
 

0 
 

 

 

Master’s thesis 

Copenhagen Business School 

Date of submission: 15th January 2020 

 

 

 

 

  

Time Series Momentum                     
Implemented 

Testing the Performance of Long-Only Time Series 
Momentum Strategies from the Perspective of an Individual 

Investor, Accounting for Strategy Costs 
 

 

Supervisor: Lasse Heje Pedersen 

Characters:186,554 

Pages: 79 

 

Magnus Bojesen 

Student nr: 93752 

MSc EBA – Applied Economics and Finance 



 

1 
 

ABSTRACT 

Moskowitz, Ooi, and Pedersen (2012) develop a time series momentum (TSMOM) strategy that uses the sign of 

an asset’s mean excess return over a lookback horizon of 12 months to determine its trend signal. The strategy 

takes long positions in assets with positive signals and short positions in assets producing negative signals. They 

find that the strategy realizes abnormal excess returns. These results do not, however, account for costs associated 

with strategy execution. Related studies that do account for costs, are conducted from the perspective of 

institutional investors. Finally, the use of shorting in the strategy may not be a viable option for some individual 

investors. Hence, many of the findings documented in the literature are of little practical utility to individual 

investors. Therefore, this paper seeks to discover the degree to which an individual investor can realize portfolio 

performance that outperforms traditional investment strategies, by implementing a long-only TSMOM strategy 

that accounts for real-life costs.  

For use throughout the analysis, the paper develops two long-only TSMOM strategies termed the levered TSMOM 

(LTSMOM) strategy and the unlevered TSMOM (UTSMOM) strategy. In both cases, when an asset has a negative 

trend signal it is excluded from the portfolio, rather than shorted. Moreover, the new strategies account for 

transaction and financing costs in the calculation of their returns.  

Using data from 15 equity index and 6 bond index ETFs between January 2004 and October 2019, the paper 

performs a pooled panel autoregression and finds significant price continuation in the data. Comparing a broad set 

of performance measures across strategies and lookback horizons, the paper discovers a lookback horizon of 3 

months to produce the best results for both the LTSMOM and the UTSMOM strategy. Furthermore, the paper 

finds that using 3-month lookback horizons, the strategies outperform identically constructed strategies that do not 

use time-series momentum signals, emphasizing that the use of these signals enhances investment performance. 

Testing the impact of costs on the strategies, the paper finds that both the LTSMOM and UTSMOM strategies are 

robust to transaction costs. However, the paper determines that the LTSMOM strategy is unsuitable for 

implementation due to its significant decline in performance, caused by financing costs. The paper finds that the 

UTSMOM strategy is robust to expense ratio costs specific to ETFs, indicating that the asset class is suitable for 

use in the strategy. Finally, the paper compares the performance measures of the LTSMOM and UTSMOM 

strategies to two standard asset allocation strategies. The paper finds that the UTSMOM strategy exhibits a 

considerably higher Sharpe ratio than the other strategies and displays superior risk measures. Moreover, the 

UTSMOM strategy realizes a statistically significant alpha, presenting a challenge to standard rational asset pricing 

theory.  
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1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

The Efficient Market Hypothesis (EMH) states that prices reflect all relevant and currently available information. 

The theory implies that assets are priced correctly based on extant information and only new information can drive 

changes in prices (Fama, 1970). Therefore, under the EMH, it should be impossible to predict future movements 

in asset prices except as rational compensation for risk, since all available information is already incorporated into 

the asset’s price. Hence, asset prices are said to follow a random walk. The EMH asserts that since historical asset 

price data are publicly available at little or no cost, investors would utilize the apparent signals concerning future 

performance and react accordingly. Thus, the information would be priced-in instantaneously, causing an 

immediate price-change, rendering the future predictability of asset prices based on this information impossible. 

A great deal of financial and economic theory relies on the fact that markets are efficient. For instance, the capital 

asset pricing model (CAPM) asserts that investors are rational and have homogenous expectations.  

Though popular, the EMH and CAPM theory have not remained unchallenged. Studies performed Black, Jensen, 

and Scholes (1972), Frazzini and Pedersen (2014) and Asness et al. (2012) find statistically significant evidence 

that the empirical security market line (SML) associated with the CAPM is flatter than theory would suggest. This 

means that risk-adjusted returns are larger for safer assets than risky ones. This insight led Asness et al. (2012) to 

perform an empirical study whereby they document that leveraging portfolios that are more concentrated in safer 

assets leads to superior performance compared to those that overweight riskier assets. Specifically, they leverage 

a risk parity portfolio which is an equally weighted portfolio, where weights refer to risk rather than the amount 

of wealth invested in each asset. Against this background they argue that the empirically flat SML can be explained 

by leverage aversion, whereby investors are either unable or unwilling to use leverage to increase returns. The 

authors argue that this causes investors to overweight risky assets with the aim of realizing greater returns causing 

the SML to become flatter.  

Theories presented within the realm of Behavioural Finance have challenged the EMH by questioning the central 

assumption of rationality and the idea that new information is priced in immediately. Shefrin and Statman (1985) 

present the argument that a behavioural pattern exists whereby investors have a disposition to sell well-performing 

stocks (winners) too early and hold on to poorly-performing stocks (losers) for too long. Daniel, Hirshleifer and 

Subrahmanyam (1998) find that positive return autocorrelations can be caused by an ongoing overreaction to a 

certain event. The arguments presented by the scholars challenge the traditional view that securities are priced in 

a rational manner using rational asset pricing models that reflect all publicly available information. 
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With an offset in behavioural theories Jegadeesh and Titman (1993) were able to empirically document momentum 

profits for the first time. Through analysing data on a wide range of stocks over a period ranging from 1965 to 

1989, Jegadeesh and Titman find that momentum trading strategies where an investor bets on past winners, also 

known as relative strength trading strategies do realize significant abnormal returns. More recent research on time-

series momentum has been performed by Moskowitz, Ooi and Pedersen (2012), who study a broad set of data, 

consisting of futures returns from January 1965 to December 2009. Moskowitz et al. (2012) develop a 

methodology to construct portfolios based on what they coin the Time Series Momentum (TSMOM) factor. This 

strategy uses the sign of an asset’s mean excess return over the most recent 12 months to identify its trend signal. 

The strategy holds long positions in assets that produce positive signals and short positions in assets with negative 

signals. Inherent in the construction of the TSMOM portfolios is the use of the volatility scaling and leverage. That 

is, each position is scaled to produce an ex ante volatility of 40%, effectively leveraging the positions. The 

TSMOM strategy is therefore a form of levered risk parity portfolio. Testing the TSMOM strategy, the authors 

find that it produces abnormal excess returns, which questions the assumptions of the EMH. A more recent study, 

conducted by Hurst, Ooi, and Pedersen (2017) finds that clear trends have been absent and trend-following 

strategies have produced mixed results in recent years. However, the authors argue that this may be due to the 

current economic environment which may change to the benefit of trend-following strategies in the future. 

Moreover, Hurst et al. (2017) find evidence that trend-following strategies produce attractive diversification 

benefits in current market conditions. 

Though much of the literature on momentum provides encouraging evidence of significant abnormal returns, it 

has not been without challenge or criticism. Korajczyk and Sadka (2004) find evidence that suggests transaction 

costs significantly reduce the level of abnormal returns obtained by momentum strategies. Lesmond, Schill, and 

Zhou (2004) also find evidence that transaction costs completely eliminate all the apparent abnormal returns 

generated by momentum strategies. Moreover, they find that most of the profits from momentum strategies are 

provided by the short positions. They argue that short-selling past losers entails disproportionately high trading 

costs and thus renders the strategies useless in a real world setting. Finally, Kim, Tse, and Wald (2016) direct 

criticism specifically towards the TSMOM strategy developed by Moskowitz et al. (2012). They argue that the 

impressive performance of the strategy derives mainly from the use of volatility scaling which causes the TSMOM 

strategy to be leveraged by construction. Finally, studies that account for costs in momentum strategies tend to do 

so from the perspective of institutional investors, both explicitly and implicitly. Therefore, individual investors 

interested in implementing a TSMOM strategy have little guidance regarding the profitability of the strategy when 

accounting for its costs.    
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With an offset in the TSMOM strategy developed by Moskowitz et al. (2012), this paper seeks to shed light on the 

criticisms of time-series momentum, conducting an empirical analysis that aims to generate results that resemble 

real-life strategy implementation as much as possible. Moreover, to broaden the discussion of time series 

momentum, this paper focuses on strategy implementation from the perspective of an individual investor. 

Therefore, rather than analysing futures contracts which must be rolled when they near expiry, this paper analyses 

exchange traded funds (ETF) which are less complicated and thus perhaps better suited to an individual investor. 

With many individual investors unable or unwilling to engage in the short-selling of assets and drawing on the 

insights of Lesmond et al. (Lesmond et al., 2004) regarding higher transaction costs for short positions, this paper 

assumes no short-selling. To address the criticism of Kim et al. (2016) while still seeking to extract the benefits of 

leverage presented by Asness et al. (2012), the paper develops two new TSMOM strategies, the levered TSMOM 

(LTSMOM) strategy and the unlevered TSMOM (UTSMOM) strategy. Furthermore, the paper creates all-long 

versions of the two strategies that ignore trend signals, termed the levered risk parity (LRP) strategy and the 

unlevered risk parity (URP) strategy. Including these all-long strategies in the analysis enables the paper to directly 

observe whether time series momentum enhances strategy performance. The levered strategies incorporate 

financing and transaction costs into their calculation, whereas the unlevered strategies, not subject to leverage, 

account only for transaction costs. Assuming no short-selling and accounting for relevant costs, these extensions 

to the TSMOM theory aid in answering the research question which is now presented.  

1.2 RESEARCH QUESTION 

This paper aims to uncover whether it is possible to implement an investment strategy that both exploits the 

existence of return continuation and the higher risk-adjusted returns associated with safer assets, from the 

perspective of an individual investor. To this end, it will seek to answer the research question: 

To what extent is it possible for an individual investor to realize superior portfolio performance compared to 

traditional investment strategies by implementing a long-only time-series momentum strategy that controls 

volatility and accounts for real-life strategy costs? 

Due to the length and complexity of the analysis at hand, the paper will answer a set of smaller, more approachable 

questions, that together provide an answer to the main research question.   

An important factor in terms of this paper’s analysis is whether the data displays evidence of return continuation. 

Without the presence of return continuation in the data the implementation of a time series momentum strategy 

would make little sense. Moskowitz et al (2012) use 12 months of return data to determine the signals used in their 

TSMOM strategy. While the authors find this lookback horizon to be optimal in the data they analyse, this is not 
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necessarily the case for the data used in this analysis. The signal used in the time series momentum strategies may 

have a significant impact on their performance. Therefore, finding the appropriate lookback horizon to calculate 

the time-series momentum signals is essential. The paper will therefore seek to answer the following question: 

1. Is there evidence of return continuation in the data and what is the optimal look-back horizon to use for 

the long-only momentum signals in terms of producing the best performance? 

While a paper portfolio may produce attractive performance measures, the real-life implementation of any trading 

strategy is subject to transaction costs. Therefore, the paper must answer the following question: 

2. To what extent are the developed time-series momentum strategies robust to the trading costs an individual 

investor would be subject to? 

Leveraged strategies will be subject to financing costs. In much of the literature, this is stated to be the risk-free 

rate. Whereas it may be possible to borrow at the risk-free rate for a large institutional investor, this is most likely 

not be the case for an individual investor, who will be subject to higher financing costs. To this end, the following 

question must be answered: 

3. To what degree is the leveraged time-series momentum strategy robust to the financing costs that an 

individual investor is exposed to? 

The paper performs the analysis using ETFs which are subject to costs known as expense ratios. Seeking to conduct 

an analysis that provides results that resemble real-life strategy implementation as much as possible, the paper 

must account for these costs. Furthermore, this will provide valuable insights as to whether these instruments are 

suited to such a strategy. Therefore, the paper will answer the question: 

4. To what extent are the developed time-series momentum strategies robust to the expense ratio costs 

associated with ETFs and considering these are ETFs suitable instruments for the strategies?  

Even if the time-series momentum strategies do produce positive performance measures, these may simply be 

caused by the risk parity method of asset allocation. It is therefore important to observe the effect that using time-

series signals has on the performance measures. To this end it is useful to compare the performance measures of 

the time-series momentum strategies with their risk parity counterparts. That is portfolios that use the same asset 

allocation principles but where the use of momentum signal is absent. Following this path, the question must be 

answered:  
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5. Given the costs associated with the real-life implementation of the time-series momentum strategies, to 

what extent do they produce performance measures over and above those of all-long, otherwise identical, 

risk parity strategies? 

Finally, even if the time-series momentum strategies do produce positive performance results it is desirable to 

contextualize these. That is, it is of interest to know whether they outperform other, simpler strategies. Hence, the 

last question that must be answered is the following: 

6. Accounting for all costs, do time-series momentum strategies perform better than other standard asset 

allocation strategies? 

Having presented the research question and its underlying sub-questions, the paper will now proceed to describe 

how it contributes to the existing literature.  

1.3 CONTRIBUTION TO THE LITERATURE 

This paper contributes to the existing literature in several ways. It will take its point of departure in the TSMOM 

strategy developed by Moskowitz et al. (2012) with a number of alterations. The changes made to the TSMOM 

strategy are mainly driven by the criticism that that it has received. Addressing these issues provides additional 

insights into the dynamics and performance of the strategy. First, to address the criticism presented by Lesmond 

et al. (2004) regarding TSMOM profits being driven by short positions with high trading costs, the paper 

implements a long-only TSMOM strategy. By conducting an isolated test of long-only strategies the paper 

provides clear and dedicated results regarding their performance, as opposed to decomposing long-short strategies 

to extract performance measures, as has been the case previously. Second, levered and unlevered versions of the 

TSMOM strategy are developed. This addresses the criticism of Kim et al. (2016) who claim that TSMOM 

performance is driven by leverage. Creating a formula dedicated to testing an unlevered TSMOM strategy as 

opposed to simply deleveraging the original TSMOM strategy provides a new perspective to the literature. Third, 

the paper further extends the original TSMOM formula to account for trading and financing costs. This extension 

is practical and simple to use, facilitating a more complete and realistic way to test the performance of the strategy. 

This contributes to the discussion on whether the TSMOM strategy is robust to trading costs, as well as broadens 

the discussion to encompass the effects of financing costs associated with the levered TSMOM strategy. Moreover, 

subjecting the levered TSMOM strategy to financing costs adds perspective to the leverage aversion theory. 

Moskowitz et al. (2012) test a broad set of asset classes including equity index futures, commodity futures, bond 

futures and currency forwards. As far as knowledge extends, ETFs have never been investigated in a time-series 
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momentum context. Therefore, analysing this specific asset class contributes to the existing literature by 

broadening the scope asset classes that have been investigated for time series momentum characteristics.  

1.4 DELIMITATIONS 

One of the central elements of this paper is to assess the performance of time-series momentum strategies 

accounting for transaction costs. However, the paper is unable to gain access to empirical bid-ask transaction costs, 

since these would vary from minute to minute at any given point during a day. Furthermore, as will be elaborated 

on in Section 3.1 it has not been possible to access reliable and consistent data on bid and ask prices for the data, 

with platforms such as Bloomberg and CapitalIQ having large gaps in the data as well as presenting some 

suspicious results. Nonetheless, using a transaction cost modelling technique developed by Corwin and Schultz 

(2012) which uses daily high and low prices it is possible to estimate bid-ask transaction costs.  

Another focus of the paper is to uncover how the levered strategies perform when accounting for financing costs. 

In this case, the paper only accounts for the direct costs of borrowing. Specifically, the paper integrates the interest 

rate cost that an individual investor would have to have to pay in order to use leverage. However, the paper does 

not account for issues such as margin calls that may have a large influence on the performance of a strategy and 

with great likelihood require the investor to consider prior to portfolio construction. Addressing this issue is beyond 

the scope of this paper. However, the paper does provide performance measures such as the maximum drawdown. 

Although this measure does not inform us whether a margin call would be issued, it does provide some insights 

regarding the possibility of margin calls during the sample period. Furthermore, funding liquidity is ignored. That 

is, that paper assumes that the investor has access to external funding at all times.  

Finally, the paper does not account for taxes that would be incurred through strategy implementation. To account 

for taxes on capital gains and dividends would overcomplicate the analysis to a degree that would draw too much 

attention away from the focus points of the analysis. While the inclusion of taxes would enrich the results, the 

paper deems this beyond the scope of the analysis.    

1.5 OUTLINE 

The structure of the paper is as follows. Section 2 presents an in-depth account of the theory that is used in the 

paper. Furthermore, the it includes this paper’s contribution to the TSMOM theory. Specifically, it is in this chapter 

that the paper derives the LTSMOM and UTSMOM strategies including the way financing and transaction costs 

are derived. In Section 3, the paper describes the data that is used in the analysis and conducts preliminary data 

preparation procedures. Section 4 provides a detailed account of the methodology that is used to conduct the 
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analysis. The paper conducts the analysis in Section 5. Having the results of the analysis Section 6 of the paper 

discusses the findings and provides answers to the sub-question presented above, eventually providing an answer 

to the research question. Finally, Section 7 presents a brief collection of recommendations to further research.    

2 THEORY 

This section of the paper follows a linear path, where each theory that is presented facilitates a greater 

understanding of the theory that follows. Section 2.1 presents fundamental financial theory that provides a context 

for the more contemporary theory used in the paper. Following this, Section 2.2 describes the underlying theory 

of the risk parity asset allocation method which plays a significant role in the construction of the TSMOM strategy 

and the LTSMOM and UTSMOM strategies that this paper develops. This section also presents a theory of 

leverage aversion that advocates applying leverage to a risk parity portfolio in order to realize risk-adjusted returns 

beyond what is possible using traditional asset allocation strategies. Section 2.3 presents a thorough account of the 

TSMOM theory pioneered by Moskowitz et al. (2012). Finally, the paper develops its contribution to the TSMOM 

theory in Section 2.4. Specifically, the paper derives the LTSMOM and UTSMOM strategies and describes how 

financing and transaction costs are calculated.  

2.1 MODERN PORTFOLIO THEORY AND THE CAPM 

While the paper will not make use of mean-variance analysis as such, the underlying theory regarding the 

importance of diversification, and a selection of the models pertaining to this theory are of relevance to the methods 

that will be used in the analysis. For this reason, the paper will provide a brief presentation of modern portfolio 

theory (MPT) pioneered by Markowitz (1952, 1959). 

The underlying assumption of mean-variance analysis is that, when selecting a portfolio of assets, an investor is 

only concerned about the expected return and variance of the portfolio over a desired future timeframe (Markowitz, 

1952). More specifically, the investor who is a mean-variance optimizer desires the highest possible expected 

return given the lowest possible variance of returns.   

Given a selection of risky assets, a portfolio constructed hereof is classified as mean-variance efficient if it displays 

the lowest return variance compared to all other possible portfolio constructions using the same assets that have 

the same expected return (Markowitz, 1959). Since there are different combinations of asset allocations that will 

provide a variety of expected return and variance combinations, there exists more than one efficient portfolio 

depending on the investors willingness to take on risk. The array of possible risk-return combinations forms a 
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parabola, known as the mean-variance frontier. Of these possible portfolios one has received particular focus in 

the finance literature, namely the minimum-variance portfolio. This is the portfolio that displays the minimum 

variance among all portfolios with respect to the universe of assets being analysed (Munk, 2018). Portfolios below 

the minimum-variance portfolio are not optimal. That is, there exist portfolios with higher expected returns given 

the same standard deviation.  

The development of  the two-fund separation theorem by Tobin (1958) adds a new dimension to mean-variance 

frontier. This theorem advocates first selecting the optimal portfolio of risky assets and then combining this risky 

portfolio with an investment in the risk-free asset. When the risk-free asset is included in the possible portfolio 

combinations a new efficient frontier is created, not just for risky assets, but for all assets. Whereas the efficient 

frontier for risky assets produces a parabola, the efficient frontier for all assets manifests as a straight line as shown 

in Figure 2.1. This line is often referred to as the capital allocation line (CAL) (Munk, 2018). The point at which 

the efficient frontier for all assets meets the efficient frontier for risky assets only is known as the tangency 

portfolio.  

 

 
Figure 2.1 A stylized illustration of the efficient frontier and capital allocation line  

As is clear from Figure 2.1, the inclusion of the risk-free asset in the portfolio presents the investor with superior 

risk-return options than the portfolio with risky assets only. The tangency portfolio is the point at which no weight 

is allocated to the risk-free asset. The further an investor moves left from the tangency portfolio along the CAL, 

the more weight he allocates to the risk-free asset in the portfolio. An investor who only invests in the risk-free 

asset has his portfolio where the CAL meets the Y-axis and therefore has a standard deviation of 0%. Conversely, 
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if the investor holds a portfolio to the right of the tangency portfolio, he is borrowing money to leverage his position 

in the risky assets. The benefits of leverage are easily deduced from Figure 2.1. For instance, at a standard deviation 

of 30% the expected return is larger for the leveraged portfolio than that of the best possible portfolio that is 

obtainable from investing only risky assets without the use of leverage.  

The Sharpe ratio (SR), named after the economist who developed it, William F. Sharpe (1966), measures the risk 

adjusted return of a portfolio and has the formula: 

𝜇 − 𝑟௙

𝜎
 (2.1) 

where the numerator consists of the excess return of the portfolio and the denominator is the portfolio standard 

deviation. The SR depicts the amount of return that an investor will be compensated with given the risk undertaken. 

A mean-variance optimizer seeks to maximize the SR of his investment. The slope of the CAL is precisely the 

maximum SR. Therefore, such an investor will construct his portfolio such that it is located somewhere on the 

CAL (Munk, 2018).   

Whereas MPT assumes that mean-variance optimizers construct portfolios so that they are placed somewhere on 

the CAL, the capital asset pricing model (CAPM) extends this assumption to include all investors (Asness et al., 

2012). The CAPM, therefore asserts that the tangency portfolio, as described above, is in fact the market portfolio. 

