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Essentially, all models are wrong,
but some are useful.

– George E. P. Box
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ABSTRACT

This thesis is devoted to management of freight rate risk in the dry bulk
sector of shipping. The freight rate risk is modelled in a multivariate set-
ting including Panamax, Supramax and Handysize vessels. Freight rates
are proposed to follow a geometric Brownian motion including stochastic
volatility as modelled by Heston. In order to maintain interdependency
between vessel classes, a Student’s t copula is used to couple the Wiener
processes of the freight rate model. The freight rate model captures the fat
tails and volatility clustering of historical freight rate data as well as the
historical correlation between the freight rate indices.

The freight rate risk is quantified by estimating the potential Cash Flow-
at-Risk and Expected Shortfall. The cash flow effects of operating in the
exposed spot rate market are compared to hedging by operations in the
time-charter market. Three different lengths of time-charter contracts are
used in the comparison; three months, six months, and one year. Simula-
tions show that this type of hedging reduces the potential cash flow losses
by 6%, 19% and 37% for these contracts, respectively.

Keywords. Risk Management, Shipping, Cash Flow-at-Risk, Expected Short-
fall, Stochastic Modelling of Freight Rates, Time-Charter.
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1 INTRODUCTION

The demand for shipping is closely linked to the world economy and as
such, shipping serves as a key indicator on its growth. Few will argue that
shipping is not a risky industry. Over the last decade, we have seen his-
torical highs and lows in shipping freight rates, in line with the financial
turbulence of the world economy in this period. Historically, freight rates
have always fluctuated, giving the rise of mega wealthy shipowners like
Onassis and Fredriksen, and ruined many more. Fluctuations are the na-
ture of freight rates, and as far as shipowners are concerned these cycles
are like the dealer in a poker game, dangling the prospects of riches on the
turn of each card. This keeps them struggling through dismal recessions
and upping the stakes as the cash rolls in during booms. Market agents
in shipping are players in the world’s biggest poker game, in which the
chips are valued in tens of millions of dollars, betting on ships which may
or may not be needed (Stopford, 2009, p. 94). Just as in a poker game,
succeeding in the shipping industry depends on a blend of skill, luck and
psychology.

This thesis is devoted to managing the substantial freight rate risk in-
volved in shipping.1 Any poker player can win a hand on pure luck, but
good players win frequently by using risk managing tools such as calcu-
lating the probability of having the best hand or reading the opponent’s
play. One way of reducing the risk in shipping is to model the future
freight rates and estimate the probability of incurring losses greater than
manageable. Quantitative risk measures used in this thesis are Cash Flow-
at-Risk and Expected Shortfall, which are quantile-based (predicted) fre-

1It should be noted that there are several types of risks in shipping, but this thesis
focuses only on the freight rate risk, which is a type of price risk (Alizadeh and Nomikos,
2009).

1



quency models.
In order to model freight rates, it is common to view them as stochastic

processes. The word stochastic is derived from the Greek "stochazestai",
the art of guessing, or "stochastikos" meaning skilled at aiming ("stochos"
being a target) (McNeil et al., 2015, p. 5). By using stochastic models
for risk management, this thesis will hopefully emphasize the skill aspect
rather than the guesswork, of risk management in shipping.

Originally, the aim of this thesis was to examine how freight rate risk
could be managed in the Norwegian shipping company Western Bulk AS.
However, during the research process, Western Bulk AS sold one of its
two divisions and the remaining one (which changed name to Bulk Invest
ASA) went bankrupt. Consequently, the aim of the thesis turned to a more
general perspective on how shipping companies can manage freight rate
risk. Bulk Invest ASA is then used as an illustrative example of how the
risk can be modelled and measured, as well as an excellent example of
how risky and unpredictable this industry is.

1.1 Problem and Objective

In shipping, there are numerous types of risk. Broadly speaking, shipping
companies face business risks which can be categorized into price risk,
liquidity risk, credit risk and pure risk (Alizadeh and Nomikos, 2009).2

Freight rate risk is a kind of price risk and refers to the variability in the
earnings of a shipping company due to changes in freight rates. Because
volatility in the freight market has a direct impact on the profitability of the
company, this risk is perhaps the most important of all risks encountered
by a shipping company (Alizadeh and Nomikos, 2009, p. 3). In addition,
the freight rate risk has shown in the past to be extensive. Due to this, the
problem statement of the thesis is the following.

Problem statement. How can shipping companies in the dry bulk sector manage
their freight rate risk?

This is a broad and comprehensive statement and as such, certain re-
search questions are needed to limit the scope of the thesis.

2Along with business risk, companies also face legal and political risk, strategic and
operational risk, and environmental risk. Pure risk is the risk of accidents and the like.
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Research questions.

1. What are the distributional properties of the return on freight rates?

2. How can freight rate risk be modelled?

3. How to maintain interdependency between several freight rate in-
dices?

4. How sensitive are the freight rate model variables to changes?

5. Which are the most appropriate and effective quantitative risk mea-
sures available?

6. What is the cash flow effect of actively managing the freight rate risk
as opposed to operating purely in the exposed spot freight rate mar-
ket?

In the next section, some limitations and assumptions of the thesis are
presented and discussed.

1.2 Limitations

Bulk Invest ASA operates only in the dry bulk sector of shipping and
therefore – as the problem statement disclose – this thesis is limited to
freight rate risk in that particular segment. Dry bulk is the largest sector
in shipping (cf. fig. A.1) and the profundity of empirical research within
dry bulk is equally large. However, to the best of the author’s knowledge,
few (if any) articles have the same structure and combination of research
questions as this thesis. Thus, there is a possibility to add to the insight of
the already vast empirical research library of dry bulk shipping.

During the process of collecting relevant data for this thesis, I learned
that shipping is not the most open and publicly available industry. After
several weeks trying to get the correct freight rate data, I finally managed
to meet some kind people at the research department of Fearnley Ship-
ping, which provided me with spot freight rate data. However, at that
time, I did not know that I would also need data on long-term time-charter
contract. Therefore, a shortcut had to be made to be able to finish the the-
sis within deadline, although this reduced the precision of the analysis.

3



Consequently, the time-charter business of Bulk Invest ASA is modelled
through fixing the simulated spot rates at continuous intervals of three
months, six months and one year (i.e. mimicking TC contracts of respec-
tive lengths).3

There are several ways to mitigate freight rate risk, but Bulk Invest ASA
mainly uses time-charter contracts as they operate within both the spot-
and time-charter market. Hence, other ways to hedge freight rate risk, as
for instance Forward Freight Agreements, are not assessed in this thesis.

To limit the scope of the thesis, only market risk factors affecting the
revenues (i.e. freight rates) are modelled and assessed. As such, the cost
side is assumed proportionally static or assumed to follow a predeter-
mined trajectory (e.g. bunker costs).

The remainder of this thesis is organized as follows. In chapter two,
the most prominent relevant literatures are reviewed. Next, a presenta-
tion of the Risk Management Process as a framework for the empirical
research and a theoretical review of relevant risk measures are provided
in chapter three. Chapter four surveys the dry bulk shipping market and
the empirical and theoretical dynamics and formation of freight rates. In
the last part of this chapter, Bulk Invest ASA is presented as an illustrative
case and its risk factors are assessed. The building blocks of the stochastic
model are presented in chapter five, starting with a presentation and anal-
ysis of the dataset. The following subsections present stochastic processes
and volatility, and lastly copulas as a remedy for simulating correlations
between processes. In the final subsection of this chapter, the stochastic
freight rate model and the cash flow model are proposed. Chapter six in-
cludes the empirical results from simulations and discusses the cash flow
effect for Bulk Invest ASA. Validation of the risk measures is done by back-
testing and sensitivity analysis in chapter seven and eight, respectively.
Chapter nine concludes.

3The decision whether or not to enter into a time-charter contract depends on several
factors, as for instance the prevailing market and its prospects. Assuming constant time-
charter fixing is thus not a complete mirroring of the real world.
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2 LITERATURE REVIEW

2.1 Freight Rate Modelling

Most of previous literature involving freight rate modelling has been de-
voted to ship valuation or to price implied real options embedded in vari-
ous types of ship- and freight contracts. In their paper addressed to price
freight rate options, Koekebakker, Sødal and Aadland (2007) use the clas-
sical geometric Brownian motion to model freight rate dynamics. This is a
stochastic process which is well used in financial modelling.

In order to account for mean reversion, Bjerksund and Ekern (1995)
were one of the first to postulate that freight rates follow an Ornstein-
Uhlenbeck (O-U) process.1 Tvedt (1997) extended this modelling frame-
work by proposing a geometric O-U process to correct the lack of down-
ward restriction in ordinary O-U processes (i.e. eliminate the possibility
of negative prices). However, few articles have followed up on this down-
ward restriction because freight rates modelled by the original O-U pro-
cess do not result in frequently negative prices. Furthermore, when they
occur, the rates are often slightly negative and hence negligible (Jørgensen
and De Giovanni, 2010). In addition, modelling the log of spot freight rates
ensures positive freight rates no matter what.

Jørgensen and Giovanni (2010) model freight rates by the original O-U
process to value time-charter contracts with purchase options.2 In their ar-
ticle they note that in addition to the lack of downward restriction, the O-
U process also has some other less desirable properties. For instance, this
process implies that future freight rates follow a Gaussian distribution,

1See section 4.3.5 for the description of mean reversion in freight rates.
2A purchase option gives the charterer the right to buy the vessel at a specified date

(usually at the end of the time-charter period) and for a specified price.
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even though actual freight rates often appear to be skewed and exhibit
high kurtosis. The process also has a constant rate of volatility, which does
not match the empirical facts of freight rate volatility (see section 5.1.3).

It should be noted that there is some dissension within the shipping
literature about the stationarity of spot freight rates. Koekebakker, Sødal
and Aadland review this topic in their article from 2006. Although sound
theoretical arguments propose mean reversion (i.e. stationarity),3 almost
any empirical test of stationarity conclude that spot freight rates are non-
stationary processes (i.e. following random walks; see for instance Tvedt,
2003).4 Thus, modelling spot freight rates as an O-U process may not be
the exact remedy for capturing the freight rate dynamics after all.

Koekebakker, Sødal and Aadland implement the O-U process in two
other articles where they value the real option of switching between the
dry bulk market and the wet bulk market for a combination carrier (2008),
and switching between the dry bulk- and tanker market (2009). However,
in these articles they look at the spread between two markets and argue
that it must converge to a long-run mean. The reason is that if the differen-
tial between the freight rates in two shipping markets becomes too large,
the market agents will switch to the high yielding market. This switching
(i.e. interaction between supply and demand) ensures that the spread will
revert to a long-term mean.

In some of the more recent papers involving freight rate modelling,
more complex models are utilized in order to capture more of the em-
pirical properties of freight rate dynamics.5 Nomikos et al. (2013) sug-
gest jump-diffusion models that can capture the fat tails of the logarith-
mic returns of freight rates. Benth, Koekebakker and Taib (2015) propose
modelling freight rates based on exponential Lévy processes, including
stochastic volatility by the work of Bandorff-Nielsen and Shepard (2001).6

Benth and Koekebakker (2015) use the same model to price Forward Freight
Agreements for Supramax vessels.

3See section 4.3.5.
4Freight rates have commonly been tested by the classical linear ADF-test. Koeke-

bakker et al. find that spot freight rates are stationary, but only by using a non-linear
framework for stationarity testing.

5Some empirical properties besides mean reversion are: fat-tailed returns, stochastic
volatility (i.e. volatility clustering) and short term persistence.

6Bandorff-Nielsen and Shepard construct continuous-time stochastic volatility models
based on non-gaussian processes of O-U type.
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All of the literature presented above model univariate freight rate dis-
tributions only. As one of few, Merikas et al. (2013), examine joint dis-
tribution decomposition in the dry bulk sector with the use of different
copulas, and validate them by Value-at-Risk (V aR). For risk management
purposes, they find that using no-time dependent (i.e. static) copulas de-
liver V aR estimates with breach numbers within the confidence level (as
opposed to dynamic copulas).

2.2 Risk Measuring in Shipping

Measuring risk has since the introduction of Value-at-Risk in the late 1980s
been a manageable practice for most firms. The simplicity and flexibility
of the at-Risk measures have made them common in use and in empirical
research. The literature on Value-at-Risk and other similar risk measures
is extensive. Philipe Jorion – by many seen as the number one expert on
Value-at-Risk – has written an excellent book on the general theory and
use of V aR.7 However, there is not the same extent of articles and em-
pirical research regarding practical use of quantitative risk measure (i.e.
at-Risk models) within the shipping literature.

In their article from 2008, Angelidis and Skiadopoulos use a Value-at-
Risk approach to measure the market risk of freight rates. With data from
both the dry and wet bulk market, they measure the risk by several dif-
ferent types of parametric and non-parametric models, as well as the ex-
treme value method. They find that the simplest non-parametric models
(i.e. filtered historical simulations) provide the most reliable and robust
risk measures.

Alesii (2005) explains total variability in net present value for an in-
dustrial project in the presence of real options, and derives the V aR of the
expanded net present value of the project. This research is illustrated by a
numerical example from the shipping industry. He also derives the Cash
Flow-at-Risk for each epoch in the life of the project.

The previous mentioned article by Benth et al. (2015) applies V aRmod-
els to analyze the efficiency of different stochastic processes meant to cap-
ture freight rate dynamics.

7Jorion, 2007.
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3 METHODOLOGY

3.1 Risk Management

Running a shipping company (or any company in general) can be illus-
trated by sailing a ship through a strait. When there is high tide, it is
easy to sail and almost no decision or wrong turn could make you run
aground. This is the equivalent of a market state where freight rates are
high and revenues are good. However, when the market cycle turns and
the low tide sets in, reefs and rocks awash make every bad decision a po-
tential ship wrecker. Sailing a company aground may sink the ship or at
least make it costly to recover for sailing again.

1995 2000 2005 2010 2015

0
20

00
60

00
10

00
0

Baltic Dry Index

Year

Figure 3.1: The Baltic Dry Index reflecting the daily movements in the dry bulk
sector (averagely weighted across vessel types)

After a couple of years with a very high tide, cf. fig. 3.1, the shipping
market has turned and it may never quite reach the same peak again. The
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dry bulk market experiences freight rate levels which are the lowest in
several decades. Against this backdrop, risk assessment, management and
mitigation are critical components if companies are to survive and thrive
in the challenging new world.

But what is risk? In finance theory, risk is defined as the dispersion of
unexpected outcomes owing to movements in financial variables (Jorion,
2007, p. 75). This includes both positive and negative deviations. Hence,
some risks are good and some are bad. For instance, building on the pre-
vious metaphor; taking the risk of steering through a shallow strait may
incur some extra risk compared to sailing around in open waters. But,
passing through the strait will reduce the total voyage time and there-
fore have a positive effect on expected revenues. Conversely, navigating
through the strait when the weather is bad, the tide is low and the piracy
activity is high incurs risks which the company will be better off sailing
around in open waters. Thus, a need for active risk management is preva-
lent.

Table 3.1: Expected returns and volatility by different
dry bulk vessels classes

Vessel
class

Mean
$/day

Standard deviation Mean
return$/day % of mean

Capesize 36 448 38 867 107% -0.04%
Panamax 19 060 17 194 90% -0.03%
Supramax 20 045 15 282 76% -0.07%
Handysize 14 450 10 845 75% -0.08%

Calculations are based on daily time-charter rates in the hori-
zon: 1998 – 2016.

