrating it for each commodity and then computing the mean and median across

commodities. Specifically, we collect data on the trading volume of each commodity contract

as seen in last column of Table I and then calibrate λ for each commodity as follows. Consider,

for instance, unleaded gasoline. Since gasoline has a turnover of 11,320 contracts per day

and a daily price change volatility of $1,340, the transaction cost per contract when one

trades 1.59% of daily volume is 1.59%×11, 320× λGasoline/2× 1, 3402, which is 0.10% of the

average price per contract of $48,000 if λGasoline = 3× 10−7.
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We calibrate the trading costs for the other commodities similarly, and obtain a median

value of 5.0 × 10−7 and a mean of 8.4 × 10−7. There are significant differences across com-

modities (for example, the standard deviation is 1.0 × 10−6), reflecting the fact that these

estimates are based on turnover while the specification Λ = λΣ assumes that transaction

costs depend on variances. While our model is general enough to handle transaction costs

that depend on turnover (for example, by using these calibrated λ’s in the diagonal of the

Λ matrix), we also need to estimate the spillover effects (that is, the off-diagonal elements).

Since Greenwood (2005) provides the only estimate of these transaction cost spillovers in the

literature using the assumption Λ = λΣ, and since real-world transaction costs likely depend

on variance as well as turnover, we stick to this specification and calibrate λ as the median

across the estimates for each commodity. Naturally, other specifications of the transaction

cost matrix would give slightly different results, but our main purpose is simply to illustrate

the economic insights that we have proved theoretically.

We also consider a more conservative transaction cost estimate of λ = 10 × 10−7. This

more conservative analysis can be interpreted as providing the trading strategy of a larger

investor (that is, we could equivalently reduce the absolute risk aversion γ).

C. Dynamic Portfolio Selection with Trading Costs

We consider three different trading strategies: the optimal trading strategy given by

equation (27) (“optimal”), the optimal trading strategy in the absence of transaction costs

(“Markowitz”), and a number of trading strategies based on static (i.e., one-period) trans-

action cost optimization as in equation (29) (“static optimization”). The static portfolio

optimization results in trading partially towards the Markowitz portfolio (as opposed to an

aim portfolio that depends on signals’ alpha decays), and we consider 10 different trading

speeds as seen in Table II. Hence, under the static optimization, the updated portfolio is a [Table II]

weighted average of the Markowitz portfolio (with weight denoted “weight on Markowitz”)

and the current portfolio.

Table II reports the performance of each strategy as measured by, respectively, its gross
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Sharpe ratio and its net Sharpe ratio (i.e., its Sharpe ratio after accounting for transaction

costs). Panel A reports these numbers using our base-case transaction cost estimate (dis-

cussed above), while Panel B uses our high transaction-cost estimate. We see that, naturally,

the highest Sharpe ratio before transaction costs is achieved by the Markowitz strategy. The

optimal and static portfolios have similar drops in gross Sharpe ratio due to their slower

trading. After transaction costs, however, the optimal portfolio is the best, significantly

better than the best possible static strategy, and the Markowitz strategy incurs enormous

trading costs.

It is interesting to consider the driver of the superior performance of the optimal dynamic

trading strategy relative to the best possible static strategy. The key to the outperformance

is that the dynamic strategy gives less weight to the five-day signal because of its fast alpha

decay. The static strategy simply tries to control the overall trading speed, but this is not

sufficient: it either incurs large trading costs due to its “fleeting” target (because of the

significant reliance on the five-day signal), or it trades so slowly that it is difficult to capture

the return. The dynamic strategy overcomes this problem by trading somewhat fast, but

trading mainly according to the more persistent signals.

To illustrate the difference in the positions of the different strategies, Figure 3 depicts [Figure 3]

the positions over time of two of the commodity futures, namely, Crude and Gold. We

see that the optimal portfolio is a much smoother version of the Markowitz strategy, thus

reducing trading costs while at the same time capturing most of the excess return. Indeed,

the optimal position tends to be long when the Markowitz portfolio is long and short when

the Markowitz portfolio is short, and larger when the expected return is large, but moderates

the speed and magnitude of trades.

