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EXECUTIVE SUMMARY 

The key purpose of this thesis is to value, purely from an economic perspective, the choice 

of backup power generation source presented to operators of telecommunication towers. 

Conventional backup power from diesel generators (DG) are compared to and challenged 

by one specific alternative, the proton exchange membrane (PEM) fuel cell technology. 

The thesis is conducted within a specific setting, the Indian telecommunication market, 

which is found to be an appropriate case due to three main reasons; (i) Intelligent Energy, a 

British-listed fuel cell manufacturer, recently announced a billion-dollar deal with the Indi-

an telco tower operator GLT Limited to supply electricity to more than 27,000 telco sites in 

the coming years. Secondly (ii), telco towers in India are subject to lengthy periods of out-

ages due to an unreliable grid-network, thus implying an extensive demand for backup 

power solutions, and thirdly (iii), the market is one of the biggest of its kind yet projected 

to grow in the coming years. Having established the Indian case, the PEM fuel cell system 

is compared to a conventional diesel generator through the levelized cost of energy 

(LCOE) model in order to determine its present cost competitiveness. The model reveals 

that PEM fuel cell are still far more expensive from a total cost of ownership perspective. 

To investigate whether the fuel cell may become a viable choice in the future, learning ef-

fects attached to repetitive production are estimated in order to evaluate potential cost re-

ductions in the manufacturing process. Based on the historical figures on cost development 

and installed cumulative capacity, the learning rate for PEM fuel cells is estimated to be 

23.15% for each doubling in cumulative production. Lastly, findings from both the LCOE 

model regarding the cost structure of the systems and the learning rate approximations are 

applied in a real option valuation to estimate the true cost of backup power with higher de-

grees of precision. Specifically, the ROV shows that the flexibility of choice between either 

backup power systems carries a value of 462 USD per telco site thus lowering the actual 

costs of backup power compared to conclusions derived through the conventional LCOE 

model. 
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1. INTRODUCTION 

For many decades, fuel cells and the hydrogen economy have been considered potential solutions to 

help solve some of the world’s energy problems. However, fuel cells have yet to reach a mass-market 

stage at which they are fully commercialized, and potential buyers might have become disillusioned 

with them, Richard Asplund (2008) argues. While the viability for certain applications can be ques-

tioned, fuel cells are competing on an everyday basis in the power backup market though. In particular, 

Intelligent Energy (2015), a global fuel cell company, recently disclosed that it will “supply energy-

management services across more than 27,400 telecom towers in India.” Now, while such deal does 

seem to provide backup power to a large number of telecommunication towers, there are approximate-

ly 400,000 towers yet relying on diesel generators as backup source. From the Indian tower operator’s 

perspective, it should therefore be of interest to evaluate whether or not it makes sense economically 

and financially to replace diesel generators with fuel cells. The technology is initially expensive to pur-

chase and inexpensive to operate, but if the historical production costs exhibit a decreasing trend and 

the technology is simultaneously becoming increasingly efficient, there is expected to be value in wait-

ing to choose fuel cells as an option for backup power. This is particularly relevant given uncertainty 

about tomorrow’s fuel prices for the conventionally deployed diesel generators. 

 In this way, the aim of the thesis becomes two-fold. Firstly, estimating technology learning for 

fuel cells through an assessment of past and potential cost reductions is the objective. William Grove 

discovered the principle of fuel cells in 1839 already, but major developments did not take off until the 

1960s when NASA employed the technology for space crafts, and fuel cells have recently been em-

ployed in widely different applications. Likewise, research on cost developments is substantially grow-

ing (see e.g. Schoots et al., 2010). This thesis will specifically contribute to such studies by estimating 

learning effects for the proton exchange membrane fuel cell (PEMFC), which is one of the most widely 

used fuel cell across stationary, mobile, and portable applications. Secondly, the estimated learning ef-

fects are used as input to a real options setting in which the value of waiting can be estimated given un-

certainty in diesel prices for the conventional backup solution. Consequently, the study contributes to 

understanding how learning effects (or lack of) and diesel fuel volatility can help to explain the value of 

deploying fuel cells as backup systems while simultaneously yielding an indication as to why or why not 

fuel cells are commercially applied in an Indian telecommunications setting. 
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1.1. Problem Statement and Research Question 

This thesis will attempt to bridge the increasing demand for stable, reliable energy sources with the 

commercialization and development of such technologies. Along with economic progress, emerging 

countries face the perpetually challenging task of establishing the required infrastructure to facilitate 

such economic growth. For some emerging economies this task is further complicated by geo- and de-

mographic circumstances including extreme weather conditions and vast distances between urbanized 

areas, which are among the factors contributing to lengthy grid outages. In periods of grid unreliability, 

conventional backup power generation systems provide costly electricity based on expensive diesel 

consumption. Consequently, demand for alternative energy solutions is on the rise, and while such so-

lutions have been around for centuries, it is the technological development and potential commerciali-

zation that make the research particularly worthy. This thesis will focus specifically on the PEMFC 

technology as it carries certain features that make it suitable for backup solutions. Arguably, the Indian 

telecommunications (hereinafter, also referred to as “telco”) market experiences one of the largest ac-

cumulated grid outages in the world, for which reason it is particularly interesting to investigate here 

whether conventional backup solutions can be economically and financially challenged by fuel cells as 

an alternative solution to the 2.5 kW backup choice. 

The empirical context in which the thesis is conducted relies on theoretical frameworks from the 

sphere of economics and finance, where models from both fields are applied to the fuel cell technology 

in order to investigate the main research question:  

How can established energy comparison models, and the learning effects from 

PEMFC production, be applied in a real options setting to analyze the choice of re-

placing conventional backup power systems in India? 

The main research question focuses on the economic choice of replacing current diesel genera-

tors with PEM fuel cells as grid backup power systems in order to supply electricity whenever outages 

occur in the Indian telecommunications market. Naturally, the choice of replacement is a function of 

the economic costs and benefits relating to the fuel cell system as a backup source compared to the 

conventional diesel generators. Importantly, one has to acknowledge the different identities carried by 

new, still-developing technologies and stable, well-known diesel generators. One of the main features 

of a yet fully commercialized technology is the learning effects of further production. Consequently, 

while a present cost comparison of fuel cells and diesel generators should be the foundation of an eco-

nomic choice through traditional discounting techniques, learning effects and the potential value of de-
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laying the replacement choice could be included in the analysis to establish a thorough understanding 

of the case for fuel cells. 

To structure the thesis and to complement the main research question, four separate sub ques-

tions have been developed. These sub questions serve the dual purpose of breaking up the main re-

search question into smaller parts that naturally follow each other, and to carry the reader through these 

different sections to maintain the focus on the main research question. 

1.2. Sub Questions 

(1) What are the features of fuel cells as an energy source, and which characteristics make the Indian telecommunica-

tions and tower markets particularly relevant as a case? 

The first sub question is designed to establish the case of fuel cells as backup power systems to 

the grid in the delivery of electricity to telecommunication towers. Specific characteristics of the tech-

nology and the present state of the technological diffusion will be presented. Additionally, the reasons 

for focusing on the Indian telecommunications market and its dynamics will be outlined as well as its 

recent development. 

(2) What is the cost structure of PEM fuel cell production and how does it compare to a conventional backup system? 

The second sub question calls for a detailed analysis of cost components in a PEMFC system de-

ployed as a 2.5 kW backup system in India. The cost structure analysis encompasses both capital ex-

penditures (CAPEX) and operational expenditures (OPEX) related to the lifetime of a fuel cell system, 

as opposed to the conventional diesel generator. Lastly, a levelized cost comparison of the PEM fuel 

cells and current diesel generators is carried out to evaluate and identify cost drivers of the present sce-

nario. Through a levelized cost model, one is able establish how large the cost gap is between the two 

technologies while simultaneously understand how traditional discounting techniques calculate and 

evaluate net present values (NPV) of installing the systems. 

(3) How can learning effects from PEM fuel cell manufacturing be quantified? 

The third sub question aims to estimate learning effects in the manufacturing of PEM fuel cells. 

Inspiration is drawn from historical development of other technologies and their current commerciali-

zation stages to better understand how their learning effects are quantified, while simultaneously ana-
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lyzing historic data on both PEM and other types of fuel cell production. An assessment of past manu-

facturing costs is one input into the estimation, while cumulative installed capacity is another. Data col-

lected for an almost twenty-year long period is used to calculate progress rates, implied learning rates, 

and the uncertainty of such, in order to project potential of cost development in the future. Answering 

this sub question enables the thesis to help assess potential commercialization of the technology not 

only today but also in the coming years, and ultimately help define one of the parameters of the real 

options model. 

(4) How can technology improvements in PEMFC production and volatility in fuel prices for the diesel generator be 

applied in a real option setting to analyze the choice of replacing conventional power backup systems with fuel cells? 

Lastly, the forth sub question will draw on findings from the cost structure analysis as well as the 

quantified learning effects, in order to fully evaluate the replacement choice. In addition, fuel price 

volatility is estimated through econometric analysis to capture the uncertainty in having diesel genera-

tors running as backup sources in the future. On the other hand, the inherent uncertainty in PEMFC 

learning effects is also applied to a real options model, yet they are used only as scenario generations for 

changes in the technology’s production costs. In this way, the real options framework incorporates the 

value that fuel cell buyers may attain from both cost changes and fuel price volatility by delaying the 

decision of replacing current diesel generators with fuel cell system. 

1.3. Methodology 

This thesis is divided into seven chapters as illustrated by the figure below.  

 

The introductory chapter aims to motivate the thesis as well as presenting the research questions and 

structure. To establish the necessary foundation for subsequent analysis, chapter 2 will provide a 

presentation of the current fuel cell market and discuss different technologies and its applications. The 
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reader’s takeaway will include an understanding of the fuel cell technology, its advantages and disad-

vantages and the motive behind focusing on PEM fuel cells specifically. Complementarily, the Indian 

telecommunications market and the related challenges with regards to constant energy supply will be 

presented. Together, this background chapter will set the scene and carefully supply the reader with the 

necessary knowledge to comprehend the following analytical chapters as well as answering the first sub 

question. 

The next three chapters embody the main analytical parts. For each chapter, relevant empirics 

and theories will be discussed. In turn, this means that the reader will be introduced to the relevant the-

ory preceding to its application in each chapter, rather than in a collective theoretical section prior to 

the analytical chapters. This approach has been taken to ensure a constant red thread throughout the 

thesis. 

Chapter 3 will answer the second sub question by first analyzing the cost structure of a PEM 

fuel cell and thereafter conducting a levelized cost of energy comparison with a conventional diesel 

generator. Financial theories related to the LCOE-model, including the discounted cash flow (DCF) 

model and weighted average cost of capital (WACC), will be discussed. The third sub question is ad-

dressed in chapter 4. Here, the learning effects of PEM fuel cell production will be quantified based on 

the historical cost development and the cumulative capacity installed during the specified period. In 

order to perform this quantification, the theoretical framework for learning effects is introduced and 

reviewed for comparable technologies before using simple regression tools to estimate learning and 

progress rates and then calculate their associated uncertainty. In the next section, chapter 5 will bridge 

takeaways from the analysis of PEMFC cost components, the LCOE comparison to DGs, and the es-

timated learning effects. Together, these findings will be synthesized into the formulation of a real op-

tion. Prior to the formulation and calculation of the real option, the theoretical background on the 

backbone of real options, namely financial options theory will be discussed. Next, a brief literature re-

view is presented on real options analysis of renewable and alternative energy technologies, and its ap-

plicability for policy evaluation, power generation, R&D and commercialization investments. Subse-

quently, the real options framework for the replacement decision can be established through the mod-

el’s parameter definitions. Importantly, econometric methods are applied to estimate price volatility for 

diesel fuel in order to quantify the uncertainty of relying on diesel generators as the backup solution in 

the future. Having specified that and the other parameters too, the real options model is set up and re-

sults in a theoretical value of keeping the option alive to replace. To understand the impact of the more 

important inputs into the model, sensitivity analyses are performed and evaluated. 
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Altogether, the chapters each add arguments to answer why conventional discounting methods 

might not be the only solution to valuing investment choices in energy. However, having estimated a 

real options value—whether suggesting sound replacement opportunities or not—an implications 

chapter is added to introduce perspectives on the potential of PEMFC technology in the Indian telco 

market. Indeed, as the real options model is contingent on future development (and uncertainty), it is 

by no means certain that cumulative capacity will double the estimated way and production costs will 

fall simultaneously. In other words, a “chicken and egg” problem arises. Before concluding on the the-

sis and its research questions, a brief discussion on those perspectives is thus useful to understand stra-

tegic implications of the estimations. 

Finally, it should be mentioned that all necessary data used in the different chapters and associ-

ated analyses are introduced separately rather than obsequiously listing e.g. market reports, data 

sources, or cost analyses here. Overall, the thesis relies on publicly available information except for cer-

tain reports on cost and capacity developments used in the learning effects estimations. Although these 

are listed correctly in the references index, the authors are grateful for Dr. Koen Schoots, scientific re-

searcher for the Policy Studies of the Energy Research Center of the Netherlands (ECN), who has 

supplied relevant reports. It is specified explicitly which sources are supplied by Dr. Schoots in chapter 

4. On another note, Danish Power Systems ApS (hereinafter, also referred to as “DPS”) has supplied 

publicly available reports to be used in the LCOE analysis. The input of the company is thus not spe-

cifically for data, rather DPS has helped to scale and interpret validity and application of inputs in the 

analyses. Here, it also stated explicitly in which applications it has been necessary to use inputs and as-

sumptions evaluated by the authors and the company for whom the thesis is written. As this thesis aims 

not to provide a market analysis confidential to and contingent on DPS’ organization, it shall not be 

treated as confidential. Rather, the paper aims to provide better understanding about and to which ex-

tent economic analyses of fuel cell production and financial real options modeling can help to evaluate 

investment decisions in fuel cell technology through a case in Indian markets for towers and telecom-

munications. 

1.4. Scope and Delimitations 

In order to address the subject of the thesis adequately, it is necessary to limit its scope and understand 

that the estimation of learning effects is undertaken for only one specific type of fuel cell, the PEM.  
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1.4.1. Scope 

The choice between replacing diesel generators with fuel cells or not is one facing primarily the owner 

or operator of a telco tower. In this way, the thesis results are directly aimed at any such decision mak-

er. On the other hand, however, the research is conducted for DPS, which is a R&D-intensive manufac-

turing company producing an input into a PEM fuel cell. DPS acknowledges that fuel cells (and other 

new energy technologies) are initially expensive and is constantly working on developing more cost ef-

fective fuel cells with increasingly superior performance. This is in line with the learning curve analogy, 

which means that the scope of the project does not merely belong to the Indian telco operator, but is 

applicable to players manufacturing, commercializing, and potentially purchasing PEM fuel cells in the 

industry. 

1.4.2. Delimitations 

Having disclosed the scope of the project, it should be mentioned (again) that the calculation of learn-

ing effects and the real options are applicable only to PEMFCs. Therefore, important delimitations are 

necessary and particularly needed with regards to environmental externalities, political arguments, tech-

nological specifications, and factors regarding the telco market. 

1.4.2.1. Externalities 

Generally, renewable energy technologies produce less pollution than their fossil fuel counterparts, and 

this is an often praised feature of fuel cells too. Although electricity generated by fuel cells are not 

strictly renewable, hydrogen is very abundant in availability and associated (lack of) emissions are simi-

lar to that of renewables. Therefore, this thesis will often associate fuel cell technology with renewables 

and use the term interchangeably. Fossil fuel negatives, such as pollution and carbon dioxide emissions, 

have been and are major catalysts for the clean energy industry, yet this thesis will not attempt to quan-

tify any such effect into the estimation of learning effects nor include it in the real options calculation. 

The thesis will touch upon fuel cells’ technological advantages and disadvantages, however, environ-

mental issues are not dealt with any further. 

1.4.2.2. Politics 

Choosing between fuel cells and diesel generators will necessarily include arguments of non-economic 

character. Politics has both succeeded and failed to limit emissions quotas, facilitated special investment 
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infrastructures for renewable energy technologies, and generally been an important catalyst for the 

clean energy industry. The investment environment in which the real option is valued carries many fea-

tures, which can be politically discussed, yet these arguments are too large to be covered here and de-

serves the attention of students in other fields. 

1.4.2.3. The Technology 

This thesis will focus solely on the PEMFC as its subject. There are different types of fuel cells, which 

will be introduced, yet only learning effects for the PEMFC are estimated. In addition, learning effects 

and real options applications from other renewable energy technologies are included as reference to 

add perspective to this project’s findings. 

1.4.2.4. Telecommunication Factors 

Standards in telco markets are constantly changing, and the world is becoming increasingly intercon-

nected. This has had major implications historically for the Indian market too for which reason it is dif-

ficult to say how it might change in the future. Therefore, the real options calculation will assume an 

environment in which telco towers’ power specifications and grid unreliability are constant and disre-

gard any potentially technological disruptions. In the section on the Indian tower and telco markets, a 

market report by Deloitte (2015) does predict some of the future trends, yet this thesis will be isolated 

around the decision to deploy and potentially replace backup power systems at the towers.  

1.4.2.5. Revenue vs. Cost 

This thesis is strictly focused on cost-comparison of technologies rather than relying on revenue gener-

ation. As it becomes apparent in the analyses, the models do not necessarily change. One should in-

stead interpret the results carefully and understand that the decision maker is utility maximizing 

through cost minimization. In addition, the analyses are carried out ignoring any subsidy grants dis-

torting the real of cost of energy generation.  
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2. TECHNOLOGY DESCRIPTION AND THE MARKET FOR FUEL CELLS 

Initiating this chapter, the fuel cell system is described to help the reader understand how electricity is 

actually produced within the system. Subsequently, technological variations for a range of fuel cell sys-

tems as well as various applications are introduced followed by an outline of the current state of the 

industry. While it should be noted that the technological engineering of fuel cells is outside the scope of 

this paper, the description serves as a primer on power generation by fuel cells, while the next part of 

the chapter introduces its application in the market of Indian telecommunication towers. Subsequently, 

motivated by Intelligent Energy’s recent contract in India, it is assessed to which extent (lack of) relia-

bility in the electricity grid is a challenge to telecommunication tower operators before characterizing 

the size of the industry, its main players, and why it is in their interest to evaluate the choice of backup 

power systems today and in the future. 

2.1. The Fuel Cell Technology 

Practically, a fuel cell converts chemical energy into electric energy through a chemical reaction. The 

basic fuel cell system is made up of two flow plates, two electrodes (one anode and one cathode) and 

an electrolyte in between. As pictured below, fuel in the form of pure hydrogen or hydrogen-carrying 

fuel such as methanol is applied on the left-hand side. At the anode, hydrogen atoms react with a cata-

lyst layer containing platinum, which creates positively charged ions and a negatively charged electrons. 

The proton continues through the membrane while the electron passes across a circuit where the elec-

tricity is created. 

On the right-hand side, at the cathode, the ions and electrons react with supplied oxygen and 

turn into water and heat – the only by-products of a basic fuel cell. The electrolyte plays an important 

role in the system by allowing only the proper ions to travel from the anode to the cathode. Outside 

substances would disrupt the chemical reaction and disturb the electricity generation. 

In this way, the fuel cell can provide continuous energy as long as hydrogen and oxygen are 

supplied to the system. Isolated, a single fuel cell system can roughly generate enough electricity to keep 

a light bulb on, but once multiple systems are stacked together, the total power output can reach levels 

with much higher applicability than illuminating a simple light bulb, Fuel Cells 2000 explains (2016). 
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2.1.1. Different Types of Fuel Cells 

The technical workings of a fuel cell system showed above only apply to a certain type of fuel cell sys-

tems, namely the PEM fuel cell system. In reality, the “fuel cell system” is a label for various technolo-

gies that relate to energy generation based on hydrogen and oxygen. The aim of this section is not to go 

in depth with technical definitions of multiple technologies, rather, the purpose is to provide the reader 

with a brief comprehension of key differences between technologies to understand the differences in 

applicability of fuel cell systems. The main differences relate to the electrolyte material, operating tem-

perature, and output efficiency. It should be noted that this section by no means is exhaustive in terms 

of the number of fuel cell technologies being described but limited to technologies, which been found 

relevant to fulfil the purpose of the section. 
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2.1.1.1. Alkaline (AFC) 

The alkaline fuel cell is one of the early fuel cell technologies and was used during Apollo space mis-

sions to supply electricity and drinking water on board. The system requires compressed hydrogen and 

oxygen at high levels of purity. The purity is required to avoid “poisoned” air containing CO2 to inter-

fere the chemical reaction, which is one reason why AFCs have been used in space where carbon diox-

ide is absent. The electrolyte is made up of potassium hydroxide in water and the system thus contains 

liquid meaning that the alkaline system is subject to leaks, potentially limiting reliability and lifetime. 

The efficiency of alkaline fuel cells is around 50-70 percent and while the first AFCs operated at around 

150-200 degrees Celsius, present operating temperatures are around 70 degrees (FuelCellToday 2016). 

2.1.1.2. Molten Carbonate (MCFC) 

MCFCs are built around an electrolyte consisting of a porous ceramic matrix using molten carbonate 

salt. The principle is the same; ions travel through the electrolyte between the two electrodes while the 

electrons flow through the electrical circuit. The MCFCs operate at a temperature around 650 degrees 

Celsius which possess a number of advantages compared to other technologies. The high temperature 

means noble metals in catalysts are not needed to speed up the chemical reaction. It also makes the sys-

tem less vulnerable to “poisoning”, which means that the system can run of a range of non-hydrogen 

pure fuels such as methane or natural gas since the separation of hydrogen is conducted internally at 

high temperatures. On the contrary, high operating temperatures make MCFCs subject to accelerated 

breakdowns and corrosion of components, decreasing system lifetime. MCFCs are mainly used in large 

megawatt scale stationary power plants and in combined heat and power solutions. 

2.1.1.3. Solid Oxide (SOFC) 

Operating at the highest temperatures (around 800-1,000 degrees Celsius) of all fuel cell systems, the 

SOFC reaches overall efficiencies of more than 80% when heat exploitation is included. High tempera-

tures remove the need of noble metal catalysts as well as the need for external reformation of fuel into 

pure hydrogen. One of the main disadvantages of extreme operating temperatures is longer start up 

times and need for very heat-resistant materials in the construction of the system. While SOFCs and 

MCFCs are quite similar, there is one major difference; the SOFC has a solid ceramic electrolyte of zir-

conium oxide stabilized with yttrium oxide as opposed to the liquid electrolyte within a MCFC. In re-

cent years, the SOFC technology has proven its applicability and many of the world’s most renowned 

companies are currently powering buildings, data centers, and factories by these fuel cells. One of the 
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most prominent producers of SOFC is American-based Bloom Energy whose customers operate in 

many industries ranging from technology and banking, to retailing and logistics, and include e.g. Apple, 

JP Morgan, IKEA and FedEx (Bloom Energy 2016). 

2.1.1.4. Proton Exchange Membrane (PEM) 

The PEMFC’s electrolyte is referred to as the proton exchange membrane or polymer electron mem-

brane interchangeably in the literature. The PEM is small and light and functions at low temperatures 

with fast start up times. In practice, the term PEMFC covers both low temperature (LTPEM) systems 

operating at around 80 degrees Celsius and high temperature (HTPEM) systems operating at around 

200 degrees Celsius. The main difference of the two lies in the degree of fuel purity needed for the sys-

tem to function with latter requiring the lowest purity levels.  

2.1.2. Fuel Cell Applications 

As outlined, “fuel cells” are by no means a homogenous designation but instead a term covering a 

range of technological variations originating from the same base of electricity generation based on hy-

drogen and oxygen through chemical reactions. The range of applications in which fuel cells are de-

ployed is equally diverse and manifold. Fuel cell applications are generally divided into three main cate-

gories: portable, stationary, and transportation. 

2.1.2.1. Portable 

Portable fuel cells are small and easy-to-carry systems with output power ranging from 5-500 W. These 

systems are highly suitable for basically any personal electronic device such as laptops, smartphones, 

and cameras. Due to very low operating noise levels, portable fuel cells are particularly applicable to 

military operations powering various portable equipment. Other applications include camping, surveil-

lance, and emergency rescue operations in need of power supply to equipment during longer periods 

than regular batteries can handle (Sharaf & Orhan 2014). The hydrogen is typically compressed in small 

lightweight cartridges which can easily be carried along with the portable fuel cell. 

2.1.2.2. Transportation 

Arguably, fuel cells deployed in transportation vehicles, which includes buses, forklifts, and personal 

cars are the ones gaining the most attention from the media. They represent a direct competitor to elec-
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tric vehicles and regular internal combustion engine vehicles as they carry certain advantages such as 

close-to-zero emissions, fast refueling, low service requirements, and long range. In recent years, car 

manufacturers have spent millions of dollars on R&D trying to develop fuel cell-vehicles running on 

PEMFCs and the results are starting to show up. Back in 2008, Honda released its FCX Clarity and last 

year, Toyota released the “Mirai”, which has been highly awaited. Despite the vast amount of attention, 

these fuel cell cars are yet to become economically viable and estimations show that Toyota is losing as 

much as USD 100,000 on every sold Mirai (Clean Technica 2014). One of the main challenges for fuel 

cell cars is the required hydrogen infrastructure of refueling stations, which is currently very limited. As 

an example, while constituting one of the densest hydrogen infrastructures in the world, Denmark cur-

rently has only 8 hydrogen refueling stations compared to roughly 2000 gas stations (Hydrogen Link 

Denmark 2016, Danish Oil Industry Association 2016). 

2.1.2.3. Stationary 

Stationary fuel cells are utilized in various primary and secondary power mixtures and output ranges 

from anywhere between 1 kW to large scale MW deployments. They are used both as stand-alone pow-

er generation sources (off-grid) and as an integrated backup power solution in e.g. telecommunication 

towers. They can be used in conjunction with heating systems, so-called combined heat and power 

(CHP) systems that utilize the heat produced internally in fuel cells, which are particularly suitable for 

residential buildings, offices, hospitals, etc., and can be scaled from a few kW to large MW depending 

on the end-user power needs. Furthermore, stationary fuel cells are deployed as RAPS (Remote Area 

Power Supply) in desserts, forests, and islands for similar reasons; low or zero grid-dependence, strong 

consistency, and ability to function in harsh environments. Still, challenges with regards to transporting 

fuel to remote locations remain one of the key issues of the RAPS application (Sarah & Orhan 2014). 

Other applications include emergency systems such as the SINE (Safety Network) operated by the 

Danish Centre of Emergency Communication, which is backed up by fuel cells ensuring continuous 

operation in case of power outages in the regular grid network in situations of critical emergencies lo-

cally as well as nationally (Ballard 2014).  

2.1.3. The Fuel Cell Industry in Numbers 

To conclude the section on the fuel cell technology and its applications, a few notes on recent figures 

from the industry will be presented in order to further motivate the choice within this thesis to focus 

on the PEMFC technology in the stationary application space and specifically within the telecommuni-
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cation industry. The figures are reported in the report “The Fuel Cell and Hydrogen Annual Review” 

published by Adamson (2015). As shown in figure 2.2, the global fuel cell industry as a whole has expe-

rienced exponential growth during recent years with respect to shipped units, reaching a compound 

annual growth rate of almost 50% in the period 2009-2014. 

 

Albeit impressive, one should note the low base of less than 15,000 units shipped in 2009 Evidently, 

stationary fuel cells account for the biggest share of this growth and the picture becomes even clearer 

when looking at the shipped MW split of 2014 (figure 2.3), in which stationary fuel cell accounted for 

81%. 

 

Furthermore, reviewing the split of shipped MWs for different the fuel cell technologies (electrolytes) it 

becomes apparent that PEMFCs are the most widespread with the largest share of any single technolo-

gy and, importantly, the technology with the biggest forecasted growth (see figure 2.4). Estimates by 
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Adamson (2015) show that the PEMFCs could be on the verge of taking off and potentially reach 

more than 400 MW total shipments by the end of 2015. 