In this thesis, risk management is defined as a set of financial or op-
erational activities that maximize the value of a company or a portfolio
by reducing the costs associated with cash flow volatility.1 As shipping
being an industry with very high volatility in earnings and relatively low
expected returns, cf. table 3.1, managing risk is essential for any shipping
company pursuing profitable operations.

1This definition is in accordance with Stulz (2003).
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Managing risk is a dynamic and everlasting process which can be di-
vided into the following stages:

• Identification

• Measurement

• Mitigation

• Review and monitoring

The first stage of the Risk Management Process is to identify the po-
tential risk factors for the company.2 This may be factors affecting the
financial, operational or strategic performance, and it could be both inter-
nal and external sources of risk. After having identified the potential risk
factors, one needs to measure and quantify the potential impact on the
business, and the likelihood that the events will happen.

The next step is to minimize unwanted effects of negative impacts on
the business from the risk taken. In shipping, this can be done in numerous
ways depending on the risk mitigated. For instance, freight rate risk can
be hedged by using time-charter contracts, Forward Freight Agreements
or options. It should be noted that some risk is desirable for the company
and some risk is not. In order to earn more, certain risks must be taken.
The choice of either hedging or operating exposed to the market must be
taken at the top level management of the shipping company.

The final stage of the Risk Management Process is to monitor and con-
trol the actions taken in the process so far. This review makes the foun-
dation for the next risk assessment. After reviewing the steps, the process
starts over again. The different stages of the Risk Management Process is
illustrated in fig. 3.2.

2Also known as mapping of risk factors.
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Figure 3.2: The Risk Management Process. Source: Own making

The Risk Management Process will work as a framework for this the-
sis. Firstly, risk factors for Bulk Invest ASA are identified in order to sim-
ulate potential risk and effects on the business. Then, the simulated risk
is measured by quantitative methods described in the next subsections.
Time-charter contracts are examined as a hedging tool for mitigating spot
freight rate risk. This is reviewed by comparing it to operating in the (un-
hedged) spot market. Lastly, the reliability of the quantitative measures
are reviewed and verified.

3.2 Measuring Risk

Measuring the risk taken is an important part of the Risk Management
Process. There are several ways to measure the risk depending on the
type of risk factor assessed. For instance, some risk factors, like customer
or employee satisfaction, are easier to measure and disclose by qualita-
tive methods, e.g. surveys and interviews. Other, more numerical factors
(e.g. cash flow fluctuations) can be measured by quantitative methods. In
this thesis the focus is on the latter type of risk factors, making the use of
quantitative methods appropriate.
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In the following subsections relevant quantitative measures of risk are
presented. In addition, the use of backtesting and sensitivity analysis are
presented as remedies for reviewing the risk measuring stage.

3.2.1 Value-at-Risk
Value-at-Risk (V aR) is a risk measure commonly used among banks and
other financial firms. V aR is a statistical measure of downside risk based
on the current market positions (Jorion, 2007, p. 105). It expresses the max-
imum loss over a target horizon that will not be exceeded at a given level
of confidence. Let R be the final return of a position and r be all possible
values the return can take over the holding period. Furthermore, let the
target horizon span from time t to time T . V aR is then a predetermined
quantile of the predicted distribution of the returns on the current posi-
tions (e.g. returns on freight rates). A quantile is defined as the value such
that the probability mass to the right or left is equal to α (Jorion, 2007, p.
89). As we are interested in the downside risk of the position, the prob-
ability mass to the left of the quantile is the relevant one. Assuming that
the underlying distribution of the returns is continuous, the quantile can
be expressed as

α = P (R ≤ −V aRα
t,T ) =

∫ −V aRαt,T
−∞

ft,T (r) dr (3.1)

The predicted Value-at-Risk will, amongst other factors, depend on the
probability distribution of the returns.3 There are two branches of meth-
ods to estimate this distribution: A non-parametric approach like the so
called historical method estimates the shape of the distribution based on
the historical data. Value-at-Risk is then estimated by scaling and ranking
the observations and finding the α% quantile of the distribution. For ex-
ample, if we want to find V aR at a 95% confidence level, based on 1 000
historical observations, we simply find the (1 - 95%) x 1 000 = 50th lowest
return. This is the 5% quantile of the past 1 000 observations.

The other branch assumes, in contrast to the first one, that there is a
known underlying shape of the distribution of returns (e.g. the Gaussian

3Other factor include: volatility of returns, total exposure, length of the horizon and
confidence level.
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distribution). This branch is called the parametric approach to Value-at-
Risk. Assuming the probability distribution of the returns follows a Gaus-
sian one, with mean µ and standard deviation σ, we can rewrite eq. (3.1)
in terms of the distribution function (Φ)

α = Φ([−V aRα
t,T − µt,T ]/σt,T )

and hence, V aR can be expressed by the inverse of the distribution
function as

V aRα
t,T = −[µ+ σΦ−1(α)] (3.2)

However, the Gaussian probability distribution (or other distributions)
does not always fit the historical returns perfectly. For instance, the skew-
ness or kurtosis of the observed returns may be higher than the theoretical
values. Using a Monte Carlo method to predict the Value-at-Risk can ac-
count for this as anything in the simulation process can be tweaked to fit
the observed features of the historical distribution.

In cases of more than one asset (i.e. several freight indices), the portfolio
V aR can be estimated by matrix algebra and using the correlation between
the assets. The matrix formula for V aR is:

V aRp = (V′ΣV)
1/2 (3.3)

where Σ is a correlation matrix, V is a matrix of individual V aRs and
V′ is its transposed equivalent.

3.2.2 Cash Flow-at-Risk

Estimating the Value-at-Risk is especially suitable for financial firms like
banks as they often have positions in the market related to trading pur-
poses. This means they would only consider a potential change in fair
value to be the main risk. Non-financial firms, on the other hand, have
a different approach to risk management because these companies aim
to stabilize the prospective cash flows from their positions in the market.
Thus, the main risk factor for such a firm is the operational business. Fur-
thermore, as banks and other financial firms can easily cover or liquidate
their positions in the short-term, V aR with a short time horizon (i.e. daily
or weekly) is appropriate. For a non-financial firm, its portfolio of assets
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may not have the same liquidity as a financial firm. A longer horizon in
the risk measure is then more consistent with the quarterly or yearly profit
and loss measure of the non-financial firm (whereas banks for instance, of-
ten have a daily profit and loss measure).

Cash Flow-at-Risk (CFaR) is the cash flow equivalent of Value-at-Risk.
It possesses the same nice features as it sums up all the company’s risk
exposures in a single number that can be used to guide corporate risk
management decisions. It is this single number – the maximum predicted
shortfall (in cash flows) given the targeted probability level – and the
fact that it can be directly compared to the firm’s risk tolerance that are
the uniquely attractive features of both V aR and CFaR (Andrén et al.,
2005). Cash Flow-at-Risk is estimated on longer horizons (e.g. quarterly or
yearly) than V aR because it focuses on revenue flows from the operational
business, making it a natural risk measure for non-financial firms. CFaR
is analogous to V aR and it is calculated the same way, but on cash flow
rather than value, which is the key here: Applying V aR to a non-financial
firm’s portfolio of financial instruments and/or assets would only capture
a small part of the company’s overall exposure since V aR ignores the risk
of the company’s underlying commercial cash flows. CFaR then repre-
sents a transfer of the concept underlying V aR to a setting where cash
flows are the targeted variable (Andrén et al., 2005).

The calculation of CFaR requires an estimate of the probability distri-
bution for future levels of cash flow. In this thesis, the cash flows are esti-
mated based on a stochastic model of freight rates. Fluctuations in freight
rates will directly affect the fleet cash flow of any (unhedged) shipping
company, and consequently, cash flow performance is one of the topmost
concerns in shipping. In capital intensive industries like shipping, where
there is a lot of project financing, one important principle is that repay-
ment must come from the operating cash flows of the financed asset (Gatti,
2013). In that sense, what really matters in measuring freight market risk
is the impact of freight rate variability on cash flow performance. In this
thesis, the simulated cash flow paths from the stochastic model will work
as a foundation for the cash flow risk estimation.

3.2.3 Extreme Value Theory
Value-at-Risk has been criticized as a risk measure since it is not coher-
ent when the underlying distribution is non-normally distributed (see for
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instance Artzner et al., 1999 and Acerbi and Tasche, 2002b; Acerbi and
Tasche, 2002a). The problem is that V aR does not fulfill the axiom of sub-
additivity.4 Acerbi and Tasche explain this problem: For a sub-additive
measure, portfolio diversification always leads to risk reduction, while
for measures which violate this axiom diversification may produce an in-
crease in their value even when partial risks are triggered by mutually
exclusive events (Acerbi and Tasche, 2002a, p. 3).

In addition, when measuring risk by at-Risk measures (e.g. CFaR or
V aR), we only compute a specific quantile of a desired significance level.
This means that these measures do not account for how the probability
mass is distributed in the tail (i.e. values exceeding the quantile). If the
distribution of returns is perfectly bell-shaped (i.e. normally distributed),
then there are not many extreme observations in the tail as it decays faster
towards zero than the tail of distributions with higher kurtosis. But, as
touched upon in the V aR section 3.2.1, distributions of returns often ex-
hibit higher kurtosis than the normal distribution. This makes the ques-
tion: "What is the expected loss if we experience a worst case scenario (i.e.
exceeding the CFaR number)?" interesting.

One answer to this question is provided by Expected Shortfall (ES),
which in fact is a coherent risk measure. ES estimates the expected loss in
the α% worst cases of a specified period. Keeping notations constant, let
R be the final return of a specific position in the market over a specified
time horizon T . Furthermore, let α = A ∈ (0, 1) be some percentage rep-
resenting a sample of "worst cases" for this position (i.e. some specified
probability level). The A% Expected Shortfall is then defined as (Acerbi
and Tasche, 2002a)

ESα(R) = −α−1
(
E
[
R 1{R≤rα}

]
− rα(P [R ≤ rα]− α)

)
(3.4)

The term rα (P [R ≤ rα]− α) is interpreted as the exceeding part to be
subtracted from the expected value E

[
R 1{R≤rα}

]
when {R ≤ rα} has

probability larger than α = A%.5 On the contrary, when the probability
distribution is continuous we always have that P [R ≤ rα] = a. Thus, the

4Let Θ be the set of risk, X and Y be random variables representing the final net
position of an asset, and ρ the risk measure. The sub-additivity axiom then states that:
For all X and Y ∈ Θ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y )

5Explanation of notation: 1{Relation} =

{
1, if Relation is true
0, if Relation is false
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term vanishes and equation (3.4) is reduced to

ESα = −E [R|R ≤ rα] (3.5)

3.3 Validation of Risk Measures

An important part of the Risk Management Process is to review the steps
taken in order to verify that the process is reliable and robust. By validat-
ing the risk measures, we check that the models are adequate and that they
predict the risk reasonably well. Unrealistic assumptions and flawed risk
models could be more damaging to the business than helpful because they
may underestimate risks and thus lead to unjustified investment decisions
(Alizadeh and Nomikos, 2009, p. 333).

3.3.1 Validating at-Risk Models

Backtesting

Back testing is a formal statistical framework that consists of verifying that
actual losses are in line with the projected ones (Jorion, 2007, p. 139).
This involves systematically comparing the history of the forecasts pro-
vided by the risk measure with their associated portfolio returns. The most
commonly used framework in backtesting V aR models was developed by
Christoffersen (1998).6 As CFaR is analogical with V aR, some of the tests
intended for V aR are applicable for this risk measure as well. A sequence
of out-of-sample V aR estimates is said to be efficient with respect to the
information set available at t − 1; Ωt−1, if the following condition holds
(Alizadeh and Nomikos, 2009, p. 333):

E [Φt|Ωt−1] = α with Φt =

{
1, Rt < V aRα

t

0, Rt ≥ V aRα
t

(3.6)

The above equation implies that the expected failures, Φt, of the at-Risk
measure should be i) equal to the nominal significance level on average

6Colletaz et al. (2013) expanded this framework to look at how severe each violation
of the V aR is, not just the number of violations as in Christoffersen’s framework. Colletaz
et al.’s framework will not be utilized in this thesis.
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and ii) uncorrelated with any variable in the information set available at
t − 1. Building on the work of Kupiec (1995), Christoffersen provided a
likelihood ratio (LR) test for this property (eq. (3.6)) in order to state the
accuracy of a V aR model.

An at-Risk model must have an unconditional coverage in the sense
that the number of actual violations (Φ) of the modelled risk level (i.e.
greater cash flow losses than the CFaR) must not be statistically differ-
ent from the expected number of violations at the given confidence level.
In addition, the actual violations must be independent from each other,
meaning that the previous violation should not contain information about
the presence of future violations.

The unconditional coverage can be tested by the following LR test:

LRuc = 2 ln

[(
1− Φ

Γ

)Γ−Φ(
Φ

Γ

)Φ
]
− 2 ln

[
(1− τ)Γ−ΦτΦ

]
∼ χ2

1 (3.7)

Where Γ is the number of at-Risk measures estimated over the period
and τ is the theoretical proportion of violations in that period for a given
confidence level (%):

τ =
Γ (1− %)

Γ

The likelihood ratio test of unconditional coverage is asymptotically chi
square distributed with one degree of freedom. The null hypothesis of
this test is that the average number of at-Risk violations is correct.

Christoffersen also provided a likelihood ratio to test for the indepen-
dence between recorded violations. This test is applicable for V aR where
the value of a position is directly related to the return on it. However,
when estimating CFaR, we also need to consider the prevailing costs of
the company. Due to these costs (which are not present in V aR estima-
tions), the cash flows are likely to violate the estimated quantile loss sev-
eral days in a row if revenues (e.g. freight rates) are low. The indepen-
dence test will therefore not provide any reasonable test results for CFaR
and will not be considered in the backtesting chapter.

17



Sensitivity Analysis

Sensitivity analysis (also known as stress testing or scenario analysis) in-
volves examining the risk model’s responsiveness and its sensitivity to
some extreme events (hypothetical or real). This is not a direct test of the
at-Risk model, but more a test of the solidity of the business. It should be
noted that this type of model testing has been criticized (see for instance
Alizadeh and Nomikos, 2009, p. 335). First of all, the test is biased because
the scenarios tested are subjectively chosen by the individual performing
the test. Secondly, it is not easy to make a valid inference from the test
as probabilities are difficult to assign to extreme events. Finally, it is im-
possible to combine the test in a quantitative manner with the actual risk
measure (i.e. CFaR). Berkowitz (1999) expresses this nicely: ’stress test-
ing is a statistical purgatory. We have some loss numbers but who is to say
whether we should be concerned about them?’

Even so, a sensitivity analysis could give the user of the at-Risk measure
a pointer at which factors have greatest impact on the risk of the portfolio,
and in that manner be a useful tool.

3.3.2 Validating Expected Shortfall

Backtesting at-Risk measures is very easy and robust due to the simple
framework described in the previous subsection. Unfortunately, the same
is not true for Expected Shortfall. The literature is debating whether 1) it
is possible to backtest ES at all and 2) if it is possible; what is the best way
to do it.

One of the reasons why the backtesting ability of ES is discussed is
highlighted by Kerkhof and Melenberg (2004). They argue that it is dif-
ficult to backtest ES because there is a misalignment between estimated
and actual losses. In other words; ES is essentially the average loss of the
α% worst cases, but in real life this number is just a single scenario (i.e. not
a combination calculated through mathematical formulas).

