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Executive Summary

We develop a model of optimal capital structure with debt renegotiation and mean-

reversion in earnings. Comparative statics are presented for optimal leverage,

coupon choice and the renegotiation threshold, as well as related capital structure

metrics. We also conduct a cross-model comparison with a framework featuring a

conventional geometric Brownian motion-based state variable to examine implica-

tions of varying assumptions about the evolution of earnings.

We show that a manager who maximises firm value selects a higher initial lever-

age and that the leverage choice correlates negatively with earnings. This contrasts

with predictions by earlier models of capital structure. In addition, we predict

lower bond yields and higher recovery rates of debt compared to the benchmark

case. The size of deviations from the absolute priority rule is equivalent across the

models, given proportional bankruptcy costs and distribution of bargaining power

between agents.

Our analysis brings capital structure research closer to the practical discussion

by coupling two realistic elements. We let the diffusion of earnings align better with

how they observably evolve and allow for restructuring of the firm at a sufficiently

low earnings level.

Keywords: Dynamic capital structure, contingent claims valuation, debt renego-

tiation, optimal restructuring, mean-reverting earnings.
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Chapter 1

Introduction

”He who loves practice without theory is like the sailor who boards ship
without a rudder and compass and never knows where he may cast.”

- Leonardo da Vinci (1452-1519)

The famous publications of Modigliani and Miller (1958, 1963) (MM) are widely

credited for marking the inception of the academic debate on the interplay be-

tween capital structure and fundamental firm value. An arguably more seminal

contribution of the papers, however, was the operationalisation of general equi-

librium analysis - once considered among the most abstract concepts in economic

theory. The publications effectively explicated how capital structure is linked to

the assumptions of efficient markets and rational agents. This illustration of the

conceptual applicability of equilibrium theory in the capital structure discussion

marked the backbone for a wave of subsequent advancements within this subfield.

Debreu (1991) has later coined the period ’the mathematisation of economic the-

ory’.

The stream of literature that followed MM’s rationalisation of the capital struc-

ture decision focused on the 1963 paper’s heterodox conclusion about the opti-

mality of full leverage. To explain the empirical and theoretical dissonance that

arose, economists responded by introducing various frictions to the capital struc-

ture decision. One prominent expanse of the theory are the so-called asymmetric

information models. Many of these succeed in demonstrating how frictions should

reduce the theoretically predicted leverage ratios, but offer little practical guidance

for business managers. On the other hand, later symmetric information models

attempt to mend the problem by introducing other non-agency related model en-

hancements. In this way, a rational business manager without skewed incentives

1



2 Chapter 1. Introduction

could be offered normative guidance in the capital structure decision. In prac-

tice, most managers recognise that earnings are not constant and that time allows

for the possibility to revisit current decisions later. To incorporate these realities,

more recent research, such as Leland (1994), has introduced stochastic firm value

fundamentals. Furthermore, Fischer et al. (1989a) and Goldstein, Ju and Leland

(2001) allow for the possibility to dynamically increase the debt level as a response

to the firm’s improving earnings capacity.

Following the introduction of dynamic models, the most recent contributions of

Christensen, Flor, Lando and Miltersen (2002, 2014) have attempted to incorpo-

rate renegotiation and restructurings at a lower boundary threshold as well. Such

analysis carries some similarities with the class of models collectively referred to as

strategic debt service models (see e.g. Anderson and Sundaresan (1996)). Particu-

larly, it is a joint conclusion that it will be optimal for equity and debt holders alike

to avoid firm bankruptcy under certain assumptions even if it implies deviations

from the absolute priority rule (APR).

Common for nearly all capital structure models introduced in a continuous-time

setting is that they are inspired by the hallmark work of Black and Scholes (1973)

and Merton (1974) in their application of contingent claims pricing. This has also

caused a persistent convention of applying a geometric Brownian motion (GBM)

as the diffusion process of the underlying state variable with the exception of a few

studies such as Raymar (1991) and Sarkar and Zapatero (2003). However, both

theoretical and empirical evidence suggest that considering alternative stochastic

processes with mean-reverting properties will be a more realistic assumption for

the evolution of a firm’s value fundamental. For example, Bhattacharya (1978)

argues that mean-reversion in cash flows is a more economically sound assumption

than the alternative of a random walk process. The justification is the tendency of

project cash flows to revert to levels where companies are indifferent about making

further investments. The mean-reversion of earnings is further confirmed in various

empirical tests (see e.g. Fama and French (2000)).

In this thesis we aspire to contribute to the latest research within capital structure

theory by incorporating a mean-reverting earnings process in a framework that

allows for debt renegotiation at a lower boundary of the underlying state variable.

We develop the model in stages and proceed as follows: The rest of this chapter

outlines our research objective and discusses related work in the field. Chapter

2 reviews essential theory of stochastic processes and contingent claims valuation

underlying any satisfactory model of dynamic optimisation. In Chapter 3 we re-
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develop two previous models of optimal capital structure and assess their numerical

performance. Chapter 4 analyses the debt renegotiation game by examining cen-

tral aspects of game theory as well as two frameworks of strategic debt service. In

Chapter 5 we develop a GBM-based benchmark model with debt renegotiation and

consider an extension with callable debt. Chapter 6 augments the state variable in

the model with debt renegotiation to include mean-reversion and conducts exten-

sive comparative statics and cross-model comparison with the benchmark model.

Chapter 7 concludes.

1.1 Research Objective

Our objective with the research undertaken in this paper is two-fold: Firstly, we

set up a model to determine a firm’s optimal capital structure when allowing for

debt renegotiation under the assumption that the underlying state variable follows

a geometric Ornstein-Uhlenbeck (GOU) process. Secondly, we conduct extensive

comparative analysis between our model and a benchmark model with a state

variable following a traditional GBM-based diffusion process.

In pursuing this research endeavour, we emphasise the findings of Sarkar and

Zapatero (2003) on the empirical and theoretical attractiveness of considering a

GOU process for the evolution of earnings. Accordingly, the model of capital

structure is developed to examine the effect of imposing this assumption in the

debt renegotiation setting considered by Christensen et al. (2014). A thorough

comparative statics analysis is carried out in order to compare the implications

for optimal capital structure in our GOU-based model with the ones obtained in

a classical GBM-based framework. We restrict our model to consider possible

restructuring at a lower boundary of the state variable.

As this research is largely motivated by the aim of adding another layer of

realism to the ongoing academic discussion on capital structure, we analyse the

findings with an emphasis on economic intuition and the ramifications for prac-

tical capital structure optimisation. Our model will however not be subjected

to empirical tests, but instead be calibrated with empirically justified values for

key parameters. Furthermore, the range of parameters considered will follow the

historical discussion of dynamic capital structure literature, implicitly imposing a

ceteris paribus assumption on other factors outside the model that might explain

the optimal leverage choice.
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1.1.1 Research Questions

In addressing the proposed research, we aim to provide answers to the following

central questions:

RQ1 How has the research on dynamic capital structure and debt renegotiation

evolved, and what are the central requirements for the development of a sat-

isfactory model of dynamic capital structure and debt renegotiation?

RQ2 How is the optimal capital structure decision affected by allowing for debt

renegotiation vis-à-vis classical models of financing under uncertainty?

RQ3 How can the model of dynamic capital structure be modified to feature debt

renegotiation and a GOU-based diffusion process of the driving state variable?

RQ4 What are the implications for optimal capital structure and related key metrics

in the model with debt renegotiation of letting the state variable follow a GOU

process?

1.2 Literature Review

In their second publication on capital structure choice, Modigliani and Miller (1963)

conjecture that firm value is a monotonically increasing function of the debt level

due to the tax deductibility of interest payments. For many of the 50 years since,

much of the academic effort devoted to capital structure choice has gone into chal-

lenging this theory. Researchers have approached the issue by attempting to model

the costs that empirical observation suggests firms trade off against the corporate

tax benefit. The most significant factors include agency costs, asymmetric infor-

mation as well as direct and indirect costs of liquidation.

Jensen and Meckling (1976) pioneered the theory of agency by recognising that

the determination of capital structure ought to be based on ameliorating conflicts

of interests between the firm’s stakeholders, particularly between management and

equity owners. Subsequently, research moved towards modelling the effect of asym-

metric information between the firm’s insiders and outsiders. The aim was to

examine the implications for capital structure choice of having to convey private

information to capital markets. Most notably, Ross (1977) contends that - facing

a bankruptcy penalty - management’s choice of the level of debt will serve as a

credible signal of the firm’s future earnings potential. Conversely, Leland and Pyle

(1977) argue that the retained equity by a firm indicates a future profit increase
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sufficient to offset the diversification that the owners forgo by not investing their

funds elsewhere. Finally, Myers and Majluf (1984) link capital structure to invest-

ment choice by positing that firms favour internal funds over external financing,

and debt over equity, due to the negative signalling effect of turning to capital mar-

kets for investment financing. This proposition has later been coined the ’pecking

order theory’.

However appealing the asymmetric information models seem, they possess a general

problem rooted in their normative limitations and lack of appeal as a practical tool

for capital structure determination. Another major school of capital structure

theory presents the capital structure choice as a simple problem of balancing the

benefits of tax savings with the direct and indirect costs of financial distress (see

e.g. Kraus and Litzenberger (1973)). This trade-off theory has fared better in the

research field and serves as the foundation upon which subsequent advancements

of capital structure modelling have been based.

An initial extension of the trade-off theory was to account for uncertainty of

future asset values. This lead to the development of stochastic models featuring

static capital structure choice. In a representative contribution, Leland (1994)

derives a closed-form solution for the optimal capital structure when the future firm

value is uncertain. The applied valuation technique in stochastic models originates

from the theories of option pricing and pricing of corporate liabilities as put forward

by Black and Scholes (1973) and Merton (1974). Graham (2000) extends Leland’s

simple setting to consider a sophisticated taxation regime with tax benefits lost and

carried forward. The paper provides evidence that firms could increase leverage

substantially before the effective corporate tax rates start to decrease.

The static models see the establishment of an optimal capital structure as a sin-

gle deterministic decision, which can never be re-considered in the face of changing

states of nature. Consequently, a shortcoming of the static capital structure mod-

els is that they predict high leverage ratios. Based on empirical examination, it is

evident that firms have a policy of leverage that the static models fail to account

for. Thus; researchers recognised that a way to move closer to solving the capital

structure puzzle (Myers, 1984) was to incorporate the role of time and dynamic

choice.