The market portfolio is defined as the value-weighted portfolio of all assets. In the case of the market portfolio, 

the CAL then becomes the capital market line (CML). The slope of the CML is therefore the SR of the market 

portfolio (Munk, 2018). By path of some derivation, drawing on insights from the two-fund separation theorem, 

the theoretical CAPM equation is derived as: 

𝐸[𝑟௜] − 𝑟௙ = 𝛽௜൫𝐸[𝑟௠] − 𝑟௙൯ (2.2) 

where  

𝛽௜ =
𝐶𝑜𝑣[𝑟௜, 𝑟௠]

𝑉𝑎𝑟[𝑟௠]
  

Here, 𝐸[𝑟௜] represents the expected rate of return of an asset i, 𝐸[𝑟௠] is the expected rate of return of the market 

portfolio and 𝛽௜ is the market beta of the asset i. According to the CAPM, since all investors hold the market 

portfolio, the only important risk measure is the asset’s beta. Beta represents a stocks systematic risk i.e. the risk 

that cannot be diversified away. A stylized representation of the relationship between beta and expected return is 

shown in Figure 2.2. The line in this illustration is the Security Market Line (SML), where the slope of the line is 

the market risk premium. 
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Figure 2.2 A stylized representation of the Security Market Line (SML) 

The theoretical CAPM can be, and has been, tested. Performing a linear regression of historical excess returns of 

a portfolio (or asset) against the market excess returns the empirical CAPM takes the form: 

𝑟௜௧ − 𝑟௙௧ = 𝛼௜ + 𝛽௜൫𝑟௠௧ − 𝑟௙௧൯ + 𝜀௜௧  (2.3) 

The estimates of 𝛼௜ and 𝛽௜ take the values that minimize the sum of squared residuals. For the CAPM to hold, the 

estimate of 𝛼௜ should not be statistically different from zero (Munk, 2018). Figure 2.2 provides an illustration of 

assets that have an alpha that is not zero. The vertical distance between an individual asset and the SML is its 

alpha. A great deal of empirical studies have been conducted over many years that find consistent and statistically 

significant evidence that the empirical SML is flatter than the theoretical CAPM implies including studies 

performed by Black, Jensen, & Scholes (1972), Frazzini & Pedersen (2014) and Asness et al. (2012). These 

findings suggest that assets with lower risk provide higher risk-adjusted returns than those with higher risk and 

creates the point of departure for the paper in terms of asset allocation. Theoretical arguments will now be 

presented that, according to the proponents of them, enable investors to exploit the shortcomings of the CAPM in 

order to realize abnormal excess returns.     
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2.2 RISK PARITY AND LEVERAGE AVERSION 

2.2.1 Risk Parity   

Three types of budgeting approaches exist in asset allocation - performance budgeting, weight budgeting and risk 

budgeting (Roncalli, 2014). A mean-variance portfolio that targets a specific expected return is an example of a 

performance budgeting approach. While the process of efficiently allocating wealth using mean-variance 

optimization appears attractive and simple, it has some significant drawbacks. To begin with, mean-variance 

optimized portfolios have a proclivity to be overly concentrated in a small portion of the full range of assets being 

analysed (Maillard, Roncalli, & Teiletche, 2009). Furthermore, the optimization process causes mean-variance 

solutions to be excessively sensitive to the expected returns input parameter. That is, small changes in expected 

returns can cause large transformations in the construction of the portfolio. While the minimum variance portfolio, 

mentioned above, does not integrate expected returns into its calculation, it still suffers from excessive portfolio 

concentration (Maillard et al., 2009).  The equally-weighted portfolio is an example of weight budgeting. By 

construction, this approach eliminates the inconvenience of excessive portfolio concentration. However, equally-

weighted portfolios, in many instances, suffer from the under-diversification of risk. Risk parity (RP) is an example 

of a risk budgeting approach. The essence of RP is that asset weights are allocated based on their level of ex-ante 

risk. Roncalli (2014) argues that this approach to asset allocation does not suffer from excessive portfolio 

concentration nor the under-diversification of risk.   

Roncalli (2014) denote the risk measure of a given portfolio as ℛ(𝑥) and stipulate properties that ℛ(𝑥) must 

satisfy in order to be appropriate to use in relation to the risk allocation principle. These are divided into two 

subcategories – coherency and convexity. Artzner, Delbaen, Eber, and Heath (1999) outline four properties that 

must hold if ℛ(𝑥) is to be considered coherent: 

1. Subadditivity 

ℛ(𝑥ଵ + 𝑥ଶ) ≤ ℛ(𝑥ଵ) + ℛ(𝑥ଶ)    

Adding the risk of the two portfolios separately will be more than the risk of the two portfolios together. 

2. Homogeneity 

ℛ(𝜆𝑥) = 𝜆ℛ(𝑥)   if   λ ≥ 0  

If the portfolio is subject to leveraging or deleveraging, its risk measure will increase or decrease by the 

same scale. 

3. Monotonicity 
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𝑖𝑓 𝑥ଵ ≺ 𝑥ଶ, 𝑡ℎ𝑒𝑛 ℛ(𝑥ଵ) ≥ ℛ(𝑥ଶ) 

If, under all scenarios, portfolio 𝑥ଶ displays a superior return compared to that of 𝑥ଵ then risk measure 

ℛ(𝑥ଶ) should be lower than ℛ(𝑥ଵ). 

4. Translation invariance 

𝑖𝑓 𝑚 ∈ ℝ, 𝑡ℎ𝑒𝑛 ℛ(𝑥 + 𝑚) = ℛ(𝑥) − 𝑚 

The addition of cash, m, to the portfolio will result in the reduction of risk by m. 

Believing that the first two axioms of coherency are too strong, Föllmer & Schied (2002) develop a weaker 

convexity condition which they argue should replace them. 

ℛ(𝜆𝑥ଵ + (1 − 𝜆)𝑥ଶ) ≤ 𝜆ℛ(𝑥ଵ) + (1 − 𝜆)ℛ(𝑥ଶ) 

Simply put, the convexity condition requires that combining two portfolios should not surpass the combined risk 

of the individual portfolios. That is, diversification must not increase risk.  

Roncalli (2014) shows that standard deviation (SD) as a risk measure satisfies the coherency and convexity 

conditions, except for the translation invariance axiom. Nonetheless, the author argues that this axiom is designed 

for purposes other than portfolio management and is poorly designed for this discipline. For this reason, he argues 

that SD can comfortably be considered a coherent and convex risk measure.  

2.2.2 Leverage Aversion and the Flat Security Market Line 

Having provided a brief presentation of some of the underlying ideas of risk parity, the paper will now draw on an 

empirical study conducted by Asness, Frazzini, and Pedersen (2012) where both levered and unlevered RP 

portfolios are created and compared to various other portfolios. While this paper is of great utility from a practical 

perspective, it also sheds some light on the shortcomings of the CAPM, placing particular focus on the flatness of 

the security market line and providing a theory that seeks to explain this empirical observation. The paper will first 

describe the risk parity formulae that Asness et al. (2012) use to construct their RP portfolios. Following this, the 

empirical finding of the study will be presented. 

The authors define the weight allocations of assets in their RP portfolios as 

𝑤௧,௜ = 𝑘௧𝜎ො௧,௜
ିଵ, (2.4) 
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where 𝑖 = 1, … , 𝑛. In the paper, 𝜎ො௧,௜ is estimated as the three-year rolling standard deviation of monthly excess 

returns, however, this value can be estimated using alternative criteria. The variable 𝑘௧ can be stipulated in several 

ways. For an unlevered portfolio the variable is defined as 

𝑘௧ =
1

∑ 𝜎ො௧,௜
ିଵ

௜

 , (2.5) 

Which results in the following formula for the weight of each asset i at time t 

𝑤௧,௜ =
𝜎ො௧,௜

ିଵ

∑ 𝜎ො௧,௜
ିଵ

௜

, (2.6) 

The levered RP portfolio is constructed by setting 𝑘௧ equal to a constant value over time for all periods: 

𝑘௧ = 𝑘 

Resulting in the formula 

𝑤௧,௜ = 𝑘𝜎ො௧,௜
ିଵ, (2.7) 

which ensures that each asset class targets a specified level of volatility each period. This constant level of volatility 

is achieved by altering the leverage of each position each month. Finally, the RP portfolio is constructed and 

rebalanced each month, where the monthly excess return is calculated as  

𝑟௧
ோ௉ = ෍ 𝑤௧ିଵ,௜(𝑟௧,௜ − 𝑟𝑓௧)

௜

 

By applying the methods and formulae presented above on realized returns for U.S stocks and bonds over the 

period 1926-2010, Asness et al. (2012) find interesting results shown in Figure 2.3. 
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Figure 2.3 Efficient Frontier of portfolios of U.S stocks and Bonds used in the authors long sample over the period 1926-2010                                             

Source: Asness et al. (2012) 

Figure 2.3 displays the hyperbola representing all possible combinations of stocks and bonds over the entire period. 

As explained in Section 2.1, the addition of the risk-free T-bill rate in combination with portfolio of risky assets 

creates the efficient frontier of all assets. Contrary to what the CAPM theory would suggest, the diagram clearly 

shows that the risk-return characteristics of the value-weighted market portfolio are very different from the 

tangency portfolio. Asness et al. (2012) argue that there are two reasons causing this empirical observation. First, 

they argue that the market weights of stocks relative to bonds have changed over time in a manner that has caused 

the market portfolio to be located inside the hyperbola. Second, stocks receive a far higher weight allocation in the 

market portfolio relative to bonds, than what history has shown to be optimal. The authors highlight that since 

bonds have historically realized a higher SR and lower volatility than stocks, it makes sense that the tangency 

portfolio allocates a large portion of its weights to bonds. The unlevered risk parity portfolio, which is rebalanced 

on a monthly basis, possesses risk-return characteristics that closely resemble the tangency portfolio, displaying a 

slightly lower return and marginally higher volatility. This is precisely because the way that the RP portfolio is 

constructed, allocating weights based on the inverse of each asset’s volatility, bonds make up a large portion of 

the portfolio. 

Figure 2.3 also shows the performance of the levered risk parity portfolio, which displays the same volatility as 

the value-weighted market portfolio (by construction) but exhibits a far superior average annualized realized 

return. Therefore, the levered RP portfolio possesses a higher SR than the market portfolio. Furthermore, it also 
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outperforms the 60/40 portfolio in terms of risk-adjusted returns. While it seems clear that investors should prefer 

a levered RP portfolio to the market portfolio Asness et al. (2012) propose a theory of leverage aversion to 

reconcile the discrepancy with the CAPM. They argue that an investor seeking a higher return than the tangency 

portfolio offers may be prepared to undertake more risk but be unwilling or unable to make use of leverage. This 

intuitively means that he will invest more wealth into stocks to increase returns. The authors posit that this alters 

the conclusion of the CAPM, which assumes that all investors invest on the efficient frontier of all assets. 

Therefore, in the presence of leverage averse investors, the market portfolio is not the equivalent of the tangency 

portfolio.  

To test the performance of the RP portfolio’s, Asness et al. (2012) perform a variety of time-series regressions. 

Two datasets are used. A long sample consisting of U.S stocks and bonds ranging between 1926-2010, and a broad 

sample which encompasses data on global stocks, U.S bonds, credit and commodities from 1973 to 2010. Two 

long-short portfolio are created. One goes long the RP portfolio and short the market portfolio. The other is also 

long the RP portfolio but short the 60/40 portfolio. The regressions that are conducted reveal positive and 

significant alphas for the unlevered RP, the RP and both long-short portfolios against the value-weighted market 

portfolio. All portfolios also report positive and statistically significant excess returns.  

Testing U.S stocks, Black, Jensen, and Scholes (1972) find evidence indicating that the empirical SML is flatter 

than what the theoretical CAPM would suggest. Frazzini and Pedersen (2014) corroborate these findings using 40 

years of out-of-sample findings in all other major asset classes. Whereas these studies focus on stocks, Asness et 

al. (2012) find the empirical SML to be too flat when testing across asset classes as shown in Figure 2.4. These 

results are obtained by regressing the excess returns of the broad sample, mentioned above, onto the value-

weighted market portfolio. The betas of this time-series regression represent the slopes of each asset class relative 

to the market portfolio. The empirical SML is then constructed by conducting a cross-sectional regression of the 

average excess returns onto the realized betas and imposing a best fit line. This line represents the empirical SML. 

The authors assert that the flatness of the SML underpins the advantage of investing in safer assets. 
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Figure 2.4 Security Market Line across asset classes used in the authors broad sample over the period 1973-2010.                                           
Source: Asness et al. 

The insights provided by the empirical study conducted by Asness et al. (2012) will play a central role in the 

methodology of the forthcoming analysis, in terms of asset allocation principles. This will be elaborated on in 

Chapter 4 of the paper, where the methodology will be presented. As well as contributing to the asset allocation 

decision, the risk parity approach to asset allocation is also present in some of the key literature that the paper will 

draw on with respect to time series momentum, a subject which the paper will now place its focus.  

2.3 TIME SERIES MOMENTUM 

Using data consisting of 24 commodity futures,  9 developed equity index futures, 13 developed government bond 

futures and 12 cross-currency forwards from January 1965 to December 2009 Moskowitz et al. (2012) conduct an 

in depth analysis of time-series momentum. A methodology for constructing time-series momentum factors is 

developed and evidence is found that their time-series momentum strategy produces abnormal excess returns. The 

paper will now present the theory and methodology used by Moskowitz et al. (2012) which will play a central role 

in the analysis performed in this paper.  

Before describing how the TSMOM factor is calculated it makes sense to present how the ex-ante volatility is 

estimated and how lookback and holding periods are chosen. The ex-ante variance is estimated using exponentially 

weighted lagged squared daily returns: 
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𝜎௧
ଶ = 261 ෍(1 − 𝛿)𝛿௜(𝑟௧ିଵି௜ − 𝑟௧ഥ)ଶ

ஶ

௜ୀ଴

 , (2.8) 

where the variance is annualized by the scalar 261. The component (1 − 𝛿)𝛿௜ are weights that sum to one and 𝛿 

is set to make the centre of mass of the weights 60 days. Finally, 𝑟௧ഥ  is the exponentially weighted average return. 

The standard deviation is then obtained by simply taking the square root of the variance. The authors highlight 

that other, more sophisticated volatility models can be used that also produce robust results. However, the lack of 

lookahead bias in this model is desirable. To further ensure that no lookahead bias contaminates the results, 

volatility estimates at time t-1 are applied to returns at time t. 

To predict price continuation and reversal, the authors perform two pooled panel autoregressions on the data. Since 

the results of these regressions are very similar, this paper reports only one of these regressions. This regression 

takes the form: 

𝑟௧
௦ 𝜎௧ିଵ

௦⁄ = 𝛼 + 𝛽௛ 𝑟௧ି௛
௦ 𝜎௧ି௛ିଵ

௦⁄ + 𝜀௧
௦ (2.9) 

All excess returns are divided by their ex-ante volatility to place them on the same scale. The scaled excess return 

𝑟௧
௦ 𝜎௧ିଵ

௦⁄  for instrument s in month t is then regressed on its counterpart lagged h months.  All futures contracts 

and dates are stacked and the pooled panel autoregression is performed where t-statistics that account for group-

wise clustering by time are calculated. The regression is conducted using lags of ℎ = 1,2, … ,60 months. Positive 

t-statistics are found for the first 12 months displaying significant return continuation in the data. At longer 

horizons, negative t-statistics are present, suggesting the presence of reversals.  

Moskowitz et al. (2012) then investigate the profitability of different time-series momentum trading strategies. 

Here the lookback period k, i.e. the number of months that returns are lagged to determine the momentum signal, 

is changed for each strategy. Lookback periods of 1, 3, 6, 9, 12, 24, 36 and 48 months are tested. Moreover, the 

holding period h, i.e. the number of month that the position is held before rebalancing, is varied using the same 

time intervals as the lookback period. For each lookback period, every holding period is tested. The position size 

in each instrument is set to the inverse of its ex-ante volatility, each month. A single time series of monthly returns 

for each momentum strategy (k,h) is derived. This is obtained by calculating the average return of all h, currently 

active portfolios. The mean of all returns across all instruments is taken to create the time-series momentum 

strategy returns 𝑟௧
்ௌெைெ(௞,௛) . To test for abnormal returns, defined in Section 2.1 as 𝛼 , the authors run the 

following regression: 

 𝑟௧
்ௌெைெ(௞,௛)

= 𝛼 + 𝛽ଵ𝑀𝐾𝑇௧ + 𝛽ଶ𝐵𝑂𝑁𝐷௧ + 𝛽ଷ𝐺𝑆𝐶𝐼௧ + 𝑠𝑆𝑀𝐵௧ + ℎ𝐻𝑀𝐿௧ + 𝑚𝑈𝑀𝐷௧ + 𝜀௧  (2.10) 
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Where the term MKT represents the stock market and is proxied by the excess return on the MSCI World Index. 

The bond market BOND is proxied by the Barclays Aggregate Bond Index. The commodity market denoted GSCI 

is proxied by the S&P GSCI Index. Finally, the Fama-French factors for size, value and cross-sectional momentum 

are denoted SMB, HML and UMD, respectively. The authors report the t-statistics for the alphas of each 

regression. The t-statistics lead the authors to conclude that the optimal lookback horizon is 12 months paired with 

a holding period of 1 month. The t-statistic of the alpha obtained by this (k,h) strategy is reported as 6.61 for all 

assets. 

Having established how the volatility is estimated and what the optimal lookback horizon and holding period were 

found to be, the paper will now progress to describe how the authors construct TSMOM factors. The formula for 

the TSMOM return of an instrument at time t + 1 is: 

𝑟௧,௧ାଵ
்ௌெைெ,௦ = 𝑠𝑖𝑔𝑛൫𝑟௧ିଵଶ,௧

௦ ൯
40%

𝜎௧
௦ 𝑟௧,௧ାଵ

௦  (2.11) 

The component 𝑠𝑖𝑔𝑛൫𝑟௧ିଵଶ,௧
௦ ൯ will be either 1 or -1. The determination of the sign is based on the arithmetic mean 

of the past 12 months of returns. If the mean is positive (negative), 𝑠𝑖𝑔𝑛൫𝑟௧ିଵଶ,௧
௦ ൯ will be equal to 1 (-1). It is this 

component that determines whether the position in this particular asset, s in current month, t will be long or short. 

The construction of the TSMOM factors draws on the risk parity approach to portfolio formation presented in the 

previous subsection. Specifically, the factors are created by allocating an equal amount of ex-ante volatility to each 

asset class. The 40% 𝜎௧
௦⁄ part of the formula represents this position size and is analogous to Equation 2.7 where 

𝑘௧ = 𝑘 = 40%. Furthermore, the constant value of k at 40% means that leverage is likely used. The authors scale 

the volatility to 40% because this results in a portfolio volatility of around 12% making it comparable to similar 

studies in the literature. In line with risk parity theory, the monthly TSMOM factors are created by simply taking 

the arithmetic mean of all the individual instruments TSMOM returns as follows: 

𝑟௧,௧ାଵ
்ௌெைெ =

1

𝑆௧
෍ 𝑠𝑖𝑔𝑛൫𝑟௧ିଵଶ,௧

௦ ൯
40%

𝜎௧
௦ 𝑟௧,௧ାଵ

௦

ௌ೟

௦ୀଵ

 (2.12) 

The TSMOM return is calculated for each of the 58 instruments in all available months between January 1985 and 

December 2009. All 58 futures contracts display positive predictability from the past 12-months of returns. Every 

contract realizes positive time-series momentum returns. Of these, 52 are statistically different from zero measured 

at the 5% significance level. The authors perform a regression to test whether the TSMOM strategy produces 

additional returns beyond those achievable from a long only strategy. Here the TSMOM returns are regressed onto 

returns calculated using Equation 2.2 where 𝑠𝑖𝑔𝑛൫𝑟௧ିଵଶ,௧
௦ ൯ is set to 1 at all times. This regression produces positive 
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alphas in 90% of the cases, with 26% of the alphas displaying statistical significance. Hereby, the authors show 

that the application of the TSMOM strategy does indeed provide additional returns greater than those of the long 

only risk parity strategy. An identical regression as the one shown in Equation 2.1 is performed using the 

diversified TSMOM returns calculated in Equation 2.12. The results of this regression show that the TSMOM 

strategy produces a significant alpha of approximately 1.58% per month. Again, the authors test the performance 

of the TSMOM strategy against its long-only counterpart and display the superiority of the former in a cumulative 

excess returns plot shown in Figure 2.5. 

 
Figure 2.5 Cumulative excess return of the time series momentum and diversified passive long strategy over the period January 1985 to 
December 2009 used by the authors                                                                                                                                                                           
Source: Moskowitz et al. (2012) 

Moskowitz et al. (2012) highlight the impressive performance of the strategy during the global financial crisis 

(GFC), emphasizing the large TSMOM profits in the last quarter of 2008, where the GFC was at its peak. They 

attribute this to the TSMOM strategy’s tendency to perform well during extreme markets. However, the strategy 

endures large losses in the event of sharp trend reversals as it fails to adjust its positions in time.  

Moskowitz et al. (2012) conduct a great deal of tests beyond those presented above. Though interesting, these tests 

are not of direct relevance to the paper and will therefore be exempt from elaboration. Rather, the paper will now 

present its own unique addition to the TSMOM theory. 
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2.4 THIS PAPER’S CONTRIBUTION TO THE TSMOM THEORY 

2.4.1 Long Only TSMOM 

A number of studies find evidence that the majority of the returns associated with long/short momentum strategies 

is attributable to the short position in losers as opposed to the long position in winners. For instance, measured in 

absulte value, Jegadeesh & Titman (2001) uncover that abnormal returns are more prominent in loser portfolios 

than in winners. Specifically, they find that the alphas of winners portfolios are 0.46 and 0.50 measured against 

the CAPM and Fama-French three-factor model, respectively. The losers portfolio displays an alpha of -0.79 

against the CAPM and -0.85 measured against the Fama-French factors. Obviously, when shorting the losers 

portfolio, these returns are positive. Hong, Lim, and Stein, (2000) test cross-sectional momentum profits on 

portoflios divided into deciles according to size, from the smallest in decile 1 to the largest in decile 10. Within 

each decile, three portfolios are formed – P1 which is an equally weighted portfolio of the worst-performing 30 

percent of stocks, P2 consists of the middle 40 percent and P3 comprises the best-performing 30 percent. 