D. Response to New Information

It is instructive to trace the response to a shock to the return predictors, namely, to εi,st

in equation (32). Figure 4 shows the responses to shocks to each return-predicting factor, [Figure 4]

namely, the five-day factor, the one-year factor, and the five-year factor.
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The first panel shows that the Markowitz strategy immediately jumps up after a shock

to the five-day factor and slowly mean-reverts as the alpha decays. The optimal strategy

trades much more slowly and never accumulates nearly as large a position. Interestingly,

since the optimal position also trades more slowly out of the position as the alpha decays,

the lines cross as the optimal strategy eventually has a larger position than the Markowitz

strategy.

The second panel shows the response to the one-year factor. The Markowitz strategy

jumps up and decays, whereas the optimal position increases more smoothly and catches

up as the Markowitz strategy starts to decay. The third panel shows the same for the five-

year signal, except that the effects are slower and with opposite sign, since five-year returns

predict future reversals.

VII. Conclusion

This paper provides a highly tractable framework for studying optimal trading strategies

in the presence of several return predictors, risk and correlation considerations, as well as

transaction costs. We derive an explicit closed-form solution for the optimal trading policy,

which gives rise to several intuitive results. The optimal portfolio tracks an aim portfolio,

which is analogous to the optimal portfolio in the absence of trading costs in its trade-off

between risk and return, but is different since more persistent return predictors are weighted

more heavily relative to return predictors with faster alpha decay. The optimal strategy is

not to trade all the way to the aim portfolio, since this entails excessively high transaction

costs. Instead, it is optimal to take a smoother and more conservative portfolio that moves

in the direction of the aim portfolio while limiting turnover.

Our framework constitutes a powerful tool to optimally combine various return predictors

taking into account their evolution over time, decay rate, and correlation, and trading off

their benefits against risks and transaction costs. Such dynamic trade-offs are at the heart

of the decisions of “arbitrageurs” that help make markets efficient as per the efficient market

hypothesis. Arbitrageurs’ ability to do so is limited, however, by transaction costs, and our
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model provides a tractable and flexible framework for the study of the dynamic implications

of this limitation.

We implement our optimal trading strategy for commodity futures. Naturally, the opti-

mal trading strategy in the absence of transaction costs has a larger Sharpe ratio gross of

fees than our trading policy. However, net of trading costs our strategy performs signifi-

cantly better, since it incurs far lower trading costs while still capturing much of the return

predictability and diversification benefits. Further, the optimal dynamic strategy is signifi-

cantly better than the best static strategy, that is, taking dynamics into account significantly

improves performance.

In conclusion, we provide a tractable solution to the dynamic trading strategy in a rel-

evant and general setting that we believe to have many interesting applications. The main

insights for portfolio selection can be summarized by the rules that one should aim in front

of the target and trade partially towards the current aim.
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A. Appendix: Proofs

In what follows we make repeated use of the notation

ρ̄ = 1− ρ (A.1)

Λ̄ = ρ̄−1Λ (A.2)

λ̄ = ρ̄−1λ. (A.3)

Proof of Proposition 1. Assuming that the value function is of the posited form, we calculate

the expected future value function as

Et[V (xt, ft+1)] = −1

2
x>t Axxxt + x>t Axf (I − Φ)ft +

1

2
f>t (I − Φ)>Aff (I − Φ)ft

+
1

2
Et(ε

>
t+1Affεt+1) + A0. (A.4)

The agent maximizes the quadratic objective −1
2
x>t Jtxt + x>t jt + dt with

Jt = γΣ + Λ̄ + Axx

jt = (B + Axf (I − Φ))ft + Λ̄xt−1 (A.5)

dt = −1

2
x>t−1Λ̄xt−1 +

1

2
f>t (I − Φ)>Aff (I − Φ)ft +

1

2
Et(ε

>
t+1Affεt+1) + A0.