To remedy the confounding effect of static optimisation, a strand of literature

developing dynamic capital structure models emerged. The dynamic models al-

low the firm to re-optimise its capital structure in response to the diffusion of an

underlying state variable, represented by either firm value, product price or earn-
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ings. The management maximises the firm value by repeatedly readjusting the

firm’s leverage. Enabling optimisation, the tax advantage is known and the risk of

costly bankruptcy is estimated from the characteristics of the stochastic state vari-

able. Constituting two of the first contributions to this academic field, Brennan and

Schwartz (1978) as well as Kane, Marcus and McDonald (1984) develop continuous-

time models that include randomness in firm value and dynamic refinancing. Bren-

nan and Schwartz (1978) assume that the upper refinancing boundary is determined

by an exogenous bond indenture, but are unable to obtain a closed-form solution

and consequently use numerical techniques to analyse the firm’s optimal capital

structure choice. Kane et al. (1984) also consider an exogenous upper refinancing

boundary but do in fact obtain a closed-form solution. However, the model is par-

ticular in the sense that the firm can not enter bankruptcy and has a firm value

that follows a mixed jump-diffusion process. Interestingly, both papers allow their

firms to re-optimise their leverage ratios continuously through time without cost.

As a result, a suitable refinancing strategy can allow the firm to capture consid-

erable tax benefits, while effectively retaining risk-less debt. The optimal leverage

ratios in the two papers thus remain fairly high.

In fact, the presence or absence of frictions such as transaction costs should

have a material impact on the optimal capital structure decision. With this moti-

vation, Fischer et al. (1989a) further develop the model by Kane et al. (1984) to

feature bankruptcy, callable debt, recapitalisation costs and a firm value process

without jumps. Under this enhanced framework the authors are able to identify

a region of the firm value where - for a given set of parameters - the benefit of

readjustment does not justify the payment of the recapitalisation cost. The funda-

mental insight that follows is, accordingly, that transaction costs can warrant the

choice of a seemingly sub-optimal capital structure. This could serve as a factor

to explain why empirical cross-sectional tests for capital structure selection have

failed to solidly corroborate the trade-off theory (see e.g. Shyam-Sunder and Myers

(1999) or Graham (2000)).

Marking the next significant advancement within the field of dynamic capital

structure theory, Goldstein et al. (2001) develop a similar model to Fischer et al.

(1989a) and depict how the option value of levering up at a future juncture influ-

ences the capital structure decision. This is analysed by implementing callability

of debt in the bond indenture and endogenising the bankruptcy threshold. The au-

thors moreover criticise previous dynamic capital structure models, such as those

of Fischer et al. (1989a) and Kane et al. (1984), for effectively reducing the capital
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structure problem to a single-period optimisation. It is argued that the boundary

conditions applied in earlier literature are the same as those of a firm wishing to be

optimally levered in solely one period. This might have led, among others, Fischer

et al. (1989a) to conclude that the tax advantage is limited. In contrast to pre-

vious work, Goldstein et al. (2001) present a solution that allows for optimisation

over an arbitrarily large number of upward restructurings. A key condition for

attaining a dynamically consistent optimisation problem in the paper is the scaling

feature inherent in the state variable evolution. The scaling feature is a result of

the choice of modelling the state variable as log-normal. The paper is also the first

to represent the state variable as earnings before interest and taxes (EBIT) rather

than firm value. This choice of state variable offers several economically sensible

advantages over the traditional form. Most notably, equity value will no longer be

a monotonically increasing function of the corporate tax rate, as is the case in e.g.

Leland (1994).

Following the work of Goldstein et al. (2001), multiple researchers have at-

tempted to develop the basic model in various directions. Titman and Tsyplakov

(2007) model a firm that can regulate both its capital structure and its investments

when responding to stochastic changes in an underlying product price process that

determines firm value and earnings. Importantly, however, in the context of this

thesis, a few researchers have instead attempted to enhance the tractability of the

model by altering the stochastic process. The vast majority of all classical papers

assume that the state variable follows a geometric Brownian motion, which is in

accordance with the original option pricing model of Black and Scholes (1973).

Nevertheless, theorists such as Raymar (1991) and Sarkar and Zapatero (2003) as

well as empirical researchers such as Lipe and Kormendi (1994) and Fama and

French (2000) argue that earnings are more likely to exhibit some level of mean-

reversion. Particularly, Sarkar and Zapatero (2003) contribute significantly to this

notion by developing a static capital structure model that exhibits mean-reversion

in earnings. A notable effect of this alternation is that the relationship between

earnings and optimal leverage becomes negative. Hence, the authors remedy one

of the major weaknesses of the standard trade-off theory, namely the prediction

of a positive relationship between earnings and leverage. Additionally, the paper

both predicts and verifies that the optimal leverage is an increasing function of the

speed of mean-reversion. In a recent contribution to this subfield, Bjerrisgaard and

Fedoryaev (2011) develop a dynamic model with callability and mean-reversion in

earnings that maintains the scaling feature of Goldstein et al. (2001). They conduct

a comparative statics analysis to verify the results of Sarkar and Zapatero (2003).
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This expansion of the dynamic capital structure literature is one that is developed

further in this thesis.

Goldstein et al. (2001) only consider re-optimisations of capital structure at the

upper boundary with the motivation that adjustment at the lower boundary is

unlikely to occur outside Chapter 11. It is argued that many new effects must be

taken into account to appropriately model the incentives of equity holders in the

default region. Posterior academic studies have, however, examined this scenario

more in detail. Christensen et al. (2014) focus particularly on the renegotiation

game that takes place in case of bankruptcy at the lower boundary. The authors

manage to unite multiple strands of literature to form a dynamic capital structure

model that incorporates refinancing frictions, callable debt, and a lower-boundary

debt renegotiation game. By explicitly modelling the agents’ behaviour at the

lower boundary, the authors are able make conjectures about both the optimal

leverage ratios and the size of absolute priority rule (APR) violations comparable

to empirical observation.

Arguably, the implementation of an explicit renegotiation game in relation to

capital structure optimisation is a relatively novel and underexplored field in aca-

demic research. In addition to the paper by Christensen et al. (2014) there are,

however, a number of stochastic models dealing with debt renegotiation, relating to

both corporate and sovereign default settings. The main distinction between these

two settings is that there is no international bankruptcy law in the case of sovereign

default, which alters the incentives of the negotiating agents. In a contribution to

this field, Yue (2010) develops a strategic sovereign debt renegotiation model with

stochastic endowments and employs Nash bargaining to settle terms in case of de-

fault. Despite the absence of a bankruptcy regulation, the country faces the threat

of future exclusion from international capital markets if the parties cannot agree.

By agreeing, creditors in turn obtain partial repayment of the face value, which

would be withheld in case of disagreement. The model can be used to estimate

credit spreads as well as the optimal debt-to-output ratio at the sovereign level.

In the corporate default setting Chapter 11 regulation determines the terms

and bargaining power of the negotiation agents. A key feature of the regulation

is the so-called absolute priority rules, specifying the order in which the various

claimants rank in the case of bankruptcy. Senior creditors have first priority, while

shareholders have lower priority. In this context, Anderson and Sundaresan (1996)

construct a discrete-time binomial model where equity holders and creditors engage

in a game about the size of the coupon payments. The equity holders have an option
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to refuse fully servicing their debt, while the creditors can choose to reject or accept

the partial servicing. A rejection implies the start of a costly bankruptcy process,

which can induce the creditors to accept less than full coupon payment. Under

plausible parameter values, the model suggests realistic yield spreads and serves as

a point of departure for more complex models. Mella-Barral and Perraudin (1997)

set up a similar model to that of Anderson and Sundaresan (1996) but distinguish

their work by instead considering a continuous-time setting. The output price

follows a GBM and the agents bargain over the size of the future coupon payment

in a way that allows for strategic debt servicing behaviour by the equity holders.

While the problem considered in the strategic debt service (SDS) models is similar

to that of Christensen et al. (2014), the latter stands out in the sense that equity

holders are not assumed to be able to make take-it-or-leave-it offers to the creditors.

The threat of bankruptcy must be a credible such in order for the creditors to allow

concessions. Furthermore, the entire capital structure is renegotiable rather than

merely the future coupon payments.



Chapter 2

Diffusion Processes and
Contingent Claims Pricing

”When judged by its ability to explain the empirical data, option pricing
theory is the most successful theory not only in finance, but in all of
economics.”

- Stephen A. Ross (1944-pres.)

The aim of this chapter is to provide a brief review of the theoretical underpinning

for the models of dynamic capital structure that will be developed later in the

thesis. To maintain tractability, the scope is restricted to elements of the applicable

topics, which carry direct relevance for the derivation of the basic model. Particular

emphasis is thus reserved for the central mathematical properties and techniques

of stochastic calculus underlying earlier models of dynamic capital structure, which

constitute the foundation upon which our model in this thesis is built.

Initially, we narrow in on the concept of diffusion processes with a focus on

the fundamental differences between Brownian motions and Ornstein-Uhlenbeck

processes. We also shed light on the attractiveness of using the latter to represent

the dynamics of a firm’s earnings. Subsequently, we focus on the tools for pricing

of claims contingent on a value function of these stochastic processes. This is done

to illustrate its use for dynamic optimisation and resultant applicability for the

derivation of optimal capital structure. An understanding of the two boundary

conditions imposed on the partial differential equation (PDE) will be integral in

this regard. For this reason we carry out a particular exploration of the general

properties of these1.

1The chapter is based on Dixit and Pindyck (1994), Cochrane (2005) and Pennacchi (2008).

10
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2.1 Diffusion Processes

A diffusion process can broadly be defined as a continuous-time stochastic process

satisfying the Markov property. This requires the conditional probability distri-

bution of future states to depend only on the present state for a given process

(Cochrane, 2005).

A diffusion process can be developed by generalising a Wiener process, which is

defined as the continuous-time limit of a normal discrete-time stochastic process.

More formally, a variable z that follows a Wiener process satisfies two properties:

Property 2.1.1 The change in z(t) over the time interval ∆t is given by

z(t+ ∆t)− z(t) ≡ ∆z =
√

∆tε (2.1)

where ε ∼ N (0, 1).

This property implies that ∆z itself follows a Gaussian distribution where E[∆z] =

0 and V ar[∆z] = ∆t.

Property 2.1.2 The values of ∆z for any two given intervals are independent,

i.e.

Cov[z(t+ ∆t)− z(t), z(s+ ∆t)− z(s)] = 0 (2.2)

for the non-overlapping intervals (t, t+ ∆t) and (s, s+ ∆t).

It follows from this property that z satisfies the Markov property.

Next, consider a change in z from t = 0 over a longer time period to t = T with

n = T/∆t time increments. This implies that

z(T )− z(0) =

n∑
i=1

εi
√

∆t, (2.3)

where εi is the value of ε over the ith interval. The first two moments of (2.3)

are E[z(T ) − z(0)] = 0 and V ar[z(T ) − z(0)] = n∆t = T . Holding the horizon T

fixed, we see that the mean and variance of (2.3) are independent of the number

of equidistant time steps n. Applying the central limit theorem (CLT) under the

assumption that εi are independent and identically distributed, we can posit that

plim
n→∞

[z(T )− z(0)] = plim
∆t→ 0

[z(T )− z(0)] ∼ N (0, T ). (2.4)
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The distribution of z(t) over the interval [0, T ] can thus be thought of as the sum

of ∆zi =
√

∆tεi when ∆t becomes infinitely small. The Wiener process dz in

continuous time can then be represented as

dz =
√
dtεt (2.5)

with E[dz] = 0 and V ar[dz] = dt. This notation implies that dz has the properties

stated above for ∆z in the limit as ∆t→ 0, and we can thus write the change in

z(t) over [0, T ] as

z(T )− z(0) =

∫ T

0

dz(t) ∼ N (0, T ), (2.6)

where the integral sign on the right-hand side in (2.6) is a stochastic (Itô) integral2.