 

Nonetheless, and particularly interesting for the purpose of this thesis, the telecommunication industry 

accounts for a very small fraction of overall unit shipments in recent years. Figure 2.5 below shows the 

fuel cell shipments broken out by subsectors and shows that residential CHPs are the main driver of 

fuel cell shipments as of today. This represents an interesting paradox considering the vast amount of 

recent attention and deals in the telecommunication space, exemplified by Intelligent Energy’s billion-

dollar deal, which will be touched upon in the next section. 
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2.2. India’s Telco Industry 

Before analyzing the actual cost structures of and potential investments in fuel cell technology, it is im-

portant to understand in which setting it is applied. Below, it will be argued that the Indian telco market 

makes an interesting case for small stationary application of fuel cells. Through empirical observations, 

a primer on the size and potential of Indian telco and tower sites, and projections for the future, it is 

argued that the telco market provides a useful case for the research question in this thesis. Particularly, 

because regular grid power is highly unreliable or in some cases even non-existing in remote areas, 

there are reasons to investigate the case for fuel cells. In periods of grid power outages, diesel genera-

tors (DGs) provide backup power, which represents costly power generation due to high operation 

costs in terms of diesel fuel. In the Indian case, it has been estimated that 70% of all telco towers expe-

rience above 8 hours per day of grid power outages and are thus vastly dependent on backup power by 

DGs (Intelligent Energy 2012). Indian authorities have estimated that 1.035 billion telephone subscrib-

ers are active as of November 2015 (Telecom Regulatory Authority of India 2016), making India’s telco 

market one of the largest in the world (IBEF 2016). In Sahu, Schultz, and Beig’s (2014) article, it is dis-

cussed how India has emerged as one of the fastest growing telco markets in the world, creating a big 

challenge in developing India with regards to the increasing energy demand. As diesel is the primary 

source of backup power, there are significant costs (both financially and as externalities) associated with 

outages in the electricity grid. 

To understand why the Indian telco industry might be an important market for fuel cell com-

mercialization, there are particularly three major catalysts to be addressed. Firstly, Intelligent Energy 

(2015) recently announced a large deal to supply 27,000 towers with fuel cells. Secondly, the high 

amount of power outages and lack of grid reliability deserve a closer look. Finally, if Sahu and col-

leagues’ (2014) findings are true, the growing telco market will necessarily also demand new sites for 

towers to be deployed, again raising the question about choice of backup power. While this thesis ex-

plores only the choice of replacing conventional and already installed diesel generators, setting up new 

telco towers should add power to the argument that an apparent grid unreliability will require reliable 

backup solutions in the future. A case for fuel cells could perhaps be made then. Altogether, the fol-

lowing sections will thus lay the foundation for India’s telco market as a business case after which at-

tention will be turned towards breaking down the cost structures of PEMFCs. 
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2.2.1. Intelligent Energy’s India Contract 

On October 1, 2015, British technology company, Intelligent Energy, announced that it had agreed to 

provide services to about 27,000 Indian telco towers in a proclaimed USD 1.8 billion deal (Greentech 

Media 2015). In an interview about India’s potential as a fuel cell market, CEO of Intelligent Energy, 

Henri Winand, comments that their presence is highly important for the long-term commercialization 

potential of fuel cells (Quartz 2015). Indeed, as the energy deal contracts Winand’s company over a ten-

year period, the argument is that they will benefit from visibility through market presence and, conse-

quently, be able to scale up production and achieve learning effects. While perhaps not wrong, such line 

of thinking is not useful. Instead, what we might question is whether India’s GTL Limited, the telco 

operator, is making the economically right choice to replace diesel generators today. If the Intelligent 

Energy CEO is correct, learning effects will make any capital expenditure more inexpensive in the fu-

ture and simultaneously create more efficient backup solutions, for which reasons telco operators 

should wait to replace the conventional DGs. Now, in this case, there are yet many towers operating 

with DGs as backup sources. Greentech Media (2015) reports approximately 425,000 cell towers in In-

dia, constituting more than 90% of the cases with DGs to be replaced. Assuming no market presence 

by companies other than Intelligent Energy, there are thus good reasons to question why telco opera-

tors do not use fuel cells as the standard backup power system on a wide-scale basis. Whilst studies 

conducted by the company itself reveal that diesel generators are highly costly to operate (Intelligent 

Energy 2012) and it might then seem as an easy decision to choose the backup solution for the long 

term setting up new telco towers, there are not found thorough research on the option to replace diesel 

generators for the existing towers in the future. Therefore, using Intelligent Energy’s business deal pure-

ly as a motivator, the thesis’ research question will also shed light onto why—and why not—it might be 

more economically sound to implement fuel cells in the future. 

2.2.2. Grid Reliability and Electricity Outages 

Being the second largest telco market in the world and adding new active connections every day, telco 

towers need to operate efficiently in order to connect their users. One major concern, however, is In-

dia’s challenges in electrifying these towers through the grid. In a 2010 report by GSMA, it is estimated 

that 82.2% of approximately 390,000 towers are connected to the grid (the rest being off-site/grid) and 

among these, as many as 46.3% experience unreliable access to electricity with frequent power outages. 

Indeed, in the same survey, Indian tower companies experience outages for at least 4 to 6 hours per day 

at 95% of the towers in rural sites. This necessitates the need of employing a backup solution to the 
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grid, such as the conventional diesel generator. Particularly, grid-connected towers experience power 

outages for different durations as segmented below. 

 

Whereas GSMA relies on direct feedback from tower companies, it is a challenge that there is limited 

centralized data repository on power cuts and outages in India (Lakshane 2012). To track the country’s 

power outages on the individual level, one crowdsourced database has been particularly successful, for 

example. The project, “Power Cuts in India”, has logged user reports on power outages throughout the 

entire Indian market from May 2011 through May 2014. From the publicly available data it becomes 

clear that the electricity grid fails to be reliable (Power Cuts in India 2011). Likewise, in a conference 

paper on insights into home energy consumption in India, Batra et al. (2013) acknowledge that it is dif-

ficult to find reliable data sources on power outages. Therefore, by deploying an experiment themselves 

during May-July 2013, they report a total of 107 power outages in a 61-day period, each averaging ap-

proximately an hour. In this way, the user reports highlight that the Indian electricity grid is generally 

unreliable, however, they do not disclose anything about telco towers’ need to employ backup utilities, 

nor does such field study represent India as a whole. Particularly relevant for the Indian telco operators, 

Greenpeace discloses statistics from the Central Electricity Authority in a 2011 report in which it be-

comes apparent that major telco circles face challenges with outages in the electricity grid as graphed 

below. 

6-10 hrs daily; 
28%

10-16 hrs daily; 
31%

>16 hrs daily; 41%

Electricity reliability at grid-connected telco towers

Figure 2.6: Electricity reliability at grid-connected telco towers. Source: GSMA (2010).
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Clearly, these telco circles face electrification issues to which diesel generators are the current solution. 

Although published by the Ministry of Power and thus the Government of India, there are not further 

evidence, which can be used to statistically distribute the magnitude of the electrification problem. 

Therefore, information on grid reliability is not fully transparent, one might argue. However, the data, 

which is publicly disclosed, supports the need for backup power systems. In a book published by the 

World Bank and the International Bank for Reconstruction and Development (Tenenbaum et al. 2014: 

41), “it has been estimated that about 150,000 of India’s 400,000 mobile-telephone towers are located 

in off-grid areas or areas with an unreliable electricity supply from the grid.” In their analysis, they find 

that as much as 40 percent of operating expenses for a typical telco tower origin in fuel and power 

costs whereas as European telco towers compare with approximately 12 percent. Such a cost difference 

could be attributable to the failure of the electricity grid and hence the employment of diesel generators 

as backup. The cost analysis will look into how fuel cell systems differ to the conventional diesel gener-

ator in the Indian telco market. Before embarking that analysis, it might therefore be helpful to under-

stand for whom these costs are incurred. 

2.2.3. The Indian Tower Industry 

The Indian telco market is often praised as being one of the largest in the world, yet little attention is 

paid towards the tower industry, which, admittedly, has been a key enabler in connecting people in In-

dia. Through the establishment as well as market offering of adequate infrastructure and the ability to 

contract tower facilities to mobile operators (e.g. through leasing), tower companies are gaining bar-
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gaining power in the telco industry. The significant development in subscribers and data usage coupled 

with growth forecasted to continue are challenging Indian telco operators to offer better solutions in an 

increasingly competitive landscape. Particularly, as it is reported by GTL in their annual report from 

2014, “competitive telecom tariff alone is not a strategic advantage to telecom operators. Pricing along 

with better network quality will be a key driver for operators to retain and acquire new subscribers. The 

quality of customer experience becomes all the more important with the growth of data services” (GTL 

2015: 4). In other words, tower companies are offering important solutions for telco operators to im-

prove electricity reliability and thus reduce costs considerably. Thus, hypothesizing fuel cells are better 

alternatives to backup power than diesel generators is important to test so that reliability can be in-

creased. As competition is fierce already, cost reductions will enable operators to allocate significantly 

more resources towards core marketing activities aimed directly at existing and potential customers. 

 Whereas Greentech Media counts about 425,000 towers in October 2015, Deloitte reports ap-

proximately 400,000 towers in India as of May 2015. This supports an increasingly growing industry in 

which Deloitte (2015) has analyzed the market share composition. The telco towers are shared by vari-

ous industry players, including GTL from the Intelligent Energy deal. In fact, there are many larger 

players than GTL in terms of current tower infrastructure assets. 

 

Whereas figure 2.8 shows a conventional market share split by assets (or towers), figure 2.9 illustrates 

the share of tenancies split below. Bharti Infratel has 42% equity interest in Indus Towers and is thus 
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Figure 2.8: Indian tower industry: Share of towers as of May 2015. Source: Deloitte (2015) and own work.
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the second largest tower infrastructure provider in India with ~85,000 towers deployed. It can be ap-

proximated that, together, these account for ~49% of tenancies in the market. 

 

However, their share of towers is also above 40% of total assets in India. In one case study by the 

World Bank and the International Bank for Reconstruction and Development (Tenenbaum et al. 2014), 

it is explained how Bharti Infratel signs a time-constrained contract with an energy provider, such as 

Intelligent Energy, who in turn supplies electricity to the specified towers for the period negotiated. As 

it is commented in the case study (2014: 41), “operation of [backup] units is a headache for most opera-

tors because producing electricity at thousands of locations is not their core business.” In this way, the 

contracted electricity supplier is essentially seizing the task of operation, and the tower company (or 

mobile-phone company) can focus on its core competencies. This setup creates an important decision 

for the contracted electricity operator and supplier. Among other considerations, the established grid 

unreliability calls for a backup system installed, and because contracts usually are of longer term (e.g. 

Omnigrid Micropower Company’s 10-year-contract from 2012 as explained in the case study or Intelli-

gent Energy’s equally lasting contract from 2015), it is important to consider, on the one hand, which 

system to employ, and on the other hand, the value of being able to replace a diesel generator by e.g. a 

fuel cell in the future, should fuel prices increase, costs of fuel cell systems decrease, or any other quan-

tified uncertainty impact such value. Companies, such as Omnigrid Micropower Company and Intelli-

gent Energy, contracted over a longer term, will inevitably face uncertainty in capital budgeting, yet it is 

equivocal whether or not the decision to replace conventionally installed systems by fuel cells in the 
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Figure 2.9: Share of tenancies as of May 2015. Source: Deloitte (2015) and own work.
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future is evaluated. In practice, applying Deloitte’s market share estimates and Greentech Media’s count 

of existing telco towers, contracted electricity suppliers face a potential customer group demanding 

substantial power generation to be delivered. Assuming the 425,000 towers less Intelligent Energy’s 

share rely on 2.5 kW backup systems, the major Indian telco tower players could contract suppliers for 

the following amount of megawatt hours. 

Market size for electricity suppliers 

Company Share Towers Supply (MW) 
Indus Towers 31.0% 123,380 308.5 

Bharti Infratel 9.8% 39,004 97.5 

BSNL 18.2% 72,436 181.1 

Reliance 11.6% 46,168 115.4 

Viom Networks 11.3% 44,974 112.4 

GTL 8.0% 31,840 79.6 

Others 4.3% 17,114 42.8 

ATC 3.5% 13,930 34.8 

Tower Vision 2.3% 9,154 22.9 

Total 100% 398,000 995 
Table 2.1: Market size of electricity suppliers. Sources: Deloitte (2015), Greentech Media (2015) and own work. 

Assuming the approximations from Deloitte and Greentech Media are correct, a market potential of up 

to 1 TW exists today. Looking forward, Deloitte (2015) projects total number of towers (i.e. both telco 

towers and data towers) to grow at a 3% compound annual growth rate including 2020, which, if real-

ized, will demand electricity supply to grow as well. In the scenario where this happens, and backup 

systems can continue to be powered by 2.5 kW specifications, the following trend is forecasted.  
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Thus, Indian telco towers will demand close to 1.2 TW by the backup systems on aggregate, and if one 

includes data towers in the calculation as well, projected at 511,000 by 2020, such demand is well above 

that threshold. 

 Considering Intelligent Energy’s recent contract and the general expectations of growth in the 

Indian telco market coupled with an unreliable electricity grid, it is no surprise that Deloitte (2015: 2) 

lists “operational optimization” as the number one key trend in the current and future tower industry. 

For these tower companies, there is no flexibility in the decision about electricity. They need it. Thus, 

whether they contract other service providers or resort to alternative solutions, backup systems need to 

be deployed. In this matter, fuel cells might help to optimize operational performance. In the next 

chapter, before continuing with the backup system decision in a more financially motivated framework 

of real option application, an analysis of the backup systems’ cost structures are performed. Key cost 

drivers are identified and help to understand where value is derived or can be created. 
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3. ANALYSIS OF THE COST STRUCTURE 

Installing diesel generators as backup sources for the electricity grid hold many advantages for opera-

tors in India: they are convincingly reliable, predictable, and the cost of purchasing and installing the 

systems has been historically inexpensive. Why bother with an investigation of alternatives to the con-

ventional diesel generator, critics will perhaps ask. When comparing diesel generators with fuel cell sys-

tems, one will immediately see a significant difference in capital expenditures, yet such comparison fails 

to capture the full picture. It is the general consensus that renewable energy associates costs as its most 

significant problem (see e.g. Lloyd and Forest 2010; Trainer 1995, 2010), yet this is heavily contingent 

on how the cost is measured (Carson 2013). Therefore, this chapter will examine how measuring renew-

able energy’s value through a levelized cost analysis will help to explain the price differences in fuel cells 

and diesel generators. Having established the levelized cost of energy, and what components constitute 

such cost, we will then discuss how (or if) an alternative approach or methodology can help to evaluate 

the decision to deploy fuel cells as backup sources in India. 

3.1. Calculating Levelized Costs 

In this chapter, we will present the levelized cost of energy model and subsequently calculate the dollar 

cost per megawatt of electricity generated by the two systems of comparison; a PEM fuel cell and a 

conventional diesel generator. Before such presentation and calculation, a few words on the theoretical 

foundation of the model will be addressed. 

3.1.1. Discounted Cash Flows and WACC 

The discounted cash flow model is one of the most, if not the most, widespread financial valuation tool 

used to value future cash flows. On the backbone of the DCF model lies the time value of money con-

cept, which states that “a dollar today and a dollar in one year are not equivalent” (Berk & DeMarzo 

2014: 98). Evidently, a dollar inflow today is worth more than a dollar inflow one year from now, based 

on the one-year interest one can earn on the dollar in hand today. Similarly, and more importantly for 

the purpose of this thesis, the time value of money implies that a one-dollar cash outflow today is costlier 

than a one-dollar cash outflow one year from now for the same reason; one could invest the dollar to-

day and earn interest. To compare cash flows today and cash flows in the future, the DCF model cor-
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rects the value of future cash flows through discounting, which effectively subtracts a given portion of 

the nominal value of the future cash flow. The DCF formula is given by: 

PV	=	 Cn

1+r n

N

i=0

 EQ 3.1 

where PV is the present value, C is the cost in a given year n, and r is the appropriate rate that discounts 

value from the future cash flow. The summation of future cash flows is the NPV. In this way, the DCF 

model allows for fair comparison of different projects and investments with large possible variations in 

the timing of cash flows. From a revenue perspective, a typical investment case would postulate nega-

tive cash outflows at initial stages and subsequent positive cash inflows later on. This implies that the 

earlier the investment can start to generate positive cash flows, the bigger the positive impact on the net 

present value of the investment will be. Conversely, from a cost perspective, the NPV will, through the 

effects of discounting, benefit if costs can be postponed to later dates. Albeit rather obvious, these con-

siderations have important implications for the LCOE analysis, which is undertaken purely from the 

cost perspective, and will undeniably impact the final dollar per megawatt comparison. 

Besides the immediate and projected future costs, the key input to equation 3.1 to determine 

the present value is the discount factor denoted by r. In practice, the discount factor, or the cost of cap-

ital, is more commonly referred to as the weighted average cost of capital. The WACC is defined as the 

average cost of capital that a corporation must pay to both types of its investors, equity holders and 

debt holders, weighted by share of the capital structure that each of the two investor types takes up 

(Berk & DeMarzo 2014): 

rWACC=
E

E+D
rE+

D
E+D

rD 1-τC  EQ 3.2 

where rWACC is the weighted average cost of capital, E and D is the value of equity and debt respectively, 

rE and rD is the appropriate equity and debt cost of capital, and tC is the corporate tax rate making the 

WACC the effective after-tax cost of capital to the firm. The WACC hereby allows for comparison of 

projects with similar risk, capital structure, and corporate tax rate. 

How can one determine the appropriate discount factor for a given project or investment, and 

more specifically, how can one estimate the discount factor (WACC) for backup power energy genera-

tion for telecommunication tower operators in India? This question is not an easy task to answer and 

the thesis could have been devoted entirely hereto. While constituting an interesting investigation of the 
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risk and return profile of backup power in the case of India, it is outside the scope of this project to 

undertake such analysis. Instead, we rely on existing literature on the matter to gain insights on the ap-

propriate risk and return measures in our rather specific Indian telecommunication case. In the broad 

sense of energy finance and economics, Carson (2013: 136) notes that “in many studies of levelized 

cost, the WACC is, alas, frequently obscured”. He further proclaims that “even in those that do make 

clear this important input, some state the WACC in real values and others in nominal terms, with the 

WACC ranging from 5 to 15 percent”. The spectrum between a WACC of 5 to 15 percent is quite sub-

stantial, and will impact the LCOE to a great extend depending on which end of the spectrum one 

chooses to adopt. To narrow down the applicable WACC in the case of telecommunication backup 

power, we turn to Aswarth Damodaran’s online public database at NYU Stern, which includes financial 

valuation industry average multiples and estimates of equity risk premiums as well as costs of capital 

(Damodaran 2016). Through the database, we have been able to identify key metrics for the industry 

labelled “Telecommunication Equipment in India” which will serve as the base for the WACC adopted 

in our LCOE analysis. The database includes 20 companies within the industry and estimates the aver-

age capital structure to be 75.73% equity and 24.63% debt and with a beta of 1.15 and marginal tax rate 

of 35%. The cost of equity amounts to 18.58%, based on an equity risk premium of 9.28%, while the 

reported cost of debt is 12.12%. Applying equation 3.2, the WACC is estimated: 

rWACC	=	 0.7573

1
18.58%+ 0.2463

1
12.12% 1-35%  = 15.96% EQ 3.3 

Being an approximation, the WACC of 15.96% cannot be concluded as an unambiguous figure. None-

theless, based on the findings from the relevant literature it has been found applicable for use in the 

LCOE analysis. An important assumption, which has been taken here, is that the two energy generation 

sources, fuel cell and diesel generator, have similar financial characteristics as outlined above. Addition-

ally, and as long as these assumptions are upheld, the WACC is merely an (important) input to the 

overall LCOE analysis that allows for a fair comparison of the two energy generation sources in ques-

tion. Furthermore, sensitivity analyses of the WACC impact on the LCOEs will be carried out to shed 

additional light on its effects. 

3.1.2 Real vs. Nominal LCOE 

As mentioned in section 3.1.1., real versus nominal WACC have led to some confusion. This applies to 

the entire LCOE calculation as well, which can be expressed in real or nominal values, or, put different-

ly, in current or constant dollar terms (Carson 2013). The distinction, however, is very important as the 
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nominal (constant dollar) LCOE measured in dollar per megawatt will always be higher than the real 

(current dollar) LCOE due to corrections for inflation in the latter. Therefore, when comparing costs 

between different power generation sources, discrepancies in the consistent use of either constant or 

current dollars can lead to wrongful conclusions. 

Following Carson’s (2013: 131) example of a supercritical coal plant, in which both the current 

and constant levelized costs are reported, the impact of applying either one or the other is offered. 

While the current dollar levelized cost is a non-changing value, the nominal constant dollar levelized 

cost must rise to correct for inflation. The result is two, different, incomparable levelized costs at time 

zero i.e. today. Another way to understand the difference, suggested by Black & Veatch (2011) is to 

compare the levelized cost with a power purchasing agreement of electricity that rises each year with 

inflation (constant dollar amount), and a fixed, unchanging electricity price throughout the lifetime of 

the project (current dollar amount). Consequently, in year 0, the fixed price will start at a higher point 

than the rising current dollar price and thus the reason for the differences in the two levelized cost 

measures. Importantly, both the current and the constant dollar levelized costs methods are equivalent-

ly sound and both methods find widespread use (Carson 2013). For simplicity and to keep focus on the 

real objective of this thesis, we have chosen to follow the constant dollar levelized cost approach which 

will, of course, be applied to calculations of LCOE for both the fuel cell system and the diesel genera-

tor system. 

3.1.3. Applicable Exchange Rate 

In line with the discussion above concerning the use of nominal and real values, some brief considera-

tions on the applicable exchange rate to non-US dollar denominated data will be presented here. As 

noted, one must carefully evaluate the inputs to the LCOE calculation and its possible impact on the 

bottom line cost comparison. We showed how inconsistencies among real and nominal LCOE calcula-

tions disrupts the comparative foundation between technologies. Likewise, cost data denominated in 

different currencies are exposed to noise from exchange rate movements, which may fluctuate to a 

large extend in a short period of time. While collected data on the PEM fuel cell system and its related 

costs are mainly denominated in US dollar (USD), diesel generator inputs are almost entirely denomi-

nated in Indian Rupee (INR). In line with methodology of Schoots et al. (2010), we apply a 3-year aver-

age INR/USD exchange of 0.01615 between March 2014 and March 2016 (Investing 2016). With re-

gards to averaging exchange rates over time, the term average has, in some instances, wrongfully covered 

two mathematically distinct averages; arithmetic and geometric (Brodsky 1982). For geometric averaged 
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exchange rates, proportionally equivalent fluctuations, appreciative or depreciative, have the same effect 

on the overall average whereas the arithmetic average is subject to an upward bias. For the purpose of 

this thesis, when referring to average exchange rates, we specifically refer to the geometric average ex-

change rate, which is also the common practice (Schmitz et al. 2012). 

3.1.4. Modeling the LCOE 

The levelized cost of energy is one of the foremost methods of calculating electricity costs and compare 

these across different energy generation sources. For any given electricity source (e.g. plant or backup 

source), the LCOE framework calculates the present value of the total cost of building or setting up the 

system and its operational costs over its lifetime and presents a flat price during this period.  

 

To illustrate, figure 3.2 shows a (fictional) relationship between annual and levelized costs, which states 

that the levelized cost is equal to the present value of current and future annual costs (CEC 2009). 

While annual costs for different generation sources may vary substantially and thereby difficult to com-

pare, the LCOE method allows for a simple, easily digestible comparison across generation sources.  As 

Borenstein (2012: 70) comments, one way to think about the LCOE is as the “price for power that 

would equate the net present value of revenue from the plant’s output with the net present value of the 

cost of production” or, as Rothwell (2010: 16) notes, it is “the equivalent to (long run) average costs in 

microeconomics”. Following the works of Carson (2013), which is similar to the line of thought pre-

sented by Borenstein (2012: 70), the LCOE can be written as: 
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Figure 3.1: Levelized vs. annual cost. Source: CEC (2009) and own work.
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TLRPV	=	TLKCPV	+	TLOMCPV	+	TLFCPV EQ 3.4 

Where TLRPV is the present value of total lifetime revenue generated by the generation source, TLKCPV 

is the present value of total lifetime capital costs, TLOMCPV is the present value of total lifetime operat-

ing and maintenance costs, and finally, TLFCPV is the present value of total lifetime fuel costs. 

The estimated LCOE for one technology will thus be in similar units to that of another tech-

nology, making it convenient to compare electricity prices of different sources. In the literature (see e.g. 

Borenstein 2012; Carson 2013; CEC 2009; Lazard 2015), the technological specifications and inputs to 

the LCOE framework are relatively easy to establish with reasonable prediction. For the most part, re-

searchers agree on which inputs to use and what outputs will result. However, it can be a challenge to 

compare levelized costs in economically different environments. Therefore, as Borenstein‘s (2012) 

analysis explains, economic variables are usually the factors behind large discrepancies among levelized 

cost estimates, for which reason any renewable energy researcher needs to carefully address such differ-

ences when examining the technology’s cost. In the case for fuel cells as backup systems, it is therefore 

crucial to understand that such LCOE will yield different results in India than in East Asia, Europe, or 

the United States (where many LCOE studies have been undertaken already). This applies for other 

energy sources too. As systems and “plants are heterogeneous in location, architecture, and other fac-

tors, even plants with similar technology will not have the same levelized cost of energy” (Borenstein 

2012: 70). In order to arrive at a reliable LCOE for fuel cell systems deployed as backup power for In-

dian telco towers, this chapter will therefore both examine the underlying technological inputs to the 

framework and use these in the economic setting of Indian telecommunications and towers. 

 If a system lasts T periods and produces qn in period t, then discounting future cash flows 

(costs) at the real cost of capital r, the levelized cost of energy is defined by: 

qt

T

t=1

LCOE
1+r t 	=	

Ct q1,…,qt

1+r t

T

t=1

	�	LCOE	=	
Ct q1,…,qt

1+r t
T
t=1

qt
1+r t

T
t=1

 EQ 3.5 

where Ct(q1, …, qT) is the real (in period 0 dollars) expenditures in period t to produce the steam of 

output (q1, …, qT). Therefore, as suggested by the formula, the LCOE includes capital costs borne be-

fore any production of electricity can take place. In other words, the cost at which the system or plant 
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is purchased and installed is also captured by the LCOE calculation. The presentation of levelized cost 

is most commonly denoted as dollars per MWh or cents per kWh. 

3.2. Assumptions and Inputs for Backup Power 

Before commencing the actual levelized costs calculations of the fuel cell system and the conventional 

diesel generator system, this section will outline the overall assumptions that both systems share.  

3.2.1. Run Time 

This thesis will analyze the case of backup power to cell towers in periods of grid power outages. Spe-

cifically, this study will apply to cell towers operating at an average of 2.5 kWh power demand (name-

plate capacity), enough to supply three Base Transceiver Stations (BTS). On average, 70% of the towers 

in India experience outages of more than 8 hours each day (Intelligent Energy 2012). Telco towers ex-

hibit a range of different power configurations in which the electrical grid, batteries, and backup power 

systems are incorporated. For our specific analysis it has been chosen to assume that the backup power 

system will run 6 hours a day or 2,190 a year (assuming 8,760 hours a year). This means that the capaci-

ty factor, the period of operation as a percentage of total possible operation, of the systems will be 25% 

i.e. 2910/8,760 = 25%. In accordance with DPS, systems have an assumed expected operating lifetime 

of 30,000 hours and thus 30,000/2,190 = 13.7 years (rounded to 15 years for simplicity). 

Next, both systems cannot be expected to run during the entire period of planned operation. 

Although planned maintenance and replacement of certain components can be undertaken within non-

operating periods, unforeseen outages must be taken into account. Albeit difficult to estimate, these 

unforeseen outages are captured by the “outage multiplier” set to 98% in line with DPS estimates. To-

gether, average power demand or nameplate capacity, along with the capacity factor and outage multi-

plier, yield yearly nominal and yearly delivered kWh of 5,475 and 5,366 respectively. Table 3.1 presents 

these assumptions and inputs. 

Common assumptions and inputs  
Hours per year 8,760 
Run time per day (hours) 6 
Run time per year (hours) 2,190 
Capacity factor 25% 
Nameplate capacity (kW) 2.5 
Outage multiplier 98% 

Table 3.1: Common assumptions and inputs. Source: Own work. 
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3.2.2. Efficiency and Heat Rate 

One of the key distinctions of power generation sources is the rate at which the system converts energy 

carried in a given fuel type to actual, useful electricity. This rate is known as the efficiency. Energy can be 

measured in e.g. Joule and Watt but in this case the “British Thermal Unit” (BTU) is convenient as it 

allows for the efficiency to be calculated.  By definition, one kWh holds 3,414 BTUs (EIA 2015) and 

similarly, different fuel types hold different amounts of energy measured in BTU. As a result, the 

amount of fuel (energy) consumed in order to produce one kWh is the actual efficiency. One must note 

the difference between electrical efficiency and total efficiency as the latter is frequently reported in the 

literature. Total efficiency relates to total energy produced by a given generation source including heat 

energy and electrical energy. For the purpose of this thesis, heat energy is not applicate and hence the 

term efficiency refers to electrical efficiency. Heat rate is a related concept, which is simply the amount 

of BTUs a given generation source consumes in order to produce one kWh. As an example, large new 

natural gas combined-cycle power plants have heat rates around 7,100 BTU (Greentech Media 2013), 

which corresponds to an efficiency of 3,413/7,100 = 48%. Heat rates and thus efficiency is used to cal-

culated fuel consumption during the operational lifetime of each system. One key assumption for both 

systems is that the heat rate will increase (efficiency decrease) during the course of operation. DPS has 

estimated that the heat rate will increase 20% after 10 years of operations, which translates to a com-

pound annual growth rate of 1.84%. 