Gneiting (2011) put further contribution to the distrust of the backtest-
ing ability by proving that ES lacks a mathematical property called elic-
itability. If we define ES as a forecast y given the realization x (e.g. the
realized loss of that period), lack of elicitability means it is not possible to
find a scoring function S(y, x) that is to be minimized by a corresponding
forecast evaluation. An example of minimizing a scoring function could
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be to assess the best of several weather forecasts: Using the sum of squared
forecasting errors (SSE), the one with the lowest SSE is chosen. In practice,
this is equivalent to minimizing the scoring function of the weather fore-
casts. However, this is not possible to do for ES because such a scoring
function does not exists, as proven by Gneiting.

Other researchers do believe Expected Shortfall can be backtested and
several tests have been proposed (see e.g. Acerbi and Szekely, 2014; Em-
mer et al., 2013; Righi and Ceretta, 2013). However, as opposed to the
case of at-Risk measures, there is no one framework for backtesting which
is commonly reckoned as adequate. Since the research on this topic is so
fragmented and in order to limit the scope of this thesis (the backtesting
ability of ES could be a thesis in its own), backtesting Expected Shortfall
is omitted in the empirical research.
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4 THE SHIPPING MARKET

4.1 The Dry Bulk Market

From the decades following the Second World War, bulk shipping (in-
cluding liquid and dry bulk) has developed into the major sector of the
shipping industry and bulk tonnage now accounts for about two-third of
the world merchant fleet. The dry bulk sector which includes shipping of
iron ore, grain, coal and other minor bulks accounts for about one-third
of the world merchant fleet (Danish Shipowner’s Association, 2015). The
seaborne trade of main bulk cargo has experienced a linear growth since
the 1970s as depicted in figure 4.1.
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Figure 4.1: The growth in shipping of main bulk cargo. Source: UNCTAD; Clark-
son Research Services © Statista 2016
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Table 4.1: Vessels sizes and commodities shipped

Vessel class Deadweight tonnage Main commodity shipped

Capesize 80 000 + dwt Iron ore, coal
Panamax 60 000 – 80 000 dwt Coal, grain
Supramax 35 000 – 60 000 dwt Grain, bauxite, phosphate
Handysize 10 000 – 35 000 dwt Steel products, cement, logs

Source: Alizadeh and Nomikos (2009). Note that there is not one standard classi-
fication on vessel types due to the everlasting change in size and specification of
the vessels. Consequently, vessel names and size intervals may vary from source
to source.

By January 2015 there were approximately 16 900 dry bulk vessels in
the world merchant fleet (fig. A.1). Dry bulk vessels are mainly divided
into four groups: Capesize, Panamax, Supramax (also known as Handy-
max) and Handysize. These ship types are differentiated by their size,
i.e. tonnage, with Capesize being the largest vessel, and Handysize the
smallest. Capesize, which are vessels above 80 000 dwt are mainly used
for iron ore and coal. Panamax vessels have their name from the Pana-
max canal which limits the vessel to be up to 80 000 dwt. Panamax vessels
are mainly used for coal and grain. Supramax and Handysize vessels are
smaller ships between 35 000 – 60 000 dwt and 10 000 – 35 000 dwt respec-
tively. These vessels are mainly used for grain, bauxite, phosphate, steel
products, sugar and other minor bulks. Table 4.1 sums up the different
dry bulk vessel classes.

4.2 Freight Contracts

A shipping freight contract is an agreement between a shipowner and a
charterer where the shipowner provides a service to the charterer for a
specified amount of money per day for ship hire, or per ton cargo trans-
ported between two ports. This specified amount is called a freight rate.
Depending on the needs of the charterer in terms of the type and duration
of the service, several different types of freight contracts have been devel-
oped and used in international shipping. In the following, the two most
relevant freight contracts are listed and explained:
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• Voyage charter contracts – A contract where the shipowner agrees to
transport a specified amount of cargo between a designated loading
and discharging port. These are also known as spot contracts in the
shipping industry, and they are quoted in US dollars per metric ton
(US $/mt) or as a lump sum.

• Time-charter (TC) contracts – Under a TC contract, the charterer agrees
to hire the vessel from the shipowner for a specified period of time
and under certain conditions. These conditions include the vessel’s
performance specifications (speed, consumption, etc.), the condition
and location of the vessel during delivery and redelivery, fuel on
board, and trading areas, as well as several other terms.

These two contracts are the most common types used in the dry bulk
market. Single-voyage contracts can be classified as short-term or spot-
charter shipping, while time-charter (TC) contracts are often long-term,
ranging in length from a few weeks or months to several years. TC con-
tracts can be seen as a method of fixing the spot rate in order to secure a
fixed revenue stream over a certain period. This means the shipping com-
pany hedges its freight rate risk for a period equalling the length of the
time-charter contract.

There is also a difference in the two contracts regarding the cost alloca-
tion between shipowner and charterer. When entering a voyage contract,
the shipowner is responsible for all costs related to the shipping; i.e. cargo-
handling costs, voyage costs, capital cost, and operating and maintenance
costs.1 In a TC contract however, the shipowner only has to pay the oper-
ating and maintenance cost as well as the capital cost of owning the ship.

4.3 Freight Rates

In the following subsections, the behavior, formation and implications of
freight rates are thoroughly explained.

1Voyage costs include: fuel costs, port charges, pilotage, and canal dues. Operating
and maintenance costs include: crew wages, stores and provisions, periodic maintenance
and insurance costs.
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4.3.1 Shipping Cycles
Market cycles pervade the shipping industry. Martin Stopford elegantly
describes them as waves hitting the beach: From a distance they look
harmless, but once you are in the surf it’s a different story. No sooner
has one finished than another starts and, like surfers waiting for a wave,
shipowners cluster in the through, paddling to keep afloat and anxiously
scanning the horizon for the next big roller (Stopford, 2009, p. 93).

These shipping cycles are a crucial part of the market mechanism of
freight rates and they have both long and short components as well as
seasonal ones. The longer cycles are the heart of the mechanism and they
are driven by technical, economical or regional changes. These cycles are
more difficult to detect as they can span from century-wide to half a cen-
tury. For instance, from 1869 to 1914 the shipping industry experienced a
downward spiral in freight rates which was driven by the increasing effi-
ciency of steamships and the phasing out of the much less efficient sailing
ships (Stopford, 2009).

The shorter cycles are more easily detected as they are created by the
supply and demand for seaborne trade. These cycles works as a mech-
anism devoted to removing imbalances in the supply and demand for
ships. If there is a shortage of supply, the market grants investors with
high freight rates until more ships are ordered. On the other side, an ex-
cess of ships results in lower freight rates and squeezes the cash flow until
the owners of the oldest ships give up the struggle and ships are scrapped.
Although these short cycles are more observable than the longer ones and
have a periodically behavior (i.e. a market through, followed by a recov-
ery, a market peak and then a collapse), regularity is not a part of the pro-
cess. Thus, there is no simple formula for predicting the start or end of
the next cycle. If, for instance, investors classified the cycles by length and
used them as a forecasting aid, they would just postpone the ongoing cycle
as the excess or surplus of ships would not be altered (Stopford, 2009).

The last component of shipping cycles is seasonality which is fluctua-
tions in freight rates occurring within the year. These fluctuations happen
usually at specific seasons in response to seasonal patterns of demand for
sea transport. For instance, in the agriculture trades, there is a noticeable
cycle in freight rates for ships carrying grain, caused by the timing of har-
vest. Another example is the stocking up of oil for periods of peak demand
in the winter (Stopford, 2009, p. 97). It should be noted however, that a
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study of the dry bulk market by Kavussanos and Alizadeh (2001) has re-
jected the existence of stochastic seasonality and found that freight rates
exhibit deterministic seasonality only at a very low level (Benth et al., 2015,
p. 275).

4.3.2 Spot Rate Formation
The spot market for freight rates is characterized by the classical supply
and demand functions, each of which depends on multiple factors that
interact constantly so that the equilibrium freight rate can be determined
(Alizadeh and Nomikos, 2009, p. 44).

The demand for shipping services is influenced by several factors in-
cluding the world economy (drivers of shipping cycles), seaborne com-
modity trades (e.g. iron ore, coal, grain), the average distance the cargo is
shipped, random shocks (e.g. financial crisis) and transport costs (driven
up and down by the market). On the other hand, the supply of ship-
ping services is the number of ships available (i.e. gross tonnage) in the
world merchant fleet at any particular time and the rate of newbuild-
ing/scrapping of ships. The logistical efficiency – for instance speed and
waiting time – of the operating fleet is also influencing the supply of ship-
ping services.

The adjustment mechanism linking supply and demand of shipping
services is the freight market. The freight market can be analyzed on the
basis of the perfect competition model. The demand function for ocean
shipping is inelastic, mainly because there is no competing transport mode
for most bulk commodities. The supply function however, is convex in
shape due to the limitation of supply at any given point in time. The equi-
librium price-level and any changes to it is thus highly dependent on the
current level of demand and supply. See figure 4.2.
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Figure 4.2: Supply and Demand in the Spot Freight Market. Source: Alizadeh
and Nomikos (2009)

When freight rates are low (between point A and B), the supply curve
is highly elastic, and any shift in demand will have a small impact on
the freight rate (i.e. FR1 → FR2). However, when freight rates are high
(between point B and C), the supply curve becomes inelastic. Assuming
initial freight rates at level FR3, supply and demand schedules are very
tight, and the fleet is fully utilized. In this case, if the demand shifts pos-
itively from D3 to D4, assuming supply in the short term is constant, the
new equilibrium freight rate shoots up from FR3 to FR4, which is a rel-
atively large increase. This means that in times of high freight rates, the
volatility in the freight market is high. Similarly, when freight rates are
low, the supply market absorbs most changes in the demand, implying
lower volatility.

4.3.3 Time-Charter Formation

While the spot freight rate is determined by the interaction between sup-
ply and demand, time-charter rates are believed to be determined through
the market’s expectations about future spot rates, i.e. time-charter rates
are the conditional expectation of the spot rates. The relation between
spot- and time-charter rates is based on the expectations hypothesis and
the theory on arbitrage-free term structures commonly used in finance (see
for instance Kavussanos and Alizadeh, 2002). According to this theory, a
shipowner or a charterer should be indifferent between entering into a
time-charter contract or a series of spot contracts equaling the length of
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the TC contract. Assuming the buyer of the shipping contract has some
expectation of the future freight rates, notated as EtFRm

t+im, then the dis-
counted cash flow received under each type of contract must be equal or
else there would be an arbitrage opportunity in the market. Mathemati-
cally, this relationship can be expressed as (Alizadeh and Nomikos, 2009,
p. 49)

TCn
t =

k∑
i=1

(EtFR
m
t+im − EtV Cm

t+im)

(1 + r)i

/
k∑
i=1

1

(1 + r)i
k = n/m (4.1)

where, r is the discount rate, TCn
t is the time-charter rate for a n period

contract at time t, EtFRm
t+im is the expected spot charter rate at time t of

a contract over m periods from t + im to t + (i + 1)m, and k = n/m is a
positive integer indicating the number of spot contracts corresponding to
the length of the time-charter contract. EtV Cm

t+im is the expected voyage
cost. Note that as opposed to the spot rate, the time-charter rate is quoted
net of voyage costs due to the difference in cost allocation between the two
contract types.

However, one important difference between spot- and TC operations is
the fact that the latter is a sort of hedge against underlying spot rate fluc-
tuations. That is, a TC contract obtains a certain security in revenues by
fixing the freight rate over the period, while the earnings of a correspond-
ing series of spot contracts may vary depending on the market conditions
of that period. Hence, a risk element should be included in the relationship
between spot- and TC contracts. This risk premium, ϕ, can be interpreted
as the price the shipowner is willing to pay to pass the uncertainty of the
spot market to the charterer. The final equation expressing the spot and
TC relationship is then

TCn
t =

k∑
i=1

(EtFR
m
t+im − EtV Cm

t+im)

(1 + r)i

/
k∑
i=1

1

(1 + r)i
− ϕt k = n/m (4.2)

Kavussanos et al. (2002) investigates the expectations hypothesis of
the term structure and finds evidence pointing on a time varying element
in the risk premium, meaning the size of it might differ according to the
prevailing market uncertainty.
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4.3.4 Time-Charter Equivalent
The market quotation for spot- and time-charter contracts differ as men-
tioned in section 4.2. Spot (voyage) contracts are quoted in US $/mt,
while TC contracts are quoted as US $/day and net of voyage costs. As
such, the two rates are not directly comparable. To overcome this, market
agents calculate the time-charter equivalent (TCE) of spot rates. The TCE
is calculated in two steps. First, multiplying the spot rate (US $/mt) by
the amount of cargo, and deducting the total voyage costs from the total
freight payment. Then, dividing this by the number of voyage days. The
result is a (spot) freight rate quoted in US $/day comparable with time-
charter rates (Alizadeh and Nomikos, 2009, p. 52).

4.3.5 Mean Reversion

Fundamental maritime economics propose theoretical arguments for mean
reversion in spot freight rates (Koekebakker et al., 2006). Building on the
supply and demand framework explained in section 4.3.2, mean reversion
is a property of the spot rates driving them to a long-term mean (i.e. the
marginal cost of seaborne trade). Shipping is a highly competitive mar-
ket and the spot freight rate is normally determined by the marginal cost
of the marginal vessel required to satisfy the demand for transportation.
Spot rates fluctuate around a long-term mean because there is a theoreti-
cal ceiling to the level of them (Tvedt, 1995). If freight rates for instance
reach a level which is too high, other vessel types or modes of transporta-
tion (i.e. containers or pipelines) can economically substitute bulk vessel
shipping. Newbuilding of ships when freight rates are high will also drive
spot rates down as the new ships are set afloat. Conversely, when freight
rates are low shipowners eventually scrap their old and unprofitable ves-
sels, creating a theoretical lower bound on the freight rates (Koopmans,
1939).

Due to the theoretical arguments of dynamic interaction between sup-
ply and demand and the resulting lower and upper bound, freight rates
cannot exhibit the same explosive behavior as a non-stationary process
in the long run.2 This is enforced by the long run cycles presented in sec-
tion 4.3.1. In the short run however, spot rates can fluctuate as a seemingly

2This reasoning is also applicable for commodity prices in general.
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pure random walk. This is empowered by the fact that most empirical re-
search fail to detect stationarity in spot freight rates (see Koekebakker et
al., 2006 for a review on this subject). One reason for this is the time lag
between changes in demand and corresponding changes in supply. This
time lag stems from a long delivery time of new vessels and a limited abil-
ity to increase supply in the short run (Koekebakker et al., 2006). Note that
in shipping, the short run may be as long as several years because of the
aforementioned time lag.

4.4 Bulk Invest ASA

Bulk Invest ASA (formerly known as Western Bulk ASA) is a dry bulk
shipping company originating from the dry bulk operator Western Bulk,
established under the names Western Bulk Shipping and Western Bulk
Carriers in 1982. The headquarter is located in Oslo, but offices are spread
worldwide including Singapore, Seattle, Miami and Santiago. Bulk Invest
ASA is used as a numerical example of how a dry bulk shipping company
can manage its freight rate risk.

4.4.1 Company Structure

As of February 2016, Bulk Invest ASA (from now on referred to as Bulk
Invest) has sold its division called Western Bulk Chartering AS, and now
only has one division left; called Bulk Shipholding AS.3 Through this en-
tity, Bulk Invest operates a fleet of dry bulk vessels on long-term charter
contracts at fixed charter rates. The contracts include options to extend the
charters and purchase options for the vessels. In addition, the Bulk Invest
Group has some direct investments in four of their vessels.