Itô Process

The Wiener process that has been developed to this point has implicitly assumed

a drift rate µ equal to zero and a variance rate σ equal to one. This is equivalent

to stating that the expected value of z at any future state is equal to its current

value, and that the variance of the change in z is equal to the length of the time

interval.

We can generalise this Wiener process by considering a new process x(t), which

multiplies dz(t) with the variance constant σ and adds a deterministic drift µ(t)

per unit of time. Thus we obtain

dx = µ(t)dt+ σdz(t), (2.7)

for which the distribution over [0, T ] would then be

∫ T

0

dx =

∫ T

0

µ(t)dt+

∫ T

0

σdz(t) ∼ N

(∫ T

0

µ(t)dt, σ2T

)
. (2.8)

The expression in (2.8) is a generalised representation of the Wiener process where

we can allow the variance and drift parameters to take on any desired value. Such

a process is commonly referred to as an Itô process. We allow this process to be

a function of t and the value of x at t, for which reason the stochastic differential

equation (SDE) for x(t) can be written on the form

2This defines the integral of the changes in continuous time as the equivalent of the sum of all
changes in discrete time, cf. Equation (2.3).
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dx(t) = µ[x(t), t]dt+ σ[x(t), t]dz. (2.9)

The process in (2.9) satisfies the Markov property since the change in x only de-

pends on its present value, and the process can thus be categorised as a diffusion

process.

2.1.1 Geometric Brownian Motion

The expression in (2.9) with the adapted µ-term can also be classified as a Brownian

motion with drift. A more common representation of (2.9) is however to allow

the drift and variance rates to be proportional to the current level of x so that

µ[x, t]
∆
= µx and σ[x, t]

∆
= σx, i.e.

dx = µxdt+ σxdW (2.10)

where dW denotes the increment of a Wiener process. This diffusion process,

called a Geometric Brownian motion, is heavily applied to model an abundance of

security prices, which is largely attributable to its elegant properties, including:

a. If the process x starts at a positive value x > 0, zero will be an absorbing

barrier, i.e. the process will hit zero with measure zero probability.

b. The conditional distribution of x(t) given x(0) is log-normal, i.e. log(x(t))

will follow a Gaussian distribution.

c. Given x(0), the expected value and variance of log(x(t)) are E[log(x(t))] =

log(x(t) + (µ− 1/2σ2)(t) and V ar[log(x(t))] = σ2(t).

d. Given x(0), the expected value and variance of x(t) are E[log(x(t))] = x(0)eµt

and V ar[log(x(t))] = x(0)2e2µt(eσ
2t − 1).

e. Given µ > 0, E[x(t)]→∞ and V ar[x(t)]→∞ as T →∞.

The predominant reason why the GBM is a popular tool to price e.g. stocks

and interest rates is its mathematical tractability and the restriction of negative

values imposed by a log-normal distribution. As indicated previously, the GBM

is also the modelling convention for representing the state variable diffusion in

the vast majority of dynamic capital structure models. One justification for this

use, cited in much of the literature, is its homogeneity property (also referred to

as scaling invariance). This property ensures that the values for debt and equity
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claims obtained in one solution will be repeated for other initial values of the

state variable after the results have been re-scaled. The homogeneity property is

examined and applied in more detail in the next chapters.

2.1.2 Geometric Ornstein-Uhlenbeck Process

An alternative diffusion process that admits a stationary probability distribution is

the Ornstein-Uhlenbeck process, which is a mean-reverting process. The standard

form can be represented as

dx = κ(θ − x)dt+ σdW (2.11)

where κ ≥ 0 represents the speed of mean-reversion and θ > 0 is the long-run

equilibrium level to which x reverts. Again, this process can be modified to a

geometric Ornstein-Uhlenbeck (GOU) process by allowing the volatility of the state

variable to depend on its current value:

dx = κ(θ − x)dt+ σxdW. (2.12)

It is evident that the difference between (2.10) and (2.12) is in their drift term.

Whereas the GBM has a constant drift term, the drift in the GOU is contingent

on the current value of the process. The conditional mean is

E[x(t+ s)|x(t)] = θ + e−κs(x(t)− θ), (2.13)

which implies that if x(t) > θ, then E[x(t+ 1)|x(t)] < x(t); if the current value of

the process is above θ, then next period is expected to be lower than the current

price. In addition, the variability of the state variable under the GOU diffusion is

a function of the mean-reversion parameter κ, as well as the variance parameter σ.

The conditional variance of x after s periods is

V ar[x(t+ s)|x(t)] =
σ2x(t)

2κ
(1− e−2κs). (2.14)

Looking at the first-order condition with respect to the mean-reversion parameter

∂V ar[x(t+ s)|x(t)]

∂κ
=
−σ2x(t)

2κ2
+
σ2x(t)

2κ2
e−2κs − 2sσ2x(t)

2κ
e−2κs < 0, (2.15)

it is evident that the expected range of future values decreases with the level of

mean-reversion. In addition, although increasing over time, the variance of the
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process reaches the long-run limiting level

lim
s→∞

V ar[x(t+ s)|x(t)] =
σ2x(t)

2κ
. (2.16)

Thus it can be seen that, in contrast to the GBM, the GOU not only admits a

stationary probability distribution but also has a bounded variance.

Due to these properties, many applications of stochastic models for e.g. com-

modity prices use a variation of the GOU process. The existence of a long-run

mean level is an economically sound assumption for the forecasting of such pro-

cesses. As discussed above - being the main motivation behind the development

of our model below - this also holds true for any measure of corporate earnings.

For this reason the application of the GOU process to dynamic capital structure

modelling should add another layer of realism. This argument will be expanded in

considerable detail in Chapter 6.

Figure 2.1: Sample paths for x(t) as a Geometric Brownian motion and a geometric
Ornstein-Uhlenbeck process. (Source: Own contribution)
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2.2 Pricing of Contingent Claims

In order to achieve dynamic optimisation of capital structure it is first necessary

to develop a methodology to model the total firm value. This value will in turn

depend on the market values of debt and equity, which can be viewed as claims

on the guiding state variable under the uncertainty of its future diffusion path. As

highlighted by Dixit and Pindyck (1994), there are generally two techniques for

dynamic optimisation of this kind: dynamic programming and contingent claims

pricing. Although these two methodologies produce similar results, they differ in

their assumptions about the completeness of financial markets and the discount

rates that firms apply to value future streams of cash flows. While dynamic pro-

gramming constitutes the general tool for optimisation under conventional assump-

tions of no arbitrage and absence of financial frictions, contingent claims pricing

(or options pricing) uses more specific techniques of dynamic portfolio replication

in a complete security price system.

This section focuses on developing the techniques of dynamic optimisation by

means of contingent claims valuation. This is due to its direct applicability for

issues in financial economics and the significance of its use in the existing cap-

ital structure modelling literature. This technique imposes a so-called spanning

condition on financial markets, implying dynamic completeness of markets. Cor-

respondingly, the risk for a given problem can be spanned by trading in existing

securities. Given the spanning condition, we can construct a replicating portfolio,

in order to derive the PDE for the valuation of a security that derives its value

from the value of the firm (and time).

Itô’s Lemma

In order to derive solutions for the values of claims on diffusion processes, it is

necessary to work with functions of these. However, it is generally not possible to

take differentials of continuous-time Itô processes. For this reason, we must make

use of Itô’s Lemma, which is an identity serving as the stochastic counterpart of

the chain rule in ordinary calculus. Below, we state the result for the case of a

single variable that follows a generic diffusion process; thus omitting the formal

proof.

Let the variable x(t) follow the SDE given in (2.9). Moreover, let F (x(t), t)

be an at least twice-differentiable function of the state variable and time. The

differential of this function is then given by
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dF =
∂F

∂x
dx+

∂F

∂t
dt+

1

2

∂2F

∂x2
(dx)2 (2.17)

where (dx)2 = σ(x, t)2dt. Substituting for dx and (dx)2 in (2.17), we obtain

dF =

[
∂F

∂x
µ(x, t) +

∂F

∂t
+

1

2

∂2F

∂x2
σ2(x, t)

]
dt+

∂F

∂x
σ(x, t)dW. (2.18)

As we can see, a particular virtue of Itô’s Lemma is that it dictates how to calculate

the evolution path of a process that is defined as a function of another process. We

will make extensive use of this property below and in the following chapters.

2.2.1 The Merton (1974) PDE Approach to Pricing Claims

The valuation methods based on option pricing methods generally employ one of

two ways to price a contingent claim: Either by a PDE that stipulates the price of

the claim as the solution, or by a probabilistic approach that calculates the price

as an expectation under the risk-neutral measure Q3. The former approach can be

attributed to the seminal work of Merton (1974), in which he proposes a model for

assessing the credit risk of a company by characterising the company’s equity as a

call option on its assets. He thus illustrates how corporate securities can be valued

using the option pricing techniques developed by Black and Scholes (1973). The

alternative probabilistic approach was first suggested by Black and Cox (1976).

In this section we focus on the former approach, as its general result will be

central in the next chapters. Thus; following Merton (1974), assume that a firm

can issue claims on the state variable x following a GBM process as in (2.10). Later

the claims on the state variable will be classified as an equity claim E and a debt

claim D on an EBIT process ξ, but for now we will follow the convention in this

chapter and consider the claim on the process x and time t, i.e. F (x(t), t). Given

the assumed diffusion process for the state variable and assuming existence of an

equivalent martingale measure Q, we know that financial markets are complete

and arbitrage-free by The First Fundamental Theorem of Asset Pricing. Thus F

is a claim that can be replicated in the market and its value can be derived as a

solution to a PDE4. To see this, we apply Itô’s lemma:

3The Feynman-Kac result amounts to showing that these methods are in fact equivalent.
4Of course this solution only holds under the classic perfect market assumptions put forward

in Merton (1974).
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dF (x(t), t) =
∂F (x(t), t)

∂x(t)
dx(t) +

∂F (x(t), t)

∂t
dt+

1

2

∂2F (x(t), t)

∂x(t)2
dx(t)

=

[
∂F (x(t), t)

∂x(t)
µx(t) +

∂F (x(t), t)

∂t
+

1

2
σ2x(t)2 ∂

2F (x(t), t)

∂x(t)2

]
dt

+
∂F (x(t), t)

∂x(t)
σx(t)dW (t)

∆
= µF dt+

∂F (x(t), t)

∂x(t)
σx(t)dW (t).