3.2.3. Timing of Costs 

Another important assumption for the levelized cost of energy calculations relates to the timing of in-

curred costs. As the fundamental objective of this thesis is to evaluate the choice of replacing the con-

ventional diesel generator with a fuel cell, it is assumed that the diesel generator has already been 

bought. Specifically, it is assumed that the diesel generator is bought “yesterday”, which we label year 0, 

while the first operating expenses will not occur before year 1. Additionally, operating expenses are as-

sumed to be incurred at the end of each period, meaning that all expenses during year 1 will be dis-

counted back to today i.e. the first day of year 1. For capital expenditures, we assume that they will in-

cur on the first day of a time-period, which implies that any capital expenditures taking place in year 1 

shall not be discounted like operating expenses during the same year. This will be of particular im-

portance in chapter 5 in which the real option value to replace the diesel generator will be examined. 
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3.3. Cost of Energy Generation Model: PEM Fuel Cell 

Similar to California Energy Commission’s (CEC) comparative costs of central station electricity gener-

ation, this study will use a “Cost of Generation Model” (CEC 2009: 11) through which dozens of eco-

nomic, financial, and system-specific assumptions are captured. In summary, the levelized costs for fuel 

cells and diesel generators will be calculated on basis of the following information. 

Summary of levelized cost components  

CAPEX Section 

Capital — Total cost of construction, installation, and sales markups  3.3.1 

OPEX  

Fixed O&M — Staffing and other costs independent of operating hours 3.3.2 

Fuel Costs — Cost of fuel used 3.3.3 
Variable O&M — Operation and maintenance costs that are a function of 
operating hours 3.3.4 

Table 3.2: Summary of levelized cost components. Source: Own work. 

Generally, levelized cost components will be made up by the above listed posts as well as other fixed 

costs such as insurance, ad valorem (e.g. property taxes), and corporate taxes. In the case of backup 

power to Indian telco towers, however, it assumed that such costs will be similar for a fuel cell system 

and a diesel generator. It is therefore not listed and consequently disregarded by this LCOE calculation. 

If one intends to compare the results of this paper to research or estimations conducted outside this 

project, one should thus carefully address how such costs would change the levelized costs before any 

comparison would be legitimate. Nevertheless, within the scope of this paper, the levelized costs are 

equally comparable.  

3.3.1. Capital Costs 

The capital cost is the total price paid for the system, including the cost of installing it. Therefore, capi-

tal expenditure will capture the cost of manufacturing the system plus the manufacturer’s margin. In 

other words, the cost is incurred from the purchaser’s point of view. In this subsection, the total cost of 

construction is broken down to each component in order to understand their significance. Ultimately, 

this will also help the research to show where the largest learning effects occur (or fail to happen). To 

get an overview, the manufacturing costs of the fuel cell system are captured by the items below. 
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Manufacturing costs Section 

Polybenzimidazol (PBI) Membrane 3.3.1.2 

Gas Diffusion Electrode (GDE) 3.3.1.3 

Membrane Electrode Assembly (MEA) Frame 3.3.1.4 

Separator Plates – Half Plates (HAPs) 3.3.1.5 

Stack Assembly 3.3.1.6 

Balance of Plants (BOP) 3.3.1.7 

Fuel Processor 3.3.1.8 

Table 3.3: Manufacturing costs. Source: Wei et al. (2014), Danish Power Systems (2016), and own work. 

Within the recent years and particularly since the turn of the millennium, there have been an extensive 

amount of research on fuel cells and their cost structures. One should be careful in evaluating the ex-

tent to which each of such studies will add value to the particular problem in one’s research. As Short, 

Packey, and Holt (1995) write, much depends on the purpose of the analysis. This paper will use an 

Ernest Orlando Lawrence Berkeley National Laboratory study as the primary input to the cost compo-

nents, referred to as Wei et al. (2014). In their total cost of ownership model for high temperature PEM 

fuel cells in combined heat and power applications, a group of fuel cell manufacturers have provided 

company-level data, including Danish Power Systems. Although Wei and colleagues report costs for 

CHP fuel cells, it has been verified by DPS that they—with the right scaling—are applicable for 2.5 kW 

PEM fuel cells deployed at tower sites. In this way, Wei et al. (2014) provide adequately precise data on 

capital costs. Through a stepwise analysis of each component of the manufacturing costs, this study will 

reveal where the main cost drivers of fuel cell production lie. 

3.3.1.1. Scaling Manufacturing Costs 

Using data from Wei et al. (2014) on systems of 10 kW and 100 kW stacks, the results are scaled for 1 

kW and 2.5 kW outputs linearly below. For example, to accurately estimate the square meter price for 

PBI membranes, the cost increase from 100 kW to 10 kW is linearly growing for the 1 kW system, so 

that the relationship can be described as y = ax + b, where y is the output in kW, x is the cost in USD, a 

is the slope (calculated as ∆y/∆x), and b is the intercept when cost is zero. Describing output as a func-

tion of cost (or vice versa) will thus has its constraints. For example, cost cannot be negative (other 

than sub-components within total costs, e.g. scrap/waste), and output is limited to the 100 kW maxi-

mum by Wei et al. (2014). Given this scaling, proper cost estimates are calculated for 1 and 2.5 kW sys-

tems. As there are no functional specifications available for a system at 2.5 kW exactly in the analysis by 

Wei et al. (2014), DPS comments that the 1 kW specifications can be up-scaled by a factor of 2.5. Such 
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extrapolation is used in calculating plate areas, cells per stack, and stacks per system, which in turn is 

used to arrive at USD per system and USD per kW costs at each manufacturing component. Wei et al. 

(2014) report the following specifications. 

Functional specification 

  Units 1 kW 10 kW 100 kW 

Total Plate Area cm2 725 725 725 

GDL Coated Area cm2 468 468 464 

Cells per Stack   21 105 136 

Stacks per System   1 2 15 

Table 3.4: Functional specification. Source: Wei et al. (2014) and own work 

3.3.1.2. PBI Membrane 

The polybenzimidazol (PBI) membrane is an important feature of the high temperature PEMFC in or-

der to be able to resist certain fuel impurities, hold fast electrode kinetics, and a simplified water and 

thermal management due to high operational temperature (see e.g. Seel et al. 2009). Wei and colleagues 

(2014) analyze both first and second generation polymeric materials, however, the second generation 

has been chosen as the input for this project in collaboration with DPS. As the materials used in the 

PBI-based membrane are assumed to be largely commodity-type materials, the analysis does not incor-

porate any discounts in the cost of materials as a function of volume. 

PBI Membrane Wei et al. (2014)   Scaling % 

  kW 10 100   1 2.5 2.5 

 USD/m2 55.11 17.00   58.92 58.29 100.00
% 

   Scrap/Waste 

USD 

9.46 2.19   10.11 10.01 17.17% 

   Building 2.96 0.30   3.16 3.13 5.37% 

   Operational 4.53 1.08   4.84 4.79 8.22% 

   Capital 22.88 2.36   24.46 24.20 41.52% 

   Direct Labor 6.64 2.43   7.10 7.02 12.05% 

   Direct Materials 8.64 8.64   9.24 9.14 15.68% 

  m2/system 15.23 147.90   1.52 3.81 3.81 

  USD/system 839.05 2,514.30   89.71 221.85 221.85 

  USD/kW 83.90 25.14   89.71 88.74 88.74 

Table 3.5: PBI Membrane. Source: DPS (2016), Wei et al. (2014), and own work 
For the PBI membrane it becomes apparent that costs are largely capital-intensive for the 2.5 kW sys-

tem as opposed to a 100 kW configuration in which direct materials are the primary cost driver. One 



Valuing Learning Effects as a Real Option  Lange & Poulsen 
MSc in Applied Economics and Finance  Copenhagen Business School 

35 

 

argument for such trend is an apparent under-utilization of resources and high scrap percentages at the 

smaller systems. 

3.3.1.3. GDE 

In the fuel cell literature, one will often read the terms “gas diffusion layer “(GDL) and “gas diffusion 

electrode” (GDE) with little chance to distinguish between the two. In the high temperature PEM fuel 

cell, the catalyst is commonly deposited on the GDL and therefore called GDE (Wei et al. 2014). Fab-

rication of GDEs is made through the use of ink slurry, containing a substantial amount of platinum. 

As reported, approximately 80% of the slurry origins from platinum. 

Pt-Chr-Cob alloy used in making ink slurry for GDE 

Alloying Element Composition Loading (mg/cm2) 

Platinum 79.82% 0.700 

Cobalt 11.29% 0.099 

Chromium 8.89% 0.078 

Table 3.6: Pt-Chr-Cob alloy used in making ink slurry for GDE. Source: Wei et al. (2014) and own work 
 

Having established which elements constitute direct materials in the GDE fabrication, it thus becomes 

clear that platinum is by far the most significant contributor to that cost. 

GDE (≈ GDL) Wei et al. (2014)   Scaling % 

  kW 10 100   1 2.5 2.5 

 USD/m2 340.80 271.46   347.73 346.58 100.00
% 

   Scrap/Waste 

USD 

-3.50 -9.57   -3.57 -3.56 -1.03% 

   Building 2.37 0.25   2.42 2.41 0.70% 

   Operational 1.37 0.24   1.40 1.39 0.40% 

   Capital 10.70 1.11   10.92 10.88 3.14% 

   Direct Labor 0.34 0.34   0.35 0.35 0.10% 

   Direct Materials 329.52 279.09   336.22 335.11 96.69% 

  m2/system 9.83 94.66   0.98 2.46 2.46 

  USD/system 3,349.38 25,695.32   341.75 851.54 851.54 

  USD/kW 334.94 256.95   341.75 340.62 340.62 

Table 3.7: GDE (≈ GDL). Source: DPS (2016), Wei et al. (2014), and own work 

Altogether, direct materials contribute to approximately 340 USD per kW of which 263 USD per kW is 

from the use of platinum. In other words, it appears as if platinum is quite a significant part of the pro-
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cess, for which reason it makes sense that DPS is interested in continually improving the efficiency of 

such. At this stage, however, attention will remain on the cost analysis for the purpose of this chapter’s 

LCOE modeling. Also, another interesting observation is the fact that the scrap (or waste) item is in-

curred as a negative cost. Because scrap material is not discarded, but instead shipped to a platinum re-

covery firm, the manufacturer can actually gain from its waste.  

3.3.1.4. MEA Frame 

Although direct materials constitute a large part of the manufacturing costs, the MEA frame is the most 

insignificant contributor to the total production costs. Among the major cost drivers in high tempera-

ture MEA frames are the use of polyimide and Viton. Interestingly, as opposed to the waste value of 

e.g. platinum, scrap costs are largely due to the fact that a defective framed MEA will imply a loss in all 

upstream work hitherto. 

MEA Frame Wei et al. (2014)   Scaling % 

  kW 10 100   1 2.5 2.5 

 USD/part 4.65 3.51   4.76 4.75 100.00
% 

   Scrap/Waste 

USD 

2.09 1.65   2.14 2.13 44.95% 

   Building 0.02 0.01   0.02 0.02 0.43% 

   Operational 0.10 0.07   0.10 0.10 2.15% 

   Capital 0.66 0.31   0.68 0.67 14.19% 

   Direct Labor 0.47 0.16   0.48 0.48 10.11% 

   Direct Materials 1.31 1.31   1.34 1.34 28.17% 

  parts/system 210.00 2,040.00   21.00 52.50 52.50 
  USD/system 976.50 7,160.40   100.04 249.11 249.11 

  USD/kW 97.65 71.60   100.04 99.65 99.65 

Table 3.8: MEA Frame. Source: DPS (2016), Wei et al. (2014), and own work 

Whereas the cost per part is scaled by the method introduced above, the number of parts per 1 kW sys-

tem is given by Wei et al. (2014). This number is then scaled by a factor of 2.5 to match the backup sys-

tem, verified by DPS. 

3.3.1.5. HAP 

Half plates (HAPs) are used to supply reactants to each individual cell while also providing cooling 

channels. Verified by DPS, there is a need for two HAPs each cell in the system as well as one on top 

of the stack. This implies e.g. 43 HAPs in the 1 kW system, arbitrarily converted to 107.50 in the fuel 
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cell deployed at a telco site. In this scenario, much of the costs are operational, capital, and direct labor, 

accounting for more than 92% together. In other words, it is hard at this stage already to expect signifi-

cant learning effects here. 

HAP Wei et al. (2014)   Scaling % 

  kW 10 100   1 2.5 2.5 

 USD/HAP 11.32 7.65   11.69 11.63 100.00
% 

   Scrap/Waste 

USD 

0.10 0.02   0.10 0.10 0.88% 

   Building 0.19 0.06   0.20 0.20 1.68% 

   Operational 2.63 2.58   2.72 2.70 23.23% 

   Capital 4.84 4.04   5.00 4.97 42.76% 

   Direct Labor 3.03 0.43   3.13 3.11 26.77% 

   Direct Materials 0.53 0.52   0.55 0.54 4.68% 

  HAPs/system 421.00 4,081.00   43.00 107.50 107.50 
  USD/system 4,765.72 31,219.65   502.54 1,249.78 1,249.78 

  USD/kW 476.57 312.20   502.54 499.91 499.91 

Table 3.9: HAP. Source: DPS (2016), Wei et al. (2014), and own work 

3.3.1.6. Stack Assembly 

While the actual semi-automatic assembly line is understood better elsewhere (see Wei et al. 2004: 41-

42), we see that direct materials are the largest cost contributor, yet building and capital processes ac-

count for a similar amount when aggregated. As Wei et al. (2014) comment, there are significant econ-

omies of scale in the assembly line, continually increasing direct materials’ importance as production 

volume increases. In our 1,000 systems per year case, direct materials are important, yet still at the stage 

where building and capital processes as well as direct labor constitute are serious cost drivers. 

Stack Assembly Wei et al. (2014)   Scaling % 

  kW 10 100   1 2.5 2.5 

 USD/kW 41.86 5.63   45.48 44.88 100.00
% 

   Building 

USD 

8.74 1.22   9.50 9.37 20.89% 

   Operational 0.74 0.13   0.81 0.80 1.78% 

   Capital 9.49 1.56   10.31 10.17 22.67% 

   Direct Labor 4.47 0.06   4.85 4.79 10.67% 

   Direct Materials 18.42 2.66   20.01 19.75 44.00% 

  USD/system 418.60 562.50   45.48 112.20 112.20 

  USD/kW 41.86 5.63   45.48 44.88 44.88 

Table 3.10: Stack Assembly. Source: DPS (2016), Wei et al. (2014), and own work 
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3.3.1.7. BOP 

As there is no state-of-the-art balance of plants components in a fuel cell system, Wei et al. (2014) build 

upon previous analyses with system modifications and simplifications appropriate for the HT PEM 

technology. As in the previous cost components Wei et al. (2014) report only for 10 kW and 100 kW 

systems in the BOP analysis, however, in their source for BOP, one is able to find data on a 1 kW HT 

PEM fuel cell. Rather than down-scaling here, the project relies on Wei et al.’s reference, James (2014), 

from whom a more precise estimate can be given. Also, as discussed with DPS, it should be mentioned 

that different subsystems might be necessary in the future.  

BOP  
  kW 1 2.5 

 USD/system 3,788.96 9,472.40 
Fuel Processor Subsystem 

USD 
2,556.82 6,392.05 

Fuel Cell Subsystem 1,232.14 3,080.36 

  USD/kW 3,788.96 3,788.96 

Table 3.11: BOP. Source: DPS (2016), Wei et al. (2014), James (2014), and own work 

These costs are the heaviest part of manufacturing costs, however, inevitable for the producer (and the 

consumer). In order for the fuel system to function, proper balance is needed. In other words, the BOP 

helps to maintain high reliability and functionality in the system. Major cost drivers are here identified 

as the fuel processor (67%). 

3.3.1.8. Total System Costs 

Accumulating manufacturing costs reveal the total cost of the fuel cell system deployed as a backup 

power station. At the stated assumptions, producing a 2.5 kW system will cost more than 12,000 USD. 

System Cost Wei et al. (2014)   Scaling 

  kW 10 100   1 2.5 

 USD 26,910.26 140,505.17   4,868.49 12,156.89 

  USD/kW 2,691.03 1,405.05   4,868.49 4,862.75 

Table 3.12: System Cost. Source: DPS (2016), Wei et al. (2014), and own work 

Table 3.13. presents the summarized component costs and their respective percentage of the total 2.5 

kW system cost. Evidently, BOP is the main cost driver constituting approximately 78 percent while no 

other single component accounts for more than 10 percent. As a reference point, the BOP accounts for 

around 76 percent and 60 percent in the 1 kW and 10 kW production costs respectively (Wei et al. 
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2014). Whether extensive learning effects can be achieved within the BOP component is left for com-

ing chapters; for now, it is merely noted that HT PEM fuel cell system production costs are primarily 

driven by this particular component. 

Component cost summary   

Component USD % 
PBI Membrane 221.85 2% 
GDE (≈ GDL) 851.54 7% 
MEA Frame 249.11 2% 
HAP 1,249.78 10% 
Stack Assembly 112.20 1% 

BOP 9,472.40 78% 

System Cost 12,156.89 100% 

Table 3.13: Component cost summary. Source: DPS (2016), Wei et al. (2014), and own work 

3.3.1.9. Sales Markup 

In order to understand fully what the Indian telco tower company will pay for the system, one needs to 

know which corporate mark-up the seller (system manufacturer) operates with. Following James 

(2014), vertical integration can to a large extend the impact of “layers” of markups before the final sys-

tem price can be derived. While high degrees of vertical integration can reduce the number of links in 

the value chain and thus the number of markups, low production volumes are typically associated with 

low levels of vertical integration due to low machinery utilization and lack of expertise within a certain 

manufacturing process. Standard practice necessitates markups to be applied to account for e.g. general 

and administrative expenses, R&D, and company profit are presented as a percentage value. Due to 

large differences in the manufacturing process setup, it can be difficult to determine concise margin, 

and it ranges between as much as 10-100%. During talks with DPS it has been found appropriate to 

apply 28% sales margin to the distinct case of this project. Assuming an installation cost of 2,500 USD 

as reported by Lipman et. al (2004), total installed cost of the 2.5 kW system becomes approximately 

18,000. 

3.3.2. Fixed O&M 

Fixed operating and maintenance (O&M) costs include staffing, overhead, and equipment among other 

miscellaneous direct costs (CEC 2009). In accordance with DPS, an estimated yearly fixed cost equal to 
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half of BOP purchases distributed over its lifetime is appropriate. Therefore, fixed O&M of 315.75 

USD is assumed to occur annually. 

3.3.3. Fuel Costs 

Having stated how Short, Packey, and Holt (1995) emphasize using data fit only for one’s own analysis, 

information on fuel (and delivery) costs has been disclosed by DPS’ Indian sales agent, Vispadh Group, 

and is thus found highly relevant in this project’s economic environment. In this way, one kilogram of 

methanol sells at 0.34 USD using the 3-year average exchange rate from INR as reported above. Based 

upon Vispadh Group’s advisory, fuel price growth is estimated to 2.43% derived as the compound an-

nual growth rate from March 2002 through March 2016 based on yearly prices—methodology similar 

to the diesel case. While methanol pricing has indeed been highly variable and cyclical (see e.g. MMSA 

2015), Vispadh Group’s data is evaluated as the most reliable source in this setup. 

Fuel consumption is contingent on the system’s efficiency. As reported by Wei et al. (2014), the 

electrical efficiency is 29% at which a fuel cell heat rate approximates 11,769. Now, as the methanol to 

water ratio is 68%, and there are 56,800 methanol BTUs per gallon, fuel consumption is 38,624 BTUs 

per kg. At 0.34 USD per kg, the real fuel price is then approximately 8.78 USD per MMBTU. 

3.3.4. Variable O&M 

Whereas fixed O&M is an estimate on the lifetime of BOP components and their substitution costs, 

variable O&M is calculated as follows. 

Ot	=	G	·	γ	 1+μ t-1  EQ 3.6 

where G is measured as yearly delivered kWh, γ is annual variable O&M costs per delivered kWh, µ is 

the annual variable O&M escalation factor in percent at time t. Thus, contingent on the year of opera-

tion, variable O&M costs are determined by G (see table 3.14), γ equal to 0.04 per kWh defined by Laz-

ard’s recent LCOE report (2015), and µ is reported to be 2% by DPS. 

3.3.5. Results 

The LCOE calculations are summarized in table 3.13. The levelized cost for the fuel cell system during 

the operational lifetime of 15 years amounts to 311 USD per delivered MWh. A more detailed analysis 

of the results and a comparison of these to calculations of the diesel generator LCOE is conducted in 
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section 3.5. For now, it is worth noting that the results confirm the general perception that fuel cells are 

associated with very large initial costs captured by total installed costs in the present calculation. Simi-

larly, the calculations verify the second general assumption that fuel cells have relatively low operational 

and maintenance costs; the resulting LCOE excluding CAPEX amounts to no more than 89 USD per 

delivered MWh. 
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LCOE Model for Fuel Cell System 

Results   PEM Fuel Cell Characteristics     Assumptions   

PV of Costs 25,025   Absolute Yearly Heat-Rate Increase 216.54   Nameplate Capacity (kW) 2.50 

Annual Levelized Cost 1,668   Absolute Yearly Capacity Degradation 0.00   Capacity Factor 0.25 

Average Delivered kWh 5,366   Annual Fixed O&M (USD) 315.75   Run Time per Year (Hours) 2,190 

LCOE excluding CAPEX 87   Annual Variable O&M/kWh (USD) 0.04   Variable O&M Escalation Factor 0.02 

LCOE (USD/kWh) 311   Losses Multiplier 1.00   Electrical Efficiency 29.00% 

        Outage Multiplier 0.98   Heat-Rate 11,769 

        Instant Installation Cost (USD) 2,500   Methanol/H20 Ratio 0.68 

        Production Cost (USD) 12,157   Methanol BTU/Gal 56,800 

For Reference   Sales Margin 0.28   Methanol Fuel Price (USD/kg) 0.34 

PV Fuel Costs 3,861   Total Installed Cost (USD) 18,061   Methanol Fuel Price (USD/MMBTU) 8.78 

PV Fixed & Variable O&M 3,103   WACC 15.96%   Growth Rate for Methanol Prices 2.43% 

System Figures 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Capacity   2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Yearly Nominal kWh   5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 

Yearly Delivered kWh   5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 

Heat-Rate after Degradation 11,769 11,986 12,202 12,419 12,635 12,852 13,068 13,285 13,501 13,718 13,934 14,151 14,367 14,584 14,801 

Fuel Consumption, MMBTU 63 64 65 67 68 69 70 71 72 74 75 76 77 78 79 

OPEX                                 

Fuel Costs   568 593 618 644 671 700 729 759 790 822 855 890 925 962 1,000 

Fixed O&M Costs   316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 

Variable O&M Costs   219 223 228 232 237 242 247 251 256 262 267 272 278 283 289 

Fixed & Variable O&M Costs 535 539 544 548 553 557 562 567 572 577 583 588 593 599 605 

Net Cost Streams 18,061 1,103 1,132 1,162 1,192 1,224 1,257 1,291 1,326 1,362 1,399 1,438 1,478 1,519 1,561 1,605 

Present Values                                 

Discount Factors 1.00 0.86 0.74 0.64 0.55 0.48 0.41 0.35 0.31 0.26 0.23 0.20 0.17 0.15 0.13 0.11 

PV of Cost Streams 18,061 951 842 745 659 584 517 458 406 359 318 282 250 222 196 174 

Table 3.14: LCOE Model for Fuel Cell System. Sources: Own work. 
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3.4. Cost of Energy Generation Model: Diesel Generator 

Having analyzed the cost structure of the PEM fuel cell system, its high associated CAPEX and rela-

tively low OPEX, we now turn to a similar analysis of the conventional backup power source, namely 

diesel generators. As noted, one of the main motivating factors for this thesis is the recent billion-dollar 

contract between Intelligent Energy and GTL Limited, in which Intelligent Energy has committed to 

provide around 27,000 fuel cell systems in the coming 10-year period. But what about the existing 90% 

of the total approximate 425,000 cell towers at which diesel generators are currently deployed? What 

are the current costs of backup power today? 

To evaluate whether fuel cells are, or at some point in the future will be, an economically sound 

choice, the present costs of conventional backup electricity supply must be understood. To do this, we 

apply the same cost of energy generation model as for fuel cells with the necessary assumptions taken 

into account. It is the utmost purpose to perform the cost analysis on the highest level of comparability 

in order for our findings to be as relevant as possible for actual decision making. Having said that, we, 

and the reader, must acknowledge that the calculations can, by no means, be better and more precise 

than the inputs and available data allow for.  

While the cost of energy generation model for fuel cells rests on inputs from the Ernest Orlan-

do Lawrence Berkeley National Laboratory study, in which data is collected from a wide array of fuel 

cell manufacturers, data on the diesel generator cost of generation model will (mainly) be based on an 

Indian case study performed by Intelligent Energy (2012) (see appendix 1). Albeit data on expenditures 

for diesel generators originate from a fuel cell producer and thus calls for careful evaluation, the case 

study is indeed based on surveys from actual Indian cell tower cites and dealers of products providing 

electricity to these towers, which makes the study highly relevant in the rather specific setting of this 

thesis. The study is presented by Grupe Spécial Mobile Association (GSMA), a worldwide organization 

representing the interests of mobile operators, handset and device makers, software companies, equip-

ment providers and internet companies as well as organizations in adjacent industries (GSMA 2016), 

manifesting the credibility of the study. Additionally, data on e.g. fuel consumption and costs of acquir-

ing such a generator has been crosschecked with multiple sources (see e.g. AbleSales 2014 and Clickin-

dia 2016) to further validate the data quality of the study.  
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3.4.1. Assumptions 

Before proceeding with the actual calculations, a few notes on some of the assumptions will be set 

forth. The first important issue to note is that cost figures, quoted in INR, from the 2012 study has 

been inflated with Indian inflation (Statista 2016) for the period 2012-2014 and exchanged at the 3-year 

average exchange rate. This has been done in order ensure that data on both electricity generation 

sources remain comparable and rely on the same base year i.e. 2014. Secondly, a number of assump-

tions on e.g. fuel price (and its growth rate) rely on inputs from sources outside the study. Lastly, a set 

of assumptions have been replicated across the two systems due to either lack of generation source 

specific data or for simplicity (see section 3.2.).  

3.4.2. CAPEX and OPEX 

As opposed to the analysis of the production costs of the fuel cell system, we will not go into detail 

with the components and its costs of the diesel generator system. First of all, the diesel generator mere-

ly serves as cost comparison reference to the price of conventional backup power to the cell sites. Sec-

ondly, as the aim of the thesis is to analyze the decision to replace the conventional generators, one 

should compare the fuel cell LCOE to the LCOE of diesel generators excluding the landed costs of buy-

ing and setting up the system. Nonetheless, and for reference, the landed cost of the diesel generator is 

presented in the calculations. OPEX is decomposed by (1) fixed O&M which includes preventive 

maintenance as well as minor and major overhauls, (2) variable O&M constitutes unscheduled mainte-

nance and (3) fuel costs. Based on talks to DPS, variable O&M costs for fuel cells are estimated to 

growth 2% a year, which likewise has been assumed for diesel generators. 

3.4.3. Fuel and Efficiency 

Data on the Indian diesel fuel price is calculated as an average of March 16, 2016 quoted prices across 

Delhi, Kolkata, Mumbai, and Chennai (IndianOil 2016) and exchanged to USD at the 3-year average 

exchange rate. The resulting figure used for calculations is 0.84 USD per liter of diesel. The price in-

cludes the cost of fuel delivery, which based on the Indian study is estimated to be 0.04 USD per liter. 

Fuel price growth rate is derived as the compound annual growth rate from the period 2002-2015 

based on yearly prices as quoted by IndianOil (2016) and amounts to 6.99%. While concerns on wheth-

er the CAGR for the chosen time frame is a representative measure of future price increases is deliber-
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ate, it is chosen to remain consistent with data on price development for methanol, which has been 

gathered for the same 12-year period.  

The study from 2012 reports that fuel consumption is estimated to 1.8 liters per hour in order 

to supply the cell tower at 2.5 kW. This implies a diesel generator efficiency of just below 14%, which is 

much lower than regular reported efficiencies for diesel generators. Normally, efficiencies and size of 

the system is positively correlated, with variations in efficiencies being much lower for bigger systems. 