3http://www.westernbulk.com/on-wb/news-archive/
wester-bulk-chartering-transfer-of-ownership
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4.4.2 Identifying the Risk

Revenue

The fleet consists of seven Panamax vessels, nine Supramax vessels and
three Handysize (see table 4.2).4 The Capesize vessel class will therefore
not be considered in the rest of the thesis. Bulk Invest has an order book of
seven Panamax vessels, which are expected to be delivered during 2016. I
will thus include these seven ships in the operating fleet, even though not
all of them are operable the whole year.

Table 4.2: Fleet per 2016

Bulk Carrier Number

Panamax 14
Supramax 9
Handysize 3

Total fleet 26

By the risk management framework presented in section 3.1, it is im-
portant to identify the main risk factors of Bulk Invest. The main factor
affecting the income is the freight rate. Bulk Invest combines both spot
chartering (voyage contracts) and time-chartering in their business model.
This thesis seeks to estimate the effects of operating in both of these mar-
kets.

The spot chartering business is modelled by assuming that all of Bulk
Invest’s vessels are continuously employed by voyage contracts. This im-
plies that all vessels enter into a new contract as soon as the current one is
finished. Assuming 26 vessels in the fleet and an average voyage length
of 40 days, each vessel makes approximately 9 trips per year.5 This equals
237 voyages and a total of 9 490 ship days.

The time-charter business is modelled by assuming that all vessels are
continuously fixed into TC contracts of three different lengths throughout
the horizon. The contract lengths are three months, six months and one
year. Figure 4.3 illustrates the realized freight rate through time-chartering.

4Bulk Invest names the Panamax class Ultramax.
5The shipping market is operative year-round: 365/40 ≈ 9 trips per year .
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From this illustration it can be seen that fixing the vessels into long-term
TC contracts makes the realized freight rates (i.e. the revenues) smoother,
and thus act as a hedging tool against more extreme fluctuations. A longer
contract will eliminate more fluctuations and thus be smoother and less
risky (in terms of spot freight rate risk).
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Figure 4.3: The smoothing effect of time-charter (TC) contracts

Costs

Even though Bulk Invest have some direct investment in four of the ves-
sels (they own one Handysize 100% and three Supramax 20%), I will as-
sume that all vessels incur both voyage- and cargo-handling costs when
operating. This is because Bulk Invest charters in its vessels and thus,
it become the charterer of the ship. The costs are allocated between Bulk
Invest and the shipowner according to a standard TC contract (cf. sec-
tion 4.2). In addition, Bulk Invest has to pay TC expenses, which is the
cost of chartering a vessel from an external owner. The main costs related
to each time-charter contract are presented in table 4.3.

In order to model the future fuel costs, the forward curve of bunker is
used as an approximation.6 According to Geman (2009), forward prices
provide information about the views of market participants anticipated
price trends and expectations about future supply and demand. This means
they can be used as a qualified guess about the future spot price. However,

6The collected bunker forward curve ranges from March 2016 to December 2017.
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Table 4.3: The different costs included in the cash flow analysis

Cost Description Unit Amount

Commisions Paid to brokers of TC exp. 1.25%
Address commissions of TC exp. 3.75%

Bunkers Fuel used whilst steaming 22 mt 70%
Fuel used in port 2 mt 30%

TC expenses Panamax $ per day 13 400
Supramax $ per day 12 500
Handysize $ per day 9 800

Port costs Dockage, port fees etc. $ per port call 48 000

TC expenses are the charter hire paid for the vessels.

it should be stressed that they act merely as a guess and that the actual
forecasting ability of forward prices is rather poor.

Bunker fuel is essentially a residual product of refined oil (Alizadeh
and Nomikos, 2009, p. 338). Thus, the price of bunker is closely linked
to the world crude oil price. As the price of crude oil is at a historical
low level the market is in contango, which means that it expects the spot
price to increase (see fig. A.2).7 This implies a growth in bunker costs
throughout the horizon of the simulated cash flows.

According to Bulk Invest, vessels under charter are steaming 70% of
the time and the rest of the time they are in ports. While steaming, vessels
consume approximately 22 mt bunker per day and approximately 2 mt
per day while in ports.8

Whenever Bulk Invest enters into a voyage contract, it has to pay a
commission to the broker, amounting to approximately 1.25% of the con-
tracted freight rate. In addition, an address commission of 3.75% is paid to
the cargo owner, making the net income for Bulk Invest 95% of the revenue
(i.e. the freight rate).

The TC expenses incurred through chartering the vessels depend heav-
ily on the prevailing market, type of ship, region and the like. However,
to maintain certain simplicity in the simulations, the TC expenses are as-

7The lowest level of the last decade except for one "dip" right after the Financial Crisis
of 2008. http://www.tradingeconomics.com/commodity/brent-crude-oil

8The actual consumption depends on the freight rate level (see e.g. Stopford, 2009)
and the vessel’s fuel efficiency (i.e. new vs. old ships).
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sumed to be fixed at the amounts presented in the table 4.3. The address
commission is applicable in these "ingoing" TC contracts as well, reducing
the net TC expense by 3.75%. For a Panamax vessel for instance, the net
TC expense is thus 12 900 USD/day.9

The port costs are assumed to be fairly market independent and amount
to $48 000 per port call. Based on historical data from Bulk Invest, the av-
erage number of port calls is assumed to be 1.8 per voyage contract. This
results in a total port cost of $20 476 800 per year.10

Having identified the main risk factors affecting the operating cash
flow in Bulk Invest, the next stage of the Risk Management Process is to
quantify the risk. The first step in this stage is to stochastically model the
freight rates, which is the subject of the next chapter.

913 400 USD/day – 3.75% ≈ 12 900 USD/day.
10$48 000 · 237 voyages · 1.8 calls = $20 476 800.
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5 MODEL DEVELOPMENT

Modelling freight rates is the core of this thesis as it makes the foundation
for the cash flow analysis. There are several ways to do the modelling,
varying from a simple geometric Brownian motion (i.e. a random walk)
and a mean reversion model (i.e. the Ornstein-Uhlenbeck process) to more
sophisticated models including jumps (e.g based on an exponential Lévy
process) and stochastic volatility. In any case, to develop a model for time
series data, we first have to do a preliminary analysis of the data at hand.
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Figure 5.1: The historical daily time-charter rates for the three different types of
vessels

5.1 Data Sources

The data used in this thesis was kindly provided by the research depart-
ment at Fearnleys Shipping. The data consists of three indices of the daily
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average time-charter freight rates, which correspond to the time-charter
equivalents of voyage charter rates.1 This is basically the cost of hiring a
vessel for one day, and hence, the data sets allow for modelling of spot
freight rates. The indices are called BPI TCA, BSI TCA, BHSI TCA, which
is the index for Panamax, Supramax and Handysize vessels, respectively.
Figure 5.1 shows the historical daily time-charter rates for each index. It
should be noted that the indices start at different dates, but they all end
at February 2, 2016, which will act as the starting date of the simulated
freight rates. In the following subsections, an econometric analysis is con-
ducted on observations in the data set up to 2012. This part of the data is
used as the in-sample part to fit the freight rate model and the rest of the
data set is used for backtesting. See chapter 7 for more on the choice of
sample parts.

Table 5.1: Start and end date, and the number of
observations per index

Index Start date End date Observations

BPI TCA 06-05-98 02-02-16 4 439
BSI TCA 01-07-05 02-02-16 2 644
BHSI TCA 04-09-06 02-02-16 2 350

5.1.1 Test of Stationarity

A formal test of stationarity in the time series is necessary before estimat-
ing the freight rate model. A process Xt is stationary if it is in a particular
state of statistical equilibrium. When modelling any kind of econometric
time series, stationarity is an essential part of the process. Non-stationarity
in the time series used for modelling means that exogenous shocks to the
data will not fade away with time. Furthermore, non-stationarity can lead
to spurious regressions and wrongful conclusions, due to violations of the
standard assumptions of an asymptotic analysis (Brooks, 2008, p. 318-
320). On the other hand, stationary processes revert to a long-run equi-
librium after being shocked, which implies that they have a finite mem-
ory. This fluctuation around the long-run equilibrium of stationary series

1Weekends and holidays are excluded, which corresponds to 250 trading days a year.
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is also known as mean reversion (cf. section 4.3.5). A process is weakly
stationary if it satisfies the following equations for t = 1, 2, . . . ,∞:2

E(yt) = µ

E(yt − µ)(yt − µ) = σ2 <∞
E(yt1 − µ)(yt2 − µ) = yt2−t1 ∀ t1, t2

The first two equations state that the mean and variance are constant
over time. Lastly, the covariance between two observations should only
depend on the lag (l) between them, and not on the actual time at which
it is computed. In other words; the covariance between any two points in
time is the same, i.e. Cov(yt, yt−l) = γl (Brooks, 2008).

To test for stationarity, the well-known test of a unit root proposed by
Dickey and Fuller (1979) and later augmented by Said and Dickey (1984),
is used. The Augmented Dickey-Fuller test (ADF) corrects the original
Dickey-Fuller test, which only assumes the residual term ut not to be au-
tocorrelated and further assumes it to be white noise. The ADF test is
formally written as

∆yt = ψyt−1 +

p∑
i=1

αi∆yt−i + ut (5.1)

and have the same test statistics and critical values as the original Dickey-
Fuller test.3

The p lags of ∆yt in the ADF will capture any dynamic structure in the
dependent variable ensuring that the residual term is not autocorrelated.
The statistical analysis is conducted in R, and the number of lags is chosen
based on the plot of the partial autocorrelation function (PACF) for each
data series. The plot of the autocorrelation function (ACF) and PACF of
the log returns of BPI TCA is presented in section 5.1.4 (fig. 5.3) for illus-
tration.4

2A strictly stationary series have all its moments of the probability distribution invari-
ant over time (Brooks, 2008, p. 208).

3ADF test statistics: τ = ψ̂/
ˆ

SE(ψ̂)
4ACF is the coefficient of correlation between two values in a time series;

Corr(yt, yt−l) (Brooks, 2008).
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Table 5.2: Results from the Augmented Dickey-Fuller test

Unit root testing BPI TCA BSI TCA BHSI TCA

Series in log

Test statistic (τ ) −0.45 −0.74 −0.86
P-value 0.52 0.40 0.35
Lags included 3 1 1

Series in first difference

Test statistic (τ ) −24.52 −12.36 −10.24
P-value 0.00 0.00 0.00
Lags included 2 1 1

The basic objective of the ADF test is to examine the null hypothesis
that ψ = 1, which implies that the series has a unit root, against the one-
sided alternative ψ < 1, meaning the series is stationary. The results from
the ADF test are presented in table 5.2. All of the test statistics correspond
to zero mean and no trend since none of the historical means of the indices
are significantly different from zero (cf. table 5.3 in the next subsection),
implying that there is no trend in the log returns of the indices. This is also
consistent with a graphical examination of the plotted freight rate paths in
fig. 5.1.

The ACF plots (figs. 5.3 and A.3 to A.5) and the test results show that
none of the data series are stationary in log values (i.e. they contain a
unit root). This coincides with the fact that a conditional expectation (i.e.
time-charter rates, cf. section 4.3.3) is always non-stationary by the mar-
tingale property (Koekebakker et al., 2006, p. 23). However, all indices are
first-difference stationary, which is shown in the bottom half of table 5.2.
Essentially, this means that the log freight rates are non-stationary, but the
log returns of them are stationary.

5.1.2 Historical Freight Rate Analysis
As explained in the previous subsection, the moments of a non-stationary
time series are not stable over time and an analysis of them will therefore
not be valid as time goes. This subsection describes an econometric analy-
sis conducted on the log returns of each index (see table 5.3), as they were
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found to be stationary.
The means (x̄) of BPI TCA, BSI TCA and BHSI TCA are -0.03%, -0.07%

and -0.08%, which corresponds to an annual log return of -6.5%, -18.3%
and -18.9%, respectively.5 The means are statistically tested if they are
different from zero (H0: x̄ = 0, H1: x̄ 6= 0) and the corresponding p-values
are presented in the second row.6 The p-values clearly show that we fail
to reject the H0 hypothesis for all of the indices.

Table 5.3: Summary statistics of daily log returns

Summary statistics BPI TCA BSI TCA BHSI TCA

Mean −0.03% −0.07% −0.08%
P-value mean test 0.50 0.48 0.48

Maximum 13.8% 20.3% 9.2%
Minimum −21.7% −11.6% −13.1%

Standard deviation 0.02 0.02 0.01
Skewness −0.04 0.41 −1.22
Kurtosis 6.72 18.86 13.55

Jarque-Bera 11 048 39 311 21 206
P-value 0.000 0.000 0.000

Observations 4 438 2 643 2 349

The standard deviation presented in row six can be interpreted as the
volatility of the returns. Annualized standard deviation yields 38%, 25%
and 20% respectively for the indices. Thus, it seems that there is a positive
relation between vessel size and volatility in freight rates. This is consis-
tent with the findings of Alizadeh and Talley (2011) and is argued to be so
because larger vessels operate in narrower markets.7

The third and fourth moment of each series are presented in row seven
and eight of the table. The BHSI TCA is left-skewed, meaning this vessel
class experiences a higher frequency of large losses than for instance the

5Assuming 250 trading days per year
6The p-value is calculated in Excel by the following formula:

NORM.DIST (x̄; 0; s;TRUE), where s is the sample standard error.
7See e.g. the commodities shipped per vessel type in table 4.1.
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BSI TCA (which is slightly right-skewed). The BPI TCA is more symmetric
around the mean. All of the indices exhibit a high kurtosis which indicates
fatter tails and a possibly higher peak than a normal distribution (Brooks,
2008, p. 162). Note that these historical moments are not constant over
time. Figures A.13 and A.14 (in the appendix) show how the skewness
and kurtosis have evolved over time for the three indices.

Both of the higher moments of the log returns indicate that the series
might deviate from normality.8 To formally test for deviation from normal-
ity the Jarque-Bera (1980) test is used.9 The p-values show that we reject
the null hypothesis of normality for all indices. This is consistent with em-
pirical studies on freight rates (e.g. Kavussanos and Visvikis, 2004; Ange-
lidis and Skiadopoulos, 2008). Quantile-by-quantile plots which support
this finding can be found in section 5.1.4. The fact that the freight rates
appear to deviate from normality implies that the freight risk cannot be
captured by the standard deviation alone.10 An at-Risk measure is more
applicable since it can account for the tail risk (Angelidis and Skiadopou-
los, 2008, p. 8).

5.1.3 Volatility Clustering

McNeil et al. (2015), list some stylized facts of financial time series based
on empirical observations and inferences drawn from these observations.
These facts apply to many time series of risk-factor changes such as log
returns on equities, indices, exchange rates and commodity prices. Some
of these facts are noticeable for freight rates as well: 1) Return series are
not independent and identically distributed (iid) 2) Volatility appears to
vary over time and 3) Extreme returns appear in clusters. In fig. 5.2 the
returns of the BPI TCA index are plotted for illustration.11

8A normal distribution has skewness of zero and a kurtosis of three. Note that the
table presents the excess kurtosis as calculated in Excel, which means that the actual kur-
tosis is +3 higher (i.e. BPI TCA’s actual kurtosis is 9.72).

9This test follows χ2
2. The 5% critical value is 5.99.

10The standard deviation can be seen as a measure of risk in accordance with the port-
folio theory proposed by Markowitz (1952).