Implementing the formula (𝑃2 − 𝑃1) (𝑃3 − 𝑃1)⁄  the authors find that for all size deciles but the first, the middle 

minus losers account for between 73 and 100% of the excess return. This indicates that the short positions in losers 

are the driving factor in cross-sectional momentum returns. Lastly, in a paper that examines the profitability of 

momentum strategies, Lesmond et al. (2004) find that up to 70% of momentum profits on long/short portfolios 

arise from the short positions. The authors find that these positions are precisely the ones that would have the 

highest trading costs associated with them. They argue that the disproportionately high trading costs associated 

with short selling these past losers would completely eliminate the profits generated by the strategy. Given this 

criticism, it is of interest to conduct a dedicated analysis of long-only TSMOM strategies and determine whether 

they produces attractive performance metrics. 

Moskowitz et al. (2012) specify that 𝑠𝑖𝑔𝑛൫𝑟௧ିଵଶ,௧
௦ ൯ takes either the value 1 or -1, depending on whether the 

arithmetic mean of the past twelve months of returns are positive or negative, respectively. A simple alteration of 

this specification enables the formula presented by the authors to be implementable as a long only portfolio. 

Specifically, if the past k months of returns have a negative mean, 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯ will take the value of 0, if positive, 

it will take the value of 1 as before. This simply means that instead of shorting assets with negative momentum, 

we simply remove them from the portfolio at that time, investing zero wealth in them. While this solves the 

problem of how to impose a long-only constraint on the portfolio, a new question arises – how is the wealth 

accumulated from the complete sale of an asset allocated?  
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In practice there are many possible avenues to take in the event of an asset having a 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯ value equal to 

zero. In this case the paper will assume that the wealth previously invested in an asset that must now be excluded, 

can be allocated to assets that have been leveraged, thereby reducing financing costs. If the portfolio is not using 

external financing to leverage its positions, the portion of wealth can be invested at the risk-free rate.  

2.4.2 The Levered and Unlevered TSMOM Factors with Costs 

One of the focal points of this paper is to ascertain the extent to which it is possible for an individual investor to 

implement a time-series momentum strategy and realize superior portfolio performance compared to other asset 

allocation strategies. To this end, the paper will extend the formula for TSMOM returns derived by Moskowitz et 

al. (2012). The extension will consist of two components that are of importance when transitioning from a paper 

portfolio to a real-life portfolio. These are transaction costs and financing costs. Furthermore, the paper develops 

a TSMOM strategy that does not use leverage. First the paper will present the new levered TSMOM (LTSMOM) 

formula and explain the changes that have been made. Following this, the unlevered TSMOM (UTSMOM) 

formula will be shown. After having presented the two new formulas, the paper will provide a detailed account of 

how transaction and financing costs will be calculated.  

The Levered TSMOM Factor 

The LTSMOM factor is calculated using the following formula: 

𝑟௧,௧ାଵ
௅்ௌெைெ =

1

𝑆௧
෍ ቆ𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧

௦ ൯
30%

𝜎௧
௦ 𝑟௧,௧ାଵ

௦ ቇ

ௌ೟

௦ୀଵ

− 𝑇𝐶௧ାଵ − 𝐹𝐶௧ାଵ, (2.13) 

Here 𝑇𝐶௧ାଵ
௦  denotes the transaction costs associated with the sale and purchase of assets in the portfolio at time 

𝑡 + 1. 𝐹𝐶௧ାଵ represents the potential financing costs incurred due to the possible use of leverage in the portfolio. 

This size of 𝐹𝐶௧ାଵ is calculated at the portfolio level and has a minimum value of 0. As explained above, since 

this is a long only strategy, the value of 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯ is either 0 or 1.  

Finally the assets are scaled to have volatilities of 30% as opposed to the 40% used by Moskowitz et al. (2012). 

The reason for this alteration finds it roots in the theory presented in Section 2.3. Moskowitz et al. (2012) explain 

that by scaling the volatilities of each asset to 40%, the overall portfolio volatility becomes approximately 12% 

per year. However, the data in their study consists of 58 assets spread across four asset classes. Intuitively, this 

creates a more diversified portfolio than is possible using 21 assets spread across two asset classes. The theory 

presented in Section 2.1 and Section 2.2.1 would suggest that this higher degree of diversification likely influences 

the correlation structure of the portfolio, facilitating a lower overall portfolio volatility. Against this background, 
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preliminary tests have been conducted that displayed portfolio volatilities of around 17% when scaling each asset 

to have a volatility of 40%. However, reducing the scaling to 30%, the desired volatility of around 12% is obtained. 

These tests are not reported in this paper, but the resulting portfolio volatilities are observable in the results. The 

reason for targeting a portfolio variance of 12% is to make the results easily comparable to other portfolios in the 

literature.  

The Unlevered TSMOM Factor 

The UTSMOM factor is calculated using the following formula 

𝑟௧,௧ାଵ
௎்ௌெைெ = ෍ ቆ𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧

௦ ൯
𝜎௧,௦

ିଵ

∑ 𝜎௧,௦
ିଵ

௦

𝑟௧,௧ାଵ
௦ ቇ

ௌ೟

௦ୀଵ

− 𝑇𝐶௧ାଵ  , (2.14) 

Two changes are made to Equation 2.13 to arrive at the UTSMOM factor shown in Equation 2.14. First, the 

ଷ଴%

ఙ೟
ೞ  component is replaced by Equation 2.6, namely 

ఙ೟,ೞ
షభ

∑ ఙ೟,ೞ
షభ

೔
 . As explained in Section 2.3 this is a form of risk parity 

asset allocation whereby assets with lower volatilities receive higher portfolio weights. Since the assets are not 

volatility scaled, the resulting portfolio will, according to the theory presented in Section 2.2.1, have a low 

volatility, resembling the minimum-variance portfolio. The second change is the removal of the 𝐹𝐶௧ାଵ component. 

This term is removed since the strategy does not use leverage and is therefore not subject to financing costs. As 

with the levered portfolio, it is crucial to understand the mechanics of what happens when 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ is equal 

to 0. This decision is essentially up to the investor. This paper will determine weights before accounting for the 

value of 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯. This means that when one ore more assets have 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧

௦ ൯ equal to zero, the portfolio 

weights will not sum to one. In this event, the paper assumes that the portion of portfolio wealth that is not allocated 

to assets is instead invested at the risk-free rate, producing an excess return of zero. An alternative approach could 

be to calculate portfolio weights, integrating 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ into the calculation. This would create the formula    

𝑟௧,௧ାଵ
்ௌெைெ = ෍ ቆ𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧

௦ ൯
𝜎௧,௦

ିଵ

∑ 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯𝜎௧,௦

ିଵ
௦

𝑟௧,௧ାଵ
௦ ቇ

ௌ೟

௦ୀଵ

− 𝑇𝐶௧ାଵ , (2.15) 

which is a perfectly feasible method to use. However, there is a significant downside to this approach. Imagine an 

extreme scenario where all assets but one have 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ equal to zero. This would result in all wealth being 

allocated to one single asset. As was discussed in Section 2.1, diversification produces great benefits in terms of 

reducing the risk of the portfolio. Should the investor find himself in the described scenario, which would likely 

be due to significant market turbulence, with almost all assets having negative mean returns over the lookback 
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horizon k. In such a situation it seems rather unwise to allocate 100% of your wealth to a single asset, which would 

be the case in this example. For this reason, the paper uses the approach described in Equation 2.14. In the 

hypothetical example presented, a great deal of wealth would be allocated to the risk-free asset. Since the 

UTSMOM strategy is more suited to an investor with a high degree of risk aversion, this approach seems more 

appropriate.  

Having presented the new LTSMOM and UTSMOM strategies, the paper will now turn its attention to the 

transaction and financing costs embedded within them. Drawing on relevant theory, the paper will begin by 

explaining the relevance of transaction costs to the implementation of the time series momentum strategy. 

Moreover, derives a formula to account for the proportional transaction costs associated with the calculation of 

strategy returns. Following this, the paper will address the issue of financing costs that would be inherent in the 

real-life implementation of the LTSMOM strategy. Here, the paper derives a formula that adjusts the LTSMOM 

returns to account for these financing costs.  

2.4.3 Transaction Costs 

Transaction costs have been the subject of much debate in terms of the application of momentum strategies in the 

real world. Korajczyk and Sadka (2004) find that some equal weighted strategies perform poorly given transaction 

costs whereas value-weighted and liquidity-weighted strategies still provide desirable results. Lesmond et al. 

(2004), however, find that all of the strategies they test are useless when transaction costs are accounted for. 

Frazzini et al. (2015) and Asness et al. (2013), on the other hand find evidence that momentum strategies are 

implementable and do supply abnormal excess returns. While the conclusions drawn from the scholars differ, some 

areas of attention remain the same. Common for each of these investigations is the acknowledgement that 

proportional costs are not the dominating factor in reducing after-cost excess returns. Rather non-proportional 

costs created by the price impact caused by large institutional investors account for the majority of the transaction 

costs. Since this paper is focused on the applicability of a momentum strategy from an individual investor’s 

perspective, price impact is arguably not a concern. For this reason, the paper will ignore nonproportional 

transaction costs associated with price impact.  

Although the reviewed literature finds proportional costs to cause little damage to the excess returns of momentum 

strategies used by institutional traders, this may not be the case for individual investors. Institutional investors 

likely have much lower proportional costs compared to individuals who are restricted to using online commercial 

platforms or other costly avenues for trading. Proportional costs typically refer to the difference between the buy 

and sell price on an asset, its bid-ask spread. Broker costs are also considered a proportional cost. 
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𝑇𝐶௧ାଵ = ෍൫|𝑤௧ାଵ
௦ − 𝑤௧ା

௦ | ∗ (𝐵𝐶 + 𝐵𝐴௧ାଵ
௦ )൯

ௌ

௦ୀଵ

  , (2.16) 

where 𝐵𝐶 is a given percentage rate a broker charges to execute a transaction and will be fixed for the entire 

sample period. 𝐵𝐴௧ାଵ
௦  is the percentage cost incurred due to the bid-ask half-spread and varies over time and across 

assets. The desired weight of each asset s at time t + 1 is given by 𝑤௧ାଵ
௦  and the current weight before rebalancing 

is represented by 𝑤௧ା
௦ . These parameters are different for the levered and unlevered strategies. The reason for this 

is that the levered portfolio allocates weights to each asset solely based on its own volatility and the portfolio 

weights may sum to more than one. Conversely, asset weight allocations in the UTSMOM portfolio are dependent 

on the weight allocated to the other assets. The weight parameters for the LTSMOM strategy are given by the 

following expressions: 

𝑤௧ାଵ
௦ =

1

𝑆௧ାଵ
𝑠𝑖𝑔𝑛൫𝑟௧ି௞ିଵ,௧ାଵ

௦ ൯
30%

𝜎௧ାଵ
௦   , (2.17) 

𝑤௧ା
௦ =

1

𝑆௧
 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧

௦ ൯൫1 + 𝑟௧,௧ାଵ
௦ ൯

30%

𝜎௧
௦  (2.18) 

The weight parameters for the Levered Risk Parity (LRP) strategy, which will be elaborated on in Section 4.2, are 

calculated almost identically, with the difference being that 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯ is equal to 1 at all times.   

For the UTSMOM portfolio the weights are calculated as follows: 

𝑤௧ାଵ
௦ = 𝑠𝑖𝑔𝑛൫𝑟௧ି௞ିଵ,௧ାଵ

௦ ൯
𝜎௧ାଵ,௦

ିଵ

∑ 𝜎௧ାଵ,௦
ିଵ

௦

  , (2.19) 

𝑤௧ା
௦ = 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧

௦ ൯

൫1 + 𝑟௧,௧ାଵ
௦ ൯

𝜎௧,௦
ିଵ

∑ 𝜎௧,௦
ିଵ

௦

∑ ൫1 + 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯𝑟௧,௧ାଵ

௦ ൯
𝜎௧,௦

ିଵ

∑ 𝜎௧,௦
ିଵ

௦

ௌ
௦ୀଵ

 (2.20) 

As defined above, the portion of portfolio wealth that is not allocated to assets due to 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯ being equal to 

zero is instead invested at the risk-free rate. Therefore, this wealth remains constant over the period, neither 

growing nor declining. The 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯  component in the denominator of Equation 2.20 accounts for this 

constant level of wealth when relevant. Again, the weights for the unlevered risk parity (URP) strategy are identical 

except for the constant value of 1 for 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯. The paper will now progress to explain how financing costs 

are calculated. 
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2.4.4 Financing Costs 

Asness et al. (2012) present a convincing argument advocating the use of leverage on portfolios that are heavily 

concentrated in safe assets, exploiting the flatness of the SML to realize abnormal returns. However, the authors 

emphasize that some investors may be unable or unwilling to use leverage in practice. Certainly, from the 

perspective of an individual investor, it is within reason to assume that the interest rate on borrowing will be higher 

than the interest rate that can be realized by investing in a risk-free instrument. A higher borrowing rate results in 

a lower return per unit of standard deviation than the CML would suggest. The Sharpe ratio is thus reduced, 

meaning that the investor will receive a lower risk-adjusted return.  

To capture this effect in the LTSMOM returns the derivation of FC distinguishes between the borrowing and 

lending rate: 

𝐹𝐶 = max(𝑟௉஻𝐿, 0) , (2.21) 

where 

𝐿 =  
1

𝑆௧
෍ ቆ𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧

௦ ൯
30%

𝜎௧
௦ − 1ቇ

ௌ

௦ୀଵ

 (2.22) 

The formula equates the potential cost from borrowing at the portfolio level. The term L determines the overall 

portfolio leverage at time t. FC will take on one of two forms depending on the value of L: 

1. 𝐿 > 0 ∶ 𝐹𝐶 = 𝑟௉஻𝐿 

2. 𝐿 ≤ 0 ∶ 𝐹𝐶 = 0 

In case 1, the portfolio is levered and must therefore pay the financing costs associated with funding the leverage. 

The rate used is 𝑟௉஻, which will vary depending on the loan broker. Some brokers offer a rate comprised of two 

parts – the variable risk-free rate and a fixed annual premium (Interactive Brokers, 2019a). As mentioned in 

Section 2.3, the method prescribed by Moskowitz et al. (2012) uses excess returns in its calculations as does the 

method used in this paper. For this reason, 𝑟௉஻ must only consist of the fixed premium and not the risk-free rate, 

otherwise the LTSMOM returns would be penalized twice with the risk-free rate.  

In case 2, the portfolio is unlevered at time t. Therefore, there is no external funding and no cost must be enforced. 

For L < 0 a portion of the investors wealth is invested in the risk-free rate. However, as with case 1, since 

LTSMOM returns are net of the risk-free rate the excess return of this investment is 0. Hence, no additional return 

is added. An important characteristic of Equation 2.22 is that inactive assets will contribute the value -1 to the 

summation of leverage. What this means is that the wealth that would have been allocated to the asset in an active 
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state will instead be used to lever up the active positions. This means that it is possible for the LTSMOM strategy 

to experience states where it is in fact not levered. This characteristic serves to tame the amount of leverage used 

in the portfolio which has several benefits from at practical point of view. Firstly, applying leverage using external 

financing can be costly for an individual investor, which may prove suboptimal. Secondly, while applying leverage 

enables an investor to realize larger gains than otherwise possible, it simultaneously exposes the investor to 

significant losses, which may eventually prove to be too large for the investor to bare. Thirdly, given that the 

borrowing rate is likely higher than the risk-free rate it makes little sense to invest money in the risk-free rate while 

borrowing at a higher rate. Hence, using all the wealth available to the investor prior to drawing on external 

financing seems like a more appropriate approach to the implementation of the strategy.  

3 DATA 

This section of the paper explains relevant details regarding the data used in the analysis. Section 3.1 describes 

where data has been collected and what considerations have been made when choosing this data. The paper 

conducts preliminary data preparation in Section 3.2, which primes the data for analysis. 

3.1 DATA COLLECTION AND CONSIDERATIONS 

3.1.1 ETFs and the Risk-free Rate 

The assets that have been selected for the analysis consist of the exchange traded funds (ETF) listed in Table 3.1. 

The ETF data is comprised of 15 developed equity index funds and 6 bond index funds, summing to a total of 21 

ETFs. The paper collects daily high and low prices, close prices, adjusted close prices, and trading volumes from 

the S&P Capital IQ Database. Annual expense ratios are retrieved from the iShares website (IShares, 2019). The 

paper collects data on the 1-month Treasury Bill rate from the S&P Capital IQ Database. All data covers the period 

from January 2004 to November 2019. As will be explained in more depth in the following sections, daily high 

and low prices are used to estimate the bid-ask spread. Adjusted close prices are used to calculate returns and 

volatilities. The 1-month Treasury Bill is chosen as the risk-free rate and used to calculate excess returns. Expense 

ratios are used to calculate ETF specific excess returns. Trading volume data is used mainly as a sanity check on 

the data to ensure that the assets being analysed are traded at such a level that render them liquid enough to 

implement the time-series momentum strategy.  
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Table 3.1  

Descriptive statistics of the ETFs used in the analysis. 

Ticker Asset Name 
Inception 

Date 

Average 

Daily Volume 

($m) 

Annual 

Expense 

Ratio 

IVV iShares Core S&P 500 ETF 5/19/2000 $1,248.2  0.04% 

IWM iShares Russell 2000 ETF 5/26/2000 $3,228.6  0.19% 

EWA iShares MSCI Australia ETF 3/18/1996 $52.4  0.47% 

EWC iShares MSCI Canada ETF 3/18/1996 $65.1  0.47% 

EWQ iShares MSCI France ETF 3/18/1996 $35.4  0.47% 

EWG iShares MSCI Germany ETF 3/18/1996 $99.7  0.47% 

EWH iShares MSCI Hong Kong ETF 3/18/1996 $128.1  0.48% 

EWI iShares MSCI Italy ETF 3/18/1996 $22.9  0.47% 

EWJ iShares MSCI Japan ETF 3/18/1996 $446.8  0.47% 

EWN iShares MSCI Netherlands ETF 3/18/1996 $7.8  0.47% 

EWS iShares MSCI Singapore ETF 3/18/1996 $15.9  0.47% 

EWP iShares MSCI Spain ETF 3/18/1996 $27.8  0.47% 

EWD iShares MSCI Sweden ETF 3/18/1996 $12.6  0.53% 

EWL iShares MSCI Switzerland ETF 3/18/1996 $39.8  0.47% 

EWU iShares MSCI United Kingdom ETF 3/18/1996 $79.4  0.47% 

AGG iShares Core U.S. Aggregate Bond ETF 9/26/2003 $505.9  0.05% 

LQD iShares iBoxx $ Investment Grade Corporate Bond ETF 7/26/2002 $1,196.7  0.15% 

IEF iShares 7-10 Year Treasury Bond ETF 7/26/2002 $539.4  0.15% 

TLT iShares 20+ Year Treasury Bond ETF 7/26/2002 $1,279.5  0.15% 

SHY iShares 1-3 Year Treasury Bond ETF 7/26/2002 $262.6  0.15% 

TIP iShares TIPS Bond ETF 12/5/2003 $152.7  0.19% 

Note: Daily volume in dollars is calculated by multiplying the daily close price with the volume traded that day. 

The average is taken over the period 1/11/2018 – 31/10/2019. Expense ratios are obtained from the iShares 

website, as are the inception dates. 

The decision to select ETF’s as the assets of interest has been given much consideration. ETFs are relatively simple 

to trade with most online trading platforms providing easy access to the instruments. As shown in Figure 3.1, the 

average daily trading volumes of the selected ETFs increased significantly up to around 2007, where they have 

averaged roughly 4.75 million shares a day between January 2007 and November 2019. Over the most recent year 

of data, between November 2018 and October 2019 the paper calculates that the average daily trading size has 
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been almost $450 million. To put this into perspective, over the same period this paper calculates that Goldman 

Sachs traded and average of approximately $584 million a day, General Motors traded $344 million a day and 

IBM traded $563 million a day. All these stocks are part of the S&P 500 and it is therefore within reason to presume 

that they are fairly liquid. The ETF with the lowest trading volume in the sample is the iShares MSCI Netherlands 

ETF, having traded $7.8 million dollars a day on average over the period. This is, of course, much lower than the 

stocks mentioned and a great deal less than the sample average. However, for the purposes of this investigation, 

the trading volume should provide adequate liquidity.  

 
Figure 3.1 Average trading volume in USD of all ETFs in the data over the period January 2004 to October 2019 

Drawing on the theory presented in Section 2.1, it can be argued that a single ETF possesses a great deal of 

diversification with respect to the idiosyncratic risk associated with the underlying assets that compile the ETF. 

Therefore, firm specific risk is diversified away, leaving only systematic risk. By creating a portfolio of 15 different 

index ETF’s representing 14 countries, the portfolio also diversifies some of the country-specific risk away. 

Moreover, including 6 bond ETFs in the portfolio facilitates some asset class diversification as well.    

3.1.2 Broker and Financing Costs 

The paper determines the broker commission applicable when entering a transaction with an ETF and the financing 

cost of using leverage based on observable public prices on a range of online broker sites. While these prices may 

vary considerably across brokers, it seems within reason to apply the costs from the broker offering rates most 

suited to the type of trading that characterizes the LTSMOM and UTSMOM strategies the best, while still 

maintaining a realistic approach to the analysis. Given that the portfolios are rebalanced on a monthly basis, a 

TSMOM trader should seek to obtain as low a trading costs as possible. However, since the LTSMOM strategy 

uses leverage, keeping financing costs to a minimum is also desirable. Therefore, finding a broker that offers low 

costs in both cases is optimal. Unfortunately, one broker may offer very cheap trading costs, but high financing 

costs and vice versa. Conducting extensive searches on the internet, it has not been possible to find a broker that 
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both offers the lowest trading and financing costs simultaneously. Hence, the paper seeks a compromise which is 

found on the online trading platform Interactive Brokers. The paper does not assume that the trades in this paper 

would be implemented using this broker, but rather use the information as a point of departure to gain some 

bearings in terms of what an investor could expect to be charged in the real world.  

The trading cost of almost all the instruments in the dataset is 0.1% of transaction size. A select few of the 

instruments offer a slightly lower rate. US ETFs are traded at a fixed price of USD 0.005 per share and USD 1.00 

per order (Interactive Brokers, 2019b). For simplicity, the paper will use 0.1% of transaction size as the broker 

commission in the analysis. As will be explained in Section 4.2, a sensitivity analysis is conducted where the 

transaction costs are both higher and lower than 0.1% providing deeper insights into the effects of transaction 

costs. 