The maximum value is attained by

xt = J−1t jt, (A.6)

which is equal to V (xt−1, ft) = 1
2
j>t J

−1
t jt + dt. Combining this fact with (6) we obtain an

equation that must hold for all xt−1 and ft, which implies the following restrictions on the
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coefficient matrices:13

−ρ̄−1Axx = Λ̄(γΣ + Λ̄ + Axx)
−1Λ̄− Λ̄ (A.7)

ρ̄−1Axf = Λ̄(γΣ + Λ̄ + Axx)
−1(B + Axf (I − Φ)) (A.8)

ρ̄−1Aff = (B + Axf (I − Φ))>(γΣ + Λ̄ + Axx)
−1(B + Axf (I − Φ))

+(I − Φ)>Aff (I − Φ). (A.9)

The existence of a solution to this system of Riccati equations can be established using

standard results, for example, as in Ljungqvist and Sargent (2004). In this case, however,

we can derive explicit expressions as follows. We start by letting Z = Λ̄−
1
2AxxΛ̄

− 1
2 and

M = Λ̄−
1
2 ΣΛ̄−

1
2 , and rewriting equation (A.7) as

ρ̄−1Z = I − (γM + I + Z)−1 , (A.10)

which is a quadratic with an explicit solution. Since all solutions Z can be written as a limit

of polynomials of the matrix M , we see that Z and M commute and the quadratic can be

sequentially rewritten as

Z2 + Z(I + γM − ρ̄I) = ρ̄γM (A.11)(
Z +

1

2
(γM + ρI)

)2

= ρ̄γM +
1

4
(γM + ρI)2, (A.12)

resulting in

Z =

(
ρ̄γM +

1

4
(ρI + γM)2

) 1
2

− 1

2
(ρI + γM) (A.13)

Axx = Λ̄
1
2

[(
ρ̄γM +

1

4
(ρI + γM)2

) 1
2

− 1

2
(ρI + γM)

]
Λ̄

1
2 , (A.14)

that is,

Axx =

(
ρ̄γΛ̄

1
2 ΣΛ̄

1
2 +

1

4
(ρ2Λ̄2 + 2ργΛ̄

1
2 ΣΛ̄

1
2 + γ2Λ̄

1
2 ΣΛ̄−1ΣΛ̄

1
2 )

) 1
2

− 1

2
(ρΛ̄ + γΣ). (A.15)
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Note that the positive-definite choice of solution Z is the only one that results in a

positive-definite matrix Axx.

The other value function coefficient determining optimal trading is Axf , which solves the

linear equation (A.8). To write the solution explicitly, we note first that, from (A.7),

Λ̄(γΣ + Λ̄ + Axx)
−1 = I − AxxΛ−1. (A.16)

Using the general rule that vec(XY Z) = (Z> ⊗ X) vec(Y ), we rewrite (A.8) in vectorized

form:

vec(Axf ) = ρ̄ vec((I − AxxΛ−1)B) + ρ̄((I − Φ)> ⊗ (I − AxxΛ−1)) vec(Axf ), (A.17)

so that

vec(Axf ) = ρ̄
(
I − ρ̄(I − Φ)> ⊗ (I − AxxΛ−1)

)−1
vec((I − AxxΛ−1)B). (A.18)

Finally, Aff is calculated from the linear equation (A.9), which is of the form

ρ̄−1Aff = Q+ (I − Φ)>Aff (I − Φ) (A.19)

with

Q = (B + Axf (I − Φ))>(γΣ + Λ̄ + Axx)
−1(B + Axf (I − Φ)) (A.20)

a positive-definite matrix.

The solution is easiest to write explicitly for diagonal Φ, in which case

Aff,ij =
ρ̄Qij

1− ρ̄(1− Φii)(1− Φjj)
. (A.21)

In general,

vec (Aff ) = ρ̄
(
I − ρ̄(I − Φ)> ⊗ (I − Φ)>

)−1
vec(Q). (A.22)
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One way to see that Aff is positive-definite is to iterate (A.19) starting with A0
ff = 0.

We conclude that the posited value function satisfies the Bellman equation.

Proof of Proposition 2. Differentiating the Bellman equation (5) with respect to xt−1 gives

−Axxxt−1 + Axfft = Λ(xt − xt−1),

which clearly implies (7) and (8).