11A plot of log returns of BSI TCA and BHSI TCA can be found in fig. A.6.
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Figure 5.2: The log returns of BPI TCA

The figure clearly shows the existence of volatility clustering, which is
the tendency for extreme returns to be followed by other extreme returns,
although not necessarily with the same sign (McNeil et al., 2015, p. 80).
This phenomenon is supported by empirical research (e.g. Ådland, 2000;
Kavussanos, 1996) which have found that the volatility increases with the
level of the freight rates. The reason for this is the nonlinear supply curve
described in section 4.3.2, as explained by Alizadeh and Nomikos (2009).
When the freight rate level is low, the market easily absorbs any changes
and shocks to demand because there is an oversupply of tonnage. How-
ever, when the market is tight and freight rates are high (i.e. due to a
shortage of tonnage and excessive demand), any changes or shocks to the
market will cause sharp changes in freight rates and high volatility.

If we compare the return series with the blue line of fig. 5.1 (the his-
torical time-charter average of BPI), we see that high volatility (i.e. large
spikes) in the returns coincides with peaks in the freight rate level, con-
firming the theory of volatility clustering in shipping.12

A series which is iid and normally distributed will have no extreme
spikes in the returns (cf. fig. A.7). Thus, the tails of the returns of the
indices are fatter than of the normal distribution. One should be aware of
this when simulating the freight rates; any stochastic model is as good (or
bad) as its assumptions.13

12Note that the question whether freight rate levels are low or high depends mainly on
the prevailing market equilibrium and marginal costs. The historical price levels are thus
not a totally correct measure on the extremity of the freight rate level.

13See for instance Jorion, 2007, ch. 21, on the effect of model risk.
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5.1.4 Examining the Returns
As opposed to market forecasting where one tries to predict the future in
order to make a profit, market risk measurement seeks to prepare for the
future and to prevent unexpected losses. When forecasting the market, the
means of the distribution is the relevant factor. However, when estimating
the potential risk by CFaR and ES, we are interested in the (left) tail of
the distributed returns, i.e. the downside risk. Therefore, it is necessary to
conduct a closer examination of the properties of the return distribution
before choosing a stochastic freight rate model. If for instance normality
is (wrongfully) assumed when simulating, there will not be many extreme
observations in the tail and the risk would be underestimated.

The starting point of the stochastic freight rate model is to investigate
how the returns can be statistically represented. A common starting point
is to check whether current return values depend upon the return values
in previous periods. In short, this is done by fitting an autoregressive (AR)
model to the data based on the number of lags in the PACF of the time
series. For spacing purposes, only BPI TCA is discussed and illustrated in
this section. Corresponding plots for the other two indices will be written
in parentheses beside the respective figure reference and the figures can be
found in the appendix. If more info is needed about the appendix plots, it
is put in a footnote. The ACF and PACF plot of BPI TCA log returns (first
differences) are presented in fig. 5.3.14
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Figure 5.3: The ACF and PACF plot of the log returns (first differences) of BPI
TCA

Note that there are two spikes outside the confidence band in the PACF
14Plots of BSI TCA and BHSI TCA can be found in figs. A.4 and A.5, together with the

ACF/PACF plot of log BPI TCA values in fig. A.3.
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for the first difference of BPI TCA. Strictly speaking, this resembles an au-
toregressive model of order two (an AR(2) model). However, to maintain
the complexity of the simulations at a certain level and to keep the focus
on other important aspects, I assume that the log returns of the BPI TCA
can be represented by an AR(1) model. The first spike is also greater than
the second, meaning that the first lag effect is much stronger than the sec-
ond lag. For the other two indices, the PACFs clearly suggest an AR(1)
model. Matematically, this model can be written as

AR(1) : Yt = βYt−1 + εt (5.2)

When assuming any statistical model, it is important to check whether
the errors from the model have any predictive information. That is, all of
the explanatory information should be included in the predictor variable
(i.e. β) and not in the error term εt.15 Plotting the residuals of the model
against the fitted values will reveal any pattern or dependency inherent
in predictive error terms. As can be seen in fig. 5.4, the error terms of
the AR(1) model are fairly stochastic and symmetrically spread around
the dotted line (marking ε̂t = 0), and thus fulfill the assumption of no
prediction power in ε̂t. Similar result yields for the two other indices as
well (cf. fig. A.8).
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Figure 5.4: The residuals of the AR(1) model plotted against the fitted values

15This is essentially two assumptions of the ordinary least squares regression and can
be mathematically written as cov(Yt−1, εt) = 0 and E(εt|Yt−1) = 0.
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In the historical analysis in section 5.1.1, I found that the distributions
of returns for all of the indices exhibit high kurtosis (i.e. fat tails). To
illustrate this (tail) deviation from normality, a quantile-by-quantile plot of
BPI TCA returns is plotted in the left pane of fig. 5.5 (fig. A.9). The returns
are plotted as blue circles, and the red line shows the theoretical returns
from a normal distribution. The deviations from the red line in both ends
illustrate the fat tails of the empirical distribution. For comparison, the
same plot is reproduced only fitted against the quantiles of the theoretical
Student’s t distribution (right pane), which is a distribution that exhibits
fatter tails than the normal one.16
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Figure 5.5: Quantile-by-quantile plots showing the returns of BPI TCA versus
the theoretical returns of the normal distribution (left) and the Student’s t distri-
bution with 3.29 degrees of freedom (right)

The graphical inspection of the log returns in section 5.1.3 indicated
that the freight rate volatility might not be constant. Therefore, it would be
interesting to examine whether there is any long-term memory in the time
series of the log returns in order to validate this indication. This is done by
looking at the ACF plot of the squared log returns. Figure 5.6 (fig. A.10)
plots the autocorrelation for BPI TCA up to 200 lags and shows how the
squared returns exhibit a long-range dependency. This is consistent with
volatility clustering and confirms the visual inspection in section 5.1.3.

16The returns of BPI TCA are fitted against the Student’s t distributions using the fitdistr
function in R, resulting in 3.29 degrees of freedom.
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Figure 5.6: Autocorrelation function for the squared log returns for BPI TCA.

Lastly, the empirical density of the log returns is plotted along a normal
distribution fitted to the data.This is done to further support the use of
stochastic volatility in the freight rate model, and to illustrate the high
kurtosis of the index. In fig. 5.7, the empirical density of BPI TCA (black
line) is plotted against a standard frequency axis. The high kurtosis is
clearly present in the returns of the time-charter index, taking form as a
leptokurtic distribution with much higher concentration of probability in
the center versus the normal distribution (red line).

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0

5

10

15

20

25

Log returns

D
en

si
ty

Figure 5.7: Empirical density of the BPI TCA log returns (black line) along with
a fitted normal distribution (red line)
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In order to zoom in on the tails of the empirical distribution, the same
plot is reproduced only this time with a logarithmic frequency axis (bot-
tom panel).17 Looking at the tails, it is clear that the index has bigger de-
viations than explained by the normal distribution. This result also points
at the presence of stochastic volatility in the data (Benth and Koekebakker,
2015). The results for the two other indices are consistent with this conclu-
sion as well (see appendix A.9).
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Figure 5.8: Log-scaled empirical density of the BPI TCA log returns (black
line) and a fitted normal distribution (red line)

After examining the distribution of the returns thoroughly, the conclu-
sion is that it is necessary to include stochastic volatility in the freight rate
model in order simulate the leptokurtic distributions of the returns. In the
next section, the building blocks of the freight rate model are presented.

17The empirical densities are based on kernel smoothing and the fitted normal distri-
butions are based on the means and standard deviations from table 5.3.
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5.2 Stochastic Processes

A formal defintion of a stochastic process is provided by Castañeda et al.
(2014):

Definition 5.2.1. A real stochastic process is a collection of random variables
{St; t ε T} defined on a common probability space (Ω,F ,P) with values in R.18

T is called the parametric space of the process and is usually a subset of R. The
set of values that the random variable St can take is called the state space of the
process, denoted by C.

The mapping defined for each fixed element of the state of nature (ω εΩ),

S(ω) : T → C

t 7→ St(ω)

is called the sample path of the process over time. In the following
subsections an important stochastic process called the geometric Brownian
motion is presented, as well as a popular model for stochastic volatility,
namely Heston’s model from 1993. Lastly, copulas are introduced as a
tool for simulating interdependent stochastic processes, which is the case
of the dry bulk indices.

5.2.1 Brownian Motions

Originally Brownian motions were the random motion of pollen grains
floating in water discovered by Robert Brown in the early nineteenth cen-
tury (Ibe, 2013). The Brownian motion lends itself to several other fields,
and the geometric version is extensively used in finance (e.g. in the Black-
Scholes model for options).19 The change in an underlying asset (S) as-
sumed to follow a geometric Brownian motion is written as

dSt = µStdt+ σStdWt (5.3)
18Where Ω is the state of nature with generic elements ω, F is a set of all events, P is

the probability measure and R is a set of real numbers.
19In the geometric Brownian motion, the logarithm of the underlying quantity follows

a Brownian motion with drift.
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where µ is the drift parameter (e.g. the asset return) and dWt is a stan-
dard Brownian motion (also known as a Wiener process20) on the proba-
bility space (Ω,F ,P), driven by the (constant) volatility σ. For 0 ≤ i < t,
the increments of the Wiener process dW = Wt − Wi is assumed to be
normally distributed with mean 0 and variance σ2

W = σ2
t−i. That is, dW ∼

N
(
0, σ2

t−i
)
.

A geometric Brownian motion (GBM) is the scaling limit of the discrete-
time random walk (Ibe, 2013). A random walk is a non-stationary process
which states that the asset value of tomorrow is best predicted as today’s
value plus a random shock or error term. This coincides with the effi-
cient market hypothesis assumed to prevail financial markets (Fama and
Malkiel, 1970). This hypothesis states that all information regarding a fi-
nancial asset is incorporated in the current price. Consequently, the asset
is assumed to be perfectly priced by the market and any changes to the
price are due to new (unexpected) information. This information (i.e. the
error term of the random walk) is assumed to be random as we have no
prescient knowledge about it.

As opposed to the (stationary) mean reverting Ornstein-Uhlenbeck pro-
cess, the non-stationary random walk can wander freely during simula-
tions as it is not drawn towards a long-term mean.

5.2.2 Stochastic Volatility

Most financial returns series (including freight rates as shown in table 5.3)
are skewed and show a higher degree of kurtosis than assumed in the
normal distribution. This results in fat tails and is caused by time vary-
ing (i.e. stochastic) volatility and volatility clustering (as described in sec-
tion 5.1.3). Standard models based on Brownian motions (e.g. the Black-
Scholes model) assume constant volatility and thus neglecting the higher
kurtosis. One solution to this problem is to let the volatility vary stochas-
tically through stochastic volatility models (SVM).

In general, stochastic volatility models can be analyzed within the fol-
lowing framework (Cerrato, 2012):

20Norbert Wiener established the modern mathematical framework of what today is
known as the Brownian motion random process (Ibe, 2013).
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dSt = µStdt+ σtStdW1,t (5.4)
σt = f(Vt) (5.5)

dVt = a (t, Vt) dt+ b (t, Vt) dW2,t (5.6)
dW1,tdW2,t = ρdt (5.7)

where W1,t and W2,t are two correlated Brownian motions (satisfying
eq. (5.7)) with correlation coefficient ρ, the variance process V and time
varying parameters a, b. Using Cholesky decomposition, equation eq. (5.7)
can be rewritten as

W1,t = ρW2,t +
√

1− ρ2Zt (5.8)

where Zt is a standard normal variable. The correlation coefficient ρ
controls the skewness of the density of the underlying variable. A posi-
tive correlation implies a rise in variance when the price of the underlying
rises. The resulting effect is a fatter right tail and a thinner left tail. The
opposite is true for a negative correlation (Rouah, 2013).

There are several different types of stochastic volatility models, but in
the following, the popular Heston model from 1993 is presented. This
variance process follows a square root diffusion process, given by

dSt = µStdt+
√
VtStdW1,t (5.9)

dVt = κ
(
V̄ − Vt

)
dt+ ξ

√
VtdW2,t (5.10)

dW1,tdW2,t = ρdt (5.11)

The asset (i.e. freight rate) dynamics in eq. (5.9) follows a geometric
Brownian motion, but the volatility dynamics in eq. (5.10) is described by
a mean reversion process where κ is the speed of mean reversion and V̄ is
the long-term variance at which the variance reverts to. ξ is a coefficient
which determines the fluctuation in the variance (the standard deviation
of the variance). High values of ξ disperse the variance process and thus
increase the kurtosis and the fatness of the tails. Low values provide op-
posite results.
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5.2.3 Multivariate Distributions
The market cycles and spot rate formation described in sections 4.3.1 and
4.3.2 are valid for all vessel classes in shipping. By and large, all vessels
in the dry bulk sector are influenced by the same exogenous factors (e.g.
world economic growth) as they ship homogeneous products (i.e. dry
bulk cargo). As such, any shocks to the demand of dry bulk will have
much of the same effect on each freight rate index. This implies a certain
correlation between the indices. Note that there are some differences in
these simultaneous effects, due to the difference in the flexibility of larger
versus smaller ships (e.g. Panamax vs. Handysize), cf. table 4.1. This
means that the indices are highly, but not perfectly correlated (Kavus-
sanos, 1996). Figure 5.9 shows that the Panamax class is slightly more
correlated with the Supramax than the Handysize, and that the two small-
est vessel classes (Supramax and Handysize) exhibit the highest historical
correlation.
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Figure 5.9: Upper right panel shows the correlation matrix of the indices. Lower
left panel visualizes the correlation by corresponding pair plots of the returns

A shipping company engaged in multiple segments will thus be jointly
exposed to the freight rates. To correctly incorporate the dependency be-
tween freight rates in the simulations, the model should include the prob-
ability distribution of all segments together. This is done by the use of
copulas. A copula provides a way of isolating the description of the de-
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pendence structure in a random vector of risk factors.21 A d-dimensional
copula can be defined as a distribution function on [0,1]d with standard
uniform marginal distributions (McNeil et al., 2015, p. 221). By the theo-
rem of Sklar (1959), the importance of copulas in the study of multivariate
distribution functions is summarized:

Theorem 5.2.1. (Sklar 1959) Let F be a joint distribution function with margins
F1, . . . , Fd. Then there exists a d-dimensional copula C: [0,1]d → [0,1] such that,
for all x1, . . . , xd in Rd = [−∞,∞],

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) . (5.12)

This theorem shows, firstly, that all multivariate distribution functions
contain copulas and, secondly, that copulas may be used in conjunction
with univariate distribution functions to construct multivariate ones. This
is important because it allows simulating multiple freight rate indices while
maintaining the interdependency.

There exist several types of copulas that can be used to model inter-
dependency. One major set of copulas is the class of elliptical copulas.
In this class we have the Gaussian and Student’s t copula, based on the
well-known distributions of the same names. As the Student’s t distribu-
tion exhibit fatter tails and greater dependences in the tails, this copula is
utilized on the Wiener processes driving the freight rates in the simula-
tions, to model the interdependency between the freight rate indices.22,23

More precisely; the static version of the Student’s t copula is used in the
simulations, in line with the findings of Merikas et al. (2013) presented in
section 2.1, and for the sake of computational simplicity.

Define the joint Student’s t distribution as Tn (ε1, . . . , εn; R, ν) linking to-
gether a set of n variables with correlation represented by the n-dimensional
matrix R, and denote by Tν(x) the univariate Student’s t distributions. The
multivariate Student’s t copula is then defined as (Cherubini et al., 2011):

21In a sense, every joint distribution function for a random vector of risk factors implic-
itly contains both a description of the marginal behavior of individual risk factors and a
description of their dependence structure (McNeil et al., 2015, p. 220).