(2.19)

Further, we assume the claim holder receives a continuous payout rate h with an

associated cumulative dividend stream H(t) =
∫ t

0
h(x(u), u)du . We then have

dH(t) = h(x(t), t)dt. (2.20)

Following portfolio replication theory, we know that the drift µ in (2.19) must equal

the risk-free rate r corrected for the payout rate h in order to rule out arbitrage

when F is a price process under the Q-measure. Thus we can combine (2.19) and

(2.20) to get

µF = rF (x(t), t)− h(x(t), t). (2.21)

Substituting this expression into (2.19) and rearranging terms, we get the final

PDE:

1

2
σ2x2 ∂

2F (x(t), t)

∂x(t)2
+
∂F (x(t), t)

∂x(t)
µx(t) +

∂F (x(t), t)

∂t

− rF (x(t), t) + h(x(t), t) = 0.

(2.22)

The inclusion of an explicit dividend rate for the claim holder in the above deriva-

tion, as opposed to letting the rate exist affinely in the state variable, is a slight

modification of the original Merton (1974) derivation. Following the traditional

notation, hD(x(t), t) = C is the coupon that accrues to the debt holder and

hE(x(t), t) = x(t) − C is the residual that accrues to the equity holder. As high-

lighted by Merton (1974), the PDE in (2.22) requires the addition of two boundary

conditions to have a fully specified differential evolution. This will also become

evident when the values of debt and equity claims are derived in the models of the

next chapters.
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2.2.2 Portfolio Replication and Optimal Boundary Condi-

tions

In the class of models we will consider in the next chapters, equity holders - who

hold the option on the firm’s value - will face some choices at each period. These

will generally be determined by some known boundary payoff as well as conditions

that satisfy their incentive compatibility.

To examine this problem more generally, we can consider a firm whose profit

flow is a function of the state variable x, which can be thought of as the firm’s

output price. For the sake of exposition, we will assume x follows

dx = µxdt+ σxdW, (2.23)

i.e. a conventional GBM. Traditional finance theory suggests that x is only held

if investors are provided with a sufficiently high return. This return is composed

of the price appreciation µ (i.e. capital gain) and a dividend δ; thus γ = µ + δ

denotes the total expected return. Taking the risk-free rate r as exogenously given,

we know from the Capital Asset Pricing Model (CAPM) that

γ = r + φσρxm (2.24)

where φ denotes the market price of risk and ρxm is the return correlation between

x and the market portfolio m.

Following portfolio replication theory, the value of the firm F (x, t) with profit

flow π(x, t) is then found by replicating its mean-variance characteristics using

assets of known value. Specifically, we can buy a portfolio consisting of 1 Danish

krone (DKK) of the risk-less asset and n units of the firm’s output for (1 + nx)

DKK, which is held for an interval of time dt. In the same time, the risk-less asset

pays a deterministic amount of rdt, while x pays a dividend nδdt and a stochastic

capital gain of ndx = nµxdt+ nσxdW . The total return per unit invested is thus

r + n(µ+ δ)x

1 + nx
dt+

σnx

1 + nx
dW. (2.25)

We need to compare (2.25) with the return to be earned by owning the firm in

the same time interval. This involves a deterministic dividend of π(x, t)dt and a

stochastic capital gain, which can be calculated by applying Itô’s lemma to F :

dF =

[
∂F

∂t
+
∂F

∂x
µx+

1

2

∂2F

∂x2
σ2x2

]
dt+ σx

∂F

∂x
dW. (2.26)
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The comparable return per unit invested is thus

π(x, t) + ∂F
∂t + ∂F

∂x µx+ 1
2
∂2F
∂x2 σ

2x2

F (x, t)
dt+

σx∂F∂x
F (x, t)

dW, (2.27)

as the F (x, t) is the cost of the firm at t. For risk equivalence between owning the

firm and the portfolio, we must choose such that

nx

1 + nx
=

x∂F∂x
F (x, t)

. (2.28)

In an arbitrage-free market, we must also ensure that two assets with identical risk

yield the same return. Thus we further require

π(x, t) + ∂F
∂x µx+ 1

2
∂2F
∂x2 σ

2x2

F (x, t)
=
r + n(µ+ δ)x

1 + nx
(2.29)

Substituting (2.28) into (2.29) we get

π(x, t) + ∂F
∂x µx+ 1

2
∂2F
∂x2 σ

2x2

F (x, t)
= r

[
1−

x∂F∂x
F (x, t)

]
+ (µ+ δ)

x∂F∂x
F (x, t)

, (2.30)

which upon simplification gives the PDE for the firm value:

rF (x, t) =
1

2

∂2F

∂x2
σ2x2 +

∂F

∂x
x(r − δ) +

∂F

∂t
+ π(x, t). (2.31)

The virtue of deriving (2.31) with contingent claims pricing is that all coefficients

are either specified by the model or observed directly in the market. However,

many solutions to this PDE exist, and we thus need to consider two boundary con-

ditions and the economics of the value function F to pick out a single, deterministic

solution.

Boundary Conditions

In order to develop the boundary conditions needed to solve the PDE in (2.31),

we must consider a time span beyond t+ dt, which we have analysed above. If the

firm’s problem was subjected to a fixed time limit T at which point it would receive

the terminal payout Ω(x, T ), equation (2.31) would have the boundary condition

F (x, T ) = Ω(x, T ) ∀x. (2.32)
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Moreover, we can see that for each t < T , there will be a value of x, x∗(t), where

the firm will have to accept the termination payoff, i.e.

If

x ≥ x∗(t), exercise

x < x∗(t), continue.
(2.33)

Thus; the boundary condition at each instant will be

F (x, t) = Ω(x, t) ∀(x, t) such that x(t) ≥ x∗(t). (2.34)

This condition is commonly referred to as the value-matching condition, as it

matches the value of the unknown function F with the known termination payoff

function Ω.

While the value-matching condition generally holds at any decision boundary,

the boundary itself is however clearly unknown. Thus in order to determine the

stopping time optimally, given the termination payoff Ω(x, t), we need to define a

second condition. This will uncover the value of x∗(t) that defines F (x, t). The

condition will require that at each instant t, the values of F (x, t) and Ω(x, t) as

functions of x must have matching slopes, i.e.

∂F (x∗(t), t)

∂x
=
∂Ω(x∗(t), t)

∂x
∀t. (2.35)

The condition in (2.35) is often called the smooth-pasting condition due to its

requirement of the slopes to match at the boundary x∗(t). While the formal proof

for this condition is fairly intricate, the intuition is straightforward. If the two

functions do not smooth-paste at x∗(t), then stopping at exactly x∗(t) cannot be

optimal - instead it would be optimal to stop an instant earlier or an instant later,

depending on the curvature of the kink at the boundary. In Appendix A we have

included an exposition of the value-matching and smooth-pasting conditions under

the alternative use of dynamic programming for optimisation. Although these

conditions will be similar, they are arguably more intuitively grasped under the

so-called optimal stopping problem belonging to dynamic programming techniques.

In any case, these conditions will be key in deriving values for the equity and debt

claims in the models of dynamic capital structure presented in the next chapters.



Chapter 3

Previous Models of Optimal
Capital Structure

”[T]he supposed trade-off between tax gains and bankruptcy costs looks
suspiciously like the recipe for the fabled horse-and-rabbit stew - one
horse and one rabbit.”

- Merton H. Miller (1923-2000)

In this chapter we derive and present the results of two models of optimal capi-

tal structure. The first model by Leland (1994) represents an initial attempt to

optimally balance the tax advantage to debt with the costs of financial distress

in a simple static regime. This model is developed exactly along the lines of its

original structure. The second model, a version of Goldstein et al. (2001), extends

Leland (1994) to a dynamic setting with EBIT as the guiding state variable follow-

ing a GBM. The company is allowed to take on more debt as the earnings capacity

increases in order to better exploit the tax advantage to debt. This model is de-

veloped under slightly altered assumptions compared to those used by the original

authors. By conducting these changes we show how two endogenous boundaries

can be solved for and establish a solid foundation for our own model of debt rene-

gotiation. In the static model, closed-form solutions for the optimal leverage are

obtained, whereas the optimal firm value is found through numerical procedures

over maximisation of the coupon in the dynamic setup. Both models originate

from important contributions to practical optimisation policy. The publications

represent two of the most significant advancements of the optimal capital struc-

ture discussion and serve as important building blocks for the models developed in

Chapter 5 and 6.

22
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3.1 A Static Model

In concert with the framework introduced by Merton (1974), Leland (1994) repre-

sents the value fundamental as unlevered firm value following a GBM, i.e.

dV = µV dt+ σV dW (3.1)

where µ and σ are the constant drift and volatility parameters. Introducing debt

as a perpetual bond which promises the holder a constant coupon C > 0, securities

have no direct time dependence and only depend on x, i.e. ∂F
∂t = 0. The general

claim H = F (V, t) receives the dividend stream υH when the firm is solvent. Based

on the example introduced by Black and Cox (1976), Leland shows that the PDE

in (2.22) becomes an ordinary differential equation (ODE) on the form

1

2
σ2V 2FV V (V ) + rV FV (V )− rF (V ) + υH = 0 (3.2)

where subscripts denote partial derivatives. The above expression assumes that the

dividend rate from (2.22) is affine in earnings. The solution to the homogeneous

part of (3.2) is given by

F (V ) = k1e
β1x + k2e

β2x (3.3)

with

β1 =
( 1

2σ
2 − r) +

√
(r + 1

2σ
2)2

σ2
= 1

β2 =
( 1

2σ
2 − r)−

√
(r + 1

2σ
2)2

σ2
= − 2r

σ2
. (3.4)

where the simple root expressions follow from Leland’s simplifying assumption that

µ = r. As we will see, this assumption needs to be altered in later models in order

to obtain finite expressions for the claim values. Since both roots are non-complex

and r > 0, the complete solution to (3.2) is then given by

F (V ) = k0 + k1V + k2V
− 2r
σ2 (3.5)

where the constants k0, k1 and k2 are to be determined by the particular boundary

conditions.
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3.1.1 Pricing of Debt and Equity Claims

We denote the debt and equity claims to be priced as D(V ) and E(V ), respectively.

As noted previously, D promises a coupon C > 0 unless V reaches the bankruptcy

level VB . Representing the cost of distress, a fraction 0 ≥ α ≥ 1 is lost by the

claimants in bankruptcy, leaving debt holders with (1 − α)VB and equity holders

with nothing. The necessary value-matching conditions are then given by

D(V ) = (1− α)VB at V = VB

D(V )→ C

r
as V →∞

E(V ) = 0 at V = VB

dE(V )

dV
→ (1− τ)

1

r − µ
as V →∞.