In the case Λ = λΣ for some scalar λ > 0, the solution to the value function coefficients

is Axx = aΣ, where a solves a simplified version of (A.7):

−ρ̄−1a =
λ̄2

γ + λ̄+ a
− λ̄, (A.23)

or

a2 + (γ + λ̄ρ)a− λγ = 0, (A.24)

with solution

a =

√
(γ + λ̄ρ)2 + 4γλ− (γ + λ̄ρ)

2
. (A.25)

It follows immediately that Λ−1Axx = a/λ.

Note that a is symmetric in (λρ(1− ρ)−1, γ). Consequently, a increases in λ if and only

if it increases in γ. Differentiating (A.25) with respect to λ, one gets

2
da

dλ
= −ρ̄−1ρ+

1

2

(
2(γ + λ̄ρ) + 4γ

)√
(γ + λ̄ρ)2 + 4γλ

. (A.26)

This expression is positive if and only if

ρ̄−2ρ2
(
(γ + λ̄ρ)2 + 4γλ

)
≤
(
(γ + λ̄ρ)ρ̄−1ρ+ 2γ

)2
, (A.27)

which is verified to hold with strict inequality as long as ρ̄γ > 0.
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Finally, note that a/λ is increasing in γ and homogeneous of degree zero in (λ, γ), so that

applying Euler’s theorem for homogeneous functions gives

d

dλ

a

λ
= − d

dγ

a

λ
< 0. (A.28)

Proof of Proposition 3. We show that

aimt = (γΣ + Axx)
−1 (γΣ×Markowitz t + Axx × Et(aimt+1)) (A.29)

by using (8), (A.8), and (A.7) successively to write

aimt = A−1xxAxfft (A.30)

= A−1xxΛ
(
γΣ + Λ̄ + Axx

)−1
(γΣ×Markowitz t + Axx × Et(aimt+1))

= (γΣ + Axx)
−1 (γΣ×Markowitz t + Axx × Et(aimt+1)) .

To obtain the last equality, rewrite (A.7) as

(Λ− Axx) Λ−1(γΣ + Λ̄ + Axx) = Λ̄ (A.31)

and then further

γΣ + Axx = (γΣ + Λ̄ + Axx)Λ
−1Axx, (A.32)

since AxxΛ
−1Σ = ΣΛ−1Axx. equation (12) follows immediately as a special case.

For part (ii), we iterate (A.29) forward to obtain

aimt = (γΣ + Axx)
−1 ×

∞∑
τ=t

(
Axx (γΣ + Axx)

−1)(τ−t) γΣ× Et(Markowitzτ ),
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which specializes to (13). Given that a increases in λ, z decreases in λ. Furthermore,

z increases in γ if and only if a/γ decreases, which is equivalent (by symmetry) to a/λ

decreasing in λ.

Proof of Proposition 4. In the case Λ = λΣ, equation (A.8) is solved by

Axf = λB((γ + λ̄+ a)I − λ(I − Φ))−1

= λB((γ + λ̄ρ+ a)I + λΦ)−1

= B
(γ
a

+ Φ
)−1

, (A.33)

where the last equality uses (A.23). The aim portfolio is

aimt = (aΣ)−1B
(γ
a

+ Φ
)−1

ft, (A.34)

which is the same as (14). Equation (15) is immediate.

For part (iii), we use the result shown above (proof of Proposition 2) that a increases in

λ, which implies that (1 + φja/γ)/(1 + φia/γ) does whenever φj > φi.

Proof of Proposition 5. Rewriting (7) as

xt =
(
I − Λ−1Axx

)
xt−1 + Λ−1Axx × aimt (A.35)

and iterating this relation backwards gives

xt =
t∑

τ=−∞

(
I − Λ−1Axx

)t−τ
Λ−1Axx × aimτ . (A.36)
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Proof of Proposition 6. We start by defining

Π =

Φ 0

0 R

 , C̃ = (1−R)

0

C

 ,
B̃ =

[
B −(R + rf )

]
, (A.37)

Ω̃ =

Ω 0

0 0

 , ε̃t =

εt
0

 .
It is useful to keep in mind that yt = (f>t , D

>
t )> (a column vector). Given this definition,

it follows that

Et [yt+1] = (I − Π)yt + C̃(xt − xt−1). (A.38)