22Fat tails is a phenomenon in a univariate setting, where the probability of extreme
events is larger than expected according to the normal distribution. Tail dependence is the
concept of extreme events occurring jointly in two different markets, i.e. in a multidi-
mensional setting (Cherubini et al., 2011).

23The choice of copula is also backed by the VineCopula package in R, which bases the
choice on the Akaike information criterion (AIC).
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C(u1, . . . , un) ≡ Tn

(
T−1
ν (u1), . . . ,T−1

ν (un); R, ν
)

(5.13)

Cherubini et al. (2004) provide an algorithm which can be used to gen-
erate random variates un from the n-copula TR,ν :

• Find the Cholesky decomposition A of R

• Simulate n iid variates z = (z1, z2, . . . , zn)′ from N(0, 1)

• Simulate a random variate s from χ2
ν independent of z

• Set y = Az

• Set x =
√

(ν/s)y

• Set ui = Tν(xi) with i = 1, 2, . . . , n

• Return (u1, . . . , un)′ = (F1(t1), . . . , Fn(tn))′ where Fi denotes the ith
margin
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Figure 5.10: Simulated variates by the Student’s t copula. Left panel shows 400
variates with zero correlation. Right panel shows 400 variates with 0.8 correlation.
Both simulations are done with four degrees of freedom

The effect of using a copula when simulating is illustrated in fig. 5.10.
The left panel shows how the variates lack interdependency when the cor-
relation between them is set to zero. The right panel clearly shows how
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the correlation between the variates are maintained when simulating (i.e.
low/high values in one of the series correspond to low/high values in the
other series). The correlated case also illustrates how the Student’s t copula
includes some extreme observations (the points in the top left and bottom
right corner).

5.2.4 Correlated Brownian Motions
In this subsection, the correlation between the two Wiener processes in
Heston’s stochastic volatility model is analyzed with regards to the three
indices. As mentioned section 5.2.2, the correlation ρ in eq. (5.11) affects
the skewness of the time series. But how to determine what the value of
ρ is? There is several ways to do this and in the following, three methods
are described.

The ρ is essentially the correlation between the dynamics of the returns
of the underlying (eq. (5.9)) and its variance dynamics (eq. (5.10)). To esti-
mate ρ, it is hence possible to look at the correlation between the historical
squared returns and their corresponding variance. The latter part is sug-
gested as:

• Weekly rolling variance

• Change in weekly rolling variance

• Weekly non-overlapping rolling variance

• Change in non-overlapping variance

These methods are used on the three freight rate indices, and the re-
sulting correlations between the variances and the corresponding squared
(log) returns are presented in table 5.4.

Table 5.4: Empirical correlations between returns and variance

Method BPI TCA BSI TCA BHSI TCA

Weekly rolling 0.48 0.69 0.70
Change in weekly rolling −0.12 0.03 0.04

Non-overlapping 0.39 0.64 0.77
Change in non-overlapping −0.03 0.11 0.35
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Both the rolling window methods (overlapping and non-overlapping)
yield a relatively high positive correlation between returns and variance,
while the "changing" methods yield correlations closer to zero. The im-
plication of a high correlation is that when the freight rate increases, the
variance increases as well. This is consistent with the convex supply curve
of freight rates and the relation between high freight rates and volatility, as
described in sections 4.3.2 and 5.1.3. In that sense, the weekly rolling and
non-overlapping methods exhibit correlations which fit the theory better.
As they both give relatively similar results, the average correlations be-
tween them are used as inputs to the freight rate model. The average cor-
relations are 0.44, 0.67 and 0.74 for BPI TCA, BSI TCA and BHSI TCA,
respectively.

5.3 Modelling

In this section, the final stochastic freight rate model is proposed and ex-
plained, as well as a simple model for calculating the cash flows corre-
sponding to the simulated freight rate paths. In addition, an explanation
of the estimation of the respective parameters is provided. Finally, the
assumptions and limitations of the two models are listed and discussed.

5.3.1 Stochastic Model for Freight Rates

The historical data analysis found all the indices to only be first-difference
stationary (recall that the log freight rates contained unit roots), cf. sec-
tion 5.1.1. In addition, since mean reversion is most often not empirically
observable (cf. section 4.3.5), and at least not in the short term, the spot
freight rate dynamics are proposed to follow a geometric Brownian mo-
tion. Let the spot freight rate S be a function of its logarithmic value Xt.

St = exp(Xt) (5.14)

Then

dXt = µdt+
√
VtdW1,t (5.15)

Here, dt is an infinitesimal fraction of time equal to 1/250 = 0.004. The
driving force of the freight rate paths is dW1,t which is a Wiener process,
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and parameter µ is a drift term. In order to incorporate fat tails and volatil-
ity clustering in the log returns (cf. section 5.1.4), the variance V is in itself
assumed to be a stochastic process

dVt = κ
(
V̄ − Vt

)
dt+ ξ

√
VtdW2,t (5.16)

where EP [dW1,t,dW2,t] = ρdt.24 Equation 5.16 is a stochastic volatil-
ity model by Heston as described in section 5.2.2, meaning that the time
varying variance V is explained through a mean reverting process.

To ensure interdependency between the simulated paths of the freight
rate indices, the Wiener processes driving the log freight rate dynamics of
each index (dW1,t) are coupled together using a Student’s t copula as ex-
plained in section 5.2.3. The Wiener processes driving the variance (dW2,t)
are calculated based on Cholesky decomposition as in eq. (5.8).

The starting variance V1 is set by estimating the exponentially weighted
moving average (EWMA) on a rolling window of weekly variance.25 This
is a method which, unlike the simple historical moving average, allows
more recent observations to have stronger impact on the estimation than
older data points (Brooks, 2008). The weighting of recent versus older
data points is set by a decay factor λ. According to the recommendations
of RiskMetrics, this decay factor is set to 0.94 in the estimation of V1 (Zum-
bach, 2007).

In the proposed freight rate model there are a number of coefficients
needed to be estimated. To estimate the drift term in eq. (5.15) the model
is discretized (i.e. as a random walk) into

Xt −Xt−1 = µ+ εt (5.17)
The drift term then follows as

µ̂ =
1

T

T∑
t=1

(Xt −Xt−1) (5.18)

The volatility in eq. (5.15) is modelled through eq. (5.16), where several
coefficients need estimation. There are multiple ways to estimate the pa-
rameters of Heston’s model, depending on the level of precision pursued.

24P is a historical probability measure (also called real world or physical measure).
Thus, this is just another way of writing eq. (5.11) from section 5.2.2.

25EWMA: σ̂2
t = (1− λ)r2 + λσ̂2

t−1, where σ2
t is the estimate of the variance for period t,

r2 is the squared return at time t and λ is a decay factor.
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In order to maintain certain simplicity in this thesis a somewhat rough
but yet reasonable estimation method is used. The correlation between
dW1,t and dW2,t is estimated as described in section 5.2.4. The variance in
eq. (5.16) can be written as

Vt = (Xt −Xt−1 − µ̂)2 (5.19)

Changes in the variance from time t to t+ 1 can then be written on the
form

∆Vt = q + βVt−1 + ut (5.20)

and the coefficients q̂ and β̂ are estimated by ordinary least squares
regression. These coefficients are then used to estimate the first two pa-
rameters of the stochastic volatility model in eq. (5.16):

κ̂ = −β̂ (5.21)

κ̂V̄ = q̂ ⇒ V̄ =
q̂

κ̂
(5.22)

The coefficient representing the standard deviation of the variance in
the stochastic volatility model (ξ) must be estimated through yet another
least squares regression. The squared error terms ut in eq. (5.20) can be
written as

û2
t = δ + γVt + wt (5.23)

Coefficients δ̂ and γ̂ are then estimated, and we finally have that

ξ̂ =
√
γ̂ (5.24)
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5.3.2 Cash Flow Model
Assuming freight rates to be the source of income for the spot business of
Bulk Invest, the cash flow π at time t can be calculated as

πspott = F (St − Ct) (5.25)

where F is the fleet presented in table 4.2, St is the spot freight rate sim-
ulated by the stochastic model presented in section 5.3.1, and Ct is the total
costs presented in table 4.3. For the time-charter business the spot freight
rate is fixed every three month, six month, and one year (depending on
the contract length) all else being equal:

πTCt = F (STC − Ct) (5.26)

5.3.3 Assumptions and Limitations

The presented freight rate- and cash flow models are by no means the
most detailed and precise models nor are they the only way to model the
respective dynamics. However, for the scope of this thesis they provide
a reasonable and informative basis to answer the research questions. In
these models lay certain assumptions and limitations listed and discussed
below.

Freight rate model:

• Type of model – The geometric Brownian motion may not be the
theoretically optimal process for the spot freight rate dynamics, but
it coincides with empirical research and it is fully adequate at the
horizon of the simulations as explained in section 4.3.5.

• Dependency – The correlation between each index is modelled by a
Student’s t copula on the Wiener processes driving the log freight rate
paths, cf. section 5.2.3. A Gaussian copula could just as easily have
been used, but the Student’s t copula fits better with the three indices.

• Static copula - The copula used in simulations is assumed to be static.
A dynamic copula would capture any time varying change of de-
pendency and market co-movement, but for the sake of simplicity, a
static version of the copula is chosen.
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• Trading days vs. Regular days – Even though there are, on average,
250 listed freight rates per year (i.e. 250 trading days) on the indices,
the simulations assume 365 days per year. This is done in order to
simplify the simulations and it coincides with the number of ship-
ping days per year.

Cash flow model:

• Horizon – The horizon is assumed to be approximately two years;
ranging from February 2016 to year-end 2017. This coincides with
the available bunker forward curve.

• Generalization of costs – Each cost type can be split into more de-
tailed outlines (e.g. depending on region or type of vessel), but they
are generalized in order to limit the computational complexity.

• Canal costs – It is not accounted for canal costs because it is hard to
model them appropriately without focusing on specific routes. The
proposed model focuses on a more aggregated cash flow (cf. the
indices for time-charter averages are used for freight rate/revenue
modelling).

• Time-charter – Due to the difficulty in getting data, the TC business
is modelled through the spot freight rate even though there exists a
separate TC index for longer contracts. This index is highly corre-
lated with the spot rate but it exhibits less volatility because it is the
conditional expectation of the future spot rates.

• Capital costs – Because Bulk Invest charters in (almost) all their ves-
sels, the capital costs as well as operating and periodic maintenance
costs are allocated to the original owner of the ship. These costs are
therefore not included in the cash flow model.
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6 EMPIRICAL RESULTS

6.1 Simulated Freight Rates

In the simulations, the last day of the data set: February 2, 2016, is set
as the starting day. The simulated freight rate paths stretch throughout
2017 when the available bunker forward curve ends (December 31, 2017),
making each path 698 days. Ten-thousand iterations are performed with
the following data inputs.1

Table 6.1: Data inputs of the simulations

Input BPI TCA BSI TCA BHSI TCA

X1 7.7231 8.0143 8.0513√
V1 0.0130 0.0074 0.0033
ρ 0.4377 0.6646 0.7357
µ −0.0003 −0.0007 −0.0008
κ 0.2525 0.3987 0.2444
V̄ 0.0006 0.0003 0.0002
ξ 0.0448 0.0401 0.0349

X1 is the log value of the respective indices at Febru-
ary 2, 2016 and

√
V1 is the corresponding weekly

rolling standard deviation estimated by EWMA.

The simulations are done by first fitting the Student’s t copula to the
log returns, and then generating a set of 698 Wiener processes which have

1The number of iteration is arbitrary, but a higher number increase the accuracy of
the simulation. However, the computational power needed increases with the number of
iterations as well, creating a natural limit to the total number of iterations.
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approximately the same correlation as the three indices. Then, a vector of
the corresponding Wiener processes in the variance dynamics (i.e. dW2 in
eq. (5.16)) is calculated using eq. (5.8).
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Figure 6.1: One sample freight rate path of each index showing the correlating
effect of the copula used in simulations

Having generated the necessary Wiener processes dW1 and dW2 with
the appropriate interdependencies, the next stage is to simulate the vari-
ance dynamics in eq. (5.16) and then the corresponding log freight rate
dynamics in eq. (5.15). Lastly, truncated price paths for the time-charter
business are estimated. Figure 6.1 shows one sample spot rate path simu-
lated for each index. Due to the copula, the freight rate paths are correlated
with each other, just as we expect to see in real life (cf. section 5.2.3).

The average correlations between all simulated paths are presented in
the bottom left cells under the 1-diagonal of table 6.2. For comparison, the
corresponding historical correlations (cf. fig. 5.9) are presented in the top
right cells.

Table 6.2: Comparison of simulated and
historical correlations between the indices.

Historical

Simulated
1 0.50 0.42

0.47 1 0.79
0.38 0.72 1

From left (top) to right (bottom), the numbers rep-
resent BPI TCA, BSI TCA, and BHSI TCA.
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6.2 Simulated Returns

It would be interesting to analyze the log returns of the simulated freight
rates in order to check whether they match the empirical properties found
in chapter 5. The simulated properties are presented in table 6.3.

Table 6.3: Statistical summary of simulated returns

Moment BPI TCA BSI TCA BHSI TCA

Mean 0.00% 0.00% 0.00%
Annualized −0.53% −0.11% −0.12%

Std.deviation 2.03% 1.64% 1.36%
Annualized 32.13% 25.93% 21.42%

Skewness 0.14 0.19 0.23
Kurtosis 5.53 6.26 6.65

The annualized average means of the simulated log returns are -0.53%,
-0.11% and -0.12% for BPI TCA, BSI TCA and BHSI TCA, respectively. This
does not coincide with the empirical means from table 5.3. The reason
is that the expected value of eq. (5.15) is just the drift term, because the
increments of the Wiener process are assumed to be normally distributed;
dW ∼ N

(
0, σ2

t−i
)
, cf. section 5.2.1. As the drift terms µ in the freight

rate model is essentially 0 for each index, the simulated means converge
to zero with the number of iterations. It is important to remember that
the simulations are by no means a forecast of the future freight rates. In
that manner, close to zero drift in the model is an appropriate estimate
of µ. Setting the drift parameter greater or less than zero would yield an
expected return greater or less than zero (since E [r] = µdt) and this is
juxtaposed with forecasting the future freight rates to either increase or
decrease.

The average standard deviations of the simulated returns on the TC
indices are more in line with the empirical ones. It is good to see that
the model returns a positive correlation between vessel size and volatility
just as theory and empirical research suggest (see Kavussanos, 1996).2 In

2The correlation between vessel size and volatility is due to the differences in flexibil-
ity of larger vs. smaller vessels, as explained in section 5.2.3.
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addition, the model is capable of incorporating volatility clustering in the
daily returns. This is illustrated in fig. 6.2 where one sample path of the
simulated returns of the BPI TCA is plotted.

0 100 200 300 400 500 600 700

Days

−5 %

0 %

5 %

Figure 6.2: One sample path of the simulated daily BPI TCA returns. The figure
shows volatility clustering captured by the freight rate model

The average resulting skewness is slightly positive for all three indices.
This is due to the positive estimate of ρ as the correlation between the
Wiener processes in the freight rate model, cf. section 5.2.4. The historical
skewness showed greater deviation from symmetry for both BSI TCA and
BHSI TCA. However, when examining the cumulative path of the histor-
ical skewness, all of the indices tend to slowly revert to zero after being
shocked (see fig. A.13). Therefore, in the long-term perspective a simu-
lated skewness of around zero need not be completely wrong.