For up to 62.5 kVA (50 kW) systems, efficiencies vary between 20-60% due to differences in engine 

type and technology (Shakti 2014). Nonetheless, the efficiency of 13.98% applied to the present calcula-

tions is based on the fuel consumption input from the study and the physical energy in diesel in line 

with the following argument: the physical energy of diesel is 129,500 BTU per gallon, or 34,168 per liter 

(Gable 2014). By definition 1 kWh amounts to 3,413 BTU, which implies that providing 2.5 kWh must 

equal a total energy use ≈ 8,600. BTU. As the diesel generator consumes 1.8 liters of diesel (61,503 

BTU) per hour, the implied efficiency is 8,600/65,541= 13.98%.  

3.4.4. Results 

Below, the levelized cost calculations are presented. The data and calculations resemble a 10 kVA diesel 

generator used to supply one cell tower with 3 Base Transceiver Stations requiring an energy output of 

2.5 kWh. 
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LCOE Model for Diesel Generator 

Results   Diesel Generator Characteristics     Assumptions   

PV of Costs 16,750   Absolute Yearly Heat-Rate Increase 449.06   Nameplate Capacity (kW) 2.50 

Annual Levelized Cost 1,117   Absolute Yearly Capacity Degradation 0.00   Capacity Factor 0.25 

Average Delivered kWh 5,366   Annual Fixed O&M (USD) 556.45   Run Time per Year (Hours) 2,190 

LCOE excluding CAPEX 161   Annual Variable O&M/kWh (USD) 301.14   Variable O&M Escalation Factor 0.02 

LCOE (USD/kWh) 208   Losses Multiplier 1.00   Electrical Efficiency 13.98% 

        Outage Multiplier 0.98   Heat-Rate 24,406 

        Instant Installation Cost (USD) 0.00   Diesel/H20 Ratio 1.00 

        Production Cost (USD) 3,764   Diesel BTU/Gal 129,500 

For Reference   Sales Margin 0.00   Diesel Fuel Price (USD/kg) 0.86 

PV Fuel Costs 3,861   Total Installed Cost (USD) 3,764   Diesel Fuel Price (USD/MMBTU) 6.63 

PV Fixed & Variable O&M 3,103   WACC 15.96%   Growth Rate for Diesel Prices 6.99% 

System Figures 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Capacity   2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Yearly Nominal kWh   5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 5,475 

Yearly Delivered kWh   5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 5,366 

Heat-Rate after Degradation 24,406 24,855 25,304 25,754 26,203 26,652 27,101 27,550 27,999 28,448 28,897 29,346 29,795 30,244 30,693 

Fuel Consumption, MMBTU 131 133 136 138 141 143 145 148 150 153 155 157 160 162 165 

OPEX                                 

Fuel Costs   929 1,012 1,102 1,200 1,306 1,422 1,547 1,682 1,829 1,988 2,161 2,348 2,550 2,769 3,007 

Fixed O&M Costs   556 556 556 556 556 556 556 556 556 556 556 556 556 556 556 

Variable O&M Costs   307 313 320 326 332 339 346 353 360 367 374 382 390 397 405 

Fixed & Variable O&M Costs 864 870 876 882 889 896 902 909 916 924 931 938 946 954 962 

Net Cost Streams 3,764 1,792 1,882 1,978 2,082 2,195 2,317 2,449 2,591 2,745 2,912 3,092 3,286 3,496 3,723 3,969 

Present Values                                 

Discount Factors 1.00 0.86 0.74 0.64 0.55 0.48 0.41 0.35 0.31 0.26 0.23 0.20 0.17 0.15 0.13 0.11 

PV of Cost Streams 3,764 1,546 1,399 1,269 1,152 1,047 953 869 793 724 662 607 556 510 469 431 

Table 3.15: LCOE Model for Diesel Generator. Sources: Own work. 
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The LCOE calculations results in a price of 208 USD/MWh for the 10 kVA diesel generator. This is 

the levelized cost of energy each year during the lifetime of operation. Not surprisingly, the difference 

in the USD/MWh price between calculations with and without the landed cost is not significant and 

amounts to 208-161 = 47 USD. This finding confirms the general perception that diesel generators are 

inexpensive to acquire but very costly to operate. Further analysis of the LCOE findings will be pre-

sented and compared to the fuel cell LCOE calculations in the next section. 

3.5. Cost of Energy Generation Model Comparison 

Having carried out descriptions of the cost of energy generation model, its assumptions, and calcula-

tions for the HT PEM fuel cell and diesel generator system respectively, this section is devoted to an 

analytical comparison of the results. In practice, the two separate systems should act as perfect substi-

tutes with regards to energy generation for telco towers in time of grid outages. Motivated by the recent 

billion-dollar deal between Intelligent Energy and GTL Limited, it has been of particular interest to an-

alyze, purely from an economic perspective, if and to which extend the fuel cell system is cost competi-

tive compared to the diesel generator. Notably, we analyze the situation in which the diesel generator is 

already in place as the case is for the vast majority of tower cites today. The resulting fact is that the 

costs of buying and installing the system, total installed cost, is disregarded for the diesel generator. 

The overall conclusion of our LCOE calculations is, not surprisingly, that the fuel cell system is 

comparably more expensive to buy, install, and operate than the diesel generator currently in place. At 

311 USD per delivered MWh, the fuel cell system cost is far beyond that of the installed diesel genera-

tor operating at a levelized cost of 208 USD per delivered MWh. While other LCOE studies of fuel 

cells report costs as low as 106-167 USD per MWh for a 2.4 MW system (Lazard 2015), one should 

acknowledge the vast impact of system size and application on final levelized cost. Therefore, it can be 

difficult to compare LCOE findings of the particular study to circumstances outside the Indian telco 

tower case. 

As mentioned earlier, the WACC should be expected to impact the results to a large extend. 

Evidently, this is indeed the case for the LCOE calculations presented here. The LCOE of both sys-

tems are highly sensitive to the applied WACC and span from 345-296 for the HT PEM fuel cell, 

which corresponds to a 14 percent decrease in the LCOE due to a 10 percentage point WACC in-

crease. For the diesel generator, the percentage gap is even wider; the LCOE decreases 36 percent as a 
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consequence of a similar 10 percentage point WACC increase. The reason for these differences will be 

addressed below. 

 

The obvious price difference between the fuel cell and the diesel generator explains why diesel genera-

tors have been the primary backup power source, and wisely so. On the contrary, the immediate price 

tells nothing about the underlying cost drivers of each system. Albeit CAPEX is disregarded from the 

replacement decision, figure 3.6. presents the LCOE of each generation source as a percentage split 

between three categories: CAPEX, fixed and variable O&M, and fuel costs, to achieve a more detailed 

picture of the total LCOE. Evidently, CAPEX is by far the largest contributor accounting for 72 per-

cent of the overall LCOE of the fuel cell. On the contrary, fuel costs and O&M costs amounts to just 

16 and 12 percent respectively. For the diesel generator, if one were to buy and install the system today, 

the CAPEX would only represent 22 percent of the lifetime LCOE whereas fuel costs and O&M costs 

corresponds to 48 percent and 30 percent. 
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Figure 3.2: LCOE sensitivity to WACC. Source: own work.
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The actual dollar comparison is shown in figure 3.4, presenting the total LCOE as well as LCOE ex-

cluding CAPEX for both systems.  

 

The main conclusion to be drawn is similar to above; the costs of replacing the diesel generator with 

the fuel cell system today by far outweighs those of keeping the diesel generator. However, the figure 

also visualizes the comparative LCOE of operating each system, and these costs are evidently much 

lower for fuel cells at 87 USD per MWh compared to 161 for the diesel generator. This finding under-

lines the fact that the high costs associated with the production of fuel cells are indeed the main chal-

lenge to the commercialization of the system and thus the reason for a lower impact of WACC as 

CAPEX expenditures are incurred immediately. The motivation for further understanding of the pro-
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duction of fuel cells and particularly learning effects, which could potentially lead to decrease of these 

should hereby be clear. 

3.6. Extensions to the LCOE Calculations 

Currently, the levelized costs are based on assumptions unique to our project, yet it is not difficult to 

extent the calculations with even more inputs. As Carson (2013) discusses, policy makers might impose 

environmental taxes for certain technologies or subsidize renewable energy projects in a given time pe-

riod. Such modification will clearly change the costs (and revenue) of generating electricity. While it is 

straightforward to include such subsidies, this project intends to evaluate whether or not it makes no 

sense to replace diesel generator with fuel cells without any external factors causing one or the other to 

have a special economic cost advantage. Also, despite the Indian Ministry of New and Renewable En-

ergy’s (2016) strong focus on fuel cell technology in the Chemical Sources of Energy Programme, there 

is no evidence supporting economic incentives or preferential tax treatments to tower companies re-

placing diesel generators with fuel cells. 

 Shimon Awerbuch (1993, 1995, 1996) argues that the use of a firm’s WACC in evaluating ener-

gy projects can lead to distorted results and hence sub-optimal decisions. In Awerbuch’s words (1996: 

127), the traditionally employed WACC is based on assumptions “… held in previous technological 

eras when technologies were expense intensive and technological progress was low. The attributes of 

renewables, however, do not lend themselves to traditional cash-flow based valuation.” According to 

the reasoning, there is a significant difference in discounting cost streams and net cash flows of the 

firm. Using the firm’s WACC actually tends to over-estimate the real discount rate for which reason a 

different approach is suggested. Because the WACC does not take into account whether costs are e.g. 

cyclical, counter-cyclical, or fixed, it is suggested that project costs should have separate discount rates. 

Transferring such intuition to this project’s levelized costs could then be built on four different cost 

categories: (i) fuel costs, (ii) other risk-free costs, (iii) debt equivalent costs, and (iv) cyclical costs. 

 On the first category, (i) fuel costs might be zero for certain renewable energy technologies (e.g. 

solar photovoltaics or wind power), but they are an important expense for both the fuel cell and diesel 

generators. It could therefore be interesting to see how discounting by a more reasonable rate changes 

its weight in the final LCOE split. As Bolinger, Wiser, and Golove (2006) demonstrate, gas has a nega-

tive or close to zero value of beta, which makes the price of such counter-cyclical. In other words, posi-

tive economic growth is associated with downward pressure on gas prices, according to their estimates. 

Or as Awerbuch (1995: 60) puts it, “… higher fuel prices have historically caused the economy, and 
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hence the returns on other assets, to decline.” Whether that is true, and to which extent the same could 

be said about the beta of methanol, could be investigated in order to discount fuel costs by a market-

rate different from the conventional WACC. Secondly, (ii) risk-free costs, such as e.g. depreciation tax 

shelters and other tax benefits, will accrue over time for which reason they can be discounted at the 

after-tax risk-free rate. Thirdly, (iii) debt equivalent costs cover fixed maintenance and fixed contractual 

obligations, which also are incurred in both setups. As the outlays of such is made given a sufficient 

amount of electricity generation (and hence revenue to cover that), debt-equivalent costs should be dis-

counted at a rate close to the firm’s cost of debt. Finally, (iv) cyclical costs include variable O&M, 

which, ceteris paribus, changes with output and levels of economic activity. According to Awerbuch, a 

more correct estimate is thus based upon a beta estimate against the market, or one could approximate 

by using a post-tax WACC. 

 Altogether, such extensions will levelize the costs for both backup systems differently. One 

scholar from Copenhagen Business School employs such a method in his LCOE on gas turbines and 

solar photovoltaics, in which project Nicolet (2010) yields significantly different results. In the market-

modified LCOE framework, present value of fuel costs contributes most notably to an overall high in-

crease in cost of energy generation. Considering the effect of Nicolet’s model, it could be interesting to 

investigate to which extent discounting fuel costs for gas and methanol differently would change their 

overall contribution to each technology’s levelized costs. All else equal, fuel costs are currently a larger 

part of the costs for the diesel generator than methanol is for fuel cell. So, following the analogy from 

Nicolet’s findings, extending the LCOE calculations with the inputs of Awerbuch as well as Bollinger 

and colleagues could close the cost gap between the technologies remarkably. Therefore, if LCOE 

modeling in the telco market for Indian backup power is the core aim of other researchers, these find-

ings motivate a closer look into these suggestions, yet for the purpose of this project, the results are 

found robust and plausible to use and approach the replacement decision in a learning effect and real 

options environment in the following chapters. 

3.7. Shortcomings of Levelized Costs: A Motivation for Options Approaches? 

Throughout the modeling of LCOEs on fuel cells and diesel generators it has become clear that lev-

elized costs are notoriously sensitive to inputs. In other words, this paper’s assumptions depend heavily 

on the authors’ own assessments and DPS’ inputs, and replicating the calculations in one year’s time 

from now would most likely change the cost of energy notably. Capital costs can change rapidly, fuel 

prices are constantly evolving, potential subsidies and tax credits might distort the picture, and other 
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factors are likely different from today. In addition, all else equal, the employed discount rate is crucial to 

the calculation as well. Applying similar assumptions outside the setting of this project would not yield 

a reliable result. More weaknesses of the framework could continue to be listed, yet the overall message 

is explicit. As Carson (2013: 139) writes: “… the costs of complexity can become quite high”, or one 

could state instead that replacing diesel generators with fuel cells at Indian telco tower sites involves a 

(high) degree of uncertainty. 

3.7.1. Applying Real Options to Electricity Generation Projects 

Without presenting the theoretical framework of real options thoroughly, the cost gap between the two 

technologies calls for different investment criteria than an LCOE methodology to justify replacement. 

One interesting aspect of fuel cells is assessing whether the technology is fully commercialized, or if 

there are cost reductions to be expected. If there is value in delaying the replacement decision to a 

point in time at which the benefits of deploying fuel cells outweigh the costs of operating diesel genera-

tors, then a real options framework could help to evaluate when such decision should or could be 

made. On such reasoning Carson (2013: 140) comments that “the options revolution in finance has 

spread to the valuation of real assets, including those involved in energy production.” Some of the un-

certainties associated with fuel cells could therefore be included (and contained) by a real option. 

 In Dixit and Pindyck’s (1994) book on “Investment under Uncertainty” particularly four condi-

tions are suggested to be honored before real options techniques are deemed appropriate. Firstly, (i) 

uncertainty about investment outcome, which can be partially met or limited by (ii) managerial flexibil-

ity and the possibility to abandon or delay a project. This extends to the third criteria and (iii) the in-

vestment being totally or partially irreversible, with (iv) asymmetric payoffs. To the conditions, 

Bräutigam et al. (2003) emphasize the importance of criteria (i) and (ii) to signal the presence of options 

most notably. In the fuel cell case there are many uncertainties associated and indeed an opportunity 

for the decision maker to be flexible about timing and scale, as opposed to DCF and LCOE valuation. 

In such case, “… real options theory offers a useful approach for the appreciation of uncertainty over 

time” (Kumbaroglu et al. 2008: 1883). 

 With the real options framework conceptualizing a “value of waiting,” it becomes particularly 

interesting to establish which learning (curve) fuel cells exhibit, among other technologies. In the next 

two chapters, the thesis will therefore investigate the extent to which learning effects occur for fuel cells 

and how these can be implemented into real options modeling. Then, one will be able to understand 

the diffusion possibilities of fuel cells in the Indian telco market more clearly. 
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4. LEARNING EFFECTS 

In the previous chapter, levelized costs are estimated to compare the two technologies if the decision to 

choose backup power had to be taken today. Nonetheless, the LCOE model does not capture any as-

sessment of past cost reductions, nor considerations about how such might influence the future. To 

address historical costs and development in installed cumulative capacity of fuel cells, this chapter in-

troduces the concepts of learning effects and progress rates. Firstly, the theoretical background of 

learning is established after which literature on comparable technologies is reviewed. In this way, esti-

mates on other progress rates can be compared to the one obtained from PEMFC production. Second-

ly, empirical data is gathered and used to estimate fuel cell learning. In this process, corrections for in-

flation, economies-of-scale, and platinum prices are undertaken to finally model the learning curve. 

Consequently, a progress rate, a learning rate, and the uncertainty of such are yielded. Finally, before 

embarking on the real options framework, limitations of the learning curve are briefly evaluated.  

4.1. Definition of Learning Effects 

Within the field of human psychological, the acquisition of knowledge is in its simplest form labelled as 

learning, or put differently, learning is the product of experience. It is a process of learning-by-doing and 

the repeated efforts to solve a particular problem; learning only takes place during activity (Arrow 

1962). As a related concept, the learning curve originates from the observation that productivity increases 

as more units of a given product are produced. The concept dates back to year 1936 in which Wright in 

his paper “Factors Affecting the Cost of Airplanes” report that unit labor costs in air-frame manufac-

turing decrease considerably with accumulated experience measured as cumulative production. 

Since then, the effects of learning, learning-by-doing, the learning curve, the process of learning, 

and the experience curve has been investigated widely. In practice this broad range of labels covers the 

same intuition that productivity increases with experience gained during repetitive and cumulative pro-

duction. Nevertheless, there are some distinctions in the actual definitions among these labels. Baptized 

by Wright (1936), the learning curve originally covered solely the changes in productivity of direct labor 

due to experience gained in cumulative production within a manufacturing plant. Later on, the concept 

of learning curve was broadened as an experience curve, first labelled in 1966 by the founder of Boston 

Consulting Group, Bruce D. Henderson, in which not only labor but all manufacturing costs were in-

corporated (BCG 1974). The experience curve covered the view that accumulated experience at early 



Valuing Learning Effects as a Real Option  Lange & Poulsen 
MSc in Applied Economics and Finance  Copenhagen Business School 
 

54 

 

technological stages can act as a strategic tool to maximize profitability of firms and market share. 

Some distinguish the learning curve and the experience curve through the dependent variable(s); labor 

cost per unit (learning curve) and direct cost per unit including production, labor, distribution, etc. (ex-

perience curve) (Policonomics 2016). 

Recently, Bahk & Gort (1993) decomposed learning by doing into “organizational learning”, 

“capital learning”, and “manual task learning” in efforts to reach a more nuanced picture of the drivers 

of decrease in manufacturing costs. Regardless of the scope of definition of the effects of learning, the 

notion that unit costs decrease by a constant factor as a result of accumulated production remains the 

same. In this project, we adopt the view that learning and thus decreases in cost can originate from in-

creases in labor productivity, production methods, capital inputs, distribution and so on. 

4.1.1. Mathematical Definition 

To be more concrete, the learning curve is quantified through an operationalization of experience 

(learning) as the explanatory variable using cumulative production as a proxy. While it may be argued 

that learning takes place over time, it is important here to note that time is not a direct cause of learning; 

it is the repetitive activity and accumulated experience that translates into increased productivity. Anal-

ogously, “unlike a fine wine, a technology design that is left on the shelf does not become better the 

longer it sits unused” (McDonald & Schrattenholzer 2001: 255). The effects of learning and technolog-

ical improvement act as the dependent variable measured as changes in production costs due to cumu-

lative production. The model is described by: 

Ct	=	C0
qt

q0

-b

 EQ 4.1 

in which C is unit cost at time t, q is cumulative production and b is the learning coefficient which can 

be determined through regression tools. The learning coefficient implies the following two relation-

ships: 

pr	=	2-b EQ 4.2 
 

lr	=	 1-pr  EQ 4.3 

where the progress rate, pr, is the unit cost in relative terms expressed as a percentage left after cumula-

tive production has doubled, so that the learning rate, lr, (also in percentage) is the relative cost reduc-
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tion after a doubling in cumulative production (Nemet 2006). It is important for the reader to grasp 

that production costs decrease at a faster pace with lower progress rates while the opposite is true for 

learning rates. 

The learning curve implicitly hypothesizes that production costs decrease at a constant rate eve-

ry time cumulative production doubles. The relationship between learning and cost reductions is a 

power function, figure 4.1(a), and therefore a linear, downward-sloping curve on a double-logarithmic 

scale, figure 4.1(b): 
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Hypothetically exemplified in figure 4.1., initial production costs of the first unit may amount to 100 

with a learning coefficient b of -0.2, which corresponds to the (negative) downward slope of the power 

function. Using equation 4.2 the progress rate equals 87.1% meaning that production costs decrease by 

just below 13% (1-0.871) each time cumulative output has doubled. 

4.1.2. Learning Effects Measure: Production Costs 

While the following may seem obvious to some, it must be stated explicitly that, for the present learn-

ing effects analysis, unit production cost will serve as the measure of learning and dependent variable.  

Due to potential challenges with regards to reliable data collection as such data are typically 

kept in discretion by firms, one may be tempted towards the use of unit price. Prices however, can be a 

very imperfect and misleading measure of costs due to a number of reasons. One example is the case of 

Brazilian ethanol price developments between 1979-1995 analyzed by Goldemberg and colleagues 

(2004). Despite overall price reductions during the period (progress rate of 70% between 1980-1992 

and 90% in the years afterwards), a closer look at the data suggest that price movements, both up- and 

downwards can largely be attributed to changes in international oil prices, as opposed to effects of 

learning (McDonald & Schrattenholzer 2001). While cumulative production of ethanol did increase sig-

nificantly during the investigated time frame, prices may very well have been a result of factors outside 

the variables in the model. 

Another example of outside factors interrupting the learning rate estimations is the worldwide 

study on gas turbine combined cycle (GTCC) power plants between 1981-1991 by Ulrika Claeson in 

1999. Although the authors of this thesis have not had access to her study, McDonald & Schrat-

tenholzer (2001) report that instead of investment costs, she investigates the concrete investment price 

related to the construction of such plants and actually concludes on a -11% learning rate for the period. 

As noted, one possible explanation to the increase in investment prices of GTCC power plants is not 

technological deterioration; it is the oligopolistic pricing behavior imbedded in the industry during the 

period.  

In general, market-oriented factors can impact pricing to a much larger extend than technologi-

cal improvements and thereby production costs, which in turn can make the effects of learning appear 

much different than they actually are. Only in the idealized case, where competitive and stable markets 

and constant margin are present, it can be expected that the shape of the price curve and cost curve 

move in tandem (Colpier & Cornland 2012). To depict the more common case, consider figure 4.2., 
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which portrays a general relationship between production costs and pricing, with the same independent 

variable on the horizontal as for the learning curve i.e. cumulative production. 

 

Note how price in some instances are set below production costs for low levels of production (devel-

opment phase), which can be a tool for manufacturers to establish a market for a new product in the 

anticipation of lower production costs later on. Subsequently, prices can remain at considerably higher 

levels than costs due to benefits of low competition as a consequence of first-mover advantages and 

the effects of learning accumulated in the production. In mature stages (stability phase), as competition 

become fierce with more players in the market, prices tend to move towards production costs and fi-

nally reach perfect competition at which price equal marginal cost according to classic microeconomic theo-

ry. 

In short, the examples above underline the obvious but important point that the dependent 

variable in the estimates of learning effects must be production costs rather than price since a wide ar-

ray of forces can impact pricing and disturb the true effects of learning. 

4.1.3. Learning Effects and Technological Development Stages 

As shown above, the stage of development for a particular technology can impact its price and distract 

the estimations of true effects of learning if these are based on the relationship between cumulative 

production and price. On the other hand, technological development stages can contain valuable in-
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formation for the learning effects estimations, even when estimations are based correctly on production 

cost data. 

Stylized stages of technological development  

Stage Mechanisms Cost Learning rate 

Invention 
Seeking and stumbling upon 
new ideas; breakthroughs; 
basic research 

High, but difficult 
to attribute to a 
particular idea or 
product 

Unable to express in 
conventional learning 
curve 

Innovation 
Applied research, develop-
ment and demonstration 
(RD&D) projects 

High, increasingly 
focused on par-
ticular promising 
ideas and products  

Unable to express in 
conventional learning 
curve; high (perhaps 
>50%) in learning 
curves modified to 
include RD&D  

Niche market 
commercialization 

Identification of special niche 
applications; investments in 
field projects; “learning by 
doing”; close relationships 
between suppliers and users 

High, but declining 
with standardiza-
tion of production 

20-40% 

Pervasive diffusion 

Standardization and mass 
production; economies of 
scale; building of network 
effects 

Rapidly declining 10-30% 

Saturation 

Exhaustion of improvement 
potentials and scale econo-
mies; arrival of more effi-
cient competitors into mar-
ket; redefinition of perfor-
mance requirements 

Low, sometimes 
declining Close to 0% 

Senescence 

Domination by superior 
competitors; inability to 
compete because of ex-
hausted improvement poten-
tials 

Low, sometimes 
declining Close to 0% 

Table 4.1: Stylized stages of technological development. Source: Grübler et al. (1999) and own work 
 

Attempts to distinguish different stages of technological development have, among others, been carried 

out by Grübler et al. (1999), who outline six distinct phases; invention, innovation, niche market com-

mercialization, pervasive diffusion, saturation, and senescence (table 4.1.). In connection to learning 

effects, the interesting argument here is that learning rates are substantially higher for technologies at 

early development stages (20-40% for niche market technologies and potentially above 50% at earlier 

stages). Naturally, this makes sense as technologies at these stages are not well understood quite yet and 

plentiful room for improvement exists. On the flipside, infant technologies with high potential learning 
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rates are associated with high levels of uncertainty and as Grübler et al. postulate, both potential for 

improvement and whether the technology will reach widespread commercialization are associated with 

high levels of uncertainty. Nonetheless, and of particular interest for the case of fuel cells, they further 

note that “Learning rates in manufacturing, including production of energy-related technologies, mainly 

vary from 10 to 30%. In some cases, typically at the early stages of commercialization of a technology, 

learning rates approaching 50% have been observed” (Grübler et al. 1999: 253). While the task to de-

termine the exact development stage of fuel cells at present may be a difficult and arbitrary task, it is 

fairly safe to assume that the technology situates somewhere between “innovation” and “pervasive dif-

fusion”. 

4.2. Learnings Effects of Other Technologies 

At this stage, we have briefly touched upon concrete examples of estimated learning curves for distinct 

technologies. It has been shown how factors outside the cost of production have influenced the learn-

ing effect estimates of ethanol prices in Brazil, in which international oil price volatility were the main 

cause (Goldemberg 1996), and of GTCC power plants where an oligopolistic market structure seems to 

have been the main driver of investment prices as opposed to the true costs of such investment. Fur-

thermore, we have recognized how stages of technological development may influence the learning rate 

and how early-phase technologies may be subject to steeper learning curves albeit higher degrees of 

uncertainty regarding whether such costs reductions may be realized and achievement of wide-spread 

commercialization. 

We now turn to a deeper analysis of learning curves previously estimated for other technologies 

to reach conclusions on whether such estimates can provide helpful insights for the subsequent learn-

ing effects estimates for the HT PEM fuel cell technology. 

In the literature of learning effects, the Dutton & Thomas (1984) article is one of the most 

widely cited studies, in which they collect data on more than 100 studies of progress ratios across man-

ufacturing industries such as electronics, machine tools, automobiles and system components (see fig-

ure 4.3.). Each of the studies are estimates of the progress rate based on unit (or average) cost of pro-

duction as a function of cumulative production and thus fulfill the condition proposed earlier; learning 

effects must be measured based on production costs rather than unit prices. 
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Evidently there are large variations in the estimated progress rates. To recap, the progress rate is the 

percentage cost of production left each time cumulative production doubles. Albeit widely dispersed, 

the distribution of progress rates is somewhat bell-shaped with the majority of observations in the 

range 71-90%. 

The sources of learning can be manifold meaning that it can be a difficult task to determine ex-

actly how and why costs of production decrease. In principle, repetitive production could take place 

without the occurrence of learning but this contrasts the general perception that human effectivity has 

increased since the early days of our existence. Some plausible causes of learning are presented in the 

adjacent table. 

Sources of learning effects  

Autonomous Learning Induced Learning 

Exogenous origins  

General growth in scientific and technical knowledge 
that flows freely into the firm. 
Continuously improving productivity gathered when 
a firm periodically replaces its equipment. 

Learning of capital goods’ suppliers induced by 
the users’ experience with the equipment. 
Investment in improved capital good in order 
to hasten the rate of progress. 
Copying and adapting the technological innova-
tion of a successful competitor 
 

Endogenous origins  

Direct-labor learning due to the “practice-makes-
perfect” principle or wage-incentive-plan. 
Routine production planning. 

Increased tooling. 
Manufacturing process changes. 
Model or product design changes to effect effi-
ciencies. 

Table 4.2: Sources of learning effects. Sources: Dutton & Thomas (1984) and own work. 
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The sources differ in whether they originate from within the firm (exogenous) or from outside constit-

uencies (endogenous) and in whether they arise autonomously or due to inducement by others. While 

investigating the exact causes of learning is an attractive endeavor (see Dutton & Thomas and their re-

viewed literature for a detailed presentation of each of the sources of leaning effects), it is outside the 

scope of this project; learning will be treated as an overall concept independent from the concrete 

origin and cause. 