(3.6)

Note that if the debt was risk-free, its value would be
∫∞

0
e−rtCdt = C

r . Debt

must therefore approach the value of risk-free debt as earnings grow to infinity.

Thus to satisfy the second and last expression in (3.6), we must let k1 = 0 in (3.5).

Furthermore, since V −
2r
σ2 → 0 when V →∞, the second expression in (3.6) implies

k0 = C
r . Finally, it follows that k2 = [(1−α)VB − C

r ]V
2r
σ2

B from the first expression

in (3.6). Substituting the conditions at the default boundary into (3.5), the ODEs

for debt and equity are

D(V ) =
C

r
+

[
(1− α)VB −

C

r

](
V

VB

)− 2r
σ2

E(V ) = V − (1− τ)
C

r
+

[
(1− τ)

C

r
− VB

](
V

VB

)− 2r
σ2

. (3.7)

Note that the second term in the expression for debt in (3.7) must be negative,

as the first term C/r represents the maximum value of the bond in the absence of

credit risk. Hence, since bond holders will not declare the firm bankrupt if they

could receive more than the risk-free bond value, it must hold that (1−α)VB < C
r .

Given the vales for debt and equity, the optimally levered firm value A(V ) =

D(V ) + E(V ) is then given by

A(V ) = V +
τC

r
−
[
τC

r
+ αVB

](
V

VB

)− 2r
σ2

. (3.8)

We see that the total value of the optimally levered firm is equal to the value of

the unlevered firm plus tax benefits of debt and minus costs of financial distress.
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The first two terms in (3.8) are the present value of earnings and tax shield in

perpetuity and the last term is the loss at default, composed of the lost value of

tax shield plus bankruptcy costs.

The derivation of the value of debt and equity claims directly from the value-

matching conditions in (3.6) is a slight short-cut compared to the approach em-

ployed by Leland (1994). Instead, Leland evaluates the value of an artificial unlev-

ered firm added to tax benefits TB minus bankruptcy costs BC at the boundary

conditions. Total firm value is given by υ(V ) = V + TB(V )− BC(V ). The value

of equity is then calculated as the residual E(V ) = υ(V ) − D(V ) where D(V ) is

derived from the conditions in (3.6) similar to the expression in (3.7). This however

yields a result similar to (3.8).

3.1.2 Optimal Bankruptcy Level and Coupon

From the expression in (3.8) it is evident that we need to determine the bankruptcy

level VB as a function of the parameters, as this will allow for a complete expression

of optimal firm value. To achieve this, we will argue that equity holders will max-

imise the value of their claim when selecting the bankruptcy threshold, imposing

the smooth-pasting condition

dE(V )

dV

∣∣∣∣V=VB = 0 . (3.9)

Solving for the optimal bankruptcy level, we obtain

V ∗B =
(1− τ)C

r + 1
2σ

2
. (3.10)

Substituting (3.10) into (3.8), the expression for total firm value becomes

A(V ) = V +
τC

r
−
[
τC

r
+ α

(1− τ)C

r + 1
2σ

2

](
(r + 1

2σ
2)V

(1− τ)C

)− 2r
σ2

. (3.11)

As the expression in (3.11) is still defined over an arbitrary level of the optimal

coupon, we then solve for C∗ to get

C∗(V ) =
(r + 1

2σ
2)V s

1− τ
(3.12)

where s =
(
τσ2

d

)σ2
2r

with d = 2τr + τσ2 + rα − τ2rα. The optimal values for D

and A are then given by
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D∗(V ) =
(r + 1

2σ
2)V s

(1− τ)r
+

[
(1− α)V s−

(r + 1
2σ

2)V s

(1− τ)r

]
s

2r
σ2

A∗(V ) = V +
τ(r + 1

2σ
2)V s

(1− τ)r
−
[
αV s+

τ(r + 1
2σ

2)V s

(1− τ)r

]
s

2r
σ2 , (3.13)

which completes our derivation of the Leland (1994) model. The reader should

quickly observe that optimal coupon in (3.12) is a positive linear function of the

level of the state variable. Thus; given a value for the state variable, we can

immediately determine the level of optimal coupon. Moreover, we have obtained

an optimal leverage ratio D∗(V )/A∗(V ), which can be tested against sensitivity to

exogenous input variables, as illustrated in Figure 3.2 below.

3.1.3 Model Performance

It can be calculated from (3.13) that the optimal coupon rate will increase with

the effective tax rate on equity. This can be intuitively explained by the fact that

the tax advantage of debt becomes larger as the tax rate increases. Under rea-

sonable assumptions, an increase in the tax rate reduces the value of the equity

claim proportionally less than it increases the value of debt. This in turn implies

that the initial value of A could be increasing in the effective tax rate, which is

clearly contradictory to economic intuition. This stems from the fact that Leland

(1994) assumes a simplified tax structure, and is modified in Goldstein et al. (2001)

and Christensen et al. (2014) by modelling the state variable as earnings and im-

plementing a more sophisticated tax regime. Furthermore, these publications also

implement a (partial) loss of the tax shelter when EBT is negative. Christensen

et al. (2014) however recognise that the effect of a non-symmetric tax schedule for

negative earnings has a limited effect on the total firm value since an increase in

the value of the equity claim is almost fully offset by the decrease in the value of

the debt claim. We have however included the equivalent optimisation problem for

the Goldstein et al. (2001) model under partial loss of the tax shelter in Appendix

B.

Furthermore, note in Chart 3.1b that the bond yield, defined as C/D, is in-

creasing in the level of asset volatility. This is a consequence of the debt value

decreasing in volatility. The convex relationship between C and σ implies that the

coupon level does not necessarily correlate positively with the price of borrowing.

This serves to illustrate that borrowing will always be more expensive for a firm

whose future asset value becomes more uncertain, which is a realistic implication of
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the model. Chart 3.1d illustrates that the value of debt is an increasing function of

the risk-free rate. As equity value will decrease due to the lower value of discounted

earnings, the equity value at bankruptcy will be zero for higher levels of the value

fundamental, increasing the value of debt.

(a) Value functions and asset level (b) Bond yield and asset volatility

(c) Bankruptcy threshold and risk-free rate (d) Debt value and asset volatility

Figure 3.1: Sensitivity analysis of the Leland (1994) model. r = µ = 6%, σ = 20%,
τ = 35% and α = 50%. (Source: Own contribution)

We can observe a familiar relationship between the optimal coupon and the

respective levels of bankruptcy costs and effective tax rate in Chart 3.2a. The

display represents a graphic illustration of the key tenets belonging to the trade-off

theory. Put differently, we see that the optimal coupon is an increasing function of

the effective tax rate (or the (tax) advantage to debt), and a decreasing function of

the bankruptcy cost (or the disadvantage to debt). Finally, observe that varying

the bankruptcy cost and volatility of asset value will have a marked effect on the

optimal leverage level. Faced by greater uncertainty about future asset values,

management will choose a more conservative leverage when the choice of capital

structure is irreversible once selected at t = 0. However, as we will see next,

allowing for continuous increases in debt levels will lead to an even lower initial

leverage choice.
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(a) C as a function τ and α (b) D
D+E

= L∗ as a function of σ and α

Figure 3.2: Optimal coupon level and leverage ratio. r = µ = 6%, σ = 20%,
τ = 35% and α = 50%. (Source: Own contribution)

3.1.4 A Note on Continuous Restructuring

As noted above, the Leland model assumes a fixed capital structure after the initial

bond issue and considers the firm liquidated at the default boundary. Thus; a

straightforward critique of the model is its restriction of continuous readjustment of

the capital structure that would allow for better exploitation of the tax advantage

to debt. This is also the main motivation of the model in the section below.

However, Leland (1994) does address this issue, arguing that either equity holders

or debt holders will in fact block subsequent readjustments even in the absence of

transaction costs. His contention is that existing debt holders will oppose issuance

of new debt, as they will experience dilution of the value of their claim while having

equal liquidation preference with new debt holders. Similarly, equity holders will

refrain from buying debt with new equity issuance, as the remaining debt will

consequently become safer - and thus more valuable - given a fixed initial coupon.

This value is transferred from the existing equity holders, causing a negative net

wealth effect of issuing more equity.

While the blocking of capital structure readjustments may hold true for small

changes in the debt level, the argument fails to consider the case where all outstand-

ing debt is retired before new debt is issued. As will become evident below, there

can be ample scope for capital structure changes when agents take this possibility

into account in their maximisation problem5.

5Another way to introduce a scope for readjustments in this setup would be to impose maturity
on the bonds, see e.g. Leland and Toft (1996)
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3.2 A Dynamic Model with Callable Debt

From Chart 3.2b above it can be observed that the static model of optimal capital

structure predicts a debt-to-value ratio of about 75% under the base case param-

eters assumed by Leland (1994). This is clearly in excess of empirically observed

leverage ratios (see for example Bradley, Jarell and Kim (1984), Titman and Wes-

sels (1988), Rajan and Zingales (1995) and Fama and French (2002)). In this

section we consider a dynamic model introduced by Goldstein et al. (2001), which

allows the firm to continuously increase debt levels. This enhances the tax advan-

tage to debt significantly. It further improves the comparability with observable

managerial conduct, which often supports frequent capital structure adjustments.

Moreover, it will reduce the amount of debt issued upon the firm’s inception, bring-

ing the predicted leverage ratios closer to those observed in practice.

3.2.1 Operating Income as State Variable

Another major criticism that could be directed towards Leland (1994) is the un-

derlying assumption of V being replicable with a traded asset after the initial bond

issuance. As noted by e.g. Kane et al. (1984) and Fischer et al. (1989a), it must

hold that the market value of real assets equal the market value of an optimally lev-

ered firm holding these assets in order to exclude arbitrage. However, if V would

represent the value of a traded asset after the initial bond issue, an arbitrageur

could buy the firm at V before the debt issue, and sell it for A(V ) > V afterwards,

obtaining a risk-free profit of A(V )− V 6.

Goldstein et al. (2001) overcome this issue by introducing earnings before inter-

est and taxes (EBIT), i.e. operating income, as the state variable ξ. Maintaining

a GBM as the diffusion process, the EBIT process can be represented as

dξt = ξtµdt+ ξtσdWt (3.14)

where the drift parameter µ and variance parameter σ are exogenously given. How-

ever, Goldstein et al. (2001) note that the drift rate is a function of the dividend

payout ratio, which can be reasonably considered to depend on the level of the

coupon rate. Nonetheless, the authors assume the payout ratio to be constant for

simplicity purposes. The parameter r is the constant after-tax risk-free rate and

the effective rate paid by the money market account. It assumed that µ < r such

that the dividend payout ratio δ
ξ = r − µ is positive.