The simulated average excess kurtosis is lower compared to the his-
torical kurtosis for both BSI TCA and BHSI TCA. The BPI TCA kurtosis
is more consistent with historical data. Again, looking at the cumulative
historical kurtosis, reveals that it is not static, cf. fig. A.14. It is clear that
the Financial Crisis of 2008 had a huge impact on the kurtosis for all in-
dices. As the kurtosis is dynamic and changes over time, trying to per-
fectly match the historical kurtosis when simulating is not necessary a pri-
mary goal. The important aspect is that the model captures some excess
kurtosis, which would not have been present if the dynamics followed a
pure geometric Brownian motion (due to the constant volatility assumed
in the GBM, cf. section 5.2.1).
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One reason why the simulated returns exhibit excess kurtosis is the
Student’s t copula used in the model. The number of degrees of freedom
(DoF) affects the simulated kurtosis because altering the DoF makes the
copula draw from a distribution with a different kurtosis. Higher DoF
reduces the kurtosis as the Student’s t distribution converges to the Gaus-
sian one. The copula used in the simulations was estimated to have 7.65
degrees of freedom.3

To conclude, the (average) log returns of the simulated freight rate
paths exhibit properties which fits the historical data well. The model is
able to capture high excess kurtosis and volatility clustering, which was
the goal of including stochastic volatility in the freight rate dynamics. In
chapter 8, some of the parameters of the freight rate model are tested to
examine what effect they have on the simulated returns.

6.3 Cash Flow Effects

Unfortunately, the cash flows from the simulated shipping activity are dis-
mal news, both for the spot- and time-charter business. In total, there are
no years with positive cash flows. This is due to the low initial spot freight
rate for each index and the high costs incurred by Bulk Invest.4 In order to
break even, the freight rates need to exceed approximately (in $/day) 16
000 for Panamax, 15 130 for Supramax and 12 530 for Handysize vessels.5

The problem is that Bulk Invest has fixed its vessels on long-time charter
contracts at a very high rate compared to the prevailing market. This is
also the reason why the company was forced to declare bankruptcy. The
cash flow effects would definitely have been different for other companies
with another cost structure (e.g. owning the vessels instead of chartering
them in), but with the freight market as battered as it is today, any dry
bulk shipping company would feel its cash reserves desiccate.

Estimating the Cash Flow-at-Risk when the simulated cash flows only
yield negative values may seem wasteful as the company loses money

3Fitted by the Copula package in R.
4The initial spot freight rates are (in $/day) 2 260, 3 024 and 3 138 for BPI TCA, BSI

TCA and BHSI TCA, respectively.
5Because the bunker price is in contango (i.e. increasing over the horizon), the break

even spot rate is calculated by the average bunker price over the horizon, which is 193.7
$/mt.
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anyhow. But to answer the research questions, the takeaways from this
thesis should focus on the potential cash flow losses relative to the means
and the effects of hedging by time-charter contracts, instead of the actual
losses incurred by Bulk Invest.

Total cash flows over the simulated horizon are calculated according to
the simple cash flow models presented in section 5.3.2. Figure 6.3 shows
the density of the total cash flows for each contract type in million US
Dollars (mUSD). It should be noted that although there is evidently some
excess kurtosis in the densities, the longest tails are on the right side. This
is because the model incorporates that freight rates can never be less than
zero (due to simulations of the logarithmic freight rates). This implies that
the freight rates and hence cash flows, are log-normally distributed.6

−140 −120 −100 −80 −60 −40 −20 0

0.00

0.01

0.02

0.03

0.04

0.05

mUSD

D
en

si
ty

Spot
TC 3 months
TC 6 months
TC 1 year

Figure 6.3: Density plot of the total cash flows throughout the horizon of the
simulations

6.3.1 Quantifying the Risk

Having identified the risk, the next steps in the Risk Management Process
are to measure it and if needed, mitigate it. In this thesis, these two steps
collapse somewhat into each other as the quantified risk is compared be-
tween the hedged activities (TC) and the unhedged activity (spot) in order
to assess which method is the best.

6The costs of Bulk Invest are linearly dependent on the revenue (except the bunker
cost).
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The quantitative risk measures used in comparing the spot- and time-
charter business are CFaR and ES as presented in section 3.2. Table 6.4
shows the average potential cash flow losses in million US Dollars (mUSD)
over the simulated horizon (Feb 2016 – Dec 2017), as well as the numbers
in percentages (relative to the mean cash flow of the horizon). The confi-
dence level is set to 95% for both CFaR and ES (i.e. we are looking at the
5% quantile; α = 0.05 ).
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Table 6.4: Summary of CFaR and ES

α = 0.05
CFaR ES CFaR ES ES

CFaR

Risk reduction

in mUSD in percentage CFaR ES

P spot 9.1 11.5 6.8% 8.6% 27%
P 3 8.5 10.8 6.3% 8.1% 27% 6.3% 6.2%
P 6 7.3 9.4 5.4% 7.0% 28% 19.5% 18.8%
P 1Y 5.6 7.0 4.1% 5.2% 25% 38.6% 39.5%

S spot 6.4 8.2 8.4% 10.8% 29%
S 3 6.0 7.7 7.8% 10.1% 29% 6.5% 6.1%
S 6 5.1 6.7 6.7% 8.7% 31% 20.6% 19.2%
S 1Y 4.1 5.2 5.3% 6.8% 29% 36.6% 36.8%

H spot 1.8 2.4 8.9% 12.2% 38%
H 3 1.6 2.3 8.3% 11.5% 39% 6.9% 6.1%
H 6 1.4 2.9 7.2% 9.9% 38% 18.6% 18.5%
H 1Y 1.1 1.6 5.7% 7.9% 39% 36.1% 35.6%

PF spot 14.4 18.6 7.4% 9.5% 29%
PF 3 13.5 17.5 6.9% 8.9% 29% 6.4% 6.2%
PF 6 11.6 15.1 5.9% 7.7% 30% 19.8% 18.9%
PF 1Y 9.1 11.6 4.6% 5.9% 28% 37.7% 38.2%

The risk measures are calculated with 95% confidence level. To save space, the indices
are abbreviated to P, S and H for BPI TCA, BSI TCA and BHSI TCA, and 3, 6 and 1Y cor-
respond to three-month-, six-month- and one-year TC contracts. The last rows named
PF are the aggregated cash flow risks for a portfolio of the three indices.
The ES

CFaR column shows the relative difference between ES and CFaR.
Risk reduction is calculated as the reduction in CFaR and ES from the spot values of

each index. On average, operating with one-year time-charter contracts reduces the po-
tential cash flow risk by 37%. For three-month- and six-month TC contracts the average
risk reduction is 6% and 19%, respectively (average reductions are approximately equal
for both CFaR and ES).
Note that it is standard procedure to report at-Risk measures as positive numbers even

though they actually are losses (i.e. they are in fact negative numbers).
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As mentioned earlier; the simulated cash flows are gloomy, especially
for the Panamax vessel class. There is a negative relation between cash
flows and vessel size, which is due to the difference in TC expenses for
each vessel class (cf. table 4.3). However, if the starting values of the
simulations had been higher (e.g. above the break-even level), the cash
flows would not have been so dismal. Thus, it is important to look at the
percentage risk as well, which provide a relative and more comparable
number.

It can be seen that the spot business incurs the highest potential cash
flow loss for all vessel classes, as proven by both the CFaR and the ES
measure. Furthermore, Expected Shortfall exceeds Cash Flow-at-Risk by
25% – 39% (the ES

CFaR
column), with a negative relationship between vessel

size and the exceeding ratio (e.g. ES of Panamax exceeds CFaR less than
the smaller vessel classes Supramax and Handysize). This implies heavier
tails of e.g. Handysize than of Panamax rates.

However, what is more interesting is the risk reduction induced by
operating in the time-charter business. For all vessel classes, longer TC
contracts reduce both the Cash Flow-at-Risk and the Expected Shortfall.
This is naturally also true for the aggregated portfolio of the three indices.
The potential cash flow loss is reduced by 37% on average when shifting
from the spot rate market to operating by one-year time-charter contracts.
Hedging by six-month- and three-month TC contracts induce on average
19% and 6% reduction in potential cash flow losses, respectively.7

The risk reduction from TC contracts stems from the truncated freight
rate paths. These paths exhibit less volatility than the spot freight rate
path, and the reduction in volatility is greater the longer the TC contract.
Figure 6.4 illustrates the difference in fluctuations between the different
contracts.

7The risk reductions are approximately equal in terms of both CFaR and ES.
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Figure 6.4: Comparison of spot- and time-charter (TC) contracts. Longer TC
contracts incur less fluctuations in the freight rate paths

The conclusion of this chapter is that operating purely in the spot mar-
ket induces a greater potential cash flow loss than operating in the time-
charter market. The effect of mitigating risk by time-chartering increases
with the length of the TC contracts. From a pure (and somewhat naïve)
risk management perspective, the spot market should then be avoided and
the vessels be fixed at contracts with longest possible duration. However
– building on the metaphor in section 3.1 – it should be stressed that risk
management is only the navigating systems of the company ship; other
parts and processes are needed to sail the ship economically and prof-
itable. For instance, there is no point in sailing if the hull is too large for
the waters the ship is sailing in, and there is similarly no point in running
a company if the costs are too high for profitable operations.

Sailing without navigation system may work well if you know your
waters, but there is always a risk that a heavy fog sets in and the visibility
reduces to zero. In other words, a company may operate in well-known
markets, but there is still a chance something unexpected happens. Sailing
by a navigation system then reduces the chance of running aground or the
ship sailing around perplexed until the fuel tank (the cash reserves of the
company) drains out.

The question of whether to operate in the spot- or time-charter market
is not a mutually exclusive one. If one expects the market to grow, fixing
the vessels at a presumably lower freight rate is then counterintuitive. A
profitable shipping company operating by asset-play needs to combine op-
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erations in both the spot- and time-charter market.8 But then again, spec-
ulations (about the market) and risk management are two different things
and from a risk reducing perspective; time-charter contracts provide more
stable revenues.

8When operating by asset-play the earnings of the company are solely based on pro-
viding high tonnage when freight rates are high and restricting the tonnage when they
are low.
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7 BACKTESTING

When modelling at-Risk measures which are meant to be backtested, the
models are estimated based on an in-sample part (typically the first two
thirds) of the data and the out-of-sample part (the last third) is then used
for backtesting. This is done in order to weed out any bias in the training
of the model.1 The data at hand for this thesis is highly affected by the
Financial Crisis of 2008, with two of the indices (BSI TCA and BHSI TCA)
starting just before the freight rates rocketed, cf. fig. 5.1. Choosing the
in-sample data is thus somewhat tricky, since the model will reflect the Fi-
nancial Crisis if this part is included and then potentially overestimate the
risk in a more normal market state. Overestimating the risk is bad because
it can induce hedging activities which are not needed and consequently,
reduce a potential return.2

The in-sample periods of the data sets are chosen as the data up to 2012,
making the out-of-sample the data between 2012 and 2015. The out-of-sample
periods are set according to the available historical cost data for Bulk In-
vest. For the BSI TCA and BHSI TCA most of the in-sample data consists
of freight rates during the Financial Crisis, but there is also a sufficient
amount of observations following this turbulent market period.

The following subsection is devoted to backtesting of the Cash Flow-
at-Risk estimates from section 6.3. The Expected Shortfall is omitted from
backtesting due to the reasons stated in section 3.3.2. Before proceeding,
one remark about the simulations and the backtesting is needed. The hori-

1Fitting a model to a data set and then testing if the model works on that same set of
data is doomed to succeed. Evidently, this backtest is not a test of how the model fits to
real virginal data, but more a test of how good the data is fitted to the training data.

2This is equivalent to the effect of reduced volatility on the value of an option. Re-
ducing the volatility reduces the possibility of ending in a more profitable market state,
which is mirrored by a reduced option value.
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zon of the simulated freight rates is 2016 – 2017, but the model is trained
over the in-sample period up to 2012. This means that some important
properties of the freight rates stemming from 2012 – 2015 may be omitted
in the model. To check for this, a similar model was fitted over the whole
data set (up to 2016) for each index and the risk was measured in a similar
way to the original model. Fortunately, the resulting CFaR and ES only
differed in the range 0% – 0.7% between those models. Consequently, the
in-sample model does not omit too much sensitive and important data.

7.1 Cash Flow-at-Risk

Backtesting is performed by calculating two-year rolling cash flows (cor-
responding to the horizon of the simulations) over the period 2012 – 2015.
The rolling window method results in 500 observed two-year cash flow
estimates for each index.

One issue which needs to be considered when backtesting CFaR is
whether to use the costs implemented in the cash flow model or to use the
historical costs corresponding to the backtesting period. In other words:
should we keep costs fixed at 2016 level when backtesting between 2012
and 2015 or should the costs be altered to the actual costs in that period?
The latter part creates a more realistic picture of the cash flows of that pe-
riod, but using these costs may also undermine the CFaR level from the
simulated model because the inputs are changed. This makes compari-
son between the simulated- and the historical CFaR somewhat difficult.
Keeping costs fixed is also not optimal because the cash flows become less
realistic.

Because of the issue regarding fixed or floating costs, backtesting is
performed with both alternatives and the results are presented in table 7.1.
The numbers of violations are listed in the No columns, with the respec-
tive percentages of total observations in parentheses. The p-values of the
unconditional coverage tests are presented in the LRuc columns. In accor-
dance with the recommendations of Christoffersen (2012), the significance
level is set to 10%.3 Bold p-values indicate that the null hypothesis is not

3Setting a higher significance level (e.g. one or five percent) increases the risk of ac-
cepting an incorrect model (i.e. Type II error). In risk management, Type II errors can be
very costly (Christoffersen, 2012, ch. 8).
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rejected (i.e. the CFaR model passes the statistical criterion) at the 10%
significance level.

Table 7.1: Summary of unconditional coverage tests

Fixed costs Floating costs

No LRuc No LRuc

P spot 55 (11%) 0.00% 33 (7%) 11.68%
P 3 46 (9%) 0.01% 93 (19%) 0.00%
P 6 14 (3%) 1.38% 199 (40%) 0.00%
P 1Y 111 (22%) 0.00% 264 (53%) 0.00%

S spot 46 (9%) 0.01% 35 (7%) 5.37%
S 3 43 (9%) 0.08% 28 (6%) 55.25%
S 6 123 (25%) 0.00% 141 (28%) 0.00%
S 1Y 143 (29%) 0.00% 230 (46%) 0.00%

H spot 72 (14%) 0.00% 20 (4%) 28.40%
H 3 92 (18%) 0.00% 4 (1%) 0.00%
H 6 88 (18%) 0.00% 60 (12%) 0.00%
H 1Y 150 (30%) 0.00% 195 (39%) 0.00%

PF spot 57 (11%) 0.00% 19 (4%) 19.60%
PF 3 51 (10%) 0.00% 8 (2%) 0.01%
PF 6 67 (13%) 0.00% 121 (24%) 0.00%
PF 1Y 145 (29%) 0.00% 236 (47%) 0.00%

The null hypothesis tested with LRuc is that the average num-
ber of CFaR violations is correct.
Bold p-values (percentages in the LRuc columns) indicate that

the null hypothesis is not rejected (i.e. the CFaR model passes
the statistical criterion) at the 10% significance level.
The number of violations (No) refers to the times the estimated
CFaR is exceeded. Figures within parentheses report the fre-
quency of violations in the sample size.
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None of the CFaR models pass the unconditional coverage test at 10%
significance level when the costs are kept fixed at 2016 level. This is as
expected because cash flows are naturally highly dependent on the costs,
and the cost level of a company which charters in its vessels depends on
the market state (i.e. higher freight rate levels equal to higher TC expenses
and vice versa). However, there seem to be a pattern of significant models
for shorter time periods when historical costs for the respective years are
used in the cash flow calculations (i.e. floating costs). This is interesting
and needs further explanation.