The annualized financing cost quoted on InteractiveBrokers.com is given by the risk-free rate plus a premium of 

2.5% (Interactive Brokers, 2019a). To arrive at the monthly rate this number is then divided by 12. This will be 

the rate that the paper uses as its benchmark financing cost in the forthcoming analysis. It must be noted that 

cheaper rates are obtainable if the trader is able to qualify for a PRO membership, where the rate decrease 

depending on investment size. As with the transaction costs, a sensitivity analysis using both a higher and lower 

financing cost will be conducted    

3.2 PRELIMINARY DATA PREPARATION 

This subsection of the paper will describe how initial data preparation procedures have been conducted. It will 

begin by describing how excess returns are calculated. Following this, the method for calculating ex-ante volatility 

used in the UTSMOM and LTSMOM formulas will be presented. Finally, lacking empirically observed bid-ask 

spread transaction costs, the paper will explain how these are estimated.  

3.2.1 Calculating Excess Returns 

To calculate the monthly return of the data, first the logarithm of all the adjusted close prices are taken: 

ln൫𝑆௧,்൯  

Taking the first differences of the logarithmic prices yields the monthly returns: 

𝑅௧
௦ = ∆ ln(𝑆௧) = ln(𝑆௧) − ln(𝑆௧ିଵ) (3.1) 

Transforming the annualized 1-Month Treasury Bill rate to a monthly rate, by dividing it by 12, the excess return 

is then calculated by subtracting the monthly T-bill rate from the return at time t.  
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𝑟௧
௦ = 𝑅௧

௦ − 𝑟𝑓௧ (3.2) 

Different perspectives exist concerning what the excess return means. One perspective is that the investor borrows 

at the risk-free rate and invests in an asset, meaning that the risk-free rate is an actual cost that is incurred. A 

second perspective is that the risk-free rate is the rate at which an investor could safely house his wealth and is 

therefore not an actual cost but rather an opportunity cost. This paper follows the second perspective. 

3.2.2 Estimating Ex-ante Volatility 

When calculating the weights in the LTSMOM and UTSMOM strategies, the standard deviation of each asset is 

the central component. To this end, ex ante volatilities must be estimated. This paper will follow the methodology 

of Moskowitz et al. (2012), using an exponentially weighted lagged squared daily returns model. The ex-ante 

variance is calculated using the formula: 

𝜎௧
ଶ = 261 ෍(1 − 𝛿)𝛿௜(𝑟௧ିଵି௜ − 𝑟̅௧)ଶ

ஶ

௜ୀ଴

 (3.3) 

The standard deviation is then calculated by simply taking the square root of the variance: 

𝜎௧ = ට𝜎௧
ଶ (3.4) 

In Equation 3.3 t is time measures in months, whereas i is measured in days. The scalar 261 annualizes the daily 

variance. Moskowitz et al. (2012) vary 𝛿 so that the centre of mass is 60 days. For simplicity this paper follows 

the methodology of Babu, Levine, Ooi, Pedersen, and Stamelos (2019) and sets the input 𝛿 to 0.98.  

3.2.3 Modelling Spread Transaction Costs 

Lesmond et al. (2004) and Korajczyk and Sadka (2004) acquire bid-ask spread data from the NYSE TAQ database, 

Frazzini et al. (2015) use unique live trading data on bid and ask quotes. Unfortunately, this paper has access to 

neither of these sources of data. Moreover, the availability and reliability of the data from the BLOOMBERG and 

Capital IQ (COMPUSTAT) databases for historical bid-ask data is underwhelming. Therefore bid-ask spreads 

must be estimated. While many methods are available to estimate transaction costs, each method possesses both 

strengths and weaknesses. When modelling the transaction costs used in the analysis, careful consideration has 

been taken to select the appropriate technique. One method which has been considered is derived by Roll (1984) 

and is captured by the expression: 𝑆𝑝𝑟𝑒𝑎𝑑 = 2√−𝑐𝑜𝑣. However, an underlying premise for this method is that 

markets are efficient an autocovariances are therefore negative. Harris (1990) finds that many of the 

autocovariances are nonnegative resulting in undefined results. Given the lack of reliable bid-ask quotes and the 
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flaws of the Roll estimate, the paper uses a different approach to estimate the spread. The paper will use the method 

prescribed by Corwin and Schultz (2012), drawing on daily high and low prices. The approach rests on the idea 

that the high-low price ratio of an asset consists of its true variance and the bid-ask spread. The authors argue that 

the variance component changes in proportion with time, whereas the bid-ask component does not. Hence, by 

deriving one equation which is a function of the high-low ratios over two consecutive days and another that is a 

function of the ratio from a single two-day period, it is possible to solve for the spread and variance components 

individually. By path of several derivational steps, which this paper will overt, the following spread estimate is 

constructed: 

𝑆 =
2(𝑒ఈ − 1)

1 + 𝑒ఈ
 (3.5) 

where, 

𝛼 =
ට2𝛽 − ඥ𝛽

3 − 2√2
− ඨ

𝛾

3 − 2√2
     , 

𝛾 = ቈln ቆ
𝐻௧,௧ାଵ

଴

𝐿௧,௧ାଵ
଴ ቇ቉

ଶ

  , 

𝛽 = ෍ ቈln ቆ
𝐻௧ା௝

଴

𝐿௧ା௝
଴ ቇ቉

ଵ

௝ୀ଴

ଶ

  

Here 𝐻௧,௧ାଵ
଴  is the high price over the two days 𝑡 and 𝑡 + 1, and 𝐿௧,௧ାଵ

଴  is the low price over the same two days. 

𝐻௧ା௝
଴  is the high price on day 𝑡 + 𝑗 and 𝐿௧ା௝

଴  is the low price on the same day. Since the spread is the cost for a 

round-trip, that is the cost of buying and selling an asset, the spread estimate must be halved, to account for a one-

way cost. Moreover, this paper will take the arithmetic mean of all daily half-spread estimates in a given month 

for each asset and use these as the bid-ask transaction costs resulting in the following formula: 

𝐵𝐴௧
௦ =

1

𝐷
෍

𝑆௜
௦

2

஽

ௗୀଵ

 (3.6) 

Where 𝐵𝐴௧
௦ is the average bid-ask half spread in month t on asset s. D represents the total number of observations 

in the given month and will vary slightly from month to month. This estimate will be used to calculate transaction 

costs arising from the bid-ask spread. The reason for using an average spread estimate instead of the precise daily 
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spread estimate on the execution day is simply to account for the fact that on a single day a trade cost may be 

unusually high or low than what is representative for the period of time. For instance, if the bid-ask spread is 

unusually high for some reason on a specific day, the trader would in a real-life situation perhaps wait a day before 

executing the trade. If the trader is in a period where the spread is high, this will still be represented in the results, 

contrarily is the spread on that day reveals itself as an outlier the trading cost will be reduced. It could be argued 

that this approach aligns better with reality than simply using the potentially extreme value on a specific day, since 

many traders use limits on the sale and purchase of assets. 

4 METHODOLOGY 

This section of the paper provides a comprehensive account of the methodology that is used in the analysis. Section 

4.1 describes how the data is tested for the presence of price continuation. The paper presents the methodology 

that is used to test the performance of the LTSMOM and UTSMOM strategies in Section 4.2. The methods used 

to calculate the performance measures themselves are described in Section 4.3.  

4.1 POOLED PANEL AUTOREGRESSION  

Hurst et al. (2017) highlight that clear trends have been elusive in recent years. To this end, the paper will analyse 

the data to determine whether a trend exists. To assess the level and significance of price continuation in the data, 

the paper conducts a pooled panel regression on volatility scaled monthly excess returns data. The results of this 

analysis contribute to answering Question 1. The methodology in the following is adopted from Moskowitz et al. 

(2012). 

 

The paper performs the pooled panel autoregression using the formula, 

𝑟௧
௦ 𝜎௧ିଵ

௦⁄ =  𝛼 + 𝛽௛𝑟௧ି௛
௦ 𝜎௧ି௛ିଵ

௦⁄ + 𝜀௧
௦ (4.1) 

where the ex-ante volatility scaled excess returns 𝑟௧
௦ 𝜎௧ିଵ

௦⁄  of asset s in month t are regressed onto its h month 

lagged counterpart 𝑟௧ି௛
௦ 𝜎௧ି௛ିଵ

௦⁄ . Moskowitz et al., (2012) use sixty lags in their pooled panel regression, applied 

to data ranging between 1965-2009. Sixty lags equate to 5 years of data. Since the regression is performed on 

almost 45 years of data, this lag length may be appropriate. The analysis in this paper uses only approximately 15 

years of returns data. Therefore, sixty lags would arguably sacrifice too much data than what seems reasonable. 

For this reason, the paper uses 24 lags to predict price continuation and reversals. The paper stacks all volatility 
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scaled excess returns and dates in a single dataset with each asset receiving an index number which is used to 

identify it the pooling process and runs the regression. 

The paper only reports the t-statistics of this regression in the analysis. Whereas other metrics also contain 

information that contribute to explaining the data such as the adjusted 𝑅ଶ, these will be omitted. The reason for 

this is that much of the analysis focuses on analysing different lookback horizons that provide more insightful 

results relevant to the analysis of this paper. Due to space constraints, the paper judges that the omission of these 

values is appropriate.  

The paper uses t-statistics that are computed using standard errors that are clustered by time. Positive (negative) t-

statistics will be present for positive (negative) autocorrelation. Since the degrees of freedom are well in excess of 

120, t-statistics are significant at the 5% level at an absolute value of 1.96 (Stock & Watson, 2015, p. 804). The t-

statistics provide an indication of whether a trend exists, how long it lasts, and when it stops or even reverses.  

4.2 THE TIME SERIES MOMENTUM STRATEGY 

As presented in Section 2.3 of the paper, Moskowitz et al. (2012) derive a formula for calculating the TSMOM 

strategy. A modification to this formula was then derived to account for no short selling, transaction costs, 

financing costs and the fact that fewer assets are under investigation in this paper than in the study performed by 

Moskowitz et al. (2012). The following subsection will describe how the paper investigates each of these elements.  

First, the method used to determine optimal lookback horizons is developed. The purpose of this is to identify and 

select the portfolio with the best performance, with respect to lookback horizons, that will be used in later sections 

of the analysis. Moreover, it provides insights into the development of time-series momentum characteristics that 

will contribute to the extant literature. This method is used in the analysis of both the LTSMOM and UTSMOM 

strategies. Following this, the paper focuses on the levered strategies and explains the methodology that will be 

used in their analysis. Next, the paper presents the methodology that is used for analysing the unlevered strategies. 

Thereafter, the paper presents two standard investment strategies and explains how a comparison of all strategies 

will be performed. The section will conclude by presenting an account of how the performance metrics that are 

used throughout the analysis are calculated and what considerations have been made in their selection. 

4.2.1 The Optimal Lookback Horizon 

Moskowitz et al. (2012) identify twelve months as the most optimal lookback period for the TSMOM strategy. 

Since this paper tests a new asset class, in a different period, with financing and transaction costs and no short-

selling, it cannot be taken for granted that the optimal lookback horizon is the same as any of the previous studies 
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on time-series momentum. Therefore, the paper seeks to identify the optimal lookback horizon for this specific set 

of data. Furthermore, a method is used to test the effect that transaction costs and financing costs have on the 

optimal lookback horizon. This is achieved by changing the lookback value ℎ in the component 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ of 

the LTSMOM and UTSMOM formulas. Specifically, the paper constructs LTSMOM and UTSMOM strategies 

using lookback horizons of 1, 2, 3, 6, 9 and 12 months.  

In order to assess which lookback horizon is optimal the paper compares the performance measures produced by 

each strategy. These are: the annualized mean return, annualized standard deviation, annualized Sharpe ratio, 

annualized alpha, maximum drawdown and cumulative returns. Some metrics will play a larger role in determining 

which lookback horizon is most appropriate, however, all the metrics provide valuable insights. The paper will 

elaborate on how each measure is calculated in Section 4.3. 

4.2.2 The LTSMOM and LRP Strategies 

As shown in Section 2.4.2, the LTSMOM portfolio returns at time 𝑡 + 1  are given by the formula: 

𝑟௧,௧ାଵ
௅்ௌெைெ =

1

𝑆௧
෍ ቆ𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧

௦ ൯
30%

𝜎௧
௦ 𝑟௧,௧ାଵ

௦ ቇ

ௌ೟

௦ୀଵ

− 𝑇𝐶௧ାଵ − 𝐹𝐶௧ାଵ  , 

The details of each component are explained in Section 2.4.2. As well as testing the six lookback horizons 

mentioned above, the paper includes a risk parity portfolio using the LTSMOM return formula, setting 

𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ equal to 1 at all times, named the levered risk parity (LRP) strategy. The analysis of the LTSMOM 

and LRP strategy is first conducted without transaction costs. The reason for analysing the performance of the 

strategies gross of costs, is that it provides a reference point that helps identify how costs effect the performance 

of the strategies. Following this the paper adds transaction costs, where a sensitivity analysis is conducted which 

is elaborated on below. Next, the paper conducts a sensitivity analysis, which is also elaborated on, where 

transaction costs are fixed, and financing costs are varied. The analysis of the LTSMOM strategy concludes by 

analysing performance including transaction costs, financing costs and expense ratios specific to ETF’s.  

Transaction Cost Sensitivity  

While conducting the test on lookback horizons on the LTSMOM strategy the paper simultaneously implements 

a sensitivity analysis with respect to the transaction costs associated with the strategy. This is performed on the 

LTSMOM strategy with transaction costs, excluding expense ratios and financing costs. The motivation for 

conducting this part of the analysis without expense ratios and financing costs is to maximize generalizability of 
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the results and to isolate the effect of transaction costs. Since a significant amount of securities are traded without 

expense ratios, it seems of greater utility to apply the sensitivity analysis in this manner.  

The paper conducts the sensitivity analysis by calculating the performance measures for three values of the broker 

fee, 0.05%, 0.1% and 0.5% of the transaction size which represent an optimistic case, a neutral case and a 

pessimistic case, respectively. While the parameter being tweaked is the broker fee, the manipulation can be 

viewed differently. For instance, the 0.5% broker fee could equally represent a 0.4% broker fee and bid-ask spreads 

that are increased by 0.1%. Therefore, the sensitivity analysis captures a general increase in transaction costs and 

should not simply be viewed as broker cost sensitivity. 

As mentioned in Section 3.1.2 the quoted broker fee on a number of online trading platforms is 0.1% and is 

therefore used as in all other stages of the analysis and represents the neutral case. Nonetheless, broker fees in the 

real world may be slightly higher or perhaps even lower. Testing the performance of the strategies at 0.5% could 

then still be considered a realistic, albeit high fee. As is clear, the difference between the transaction costs of the 

optimistic and neutral case is chosen to be small, at only 5 basis points (bps). The difference between the neutral 

case and the pessimistic case is larger at 40 bps. The reason for using different size increments is to extract as 

much information as possible from a sensitivity analysis using only three states. By using very different increments 

it is possible to observe how the magnitude of an increase in transaction costs influences performance.        

Financing Cost Sensitivity  

To assess the impact of financing costs, a sensitivity analysis will be conducted. As with transaction costs, 

optimistic, neutral and pessimistic scenarios are created where the cost of borrowing is the risk-free rate at time t, 

plus an annualized premium of 1%, 2.5% and 5%, respectively. The analysis is conducted on the levered strategies 

including bid-ask costs and a broker fee of 0.1%. The reason for including transaction costs in the sensitivity 

analysis is that an investor will with certainty be exposed to these in the real world. Furthermore, since the paper 

provides results where only transaction costs are accounted for, it is still possible to observe the specific effects 

that financing costs have on strategy performance. The way these costs are implemented in the LTSMOM strategy 

have been explained in Section 2.4 of the paper. As explained in Section 3.1.2, a financing cost of the risk-free 

rate plus an annualized premium of 2.5% has been identified as an obtainable financing rate. For this reason, it 

represents the neutral case and will be used in other sections of the analysis moving forward. The optimistic case 

is set to an annualized premium of 1%. While it has not been possible to find an online broker offering such a low 

rate, it is not unlikely that some individual investors may be able to obtain this rate. Developing a relationship with 

a broker over time may lead to more favourable interest rates. Moreover, as investment size increases, perhaps 

lower rates can be negotiated. The pessimistic case with the annualized premium of 5% also seems realistic. While 
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better rates exist, other factors may cause an investor to be subject to this higher rate. Rates may even increase in 

the future. The leveraged strategies will be analysed in each scenario which will provide insights into their 

sensitivities to financing costs.    

The LTSMOM and LRP with All Costs 

The paper compares the performance of LTSMOM and LRP strategies including bid-ask costs, a 0.1% broker fee, 

a 2.5% financing premium and expense ratios specific to ETFs. The paper adjusts the excess returns of the strategy 

by subtracting the monthly expense ratios specific to each ETF. At this stage, the paper determines the optimal 

lookback horizon for the LTSMOM strategy which is used in the final section of the analysis where a comparison 

is made between a selection of other strategies.  

4.2.3 The UTSMOM and URP Strategies 

Given that leverage may not be available or desirable to all individual investors, the paper analyses the performance 

of unlevered strategies. The paper follows similar procedures in analysing the unlevered strategies as is performed 

with levered strategies, with a few exceptions. Here the formula derived in Section 2.4.2 is used to create the 

UTSMOM strategy which is: 

𝑟௧,௧ାଵ
௎்ௌெைெ =

1

𝑆௧
෍ ቆ𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧

௦ ൯
𝜎௧,௦

ିଵ

∑ 𝜎௧,௦
ିଵ

௜

𝑟௧,௧ାଵ
௦ ቇ

ௌ೟

௦ୀଵ

− 𝑇𝐶௧ାଵ  , 

Here the paper analyses the performance of the UTSMOM strategies with different lookback horizons and the 

URP strategy. This part of the analysis is more concise than that conducted on the leveraged strategies. In this 

case, the paper only tests the UTSMOM and URP strategies without transaction costs, with transaction costs, and 

with transaction costs and expense ratios. The reason for investing the strategies by incrementally adding costs 

follows the same logic as before. The paper does not report a transaction sensitivity analysis in this case. These 

results can be observed in Appendix XX. The reason for omitting the sensitivity analysis in the main text is cost 

benefit related. The additional insights that the analysis provides does not warrant the space that it would consume. 

presentation of the unlevered strategies with transaction costs excluding expense ratios is that it provides no 

additional insights beyond the analysis of the leveraged strategies. For the same reason, no sensitivity analysis of 

transaction costs is presented on the unlevered strategies. The optimal lookback horizon will be identified while 

analysing the strategies including transaction costs and expense ratios. Again, the paper adjusts the excess returns 

of the strategy by subtracting the monthly expense ratios specific to each ETF. As with the unlevered strategies, 

this UTSMOM strategy will be used in a comparison with other investment strategies.  
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4.2.4 Comparing Strategies 

After having identified the optimal lookback horizon for the LTSMOM and UTSMOM strategies as well as 

constructing the LRP and URP portfolios, the paper proceeds to compare the performance of these strategies 

against two other simple asset allocation strategies. These are the 60/40 portfolio and the equally weighted (EW) 

portfolios. The 60/40 portfolio allocates 60% of its weight to stocks and 40% to bonds. The EW portfolio assigns 

equal weight to each asset in the portfolio. Both the 60/40 and the EW portfolio are rebalanced on a monthly basis 

to maintain their respective weight allocations. As with the other portfolios, this rebalancing procedure is subject 

to transaction costs. 

The EW returns are calculated in the following way: 

𝑟௧,௧ାଵ
ாௐ =

1

𝑆
෍ 𝑟௧,௧ାଵ

௦

ௌ

௦ୀଵ

− 𝑇𝐶௧ାଵ , (4.2) 

Where 𝑇𝐶௧ାଵ is calculated using Equation 2.16 and the weight notation follows the same logic as described in 

Section 2.4.3. The weights used in the calculation of 𝑇𝐶௧ାଵ for the EW strategy are calculated as follows: 

𝑤௧ାଵ
௦ =

1

𝑆
  , (4.3) 

𝑤௧ା
௦ =

1
𝑆

(1 + 𝑟௧,௧ାଵ
௦ ) 

∑
1
𝑆

(1 + 𝑟௧,௧ାଵ
௦ ) ௌ

௦ୀଵ

 , (4.4) 

Where 𝑆 represents the number of assets and is not contingent on time.  

The 60/40 returns are calculated using the formula: 

𝑟௧,௧ାଵ
଺଴ ସ଴⁄

= 0.6 ∗
1

𝐸
෍ 𝑟௧,௧ାଵ

௘

ா

௘ୀଵ

+ 0.4 ∗
1

𝐵
෍ 𝑟௧,௧ାଵ

௕

஻

௕ୀଵ

− 𝑇𝐶௧ାଵ , (4.5) 

Where 𝐸 represents the number of equity index ETFs and 𝐵 is the number of bond index ETFs. For the 60/40 

strategy 𝑇𝐶௧ାଵ is calculated as follows: 

𝑇𝐶௧ାଵ = ෍൫|𝑤௧ାଵ
௘ − 𝑤௧ା

௘ | ∗ (𝐵𝐶 + 𝐵𝐴௧ାଵ
௘ )൯

ா

௘ୀଵ

+ ෍ ቀห𝑤௧ାଵ
௕ − 𝑤௧ା

௕ ห ∗ ൫𝐵𝐶 + 𝐵𝐴௧ାଵ
௕ ൯ቁ

஻

௕ୀଵ

 (4.6) 

The weights used in the calculation of 𝑇𝐶௧ାଵ for the 60/40 strategy are calculated as follows: 
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𝑤௧ାଵ
௘ = 0.6 ∗

1

𝐸
  , (4.7) 

𝑤௧ା
௘ =

0.6 ∗
1
𝐸

(1 + 𝑟௧,௧ାଵ
௘ )

∑ 0.6 ∗
1
𝐸

(1 + 𝑟௧,௧ାଵ
௘ )ா

௘ୀଵ

  , (4.8) 

𝑤௧ାଵ
௕ = 0.4 ∗

1

𝐵
  , (4.9) 

𝑤௧ା
௕ =

0.4 ∗
1
𝐵

(1 + 𝑟௧,௧ାଵ
௕ )  

∑ 0.4 ∗
1
𝐵

(1 + 𝑟௧,௧ାଵ
௕ )஻

௕ୀଵ

, (4.10) 

The strategies subject to comparison are therefore the LTSMOM, LRP, UTSMOM, URP, 60/40 and EW strategies. 