6We ignore any effect of transaction costs to arrive at this conclusion.
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Substituting unlevered firm value with EBIT, the state variable no longer rep-

resents a traded asset, but rather a claim to the entire payout from the output

of the firm. As opposed to unlevered asset value, the value of EBIT does not de-

pend on the capital structure. This also has the effect that the firm’s investment

policy is separated from its financing policy, in concurrence with the well-known

Fisher separation theorem (Fisher, 1930). Later when we model the behaviour of

equity holders and management acting in the interest of equity holders when the

EBIT process approaches a bankruptcy threshold, this will turn out to be a strong

assumption. That is, it could easily be argued that changing incentives of man-

agement renders it more likely to exhibit moral hazard in the realised investment

policy when the firm approaches liquidation.

With the changed state variable, the servicing of debt is now financed by the

EBIT process rather than with new equity issues. Finally, it becomes easier to

study the effects of the tax shield when the value fundamental is represented as

earnings before taxes.

Using EBIT as the value-generating mechanic of the underlying model, the

distribution of earnings to claimants become directly comparable to that illustrated

in a conventional corporate income statement:

Financial item Value Payoff

EBIT ξ

- Interest expenses −C D(ξ) = (1 − τi)C

EBT ξ − C

- Income taxes −τc(ξ − C)

Net income (1 − τc)(ξ − C) E(ξ) = (1 − τe)(ξ − C)

Table 3.1: Earnings flow of the firm in Goldstein et al. (2001)

The diffusion of the EBIT process ξt characterises earnings. The firm pays the

coupon C on outstanding debt such that the after-tax payoff to debt holders is

(1 − τi)C. The firm deducts interest payments before paying corporate tax, for

which reason the net income available for dividends is (1− τc)(ξ−C). Assuming a

dividend tax rate of τd, the after-tax payoff to equity holders will be (1−τe)(ξ−C)

where τe = τc + (1 − τc)τd. Note again that this assumes no loss of the tax

shelter when ξ < C and see Appendix B for maximisation under relaxation of this

assumption.
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3.2.2 Model Setup with Callable Debt

As in the Leland framework it is assumed that the firm can issue a single class of

perpetual debt with a fixed instantaneous coupon C such that the debt and equity

claims on the EBIT process become time-homogeneous. However, a call feature is

imposed on the issued bonds. This will allow equity holders to increase leverage

when earnings improve; thus better exploiting the tax advantage. Goldstein et al.

(2001) restrict their attention to the case where the firm can only call the existing

debt in its entirety and subsequently issue new debt. In addition to the setup in

their model, we assume that the debt is callable at a premium λ to the par value

P , and an issue cost q proportional to P is associated with raising debt financing.

This assumption is in line with the assumed structure in later models developed in

this thesis.

An important property from the Leland (1994) model, which is maintained in

the current setup due to the characteristics of the GBM, is that the equity and debt

price functions as well as the coupon rate are homogeneous of degree one in the

EBIT process. From this follows a useful proposition, which we will make extensive

use of in the solution to this model and the models in the following chapters.

Suppose the initial coupon C0 = c0ξ0. The positive homogeneity property then

implies that if the firm has a policy of restructuring at ξ = ξ̄
∆
= u · ξ0 for some

fixed constant u > 1, then the new coupon will be given by u · C0 = uc0 · ξ0 and

the next restructuring according to the restructuring policy will occur at ξ = u2ξ0.

Accordingly, with the initial optimal default level ξ =
¯
ξ

∆
= d · ξ0 for a default policy

0 < d < 1, the default level after the restructuring will be given by d · u · ξ0.

This feature of homogeneity will hold for debt and equity given that it is satisfied

in the boundary conditions. In the static model setup this positive homogeneity

can easily be seen from the expressions in (3.7) given proportionality between the

default level and the coupon rate, as reflected in (3.10).

By extension, the log-normality of ξ allows the drift and variance rates of the

diffusion to stay fixed across the upward restructurings; thus the EBIT process,

and ultimately the capital structure policy, will remain unchanged.

A Note on the Restructuring Thresholds

In regards to the boundary conditions, the restructuring policy (
¯
ξ, ξ̄) of declaring

bankruptcy at d · ξ0 and call existing debt at u · ξ0 could be determined either

endogenously by the incentive compatibility constraints of the equity holders or

exogenously by covenants given in the bond indenture. In Goldstein et al. (2001)
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it is somewhat confusingly assumed that the bankruptcy threshold is determined

by the smooth-pasting condition, whereas the upper restructuring boundary is

committed to by management in the bond indenture. While the reason for this

choice is unmotivated, we hypothesise that the authors resort to this option due

to the fact that it is assumed that the firm’s assets are sold off at their unlevered

value at bankruptcy. Based on our trials, this assumption appears to prevent the

authors from solving for two endogenous boundaries. This seeming methodological

inconsistency is remedied in Christensen et al. (2014). In their context the firm is

instead allowed to be taken over without loss of the tax advantage to debt in case

of bankruptcy. This enables them to let both boundaries be derived endogenously

from equity holders’ incentives. Thus; the optimally levered firm value is included

in both the upper and lower restructuring boundaries. We follow the methodology

proposed by Christensen et al. (2014) in the derivation of the Goldstein et al. (2001)

model below, arguing that retaining the assumption of the firm being taken over

as a going concern at its optimally levered value constitutes a more economically

sound setup. To the best of our knowledge, we are the first to consider the Goldstein

et al. (2001) model under these refined conditions. However, a disadvantage of the

resulting fixed-point problem is an increased computational complexity. For this

reason, we will return to the Goldstein et al. (2001) definition of firm value at

bankruptcy when considering the more complex stochastic process in Chapter 6.

Also, the GBM-based model considered as a benchmark case in Chapter 5 will

follow the same definition in order to have a clean laboratory for comparative

analysis. For completeness of the setup for the model in this section, note that

for the evolution of ξ in the range ξ ∈ ]d · ξ0, u · ξ0[ the capital structure policy

remains unchanged, implicitly assuming that adjustment costs will render changes

unprofitable as suggested in Fischer et al. (1989a).

3.2.3 Solving the Model

The derivation of the value function on the EBIT process is very similar to the

framework applied in the static framework. We must assume µ < r in order for

the claims to have finite values. This is contrasted to Leland (1994) who is able

to assume µ = r, as he considers the unlevered firm value as the guiding state

variable. He can thus neglect the requirement of finiteness in the value of the

dividend stream, which becomes relevant for an earnings-based state variable (see
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(3.17) below). The ODE from (3.2) under the EBIT process instead becomes

1

2
σ2ξ2Fξξ(ξ) + µξFξ(ξ)− rF (ξ) + υH = 0. (3.15)

with the general solution to the homogeneous part given by

F (V ) = k1ξ
β1 + k2ξ

β2 (3.16)

and the roots β1 and β2 as the solutions to the fundamental quadratic, as given

in (3.4). In contrast to the static setup, this dynamic version entails a set of

equations with four value-matching conditions, two smooth-pasting conditions and

two additional expressions for optimally levered firm value A and the value of the

principal P . The value functions of debt and equity are given by

D(ξ) = b1ξ
β1 + b2ξ

β2 + (1− τi)
C

r

E(ξ) = e1ξ
β1 + e2ξ

β2 + (1− τe)
ξ

r − µ
− (1− τe)

C

r
(3.17)

where the τc term is included in the equity function in Goldstein et al. (2001) to

correctly account for the relationship between equity value and effective tax rate.

In the Leland (1994) model, the equity value is an increasing function of the effec-

tive tax rate, as the tax benefit increases monotonically with this rate. However,

normally it is safe to assume that the present value of earnings is adversely affected

by a higher tax rate; thus implying the opposite relationship. This is rectified with

the inclusion of τe in (3.17).

Consider first the boundary conditions at the upper boundary. Assuming that the

EBIT process starts at ξ0, the existing debt is called at uξ0 at the premium λ,

and new debt with higher coupon is issued to better match earnings with coupon

payments for full tax shielding. The value of debt at the call boundary is thus

D(uξ0, ξ0) = (1 + λ)P (3.18)

where P = D(ξ0; ξ0) is the par value of existing debt. The corresponding value of

the equity claim will equal the sum of the value of equity at the upper boundary

and the newly issued debt less the cost of retiring the old debt:
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E(uξ0, ξ0) = E(uξ0, uξ0) + (1− q)D(uξ0, uξ0)− (1− λ)P

= uξ0A− (1 + λ)P
(3.19)

where A is a constant defined as A = E(ξ0; ξ0)+(1−q)D(ξ0; ξ0). A then becomes

an expression for the optimally levered firm per unit of EBIT, which at all times

will equal the value of debt and equity of the newly optimally levered firm less the

cost of retiring the debt belonging to the previous capital structure optimisation.

An alternative interpretation of A is to consider it equal to the value of the total

proceeds of issuing debt and equity that would accrue to an entrepreneur starting

the firm with the sole claim on the EBIT process. This way of representing the

firm’s optimisation policy is in accordance with the research of e.g. Berens and

Cuny (1995) and Graham (2000) on how firms should re-think the way of shielding

themselves from corporate tax. Both studies support the notion that firms should

aim at levelling coupon payments with earnings rather than focusing on the simple

leverage ratio, defined as debt value to total firm value.

As previously stated, we here incorporate a smooth-pasting condition associated

with the optimal call boundary in order to ensure consistency between equity value

at the upper boundary and the equity holders incentive-compatibility level at the

same boundary. We therefore require that equity holders will find it optimal to

call the existing debt when

∂E(uξ0, ξ0)

∂ξ
= E(ξ0, ξ0) + (1− q)D(ξ0, ξ0)

= A.

(3.20)

That is; equity holders find it optimal to call the existing debt when firm value hits

the value of an optimally levered firm for the given initial level of EBIT, ξ0.

When the EBIT process hits dξ0 it as assumed that the equity holders withhold

the coupon payment immediately and declare bankruptcy. The debt holders take

over the company at a cost α of changing control, and equity holders get nothing.

Note again the assumption that the tax shield is retained at bankruptcy, i.e. the

firm is allowed to have debt in the event of default. This implies that the firm

value will be equal to the value of its optimally levered assets, and the resultant

value-matching conditions at bankruptcy are

D(dξ0, ξ0) = (1− α)dξ0A

E(dξ0, ξ0) = 0. (3.21)
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At the event of default, equity holders give up their claim. Thus; the accompanying

smooth-pasting condition is

∂E(dξ0, ξ0)

∂ξ
= 0, (3.22)

which closes the system of equations considered in the Goldstein et al. (2001) setup

with upward restructurings. Including the expressions for A and P , the system of

equations in (3.18)-(3.22) present a problem to solve eight equations with eight

unknowns. The dimensionality of this problem can be reduced to a system of

two equations and two unknowns by solving for the values of u and d given the

exogenous parameters and the level of coupon. This system can however only be

solved numerically as

C∗ = argmax
C∈R+

A(ξ0). (3.23)

In other words, an entrepreneur who wants to maximise her proceeds from issuing

debt and equity will determine the coupon rate to maximise A.