4.2.1. Learning Effects of Energy Technologies 

While Dutton & Thomas (provide a highly acknowledged proof that learning rates do exist among a 

wide array of manufacturing industries, one may question its explanatory power in relation to estimat-

ing learning effects for electricity-generating technologies. To accommodate such concern, it may pro-

vide superior insights to turn to studies on learning rates of technologies specifically within the energy 

industry. McDonald & Schrattenholzer (2001) carry out an analysis of learning rates of 26 energy tech-

nologies and reach results highly comparable to those of Dutton & Thomas’ (1984) non-industry spe-

cific study. The median learning rate, i.e. 1-pr, in the former study lies in the interval 16-17% while the 

median value for the latter lies within 19-20%. As they note, the results suggest that learning rates and 

their variations are a general phenomenon not restricted to particular industries and sectors. On the 

other hand, they also conclude that some of the estimates within the study is flawed by outside factors 

such as price swings (see Goldemberg 1996) and marketing strategies which is to be considered both 

random and inconsequential for long-term energy modelers. 

In a more recent study, the economics of the combined cycle gas turbine (or GTCC) and its 

experience curve has been analyzed (Colpier & Cornland 2002). The results (a progress rate of >100% 

between 1981-1991 and around 75% until 1997) are in itself not of particular interest; the estimates are 

based on investment prices of the GTCC plants, which, as touched upon earlier, possibly leading to 

flawed results mainly reflecting market developments. The interesting aspect of the study, in relation to 

the learning effects estimations for fuel cells, is the concluding remarks. The authors conclude that the 

GTCC technology under investigation is subject to limited gains in experience since variations in fuel 

prices and improvements in thermal efficiency can be expected to have higher influence on the costs of 

generating electricity than variations in the progress ratio. The generalization of this conclusion implies 

that energy technologies, for which capital costs are not one of the major cost drivers, cannot expect to 

have a large potential for future cost decreases in the foreseeable future. On the other hand, technolo-

gies for which production costs are the biggest component of the overall price of delivering electricity, 
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one can assume that the effects of learning of cumulative production may be significant in the future. 

To recall the findings of the LCOE calculations presented in chapter 3, the overall levelized cost of en-

ergy for the HT PEM fuel cell system is mainly driven by CAPEX and amounted to a total of 72% of 

the overall LCOE of 311 USD per delivered MWh. 

4.2.2. Learning Effects of Comparable Technologies 

Takeaways from the analyses of earlier learning effects studies show that the most valuable knowledge, 

with regards to estimating learning effects of the fuel cell technology, may lie within technologies of 

similar purpose and similar cost-structure. It has just been shown that technologies for which CAPEX 

constitutes the largest cost component has the biggest potential for future cost reductions. Albeit the 

learning curve empirically is phenomenon recognized for a wide array of technologies across many in-

dustries, it is assumed that electricity generation technologies must be considered as the greatest con-

tributor to the understanding of the learning effects of fuel cells as well. 

Photovoltaic (PV) solar modules and wind power, although representing very distinct technolo-

gies, share some of the same attributes as fuel cells; clean energy source and high initial capital costs. 

Moreover, both technologies have gone through a much longer-lived cost reduction process and as a 

consequence they are able to produce electricity at substantially lower costs compared to what fuel cells 

are able to as of today (Lazard 2015). 

Interestingly, some evidence exists that the potential for future fuel cells are indeed competitive 

to both wind and solar energy (Adamson 2015). Consider figure 4.3. below, which shows the USD per 

kW for a range of technologies at different stages of cumulative MW shipments. In 2014, the cumula-

tive shipments of PEM fuel cells surpassed 100 MW, at which point the costs of the technology com-

pared very well with the costs of wind and solar at the same cumulative shipment level. Note that the 

figure says nothing about the timing of the 100 MW cumulative shipments for solar and wind; the fig-

ure shows that the PEM fuel cell system was cost competitive at a similar shipment level as for the two 

technologies of comparison. 
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To understand the effects of learning on PV solar modules, Nemet (2006) analyses two comprehensive 

world surveys of PV prices in which learning rates of 26% and 17% are constructed respectively. The 

causes of the discrepancy in the estimates are not covered here, their studies are mainly presented to 

give the reader an understanding of the impact that such a difference in the estimates, which may seem 

small, may have in the longer term. Nemet (2006) shows that the two learning rates result in a 28-year 

difference in reaching a crossover point defined as a 0.30 USD per W threshold at which the costs will 

be competitive with conventional alternatives. In the former, the threshold will be reached in 2039 

while the same is true as late as in 2067. Whether 26% or 17% learning rate (or somewhere in between) 

is in fact the true rate is not to be concluded upon here, we merely note the vast impact on future cost 

conclusions that the learning rate estimates may have. 

In a more recent paper, the learning rate of PV solar modules and potential future levelized 

costs of electricity are bridged by La Tour et al. (2013). They model future prices of modules based on 

silicon prices, which constitutes one of the major cost component, and on a learning rate of 20.1% dur-

ing the period between 1990-2011. In the average scenario case, they find that module prices will fall 

from 1.52 USD/kWp in 2011 to 0.5 USD/kWp in 2020 of which increases in cumulative capacity (and 

thus learning effects) account for 75% while projected decreases in silicon prices account for 25%. 

With these projections in hand, they move on to estimate the LCOE of PV solar modules in 2020. To 

highlight the usefulness of their study in relation to the present PEM fuel cell project, consider the cost 

structure of the PV solar system as noted by the authors (2013: 346); “Module price accounts for 40% 

of the total price of an average system in 2011 […] 95% of the cost of a PV system over its lifetime is 

capital expenditure”. In chapter 3 we showed that for the Indian PEM fuel cell case, CAPEX accounts 

for 72% of the lifetime costs. 
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One of the key limitations of the LCOE model is that our findings are applicable only in a very 

specific setting i.e. the Indian telecommunications tower industry.  La Tour et al. (2013: 347) also states 

that “the differences in the results illustrate the importance of the geographic location”. Their projected 

LCOE calculations for the year 2020 ranges from 75-150 USD/MWh depending on different ASI lev-

els (2000 and 1000 respectively, where ASI is defined as Annual Solar Irradiation which is a measure of 

sunlight availability. 

To round off this section on learning effects of comparable technologies, we briefly report the 

results from the conceptual review and meta-analysis of studies of learning rates for wind power under-

taken by Lindman & Söderholm (2012). Their econometric analysis builds on 113 distinct estimates of 

learning rates presented in a total of 35 studies and thus implies a wide and general perspective on the 

effects of learning for the wind power technology. Specifically, the mean learning rate across the obser-

vations is 10.1% with a standard deviation as large as 6.83 and a minimum and maximum learning rate 

of -3 and 33% respectively. The authors then move on to the task of identifying the underlying drivers 

of learning rate estimates with a sub-division of independent variables as opposed to single-factor mod-

els in which all learning effects are captured in increases in cumulative production. From the range of 

independent variables, which among other include scale effect, time trend, and public R&D, the variable geo-

graphical scope has the greatest statistical significance and is the one of highest interest in relation to our 

project. The geographical scope (GS) is defined as the average fraction of cumulative capacity in a given 

country of total global capacity. They show that learning rate estimates, for which GS equals one i.e. 

where global cumulative capacity is considered, are statistically significantly higher than estimates based 

on country-specific cumulative capacity. As argued, one of the reasons for the difference is that indi-

vidual countries have much lower cumulative capacities, which implies that a doubling of capacity can 

take place at a faster rate, and thus result in lower estimates due to the way learning rates are calculated. 

The key takeaway for the study is, yet again, to show how different inputs to the learning rate 

estimates can impact the results to a great extent. Whether global or country-specific inputs on cumula-

tive capacity are the best reflection of reality, derives from the question of whether knowledge-

spillovers within the technology can be assumed to take place on a local or global basis. We will return 

to this question in more detail in coming sections. 
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4.2.3. Learning Rates of the Fuel Cell Technology 

While extensive research on the effects of learning for the fuel cell technology is yet to be done, some 

studies do exist and show that well documented learning rates found in many other industries also ap-

ply to fuel cells. Rivera-Tinoco et al. (2012) studied the learning curve for SOFCs which share many of 

the same characteristics with the PEM fuel cells (see chapter 2). Comparable to the present PEM analy-

sis for which BOP stands for 78% of production costs (see chapter 3), the authors estimated BOP to 

account for 64% of the manufacturing costs for a 5 kW SOFC system. They found learning rates of 

19% and 17% for 1 kW and 250 kW systems respectively. The interesting question is whether experi-

ence within one of the system sizes creates spillovers onto the other and vice versa. 

For the PEM fuel cell system specifically, and despite the fact that the study is carried out more 

than a decade ago, Tsuchiya & Kobayashi (2004) provides a noteworthy example of an attempt to esti-

mate the learning effects for the particular technology. One should note that their study was aimed at 

PEMFCs for automobiles with a power output of 50 kW. 

The authors decompose the learning rate of manufacturing costs into a subset of component-

specific learning rates; one for (1) power density, one for (2) membrane, electrodes, and bipolar plates 

combined, and one for (3) platinum loadings (platinum prices assumed constant). They further estab-

lish three scenarios for future costs decreases corresponding to rapid, moderate, and slow where the 

moderate case implies learning rates of 4%, 18%, and 8% for (1), (2), and (3) respectively (the authors 

report progress rates, which for clarity reasons has been converted to learning rates here). From an ini-

tial starting point of a USD/kW cost of 1,833 in the year 2000, they estimate a future cost of 38 

USD/kW in 2020. 

These estimates may seem rather optimistic to the reader. To shed light on estimates, one may 

consider the underlying assumption, which suggests that a deployed base of 40 fuel cell automobiles in 

Japan in the year 2000 would increase to 5 million in 2020. As a reference, two of the most prominent 

fuel cell automobile producers, Honda and Toyota expect to sell 200 and 2,000 total fuel cell-powered 

vehicles in 2016 (Edelstein 2015). Despite highly ambitious and perhaps a tint unrealistic, the study ex-

emplifies the potential development for the technology if deployment on a wide-scale basis is in the 

realm of takeoff. 
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4.2.4. Summary of Studies on Learning Effects 

In the previous paragraphs, studies of learning effects have been examined for a range of industries and 

technologies. Together, these studies assist the understanding of how the effects of learning have been 

estimated, but more importantly, they help to build a framework of how the learning attached to repeti-

tive production can impact the forecasts of future costs of a respective technology. The studies are 

summarized in table 4.3. 

Overview of learning effect studies 

Authors Scope Period Focus area Learning rate 

Dutton & Thomas (1984)  Mfg. 1920-1980 Mfg. (108 obs.) 16-17% median 

McDonald & Schrattenholzer (2001) Energy 1909-1997 Energy tech (26 obs.) 19-20% median 

Goldemberg et al. (2004) Energy 1979-1995 Ethanol prices in Brazil 30% & 10% 

Claeson (1999)* Energy 1981-1991 GTCC -11% 

Colpier & Cornland (2012) Energy 1981-1997 CCGT <0% & ≈25% 

Nemet (2006) RET 1975-2001 PV Solar Panels 17% & 26% 

La Tour et al. (2013) RET 1990-2011 PV Solar Panels 20.1% 

Lindman & Söderholm (2012) RET 1971-2008 Wind power (113 obs.) 10.1% mean 

Rivera-Tinoco et al. (2012)  Fuel Cells Undisclosed SOFC 17% & 19% 

Tsuchiya & Kobayashi (2004) Fuel Cells 2000-2020(F) PEMFC  4%, 18%, & 9% 

Table 4.3: Overview of learning effect studies. Source: Own work 
* Consult McDonald & Schrattenholzer (2001) for a discussion and reference of this paper 

4.3. Estimating Learning Effects in PEM Fuel Cell Manufacturing 

At this point we have discussed a substantial number of studies on learning effects from comparable 

technologies. Based on preliminary motives, there are reasons to investigate the potential of technology 

learning for fuel cells, it seems. Before embarking on to the actual estimation of learning effects for fuel 

cells, it is important to distinguish between two types of analyses. First, a study might look at specified 

manufacturers’ learning curves, or, second, one might investigate learning effects a level above, that is, 

on a global scale. In their study on both, Schoots and colleagues (2010) report the following results. 

Summary of fuel cell learning curve analysis 

Fuel Cell Type Development Start Period Investigated Progress Rate R2 
Manufacturer         
   AFC 1952 1964 – 1970 82 ± 9% 0.84 
   PAFC 1965 1993 – 2000 75 ± 3% 0.75 
   PEMFC 1959 2002 – 2005 70 ± 9% 0.83 
Global         
   PEMFC 1959 1995 – 2006 79 ± 4% 0.73 

Table 4.4: Summary of fuel cell learning curve analysis. Sources: Schoots et al. (2010) and own work. 
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In this project, we will use these results to investigate the global learning for PEMFCs until 2014 rather 

than 2006. Indeed, as it has been shown, it is no trivial task to determine a global learning curve. This 

project will therefore rely primarily on the framework proposed by Schoots and colleagues as well as on 

the input of DPS. Whereas the latter manufactures fuel cell inputs with different applicability, one 

should be careful in comparing data for each. Using cost inputs from both stationary, transportation, 

and portable use of PEMFCs could cause inappropriate scattering of data points, possibly biasing or 

leading to an unreliable learning rate. To limit the magnitude of such challenges in the analysis, the es-

timation of learning effects will rely on manufacturing cost of PEMFCs used to power road vehicles. 

Now, as these will share widely different system characteristics than the small fuel cell deployed at an 

Indian tower site, one is surely expected to question the validity or transferability of the results. In the 

rather technological description of the fuel cell and particularly the PEM, it has been acknowledged that 

PEMFC systems are used for essentially all purposes. Based upon the 2006 market for example, PEM-

FCs are almost as present in the small stationary segments as within transportation. 

PEMFC use and corresponding characteristic capacity 

Application PEMFC Share in 2006 (%) Characteristic capacity (kW) 

Large stationary 18 180 – 540 
Small stationary 96 2 – 4 
Buses 100 200 – 250 
Cars 100 50 – 80 

Portable 46 0.05 – 0.10 

Table 4.5: PEMFC use and corresponding characteristic capacity. Source: Schoots et al. (2010) 

Based upon general consensus in the literature and discussions with DPS, we will therefore assume 

transferability in learning effects from PEMFC in transportation to (small) stationary application. In 

this way, the estimation will be based upon (i) the cumulative capacity of PEMFCs overall and (ii) the 

development in manufacturing cost of PEMFCs to power road vehicles. Firstly, while many studies and 

reports provide data on number of installed units, it would not be appropriate to simply count the 

number of installations as the variances in power output would distort the aggregate capacity and ulti-

mately yield a sample too heterogeneous. This issue is therefore addressed by using overall cumulative 

capacity. Secondly, while it has been established that PEMFCs dominate applicability within transporta-

tion, data availability is also significantly more transparent within this sector. Altogether, this approach 

yields meaningful results, yet it is also associated with (at least) two apparent disadvantages. First, as we 

have seen in the LCOE modeling, different cost components yield different cost-scaling behavior. For 

example, whereas we have assumed linearity in e.g. the balance of plates, the MEA or GDE are both 
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contingent on sensitive areas of direct material, with which pre-specifications exist for both 1, 10, and 

100 kW systems. Such differences or scaling effects are addressed and minimized by analyzing only one 

application. Second, albeit a narrow range of fuel cells is analyzed, differences in cell capacity might 

even then exist. The capacity difference depends on the specific design, and we expect, if existing, the 

effect to be insignificant. 

 With the incentives established for investigating the global learning of PEMFCs, the analysis 

continues by presenting the growth in cumulative capacity and reporting historic cost developments. In 

the latter, a three-step modification model is also presented to correct costs for (i) inflation, (ii) scale 

economies, and (iii) volatility in platinum prices, after which the global learning for 1995 through 2014 

can be estimated adequately. 

4.3.1. Cumulative PEMFC Capacity 

In order to report the cumulative PEMFC capacity overall, a number of sources have been consulted. 

Firstly, for the period from 1995 through 2008, categorized capacity according to the table 4.5 above is 

available from Adamson (2004, 2006, 2007, 2009), Adamson and Crawley (2006), Butler (2009), Calla-

ghan Jerram (2008, 2009), and Crawley (2006). As mentioned in the methodology section of the thesis, 

these sources are listed appropriately in the references index, yet they are not easily found in the public 

sphere today. Dr. Koen Schoots, whose work this paper draws great inspiration from, has provided the 

papers through personal communication. As they each contribute to the specification of cumulative 

number of fuel cell units installed, development in capacity can then be calculated. From the table pro-

vided by Schoots et al. (2010), a market share based on 2006 levels is utilized to calculate the PEMFC 

capacity for each category. Subsequently, it should then be acknowledged that the learning effects (or 

lack of) assume roughly the same share in the application of PEMFCs. Next, Adamson reports overall 

installed capacity for the 2009-2014 period. Adamson (2015) does project a significant increase in 2015, 

yet we choose to exclude this forecast as it is not well explained how such increase is justified. From 

these numbers one is then able to aggregate the 1995-2008 and 2009-2014 periods to report overall 

cumulative PEMFC capacity from 1995 through 2014. The results are reported below. 
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4.3.2. Global PEMFC Cost Development 

In order to investigate global cost developments from 1995 through 2014, it is necessary to collect data 

from a number of sources. One criterion is that costs are reported in nominal terms and, as discussed, 

they need to apply for our application within transportation. Whereas the United States Department of 

Energy (2015) provide easily accessible data since 2006, costs are not as transparent for the remaining 

years. In 1998, Rogner reports 4,500 USD/kW to be a reasonable cost during year 1995. As the pro-

duction scale is not mentioned, we assume a conservative number to be around 40 units similar to 

Tsuchiya & Kobayashi’s observations 2004, also applicable for 50 kW systems. Their analysis decreases 

the cost to 1,833 USD/kW in year 2000. Next, Schoots et al. (2010) report costs from TIAX to be 

around 1,500 EUR/kW in 2002, yet this point is excluded from our analysis. From the source TIAX 

(2002), it is not clear whether published data is for SOFC or PEMFC applicability, and it is not a trivial 

task to extrapolate the work of Schoots and colleagues with satisfactory accuracy. Similarly, is the 2004 

observation from Lipman et al. (2004) excluded. In 2005, Carlson et al. (2005) report cost to be 108 

USD/kW, but now at mass production of 500,000 units of 80 kW systems. Altogether, these constitute 

the nominal costs over the 1995-2014 period as plotted below. 
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Because of the differences in fuel cell capacity in the systems from 1995-2000 and 2005-onwards, an 

error margin is employed. Based on the estimations of Schoots et al. (2010), approximately 17% of 

manufacturing costs is allowed to account for capacity differences, as shown by the vertical error bars 

on each cost point. Having established the nominal costs for each year, we will proceed by correcting 

the estimates for (i) inflation, (ii) scale economies, and (iii) platinum volatility. It can then be assessed to 

which extent such corrections help to estimate global learning effects more adequately. 

4.3.2.1. Correcting for Inflation 

First, is the inflation correction. Costs are reported for an almost twenty-year long period for which 

reason the nominal US dollar terms might be hard to compare. Using the US producers price index for 

hardware manufacturing (US BLS 2016), monthly inflation is averaged for each year during 1995-2014 

and indexed with regards to year 2014 as base year. Such correction changes the costs per kW to devel-

op as follows. 
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Due to the rather long period of observations, the effect seems large for the 1995 and 2000 estimates 

while relatively little is corrected within the last 10 years. 

4.3.2.2. Correcting for Economies of Scale 

One notable difference between early manufacturing in 1995-2000 and 2005-2014 is the scale at which 

fuel cells are produced. Whereas Rogner (1998) as well as Tsuchiya & Kobayashi (2004) assume only 40 

units to be manufactured, Carlson et al. (2005) and the Department of Energy (2015) are reporting 

costs at mass production of 500,000 units in all cases. Therefore, it might prove useful to correct for 

economies of scale. As supported by the LCOE model in chapter 3, manufacturing costs are expected 

to vary notably for different production scales. Thus, in order to make costs mutually comparable, costs 

are converted to an annual production of 500 fuel cells as in the analysis of Schoots et al. (2010). The 

correction is performed so that the following relationship is honored. 

C500	=	Clit
Slit

500

1-λ

 EQ 4.4 

Where C500 are the converted manufacturing costs at fuel cell production of 500 units, Clit are the costs 

reported in the literature, and Slit is production scale assumed in that specific literature. Finally, λ is the 

factor used to correct for economies of scale adequately. Here, we will use the work of McLean and 

colleagues (2002) to justify a scaling factor, λ, of 69%. Such normalization is thus highly contingent on 
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the choice of scaling factor. The real manufacturing costs of PEMFCs between 1995 and 2014 can now 

be graphed before (a) and after (b) the economies-of-scale correction below. 

 

As it can be seen, these corrections change the costs remarkably. Whereas the early productions of few 

units are normalized to a lower cost, the recent mass production costs are normalized the other way 

around. One important argument for the observed effect is put forward by Schoots et al. (2010: 2893) 

stating that “technology learning is implicitly time-dependent while economies-of-scale are not. There-

fore, filtering out economies-of-scale is what […] should be done in order to determine learning-by-

doing proper.” For this reason, our estimation of learning effects distances itself from that of other 

studies by correcting for scale economies, which are admittedly present in the fuel cell industry (as well 

as in other renewables) according to the cited sources. 

4.3.2.3. Correcting for Platinum Volatility 

Finally, while platinum (whose scientific symbol is denoted as “Pt”) proves to be just above 5% of total 

manufacturing costs for a stationary 2.5 kW system, it is yet an important and expensive part of the 

CAPEX. However, as the spot price of platinum is essentially subject to supply and demand in the 

market rather than technological learning, correcting for its volatility could help to minimize the spread 

in the observed data both prior to and after the (i) inflation and (ii) economies-of-scale adjustments. 
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Figure 4.8: Nominal manufacturing costs of PEMFCs, 1995-2014 after (ii) economies-of-scale corrections.
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Efficiency has generally increased during the observed period, literature and reports reveal. In-

deed, while this might constitute a learning effect itself, the amount of platinum required to produce 

one kW is widely different in 2014 than in 1995. The literature used for manufacturing costs are not 

consistently reporting platinum usage (or efficiency) for which reason a linear relationship is assumed 

for the development from 1988 (reported by Ticianelli et al. 1988) through 2005 (reported by Carlson 

et al. 2005). Then, the Department of Energy (2015) has published platinum efficiency from 2007 

through 2014 and a conservative target by 2020. Using the linear relationship between two data points 

from 2005 and 2007, an appropriate prediction for 2006 is achieved. Altogether, the resulting platinum 

load (gPt/kW) enables us to estimate amount used for each of the fuel cell systems in the period. In 

turn, we are then able to calculate platinum cost at time t, c[Pt]t, by multiplying its market price, p[Pt]t, 

obtained from Khan (2016) with the corresponding amount used per kW, a[Pt]t: 

ct
Pt	=	pt

Pt	at
Pt EQ 4.5 

We can then determine platinum costs with respect to base year 2014, c[Pt]t,Pt2014: 

ct,Pt2014
Pt 	=	p2014

Pt 	at
Pt	 EQ 4.6 

With this established, the fuel cell manufacturing costs at time t can then be compensated for volatility 

in platinum prices during the period: 

ct,Pt2014
FC 	=	ct

FC − 	ct
Pt + 	ct,Pt2014

Pt 	 EQ 4.7 

The resulting manufacturing costs after corrections are graphed below. Indeed, correcting for platinum 

volatility yields only a small effect. In this way, the final estimates are coherent with the findings from 

the LCOE modeling, that is, platinum constitutes a smaller fraction of total manufacturing cost than 

initially expected. In light of the economies-of-scale correction, it proves to be rather negligible. These 

findings are consistent with those of Schoots et al. (2010). Platinum’s effect (or lack of) is plotted in the 

following graph from which it is hard observe notable differences as compared to the (ii) economies-

of-scale corrections. 
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4.3.3. Modeling the Learning Curve 

Having corrected the cost estimates for (i) inflation, (ii) economies-of-scale, and (iii) differences in the 

usage and price of platinum, the learning curve can finally be estimated. We combine the cumulative 

capacity of PEMFC (from section 4.3.1.) and the corrected cost figures (from section 4.3.2.) to plot the 

relationship on a double-logarithmic scale below. 
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Figure 4.9: Nominal manufacturing costs of PEMFCs after (iii) platinum corrections.
Sources: Ticianelli et al. (1988), Carlson et al. (2015), Department of Energy (2015), Khan (2016) and own work.

100

1000

10000

1 10 100 1.000

M
an

uf
ac

tu
ri

ng
 c

os
ts

 (
U

SD
/k

W
)

Global cumulative capacity (MW)

Global learning for PEMFCs, 1995-2014

Figure 4.10: Global learning for PEMFCs, 1995-2014. Source: Own work.

pr = 76.85 ± 10%
R2 = 0.7645

Ct = 3,155.65(qt/q0)-0.3799497
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The most widely applied method for estimating a relationship between an independent and a depend-

ent variable (e.g. denoted by y and x) is usually referred to as an ordinary least squares (OLS) procedure. 

The OLS chooses the regression coefficients so that the estimated regression line is as close as possible 

to the observed data, where closeness is measured by the sum of the squared mistakes made in predict-

ing y given x (Stock & Watson 2012). The sum of the squared mistakes is given by the following ex-

pression: 

yi	-	b0	-	b1x1i	-	…	-	bkxki
2

n

i=1

 EQ 4.8 

where b0 and b1, …, bk, are some estimators of the intercept, β0, and the coefficients, respectively β0 and 

β1, …, βk. Thus, the OLS predicted values, yi, and residuals, ui, are given by the following expressions: 

yi	=	β0	+	β1x1i	+	…	+	βkxki EQ 4.9 

ui = y0 - y0 EQ 4.10 

In measuring the fit of regression, we report the R2 and the standard error of regression. While the lat-

ter estimates the standard deviation of the error term, i.e. the spread of the distribution of the depend-

ent variable (y) around the regression line, the regression R2 is the fraction of the sample variance of yi 

predicted by the regressor(s). In applying the OLS method to data on cumulative capacity and manu-

facturing costs, it is important to note that OLS assumes that large outliers are unlikely. In this way, the 

method is coherent with our exclusion of outliers from TIAX (2002) and Lipman et al. (2004). Finally, 

it should be mentioned that the applied OLS fitting is performed after a log-transformation of the vari-

ables. Then, using the least-squares fitting procedure in Stata to plot the straight line, we determine the 

model to be explained by the following relationship (as in EQ 4.1): 

Ct = C0
qt

q0

-b

⟹ Ct = 3,155.65
qt

q0

-0.3799497

	 EQ 4.11 

where C is the unit cost at time t, q is the cumulative capacity, and b is the (learning) coefficient used to 

define progress and learning rates. The estimated model does indeed reveal presence of data scattering, 

however, we observe that the correlation coefficient R2 is 0.7645, suggesting that the model explains 

76.45% of the variance in the dependent variable. In the 1995-2006 model estimated by Schoots et al. 

(2010: 2894), an R2 of approximately 74% is associated, which is deemed “[…] imperfect, but accepta-
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ble for [their] purposes.” Likewise, considering also our model predicts almost twice the period, we find 

the correlation coefficient to be sufficiently high for our purposes. In this way, we utilize the learning 

coefficient and the relationships explained in EQs 4.2 and 4.3 below: 

pr	=	2-b	�	pr	=	2-0.3799497	=	0.7685 EQ 4.12 

where pr is the unit cost in relative terms expressed as a percentage left after cumulative capacity has 

doubled. Next, we calculate the learning rate, lr: 

lr	=	 1-pr 	�	lr	=	 1-0.7685 	=	0.2315 EQ 4.13 

where lr can then be interpreted as the relative cost reduction after a doubling in cumulative capacity. 

Intuitively, the model predicts a 23.15% cost reduction in PEMFC manufacturing for each doubling of 

cumulative capacity. These rates are close to the findings of Schoots et al. (2010) who find a progress 

rate of 79% and a learning rate of 19%. In their paper, they also report an error margin rate for the 

progress rate of (±) 4%. Similarly, we can calculate an uncertainty range for our results. Using the pow-

er rule to the Gauss error propagation law as stated in Bronshtein et al. (2007), if variables xj occur as: 

z	=	f x1,x2,…,xk 	=	ax1
b1x2

b2 … xk
bk EQ 4.14 

which, by logarithmic differentiation, yields a relative error of: 

df
f
	=	b1

dx1

x1
+b2

dx2

x2
+…+bk

dxk

xk
 EQ 4.15 

from which we get the mean relative error (by the error propagation law): 

σf

f
	=	 bj

σxj

xj

2k

j=1

 EQ 4.16 

Finally, with the input from the Stata regression, we calculate the relative (±) error margin: 

δz	=	 σf

f
 =	 0.3799497

1.068539
3.919984

2

	=	0.3799497
1.068539
3.919984

	=	0.10356959 EQ 4.17 

The calculated progress rate is thus associated with an uncertainty of (±) 10.36%. 
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 Finally, it should again be commented that our learning curve models the evolution in PEMFC 

cost figures from transportation (and not all applications) against cumulative capacity overall (from all 

applications). As in Schoots et al. (2010), we expect that all applications of PEMFCs have contributed 

to the observed cost reductions. In other words, we also expect the observed learning effects to apply 

for non-transportation use, and we are therefore confident that, all else equal, small stationary (like the 

2.5 kW backup system) experiences similar technology learning. We can therefore use the estimations 

to model the choice of whether or not to replace diesel generators with fuel cells as the backup system 

in the Indian telco market confidently. 