The conjectured value function is

V (xt−1, yt) = −1

2
x>t−1Axxxt−1 + x>t−1Axyyt +

1

2
y>t Ayyyt + A0, (A.39)

so that

Et [V (xt, yt+1)] = −1

2
x>t Axxxt + x>t Axy

(
(I − Π)yt + C̃(xt − xt−1)

)
+ (A.40)

1

2

(
(I − Π)yt + C̃(xt − xt−1)

)>
Ayy

(
(I − Π)yt + C̃(xt − xt−1)

)
+

1

2
Et
[
ε̃>t+1Ayyε̃t+1

]
+ A0.

The trader consequently chooses xt to solve

max
x

{
x>B̃yt − x>(R + rf )C(x− xt−1)−

γ

2
x>Σx

+
1

2
ρ̄−1

(
x>Cx− x>t−1Cxt−1 − (x− xt−1)>Λ(x− xt−1)

)
− 1

2
x>Axxx+ x>Axy

(
(I − Π)yt + C̃(x− xt−1)

)
(A.41)

+
1

2

(
(I − Π)yt + C̃(x− xt−1)

)>
Ayy

(
(I − Π)yt + C̃(x− xt−1)

)}
,
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which is a quadratic of the form −1
2
x>Jx+ x>jt + dt, with

J =
1

2

(
J0 + J>0

)
(A.42)

J0 = γΣ + Λ̄ +
(
2(R + rf )− ρ̄−1

)
C + Axx − 2AxyC̃ − C̃>AyyC̃ (A.43)

jt = B̃yt +
(
Λ̄ + (R + rf )C

)
xt−1 + Axy

(
(I − Π)yt − C̃xt−1

)
+ (A.44)

C̃Ayy

(
(I − Π)yt − C̃xt−1

)
≡ Sxxt−1 + Syyt (A.45)

dt = −1

2
xt−1Λ̄xt−1 −

1

2
ρ̄−1x>t−1Cxt−1 + (A.46)

1

2

(
(I − Π)yt − C̃xt−1

)>
Ayy

(
(I − Π)yt − C̃xt−1

)
.

Here,

Sx = Λ̄ + (R + rf )C − AxyC̃ − C̃>AyyC̃ (A.47)

Sy = B̃ + Axy(I − Π) + C̃>Ayy(I − Π). (A.48)

The value of x attaining the maximum is given by

xt = J−1jt, (A.49)

and the maximal value is

1

2
jtJ
−1jt + dt = V (xt−1, yt)− A0 (A.50)

= −1

2
x>t−1Axxxt−1 + x>t−1Axyyt +

1

2
y>t Ayyyt. (A.51)

The unknown matrices have to satisfy a system of equations encoding the equality of all

coefficients in (A.51). Thus,

−ρ̄−1Axx = S>x J
−1Sx − Λ̄− ρ̄−1C + C̃>AyyC̃ (A.52)

ρ̄−1Axy = S>x J
−1Sy − C̃>Ayy(I − Π) (A.53)

ρ̄−1Ayy = S>y J
−1Sy + (I − Π)>Ayy(I − Π). (A.54)
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For our purposes, the more interesting observation is that the optimal position xt is

rewritten as

xt = xt−1 +
(
I − J−1Sx

)︸ ︷︷ ︸
Mrate

((
I − J−1Sx

)−1 (
J−1Sy

)
yt︸ ︷︷ ︸

aimt =Maimyt

−xt−1
)
. (A.55)
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Notes

1Panel A-C of the figure are based on simulations of our model. We are grateful to

Mikkel Heje Pedersen for Panels D–F. Panel F is based on “Introduction to Rocket and

Guided Missile Fire Control,” Historic Naval Ships Association (2007).

2We thank Kerry Back for this analogy.

3Davis and Norman (1990) provide a more formal analysis of Constantinides’ model.

Also, Gârleanu (2009) and Lagos and Rocheteau (2009) show how search frictions and payoff

mean-reversion impact how close one trades to the static portfolio. Our model also shares

features with Longstaff (2001) and, in the context of predatory trading, by Brunnermeier

and Pedersen (2005) and Carlin, Lobo, and Viswanathan (2008). See also Oehmke (2009).