3.2.4 Model Performance

Arguably the most important result of allowing the firm to dynamically issue more

debt is the lower initial leverage. This result is demonstrated below in Figure 3.4.

Applying similar base case values for the input parameters, the optimal leverage

level falls from 75% in the static setup to below 50% in the model with upward

restructurings. The intuition behind this result is that the company will decide to

issue debt with a lower coupon rate due to the fact that this can be adjusted if

the EBIT process increases. And if the EBIT process decreases, a lower level of

coupon could allow the company to avoid bankruptcy.

A few other results are worth noticing, however. Besides optimal leverage,

many theorists within the field of dynamic capital structure are pre-occupied with

predicting yield spreads. These will observably always increase with the coupon

level as well as the magnitude of bankruptcy costs. Moreover, we saw in the static

case that yield spreads were increasing in volatility. We see in Chart 3.3b that

this is also the case in the dynamic setup. However, while always holding true for

investment-grade firms, it is worth realising that an opposite relationship might

hold true for high-yield - or junk - bonds. This dynamic is similar to the observa-

tion that interest rates on junk bonds may actually drop when the risk-free rate

increases, as is also noted by Leland (1994). In any case, bonds issued with the
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possibility of upward debt restructurings are riskier for a given level of initial debt

since the higher level of coupon will be associated with a higher default bound-

ary. As a consequence, comparing Chart 3.3b with Chart 3.1b, we see that the

bond yield for the given base case parameters is higher in the dynamic model. As

highlighted by Goldstein et al. (2001), the predicted credit spreads in the dynamic

setup accord better with empirically observed spreads. This is also consistent with

practice where debt covenants rarely completely restrict new debt issues. In addi-

tion, new debt holders will typically rank pari passu with old debt holders in the

priority of claims in liquidation, which renders current debt more risky.

Moreover, as previously indicated, the dynamic model better exploits the tax

benefit of debt financing. In accordance with the definition employed in Goldstein

et al. (2001), we define the tax advantage to debt (TAD) as

TAD =
E(ξ0; ξ0) + (1− q)D(ξ0; ξ0)− (1−τe)ξ0

r−µ
(1−τe)ξ0
r−µ

=
A

1−τe
r−µ

− 1. (3.24)

In words, the TAD is defined as the return to the initial firm owners from levering

the firm relative to the value of the unlevered firm. Goldstein et al. (2001) find

that, if the firm cannot increase its debt, the TAD is about 7%, which is increased

slightly to about 9% in their own model. In the version of the model we have

reviewed above, the TAD becomes even higher, as the adverse effect of personal

taxes is excluded. It is however difficult to directly compare the tax benefit of debt

across the two models due to the different assumptions about the effects of personal

taxes and use of state variable. As previously stated, the static framework implies

a positive relationship between the effective tax rate and the value of equity due to

the exclusion of personal taxes, whereas this effect is reversed in the dynamic setup.

This is also evidenced by the display in Chart 3.3c. These differing assumptions

result in a measure of TAD that is not directly comparable. Obviously, though,

the TAD diminishes as firm risk is increased since debt becomes more costly. This

effect is illustrated in Chart 3.3d.
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(a) Value functions and EBIT level (b) Bond yield and EBIT volatility

(c) Equity and effective tax rate (d) TAD and EBIT volatility

Figure 3.3: Sensitivity analysis of the Goldstein et al. (2001) model. r = 6%,
µ = 2%, σ = 20%, τe = 35%, τi = 20%, α = 50%, q = 1% and λ = 5%. (Source:
Own contribution)

As noted under the static setup, more firm risk also causes a substantial decrease

in the optimal coupon for an otherwise identical firm. This effect is tractable to

the decision of the initial firm owners who choose a lower coupon facing a higher

risk of large decreases in earnings. On the other hand, the coupon level increases

with the effective tax rate for equity holders, as this renders the attractiveness of

debt financing higher. Volatility and tax benefit to debt thus have opposite effects

on the optimal coupon as depicted in Figure 3.4.

In similar fashion, the optimal leverage level is negatively associated with an

increase in the volatility of assets. Moreover, an increase in the price of bankruptcy

as measured by the direct and indirect cost reflected by the level of α will also have

an adverse impact on the optimal leverage level. As α increases, the coupon level

will be lowered in response to the lower level of earnings for which bankruptcy will

be triggered. As is illustrated in Chart 3.4b, fluctuations in these variables can

have a significant impact on the optimal leverage level.
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(a) C as a function τe and α
(b) D

D+E
= L∗ as a function of σ and α

Figure 3.4: Optimal coupon level and leverage ratio. r = 6%, µ = 2%, σ = 25%,
τe = 50%, τi = 35%, α = 25%, q = 3% and λ = 5%. (Source: Own contribution)

3.2.5 Limitations

One issue in the Goldstein et al. (2001) framework, which merits a few comments, is

the assumption about call of the entire debt in upward restructurings. A tendency

fuelled by the proliferation of private equity as an asset class is to recapitalise the

firm by releasing equity and replacing this with more debt on top of the existing

bonds (Fraser-Sampson, 2010). This procedure has become a very significant con-

tributor to leveraged buyout (LBO) returns. Thus; in models including callability

of debt, one might instead consider a scenario where only a fraction of the debt is

called or where the firm is re-levered without calling any existing debt.

Another evident limitation of the model in this section is its restriction of the

possibility of restructuring the firm at a default threshold. While recognising that

they disregard the downward restructuring option in their model, Goldstein et al.

(2001) argue that a range of factors complicate the inclusion of this feature. The

argument is that a number of effects, ignored in their model, will influence the

modelling of equity holders’ incentives in the lower restructuring region. One ex-

ample of this is the issue of asset substitutability, which vanishes as the Fisher

separation theorem is invoked. As rigorously expounded by Jensen and Meckling

(1976), asset substitutability is likely to become a very significant risk for debt

holders as the firm approaches the default threshold. A related issue considered

by Myers (1977) is the tendency of shareholders to underinvest when the invest-

ment gains accrue to debt holders. Management acting in the interest of equity

holders refrain from low-risk projects, as safe cash flows will not generate return

for equity holders. Other theorists however claim that the potential moral hazard

of management for low levels of earnings will be dampened by counter-effects such
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as the natural incentive to exert a good managerial effort in the presence of career

concerns (see e.g. Gibbons and Murphy (1992)). In any case, the assumption of

separation between investment and financing activities becomes less valid when

the behaviour of the firm is modelled explicitly at the default threshold. Another

example is the issue of asymmetric information. Myers and Majluf (1984) show

that an incumbent management with private information about the quality of the

firm might forgo positive-NPV projects if forced to turn to capital markets for

financing due to the negative signalling effect of raising proceeds externally. This

is again a violation of the Fisherian criterion for optimal investment. Finally, the

recontracting framework of Chapter 11 that firms in restructuring encounter in

practice could be considered too complex and lengthy for the development of any

satisfactory model mimicking this procedure.

Notwithstanding these theoretical obstacles, solid empirical evidence exists to

warrant the development of a model that includes the possibility of debt restruc-

turing at the default threshold. In a study of 169 financially distressed U.S. firms,

Gilson, John and Lang (1990) find that approximately half of the companies suc-

cessfully restructure the debt before entering formal Chapter 11 proceedings. This

is attributed to the fact that more of the firm’s going-concern value is likely to be

lost in Chapter 11, e.g. through asset sales, for which reason debt holders will ac-

cept restructurings sooner. Additional publications by Franks and Torous (1989),

Eberhart, Moore and Roenfeldt (1990) and Weiss (1990), collectively called the

priority papers, document absolute priority rule (APR) deviations in bankruptcy

negotiations. These papers show that many restructurings will see equity holders

participate in a reorganisation that does not provide for full payment of more se-

nior (debt) claims. Again, senior claim holders accept this, as the absolute value

of their share of the going concern value exceeds the one that can be expected in

case of liquidation. In Chapter 4 we proceed to discuss some of the first serious

attempts to include restructurings at the lower boundary.

Other issues in the Goldstein et al. (2001) paper relate to e.g. the state variable

dynamics and the infinity of debt maturity. However, these subjects will be treated

separately later in this thesis.



Chapter 4

Strategic Debt Renegotiation

”Unless the debtor pays the amount of the judgment or somebody guar-
antees his debt, the creditor shall take him home and fasten him in
stocks or fetters. He shall fasten him with no less than fifteen pounds
of weight.”

- Laws of the Twelve Tables (451-450 B.C.)

In this chapter we aim to discuss the essential theory required for the development

of a satisfactory model of debt renegotiation. A general conception of debt renego-

tiation modelling is a fundamental building block for understanding the dynamic

capital structure models with a continuous restructuring feature. We review the

results of three previous models of debt renegotiation and their methodologies,

shedding light on fundamental contrasts and resemblances as well as the progres-

sion between them. The three selected models demonstrate distinctive perspectives

and practices that produce different conclusions with regards to security pricing

and optimal capital structure in the presence of debt renegotiation. The first model

of Anderson and Sundaresan (1996) is a discrete-time binomial model where eq-

uity and debt holders bargain about the size of the future coupon payments. In

the second model by Mella-Barral and Perraudin (1997), the agents still bargain

about the size of the future coupon payments, however in a continuous-time set-

ting. These two models arguably represent the most significant contributions to the

category of models generally termed strategic debt service (SDS) models. Finally,

we will discuss the approach of Christensen et al. (2014), which is fundamental

for the method employed in later chapters of this thesis. In contrast to previous

models, this last paper allows for re-optimisation of the entire capital structure

rather than merely readjusting future coupon payments. Additionally, it is based

upon more sound economic assumptions about the rational behaviour of the bar-

40
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gaining agents. We will focus exclusively on the game-theoretical aspects of the

Christensen et al. (2014) model in this chapter. A more elaborate discussion of the

framework specifics will be presented in Chapter 5 when we develop a version of

the model to benchmark against our own model in Chapter 6.

4.1 Game-Theoretical Considerations

As a preface, we will consider a number of fundamental economic concepts that are

essential when distinguishing between the models in this chapter. More specifically,

we aim to emphasise some basic game-theoretical arguments that constitute sound

economic behaviour. The models reviewed in this chapter will prove to exhibit

varying degrees of compliance with these assumptions. This exposition will drive

transparency and allow us to understand the catalysts of the various results.

4.1.1 Rationality and Utility

One of the most fundamental concepts in game theory is the notion of rationality.