Here the paper analyses the portfolios without costs and with all costs. This provides useful insights regarding the 

importance of accounting for costs when assessing the potential performance of an investment strategy. Ultimately, 

this section of the analysis seeks to identify the optimal investment strategy of those under consideration. This 

enables the paper to determine whether the implementation of a time-series momentum strategy can provide an 

individual investor with superior investment results compared to the selected comparison strategies.  

4.3 PERFORMANCE MEASURES 

As explained previously, the performance measures used to compare the investment strategies are cumulative 

returns, mean excess returns, standard deviations, Sharpe ratios, the alpha of the strategy relative to the market 

portfolio and maximum drawdowns. The following section will describe how each of these metrics is calculated. 

4.3.1 Annualized mean excess return 

One of the key performance metrics used to compare investment strategy performance will be excess returns. The 

annualized mean excess return for the entire sample period is calculated using the formula 

𝑟̅௔௡௡௨௔௟
௣

= 12 ×
1

𝑛
෍ 𝑟௜

௣

௡

௜ୀଵ

(4.11) 

Where the average monthly excess return of portfolio strategy p, over the total number of monthly observations n 

is multiplied by 12 to provide the annualized mean return.  
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4.3.2 Annualized Standard Deviations 

The standard deviation represents the volatility of the portfolio. As explained in Section 2.1 investors are not only 

concerned with the return of a portfolio, but also its volatility. The higher the volatility of a portfolio, the greater 

the risk associated with the investment. It is therefore desirable to realize a low portfolio volatility. This metric is, 

therefore useful in comparing the risk associated with each portfolio and, together with the portfolio returns and 

SR, contribute to a useful view of the risk-return characteristics of the portfolio.  

As a step towards calculating the standard deviation, the variance is identified. The sample variance for each 

investment strategy over the entire sample period, using excess returns, is calculated using the formula 

𝜎௣
ଶ =

1

𝑛 − 1
෍൫𝑟௜

௣
− 𝑟̅௣൯

ଶ
௡

௜ୀଵ

(4.12) 

Where the term 1 𝑛 − 1⁄  accounts for the degrees of freedom bias that arises due to the use of a sample arithmetic 

average. 

The sample standard deviation is then calculated by simply taking the square root of the variance: 

𝜎௣  = ට𝜎௣
ଶ (4.13) 

Which is then annualized in the following equation: 

𝜎௣
௔௡௡௨௔௟ = √12 × 𝜎௣ (4.14) 

4.3.3 Annualized Sharpe Ratios 

The Sharpe ratio is a useful performance metric since it portrays the risk adjusted return of a portfolio, which 

makes it easily comparable across portfolios that may have very different combinations of returns and standard 

deviations. The SR will be one of the performance metrics that receives most attention in the analysis. However, 

it is still of importance to assess the individual components of the metric, as described above, since some portfolios 

may have high SR’s that are driven primarily by low volatilities. While this may suite some investors, others may 

be dissatisfied with low returns, despite undertaking little risk. Therefore, assessing the SR along with returns and 

volatilities provides a greater degree of nuance to the analysis. 

The standard formula for calculating the Sharpe ratio is: 

𝑆𝑅 =
𝑟௧ − 𝑟௙

𝜎௣
 (4.15) 
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Where the term 𝑟௣ − 𝑟௙ denotes the excess return of portfolio p. Since excess returns are calculated prior to the 

commencement of the analysis and used throughout the analysis, the annualized Sharpe ratio is simply calculated 

as follows: 

𝑆𝑅௔௡௡௨௔௟ = √12 ×
𝑟௣ഥ

𝜎௣
 (4.16) 

Where 𝑟௣ഥ  is the mean excess return of portfolio p, 𝜎௣ is its standard deviation of the excess returns and the monthly 

SR is annualized by multiplying it by √12.  

4.3.4 Cumulative excess returns 

Purely for readability, the paper presents cumulative excess return plots using an initial investment of $100. 

Cumulative excess returns, with an initial investment of $100 are then calculated in the following way: 

𝑟௧,௧ା௡ = 100 × ൫1 + 𝑟௧,௧ାଵ൯ × ⋯ × ൫1 + 𝑟௧ା௡ିଵ,௧ା௡൯ (4.17) 

Where the annualized mean return is displayed as a single number, a cumulative returns plot enables the paper to 

observe how well a strategy performs at different points in time. This is useful for identifying how well a strategy 

performs in a market downturn, for instance. 

4.3.5 Alpha 

Another important measure of strategy performance is the portfolios alpha. As explained in Section 2.1, alpha 

represents the possible abnormal excess return that a portfolio has realized compared to common factors. Alpha is 

calculated by regressing the historical excess returns onto a chosen set of common factors. Following the literature 

(see Moskowitz et al. (2012) and Pedersen (2015)), the chosen factors are the MSCI World Index and the Barclays 

Aggregate Bond Index. Other studies use a greater number of factors, however, since the universe of assets under 

inspection in this paper consist only of equities and bonds, it seems appropriate to exclude these factors. The 

regression takes the following form: 

𝑟௧
௣

= 𝛼 + 𝛽ଵ𝑀𝐾𝑇௧ + 𝛽ଶ𝐵𝑂𝑁𝐷௧ + 𝜀௧  (4.18) 

Here, 𝑟௧
௣ is the excess return of strategy p,  𝑀𝐾𝑇 represents the MSCI World Index excess returns and 𝐵𝑂𝑁𝐷 is 

the Barclays Aggregate Bond Index excess returns. The monthly alpha is then annualized: 

𝛼௔௡௡௨௔௟ = 12 ∗ 𝛼 (4.19) 
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The value of alpha on its own is not enough to claim that abnormal excess returns are realized. To substantiate the 

claim that abnormal excess returns are present, the significance of alpha must be tested. To this end a t-test must 

be performed on alpha to determine whether it is significantly different from zero. The standard Student t-test 

would likely be inconsistent in this regression since the error term  𝜀௧
௦  is possibly both heteroskedastic and 

correlated over time. Therefore, heteroskedasticity and autocorrelation-consistent (HAC) standard errors provide 

a more accurate calculation of the t-statistics. HAC standard errors or clustered standard errors are useful in this 

setting, since they allow for random autocorrelation and heteroskedasticity within an entity, while treating the 

errors as uncorrelated across entities (Stock & Watson, 2015, p. 413). Therefore, the paper implements a the t-test 

using heteroskedasticity and autocorrelation consistent (HAC) standards errors developed by Newey and West 

(1987). These are commonly referred to as Newey-West standard errors. Formally, the null hypothesis that alpha 

is not significantly different from zero is tested, with the alternative hypothesis that it is: 

𝐻଴: 𝛼 = 0  

𝐻ଵ: 𝛼 ≠ 0 

The t-test is calculated using the formula (Stock & Watson, 2015): 

𝑡 =
𝛼ത௢௕௦௘௥௩௘ௗ − 𝛼௧௛௘௢௥௘௧௜௖௔௟

𝑆𝐸ேௐ(𝛼ത௢௕௦௘௥௩௘ௗ)
   , (4.20) 

Since, according to the theory presented in Section 2.1, 𝛼௧௛௘௢௥௘௧௜௖௔  is equal to zero, the formula reduces to: 

 𝑡 =
𝛼ത௢௕௦௘௥௩௘ௗ

𝑆𝐸ேௐ(𝛼ത௢௕௦௘௥௩௘ௗ)
   . (4.21) 

This paper will follow standard convention and require a p-value of 0.05 for determining statistical significance. 

Therefore, if |𝑡| > 1.96 then the null hypothesis, 𝐻଴:  𝑟ഥ௔௡௡௨௔௟
௩ = 0  is rejected and the alternative hypothesis, 

𝐻ଵ:  𝑟ഥ௔௡௡௨௔௟
௩ ≠ 0 is accepted. A rejection of the null hypothesis means that the annualized mean return is 

significantly different from zero at the 5% level. A significant and positive alpha mean that the investment strategy 

displays abnormal positive returns.  

4.3.6 Maximum drawdown 

A risk measure commonly used to evaluate hedge fund strategies is the maximum drawdown over a given period 

of time (Pedersen, 2015). A component used to calculate the maximum drawdown is the hedge fund’s high water 

mark (HWM), defined as the highest price it has realized in a specific time-frame. Formally: 

𝐻𝑊𝑀௧ = max
ୱஸ୲

𝑃௦  (4.22) 
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A drawdown (DD) is then defined as the cumulative loss since losses commenced (Pedersen, 2015). The DD in 

percentage terms is then defined as: 

𝐷𝐷௧ =
𝐻𝑊𝑀௧ − 𝑃௧

𝐻𝑊𝑀௧
 (4.23) 

where the cumulative return at time t is represented by 𝑃௧. The DD is the amount that has been lost since the peak. 

Intuitively then, the maximum drawdown (MDD) is the largest DD that has been experienced during a given time-

frame and is written formally: 

𝑀𝐷𝐷் = max
௧ஸ்

𝐷𝐷௧  (4.24)  

A large MDD indicates that a strategy may be susceptible to large losses, which is obviously not an attractive 

attribute from an investor perspective. A large MDD shows that an investment strategy performs badly given a 

certain event and losses may be so large that even if the strategy performs well in most scenarios, its vulnerability 

to specific events may render it too risky to implement. This of course, will depend on many things such as 

investment horizon, risk aversion, and so on.  

5 ANALYSIS 

This section of the paper analyses the data following the methodology outlined in Section 4. The paper conducts 

a pooled panel autoregression to determine whether price continuation is present in the data in Section 5.1. 

Following this, Section 5.2 analyses the LTSMOM strategy, performing various tests to identify the optimal 

lookback horizon, determine the strategy’s robustness to costs and gain insights regarding the benefits of using 

time series momentum signals. In almost identical fashion, the paper analyses the performance of the UTSMOM 

strategy in Section 5.3. Finally, Section 5.4 compares the performance measures of the time series momentum 

strategies to standard asset allocation strategies and determines whether the they produce superior performance. 

5.1 THE PRESENCE OF PRICE CONTINUATION 

Following the methodology outlined in Section 4.1, the paper tests for the presence of price continuation in the 

data. The t-statistics obtained from the pooled panel autoregression are shown in Figure 5.1. The t-statistic of the 

first month is positive, however, it is not statistically significant. This indicates that the previous months 

performance does not provide any information as to how the performance will be in the current month. The 

performance from 2, 3, 4 and five months prior to the current month display significant positive return 
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continuation, suggesting that time-series momentum is present in the data. The 6, 7- and 8-month lags are not 

statistically significant, whereas the 9-month lag is positive and statistically significant. There is evidence of a 

momentum reversal with the 11- and 13-month lags producing statistically significant negative t-statistics. Beyond 

the 13th month lag the results are difficult to draw any meaningful insights from, oscillating between positive and 

negative t-statistics in an almost random pattern.  

 
Figure 5.1 t-statistics of the pooled panel regression, lagged 24 months 

There is evidence that price continuation is present in the data. However, the dynamics of this continuation are 

different from the results found by Moskowitz et al. (2012), who find stronger and more persistent t-statistics over 

the first 12 months. The weaker trend signals observed in this data are in alignment with the findings of Hurst et 

al. (2017) who argue that clear trends have been elusive in recent years. The paper discusses these findings in more 

depth in Section 6.1. 

5.2 THE LTSMOM AND LRP STRATEGIES 

The paper now investigates the performance of the LTSMOM and LRP strategies following the methods described 

in Section 4.2. The paper begins by analysing the performance of the levered strategies gross of costs. Thereafter, 

the paper performs the transaction cost sensitivity analysis. The paper then conducts the financing cost sensitivity 

analysis. Finally, the paper analyses the performance of the strategies net of transaction cost, financing costs and 

expense ratios.  

5.2.1 The LTSMOM and LRP Strategies without Costs 

The performance measures for the LTSMOM and LRP strategies gross of costs are reported in Table 5.1 and 

cumulative returns are displayed in Figure 5.2.  
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Table 5.1 

Performance of LTSMOM and LRP Strategies without Transaction Costs 

  1m 2m 3m 6m 9m 12m LRP 

Average excess return 4.2% 7.6% 9.0% 8.3% 8.7% 7.9% 9.6% 

Volatility 10.8% 11.5% 12.0% 12.5% 12.2% 12.9% 17.8% 

Sharpe Ratio 0.39 0.66 0.75 0.67 0.71 0.61 0.54 

Annualized Alpha 2.2% 5.6% 7.1% 6.2% 6.6% 5.9% 5.2% 

t-Statistic 0.91 2.17 2.57 2.17 2.33 2.00 2.11 

Max Drawdown 29.3% 21.9% 23.0% 25.5% 21.1% 26.8% 43.0% 

 
Figure 5.2. Cumulative excess returns of LTSMOM and LRP strategies without transaction costs from January 2004 to October 2019 

At a glance, it can be constituted that the LTSMOM strategy with a 1-month lookback horizon is inferior to its 

counterparts. This strategy displays the worst performance measures in almost every case when viewed against 

the other LTSMOM strategies. Only in terms of volatility does this strategy perform best. It also performs worse 

than the LRP strategy in every aspect other than volatility and maximum drawdown (MDD). Figure 5.2 further 

highlights the inferiority of this strategy, where the it clearly lags behind the other strategies. The results from the 

pooled panel regression reported in Figure 5.1 show that a 1-month lag does not produce statistically significant 

price continuation. Therefore, it is not surprising that the 1-month strategy performs poorly. Although it is too 

early to constitute anything regarding the strategies, since no costs have been implemented yet, it is not expected 

that this strategy will improve moving forward. On the contrary, as highlighted by Pedersen (2015, p. 225) 

transaction costs are higher for strategies using shorter lookback horizons.  

The remaining five LTSMOM strategies are more closely aligned than the 1-month strategy and require closer 

inspection to reveal which one produces the best performance results. In terms of excess returns, the 3-month 
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strategy outperforms its LTSMOM counterparts with an excess return of 9%. The LTSMOM strategy that displays 

the lowest volatility besides the 1-month strategy is the 2-month strategy. In terms of risk-adjusted returns 3-month 

strategy produces the best result with a Sharpe ratio (SR) of 0.75. With an SR of 0.71, the 9-month strategy 

performs second-best. All LTSMOM strategies, besides the 1-month strategy produce significant and positive 

alphas relative to the market, which was defined as the MSCI World Index and Barclays Aggregate Bond Index 

in Section 4.3.5. The 3-month strategy produces the best annualised alpha of 7.1%, with a t-statistic of 2.57. The 

9-month strategy is second-best again with an alpha of 6.6% and a corresponding t-statistic of 2.33. At 21.1%, the 

9-month strategy has the lowest MDD. However, the MDD of the 3-month strategy is 23%, which is only 190 bps 

larger than the 9-month strategy. Given that the 3-month strategy produces the best excess return, SR and alpha, 

and that its MDD is comparatively low, the paper argues that the 3-month strategy performs best in a holistic sense. 

The identification of the 3-month strategy as the optimal when excluding costs is interesting considering that 

Moskowitz et al. (2012) find the 12-month lookback horizon to be optimal for their TSMOM strategy. Several 

factors may influence the difference in results which the paper discusses in Section 6.1.  

Having identified the 3-month strategy as optimal, the paper will compare its performance measures with the LRP 

strategy. The LRP strategy has a higher excess return than the 3-month LTSMOM strategy, at 9.6%. However, 

with a volatility of 17.8%, the LRP strategy is riskier than the 3-month strategy which has a more subdued volatility 

of 12.0%. The effect of this difference in volatility is clearly visible in the resulting SRs. Here, the 3-month strategy 

produces an SR of 0.75, whereas the LRP displays an inferior 0.54. This shows that the higher return attached to 

the LRP strategy is achieved only by taking on more risk. The LRP strategy realizes a significant alpha at 5.2% 

with a t-statistic of 2.11, however, this is lower than that of the 3-month strategy which has an alpha of 7.1% and 

t-statistic of 2.57, as already mentioned. The existence of abnormal excess returns questions the assumptions of 

the CAPM. However, since costs have not been accounted for so far, the paper will refrain from drawing any 

conclusions on this subject yet. 

The MDD of the LRP is far higher than that of the 3-month strategy, at 43% and 23%, respectively. With an MDD 

20 percentage points higher than the 3-month strategy, the LRP strategy poses a far higher risk of large losses 

which is obviously undesirable for an investor. That the MDD is higher for the LRP than the 3-month strategy 

makes good sense. By construction, the 3-month strategy does not invest in assets with negative average excess 

returns over the past months. As can be seen in Figure 5.2, during the Global Financial Crisis (GFC) around 2008, 

the LRP strategy realizes significant losses. These losses are avoided by the LTSMOM strategies, particularly 

those with longer lookback horizons. During the GFC the LTSMOM strategies likely have very little wealth 

invested in the assets due to the long and continuous period with losses. This explains the relatively flat cumulative 

returns in that period. Contrarily, the LRP strategy, being long all assets is punished during the GFC. The Long-
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short TSMOM strategies investigated by Moskowitz et al. (2012) display significant gains during the GFC. The 

reason for this difference is that where the long-only LTSMOM strategy excludes poor past performers from the 

portfolio, the long-short TSMOM strategy shorts them, realizing impressive gains due to the continuation of poor 

performance. While the long-only LTSMOM strategy foregoes these gains, it remains shielded from the significant 

losses that other strategies such as the LRP suffer. While the LTSMOM avoids significant losses during the GFC, 

it suffers almost as much as the LRP strategy during the market corrections of 2018 (Fisher, 2019). As highlighted 

by Moskowitz et al. (2012), the TSMOM strategy performs badly when there are sudden reversals in the market. 

While the LTSMOM strategies are not protected from the corrections of 2018, they do not suffer extreme losses 

that would likely be the case if they held short positions.   

Clearly, since the only difference between the LTSMOM strategies and the LRP strategy is the use of time-series 

momentum signals, this is the only possible source of the superior performance. Therefore, for the paper portfolio, 

it can be concluded that using a 3-month lookback horizon, the LTSMOM strategy performs above and beyond 

the LRP strategy. However, given the anticipated reduction in performance due to transaction costs, a real-life 

implementation may provide different results. This is the subject of investigation in the following subsection. 

5.2.2 Sensitivity Analysis of Transaction Costs 

Excluding transaction costs, the paper finds that the 3-month LTSMOM strategy produces the best performance, 

both in comparison to other lookback horizons and the LRP strategy. Lesmond et al. (2004) argue that momentum 

strategies are not robust to transaction costs. To investigate this the paper now conducts a transaction cost 

sensitivity analysis which is implemented following the methodology presented in Section 4.2.2. Table 5.2 

summarizes the performance measures of all three transaction cost scenarios. Panel A displays the results for the 

optimistic case, the neutral case is shown in Panel B and the pessimistic case is presented in Panel C. Following 

the same order, the corresponding cumulative returns plots are shown in Figure 5.3.  

Table 5.2 shows that as transaction costs increase excess returns are reduced. The effects are most severe for 

strategies using short-term signals and have a smaller impact on the strategies with longer look-back horizons. The 

effects are not severe in the optimistic case, where broker fees are 0.05%. Here the excess return for the 3-month 

strategy is 8.4%, down only 60bps from its costless state. The 12-month strategy, on the other hand, only drops 40 

bps registering an excess return of 7.5%. Transitioning from the optimistic to the neutral scenario where broker 

fees are 0.1% the 3-month strategy again loses 60 bps recording an excess return of 7.8%. Here the excess return 

of the 12-month strategy is only reduced by 20 bps. Returns are more than halved for the 3-month strategy as 

broker fees increase from 0.1% to 0.5%. The 40 bps increase in transaction costs reduces the return of the 3-month 

strategy by 430 bps, from 7.8% to 3.5%. For the same transition, the 12-month strategy experiences a more 
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subdued decline of 280 basis points, from 7.2% to 4.4%. The strategy with returns most resilient to transaction 

costs is the LRP, suffering a reduction of only 160 bps, from 9.1% to 7.5%.  

Table 5.2 

Performance measures of the LTSMOM strategies with different lookback horizons and the LRP strategy with bid-ask transaction costs 
and varying broker fees. Panel A shows the performance measures with a 0.05% broker fee. Panel B shows the measures with a 0.1% 

broker fee. Panel C uses a broker fee of 0.5%. 

Panel A: 0.05% Broker Fee 

  1m 2m 3m 6m 9m 12m LRP 

Average excess return 2.7% 6.6% 8.4% 7.7% 8.2% 7.5% 9.3% 

Volatility 10.9% 11.5% 12.1% 12.5% 12.2% 13.0% 17.8% 

Sharpe Ratio 0.25 0.57 0.70 0.62 0.68 0.58 0.52 

Annualized Alpha 0.8% 4.6% 6.4% 5.7% 6.1% 5.5% 4.9% 

t-Statistic 0.30 1.76 2.34 1.97 2.17 1.86 2.01 

Max Drawdown 31.5% 22.7% 23.5% 26.2% 21.6% 27.2% 43.2% 

        
Panel B:  0.1% Broker Fee 

  1m 2m 3m 6m 9m 12m LRP 

Average excess return 1.4% 5.7% 7.8% 7.3% 7.8% 7.2% 9.1% 

Volatility 11.0% 11.6% 12.1% 12.5% 12.2% 13.0% 17.8% 

Sharpe Ratio 0.13 0.49 0.65 0.58 0.64 0.55 0.51 

Annualized Alpha -0.6% 3.7% 5.9% 5.2% 5.7% 5.1% 4.7% 

t-Statistic -0.22 1.41 2.14 1.80 2.03 1.74 1.93 

Max Drawdown 34.4% 23.5% 23.9% 26.8% 22.0% 27.6% 43.3% 

        
Panel C: 0.5% Broker Fee 

  1m 2m 3m 6m 9m 12m LRP 

Average excess return -9.2% -1.6% 3.5% 3.4% 4.7% 4.4% 7.5% 

Volatility 11.8% 12.0% 12.2% 12.8% 12.3% 13.1% 17.9% 

Sharpe Ratio -0.78 -0.13 0.29 0.27 0.38 0.34 0.42 

Annualized Alpha -11.1% -3.5% 1.6% 1.4% 2.6% 2.4% 3.2% 

t-Statistic -3.97 -1.26 0.57 0.48 0.91 0.80 1.27 

Max Drawdown 77.8% 43.0% 27.2% 31.3% 25.2% 30.7% 44.1% 
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A 
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C 

 
Figure 5.3. Cumulative excess returns of the LTSMOM and LRP strategies. Panel A shows the performance with bid-ask transaction costs 
and a 0.05% broker fee. Panel B shows the performance with bid-ask transaction costs and a 0.1% broker fee. Panel C shows the performance 
with bid-ask transaction costs and a 0.5% broker fee. 
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While volatilities do increase slightly, the effects are negligible. With falling returns and stable volatilities all 

strategies experience declining SRs. This can be seen in Figure 5.4, which also includes SRs for the strategies 

gross of costs. Here the SRs pertaining to the 1-month and 2-month strategies experience sharp declines compared 

to the much flatter descent visible in the 9-month and 12-month strategies.  