4The unconditional mean excess returns are also captured in the factors f . For example,

one can let the first factor be a constant, f 1
t = 1 for all t, such that the first column of B

contains the vector of mean returns. (In this case, the shocks to the first factor are zero,

ε1t = 0.)

5The assumption that Λ is symmetric is without loss of generality. To see this, suppose

that TC(∆xt) = 1
2
∆x>t Λ̄∆xt, where Λ̄ is not symmetric. Then, letting Λ be the symmetric

part of Λ̄, that is, Λ = (Λ̄ + Λ̄>)/2, generates the same trading costs as Λ̄.

6Put differently, the investor has mean-variance preferences over the change in his wealth

Wt each time period, net of the risk-free return: ∆Wt+1 − rfWt = x>t rt+1 − TCt+1.

7Note that Axx and Aff can always be chosen to be symmetric.

8We assume that the objective (19) is concave and a non-explosive solution exists. A

sufficient condition is that γ is large enough.

9The parameters used in Panel A of Figure 2, and Panels A–C of Figure 1, are f0 = (1, 1)>,

B = I2×2, φ1 = 0.1, φ2 = 0.4, Σ = I2×2, γ = 0.5, ρ = 0.05, and Λ = 2Σ. The additional

parameters for Panels B–C of Figure 2 are D0 = 0, R = 0.1, and the risk-free rate given

by (1 + rf )(1 − ρ) = 1. As further interpretation of Figure 2, note that temporary price

impact corresponds to a persistent impact with complete resiliency, R = 1. (This holds

literally under the natural restriction that the risk-free is the inverse of the discount rate,
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(1 + rf )(1 − ρ) = 1.) Hence, Panel A has a price impact with complete resiliency, Panel

C has a price impact with low resiliency, and Panel B has two kinds of price impact with,

respectively, high and low resiliency.

10Our return predictors use moving averages of price data lagged up to five years, which are

available for most commodities except some of the LME base metals. In the early sample

when some futures do not have a complete lagged price series, we use the average of the

available data.

11Erb and Harvey (2006) document 12-month momentum in commodity futures prices.

Asness, Moskowitz, and Pedersen (2008) confirm this finding and also document five-year

reversals. These results are robust and hold for both price changes and returns. Results

for five-day momentum are less robust. For instance, for certain specifications using percent

returns, the five-day coefficient switches sign to reversal. This robustness is not important

for our study, however, due to our focus on optimal trading rather than out-of-sample return

predictability.

12The half-life is the time it is expected to take for half the signal to disappear. It is

computed as log(0.5)/ log(1− 0.2519) for the five-day signal.

13Remember that Axx and Aff can always be chosen to be symmetric.
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Table I

Summary Statistics.

For each commodity used in our empirical study, the first column reports the average price
per contract in U.S. dollars over our sample period 01/01/1996 to 01/23/2009. For instance,
since the average gold price is $431.46 per ounce, the average price per contract is $43,146
since each contract is for 100 ounces. Each contract’s multiplier (100 in the case of gold) is
reported in the third column. The second column reports the standard deviation of price
changes. The fourth column reports the average daily trading volume per contract, estimated
as the average daily volume of the most liquid contract traded electronically and outright
(i.e., not including calendar-spread trades) in December 2010.

Commodity Average Price 
Per Contract

Standard 
Deviation of 

Price Changes

Contract 
Multiplier

Daily Trading 
Volume 

(Contracts)

Aluminum 44,561 637 25 9,160
Cocoa 15,212 313 10 5,320
Coffee 38,600 1,119 37,500 5,640
Copper 80,131 2,023 25 12,300
Crude 40,490 1,103 1,000 151,160
Gasoil 34,963 852 100 37,260
Gold 43,146 621 100 98,700
Lead 23,381 748 25 2,520
Natgas 50,662 1,932 10,000 46,120
Nickel 76,530 2,525 6 1,940
Silver 36,291 893 5,000 43,780
Sugar 10,494 208 112,000 25,700
Tin 38,259 903 5 NaN
Unleaded 47,967 1,340 42,000 11,320
Zinc 36,513 964 25 6,200
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Table II

Performance of Trading Strategies Before and After Transaction Costs.