4.4. Limitations of the Learning Curve 

While the results from the analysis are generally coherent with that of the reviewed literature (e.g. Dut-

ton & Thomas 1984), one should always carefully understand the assumptions behind the estimated 

learning curve. Indeed, because learning effects will differ from company to company, and also from 

industry to industry, one should acknowledge that their transferability might not be easy. In our model, 

we assume that the technological development in transportation application of PEMFCs is transferable 

to the application of the very same technology within small stationary and the backup system. DPS un-

derstands the importance of this assumption and comments that cost decreases of PEMFC transporta-

tion usage will help to decrease cost of manufacturing for small stationary similarly. Therefore, based 

on these acknowledgments, we can move forward with the estimated results in a real options context. 

In addition, whilst these results could be an important tool for a manager in the PEMFC industry, one 

must also be aware that learning curves are in constant change. In order to make as well-evaluated a 

decision as possible, one must apply the latest accurate inputs for the model to be applicable today. In 

other words, it is highly appropriate to reevaluate the results as new or current information becomes 

available. 
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5. VALUING THE REAL OPTION 

At this point the LCOE model has yielded results confirming that the weights of each cost component 

is widely different for the fuel cell system compared with that of a diesel generator. Indeed, calculations 

show that CAPEX captures as much as 72% of levelized costs for the fuel cell while only 22% for the 

diesel generator. Vice versa, for the fuel cell, fixed and variable O&M and fuel costs amount to 16% 

and 12% respectively. For the diesel generator, the same figures were estimated to 48% and 30%. 

Therefore, with the knowledge of past developments in PEMFC production costs, learning effects 

might have a significant impact on the cost of energy generation for the fuel cell in the future, given an 

estimated doubling in the technology’s cumulative capacity. All else equal, the results motivate a way to 

model more carefully how future costs might change. In this chapter, it is thus reviewed how financial 

options theory values uncertainty and is bridged into a real options framework. Through an introduc-

tion to the real options framework, more general valuation models are established and literature with 

application to both conventional and renewable energy projects is reviewed. Altogether, a framework is 

developed to capture the uncertainty of keeping diesel generators installed. In this way, diesel fuel vola-

tility serves as one of the options parameters while the estimated learning effects motivate a decreasing 

strike price of a replacement option, the fuel cell, as another parameter. Conclusively, the model gener-

ates results highly contingent on the specified assumptions. Therefore, the chapter includes a section in 

which sensitivity analyses are performed before discussing the results in the following implications 

chapter. 

5.1. Financial Option Definition 

A financial option is a contract among two parties, a buyer and a writer, to trade an underlying asset 

which can be all sorts of financial assets such as stocks, commodities, and currencies. Since the intro-

duction of publicly traded options on the Chicago Board Options Exchange (CBOE) in 1973, options 

have become one of the most actively traded assets and tools for investors as well as for corporate 

managers (Berk & DeMarzo 2014). Options can be bought for purely speculative reasons but can also 

be very useful as a hedging instrument to corporations as an alternative to classic forward and futures 

contracts on e.g. currencies. 

More specifically, two distinct types of option contracts exist; call options and put options. The 

former gives the owner the right to buy the asset while the latter gives the owner the right to sell the as-
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set. From the writer’s perspective, a call option implies that the writer has the obligation to sell the asset 

and the put option implies an obligation to buy the asset. Consequently, option trading always consists 

of these two parties where the buyer is said to be in a long position and the seller in a short position. The 

holder of the option can choose to enforce the contract, i.e. buy or sell the underlying asset at a prede-

fined strike (or exercise) price. For the call option, he or she will only choose to do so if the underlying 

asset price is higher than the strike price which implies that the option is in the money. When the underly-

ing asset price is below the strike price, he or she simply walks away implying that the option is out of the 

money. To depict the payoff scheme of a simple call option on a stock, consider figure 5.1(a). 

 

A holder of this option will never enforce the contract as long as the price of the underlying stock stays 

below USD 30. However, as soon as the stock price rallies above the strike price, the option is in the 

money and carries value to the holder; at a price of USD 50, the holder of the option can buy the stock 

at USD 30 and immediately sell the stock in the market for USD 50 for a gain of USD 20 i.e. the value 

of the option. Generally, the payoff scheme for a call option can be described by: 

C	=	max S	-	K,0  EQ 5.1 

where C is defined as the call option value, S as the stock price at expiration and K being the strike 

price. The same analogy applies to the put option with opposite signs; as long as the stock price stays 

above the strike price, the holder walks away while he or she starts to make money when the stock 

price falls below the strike price as seen in figure 5.1(b): 

P	=	max K	-	S,0 	 EQ 5.2 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80

O
pt

io
n 

pa
yo

ff 
(U

SD
)

Stock price (USD)

Call option payoff scheme

Figure 5.1(a): Call option payoff scheme. Source: own work.
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An interesting feature of options is that more risk is rewarding; uncertainty regarding price 

movements of the underlying asset adds value to the option. To understand this, remember that the 

holder of a call option is shielded from downward price movements in the underlying asset (the holder 

can simply choose not to exercise the option, while he or she is rewarding from upwards price move-

ments. Consequently, the higher the uncertainty, defined as volatility, the higher the chances for large 

upwards movements in the asset price and thereby increasing the value of the option. We will, at later 

stages, turn to the estimation of volatility but for now we simply note that the volatility in the underly-

ing asset is assumed constant during the lifetime of the option. 

Despite any geographical restriction or reference, option contracts can either be American or 

European. The only difference between the two types is that the American option can be exercised at 

any time prior to or at the expiration date, while the European option can only be exercised at the pre-

determined expiration date. 

Financial options, long and short or calls and puts, can be combined in endless ways to con-

struct specific payoff profiles, these will not be covered in this paper. While certain combinations can 

be very useful to bet on (against) e.g. volatility such as a long (short) straddle or for hedging, they serve 

little purpose in the real option setting that we intend to apply later on. Instead, we direct the attention 

towards financial option pricing, which is highly relevant in light of the subsequent real option applica-

tion.   
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5.1.1. Option Valuation (Black-Scholes) 

For the purpose of this thesis, we will use the binomial lattice option valuation model due to its flexibility and 

ease of presentation (see subsequent sections). Nevertheless, any project incorporating option theory 

should present the (perhaps) most widely used option valuation tool, namely the famous Black-Scholes 

model, which is defined by the following (Kodukula & Papudesu 2006: 67): 

C	=	N d1 S0	-	N d2 Xe-rT EQ 5.3 

where C is the value of the call option, S0 is the current value of the underlying asset, X is the strike 

price, r is the risk-rate rate of return, and T is the time to expiration. N(d1) and N(d2) are the cumulative 

normal distribution functions, which can be obtained from a Microsoft Excel spreadsheet (see Ko-

dukula & Papudesu 2006: 67 for definitions of d1 and d2). With the inputs in hand, one can easily de-

termine the option price through the formula above. For the purpose of real options however, the 

model has some weaknesses. The most important weakness, and the reason why we disregard the 

Black-Scholes model in our calculations, is that the strike price is deemed fixed. As we will show, our 

calculations on the value of the option to replace a diesel generator with a fuel cell incorporate chang-

ing strike prices over the course of the option, which is possible using the binomial lattice model. 

5.1.2. Option Valuation (Binomial Lattice) 

As opposed to the Black-Scholes method, which constitutes a continuous modeling, the binomial lat-

tice model uses discrete time steps (Kodukula & Papudesu, 2006: 70). At any discrete time step, t, in 

which the asset price is S, the price of the asset in the following time step, t+1, can only take one of 

two values; “up-value” or “down-value”. In this way, price of the underlying asset moves through a 

“tree” of ups and downs until it reaches a final price at expiration as shown in figure 5.2, which also 

depicts the option value, C, at each node. 
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For each movement, up (u) or down (d), the resulting asset price increases to Su or falls to Sd, where u 

and d factors are calculated based on the volatility of the asset through the following formulas: 

u	=	e	σ δτ	,			d	=	e	-σ δτ EQ 5.4 

where δt is the number of steps in the tree as a fraction of one period of volatility. Put differently, if the 

volatility is yearly and each step in the binomial lattice is half a year, δt  is equal to 0.5. Next, to deter-

mine the likelihood of up and down price movements, one estimates the so-called risk-neutral probabil-

ity of either movement through the following equation: 

pu	=	
erδt	-	d
u	-	d ,			pu	=	 pu-1  EQ 5.5 

with r being the risk-free rate of return. The implicit assumption is that investors are indifferent toward 

risk allowing one to discount future expected income with the risk-free rate. 

Before the actual option valuation is carried out, the underlying asset values are calculated for 

each node as seen in the figure above. At the end of the tree, the difference between the asset price and 

the strike is exactly equal to the option value; if one has the option to buy the stock at 50, while the 

market price at expiration is 97.5, the difference, 47.5 is equal to the value of the option. One can to 
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derive this value (zero if underlying asset is below strike price) for all nodes at the end of the tree, de-

fined as max(St – Xt ; 0), with the probability of “ending” in each of the nodes is determined by the bi-

nomial probability distribution function, in which the probability of k up-movements in T periods is 

defined by (Jorion 2007: 143): 

f k 	=	 T
k

pk 1-p T-k EQ 5.6 

With the underlying asset prices, and the option values in the end (right-hand side) of the tree in hand, 

one can calculate the option values in each of the nodes thus solving the tree backwards and ending 

with the option value in time 0. In each node, one is subject to a maximization problem in which one 

has choice to exercise the option and get St – X or hold on to the option, where the decision depends 

on which of the two that has the highest value. To find the value of each node, one solves the tree 

backwards through a weighted discounting of the two possible outcomes one step ahead using the fol-

lowing equation: 

max	 pCt+1,u+ 1-p Ct+1,d e-r∆t; St-Xt  EQ 5.7 

Where Ct+1,u is the value of the option in the up case and Ct+1,d the value in the down case. The fact that 

the option can be exercised in every step, meaning that equation 5.6 is maximized at each node implies 

the construction of an American call option, opposing the European version that can only be exercised 

at expiration. 

5.2. Real Options Valuation: Basic Principles and Literature Review 

In order to understand real options valuation properly, traditional options theory from finance is pre-

supposed. Therefore, having outlined the major characteristics above, the findings are bridged here. 

Subsequent to a general description of the framework and an introduction to (some of) its different 

valuation models, a literature review on the application within energy markets and technologies are car-

ried out. Thus, this subsection serves a primer on real options theory and the background for the prac-

tical modeling of a replacement decision at Indian telco towers. 

5.2.1. The Bridge from Financial Options Theory 

Whereas the financial option is traded in competitive markets, a real option is typically not. Neverthe-

less, real options share many of the underlying principles of the financial option (as established in sec-

tion 5.1.) for which reason they are more easily understood using a similar framework. Following the 
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descriptions above, and according to Black and Scholes (1973: 637), “an option is a security giving the 

right to buy or sell an asset, subject to certain conditions, within a specified period of time.” In this 

way, options are rights to the decision maker, and the yield of an option will therefore always be above 

zero as the rights would not be exercised, should the yield be negative. The real options framework 

draws both on the rights to buy (call) or sell (put) assets at pre-specified price or time respectively. 

Likewise, a real option can thus also be in the money when its exercise price is less (higher) than the price 

of its underlying asset for a call (sell) option. If not, it is then out of the money. In this project, we will as-

sume an American options framework in which the rights can be exercised at any time up to the op-

tion’s maturity date, and not only on that data as in the European option. 

5.2.2. Defining Real Options 

Having bridged some of the main ideas from the financial options, it is appropriate to define exactly 

what constitutes a real option. In the words of Copeland & Antikarov (2001: 5), a real option is “the 

right, but not the obligation to take an action (e.g., deferring, expanding, contracting or abandoning) at 

a predetermined cost called the exercise price, for a predetermined period of time—the life of the op-

tion.” Another explanation follows from Kogut & Kulatilaka (2001: 746) who write that “a real option 

is technically defined by an investment decision that is characterized by uncertainty, the provision of 

future managerial discretion to exercise at the appropriate time, and irreversibility.” With both of these 

definitions, it can be established that the opportunity to make an investment is similar to an American 

call option, and the decision-maker would then only choose such investment as long as it would gener-

ate a net payoff at the time of the decision. Using the bridge from financial options theory to the 

framework of a real option, as conceptualized in Fernandes et al. (2011), they share the following anal-

ogies. 

Analogy of the call option and the project characteristics 

Project characteristics Call option 

   PV of expected cash flows    Stock price 

   PV of investment outlays    Exercise price 

   Length of deferral time    Time to maturity 

   Time value of money    Risk-free rate 

   Volatility of project's return    Variance of stock returns 

Table 5.1. Analogy of the call option and the project characteristics. Sources: Fernandes et al. (2011) 

Admittedly, whilst such comparison helps to compare the over-arching framework, it fails to tell much 

about the differences. In particular, the valuation of financial and real options is (or can be) based on 
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widely different assumptions. One important feature of financial markets is the availability of infor-

mation. Without extensively dwelling into the discussion of an efficient market hypothesis (Berk & 

DeMarzo 2014), information is comparably less transparent and easily accessible for more advanced 

real options applications. In addition, Haahtela (2012) argues that lengths of investment periods are 

usually non-equal for financial options and real options, for which reason the estimation of uncertainty 

(and volatility) can thus become a more significant challenge. The estimation of volatility in the paper 

will arguably add power to such proposition. Having some of the more major differences in the table 

above, real options types are specified next. 

5.2.3. Types of Real Options 

Although there are several more types of real options in practice, Berk & DeMarzo (2014) concentrate 

on three kinds most frequently used, namely (i) the option to delay an investment opportunity, (ii) to 

option to grow, and (iii) the option to abandon an investment opportunity. Instead of obsequiously ex-

plaining each of these, (i) to option to delay an investment opportunity is deemed most important for 

the purpose of this paper. Theoretically, the defer option gives the holder the opportunity to delay and 

thus collect more information and possibly reduce the uncertainty associated with the decision. This is 

highly relevant for management in the capital budgeting decision. Introduced by Myers (1977) in his 

paper on corporate borrowing, real option modeling affects capital budgeting in the sense that without 

the investment option, the decision is simply an NPV choice in which it is optimal as long as the value 

is above zero. However, with the option, it will usually only be optimal if the NPV is substantially 

greater than zero. To understand this result, we can think of two mutually exclusive projects, namely (1) 

with investment today and (2) with the ability to wait. Whenever faced with two mutually exclusive pro-

jects, the NPV rule states that we should choose the project generating the higher NPV (Berk & De-

Marzo 2014). In other words, investment should only be done (1) today if the associated NPV exceeds 

that of (2) waiting to invest. Then, if we are able to always walk away from the project, (2) the deferring 

option will have a positive NPV, and (1) the investment today must thus generate a significantly higher 

NPV to justify this choice rather than waiting. 

 In addition to the NPV of the investment, there are other important factors influencing the 

value of an investment and the decision to exercise an option. Particularly, as it is the case for financial 

options too, both the volatility of a project’s return and ‘dividends’ are significant contributors to the 

decision. Whereas the higher the volatility is the more valuable the real option (and the ability to wait) 

holds, dividends from the financial terminology correspond to any value given up in order to wait be-
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fore exercising the option. In other words, there is an associated opportunity cost with the real option. 

That is, the greater the cost of waiting is, the less attractive the real option becomes. 

5.2.4. Valuing Real Options 

With the inputs to the Black-Scholes pricing model outlined above, Amram & Kulatilaka (1999) pro-

pose one approach to understand how real options can be valued. Indeed, one must (i) first understand 

in which environment the real option is applied. (ii) Secondly, the holder must identify the inputs and 

assumptions of the valuation model. (iii) Thirdly, in order to interpret the results correctly, appropriate 

benchmarks shall be established. (iv) Fourthly and finally, steps (i) through (iii) shall be implemented, 

reviewed, and redesigned if necessary. In other words, the final step is an evaluation of the results and 

their applicability. 

 

Following this four-step process, the option holder must thus first understand the application framing, 

what does the decision entail, when is it possible to exercise, and how is it carried out in practice. 

Through this step, it is also proposed that sources of uncertainty are identified and discussed how they 

evolve throughout the decision period. 

 The second step is then based upon the application framing of the first. There will thus be no 

single approach for all real options in practice. As the authors of the process highlight, guided by the 

contributions of Black-Scholes (1973) and Myers (1977), there are several valuation models that can be 

carried out. In their review on real options approaches in energy sector investments by Fernandes and 
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colleagues (2011), particular attention is drawn towards three groups of solutions: partial differential 

equation (PDE), dynamic programming, and simulation. Literature exists for each of these methods’ 

application in the energy industry (see table 5.2 below), yet brief introductions help to motivate the 

choice of approach undertaken in this project. Firstly, the PDE approach is carried out through math-

ematically expressing the value of an option by a partial differential equation contingent on specified 

boundaries. Such expression(s) can then be solved by analytical solutions or approximations e.g. to 

specify when an investment makes sense financially to undertake. Secondly, the dynamic programming 

technique is an approach to optimize the decision one point in time influencing future payoffs. In this 

way, dynamic programming can utilize decision trees, a graphical representation of alternative decisions 

and potential outcomes in an uncertain project. Such method can thus depart from the binomial option 

valuation model. Thirdly, simulation approaches can stem from numerous models, yet Monte Carlo 

simulation seems to among the most frequently used (Fernandes et al. 2011). With this method, an al-

most infinite amount of possible future states can be simulated and then evaluate the probability of 

each. The option holder is then able to base the decision on NPVs computed upon the simulations, 

which have incorporated the use of real options. 

 Returning to Amram & Kulatilaka (1999), the third step is then to interpret the results from the 

valuation model specified above and benchmark them against other techniques, e.g. against traditional 

discounted cash flows. After such comparison and evaluation, perhaps the fourth step necessitates a 

reconfiguration of the model in which case the flaws should be assessed and corrected. If not, the re-

sults yield an outcome for the option holder to make a decision. 

 Altogether, the use of real options enables investment decisions to be evaluated differently than 

by traditional NPV tools. As a way of thinking, real options can contribute significantly to strategic de-

cision-making through e.g. value-adding uncertainty (or volatility) and the option to wait. Yet, real op-

tions are not widely used in practice. In a survey on business managers’ familiarity with the term ‘real 

options’, Simkins & Kemper (2013) were surprised by the lack of knowledge about its technique and 

concept in practice. Whereas it might be the case that real options modeling holds a degree of complex-

ity to carry out and that there are perhaps too few corporate incentives to undertake investments sup-

ported by real options analysis, there are yet benefits to the application. In fact, the gradual liberaliza-

tion of the energy sector since the 1970s has challenged conventional DCF methods to evaluate energy 

projects. With increasingly more competitive markets and associated uncertainty, real options ap-

proaches have been adapted by (some) practitioners and academics. Therefore, to understand why real 
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options are useful in energy markets and how it is applicable to the case of fuel cells in India, a litera-

ture review on the more important contributions is carried out in order to model our choice optimally. 

5.2.5. Application of Real Options in Energy Projects and RETs 

Whereas real options approaches can be dated back to the late 1970s for the general energy sector (see 

e.g. Tourinho 1979), renewable energy technologies (RETs) have exhibited less use of the framework. 

Nevertheless, Fernandes et al. (2011) identify real options use in particularly three major areas of RETs, 

namely power generation, policy evaluation, and R&D investments and programs. The following stud-

ies exemplify real options use within those applications. 

Historical perspective on the use of real options on RETs 

Authors Year Resource type Area of application Solution method 
Venetsanos et al. 2002 Wind energy Power generation PDE 

Davis & Owens 2003 RETs R&D program PDE 

Kjærland 2007 Hydropower Policy evaluation PDE 

Siddiqui et al. 2007 RETs R&D program PDE 

Kumbaroğlu et al. 2008 RETs Policy evaluation DP 

Muñoz et al. 2009 Wind energy Power generation DP 

Knutsen & Holand 2010 Hydropower Policy evaluation PDE; DP; CC 

Nicolet 2010 Solar PV Power generation PDE; DP 

Martínez-Ceseña et al. 2011 Hydropower Power generation DP; MC simulation 

Table 5.2. Historical perspective on the use of real options on RETs. Sources: Fernandes et al. (2011) and own work. 
 

This list of literature is not intended to be exhaustive, rather it aims to provide some examples of works 

in which real options analysis has helped to evaluate investments, power generation, and policy issues in 

a renewable energy context. Although fuel cell systems are not interpreted as renewables like e.g. wind 

or solar PV (as they can be fueled by non-renewable resources as methanol), the use of real options in 

such contexts might help to motivate similar application for a technology exhibiting comparable char-

acteristics in its commercialization stages (see e.g. section 4.1.3). 

 In one of the earlier real options papers within renewables, Venetsanos et al. (2002) evaluate 

uncertainties of fossil fuel prices, environmental regulations, development in energy demand, supply, 

capital costs, and changing market structure following the then introduced deregulation. Using a 

framework inspired by Black-Scholes thinking, they find positive option value for a wind project for 

power generation, whilst traditional NPV analysis yields negative value. In another application, Kjær-
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land (2007) as well as Copenhagen Business School alumni, Knutsen & Holand (2010), utilize the 

framework developed by Dixit & Pindyck (1994) to evaluate investment opportunities in the Norwe-

gian hydropower industry. For example, solving through PDE and DP techniques, the latter finds an 

optimal trigger price for an investment and an associated investment value. In an extensive review of 

real options theory applied to electricity generation projects (EGP) also, Martínez Ceseña and col-

leagues (2011: 578) conclude that real options “theory can be used to enhance the financial value of 

projects under uncertainty such as EGP and REP [renewable energy projects]” and highlight that “ex-

isting [real options] literature addressing EGP is scarce and, as a result, new research in the area would 

be valuable.” In addition, there are studies (e.g. Davis & Owens 2003, Nicolet 2010, or Siddiqui et al. 

2007) in which the value of R&D investments and programs can be quantified into a real options con-

text to evaluate R&D and policy decisions. For example, Nicolet (2010) addresses the option value of 

avoided fossil fuel costs by installing infrastructure for solar PV in a Californian setting with federal 

grants and finds considerable benefits to real options analysis as opposed to traditional discounted cash 

flows models such as the NPV technique. 

 Altogether, as exemplified by a brief introductory literature review above, real options theory 

seems to have become increasingly popular in energy applications and particularly those of renewable 

characteristics. On the other hand, however, the literature above also highlights how it is limited to cer-

tain technologies and is by no means exhausting. As Fernandes and colleagues (2011: 4496) state, “the-

se projects have high initial costs, high financial risk and uncertainties” and real options theory can per-

haps help to provide more useful information about investment, policy, and R&D decisions, which 

“[…] traditional project evaluation techniques alone [are] insufficient to properly deal with”. Having 

written those words, it seems only appropriate to see to which extent valuing backup power solutions 

in an Indian telco setting can be carried out and possibly benefit from real options thinking. 

5.3. Setting up the Real Option 

The third section of the real option chapter concerns itself with linking earlier analysis of LCOE and 

the effects of learnings to the options framework that has been elaborated upon in sections 5.1 and 5.2, 

in order to set up the real option model based on inputs from the analyses. Prior to a detailed designa-

tion of each option parameter, section 5.3.2. will bridge previous work with the coming real-option cal-

culation. But at first, in 5.3.1., the value of the option will be described on a more theoretical level i.e. 

what is actually meant when referring to the option value? 
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5.3.1 Definition of the Option Value 

To begin with, real option valuation is a financial tool to estimate the true value of investments more 

precise than traditional valuation tools such as the NPV-method. ROV analysis should thus provide 

decision maker with a more nuanced picture of what lies ahead, which in theory should lead to better 

decision-making. 

Back in chapter 3, it was concluded that the diesel generator as of present is the backup power 

source that represents the most economical choice to telco tower operators. The levelized cost of ener-

gy generated by the diesel generator is 208 USD per delivered MWh, corresponding to a total cost of 

ownership of 16,750 USD in present values, while the LCOE of the HT PEM fuel cell is 311 USD per 

MWh, or 25,025 USD total cost of ownership. But with an assumed lifetime of 15 years, and in times 

of great technological leaps and uncertain energy prices, how certain can the telco tower operator be 

that these calculations will last accordingly? The real option framework shall assist the tower operator 

addressing the uncertainty inherently embedded in the LCOE calculations with explicit assumptions 

about a range of costs that stretch far into in the future. Specifically, 

the real option value quantifies the flexibility of choice that the telco tower operator has between the two 

backup power generation sources.  

Therefore, the true cost of providing back power to telco towers during the next 15 years is the 

initial total cost of ownership of the diesel generator, that was establish in chapter 3, less any option 

value, which will limit the costs to the telco tower operator should the economic environment turn to 

the disadvantage of diesel generators since the value of being able to replace the diesel generator is also 

taken into account. The definition of option value depicted here is very similar to the one presented by 

Herbelot (1992) in his dissertation on environmental investments in the electric power industry. He 

examines the costs that a high-sulfur coal plant utility sustains in order to comply with the 1990 intro-

duction of Clean Air Act Amendments imposing that utilities must bring down emissions to a certain 

level or continue emit above this level through the purchase of “emission allowances”. A utility that 

continues operations as usual and purchases allowances in order to comply with the Amendment is de-

fined as the maximum compliance costs. Herbelot then investigates possible ways to decrease emis-

sions either by shifting to low-sulfur coal or installing “scrubbers”. Each of the possibilities represents 

alternative solutions for which the value of flexibility is quantified and depends on the development in 

allowance market prices and premium paid for low-sulfur coal. The true cost of compliance is thus de-

creased from Vtot to Vtot – Vswi - Vscr. In similar fashion, the true cost of providing backup power for the 
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telco tower operator is the total cost of operating the diesel generator less the value of the choice to 

replace it with a fuel cell for the remainder of the lifetime of the generator. 

5.3.2. From the LCOE Model and the Learning Curve to the Options Framework 

In chapter 3, the cost comparison between operating a diesel generator and a fuel cell for backup pow-

er to telco towers in India was analyzed. To no surprise, it was concluded that the total cost of owner-

ship of the fuel cell system during its lifetime surpassed the costs of the diesel generator by a fair mar-

gin. Consequently, if the telco tower operator were to choose between the fuel cell and the diesel gen-

erator today, the choice would be straightforward in favor of the conventional generator. Some of the 

interesting findings from chapter 3 were related to the cost drivers of each of the two systems. We 

showed how the OPEX of the fuel cell system undercut those of the diesel generator OPEX, of which 

fuel costs constitutes as much as 62 percent, while the substantial CAPEX of the fuel cell system drove 

much of its total lifetime cost of ownership (72 percent) in the LCOE. 

Then, in chapter 4, we dug into the effects of learning, a widely studied phenomenon for new 

technologies, which have received particular interest in the field of new energy generation technologies. 

Through a combination of takeaways from previous studies and our own estimations, we established a 

learning rate of 23.15% for the PEM fuel cell technology, meaning that for each doubling in the in-

stalled cumulative capacity, the costs of production fall by 23.15%. 

In this section, we aim to show how the analysis and its takeaways from both chapters can be 

modelled in a real option context in order to better evaluate the choice of replacing diesel generators 

with fuel cells, purely from an economic perspective. Previously, we have established the analogy be-

tween real options and an American call option (see table 5.1); in the coming paragraphs each of these 

parameters for the real option will be outlined and applied to our Indian telecommunication tower case. 

5.3.3. Defining Options Parameters 

The parameter inputs that will be designated in the following are (1) the underlying asset, (2) the strike 

price, (3) the time to maturity, (4) the risk-free rate of return, and (5), the volatility of the underlying 

asset. Recall the assumptions regarding timing of costs back in section 3.2.3. Here it is established that 

CAPEX is assumed to be incurred on the first day of each period while OPEX is incurred on the last 

day of each period. Moreover, year 0 corresponds to “yesterday” where the diesel generator is assumed 

to have been bought. Therefore, in our model, the decision to replace the diesel generator can be made 
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for the first time on the first day of year one while the decision can be made no later than the first day 

of year 15. As a consequence, the real option model will be modelled in a 14-step binomial lattice. 