 
Figure 5.4 Sharpe ratio sensitivity to changes in broker costs of the LTSMOM and LRP strategies 

In the positive case, with broker costs at 0.05%, the 3-month strategy continues to produce a superior SR of 0.70. 

This is also the case in the neutral scenario where the 3-month strategy has an SR of 0.65 and the 9-month strategy 

records an SR of 0.64. In the neutral scenario the LRP strategy still underperforms the majority of LTSMOM 

strategies, surpassing only the 1-month and 2-month strategies. In the pessimistic case, however, the impact of 

transaction costs is clearly visible. In this instance, the optimal lookback horizon is no longer three months. Here, 

the LRP strategy produces the best SR of 0.42. The LTSMOM strategy recording the best SR of 0.38 is the 9-

month strategy, followed by the 12-month strategy with an SR of 0.34. In this scenario the SR of the 3-month 

strategy is 0.29. 

Annualized alphas follow the same trend as SRs. Interesting to note, is that even in the optimistic case, only three 

strategies continue to display significant alphas. Specifically, the 3-month, 9-month and LRP strategies produce t-

statistics of 2.34, 2.17 and 2.01, respectively. In the neutral strategy, only the 3-month and 9-month strategies 

retain significant alphas with t-statistics of 2.14 and 2.03, respectively. In the pessimistic case, no strategy realizes 

a statistically significant alpha. The robustness of the alphas in the neutral case, which the paper has identified as 

realistic, again questions the assumptions of the CAPM. However, the paper can still not conclude anything since 

financing costs and expense ratios are yet to be accounted for.  
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MDDs are also affected more significantly for short-term signal strategies than for those with longer-term signals. 

The LRP displays the greatest resilience to transaction costs in this case too. The 1-month strategy exhibits huge 

sensitivity, seeing its MDD more than double when transitioning from a broker cost of 0.1% to 0.5%. Here the 

MDD increases from 34.4% to 77.8%. Viewing this development along with Panel C in Figure 5.3, it is apparent 

that this is because with broker costs at 0.5%, the 1-month strategy almost consistently realizes negative cumulative 

returns. Hence, as transaction costs increase, not only does the 1-month strategy underperform the other strategies, 

it corrodes wealth. The 2-month strategy exhibits a similar, albeit less severe tendency. However, in all scenarios 

the remaining LTSMOM strategies still outperform the LRP strategy in terms of MDD. The 9-month strategy 

performs best in all scenarios with respect to MDD, closely followed by the 3-month strategy. Although the LRP 

strategy is less sensitive to transaction costs than the LTSMOM strategies, it continues to exhibit a far higher 

MDD. 

The cumulative returns graphs shown in Figure 5.3 provide an illustration of the changing dynamics of the 

strategies as transaction costs increase. Panel A and Panel B of Figure 5.3, representing broker costs of 0.05% and 

0.1%, respectively, are almost identical. Here the 1-month and 2-month strategies clearly underperform all other 

strategies. The LRP strategy and the LTSMOM strategies with lookback horizons of 3-months and above display 

very similar performance dynamics in these two scenarios. However, as broker cost increases to 0.5%, significant 

differences in performance are observable. Panel C of Figure 5.3 shows that in this scenario the LRP strategy 

produces the highest cumulative return over the sample period, followed by the 12-month and 9-month strategies. 

These findings are in line with what Pedersen (2015) would predict, namely that strategies using shorter signals 

are impacted more significantly by transaction costs than those using longer signals. These finding highlight the 

importance of accounting for transaction costs prior to strategy implementation. The optimal lookback horizon 

cannot be taken for granted, since it varies depending on the size of transaction costs. For the remainder of the 

analysis the paper uses broker costs of 0.1%, corresponding to the neutral case. In this scenario, the 3-month 

strategy performs best and displays results that are robust to transaction costs. This contradicts the findings of 

Lesmond et al. (2004), who argue that momentum strategies are not robust to transaction costs. The paper discusses 

this further in Section 6.2.     

5.2.3 Sensitivity Analysis of Financing Costs 

As highlighted by Asness et al.  (2012) high financing costs may prevent some investors from using leverage in 

their investment strategies. Therefore, the focus of this subsection is to uncover the degree to which financing 

costs reduce the performance of the LTSMOM and LRP strategies. As with transaction costs, the paper conducts 



 

54 
 

a sensitivity using three scenarios following the methodology presented in Section 4.2.2. The performance measure 

results of this analysis are presented in Table 5.3. Cumulative excess returns graphs are shown in Figure 5.5. 

Table 5.3 Performance of LTSMOM and LRP Strategies with Bid-Ask Transaction Costs, a 0.1% Broker Fee and Financing costs. Panel 
A shows results with an annualized 1% premium. Panel B uses a 2.5% premium. Panel C applies a 5% premium 

Panel A: 1% Financing Premium 

  1m 2m 3m 6m 9m 12m LRP 

Average excess return -0.1% 4.0% 6.0% 5.4% 5.9% 5.2% 5.9% 

Volatility 11.0% 11.5% 12.1% 12.5% 12.2% 13.0% 17.8% 

Sharpe Ratio -0.01 0.35 0.50 0.43 0.48 0.40 0.33 

Annualized Alpha -2.1% 2.1% 4.1% 3.3% 3.8% 3.1% 1.6% 

t-Statistic -0.84 0.79 1.47 1.15 1.34 1.06 0.63 

Max Drawdown 41.7% 23.9% 24.3% 27.8% 22.5% 28.1% 44.1% 

        
Panel B: 2.5% Financing Premium 

  1m 2m 3m 6m 9m 12m LRP 

Average excess return -2.5% 1.6% 3.2% 2.6% 3.0% 2.2% 1.2% 

Volatility 11.0% 11.4% 12.1% 12.6% 12.2% 13.0% 17.8% 

Sharpe Ratio -0.22 0.14 0.27 0.20 0.24 0.17 0.07 

Annualized Alpha -4.5% -0.3% 1.3% 0.5% 0.9% 0.2% -3.2% 

t-Statistic -1.75 -0.13 0.47 0.18 0.31 0.05 -1.26 

Max Drawdown 51.2% 28.1% 24.9% 29.2% 25.8% 32.6% 45.3% 

        
Panel C: 5% Financing Premium 

  1m 2m 3m 6m 9m 12m LRP 

Average excess return -6.3% -2.5% -1.4% -2.1% -1.9% -2.7% -6.7% 

Volatility 11.1% 11.4% 12.3% 12.8% 12.4% 13.2% 17.9% 

Sharpe Ratio -0.57 -0.22 -0.11 -0.17 -0.15 -0.21 -0.38 

Annualized Alpha -8.3% -4.4% -3.3% -4.2% -4.0% -4.8% -11.1% 

t-Statistic -3.21 -1.65 -1.14 -1.38 -1.35 -1.58 -4.27 

Max Drawdown 68.2% 46.5% 48.4% 50.9% 53.1% 57.1% 76.3% 
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Figure 5.5. Cumulative excess returns of LTSMOM and LRP strategies with bid-ask transaction costs, a 0.1% broker fee and financing 
costs. Panel A shows the performance with a financing cost premium of 1%. Panel B shows the performance with a financing cost premium 
of 2.5%. Panel C shows the performance with a financing cost premium of 5% 
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As expected, the introduction of financing costs reduces the excess returns of the strategies. Considering first the 

transition from no financing costs to a 1% cost, the LRP is affected more substantially than any other strategy. The 

excess return of the 3-month strategy is reduced by 180 bps from 7.8% to 6%, whereas the LRP experiences a 

decline of 320 bps from 9.1% to 5.9%. As financing costs increase the damage to excess returns becomes 

completely detrimental to all strategies. As with the introduction of transaction costs, financing costs have little 

effect on the volatility of each strategy. With stable volatilities and falling excess returns, all strategies experience 

declines in SRs. Figure 5.6 illustrates these effects. 

 
Figure 5.6 Sharpe ratio sensitivity to changes in the financing cost premium of the LTSMOM and LRP strategies 

The effects of financing costs on the SRs are most pronounced for the LRP strategy. As described in Section 2.4, 

when an asset in the LTSMOM strategy has 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯ equal to zero, the wealth that would have been allocated 

to it is used to reduce external financing. Therefore, not only does that specific asset not require financing, the 

overall level of required borrowing is reduced. This of course reduces financing costs for the LTSMOM strategies 

whereas the LRP strategy which uses more leverage has higher financing costs. While the LRP strategy is 

penalized more radically, the effects on the LTSMOM strategies are still severe. In the optimistic scenario, the 3-

month strategy, which performs best, realizes an SR of 0.5. In the neutral scenario the SR is reduced to 0.27.  As 

mentioned, this decline in performance is driven by a reduction in excess returns. In the pessimistic case all 

strategies suffer from negative returns, resulting in SRs below zero.  

Already in the optimistic case where financing costs are set to 1%, all t-statistics fail to produce statistical 

significance. The greatest performance in terms of alpha is the 3-month strategy with an alpha of 4.1%, followed 

by the 9-month strategy with an alpha of 3.8%. However, lacking statistical significance it is not possible to assert 

that these results are not random. Obviously, performance worsens as the financing costs increase. The dynamics 
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of the alphas follow the same pattern as with the SR. When financing cost premiums reach 5%, all strategies have 

negative alphas, with the 1-month and LRP strategies producing statistical significance for these negative results. 

Failing to display significant alphas even in the optimistic case, means that the strategies no longer challenge the 

assumptions of the CAPM.  

MDDs are also greatly impacted by the presence of financing costs. However, the effects are quite subdued moving 

from no financing costs at all to the optimistic case. As the financing costs increase, the effects become far more 

apparent. For instance, the 3-month strategy sees its MDD increase by only 60 bps from 24.3% to 24.9% as the 

financing costs increase from 1% to 2.5%. As the financing costs increase to 5%, however, the MDD rises to 

48.4%, a 2350 bps increase from the neutral case. Figure 5.5 illustrates the detrimental effect that financing costs 

have on the strategy.  

The results from the financing cost sensitivity analysis show that the performance of all strategies is greatly 

reduced when accounting for financing costs. Excess returns and SRs fall drastically as financing costs increase. 

No strategy produces a statistically significant alpha, even in the optimistic case, where the financing cost premium 

is 1%. MDDs also rise, reaching severe levels in the pessimistic case. From the results obtained so far, it seems 

that financing costs are the biggest threat strategy performance and not transaction costs. Asness et al. (2012) 

advocate investing in safe assets and applying leverage to increases returns. However, the authors also highlight 

that some investors may be unwilling or unable to use leverage. Certainly, with the effects observed in this analysis, 

it seems that an individual investor is unable to reap the benefits leverage due to the high costs that he must incur. 

This is discussed in more detail in Section 6.3.   

5.2.4 The LTSMOM and LRP Strategies with All Costs  

So far, the paper has examined the effects of different costs on the performance of the LTSMOM and LRP 

strategies both in terms of lookback horizons and performance sensitivity. Now the paper imposes asset specific 

expense ratios to each strategy, net of transaction and financing costs. The transaction and financing costs are 0.1% 

and 2.5%, respectively, consistent with the neutral strategy previously examined. Performance measures are shown 

in Table 5.4. Cumulative returns are presented in Figure 5.7.  
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Table 5.4 

Performance measures of the LTSMOM and LRP strategies with bid-ask transaction costs, a 0.1% broker fee, expense ratios and a 2.5% 
financing cost premium 

  1m 2m 3m 6m 9m 12m LRP 

Average excess return -3.0% 1.0% 2.6% 1.9% 2.3% 1.6% 0.3% 

Volatility 11.0% 11.4% 12.1% 12.6% 12.2% 13.0% 17.8% 

Sharpe Ratio -0.27 0.09 0.22 0.15 0.19 0.12 0.02 

Annualized Alpha -5.0% -0.9% 0.7% -0.1% 0.2% -0.5% -4.1% 

t-Statistic -1.96 -0.35 0.25 -0.03 0.08 -0.17 -1.62 

Max Drawdown 53.1% 29.7% 26.5% 29.6% 27.0% 35.5% 47.8% 
 

 
Figure 5.7 Cumulative excess returns of LTSMOM and LRP strategies with bid-ask transaction costs, a 0.1% broker fee, expense ratios 
and a 2.5% financing cost premium between January 2005 and October 2019 

In terms of excess return, volatility and SR, the 3-month strategy outperforms it peers. Comparing the above results 

with those presented in Panel B of Table 5.3, which include identical costs except expense ratios, excess returns 

are reduced by 60 bps from 3.2% to 2.6% for the 3-month strategy. Volatility remains unchanged. The SR 

decreases from 0.27 to 0.22. Similar effects are observable for the other LTSMOM strategies. The LRP strategy, 

on the other hand is penalized more noticeably. While its volatility is unaffected, excess returns are squeezed from 

1.2% to 0.3%, a reduction of 90 bps. The SR is depressed from 0.07 to 0.02. As with financing costs, the inclusion 

of expense ratios has a more negative impact on the LRP strategy than on the LTSMOM strategies. Again, the fact 

that the LRP strategy invests in all assets at all times results in higher costs, this time caused by the expense ratios. 

Alphas are reduced further with only the 3-month and 9-month strategies realizing positive results. While positive 

in these cases, neither are of statistical significance with t-statistics of only 0.25 and 0.08 for the 3-month and 9-

month strategies, respectively. Being so far from statistical significance, commenting on the size of the respective 
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alphas seems unnecessary. Although the inclusion of expense ratios has reduced alphas, this cost did not deal the 

decisive blow. Prior to the inclusion of this cost, alphas had already lost statistical significance.  

MDDs increase as expense ratios are accounted for. The 3-month strategy adds 160 bps moving from an MDD of 

24.9% to 26.5%. The LRP strategy experiences a moderately higher increase of 250 bps rising from 45.3% to an 

MDD of 47.8%. Consistent with the other performance measures, this greater effect is likely caused by the fact 

that the LRP strategy remains actively invested in all assets throughout the sample period. There is no significant 

development in the cumulative returns due to the inclusion of expense ratio costs.   

Concluding Remarks on the LTSMOM and LRP Strategies 

The differences in the performance metrics observable in Table 5.1 and Figure 5.2 with those shown in Table 5.4 

and Figure 5.7 highlight the importance of including costs when constructing investment strategies. When 

conducting back-tests to decide what investment strategy to pursue, the exclusion of these costs can potentially be 

very costly. In its paper form, the 3-month LTSMOM strategy seems very attractive realizing an excess return of 

9.0%, an SR of 0.75 and an alpha of 7.1% with a statistically significant t-statistic of 2.57. An individual investor 

having conducted this back-test may, understandably, be tempted to implement this strategy with the expectation 

of realizing abnormal excess returns at a relatively low level of risk. However, accounting for transaction and 

financing costs, as well as expense ratios, this strategy is severely undermined. Accounting for these costs the 3-

month LTSMOM strategy realizes an excess return of only 2.6%, down 640 bps from its costless state. The SR is 

reduced to 0.22. Alpha is reduced by 630 bps to 0.7% and is no longer statistically significant, achieving a t-

statistic of only 0.25. The MDD is increased from 23.0% to 26.5%. These finding will be discussed further in 

Section 6.6. 

Kim et al. (2016) argue that the impressive performance of the TSMOM strategy constructed by Moskowitz et al. 

(2012) is due to the levered risk parity asset allocation method that the strategy uses. They argue that the use of 

time series momentum signals does not improve strategy performance. While the introduction of all costs proves 

detrimental to the performance of the LTSMOM strategy, there is clear evidence throughout the above analysis 

that applying a time-series momentum approach to the investment strategy improves performance. This is clearly 

visible since the 3-month LTSMOM strategy consistently performs better than the LRP portfolio. This paper 

therefore finds evidence that challenges the arguments of Kim et al. (2016) and elaborates on this in Section 6.5  

The optimality of the 3-month lookback horizon is at ends with the empirical analysis conducted by Moskowitz et 

al. (2012) who find a lookback horizon of 12-months to produce the best performance. There may be several 

reasons behind this difference, of which the paper will discuss at greater length in Section 6.1. The above analysis 

shows that it is not transaction costs that inflict the most damage to the LTSMOM strategy, but rather financing 
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costs. Indeed, accounting only for transaction costs, in the neutral case the 3-month LTSMOM strategy still 

provides attractive results, with a statistically significant alpha. These results challenge the findings of Lesmond 

et al. (2004) who argue that momentum strategies are not robust to transaction costs. Where Asness et al. (2012) 

discuss the various reasons for leverage aversion, this paper provides an answer from the perspective of the 

individual investor. The significant damage to returns caused by the high costs of financing incurred by an 

individual investor provide justification for leverage aversion. Of course, this paper has made assumptions 

regarding the cost of leverage that may be challenged. These will be discussed in Section 6.3.  

The information gathered from this section of the analysis indicates that in a real-world setting, measured against 

the selected performance measures, the implementation of the LTSMOM and LRP strategies are not ideal. 

However, with much of the analysis to come, making any conclusions at this stage would be premature. Having 

ascertained that the main driver of performance reduction is financing costs, the outlook for the UTSMOM and 

URP strategies seems positive. The paper will now investigate these strategies and analyse their performance under 

different scenarios.  

5.3 THE UTSMOM AND URP STRATEGIES 

The analysis of the UTSMOM and URP strategies will investigate their performance measures gross of all costs, 

net of transaction costs, and net of transaction costs and expense ratios. Through this analysis, the paper determines 

the optimal lookback horizon. The paper also determines the robustness of the strategy in the presence of 

transaction costs and expense ratios. Furthermore, comparing the UTSMOM strategy to the URP strategy, the 

paper determines whether the use of trend signals provides better performance. The analysis begins with the 

strategies gross of costs. Following this, the paper analyses the strategies net of transaction costs. Finally, the paper 

conducts the analysis of the strategies accounting for transaction costs and expense ratios. 

5.3.1 The UTSMOM and URP Strategies without Costs 

The performance measures for strategies gross of costs are presented in Table 5.5 and cumulative returns are 

displayed in Figure 5.8.   
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Table 5.5 

Performance measures of the UTSMOM and URP Strategies without Transaction Costs  

 

 

 

 

 

 
Figure 5.8 Cumulative returns of UTSMOM and URP strategies gross of costs between January 2005 and October 2019 

In accordance with Asness et al. (2012), excess returns are significantly lower for the unlevered strategies 

compared with those of the levered portfolios. Table 5.5 shows that the highest excess return for the paper 

portfolios is 2.5% and is produced by the 3-month strategy. The second highest excess return is realized by the 6-

month strategy at 2.3%, followed by the URP strategy which has an excess return of 2.2%. Already, a difference 

between the levered and unlevered portfolios is observed. The results for the levered strategies excluding costs 

presented in Panel A of Table 5.1 show that the LRP produces the highest excess return at 9.6%, followed by the 

3-month and 9-month strategies recording excess returns of 9.0% and 8.7%, respectively. Volatilities are 

considerably lower for the unlevered strategies, hovering around 3% for the UTSMOM portfolios and 5.6% for 

the URP strategy. The 9-month strategy has the lowest volatility at 2.9%, followed by the 3-month and 6-month 

strategies, both with volatilities of 3%. The 3-month strategy produces the best SR at 0.84. The 6-month strategy 

takes second place with an SR of 0.77 and the third-best SR is achieved by the 9-month strategy. The URP strategy 

realizes the lowest SR at 0.4. Again, a clear difference between the dynamics of the performance measures with 

respect to lookback horizons between the levered and unlevered strategies is observed. Not only is the order of 

optimal lookback horizons different, in the unlevered case the 1-month strategy produces a higher SR than the 
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  1m 2m 3m 6m 9m 12m URP 

Average excess return 1.4% 2.1% 2.5% 2.3% 2.1% 2.0% 2.2% 

Volatility 3.2% 3.3% 3.0% 3.0% 2.9% 3.1% 5.6% 

Sharpe Ratio 0.44 0.63 0.84 0.77 0.72 0.64 0.40 

Annualized Alpha 0.8% 1.5% 2.0% 1.7% 1.5% 1.4% 0.7% 

t-Statistic 1.11 2.05 3.06 2.67 2.39 2.25 1.72 

Max Drawdown 6.4% 6.8% 4.2% 4.7% 4.7% 5.0% 23.3% 
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URP. In the levered case, the 1-month strategy provides the worst SR, whereas in the unlevered case it is the URP 

strategy that is inferior. Consistent in both the levered and unlevered case, however, is the superior performance 

of the 3-month strategy in terms of the SR. 

The performance of the strategies in terms of alpha follow a very similar order as with the SR. All alphas display 

statistical significance except the 1-month strategy and URP strategy. The 3-month strategy has an alpha of 2.0% 

with a corresponding t-statistic of 3.06. Again, the 6-month strategy performs second-best with an alpha of 1.7% 

and t-statistic of 2.67. A pattern is certainly emerging, where a clear difference in terms of optimal lookback 

horizons is visible. While the 3-month strategy performs best in both the levered an unlevered case, the 6-month 

strategy seems to have replaced the 9-month strategy in second place. In their costless state, many of the UTSMOM 

strategies produce returns that are not fully explained by the CAPM theory. However, as was observed in the 

analysis of the LTSMOM strategies, the presence of costs may change this.  

The MDD of the 3-month strategy is only 4.2% and is the lowest of all strategies. The 6-month and 9-month 

strategies both produce MDDs of 4.7%. The 1-month and 2-month strategies produce MDDs of 6.4% and 6.8%, 

respectively. The URP strategy performs worse than any UTSMOM strategy registering an MDD of 23.3%. Figure 

5.8 shows that the MDD of the URP strategy occurs during the GFC, where the UTSMOM strategies are largely 

unaffected. As mentioned in Section 2.3, Moskowitz et al. (2012), highlight that TSMOM strategies perform very 

well during the GFC. As with the LTSMOM strategy, the reason that the UTSMOM strategy does not experience 

gains during the GFC is that the strategy does not short assets but rather excludes them from the portfolio. While 

the UTSMOM strategies do not realize the significant gains during the GFC that the TSMOM does, it is still 

shielded from the significant losses experienced by strategies that do not use signal. This is exemplified by the 

huge loss experienced by the URP strategy. Interestingly, while the LTSMOM strategies experience significant 

losses in the market corrections of 2018, the UTSMOM strategies are less vulnerable to them. This is likely due 

to the absence of leverage in the UTSMOM strategy. This will be discussed further in Section 6.5. 
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5.3.2 The UTSMOM and URP with Transaction Costs 

The performance measures for the UTSMOM and URP strategies accounting for bid-ask transaction costs and a 

broker fee of 0.1% are shown in Table 5.6. Cumulative returns are presented in Figure 5.9.   