First of all, recall that the cash flows for backtesting were calculated as
two-year rolling windows. Furthermore, recall that the time-charter con-
tracts were calculated as truncated spot freight rates due to lack of TC data.
When backtesting, the cash flows are converted to percentages relative to
the mean cash flow of the backtesting period. The longer the time-charter
contract, the less ups and downs occur in the cash flows, as can be seen in
fig. 7.1. The x-axes show the 500 two-year rolling cash flows from backtest-
ing for the Panamax vessel class. Each cash flow is plotted as a percentage
relative to the respective mean cash flow over the backtesting period (y-
axis). The shaded areas mark cash flows which violate the CFaR limits
(dotted lines), cf. table 6.4. There is an overall positive tendency in the
relative cash flows over the backtesting period. This is because the scale
between average costs and revenues decreased over the period (i.e. less
costs relative to revenues).
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Figure 7.1: Rolling two-year cash flows (CF) over the backtesting period for the
Panamax vessel class
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Secondly, the cash flows from spot contracts change every day (due to
a daily change in revenues), but the cash flows from a one-year TC con-
tract change only 4 times during the backtesting period. Each of the four
shifts in cash flow relate to the time when a new TC contract is fixed. If the
spot rate at that time differs greatly from the spot rate at the time of the
previous TC fixing, the cash flow will incur an equally large shift. Since
there are only four observations of cash flows for the one-year TC contract
(as opposed to the spot contracts where there are 1000 observations), each
observation has greater impact on the average cash flow.4 Even though,
rolling the two-year cash flows forward throughout the backtesting hori-
zon creates more observations, the effect is still present and each obser-
vation deviates more from mean in the one-year TC contract than in the
spot contract. The magnitudes of these deviations are dependent on the
changes in cash flows over the period.
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Figure 7.2: BPI TCA spot rates during the backtesting period along with trun-
cated spot rates corresponding to different lengths of time-charter (TC) contracts

To illustrate the changes in cash flows, the spot freight rate along with
truncated time-charter rates over the backtesting period (2012 – 2015) are
plotted in fig. 7.2. The figure shows that revenues from the one-year con-
tract shift four times during the period and each shift is large in magni-
tude. Because of this, the relative cash flows from the one-year TC contract

4Let ∆ be the change in the average of a vector containing some random variables.
When ∆ goes to infinity, the effect of ∆ would be 250 times greater in a vector containing
four variables than in a vector containing 1000 variables.
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deviates greater from mean than for the shorter contracts, and this result in
more violations of the CFaR limit in the one-year TC contract (illustrated
by a larger shaded area in fig. 7.1 than for the shorter contract types).

The reasoning of why one-year TC contracts exhibit more violations is
also true for the six-month TC contract, although the effect is not as promi-
nent as in the one-year contract (the effect diminishes with shorter time-
charter periods). The question is how to deal with the low p-values of the
unconditional coverage test for six-month and one-year time-charter con-
tracts? Do the low p-values mean the CFaR measures of longer TC con-
tracts are useless? The answer is: not necessarily. Backtesting is a some-
what ad hoc process and the way the tests are set up affects the potential
results (Holton, 2003). In my case, the backtest resulted in few changes of
the cash flow for longer time-charter contracts and this affected the num-
ber of violations heavily. A backtest with more observations (i.e. a longer
period) could give a more reliable and correct result for the longer TC
contracts. However, take for instance the one-year TC contract; the cash
flow changes once a year which means the backtesting period must be
very long in order to get a significant out-of-sample period. Such a dense
data set is not available for this thesis. The low p-values of the longer TC
contracts are therefore best neglected because there is not a valid backtest
procedure for them at this time.
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8 SENSITIVITY ANALYSIS

The way Bulk Invest’s costs are determined in section 4.4.2 implies a lin-
ear relation between costs and cash flows. This means there will be no
exciting effect of altering any cost variable; the cash flow would only be
altered equal to the change in costs. Because of this, I will not conduct
any sensitivity analysis on the costs, but instead focus on variables with
a non-linear relation to its determinant. These variables are found in the
stochastic freight rate model. The sensitivity analysis is performed by al-
tering one variable at a time and setting consistent seeds in the Monte
Carlo simulations.1

8.1 Freight Model Variables

Selected variables of the freight rate model are changed successively by ei-
ther +10% or –10%, and the resulting changes in CFaR and ES are listed
in table 8.1. Due to limited space, only changes in a portfolio of Panamax,
Supramax and Handysize vessels are presented. These changes are the
most relevant ones in a multivariate setting, but it should be noted that
none of the individual changes differ much from the aggregated results.
Furthermore, only effects in the spot- and one-year time-charter market
are presented in the table, since the two shorter time-charter contracts in-
duce similar effects as the one-year TC contract, only at a smaller scale.2

1Essentially, all random numbers generated from programs like Excel and R are
pseudo-random due to the algorithms used in the creation of the numbers. Setting a seed
means that the random number generation starts at the same point each time, creating
the same "random" numbers every time the simulations are run.

2The effects are in between the effects of the extremities: spot- and one-year TC con-
tract.
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In the following, some general comments as well as comments on the
results of the sensitivity analysis are provided for each variable.

• V1 – All else being equal it seems that altering the starting variance
will not alter the shape of the variance process throughout the simu-
lations. Higher starting values increase the intercept of the variance
process, and due to a lag effect (i.e. the change in variance is de-
pendent on the prevailing value of the variance, cf. eq. (5.16)), the
standard deviation of the simulated log returns will increase. How-
ever, higher standard deviation does not mean higher kurtosis per
se, it just alters the scaling of the density. This means that the rela-
tive CFaR and ES should not be changed.3 From table 8.1, it can be
seen that there are indeed some changes in the potential cash flow
risk. This however, is because the means also incur a slight (non-
proportional) change when the starting value is increased. When
decreasing V1, the opposite effect is true.

• V̄ – Changing the long-term variance which the variance process re-
verts to changes only the slope of the variance process. This has
similar effect to the standard deviation of the simulated returns as
altering the starting variance V1. The reasoning regarding changes
in CFaR and ES is therefore the same, however it seems that the
effects are smaller in scale.

• κ – The speed of mean reversion controls how fast the variance re-
verts to the long-term variance V̄ when shocked. Higher values of κ
imply that the variance wanders less from the long-term value, i.e.
less fluctuations in the variance process. This in turn yields less fluc-
tuations in the corresponding freight rate paths (i.e. less kurtosis),
and consequently a reduction in the potential cash flow risk. Simi-
larly, lower values yield higher risk due to increased fluctuations in
the variance process. However, a 10% change in the speed of mean
reversion in the variance process does not have a huge impact on
the potential risk, as can be seen from the results of the sensitivity
analysis.

3Relative CFaR and ES are the risk measures relative to the mean cash flow of the
simulations.
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• ξ – The volatility of the variance determines how much impact each
shock to the variance has and consequently controls the kurtosis of
the simulated returns. When ξ is high, the variance process is highly
dispersed creating a higher kurtosis and fatter tails than when ξ is
small (Rouah, 2013). The value of ξ has a very high effect on the re-
turns and corresponding freight rate paths. For instance, test simula-
tions showed that too high values will cause some freight rate paths
to exceed levels observed just before the Financial Crisis of 2008 and
this is of course not very likely.4

• ρ – Changing the correlation between the Wiener processes of the
variance process and the log freight rate process alters the skewness
of the simulated log returns and cash flows. For instance, reducing
ρ yields higher CFaR and ES due to a fatter left tail (i.e. more ob-
servations in the left tail because the distribution is more negatively
skewed). This effect is shown in table 8.1, where a 10% decrease in ρ
increases both CFaR and ES. The opposite is true for an increase in
the correlation between the Wiener processes.

To conclude the sensitivity analysis, it seems that the effects of alter-
ing the variables are mostly equal for both spot- and time-charter con-
tracts. The variable with greatest effect on the potential cash flow risk is
the volatility of the variance process ξ. This parameter scales the shock
of the variance process and consequently the freight rate paths. However,
changing the variables by 10% produced no major effects on the poten-
tial cash flow risk. This means that the estimated CFaR and ES from
simulations (cf. table 6.4) are fairly inelastic and not very affected if the
parameters are wrongfully estimated (at least not within a 10% interval).

4The test simulations mentioned here were not a part of the final sensitivity analysis
results.
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9 CONCLUSION

The shipping industry is a risky business with low expected return com-
pared to the risk taken. Still, some companies occasionally make fortunes
and there are plenty of market agents participating in this world scale
poker game. The goal of this thesis was to examine how a dry bulk ship-
ping company could manage its freight rate risk in order to limit the poten-
tial downside risk. As this is a wide and comprehensive problem, certain
additional research questions were listed for the purpose of narrowing the
scope of the thesis.

In order to quantify its freight rate risk, a shipping company can model
and simulate the freight rates over a suitable horizon. A good starting
point for modelling is to examine the distributional properties of the freight
rates and their returns. Consistent with previous literature, I found the
logarithmic freight rates to be first-difference stationary. Furthermore, an
econometric analysis on the log returns (the first differences) showed that
they deviate from normality by having excess kurtosis and some skew-
ness. Closer examination revealed that the volatility clustered and varied
with time.

Much of previous literatures involving freight rate modelling have as-
sumed mean reversion in the freight rates. This assumption is backed by
sound theoretical arguments but lacks backing from empirical research
(i.e. the freight rates are non-stationary). Furthermore, the theoretical ar-
guments of mean reversion are mostly valid in the long-term because ad-
justments in the shipping market may take several years. Consequently,
mean reversion models (e.g. the Ornstein-Uhlenbeck process) are not used
in this thesis. Instead, log freight rates are proposed to follow a geometric
Brownian motion process, which means that they are not bounded to any
long-term mean. Moreover, a stochastic volatility is included in the error
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term in order to model the excess kurtosis and volatility clustering found
in the historical returns. The stochastic volatility is modelled as mean re-
verting according to the Heston model.

When simultaneously modelling several indices instead of one, we
move from a univariate- to a multivariate setting. In this setting it is
important to preserve the interdependency between the indices. Due to
shipment of homogeneous products freight rates for the different dry bulk
vessel classes are unlikely to move in complete opposite directions (over
time). This correlation is modelled by using a Student’s t copula on the
Wiener processes driving the log freight rate.

By including stochastic volatility and a copula, the proposed freight
rate model is able to capture the distributional properties of the historical
returns as well as the interdependency between the indices. Sensitivity
analysis on the freight model variables showed that the model is not very
sensitive to (10%) changes in the variable inputs. It also showed that the
parameter controlling the volatility of the variance process ξ is the one
having greatest effect on the modelled freight rate paths (and consequently
the cash flows).

The modelled freight rate risk is best quantified by the so called Cash
Flow-at-Risk and Expected Shortfall measures. CFaR is analogous to the
well-known Value-at-Risk but it is more adequate to non-financial firms
like shipping companies, because the commercial cash flows are the tar-
geted variable. In addition, Expected Shortfall focuses on the potential
loss if one exceeds the CFaR level, answering the question of how bad the
worst case scenario is (on average).

The cash flow effect associated with operational activities was exam-
ined through two different markets. First, the unhedged spot market,
where the company is fully exposed to the freight rate risk and second,
the time-charter market where the company hedges by fixing its freight
rates in lengths according to the time-charter contracts. These two markets
were compared and analyzed in terms of cash flow risk. The main findings
were that time-chartering indeed reduces the cash flow risk for all three in-
dices. The longer the TC contract, the less Cash Flow-at-Risk faced by the
company. On average, the cash flow risk was reduced by 6%, 19% and
37% for three-month-, six-month-, and one-year TC contracts. The CFaR
measures passed backtesting for spot contracts and one three-month TC
contract (Supramax), when using the correct historical costs for the out-of-
sample period. The backtesting was concluded to not be adequately set up
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for longer TC contracts due to lack of suitable data.
To answer the problem statement of this thesis with one short sentence;

a dry bulk shipping company can manage its freight rate risk by operat-
ing in the time-charter market. As a last note on risk management, it is
not always desirable for a shipping company to hedge away all risk (by
for instance time-chartering) because this affects (i.e. reduces) potential
revenues. Using Cash Flow-at-Risk and Expected Shortfall is then a good
starting point for the top level management to determine whether they
should operate in the exposed spot market or hedge by time-charter con-
tracts. At the same time, users should be aware that the risk quantified is
by no means an absolute maximum loss for the company in all scenarios.
The risk measures should be used the way they are meant to; as frequency
measures, and not a max loss function. As George E. P. Box (1987, p. 424)
phrased it: "all models are essentially wrong, but some are useful". Cor-
rect use of the risk measures along with continuous updating of inputs in
the freight rate model may make these models useful as well.
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A APPENDIX

A.1 World Merchant Fleet

Figure A.1: Number of ships in the world merchant fleet as of January 1, 2015,
by type. Source: ISL; Marine Flotten Kommando © Statista 2016
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A.2 Bunker Forward Curve
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Figure A.2: The bunker forward curve showing the market in contango

A.3 ACF/PACF Plots
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Figure A.3: ACF and PACF for log values of BPI TCA
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Figure A.4: The ACF and PACF plot of log BSI TCA (above) and first difference
of log BSI TCA (below)
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Figure A.5: The ACF and PACF plot of log BHSI TCA (above) and first difference
of log BHSI TCA (below)
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A.4 Log Returns
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Figure A.6: These figures show the log returns for BSI TCA and BHSI TCA
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A.5 Normal Returns
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Figure A.7: This figure show returns simulated from a normal distribution. This
is added as a comparison with the returns of the freight indices. Note that the
parameters of the normal distribution used in the simulations are determined by
fitting the model to the returns of the BPI TCA index
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A.6 Residual vs. Fitted Values
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Figure A.8: Resiudals vs. fitted values for BSI TCA and BHSI TCA
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A.7 Q-Q Plots
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Figure A.9: A quantile-by-quantile plot for the BSI TCA and BHSI TCA indices
showing the fat tails of each series
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A.8 ACF of Squared Log Returns
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Figure A.10: ACF of Squared Log Returns for BSI and BHSI
ACF of squared log returns for BSI TCA and BHSI TCA
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A.9 Density Plots
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Figure A.11: Empirical density of the BSI TCA log returns (black) along with the
fitted normal distribution (red). Un-transformed frequency axis in the top panel
and logarithmic frequency axis in the bottom panel
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Figure A.12: Empirical density of the BHSI TCA log returns (black) along with
the fitted normal distribution (red). Un-transformed frequency axis in the top
panel and logarithmic frequency axis in the bottom panel.
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A.10 Historical Skewness
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Figure A.13: Historical cumulative skewness. The skewness of each index seems
to revert to zero after being shocked. Note that the initial shocks of each index
must be ignored because they are due to the small sample size at that time

A.11 Historical Kurtosis
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Figure A.14: Historical cumulative kurtosis. There are significant jumps to the
kurtosis of each index due to the Financial Crisis of 2008. Note that the initial
shocks of each index must be ignored because they are due to the small sample
size at that time
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