5.3.3.1. Underlying Asset 

In the financial option context, the underlying asset is the stock that a holder of the option has the right 

to buy at some predetermined strike price. For the general real option, the underlying asset is the pre-

sent value of the cash flows that one expects to receive from investing in a project once the investment 

has been undertaken. In the present case, the choice to replace the diesel generator with a fuel cell im-

plies, if the decision is made, that the operating expenditures of the diesel generator is saved. Savings 

can be viewed as a negative cost, which has the same impact on present values as positive cash flows. 

Therefore,  

the forgone expenditures of operating the diesel generator (OPEX), for the remainder of its lifetime, will 

serve as the underlying asset for the real option calculations. 

Recall that one of the assumptions presented earlier in the LCOE calculations is that the diesel 

generator is already in place, meaning that any costs relating to the acquisition and installation of the 

diesel generator are sunk and cannot be rendered. Furthermore, no scrap value of a replaced diesel gen-

erator is included in the underlying asset since (1) the initial CAPEX of the diesel generator is rather 

low, and (2) any costs relating to the transportation from the telco tower to a potential buyer is as-

sumed to outweigh any remaining value of the generator. 

As explained in chapter 3, the OPEX of the diesel generator consists of fuel consumption, fixed 

O&M, and variable O&M, of which the former by far constitutes the biggest cost component. While 

for the LCOE calculations, both fuel and variable O&M components were assumed to grow at a con-

stant rate throughout the lifetime, this assumption will only remain in the real option calculation for the 

latter. Conversely, diesel fuel costs will be calculated based on the volatility in diesel prices (see section 

5.3.3.5) implying that each node in the binomial lattice will contain a diesel price based on up- and 

down movements. The underlying asset value will thus depend, to a large extend, on fluctuations in the 

diesel prices since fuel costs constitute a substantial part of the total lifetime OPEX of the diesel gener-

ator.  

Specifically, the underlying asset value, S, in each of the nodes in the binomial lattice is most easily 

explained by starting in the utmost “up” scenario at the end of the tree, Su14,d0 i.e. 14 up-movements in 

the diesel price (see appendix 3 for the binomial lattice for diesel fuel prices). In this specific node, the 
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asset value amounts to the remaining OPEX, which is fuel consumption, fixed and variable O&M sole-

ly for year 15. As the diesel generator has an assumed economic lifetime of 15 years, the telecommuni-

cation tower operator must make a new decision on the first day of year 16 to buy either a generator or 

a fuel cell—a decision which should be based on LCOE calculations similar to those carried out in 

chapter 3. The decision to be made in year 16 is thus the start of a new “economic lifetime period”, 

which will not be covered in this thesis. Returning to the objective of calculating the underlying asset 

value in the last year of operation, year 15, recall from chapter 3 that operating expenses are incurred at 

the end of each year, variable O&M are multiplied by its yearly escalation factor of 2%, while fuel costs 

are multiplied by the yearly growth rate of 6.99% (both figures can be found in the LCOE tables). The 

underlying asset value in year 15 is thus calculated as: 

Su14,d0=	PV OPEXu14,d0 =
DPu14,d0DC15 1+gDP

1
+FCOM+VCOM 1+gv

15

1+WACC 15  EQ 5.8. 

where DP is the diesel price in the utmost up-scenario at the end of the tree, DC is the consumed diesel 

in year 15, FCOM is fixed O&M costs, VCOM is variable O&M costs, and gDP and gV is growth rate and 

escalation rate of fuel prices and variable costs respectively, while WACC is the weighted average cost 

of capital that were applied in chapter 3 as well. Similarly, the remaining lifetime OPEX in the node 

corresponding to 13 up-movements are: 

Su13,d0=PV OPEXu13,d0 =
DPu13,d0DC14 1+gDP

1
+FCOM+VCOM 1+gv

14

1+WACC 14 +
DPu13,d0DC15 1+gDP

2
+FCOM+VCOM 1+gv

15

1+WACC 15  EQ 5.9. 

The assumption for the underlying asset value is thus that, if the telco tower operator replaces the die-

sel generator in year 14, the diesel generator OPEX savings are the sum of remaining operating ex-

penditures, for which the diesel price will grow at the constant rate gDP until the end of the economic 

lifetime from the price observed at node in the binomial lattice at which the decision to replace was 

taken. To generalize, the underlying asset value at each node, St,u,d, will be calculated as: 

St,u,d=PV OPEXt,u,d = DPt,u,d

DCt 1+g
DP

1
+FCOM+VCOM 1+g

v

t

1+WACC t +	�		+ DCt 1+g
DP

T-t+1
+FCOM+VCOM 1+g

v

T

1+WACC T

T

t=1
u=0
d=0

 EQ 5.10. 

where u = 1, 2, …, T and d = 1, 2,…, T so that u+d = t-1. 
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5.3.3.2. Strike Price 

In the section on real option definition, the strike price known from financial options was analogized as 

the present value of investment outlays needed to “reach”, or gain the underlying asset. This analogy is 

straightforwardly applied to the present case through following argumentation. To save the present val-

ue of operating the diesel generator for the remainder of its lifetime, naturally, one has to stop the op-

eration while continuously providing electricity to the telecommunication. This is exactly what the fuel 

cell can fulfill at the cost of buying, installing, and operating the fuel cell. Therefore,  

the strike price is defined as the lifetime cost, CAPEX, and OPEX, during the period for which the 

diesel generator would have been running otherwise. 

This definition implies that the model does not include expenses incurred after year 15, which is 

the final year of operation for the diesel generator. This assumption seems valid; in order for the fuel 

cell to make an economic sensible acquisition, the total cost of ownership should be lower for the given 

period, compared to keeping the diesel generator already in place. 

As the option approaches its expiration in year 15, the present value of the strike price will de-

crease, not only due to the time value of money (and fewer years left of incurred operating expenses), 

but also due to the decreasing production costs which is a direct a result of the learning effects that we 

estimated in chapter 4. While the strike price for financial options are usually constant, varying strike 

prices are not uncommon for real options. In a real put option setting, Kodukula & Papudesu (2006: 

108-110), depict an example in which the strike price is defined as the salvage value of radio frequency 

identification hardware, for which the value decreases as the option is kept alive. Conveniently, the bi-

nomial lattice model is can easily be adjusted to accommodate the falling strike price, which we will cal-

culate through the following: 

Xt=PV CAPEX+OPEX =
Prod 1-lr t-1 1+M +Inst+ VCOM 1+gVC

T-t+1
+FCOM+FP 1+gFP

tT
t=1

1+WACC t  EQ 5.11. 

where Prod is the initial production costs estimated in chapter 3, LR is the yearly learning rate of ap-

proximately 6.5%, M is the markup of 28%, Inst is the installation costs amounting to USD 2,500, 

VCOM is variable O&M costs cell (which will not start to escalate until the option is exercised), FCOM 
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is fixed O&M, FP is the fuel costs, and gVC and gFP are growth rates for variable O&M costs and fuel 

costs respectively. 

As it has been explained in estimation of learning effects, the learning rate accounts for the per-

centage cost decreases at each doubling in cumulative capacity. Now, just as it is difficult to forecast 

fuel prices, it is probably harder to predict installed (cumulative) capacity in the future. Nevertheless, 

the options framework looks 15 years forward for which reason an estimate is necessary for how the 

learning rate helps to decrease costs of the fuel cell system. Performing an exponential regression on 

the 1995-2014 period of cumulative capacity, a growth rate of 19.42% is achieved (with intercept 3.91 

MW and R2 of 91%). While this is a crude, but easy way to analyze the trend, it helps to estimate the 

historic doubling time of capacity, a predictor for the future 15 years in this model. Using Klein’s 

(2001) mathematical methods for economics, we find that the growth rate, δ, and doubling time, -, such 

that 

eδτ	=	2	�	�=
ln 2
δ

 EQ 5.12. 

Solving for doubling time, -, yields 3.569, which in turn is used to annualize the learning rate. As a final 

note on the strike price, one should acknowledge that the learning rate does not impact the total 

CAPEX of the fuel cell system per se. As we showed in chapter 3 the total CAPEX of the fuel cell 

amounts to just above 18,000 USD—a cost figure that includes markup of 28% and installation costs 

of 2,500. Logically, there are no learning effects associated with markups and while it may be the case 

for installation costs it is assumed to be zero in our model. Consequently, the learning rate will only 

cause a decrease in the true costs of production, which we in chapter 3 estimated to be 12,157 USD. 

5.3.3.3. Time to Expiration 

For the real option, the expiration date is, theoretically, how long the holder of the option is able to 

push the decision to excise or abandon the option, depending on whether or not the option carries any 

value. For the telco tower operator, this will be the last year of operation for the diesel generator i.e. 

year 15. As explained, the generator is assumed to have an economic lifetime of 15 years, which implies 

that in the following year, year 16, the telco tower operator faces a new decision to buy either a new 

generator or a fuel cell. This decision is not covered in this thesis, and therefore, the expiration date of 

the option is the first day of year 15 where capital expenditures are assumed to be incurred. 
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5.3.3.4. Risk Free Rate of Return 

Following Kodukula & Papudesu (2006), the risk-free annual interest rate should be determined on the 

basis of the U.S Treasury spot rate of return with the maturity equivalent to the time to expiration for 

the real option. For the calculations in this thesis, we will use the Indian Government 15-year bond rate 

of 7.93% as observed at the time of writing, May 7, 2016 (Trading Economics 2016), which was also 

used for the WACC in the LCOE calculations in chapter 3. 

5.3.3.5. Volatility 

From the discussion of financial theory and real options it should be clear that managers need not fear 

uncertainty, but rather welcome it as opportunity. In the LCOE model, a constant growth rate of diesel 

prices is assumed based upon historical costs in India. Now, looking fifteen years ahead and valuing the 

option to replace the diesel, one major parameter is the volatility. Whereas the LCOE framework mod-

els one scenario in which fuel prices grow at a constant rate, options theory enables uncertainty to be 

used to calculate multiple outcomes based on probabilities. In other words, the base case LCOE pre-

dicts diesel prices to grow constantly. Applicable to both diesel prices and commodity markets in gen-

eral, prices are not easy to forecast in practice and do not unanimously follow simple growth rates. For 

example, Wiser and colleagues (2004: 343) comment that “fuel price risk is among the most significant 

risks in the electricity industry”. Because the backup power generators burn diesel to empower the telco 

towers, the operators are exposed to uncertainty in diesel prices. As it has been established in the 

LCOE model, the cost of a diesel generator is heavily dependent its fuel expenditure in the base case 

scenario. Therefore, fuel volatility is an important parameter to consider. 

 In Tsay’s (2010: 111) book on financial time series, he mentions that “although volatility is not 

directly observable, it has some characteristics that are commonly seen.” Particularly, volatility clusters 

so that returns may be high in some periods and low in other periods. Secondly, volatility evolves con-

tinuously over time, which generally will prevent unreasonable spikes and jumps. Thirdly, volatility is 

usually described by a stationary process. Fourthly, volatility usually reacts differently to large increases 

or decreases in the underlying asset. The final characteristic is sometimes referred to as the leverage ef-

fect. In the literature, many different models are presented to estimate volatility on financial instru-

ments and commodities, yet it is outside the scope of this thesis to evaluate how all the models differ. 

While the literature is ambiguous on the optimal, two popular models of volatility clustering are the au-

toregressive conditional heteroscedasticity (ARCH) and generalized ARCH (GARCH) models (Stock & 
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Watson 2012). The next two sections will firstly present the theoretical framework of those and sec-

ondly apply them in order to estimate a volatility. 

5.3.3.5.1. Frameworks for Volatility Estimation  

Robert Engle’s ARCH framework from 1982 provides a systematic model for volatility prediction. 

Whilst theory of econometric time series forecasting cannot be explained in one short subsection, the 

basic idea is that (a) the shock at of an asset or commodity return is serially uncorrelated, but depend-

ent, and (b) the dependence of at can be described by its past squared values. Specifically, an ARCH 

model of order p, denoted ARCH(p), assumes that (Tsay 2010, Stock & Watson 2012): 

at	=	σtεt	, σt
2	=	α0+	α1at-1

2 +	α2at-2
2 +	…	+	αpat-p

2  EQ	5.12	

where α0, α1, …, αp are unknown coefficients, and {εt} is a sequent of independent and identically dis-

tributed (i.i.d.) random variables, that is, normally distributed with mean zero and variance 1. It follows 

that large squared shocks will necessitate a large conditional variance σt
2 on αp. From Tsay’s characteris-

tics above, volatility clustering can essentially occur because of this, that is, one (large) shock tend to be 

followed by another. Such feature might be argued as a weakness of ARCH models. Because positive 

and negative returns are squared, they have the same effects on volatility, which is not necessarily the 

case for stocks or commodities in practice. Another weakness is the fact that an ARCH model is only a 

mechanical way of analyzing the conditional variance and its behavior, failing to explain the reason for 

such behavior. In addition, Tsay also argues that ARCH models can overestimate volatility when large 

shocks occur in the return series. 

 While ARCH models provide a somewhat straightforward framework to predict volatility (partic-

ularly with the help of modern statistical software packages), a useful generalization of Engle’s mechan-

ics is the GARCH model developed by Bollerslev in 1986. In addition to the dependence of σt
2 on its 

squared errors, Bollerslev lets the variance depend on its own lags too. Thus, the GARCH(p,q) model 

can be written as: 

σt
2	=	.0+	α1at-1

2 +	…	+	αpat-p
2 	+ 	/10t-1

2 +	…	+	/p0t-p
2 	 EQ	5.13	

where ω0, α1, …, αp, Φ1, …, Φq are unknown coefficients. By incorporating dependence of the variance 

on its past squared lags, Stock & Watson (2012) argue that a GARCH model can capture slowly chang-

ing variances more efficiently than Engle’s ARCH model, that is, essentially with fewer parameters. 

While equation 5.13 specifies the traditional GARCH model, its family is large and includes many dif-
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ferent functional specifications (e.g. exponential GARCH or threshold GARCH). This thesis will only 

use the basic model. 

 Most importantly, ARCH and GARCH allow for application in returns time series in which 

time-varying volatility can be observed and estimated. As in financial markets for stocks, empirical data 

is available for commodities to be applied. Wang & Wu (2012) investigate the use of GARCH and 

show substantial use of its various specifications in energy markets. For example, Sadorsky (2006) finds 

evidence for fitting a GARCH(1,1) model on crude and unleaded gasoline volatilities, while others (see 

e.g. Kuen & Hoong 1992 or Walsh & Tsou 1998) recommend other models. In other words, empirical 

evidence from the literature supports the idea that it is no trivial and effortless task to predict volatility 

accurately. As in any model, the result is only as good as its underlying assumptions. In the following 

subsection, an ARCH and a GARCH model is set up to help estimating a volatility for diesel fuel. With 

rather preliminary theory established on the regressions, the section will elaborate on constraints and 

explanatory power of the models in practice, ultimately yielding the input for the real options model. 

5.3.3.5.2. Estimation of USLD Volatility 

Having investigated the econometric specifications of ARCH and GARCH models briefly, it also be-

comes clear that other approaches exist. Indeed, forecasting uncertainty is a risky endeavor. In the 

LCOE model, the backup generator runs on diesel, which is the input for estimation here. As there is 

only limited data available for diesel as a commodity in an Indian setting, the analysis is based on histor-

ical spot prices of the New York Harbor Ultra-Low-Sulfur No. 2 Diesel Fuel. The United States Ener-

gy Information Administration (EIA) provides daily, weekly, and annual data since 2006, which is not 

optimal, yet sufficient to be analyzed. Also, it is reasonable well aligned with data used in the LCOE 

model. Here, a constant growth of approximately 7% (IndianOil 2016) is employed over the diesel gen-

erator’s lifetime; an assumption which will be significantly challenged by the estimation of volatility 

here. 

 First, a general understanding of the uncertainty is derived below. Returns are calculated as a 

continuously compounding series from differences in daily natural logarithms. 
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The time series seems to be characterized by somewhat random, rapid changes in the returns and is 

described as volatile (or exhibiting white noise). In addition, it seems that the data shows some degree 

of time-varying volatility. Nevertheless, the initial graph does not reveal much about its statistical signif-

icance, if any. Using Stata to generate the series’ empirical distribution of returns, a histogram shows 

signs of leptokurtosis. In other words, the data exhibits many returns around the mean and also a rela-

tively large number of observations far from the center of the histogram.  
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Figure 5.4. Daily ULSD returns 2006.6-2016.5. Sources: EIA (2016) and own work.
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Utilizing a Lagrange Multiplier (LM) test, it is then hypothesized that no ARCH effects exist. Having 

stated the mean equation in Stata and subsequently squared the estimated return residuals, the test sta-

tistic indicates that we fail to reject the alternative hypothesis, that is, ARCH effects are present. 

ARCH-LM test 

Test Lags Null Hypothesis Statistics p-Value 

ARCH-LM 0 No ARCH Effects χ2 = 80.048 0.0000 

Table 5.3: ARCH-LM test. Source: Own work.  

Next, we run ARCH(1) and GARCH(1,1) models in Stata and generate the following output: 

ARCH and GARCH Results 
Parameter ARCH(1) GARCH(1,1) 

Omega, ω N/A 0.017535* 

Alpha, α1 0.251157* 0.051252* 

Phi, Φ1 N/A 0.945852* 

Annualized Volatility 31.8788% 30.5167% 
Table 5.4: ARCH and GARCH Results. *Coefficients statistically significant at a 1% level. Source: Own work.  

We observe that both models report highly, statistically significant coefficients at a 1% level. As daily 

data is used, the (daily) mean fits for ARCH(1) and GARCH(1,1) are annualized by factor √∆t = 

√(252), as there are 252 points of spot prices annually. In terms of validity, Engle (2001) comments that 

the sum of coefficients α1 and Φ1 (= 0.997) must be less than one in the GARCH model. In addition, 

from Engle’s calculation of the long-run average variance, [ω – (1–α–Φ)]½, is estimated at 2.46%, or 

approximately 39% annualized. Altogether, both models exhibit signs of time-varying volatility, as it 

can be seen in the plots on variances below. 
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Figure 5.6: ARCH (1). Sources: EIA (2016) and own work.
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It is possible that certain commodities might exhibit signs of seasonality in their return volatility, yet the 

approach here relies on the basic GARCH(1,1) model for the option input (and not e.g. a p-GARCH 

specification). From the analyzed data, returns on ULSD exhibit clear volatility, and the specification 

here finds an estimate of 30.50% to be implemented in the real options. As this is a rather significant 

input into the real options model, sensitivity analysis on this estimate will also be carried out. 

5.4. Calculating the Real Option Value 

Table 5.5 presents the calculations of the real option value to replace the diesel generator with a fuel 

cell, a choice of flexibility which is readily available to the Indian telco tower operator. The calculations 

have been carried out using the binomial lattice valuation model and are computed in Microsoft Excel. 

The upper figure shows the evolution in the strike price, that is, the total present value cost of owner-

ship of the fuel cell from time 0 to the remainder of the economic time frame i.e. year 15. Naturally, the 

present value is decreasing from period to period due to discounting, but also a result of the effects of 

learning on production that we have explained previously.  

The option is valued in a 14-step lattice with 1-year increments as shown in the table. In prac-

tice it means that the telco tower operator evaluates the choice to replace the diesel generator on the 

first day of each year starting on the first day of year 1. Recall that, in our model, year 0 is “yesterday” 

in which the diesel generator is assumed to have been bought, thus not presenting the telco tower op-

erator with any choice. One assumption, which albeit rather unrealistic impacts the calculations to a 

small extend, is that the fuel cell can be bought and start to operate immediately. In reality one would 

expect some lead time from the point in time in which the decision to replace the diesel generator until 
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Figure 5.7: GARCH(1,1). Sources: EIA (2016) and own work.
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the fuel cell is up and running; this lead time has been disregarded for simplicity (supported by DPS 

who argue that lead time can be as little as a few hours).  

The table below presents the binomial grid. Note the difference between figure 5.5. that shows 

a regular of a binomial lattice where up and down movements are depicted by “north east” movements 

and “south east” movements respectively. Our model, presented in table 5.5, shall be interpreted slight-

ly differently; a horizontal move towards east represents one up-movement, while a diagonal (south 

east) move represents a down movement. 

Each of the cells contain two figures; the underlying asset value (upper figure) and the value of 

the option (lower figure). The binomial lattice is constructed by calculating the value of the underlying 

in each node using Equation 5.10. which is in turn based on the path of the diesel price through the 

grid depending on up and down movements as shown in appendix 3. 

5.4.1 Results of the Real Option Model 

The value of the flexibility choice presented to the telco tower operator as of the first day of operation 

i.e. the first day of year one is found in the left-most cell in the binomial lattice. Evidently, the underly-

ing asset value (upper figure) is lower than the strike price which resembles to the findings of chapter 3; 

at present, the diesel generator, with today’s best forecast of future fuel prices, is less expensive to op-

erate during its lifetime compared to the fuel cell. The value, 12,986 USD is the total lifetime cost of 

operating the diesel generator a figure which is substantially lower than the total lifetime cost of buying 

and operating the fuel cell (25,505 USD).  

The lower figure in the left-most cell in the lattice is reported as 641,73 USD in present values. 

This is the value of the flexibility that the telco tower operator has in choosing either to continue op-

eration of the diesel generator or to replace it with the fuel cell. To put the option value into perspec-

tive, 642 USD corresponds to a decrease of 5 percent in the true cost of operating the diesel generator 

since now the value of the flexibility is taken into account as well. 

Notably, as one moves through the lattice, in some instances the strike price actually falls below 

the value of the underlying asset meaning that the cost of operating the diesel generator for the remain-

der of its lifetime now becomes more expensive than buying and operating the fuel cell, focusing solely 

on the remainder of the economic lifetime of the generator. This is primarily due to high levels of diesel 
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prices and secondarily a result of the learning effects of producing the fuel cell that translates to a lower 

strike price.  

To be more specific, in year 4, after three consecutive up-movements in the diesel price, the 

value of the underlying asset lies above the strike price implying that it will make economic sense to 

install the fuel cell system. Nonetheless, at this particular node, the value of keeping the option alive is 

greater and is it thus not exercised. However, in the rather unlikely case of five consecutive up-

movements which corresponds to year 6 in the lattice, the value of the underlying asset less the strike 

price becomes greater than the value of keeping the option alive. To the operator, this means that the 

generator should in fact be replaced in year 6 by the fuel cell. The exact diesel prices at the end of the 

period and its associated probabilities are shown at the right-most column of the table and indicate the 

low probabilities of diesel prices reaching extreme levels. For reference, probability distributions 

throughout the option’s time to expiration are shown in appendix 4. 

One should also acknowledge that for a large part of the binomial tree the option stops to carry 

any value, which happens for the first time in the case of four consecutive down-movements in the die-

sel price. The implication of the option no longer carrying any value is that the operator can simply dis-

regard the fuel cell choice for the remainder of the operating diesel generator lifetime. The complete set 

of optimal decisions is presented in table 5.6. 
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PEMFC life-
time costs 

                                  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15   

 Strike price  25,025  20,695  17,112  14,143  11,677  9,627  7,919  6,494  5,302  4,304  3,467  2,763  2,170  1,670  1,247    
                                  

P[Outcome] 
and diesel price ROV 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Underlying asset value 12,986.19 14,008.91 14,686.48 15,556.59 16,590.08 17,745.71 18,964.68 20,163.52 21,224.70 21,984.45 22,426.94 21,612.91 19,753.93 16,076.18 9,825.77 0.02% 

Option value 641.73 1,078.30 1,802.04 2,994.41 4,946.09 8,118.90 11,045.84 13,669.98 15,922.72 17,680.42 18,960.27 18,850.13 17,583.97 14,406.43 8,578.85 508.40 

      9,547.66 9,620.19 9,836.13 10,174.52 10,608.52 11,102.33 11,607.27 12,056.59 12,358.82 12,599.17 11,977.58 10,895.30 8,834.60 5,384.73 0.19% 

      211.56 367.88 636.37 1,094.75 1,872.45 3,183.50 5,113.73 6,754.61 8,054.79 9,132.49 9,214.80 8,725.35 7,164.84 4,137.81 276.15 

        6,868.33 6,728.95 6,689.79 6,731.82 6,831.75 6,959.78 7,076.75 7,130.48 7,261.03 6,743.96 6,083.57 4,901.19 2,972.50 1.03% 

        54.14 98.33 177.73 319.44 570.44 1,010.85 1,774.77 2,826.45 3,794.35 3,981.19 3,913.61 3,231.44 1,725.58 149.99 

          5,041.23 4,797.00 4,626.12 4,512.10 4,435.40 4,371.86 4,290.60 4,361.51 3,901.23 3,469.98 2,764.69 1,662.25 3.55% 

          8.59 16.68 32.39 62.90 122.16 237.25 460.76 894.83 1,138.45 1,300.03 1,094.94 415.33 81.47 

            3,768.89 3,482.37 3,252.14 3,064.24 2,902.65 2,748.07 2,786.59 2,357.14 2,050.37 1,604.21 950.57 8.45% 

            0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.25 

              2,861.12 2,567.77 2,319.47 2,104.62 1,910.21 1,931.14 1,518.44 1,279.27 973.87 564.00 14.77% 

              0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.04 

                2,196.04 1,914.93 1,671.15 1,455.12 1,466.48 1,062.89 860.44 631.49 354.03 19.54% 

                0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.06 

                  1,695.20 1,435.71 1,207.92 1,214.10 815.44 632.94 445.52 239.98 19.95% 

                  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.09 

                    1,307.82 1,073.65 1,077.01 681.04 509.37 344.51 178.03 15.84% 

                    0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.85 

                      1,000.72 1,002.55 608.04 442.26 289.64 144.38 9.79% 

                      0.00 0.00 0.00 0.00 0.00 0.00 2.09 

                        962.10 568.38 405.80 259.84 126.11 4.66% 

Binomial lattice parameters                   0.00 0.00 0.00 0.00 0.00 1.14 

Volatility 30.52%                     546.84 386.00 243.65 116.18 1.68% 

Diesel price t=0 6.63                     0.00 0.00 0.00 0.00 0.62 

Time step (years) 1                       375.24 234.86 110.79 0.45% 

Expiration (T) 15                       0.00 0.00 0.00 0.34 

Up-movement (u) 1.357                         230.08 107.86 0.08% 

Down-movement (d) 0.737                         0.00 0.00 0.18 

Risk neutral prob. (p) 0.557                           106.27 0.01% 

Risk-free rate (r)  7.93%                           0.00 0.10 

Table 5.5: Real Options Valuation. Source: Own work. 
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Decision tree 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  "Yesterday" WAIT WAIT WAIT WAIT WAIT REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE 

      WAIT WAIT WAIT WAIT WAIT REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE 

        WAIT WAIT WAIT WAIT WAIT WAIT REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE REPLACE 

          WAIT WAIT WAIT WAIT WAIT WAIT WAIT REPLACE REPLACE REPLACE REPLACE REPLACE 

            NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE 

              NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE 

                NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE 

                  NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE 

                    NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE 

                      NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE 

                        NO  VALUE NO  VALUE NO  VALUE NO  VALUE NO  VALUE 

                          NO  VALUE NO  VALUE NO  VALUE NO  VALUE 

                            NO  VALUE NO  VALUE NO  VALUE 

                              NO  VALUE NO  VALUE 

                                NO  VALUE 

Table 5.6: Decision tree. Source: Own work. 
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5.4.2 Real Option Sensitivity Analysis 

Having established the main results of the base case real option valuation, we now turn to a sensitivity 

analysis of the impact on the option value of (some) the most important inputs. While endless scenari-

os could be analyzed, it has been found most relevant to focus on the three main inputs to the calcula-

tions; (1) the effects of learning, (2) the volatility of diesel prices, and (3) the weighted average cost of 

capital. 

5.4.2.1. Effects of Learning 

Defining, reviewing, and estimating the effects of learning have constituted a big role in this thesis. Be-

ing a technology in an infant stage of commercialization, it has been of great interest to analyze the im-

pact on potential diffusion of the fuel cell system and specifically its impact on the decision to replace 

diesel generators with fuel cells in the Indian telecommunication tower case presented here. The effects 

of learning play its part through decreasing the strike price in the real option model as costs of produc-

tion decreases along with increases in the cumulative capacity of installed HT PEM fuel cell systems. In 

figure 5.8 below we graph the real option value at the commencement of operation in year 1 as a func-

tion of yearly learning rate keeping every other assumption constant from the base case. 

 

As an additional feature, the uncertainty of the learning rate estimations in chapter 4 is included in the 

table. The yearly learning rate uncertainty range between 5.8 – 7.2 percent implies a real option value of 

609 (lower bound) to 674 (upper bound). The yearly learning rate is of course a function on how fast 

the cumulative capacity of HT PEM fuel cells doubles, which can be very hard to forecast. As seen in 
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Figure 5.8: ROV sensitivity to yearly learning rate. Source: own work.
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the figure, extreme levels of learning rates approaching 20% a year would impact the real option value 

significantly but must be concluded as rather unrealistic. 