Table 5.6 

Performance of UTSMOM and URP Strategies with Bid-Ask Transaction Costs and 0.1% Broker Fee 

  1m 2m 3m 6m 9m 12m URP 

Average excess return 0.7% 1.6% 2.3% 2.0% 1.9% 1.8% 2.1% 

Volatility 3.2% 3.3% 3.0% 3.0% 2.9% 3.1% 5.6% 

Sharpe Ratio 0.23 0.49 0.75 0.69 0.65 0.59 0.38 

Annualized Alpha 0.1% 1.0% 1.7% 1.5% 1.4% 1.3% 0.7% 

t-Statistic 0.16 1.41 2.67 2.31 2.10 2.00 1.53 

Max Drawdown 7.0% 7.3% 4.4% 5.0% 4.8% 5.2% 23.4% 
 

 
Figure 5.9 Cumulative returns of UTSMOM and URP strategies with bid-ask costs, a broker fee of 0.1%, between January 2005 and 
October 2019 

The 3-month strategy continues to produce the best excess return at 2.3%, down by 20 bps from its costless 

counterpart which records an excess return of 2.5%. The 6-month strategy maintains its position as the second-

best strategy with a slightly lower excess return of 2.0%, down from 2.3%, a reduction of 30 bps. The URP registers 

a 2.1% excess return, having dropped only 10 bps due to the incorporation of transaction costs. Volatilities remain 

unchanged from the paper portfolio. The 3-month strategy therefore still produces the best SR of 0.75. The 6-

month strategy has an SR of 0.69, which is the second best of all strategies. Due to its higher volatility, the URP 

has the second-worst SR of 0.38, outperforming only the 1-month strategy, which has consistently underperformed 

the other strategies in almost all instances.  
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Accounting for transaction costs the 3-month strategy realizes an alpha of 1.7% which remains statistically 

significant with a t-statistic of 2.67. The 6-month strategy also realizes a statistically significant alpha of 1.5% 

with a t-statistic of 2.31. The 9-month and 12-month strategies also maintain statistically significant alphas. The 

1-month, 2-month, and URP strategies do not realize statistically significance alphas.  

Measured by MDD, the 3-month strategy also performs best, only losing 4.4% of wealth in its greatest loss of the 

entire period. The URP underperforms all other strategies by a large margin recording an MDD of 23.4%, which 

occurs during the GFC as shown in Figure 5.9. Clearly, the 3-month strategy continues to perform best, with 

superior performance measures in every category.  

5.3.3 The UTSMOM and URP Strategies with All Costs 

The performance measure for the UTSMOM and URP strategies net of transaction costs and expense ratios are 

shown in Table 5.7 and a graph displaying cumulative excess returns is presented in Figure 5.10. 

Table 5.7 

Performance measures of the UTSMOM and URP Strategies with Bid-Ask Transaction Costs, a 0.1% Broker Fee and Expense Ratios 

  1m 2m 3m 6m 9m 12m URP 

Average excess return 0.6% 1.5% 2.1% 1.9% 1.8% 1.7% 1.9% 

Volatility 3.2% 3.3% 3.0% 3.0% 2.9% 3.1% 5.6% 

Sharpe Ratio 0.19 0.45 0.70 0.64 0.60 0.54 0.34 

Annualized Alpha 0.0% 0.9% 1.6% 1.4% 1.2% 1.1% 0.4% 

t-Statistic -0.02 1.23 2.45 2.09 1.87 1.75 1.01 

Max Drawdown 7.0% 7.3% 4.5% 5.0% 4.9% 5.3% 23.7% 
 

 
Figure 5.10 Cumulative returns of UTSMOM and URP strategies with bid-ask costs, a broker fee of 0.1% and expense ratios between 
January 2005 and October 2019 
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While slightly reducing the performance of each strategy, the inclusion of expense ratios does not change the 

ranking order of the strategies. The 3-month strategy continues to perform best with the highest excess return and 

SR. Furthermore, it realizes the highest alpha of 1.6% with a significant t-statistic of 2.45. Producing an MDD of 

4.5%, the 3-month strategy continues to be the safest strategy in large downturns. Figure 5.10 shows that the 3-

month strategy realizes the highest cumulative return at the end of the sample period. Moreover, it maintains a 

very stable performance throughout the entire sample period which is logical given its low volatility and MDD. In 

sum, accounting for transaction costs and expense ratios the 3-month strategy performs best in every category.   

Concluding Remarks on the UTSMOM and URP Strategies 

As with the LTSMOM strategy, the optimal lookback horizon for the UTSMOM strategy is three months. Again, 

this finding is different to that of Moskowitz et al. (2012) who find the 12-month lookback horizon to be optimal. 

Adding further nuance to the discussion of lookback horizon optimality, the UTSMOM strategy providing the 

second-best results is the 6-month strategy. The second-best lookback horizon for the LTSMOM strategies was 

identified as 9 months. These findings may be explained by the lack of clear trend signals in recent years and are 

discussed further in Section 6.1. 

Contrary to the findings of the LTSMOM and LRP analysis, the 3-month UTSMOM strategy maintains positive 

results as costs are incurred on it. Lesmond et al. (2004) argue that the majority of profits gained from momentum 

strategies are derived from short positions which are subject to disproportionally high transaction costs rendering 

strategy execution unprofitable. While this may be true, accounting for transaction costs and expense ratios, the 3-

month UTSMOM strategy produces an annualized alpha of 1.6% with significant t-statistic of 2.45. Although the 

magnitude of the strategy’s alpha is not overwhelming, the fact that it exists and is statistically significant when 

accounting for transaction costs has several implications. First, it indicates that the implementation of long-only 

momentum strategies can be profitable, providing a new perspective to the arguments of Lesmond et al. (2004). 

Second, the presence of abnormal excess returns means that the CAPM does not fully explain the returns of the 

strategy.  

The URP strategy does not realize a statistically significant alpha and underperforms the 3-month strategy against 

all other performance measures. The only difference between the two strategies is the use of time-series momentum 

signals. For this reason, it is possible to argue that the superior performance of the 3-month UTSMOM strategy 

compared to the URP portfolio is caused solely using time-series momentum signals. This provides insights 

regarding the findings of Kim et al (2016) who find that the impressive performance of the TSMOM strategy 

created by Moskowitz et al. (2012) derives from its asset allocation method and not its use of time series 

momentum signals. The paper discusses this in Section 6.5.  
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5.4 COMPARING INVESTMENT STRATEGIES 

The optimal lookback horizons have been identified as three months for both the LTSMOM and UTSMOM 

strategies. Therefore, in the following subsection the terms LTSMOM and UTSMOM refer explicitly to the 3-

month strategies in each case. Having determined the optimal lookback horizons and analysed their behaviour 

with respect to relevant costs, the paper is now primed to conduct the final part of the analysis. Here, it is the 

objective to determine the degree to which the LTSMOM and UTSMOM strategies outperform other standard 

asset allocation approaches. These benchmark strategies are the equally weighted (EW) and 60/40 portfolios. The 

performance measures, of each investment strategy are displayed in Table 5.8 and Figure 5.11. Panel A in Table 

5.8 shows the performance measures of each strategy gross of all costs. Panel B displays the performance measures 

net of all costs. Figure 5.11 presents the cumulative excess returns following the same logic. To simplify the 

comparison of the strategies, the paper conducts a process of elimination, filtering strategies out to arrive at a 

conclusion. 

Table 5.8  

Performance measures of selected strategies. Panel A shows the measures gross of costs. Panel B shows the measures accounting for bid-
ask transaction costs, a 0.1% broker fee, expense ratios and a 2.5% financing cost premium 

Panel A. Performance of Selected Portfolios without Costs       

  LTSMOM LRP UTSMOM URP 60/40 EW 

Average excess return 9.0% 9.6% 2.6% 2.2% 3.6% 3.8% 

Volatility 12.0% 17.8% 3.0% 5.6% 10.9% 12.8% 

Sharpe Ratio 0.75 0.54 0.84 0.40 0.33 0.29 

Annualized Alpha 7.1% 5.2% 2.0% 0.7% 1.0% 0.8% 

t-Statistic 2.57 2.11 3.06 1.72 1.51 1.02 

Max Drawdown 23.0% 43.0% 4.2% 23.3% 41.2% 47.7% 

       
Panel B. Performance of Selected Portfolios with All Costs  

  LTSMOM LRP UTSMOM URP 60/40 EW 

Average excess return 2.6% 0.3% 2.1% 1.9% 3.3% 3.4% 

Volatility 12.1% 17.8% 3.0% 5.6% 10.9% 12.8% 

Sharpe Ratio 0.22 0.02 0.70 0.34 0.30 0.26 

Annualized Alpha 0.7% -4.1% 1.6% 0.4% 0.7% 0.4% 

t-Statistic 0.25 -1.62 2.45 1.01 0.98 0.52 

Max Drawdown 26.5% 47.8% 4.5% 23.7% 41.5% 48.0% 
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Panel A  

 

 Panel B 

 
Figure 5.11 Cumulative returns of selected strategies between January 2005 and October 2019. Panel A displays the cumulative returns 
gross of costs. Panel B shows the cumulative returns with bid-ask costs, a broker fee of 0.1% and expense ratios.  

Comparing Panel A and B in Table 5.8 and Figure 5.11, it is clear that the inclusion of costs associated with the 

implementation of the selected strategies has a negative impact on their performance. This is most starkly 

emphasized by the difference in the performance of the levered strategies in their paper form as opposed to their 

performance when accounting for costs. As discussed in Section 5.2, the majority of this decline in performance 

is caused by the financing costs associated with using leverage. Panel A in Figure 5.11 shows the cumulative 

returns of the levered portfolios towering above the other strategies, both ending the sample period having more 

than tripled their wealth. However, as Panel B from the same figure shows, this dominance is not present when 

accounting for the costs associated with strategy execution. The performance of the LTSMOM strategy aligns 

more closely with the unlevered strategies and the LRP strategy significantly underperforms them realizing a 

negative cumulative return at the end of the sample period.      

$0

$50

$100

$150

$200

$250

$300

$350

$400

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
LTSMOM LRP UTSMOM URP 60/40 EW

$50

$75

$100

$125

$150

$175

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
LTSMOM LRP UTSMOM URP 60/40 EW



 

68 
 

Accounting for costs, the LRP strategy produces the worst performance of all strategies, barely realizing a positive 

excess return at 0.3% and producing the highest volatility at 17.8%. The remaining performance measures are also 

highly undesirable. With the obvious underperformance of this strategy, it makes little sense to provide an in-depth 

comparison of its performance with the other strategies. The LRP strategy is therefore exempt from further analysis 

and is deemed to be unimplementable in the current setting. The remaining five portfolios, however, are more 

closely aligned in their performance and require further analysis. 

The EW strategy displays the highest mean excess return of all strategies at 3.4%, closely followed by the 60/40 

strategy which achieves an excess return of 3.3%, a difference of 10 bps. While the EW outperforms the 60/40 

portfolio with respect to excess returns, it is inferior in all other aspects. The 60/40 strategy has a lower volatility 

of 10.9% compared to the EW strategy which has a standard deviation of 12.8%. This results in the 60/40 strategy 

realizing a higher SR than the EW strategy at 0.3 and 0.26, respectively. Therefore, the 60/40 strategy has a better 

risk-adjusted return than the EW portfolio. Neither the 60/40 nor the EW portfolio realize statistically significant 

alphas. The 60/40 strategy has a lower MDD than the EW portfolio at 41.5% and 48.0%, respectively. Observing 

Figure 5.11, it is clear that the MDD takes place during the GFC, as would be expected. It could be argued that the 

60/40 strategy will likely perform better than the EW strategy in severe market downturns. Of course, a future 

crisis may have different underlying mechanisms that render a clear conclusion on this subject difficult. 

Nonetheless, given the small difference in excess returns between the two strategies and the otherwise superior 

performance of the 60/40 strategy it seems reasonable to remove the EW strategy from further analysis and use 

the 60/40 strategy for comparison with the remaining strategies.  

Panel B in Table 5.8 clearly shows that the UTSMOM strategy outperforms the URP strategy in every category. 

The URP strategy could therefore also be removed. However, prior to this it is important to note that the URP 

strategy outperforms the 60/40 strategy in several ways. In fact, the 60/40 portfolio only outperforms the URP 

strategy in terms of excess returns and alphas which are not statistically significant in either case. The far lower 

volatility of the URP strategy at 5.6% compared to the 10.8% displayed by the 60/40 strategy results in the URP 

strategy obtaining a higher SR. These are 0.34 and 0.30 for the URP and 60/40 strategies, respectively. The MDD 

of the URP is only 23.7% compared to 41.5% for the 60/40 strategy. Figure 5.11 indicates that the MDD for the 

URP also occurs during the GFC as was found for the 60/40 strategy. The URP strategy therefore appears to be 

far more resilient to significant market downturns than the 60/40 strategy. Again, this finding must be viewed with 

caution given the infinite causes of crises. Nevertheless, in this case, the URP strategy outperforms the 60/40 

portfolio. The URP strategy is certainly not outperformed by the 60/40 strategy. However, the larger excess return 

realized by the latter and the fact that the URP is outperformed by the UTSMOM strategy in every measurement 

category means that the paper excludes the URP strategy from further analysis.  
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Having simplified the analysis be removing the LRP, EW and URP strategies from further consideration, three 

strategies remain. The remaining strategies that must be compared are the LTSMOM, UTSMOM and 60/40 

strategies. The 60/40 strategy outperforms the LTSMOM strategy in all categories except for MDD. The 

LTSMOM has an excess return that is 70 bps lower than the 60/40 strategy at 2.6% while simultaneously recording 

a volatility of 12.1%, 20 bps higher than the 60/40 strategy. The LTSMOM strategy therefore realizes an SR of 

only 0.22, lower than the 60/40 strategy which has an SR of 0.30. This indicates that in more normal market 

conditions, the 60/40 strategy is superior, however, in the event of a serious market downturn an investor would 

be better positioned carrying the LTSMOM strategy. Viewing Figure 5.11, it is clear that the LTSMOM strategy 

is largely unaffected by the market turmoil of the GFC which is, of course, a desirable attribute. However, the 

strategy is punished more harshly during the market corrections of 2018 than the 60/40 strategy (Fisher, 2019). 

The determination of which of these two strategies is optimal therefore depends very much on investor preferences.  

The UTSMOM strategy outperforms both the 60/40 and LTSMOM strategies in every category besides excess 

return where it registers a lower value in both cases. Producing an excess return of 2.1%, the UTSMOM strategy 

falls short of the LTSMOM and 60/40 strategies by 50 bps and 120 bps, respectively. However, the remaining 

performance measures of the UTSMOM strategy display overwhelming superiority when viewed in contrast to 

the 60/40 and LTSMOM strategies. Boasting an annualized volatility of only 3%, the UTSMOM strategy exhibits 

an SR of 0.7. This is over three times greater than the SR of the LTSMOM strategy and more than double that of 

the 60/40 strategy, with SRs of 0.22 and 0.30, respectively. Adding to the attractiveness of the UTSMOM strategy 

is its realization of an annualized alpha of 1.6% with a statistically significant t-statistic of 2.45. The UTSMOM 

strategy both possesses the highest alpha and is the only portfolio where this measure is statistically significant. In 

terms of MDD, the UTSMOM also outperforms all strategies by a high margin. The UTSMOM records an MDD 

of only 4.5% whereas the LTSMOM and 60/40 strategies have MDDs of 23.0% and 41.2%, respectively. Viewed 

in conjunction with Figure 5.11 it is clear that the UTSMOM strategy is by far the most stable, neither losing much 

wealth during the GFC nor the multiple corrections of 2018.    

Speaking of rationality, it seems highly irrational that any investor would opt to hold the 60/40 portfolio or 

LTSMOM portfolio, despite their higher excess returns, given the risk-adjusted returns and stable performance 

they could achieve by holding the UTSMOM portfolio. However, as the saying goes, you can’t eat risk-adjusted 

returns. Evidence has been found that the application of leverage with the purpose of increasing returns may prove 

difficult, given the financing costs an individual investor could expect to be subjected to. Therefore, it is likely 

that in order to increase returns, other measures must be taken. This will be discussed in more detail in Section 

6.6.   
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6 DISCUSSION AND CONCLUSION 

This section of the paper discusses the most significant findings from the analysis with the aim of providing a 

broad and nuanced account of what has been uncovered. As mentioned in the introduction, the paper answers the 

research question by answering six smaller questions. The paper provides answers to these questions in this section 

of the paper. Section 6.1 discusses the existence of price continuation and the optimal lookback horizon, 

concluding with an answer to Question 1 of the paper. The paper discusses the impact of transaction costs on the 

performance of the time-series momentum strategies in Section 6.2 and provides an answer to Question 2. Section 

6.3 discusses the impact of financing costs on the performance of the LTSMOM strategy and answers Question 3. 

The paper discusses the impact of expense ratio costs, specific to ETFs, on strategy performance and answers 

Question 4 in Section 6.4. Following this, Section 6.5 discusses whether using time series momentum signals 

improves strategy performance and answers Question 5. Finally, the paper discusses whether the developed long-

only time series momentum perform better than other standard asset allocation methods and concludes by 

answering question 6.   

6.1 PRICE CONTINUATION AND THE OPTIMAL LOOKBACK-HORIZON 

Hurst et al. (2017) argue that clear trends have not been present in recent years, highlighting that the current 

economic environment has not been optimal for trend-following strategies. The presence of trends is essential for 

a time series momentum strategy. Therefore, the paper tests for price continuation in the data. Considering the 

change in trend dynamics, the paper also analyses the performance of strategies using different lookback horizon 

to identify which of these produces the best performance measures.  

The pooled panel autoregression performed in Section 4.1 reveals statistically significant price continuation in the 

data. The structure of this continuation is, however, quite different from that found by Moskowitz et al. (2012). In 

the regression performed in this paper, only the first six lags produce positive t-statistics, of which four are 

statistically significant. Noticeably, the first lag does not produce a statistically significant t-statistic. After the 

sixth lag, the t-statistics begin to oscillate, almost randomly, between positive and negative values. Tested on all 

asset classes, Moskowitz et al. (2012) find positive t-statistics for each of the first eleven lags, seven of which are 

statistically significant. Moreover, negative t-statistics are found from the twelfth to the nineteenth lag, of which 

two are statistically significant. These results portray a clear picture of trend and trend reversal dynamics, which 

is not as visible in this paper’s results. Furthermore, the paper finds the optimal lookback-horizon to be 3-months. 

Moskowitz et al. (2012), on the other hand, find strong evidence that the lookback horizon providing the best 

performance, measured by alpha, is 12 months. Several factors may cause this difference.  
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First, the asset classes under consideration are different. Moskowitz et al. (2012) analyse time-series momentum 

using futures contracts, where this paper investigates ETFs. While this may have some influence on the results, 

the underlying assets are quite similar in the two studies and for this reason it seems unlikely that this would have 

a strong impact on the results.  

Second, Moskowitz et al. (2012) investigate long-short strategies, whereas this paper focuses on long-only 

strategies. To gain insight into whether this has had an impact on the optimal lookback horizon performance 

measures have been calculated for a long-short TSMOM strategy without transaction costs following the 

methodology of Moskowitz et al. (2012) and can be seen in Appendix B. The long-short strategies display a very 

similar pattern to that observed in the LTSMOM strategy with the 3-month strategy producing the best overall 

performance measures. Therefore, it seems reasonable to argue that the difference in the optimal lookback horizon 

is not because this paper analyses long-only portfolios.   

Finally, the argument of Hurst et al. (2017) that clear trends have not been present in recent years could influence 

the results. Since the study performed by Moskowitz et al. (2012) is conducted on data from January 1965 to 

December 2009, whereas this paper analyses more recent data ranging between January 2004 and October 2019, 

it seems likely that this explains some of the difference in results.  

Evidence from the transaction cost sensitivity analysis performed in Section 5.2.2 indicates that as transaction 

costs increase, the optimality of the lookback horizon shifts. Panel C in Table 5.2 presented in Section 5.2.2 shows 

that when transaction costs are high, the 12-month strategy performs best. In fact, in this scenario the 3-month 

strategy is outperformed by the 9-month strategy and even the LRP strategy. This makes sense since, as highlighted 

by Pedersen (2015), transaction costs are higher for strategies that use short-term trend signals than long-term 

signals. The reason for this is that the short-term trends will switch between 0 and 1 more often because the impact 

of one month’s performance will have a greater impact on the mean excess return used to determine 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ 

than on long-term trends. The change in the signal results in a larger transaction size since all holdings in this asset 

must be either bought or sold, compared to a smaller incremental change in asset holdings associated the signal 

remaining unchanged. The effects of this should be smaller for the long only strategies considered in this paper 

compared to the long-short TSMOM strategy considered in the studies of Moskowitz et al. (2012) and Pedersen 

(2015). The reason for this is that as the signal changes in the LTSMOM and UTSMOM strategies, assets will 

either be bought or sold to or from a position of zero. The TSMOM strategy, on the other hand, will either buy or 

sell beyond zero, resulting in a far larger transaction size. This implies that transaction costs should be inherently 

smaller in the long-only strategies compared with the long-short TSMOM strategy.  
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6.1.1 Answer to Question 1 

There is evidence of return continuation in the data, however, the structure of this continuation is different to that 

seen in the study performed by Moskowitz et al (2012), displaying less pronounced price continuation. 

Moreover, the paper finds the optimal lookback horizon in the data to be 3-months for both the LTSMOM and 

UTSMOM strategies. This also differs from the findings of Moskowitz et al. (2012) who find a 12-month 

lookback horizon to be provide the best results. The paper argues that the differences may be caused by a lack of 

clear trends in recent years causing the dynamics of the strategy to change. Finally, the paper finds that as 

transaction costs increase, strategies using longer lookback horizons perform best. These findings are supported 

by theory and add further depth to understanding of the optimal lookback horizon. Not only must an investor be 

aware that the optimal lookback horizon may vary across assets and time, he must consider that it will transform 

depending on the size of transaction costs. This emphasizes the need to integrate transaction costs into back-

testing procedures prior to determining lookback horizons since they change the very composition of the 

strategy.   