This table shows the annualized Sharpe ratio gross (“Gross SR”) and net (“Net SR”) of
trading costs for the optimal trading strategy in the absence of trading costs (“Markowitz”),
our optimal dynamic strategy (“Dynamic”), and a strategy that optimizes a static one-period
problem with trading costs (“Static”). Panel A illustrates these results for a low transaction
cost parameter, while Panel B uses a high one.

Gross SR Net SR Gross SR Net SR

Markowitz 0.83 -9.84 0.83 -10.11
Dynamic optimization 0.62 0.58 0.58 0.53
Static optimization

Weight on Markowitz = 10% 0.63 -0.41 0.63 -1.45
Weight on Markowitz = 9% 0.62 -0.24 0.62 -1.10
Weight on Markowitz = 8% 0.62 -0.08 0.62 -0.78
Weight on Markowitz = 7% 0.62 0.07 0.62 -0.49
Weight on Markowitz = 6% 0.62 0.20 0.62 -0.22
Weight on Markowitz = 5% 0.61 0.31 0.61 0.00
Weight on Markowitz = 4% 0.60 0.40 0.60 0.19
Weight on Markowitz = 3% 0.58 0.46 0.58 0.33
Weight on Markowitz = 2% 0.52 0.46 0.52 0.39
Weight on Markowitz = 1% 0.36 0.33 0.36 0.31

Panel A: 
Benchmark 

Transaction Costs

Panel B: 
High Transaction 

Costs
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Panel A. Constructing the current optimal portfolio
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Panel C. Expected future path of optimal portfolio
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Panel D. “Skate to where the puck is going to be”

Panel E. Shooting: lead the duck

Panel F. Missile systems: lead homing guidance

Figure 1: Aim in front of the target. Panels A–C show the optimal portfolio choice
with two securities. The Markowitz portfolio is the current optimal portfolio in the absence
of transaction costs: the target for an investor. It is a moving target, and the solid curve
shows how it is expected to mean-revert over time (towards the origin, which could be the
market portfolio). Panel A shows how the optimal time-t trade moves the portfolio from
the existing value xt−1 towards the aim portfolio, but only part of the way. Panel B shows
the expected optimal trade at time t + 1. Panel C shows the entire future path of the
expected optimal portfolio. The optimal portfolio “aims in front of the target” in the sense
that, rather than trading towards the current Markowitz portfolio, it trades towards the
aim, which incorporates where the Markowitz portfolio is moving. Our portfolio principle
has analogues in sports, hunting, and missile guidance as seen in Panels D–F.

44



 E
t
(Markowitz

t+h
)

 E
t
(x

t+h
)

Position in asset 1

P
o
s
it
io

n
 i
n
 a

s
s
e
t 
2

Panel C: Only Persistent Cost
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Panel B: Persistent and Transitory Cost
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Panel A: Only Transitory Cost

Figure 2: Aim in front of the target with persistent costs. This figure shows the
optimal trade when part of the transaction cost is persistent. In Panel A, the entire cost is
transitory, as in Figure 1 (A–C). In Panel B, half of the cost is transitory, while the other
half is persistent, with a half-life of 6.9 periods. In Panel C, the entire cost is persistent.
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Figure 3: Positions in crude and gold futures. This figure shows the positions in crude
and gold for the the optimal trading strategy in the absence of trading costs (“Markowitz”)
and our optimal dynamic strategy (“Optimal”).
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Figure 4: Optimal trading in response to shocks to return-predicting signals. This
figure shows the response in the optimal position following a shock to a return predictor as
a function of the number of days since the shock. The top left panel considers a shock to the
fast five-day return predictor, the top right panel considers a shock to the one-year return
predictor, and the bottom panel to the five-year predictor. In each case, we consider the
response of the optimal trading strategy in the absence of trading costs (“Markowitz”) and
our optimal dynamic strategy (“optimal”) using high and low transactions costs.
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