5.4.2.2. Diesel Price Volatility 

The biggest single cost component of operating the diesel generator was found to be the diesel fuel. 

Accordingly, the value of the underlying asset has been assumed to move in tandem with volatility in 

diesel prices since the other cost components of operation, fixed and variable O&M costs, are more 

straightforward to forecast. Consequently, it is of particular interest to analyze the impact on the option 

value of changes in the estimated diesel price volatility. As the figure below shows, the option value is 

quite sensitive to the volatility input which should be to no surprise. The higher the volatility in fuel 

prices, the higher the uncertainty, and hence a higher value of the real option. As it has been discussed 

in the theory of financial and real options, uncertainty about future outcomes will necessarily generate 

option value to defer a decision. Associating higher volatility with diesel fuel prices makes knowledge 

about tomorrow and the rest of the lifetime less certain. Hence, it becomes increasingly more valuable 

to have the opportunity to replace the conventional backup system with a fuel cell, as volatility in 

ULSD fuel becomes larger. In another paper, Wang, Wu, and Yang (2016) estimates an annualized vol-

atility for WTI oil just above 50%. At NYU Stern’s Volatility Institute (2016), there are similarly historic 

data for volatility levels at 70% in February 2016 or below 20% during the summer in 2014. Altogether, 

considering Wong’s (2016) correlation between crude oil and ULSD to be as much as 98%, there are 

support for the fact that different methods yield different results. As in any other real option, the vola-

tility input should thus be evaluated carefully. In the above stated literature, it should also be mentioned 

that both Wang et al. (2016) and NYU Stern’s Volatility Institute (2016) also provide estimates between 

30-35%. Although this is in line with the econometric GARCH(1,1) specification in this paper, it 

should still be challenged. The graph illustrates how the increases in diesel volatility generates notably 

different values for the option holder and supports the hypothesis that risk (i.e. uncertainty) is reward-

ing. 
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5.4.2.3. WACC 

Analogous to analysis of the LCOE’s sensitivity to the WACC, which was undertaken in chapter 3, we 

attach a few words to the impact of the cost of capital on the real option value. Increasing the WACC 

input from 10 to 20 percent implies that the option value drops to one tenth of its value, from 2,284 to 

a mere 232 USD. As in the LCOE model, such calculation underlines how important an input it is and 

shows that also the option value is notoriously sensitive to the cost of capital. For this reason, the sensi-

tivity analysis calls for a highly accurate estimation of WACC in projects for Indian telco and tower 

companies. As it has been outlined in the LCOE framework, this estimate relies on empirical observa-

tions and calculations from Damodaran (2016). The applied WACC is based upon companies involved 

in general telecommunications equipment, which is appropriate for this project, yet the reader should 

also be aware that such estimate might change continuously and quite possibly be different at the time 

of reading. Thus, the sensitivity to WACC calls for careful evaluation in order to capture the true op-

tion value. 
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Figure 5.9: ROV sensitivity to diesel price volatility. Source: own work.
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6. DISCUSSION 

Having performed the real option valuation, it is important to consider which implications the results 

might have, and to which extent the underlying inputs to the framework are true. Therefore, several 

assumptions will be discussed below. Firstly, the growth rates of diesel and methanol fuel are evaluated. 

Next, it is questioned whether potential correlation between diesel prices and learning effects might 

exist, and how one can address the impact of such in the setting within this thesis. Thirdly, an inevitable 

question arises with regards to a classic chicken and egg problem. Who buys systems first and who 

waits because expectations are that prices fall, and what are the implications for future levels of effects 

of learning? Finally, after looking into the extrapolation potential of the results, the real options frame-

work is reviewed to answer whether or not the results are understandable and reasonable. 

6.1. Assumptions on Growth in Diesel and Methanol Prices 

In our estimation of volatility in diesel fuel, it becomes clear that historical prices follow a path depend-

ent on its past returns, yet the analysis also shows high uncertainty in predicting the future path. In oth-

er words, while such estimation can be used to generate value in a real options framework, the calcula-

tions in this thesis assume a constant growth rate of fuel prices for the diesel generator’s remaining life-

time. In the base case scenario, an annual growth rate of almost 7% is applied. If one had applied a 

growth equal to the inflation rate instead, which Statista (2016) estimates to average at 8.4% over the 

recent five years, it would appear that the base case is potentially under-estimating the option value as it 

is currently calculated—with the effect increasing as remaining lifetime decreases. The chosen growth 

rate in diesel fuel is based on historical prices—like its volatility too—yet that does not guarantee a pre-

dictive outcome of the future. When it all comes to one, it should therefore be explicitly stated here 

that our option value is contingent on such assumption. 

 Likewise, the fuel cell needs supply of methanol paid at a market-offered price as for diesel. In 

the LCOE, historical costs support a calculation of 2.4% as growth rate for Indian methanol prices. 

This is an important assumption, yet fuel (and hence OPEX) is less significant in the total cost of own-

ership of the fuel cell system as opposed to that of the diesel generator. In addition, the options frame-

work applied in this thesis is not based upon uncertainty on the operational side of the fuel cell system. 

Thus, it should be mentioned here that fuel for fuel cells also assumes a growth rate, whose estimate 
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can be challenged, but it is not as crucial for the outcome of the option value as opposed to that of die-

sel. 

6.2. Correlation between Diesel Prices and Learning Effects 

How does lower or higher diesel prices affect learning effects? While this thesis does not attempt to 

estimate the historical relationship between the two, one could be encouraged to think that higher die-

sel prices lead to more financial viability in installing fuel cells, all else equal. In turn, installing more 

fuel cells increases the cumulative capacity, which leads to an increase in the learning rate, as produc-

tion costs are expected to decrease as more systems are manufactured. These spillover effects or linkag-

es are not addressed in the calculation of the replacement option. Rather, disregarding how any change 

of diesel price might influence cumulative capacity and potentially manufacturing costs, the base case 

assumes a constantly decreasing strike price based on calculations of historical learning effects. There-

fore, the real option might fail to capture the true value in scenarios in which the diesel price increases 

and thus makes generators comparably less attractive to keep, all else equal. While the authors have not 

found literature revealing empirical evidence on correlation, or even causality, between learning effects 

and fuel prices, the discussion reveals that it is an issue, which needs to be addressed. Here, the authors 

choose to disregard potential correlation, realizing that such assumption might not capture the true re-

lationship. From this discussion, another question arises: a chicken and egg problem. 

6.3. Fuel Cells in the Indian Backup Market: A Chicken and Egg Problem? 

Learning effects are based and estimated on historical development, and as it is today, Intelligent Ener-

gy seems to be among the few to deploy fuel cells at Indian tower sites. The question this section raises 

addresses whether buyers of fuel cells need to purchase systems for learning to occur or if they wait for 

learning to happen and then exercise their opportunity to purchase. If potential buyers are in fact wait-

ing for costs to decrease, which the present state might indicate, the question is, will costs fall without 

fuel cell commercialization happening specifically in the Indian telecommunications and tower mar-

kets? To address this chicken and egg problem in this thesis, focus has been on global learning for the 

PEMFC rather than local learning for manufacturers offering small stationary products to be used in 

backup power setting. As it is argued in both the technology description and the chapter on learning 

effects, global progress in PEMFC technology is expected to be applicable for all of its applications de-

spite both transportation and (large) stationary being the primary drivers of cumulative capacity install-

ments. Recall that the physical PEMFC technology (or product) is essentially small cells of membranes 
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stacked to produce and generate the required electricity supply. Thus, the chicken and egg problem is 

deemed important to address for a holistic view on fuel cell commercialization, yet this thesis draws on 

global learning to be transferable to local learning for backup systems—an assumption supported by 

DPS. It could understandably be argued that developing the actual systems intended for backup de-

ployment generates comparably more learning than systems for other purposes. However, among other 

of their advantages, the technological specification of fuel cell systems and their scalability suggest oth-

erwise. 

6.4. Extrapolation of Results 

In the real options model, the value of flexibility is calculated only for a single telco tower. An extrapo-

lation can be applied to a larger pool of towers, e.g. so that the option value is quantified for the players 

in the Indian tower market as a whole. However, such extrapolation should only be interpreted as ap-

proximations. While power generation needed for a backup system is defined clearly, i.e. 2.5 kW, it 

would be unrealistic to assume that levelized costs will be equal for all competitors in the market. 

Among the thousands of towers, vast differences exist between the amount of base transceiver stations 

and thus power demand. Therefore, a power demand of 2.5 kW will not apply to all cites but serves as 

a valuable base case. Nonetheless, if we disregard different power demands and keep the 2.5 kW as-

sumption, the option value can be approximated for each of the major players, as shown below. 

Extrapolated option values 

Company Share Towers Option Value in mUSD 
Indus Towers 31.0% 123,380 79.177 

Bharti Infratel 9.8% 39,004 25.030 

BSNL 18.2% 72,436 46.484 

Reliance 11.6% 46,168 29.627 

Viom Networks 11.3% 44,974 28.861 

GTL 8.0% 31,840 20.433 

Others 4.3% 17,114 10.983 

ATC 3.5% 13,930 8.939 

Tower Vision 2.3% 9,154 5.874 

Total 100% 398,000 255 
Table 6.1: Extrapolated option values. Source: Own work. 

If every tower in the market applies to the framework developed in this thesis, today’s option value for 

the entire industry is approximated to 255 million USD. On the contrary, as it has just been discussed, 

if everyone exercised such option simultaneously, increases in cumulative capacity call for decreases in 
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manufacturing costs—also despite each system’s relatively small size. In a more realistic scenario, the 

option value is particularly relevant for a company like GTL who has entered into contract with Intelli-

gent Energy. 

6.5. Real Options and the Solution Process: A Call for Redesign? 

In Amram & Kulatilaka’s (1999: 90) book, one real options academic and practitioner comments that 

“the more realistic the model, the more time-consuming it is to compute and estimate, and to under-

stand and use intelligently […] If the model becomes too complex, you lose a lot of the intuition”, 

while the authors themselves add that poorly framed applications are often the biggest source of error. 

The question is then whether real options application in this thesis yields realistic results and an under-

standable model. Clearly, the latter is perhaps distorted somewhat by the numerous assumptions taken. 

Nevertheless, the application is framed so that managers in the fuel cell industry as well as in tower or 

telco can understand it. It is the intention, of course, to implement the option valuation model so that 

the managers of DPS understand the replacement value of fuel cells in Indian backup power, but the 

application should also be understandable elsewhere. Amram & Kulatilaka (1999: 98) also refer to the 

pareto principle and state that “as with most models, the 80/20 rule applies: 80% of the required real-

ism can be obtained by incorporating 20% of the possible real-world features.” The authors of this pro-

ject will not attempt to quantify the realism of assumptions but, as objective outsiders of the industry, 

inputs are not tailored individually to match a self-fulfilling prophecy in which fuel cells solve India’s 

challenges in backup power. If anything, the objective is to depict the scenario as realistic as possible. 

With the results of the model, it also becomes clear that uncertainty does generate an embedded op-

tions value. In fact, if one sets volatility equal to zero, there are no contingent decisions, and the op-

tions value seizes to exist, that is, the value of the running diesel generators is as predicted by the 

LCOE discounting method. In order to generate better results, one can always question the set of in-

vestment alternatives. There are potentially other technologies providing better solutions than fuel cells, 

for example long-lasting batteries. While this is surely possible, this thesis has been shaped by con-

straints from the collaboration company too and they are, of course, focused on fuel cells primarily. 

Altogether, the applied options model does not call for redesign within the delimitations proposed in 

this thesis. On the other hand, however, the authors have chosen to disregard alternative opportunities 

and methods to be implemented, some of which are discussed in the suggestions for further research 

subsequent to the conclusion. 
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7. CONCLUSION 

This concludes the main analysis. The principal focus of this thesis has been to understand how the 

diffusion of a commercially infant technology may take place. To analyze this rather broad area, we 

have investigated a particular technology, the HT PEM fuel cell, in the particular setting of the Indian 

telecommunication tower backup power case. The aim has been to better evaluate the economic choice 

between the conventional power generation source and the fuel cell technology. Now, having carried 

out the analysis, the main research question, along with the supportive sub questions, will be concluded 

upon. 

7.1. Sub Question 1: Understanding the Technology and the Telco Market 

The first sub question was addressed in chapter 2 and aided the understanding the fuel cell technology 

and its different applications. It was outlined how a relatively simple chemical reaction between hydro-

gen and oxygen sparks the energy that the fuel cell converts to readily available electricity. The technol-

ogy is appropriate in a wide range of applications ranging from large-scale plants powering e.g. entire 

data-centers and hospitals to powering tiny devices such as smartphones and laptops. Despite numer-

ous applications, it was concluded that the fuel cell technology is yet to experience widespread com-

mercialization while the coming years do seem promising. 

Chapter 2 also established the Indian telecommunication market as a particularly relevant case 

to investigate. The relevance of the Indian case was supported by three main factors. Firstly, the recent 

multi-billion-dollar deal between Intelligent Energy and the telco tower operator GLT Limited indi-

cates that some degree of economic rationale behind installing fuel cells as a backup power solution 

must exist. Secondly, it was shown that while India is one of the biggest telecommunication markets 

with more than 1 billion active subscriptions, 70% of all telco towers that should support the telecom-

munication infrastructure experience power outages of more than eight hours per day. Lastly, despite 

being one of the biggest markets, the Indian telecommunication market is expected to experience con-

tinuing growth in the coming years thus creating an increasing demand for power generation sources. 

7.2. Sub Question 2: LCOE Estimates for PEMFC and DG 

The second sub question addressed the important question on how the fuel cell system is stacking up 

against the conventional power generation source i.e. a standard diesel generator in terms of the associ-
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ated costs. The first and foremost barrier to widespread adoption of the fuel cell technology has been 

the costs of producing the system due to expensive materials and processes. In chapter 3, it was con-

cluded that PEM fuel cells are, albeit relatively inexpensive to operate, much more expensive to pro-

duce than diesel generators and thus much more expensive to buy as an end-user (telco tower opera-

tor). The analysis was based on the levelized cost of energy model, a well-known framework of com-

paring different energy sources through which the cost of each delivered mega-watt-hour can be com-

pared. The comparison concluded that the LCOE of the fuel cell system during its 15-year economic 

lifetime is 311 USD per MWh corresponding to a total present value cost of ownership of 25,025 USD. 

As the thesis analyzes the choice to replace the diesel generator, these figures were compared to the 

OPEX of the generator that amounts to 161 USD per MWh, or 12,986 USD in present values. 

7.3. Sub Question 3: PEMFC Learning Effects 

Inherent in all types of manufacturing, and especially relevant in the case of infant technologies, learn-

ing from repetitive production should result in more efficient and cost effective production. This as-

sumption, defined as the effects of learning, was investigated in chapter 4 in order to answer the third 

sub question; how can learning effects from PEM fuel cell production be quantified? In answering this 

question, it was firstly studied how previous works on the estimations of learning rates for other energy 

technologies could provide insights into the learning effects of fuel cells. Then, secondly, we estimated 

the learning rate for PEM fuel cells specifically based on the global cumulative installed capacity and 

historical cost figures obtained in the literature. The estimations resulted in a learning rate of 23.15% 

for each doubling in cumulative capacity. 

7.4. Sub Question 4: Real Options Modeling with Diesel Volatility 

The last sub question was addressed in chapter 5, which modelled the real option based on inputs from 

both the LCOE model in chapter 3 and the estimated learning rate in chapter 4. Originating from the 

sphere of financial options valuation, the real options setting was found to present decision makers 

with a more nuanced picture of future decisions and to estimate costs with a higher level of precision. 

Specifically, the possible OPEX savings related to replacing the diesel generator with a fuel cell system 

was defined as the underlying asset with total cost of ownership of the fuel cell system acting as the 

strike price. The learning rate of fuel cell production implied a decreasing strike price and with substan-

tial volatility in diesel prices, the value of the underlying asset could rise to remarkable levels. In con-
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cluding, the real option model showed that the flexibility of backup power generation source does add 

value to the operator through a decrease in the true cost of powering the telecommunication towers. 

7.5. Main RQ Conclusion:  LCOE and Learning Effects Applied into an ROV Model 

Finally, we will conclude on the main research question. The first finding of this thesis is that the Indi-

an telecommunication market postulates an interesting case for fuel cells as a backup power source to 

telco tower due to both long periods of grid outages and future growth potential. The second finding 

confirms the well-established perception of the current state of the PEMFCs that they are very expen-

sive to produce but relatively inexpensive to operate. Currently, from an economic point of view, the 

conventional diesel generator should be the choice of backup power solution as it, still, provides the 

cheapest total lifetime cost of ownership. Thirdly, it is concluded that the PEM fuel cell technology has 

exhibited a learning rate of 23.15% during the past few years and continuing decrease in the costs of 

production will be one of the important catalysts for wide-spread commercialization.  

The main object of the thesis, to apply the conclusions above in a real option context resulted 

in an option value of 642 USD thus quantifying the flexibility of choice of backup power. As of today, 

the PEM fuel cell technology remains unable to compete with the conventional source of backup pow-

er but, as the preceding analysis shows, the PEMFCs may be subject to technological diffusion in years 

to come, should diesel prices and learning rate reach levels favorable to the high temperature proton 

exchange membrane fuel cell. 

7.6. Suggestions for Further Research 

In this thesis, research is carried out to show how theories of economics and finance can help managers 

of Danish Power Systems to understand the value of fuel cells in the Indian telecommunications and 

tower markets. Building on three major frameworks of (i) LCOE modeling, (ii) learning estimation, and 

(iii) real options valuation, the thesis shows that delimitation has been necessary too. Therefore, certain 

extensions and opportunities are not captured here but rather suggested for future work. 

 (i) Within the LCOE framework, possible extensions include a market-modifying model in 

which the traditional WACC is challenged. As it is discussed in section 3.6., levelized costs could bene-

fit from discounting fuel costs, other risk-free costs, debt equivalent costs, and cyclical costs separately. 

Indeed, the LCOE is notoriously sensitive to discounting for which reason the findings support a clos-

er look to the value of such benefits.  
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 (ii) Secondly, the estimated learning effects are based on the transportation sector in this thesis. 

While it might be a challenge to collect sufficient data on the global cost development and cumulative 

capacity within small stationary application of PEMFCs, it is also possible to carry out the model at the 

manufacturer’s level and yield comparable results. As DPS provides inputs for the actual fuel cell man-

ufacturer, it could be valuable to assess the learning effects of such a company. 

 (iii) In the real options model, important delimitations are made too. From the reviewed litera-

ture, a general idea of other methods is presented. Whereas the solution builds on a binomial lattice in 

this model, future research might include other computational methods and arrive at different conclu-

sions. Perhaps more applicable to this thesis, Herbolet (1992) presents an options valuation in which 

two uncertainties are included. Instead of assuming a certain decrease in the strike price of the fuel cell 

system, as it is done in this project, it could be interesting to quantify the underlying uncertainty in 

learning effects differently. On another suggestion, it could similarly be valuable to estimate not only 

uncertainty in diesel prices but also quantify volatility in methanol prices. In this way, a more realistic 

estimate of cost savings from operating a fuel cell as compared to a diesel generator could be quanti-

fied. 

Altogether, these topics call for further investigation before hypotheses can be tested, but it 

could be in the interest of DPS to evaluate the ideas. Fuel cell commercialization is not a topic exclu-

sive to the tower and telecommunications markets of India either. If carried out properly, the models 

applied here should be transferable to different settings. It could be interesting to evaluate similar flexi-

ble investment or replacement decisions in other markets exhibiting grid unreliability, for example. 
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APPENDIX 1 

Assumptions for Diesel Generator Costs   

		
Unit 

10 kVA 

		 Diesel Genera-
tor 

Landed Cost (CAPEX) USD 3,764 

OPEX     

Fixed O&M     

Preventive maintenance USD per visit 14.12 
Freq. of visit hours 300 

Minor overhaul USD per overhaul 564.54 
Frequency of minor overhaul hours 5,000 

Major overhaul USD per overhaul 941.07 
Freqyence of major overhaul hours 10,000 

Variable O&M  		   

Unscheduled maintenance USD 301.14 
Fuel delivery costs per liter 0.038 
Fuel price USD 0.84 
Fuel consumption liter per hour 1.8 
Fuel price growth rate CAGR 6.99% 

Appendix 1: Assumptions for Diesel Generator Costs. Sources: Intelligent Energy (2012) and own work. 
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APPENDIX 2 

The following code is applied in Stata (v12.0) to yield results for ARCH(p) and 

GARCH(p,q) analyses: 

* Stata Code for ARCH(1) and GARCH(1,1) Models 
* ---------------------------------------------- 
* Create dates and declare time series  
* ---------------------------------------------- 
rename var1 r 
gen date = m(2006m6) + _n - 1 
format date %td 
tsset date 
* ---------------------------------------------- 
* Time series plots and histograms 
* ---------------------------------------------- 
tsline r, name(g1, replace) 
qui histogram r, normal name(h1, replace) 
* ---------------------------------------------- 
* LM test for ARCH(1) 
* ---------------------------------------------- 
regress r 
predict ehat, residual 
gen ehat2 = ehat * ehat 
qui reg ehat2 L.ehat2 
scalar TR2 = e(N)*e(r2) 
scalar pvalue = chi2tail(1,TR2) 
scalar crit = invchi2tail(1,.05) 
scalar list TR2 pvalue crit 
* ---------------------------------------------- 
* Built-in LM Test for ARCH(1) 
* ---------------------------------------------- 
regress r 
estat archlm, lags(1) 
* ---------------------------------------------- 
* ARCH(1) 
* ---------------------------------------------- 
arch r, arch(1) 
predict htarch, variance 
tsline htarch, name(g2, replace) 
* ---------------------------------------------- 
* GARCH(1,1) 
* ---------------------------------------------- 
arch r, arch(1) garch(1) 
predict htgarch, variance 
tsline htgarch, name(g3, replace) 
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APPENDIX 3 

Diesel Prices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  6.63 7.09 9.62 13.06 17.72 24.04 32.61 44.25 60.05 81.47 110.55 149.99 203.52 276.15 374.69 508.40 

      5.23 7.09 9.62 13.06 17.72 24.04 32.61 44.25 60.05 81.47 110.55 149.99 203.52 276.15 

        3.85 5.23 7.09 9.62 13.06 17.72 24.04 32.61 44.25 60.05 81.47 110.55 149.99 

          2.84 3.85 5.23 7.09 9.62 13.06 17.72 24.04 32.61 44.25 60.05 81.47 

            2.09 2.84 3.85 5.23 7.09 9.62 13.06 17.72 24.04 32.61 44.25 

              1.54 2.09 2.84 3.85 5.23 7.09 9.62 13.06 17.72 24.04 

Binomial lattice parameters             1.14 1.54 2.09 2.84 3.85 5.23 7.09 9.62 13.06 

Volatility 30.52%               0.84 1.14 1.54 2.09 2.84 3.85 5.23 7.09 

Diesel price t=0 6.63                 0.62 0.84 1.14 1.54 2.09 2.84 3.85 

Time step (years) 1                   0.45 0.62 0.84 1.14 1.54 2.09 

Expiration (T) 15                     0.34 0.45 0.62 0.84 1.14 

Up-movement (u) 1.357                       0.25 0.34 0.45 0.62 

Down-movement (d) 0.737                         0.18 0.25 0.34 

Risk-neutral prob. (p) 0.557                           0.13 0.18 

Risk-free rate (r)  7.93%                             0.10 

Appendix 3: Diesel Prices. Source: Own work. 
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APPENDIX 4 

 

Probabilities 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  "Yesterday" 100% 55.74% 31.07% 17.32% 9.65% 5.38% 3.00% 1.67% 0.93% 0.52% 0.29% 0.16% 0.09% 0.05% 0.03% 

      44.26% 49.34% 41.25% 30.66% 21.36% 14.29% 9.29% 5.92% 3.71% 2.30% 1.41% 0.86% 0.52% 0.31% 

        19.59% 32.76% 36.52% 33.92% 28.36% 22.13% 16.45% 11.79% 8.21% 5.60% 3.74% 2.47% 1.60% 

          8.67% 19.33% 26.94% 30.03% 29.29% 26.12% 21.84% 17.39% 13.33% 9.91% 7.18% 5.09% 

            3.84% 10.70% 17.89% 23.26% 25.93% 26.02% 24.17% 21.17% 17.70% 14.25% 11.12% 

              1.70% 5.68% 11.08% 16.47% 20.66% 23.03% 23.53% 22.49% 20.37% 17.66% 

                0.75% 2.93% 6.54% 10.94% 15.24% 18.69% 20.83% 21.57% 21.04% 

                  0.33% 1.48% 3.72% 6.92% 10.60% 14.18% 17.13% 19.09% 

                    0.15% 0.74% 2.06% 4.21% 7.04% 10.20% 13.26% 

                      0.07% 0.36% 1.11% 2.48% 4.50% 7.02% 

                        0.03% 0.18% 0.59% 1.43% 2.79% 

                          0.01% 0.09% 0.31% 0.81% 

                            0.01% 0.04% 0.16% 

                              0.00% 0.02% 

                                0.00% 

		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
Probability of Waiting 100.0% 100.0% 100.0% 100.0% 96.2% 82.2% 58.4% 51.4% 26.1% 21.8% 0.0% 0.0% 0.0% 0.0% 0.0% 

Probability of Replacement 0.0% 0.0% 0.0% 0.0% 0.0% 5.4% 17.3% 11.0% 23.3% 16.0% 28.2% 20.5% 14.6% 10.2% 7.0% 

Probability of No Option Value 0.0% 0.0% 0.0% 0.0% 3.8% 12.4% 24.3% 37.6% 50.6% 62.1% 71.8% 79.5% 85.4% 89.8% 93.0% 

Appendix 4: Probabilities. Source: Own work. 
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ABBREVIATIONS 

AFC – Alkaline Fuel Cell kW – Kilowatt 

ARCH – Autoregressive Conditional Heteroscedasticity kWh – Kilowatt hour 

ASI – Annual Solar Irradiation kWp – Kilowatt Peak 

BCG – Boston Consulting Group LCOE – Levelized Cost of Energy 

BOP – Balance of Plants LM – Lagrange Multiplier 

BTS – Base Transceiver Stations lr – Learning Rate 

BTU – British Thermal Unit LTPEM – Low Temperature Proton Exchange Membrane 

CAGR – Compound Annual Growth Rate MC – Monte Carlo 

CAPEX – Capital Expenditures MCFC – Molten Carbonate Fuel Cell 

CBOE – Chicago Board Options Exchange MEA – Membrane Electrode Assembly 

CCGT – Combined Cycle Gas Turbine Mfg – Manufacturing 

CEC – California Energy Commission mg – Milligram 

CEO – Chief Executive Officer MMBTU – Million British Thermal Units 

CHP – Combined Heat and Power MW – Megawatt 

Chr – Chromium NPV – Net Present Value 

cm2 – Square Centimeter O – Oxygen 

CO2 – Carbon Dioxide O&M – Operating & Maintenance 

Cob – Cobalt OLS – Ordinary Least Squares 

DCF – Discounted Cash Flow OPEX – Operational Expenditures 

DG – Diesel Generator PBI – Polybenzinmidazol 

DP – Dynamic Programming PDE – Partial Differential Equation 

DPS – Danish Power Systems ApS PEM – Proton Exchange Membrane 

ECN – Energy Research Center of the Netherlands PEMFC – Proton Exchange Membrane Fuel Cell 

EIA – United States Energy Information Administration pr – Progress Rate 

EPG – Electricity Generation Projects Pt – Platinum 

FC – Fuel Cell PV – Present Value 

GARCH – Generalized Autoregressive Conditional Heteroscedasticity R&D – Research and Development 

GDE – Gas Diffusion Electrode R2 – Correlation Coefficient 

GDL – Gas Diffusion Layer RAPS – Remote Area Power Supply 

GS – Geographical Scope RET – Renewable Energy Technologies 

GSMA – Groupe Spécial Mobile Association ROV – Real Option Valuation 

GTCC – Gas Turbine Combined Cycle SINE – Safety Network 

H2O – Dihydrogen Monoxide SOFC – Solid Oxide Fuel Cell 

HAP – Half Plate solar PV – Solar Photovoltaic 

HTPEM – High Temperature Proton Exchange Membrane Telco – Telecommunication 

i.i.d. – Independent and identically distributed TW – Terawatt 

INR – Indian Rupee ULSD – Ultra-Low-Sulfur No. 2 Diesel Fuel 

kg – Kilogram USD – United States Dollar 

kVA – Kilovolt Ampere WACC – Weighted Average Cost of Capital 
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