6.2 THE IMPACT OF TRANSACTION COSTS ON THE LTSMOM AND UTSMOM 

STRATEGIES 

When implementing a strategy in real life an individual investor is subject to transactions costs. Therefore, the 

paper conducts a comprehensive study to determine the degree to which the LTSMOM and UTSMOM strategies 

are robust to transaction costs. Having identified the 3-month lookback horizon as optimal in the data for both the 

LTSMOM and UTSMOM strategies, the remainder of the paper will discuss the performance of these strategies 

only, unless specifically stated otherwise. For simplicity, these are referred to as the LTSMOM and UTSMOM 

strategies from here on. The results from Section 4.2 of the paper show that both the LTSMOM and UTSMOM 

strategies produce attractive performance measures gross of costs.   

The transaction cost sensitivity analysis of the LTSMOM strategy shows that in the neutral case with bid-ask 

transaction costs and a broker fee of 0.1% of transaction size, the strategy produces a statistically significant 

annualized alpha of 5.9%. Furthermore, under these conditions the strategy realizes an average excess return of 

7.8% and an SR of 0.65. However, in the pessimistic case where broker costs are set to 0.5% of transaction size, 

performance is significantly reduced. In this case, the annualized alpha of the LTSMOM strategy is only 1.6% and 

is not statistically significant. Moreover, the excess return is reduced to 3.5% and the SR is 0.29.   

With bid-ask transaction costs and a broker fee of 0.1% of transaction size, the UTSMOM strategy also produces 

positive results. The strategy realizes a statistically significant annualized alpha of 1.7%, an excess return of 2.3% 

and an SR of 0.75. The paper does not report a sensitivity analysis of the UTSMOM strategy in the main text, 
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however, the results of this analysis can be found in Appendix A. These show a similar pattern to the LTSMOM 

strategy.  

These results challenge the findings of Lesmond et al. (2004) who argue that transaction costs render the execution 

of momentum strategies unprofitable. While the results of the analysis provide a positive outlook for the 

implementation of the time series momentum strategies, there is a caveat to the findings. Specifically, this paper 

using the method prescribed by Corwin and Schultz (2012) to estimate bid-ask spreads using daily high and low 

prices. If the modelled bid-ask spreads have underestimated the true costs of trading, then strategy performance 

will have been overestimated. If the true transaction costs resemble the pessimistic case, then the strategies would 

not be robust to these costs. Nonetheless, under the assumption that these costs are estimated correctly and that a 

broker fee of 0.1% is obtainable, the paper finds both strategies to be robust to trading costs.    

6.2.1 Answer to Question 2 

Based on data retrieved from online brokers, the paper assumes a broker fee of 0.1% to be obtainable in the real 

world. Therefore, the paper finds that both the LTSMOM and UTSMOM strategies are robust to the transaction 

costs an individual investor is subject to. However, the paper has also found evidence that higher transaction costs 

can significantly reduce strategy performance, emphasizing the importance of monitoring transaction costs closely 

and seeking the lowest possible broker fee available.  

6.3 THE IMPACT OF FINANCING COSTS ON THE LTSMOM STRATEGY 

When using leverage an individual investor will be subject to financing costs. For this reason, the paper conducts 

a financing cost sensitivity analysis of the LTSMOM strategy to determine whether it is robust to these costs. The 

LTSMOM strategy displays promising results, both excluding costs and including transaction costs. The positive 

performance of the LTSMOM strategy is, however, greatly depleted in the presence of financing costs. As shown 

in Section 5.4, accounting for financing costs, the LTSMOM strategy is outperformed by all other strategies except 

the LRP portfolio which is also subject to financing costs. These results provide some insights relevant to the 

leverage aversion theory presented by Asness et al. (2012). The authors highlight the investment benefits that can 

be obtained by exploiting the empirically flat SML by concentrating weight in safer assets and applying leverage 

to the portfolio. They explain that leverage aversion may be caused by an inability or unwillingness to make use 

of leverage. In this case, it seems that an inability to gain access to cheap leverage should cause an investor to be 

unwilling to apply leverage to the portfolio. Certainly, at the interest rates that have been observed from online 

brokers it seems reasonable to argue that the cost of leverage is simply too high to expect any gains from its 

application to the LTSMOM strategies. In fact, the results from the sensitivity analysis show that even in the 
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optimistic scenario, where the annualized interest rate premium over the risk-free rate is set to 1%, the prospects 

are not encouraging.  

While the evidence suggests that it is not optimal for an individual investor to implement the LTSMOM strategy 

in real life, there are several elements that have led to this conclusion that must be discussed. First, it has been 

assumed that an individual investor would reasonably be able to borrow at the risk-free rate plus an annualized 

premium of 2.5%. Second, the way in which the LTSMOM strategy has been constructed may cause it to perform 

worse than could be the case. The paper will now discuss these points. 

The assumed interest rate that an individual investor is subject to when borrowing is determined based on readily 

available information on a range of online trading platforms. However, it is within reason to argue that if an 

investor establishes a long-term relationship with a broker, he may be able to negotiate more favourable borrowing 

terms. Moreover, it is possible that an individual who invests large sums of wealth may also be able to obtain a 

lower borrowing rate. As mentioned in Section 3.1.2, Interactive Brokers offer cheaper rates to customers who 

qualify for a PRO membership, which indicates that such scenarios are feasible. With that said, the sensitivity 

analysis shows that even at an annualized financing cost premium of 1%, the LTSMOM fails to produce a 

statistically significant alpha. It does, however, obtain an annualized excess return of 6%, an SR of 0.5 and an 

MDD of only 24.3%. This implies that financing costs must be lower than 1% for the LTSMOM strategy to realize 

a statistically significant alpha. Of course, this may be different for an alternative set of assets and will likely vary 

with time. Therefore, there is no prescriptive interest rate that will ensure the positive performance of the 

LTSMOM strategy. 

Finally, the way in which the LTSMOM strategy is constructed, accounting for financing costs may lead to 

unnecessarily poor performance. The root of this problem lies in the way the excess returns have been calculated 

and used to determine the 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ component of the LTSMOM strategy. Specifically, excess returns used to 

determine whether 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ is equal to 0 or 1 are calculated by subtracting the risk-free rate from the return 

of the instrument s. However, since the financing cost is the risk-free rate plus a premium and is applied to the 

LTSMOM formula after the calculation of 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ assets are included in the portfolio that may never have a 

positive excess return due to the higher financing cost. This information could be integrated in the calculation of 

𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ and could possibly have a positive effect on the performance of the LTSMOM strategy.  

6.3.1 Answer to Question 3 

Based on the results obtained in the analysis and the above discussion, the paper concludes that the LTSMOM 

strategy is not robust to the financing costs an individual investor is subject to. The LTSMOM is outperformed by 
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every other strategy besides the LRP strategy. However, an alteration in the construction of the LTSMOM strategy, 

integrating financing costs into the calculation of the signal, may provide better results. Furthermore, if an investor 

can gain access to a much lower financing cost than has been used in this paper, it is possible that strategy can 

produce attractive results.  

6.4 USING ETFS IN TIME SERIES MOMENTUM STRATEGIES 

The assets analysed in this paper are ETFs which require investors to pay fees known as expense ratios. With the 

purpose of conducting an analysis that resembles real-life strategy implementation as much as possible, the paper 

investigates whether the strategies are robust to expense ratio costs. 

 For the LTSMOM strategy the ERs are first included in the calculation of returns after accounting for 

transaction and financing costs. While the performance of the LTSMOM strategy is severely undermined by the 

presence of financing costs, it is still possible to observe the impact of the ERs. The excess return of the 

LTSMOM strategy is reduced by 60 bps and volatility remains constant. This results in a decline of the SR from 

0.27 to 0.22. The MDD also increases slightly. While the performance of the strategy is reduced, the effects are 

greater for the LRP strategy. The excess return of the LRP strategy is reduced by 90 bps and its SR falls from 

0.07 to 0.02. As with financing costs, these results are logical. With the LRP constantly invested in all assets 

throughout the sample period it is subject to higher ER costs than the LTSMOM strategy. The impact of the ERs 

is far more subdued for the UTSMOM strategy which loses only 20 bps in excess return. The LRP also drops 20 

bps. Furthermore, the UTSMOM realizes a statistically significant alpha of 1.6%. This finding challenges the 

assumptions of the Efficient Market Hypothesis, which states that prices reflect all currently available 

information. Given its risk, this strategy realizes a higher excess return than can be explained by the CAPM. The 

paper, therefore considers the UTSMOM strategy to be robust to ERs. 

While the performance measures of the strategies are reduced by ERs, the effects are small. Of course, futures 

contracts do not bear these costs at all, however, the necessary rolling of the contracts increases the complexity 

of the strategy. Although stocks are not subject to expense ratios and are not complicated, they possess other 

characteristics that are undesirable. Specifically, stocks are subject to idiosyncratic risk, which renders them 

prone to sharp adjustments in price. As highlighted by Moskowitz et al. (2012) the TSMOM strategy 

underperforms during sharp trend reversal. ETFs on the other hand, are highly diversified which according to 

Markowitz (1959) reduces their overall risk. Therefore, it could be argued that the relatively small impact on 

performance is a small price to pay for the diversification benefits provided by the ETFs.         
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6.4.1 Answer to Question 4 

The paper concludes that the UTSMOM strategy is robust to expense ratio costs. The paper is unable to provide 

a clear conclusion with respect to the LTSMOM strategy, due to its poor performance prior to the inclusion of 

expense ratios. Considering, the diversification benefits that ETFs possess and the positive performance of the 

UTSMOM strategy, it seems within reason to argue that this asset class is appropriate for use in time series 

momentum strategies. 

6.5 THE BENEFITS OF TIME SERIES MOMENTUM 

Moskowitz et al. (2012) find that their TSMOM strategy produces superior returns compared to a long only 

strategy where 𝑠𝑖𝑔𝑛൫𝑟௧ିଵଶ,௧
௦ ൯ is set to one. These results are obtained by performing a regression where the only 

reported performance measure is alpha. Kim et al. (2016), on the other hand, argue that the results obtained by 

Moskowitz et al. (2012) are caused by using volatility scaling and leverage. Therefore, this paper analyses a broad 

set of performance measures to investigate whether the use of time-series momentum truly improves strategy 

performance.  

Throughout the analysis the paper compares the performance measures of the long-only TSMOM strategies with 

their all-long counterparts where 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧
௦ ൯ is permanently set to one. The results enable the paper to gain a 

deeper understanding of the dynamics of each strategy which will now be discussed. As in Section 6.2, the 

LTSMOM and UTSMOM strategies refer to the 3-month lookback horizon versions of each strategy. 

In most instances, the LTSMOM strategy produces superior performance measures compared to the LRP strategy. 

Gross of costs, the LTSMOM produces better performance measures in every category besides excess return. The 

same is true when accounting for transaction costs in the optimistic and neutral cases where broker fees are 0.05% 

and 1%, respectively. Cumulative returns graphs show that the LTSMOM strategy is well shielded from the losses 

of the GFC in all scenarios, whereas the LRP strategy realizes significant losses during the crisis. Only under the 

transaction cost sensitivity analysis, in the pessimistic case where the broker fee is 0.5% does the LRP produce a 

higher SR than the LTSMOM strategy. However, in this case, the LRP strategy still produces a far higher MDD 

and volatility than the LTSMOM strategy. Accounting for financing costs, the LTSMOM strategy fails to perform 

well. However, view comparatively, the LTSMOM strategy is more robust to financing costs than the LRP 

strategy. This is not surprising, since, as defined in Section 2.4, the LTSMOM strategy uses the wealth that would 

have been allocated to inactive assets to reduce the overall use of external financing. The LRP strategy, being 

passively long, is therefore far more reliant on external financing, increasing the related costs. Therefore, the paper 

argues that the use of signals in this case does facilitate better performance.  
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The results from the analysis of the unlevered strategies show that the UTSMOM strategy outperforms the URP 

strategy in every measurement category, both gross and net of costs. Accounting for all costs, the UTSMOM 

produces an SR that is more than double as large as the URP strategy. In this case the UTSMOM strategy produces 

a statistically significant alpha, which the URP does not. Moreover, the UTSMOM strategy records an MDD of 

4.5% while the URP strategy has an MDD of 23.7%. Since the only difference between the two strategies is the 

use of time series signals, it is clear that these are the driving force behind the better performance of the UTSMOM 

strategy.    

6.5.1 Answer to Question 5  

Given the costs associated with the real-life implementation of the LTSMOM and UTSMOM strategies, the 

paper concludes that both strategies perform over and above their all-long, otherwise identical, counterpart 

strategies. This finding supports the results obtained by Moskowitz et al. (2012) and challenges those of Kim et 

al. (2016).  

6.6 THE SUPERIOR PERFORMANCE OF THE UTSMOM STRATEGY 

The paper compares the created strategies with a 60/40 and equally weighted (EW) strategy to determine whether 

the they are worth implementing. The analysis in Section 5.4 finds that accounting for all costs, the UTSMOM 

strategy is the only one to realize a statistically significant alpha. Moreover, it has the highest SR and produces 

excellent risk measures, both in terms of volatility and MDD. Only in terms of excess returns is the strategy 

outperformed. Despite producing a lower excess return, the paper judges that the UTSMOM strategy outperforms 

every other strategy based on its overall performance. Nonetheless, the low excess return produced by the strategy 

warrants further discussion. This paper finds evidence that the financing costs incurred by an individual investor 

associated with the leverage used in the LTSMOM strategy strongly depletes its performance, rendering it 

suboptimal to execute. Therefore, the method advocated by Asness et al. (2012) of applying leverage to safer assets 

to increase returns is arguably difficult to implement for an individual investor. Hence, to realize higher returns 

another approach much be used.  

Hurst et al. (2017) argue that time series momentum strategies can provide hedging benefits when combined with 

a 60/40 strategy. As depicted in Figure 5.11 the UTSMOM strategy provides very stable returns throughout the 

entire sample period, both during the GFC and in sharp trend reversals. However, contrary to the long-short 

TSMOM strategy, the UTSMOM strategy does not produce strong returns during crises since it does not profit 

from market downturns. Therefore, the UTSMOM strategy is not a suitable hedging instrument as such. While the 

strategy may not hedge risk, it certainly can reduce it. Combining a UTSMOM portfolio with a riskier portfolio 
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exhibiting higher expected returns is a way to increase returns while still benefiting from the strengths of the 

strategy.  

Another way to utilize the benefits of the UTSMOM strategy without using leverage is to combine the time-series 

momentum principals with an asset allocation method other than risk parity. Since evidence has been found that 

the UTSMOM produces performance measures above and beyond those achieved by the URP strategy, it seems 

reasonable to assume that the same is possible for the EW portfolio, the 60/40 portfolio, or another portfolio 

entirely. As shown in Panel B of Table 5.8, both the 60/40 and EW strategies realize higher excess returns than 

the URP strategy. Of course, these higher returns are associated with greater risk compared to the URP strategy as 

measured by volatility and MDD. Nonetheless, for an investor willing to make this trade-off, this provides a way 

in which returns can be increased while taking advantage of the benefits produced by using time-series momentum 

signals.   

Finally, a simple alteration can be made to the UTSMOM formula, that could result in higher excess returns. As 

was discussed in Section 2.4, portfolio weights are calculated ignoring the 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯ component resulting in 

the weight 𝜎௧,௦
ିଵ ∑ 𝜎௧,௦

ିଵ
௜ൗ  for each asset s, regardless of the signal. This means that wealth not allocated to an asset 

due to 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯ being equal to zero, will instead be allocated to the risk-free rate. As mentioned, the inclusion 

of the signal results in the weight 𝜎௧,௦
ିଵ ∑ 𝑠𝑖𝑔𝑛൫𝑟௧ି௛,௧

௦ ൯𝜎௧,௦
ିଵ

௜ൗ  for each asset s, which could cause overly high 

concentrations in few assets. The more assets with zero signals, the more concentrated the portfolio would become. 

Of course, alternative methods exist whereby less weight could be allocated to the risk-free rate enabling greater 

excess returns without allocating too much weight to one asset. For instance, a maximum weight allocated to each 

asset could be imposed such that a modified version of Equation 2.14 could be used. This would result in the 

formula: 

𝑟௧,௧ାଵ
்ௌெைெ = ෍ ቆ𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧

௦ ൯ min ቆ
𝜎௧,௦

ିଵ

∑ 𝑠𝑖𝑔𝑛൫𝑟௧ି௞,௧
௦ ൯𝜎௧,௦

ିଵ
௜

, 𝑀𝑊ቇ 𝑟௧,௧ାଵ
௦ ቇ

ௌ೟

௦ୀଵ

− 𝑇𝐶௧ାଵ  , (6.1) 

Where MW denotes maximum asset weight, which could be set at a desired level, 10% for instance. The function 

min ൬
ఙ೟,ೞ

షభ

∑ ௦௜௚௡൫௥೟ష೓,೟
ೞ ൯ఙ೟,ೞ

షభ
೔

, 𝑀𝑊൰, would in this case restrict the allocation of weight to a maximum level of 10%. This 

alteration of the UTSMOM formula could arguably facilitate higher excess returns, since less wealth would be 

allocated to the risk-free asset. Intuitively, this would with great likelihood cause the portfolio to be riskier, with 

volatility and MDD increasing. The UTSMOM formula can be manipulated in many ways that presents a great 

deal of flexibility regarding how an investor can implement the strategy.  
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6.6.1 Answer to Question 6 

Accounting for all costs, the paper finds that the UTSMOM strategy produces the best all-round performance of 

all the considered strategies, by a large margin. The LTSMOM strategy, on the other hand, does not outperform 

other standard asset allocation strategies, largely due to the financing costs associated with strategy execution. 

Therefore, the paper concludes that an individual investor can realize superior portfolio performance compared to 

traditional asset allocation strategies by implementing the UTSMOM strategy. 

While the UTSMOM strategy does possess desirable investment characteristics, its low excess return renders the 

strategy more suitable to risk-averse investors. With leverage deemed too expensive other methods must be used 

to increase returns. Changing the way in which the strategy is constructed may provide higher excess returns, at 

the expense of increasing risk. Combining the UTSMOM strategy with a riskier portfolio displaying higher 

expected returns would likely have a similar effect. Finally, applying time-series momentum signals to an asset 

allocation method other than risk parity may also result in higher excess returns, again at the expense of increasing 

risk.     
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APPENDICES 

Appendix A 

Table A1 

Performance measures of the UTSMOM strategies with different lookback horizons and the URP strategy with bid-ask 
transaction costs and varying broker fees. Panel A shows the performance measures with a 0.05% broker fee. Panel B shows the 

measures with a 0.1% broker fee. Panel C uses a broker fee of 0.5%. 

Panel A: 0.05% Broker Fee 

  1m 2m 3m 6m 9m 12m URP 

Average excess return 1.0% 1.8% 2.4% 2.2% 2.0% 1.9% 2.2% 

Volatility 3.2% 3.3% 3.0% 3.0% 2.9% 3.1% 5.6% 

Sharpe Ratio 0.32 0.56 0.79 0.72 0.68 0.61 0.39 

Annualized Alpha 0.4% 1.2% 1.9% 1.6% 1.5% 1.3% 0.7% 

t-Statistic 0.60 1.71 2.85 2.48 2.23 2.11 1.62 

Max Drawdown 6.7% 7.1% 4.3% 4.8% 4.8% 5.1% 23.4% 

        
Panel B: 0.1% Broker Fee 

  1m 2m 3m 6m 9m 12m URP 

Average excess return 0.7% 1.6% 2.3% 2.0% 1.9% 1.8% 2.1% 

Volatility 3.2% 3.3% 3.0% 3.0% 2.9% 3.1% 5.6% 

Sharpe Ratio 0.23 0.49 0.75 0.69 0.65 0.59 0.38 

Annualized Alpha 0.1% 1.0% 1.7% 1.5% 1.4% 1.3% 0.7% 

t-Statistic 0.16 1.41 2.67 2.31 2.10 2.00 1.53 

Max Drawdown 7.0% 7.3% 4.4% 5.0% 4.8% 5.2% 23.4% 

        
Panel C: 0.5% Broker Fee 

  1m 2m 3m 6m 9m 12m URP 

Average excess return -1.8% 0.0% 1.3% 1.2% 1.2% 1.2% 1.8% 

Volatility 3.3% 3.4% 3.1% 3.0% 2.9% 3.1% 5.6% 

Sharpe Ratio -0.53 -0.01 0.43 0.39 0.42 0.40 0.33 

Annualized Alpha -2.4% -0.6% 0.8% 0.7% 0.7% 0.7% 0.4% 

t-Statistic -3.06 -0.84 1.21 0.99 1.07 1.08 0.88 

Max Drawdown 24.8% 9.2% 5.2% 6.0% 5.5% 5.9% 23.8% 
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Panel A 

 

Panel B 

 

Panel C 

 

Figure A1 Cumulative excess returns of the UTSMOM and URP strategies. Panel A shows the performance with bid-ask 
transaction costs and a 0.05% broker fee. Panel B shows the performance with bid-ask transaction costs and a 0.1% broker fee. 
Panel C shows the performance with bid-ask transaction costs and a 0.5% broker fee. 
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Appendix B 

Table B1 

Performance of Long-Short TSMOM and RP Strategies without Costs 
 

  1m 2m 3m 6m 9m 12m RP 

Average excess return -1.1% 5.7% 8.4% 7.0% 7.8% 6.3% 9.6% 

Volatility 13.4% 14.1% 14.2% 14.7% 14.7% 15.2% 17.8% 

Sharpe Ratio -0.08 0.40 0.59 0.48 0.53 0.41 0.54 

Annualized Alpha -0.7% 6.1% 8.9% 7.3% 8.0% 6.5% 5.2% 

t-Statistic -0.19 1.63 2.35 1.83 2.02 1.60 2.11 

Max Drawdown 58.0% 19.7% 22.4% 30.5% 20.5% 29.7% 43.0% 
 

 

Figure B1. Cumulative returns of Long-Short TSMOM and RP Strategies without Costs from January 2005 to October 2019 
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