An abundance of literature has been devoted to the development of a generally

acceptable definition of rationality. Still, no universally acknowledged characteri-

sation of the concept can be said to have emerged. According to Blume and Easley

(2008), the rationality principle most commonly assumed by working economists

holds that ”individuals act in their best interest as they perceive it”. In theory,

an individual’s best interest is in turn usually determined by the maximisation of

his or her utility function. For the case of choice under uncertain circumstances,

an agent would maximise their expected utility. Clearly, empirical research has

indicated that individuals do not always act rationally according to this definition

(Pennacchi, 2008). However, the expected utility paradigm constitutes the foun-

dation upon which most of the classical work within economics is based. The first

comprehensive formulation of the axioms defining the expected utility framework

was developed by von Neumann and Morgenstern (1944). The theories developed

in their publication can be argued to have marked the inception of the entire field

of game theory. The foundation for any strategy in game theory is accordingly

defined by agents maximising their utility functions.

As is well-known, the utility function can take on multiple forms depending

on the agent’s assumed relation to wealth. In practical terms, a risk-averse agent

would have a concave utility function, whereas a risk-seeking agent would have

a convex utility function. A risk-neutral agent possesses a special type of util-
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ity function that is linearly dependent on wealth. The assumption of risk-neutral

agents is particularly prevalent in option pricing theory. It is commonly incorpo-

rated by computing the security prices under an equivalent martingale measure.

Even though investors are known to be risk-averse in reality, the analysis can be

successfully developed under a risk-neutrality assumption (Harrison and Kreps,

1979).

Rational and utility-maximising agents are essential for the creation of a satis-

factory model of debt renegotiation. Later in this chapter, we will however demon-

strate that certain previous models of debt renegotiation are, in fact, not fully

consistent with these assumptions. We infer that the challenge for today’s re-

searchers is to structure a game-theoretically compliant, stochastic model of debt

renegotiation and dynamic capital structure choice. This is indeed one of the main

objectives of this thesis.

4.1.2 Strategic Bargaining

In the strategic situations considered in this paper, the agents are comprised by

equity holders and debt holders. These two types of agents are traditionally as-

sumed to act in rational self-interest without concern for their counterparty. In

our circumstances, the agents will engage in bargaining over future coupon pay-

ments or over the firm’s entire capital structure. They are thus faced with the

challenge of agreeing upon a reasonable compromise, all while maximising their

own payoff. Two fundamental bargaining models addressing this issue are Rubin-

stein’s (1982) sequential bargaining game and Nash’s (1950) axiomatic bargaining

solution. Thus; gaining a full grasp of these will be necessary for establishing the

infrastructure in later models.

Rubinstein’s (1982) Bargaining Game

Rubinstein (1982) has developed a model of sequential bargaining where two agents

negotiate the division of some surplus during a number of discrete time periods.

Thanks to its intuitive format and result, the model has had great influence in eco-

nomics since it was first proposed. In the generalised version of Rubinstein’s (1982)

model, the number of bargaining periods approaches infinity. For our purposes, it

is more applicable to examine a case with a finite number of bargaining periods.

The reason for this will become clear as we develop the model of debt renegotiation

in Chapter 5.

Following Gibbons (1994), the setting of the Rubinstein game can be sum-
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marised as follows: Assume a three-period game played by two agents who bargain

over the division of one Danish krone. Symmetric information is assumed, as the

players are informed of their counterparty’s payoff and incentives. Initially, player

1 will make a proposal that player 2 can either accept or reject. If player 2 agrees,

the game ends. Otherwise, the game continues to the next round where player 2

makes a proposal. Time value of money is accounted for by introducing a per-

period discount factor δ where 0 < δ < 1. This presents a critical friction in the

model that encourages the agents to minimise the time spent haggling. In the ab-

sence of this feature, the agents could easily go on bargaining forever. The timing

of the game unfolds in three stages:

1.1) Player 1 proposes to divide the krone so that player 1 and player 2 receive

the shares (s1, 1− s1), respectively.

1.2) Player 2 chooses whether to accept or reject the offer. Acceptance implies

immediate payout of the players’ respective shares. Rejection results in the

game proceeding to the next round.

2.1) Player 2 proposes an allocation of (s2, 1− s2) to player 1 and herself, respec-

tively.

2.2) Player 1 decides whether to accept the offer or to proceed to the next round.

3.0) Player 1 and player 2 immediately receive the exogenously given allocations

(s, 1− s), respectively. No further bargaining takes place.

Games of Rubinstein’s form are conventionally solved by the use of backwards

induction. Hence, we must start by computing the optimal offer of player 2 if

the second period is reached. Player 1 can realise a payoff δs by rejecting player

2’s offer. This can be seen as player 1’s rejection payoff. It is thus known that

player 1 will accept any offer where s2 ≥ δs, given that indifference implies ac-

ceptance. If player 2 awaits the exogenous payoff in the third period, she will

realise a payoff δ(1 − s). Observably, the payoff from offering player 1 the mini-

mum acceptable share in the current period is higher than the payoff from waiting.

Formally, δ(1 − s) < (1 − δs). Player 2’s optimal offer is therefore s2 = δs.

With symmetric information, player 1 can foresee player 2’s second-period deci-

sion problem. Therefore, player 1 is aware that player 2 will accept any allocation

1− s1 ≥ δ(1− s∗2). The alternatives available to player 1 are to realise 1− δ(1− s∗2)

in this period or δs∗2 = δ2s by waiting. Player 1’s optimal response is thus to offer

s∗1 = 1− δ(1− s∗2) = 1− δ(1− δs).
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The backwards induction equilibrium in this game corresponds to player 1

choosing an optimal offer, s∗1 = 1 − δ(1 − δs), in the first period, which war-

rants player 2’s immediate acceptance. The game illustrates how a situation of

sequential bargaining can be resolved by the application of backwards induction.

The setup is general in nature, but offers the opportunity for modification to suit

more specific circumstances.

Nash’s Bargaining Solution

Nash’s (1950, 1953) model is attractive in applications because of its economically

sound approach to bargaining. The Nash bargaining solution (NBS) ensures that

the model satisfies certain desirable properties. These axioms apply to agents with

von Neumann-Morgenstern utility functions and are summarised by Muthoo (1999)

as follows:

Axiom 1 Invariance to Equivalent Utility Representations

Axiom 2 Pareto Efficiency

Axiom 3 Symmetry

Axiom 4 Independence of Irrelevant Alternatives.

Axiom 1 simply states that the result should be based on the individual’s pref-

erences, independent of equivalent specifications of the utility function. Axiom 2

refers to the classical concept of Pareto optimality. This implies that it should not

be possible to make one agent better off without making the other worse off. By

Axiom 3 it is suggested that the solution is independent of which player makes the

initial proposal. Lastly, Axiom 4 states that the players do not allow remote alter-

natives to influence their decision in the game. A NBS would be one that satisfies

all of the conditions above. Any model of debt renegotiation should arguably also

satisfy these axioms.

The agents in the NBS situation are assumed to bargain over the partition of

a certain surplus. To examine this more formally, consider the surplus Ψ which

is divided such that player 1 receives a share x1 and player 2 receives the corre-

sponding share x2 = Ψ− x1. Both players have von Neumann-Morgenstern utility

functions, Un(xn) = Un. If the players are unable to agree upon a solution, they

will realise the utilities F1 and F2, respectively. The solution is characterised by a

pair of utilities [U1, U2] that is obtained by maximising the function
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max
(U1,U2)

(U1 − F1)(U2 − F2). (4.1)

This expression is known as the Nash product and has a unique solution. Clearly,

the players would not be interested in bargaining if the proceeds from doing so

were negative. Hence, it is assumed that U1 ≥ F1 and U2 ≥ F2 in order for a

solution to exist.

To illustrate the implications of this model we can set up a simple example.

Firstly, the players’ utility functions can be defined as U1(x1) = x1 for all x1 ∈ [0,Ψ]

and U2(x2) = x2 for all x2 ∈ [0,Ψ]. This definition implies linearity between

utility and wealth and thus risk-neutral agents. Assuming that the utility functions

are differentiable in xn, the obtained utilities can be characterised as UNBS1 =
1
2 (Ψ− F2 + F1) and UNBS2 = 1

2 (Ψ− F2 + F1). Furthermore, the respective shares

of the surplus would equal

xNBS1 = F1 +
1

2
(Ψ− F1 − F2) (4.2)

xNBS2 = F2 +
1

2
(Ψ− F1 − F2). (4.3)

Here, it can be seen that player 1’s share is strictly increasing in F1 and strictly

decreasing in F2 . This is equivalent to saying that the bargaining power of a player

increases with the utility value of his or her alternative payoff, Fn. In Rubinstein’s

(1982) bargaining game this alternative payoff was constituted by the next period

payoff discounted back to present. In order to reach an agreement, the players must

make sure that they both receive at least as much as they would have received if

they failed to agree. Any remaining part of the surplus will be split equally if both

agents are risk-neutral.

An alternative assumption could be that at least one of the agents is risk-averse.

Let λ denote the risk-aversion parameter such that U1(x1) = xλ1 for all x1 ∈ [0,Ψ]

and U2(x2) = x2 for all x2 ∈ [0,Ψ]. It can then be shown that the share of the

remaining surplus is decreasing in risk-aversion. If, for example, player 1 were

risk-averse, he would receive a share of the entire surplus equal to

xNBS1 = F1 +
λ(Ψ− F1 − F2)

1 + λ
. (4.4)

Furthermore, the risk-neutral player 2 would claim the share

xNBS2 = F2 +
(Ψ− F1 − F2)

1 + λ
. (4.5)
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As λ approaches zero, the risk-neutral player assumes the entire share of the re-

maining surplus. Conversely, as λ turns to one, we obtain the risk-neutral result

seen in (4.2) and (4.3).

Nash’s framework lays the foundation for more complicated bargaining models

and is very applicable in debt renegotiation settings, as will be explicated later.

It is nonetheless worth noting that Nash does not explicitly model the bargaining

process, as opposed to Rubinstein (1982).

4.2 Discrete-Time SDS Model

Due to its simplistic setup, the discrete-time model by Anderson and Sundaresan

(1996) offers a great starting point for analysis of SDS. Hence, we commence with

this model to demonstrate intuition for the process of renegotiating a firm’s debt

terms. The paper assumes a simple random-walk process for the firm value Vt.

The process is modelled as a binomial process with up-ticks of size u and down-

ticks of size d = 1/u. The cash flows ft for the equity holders are proportional

to the value of the firm such that ft = βVt, where β is the pay-out ratio. As in

any binomial security pricing model, the expected value of cash flows is calculated

under risk-neutral probabilities.

The game that unfolds under this setting is a symmetric information game

that is ongoing at every time node. The equity holders will, based on the realised

value of their cash flow, select some level of debt service St at each point in time.

Conditional on full coupon payment St = CSt, the creditors will accept the offer

from the equity holders. Should the coupon payment fall short of the contracted

amount, the creditors must choose whether to accept partial payment or to enforce

a liquidation of the firm7. Liquidation is subject to a cost K that is deducted from

the prevailing firm value such that the creditors’ payoff equals (Vt −K). The sub-

game perfect equilibrium can then be established by applying backwards induction

from the terminal date T .

If the service payment is accepted at time T , the payoffs for the debt and

equity holders, respectively, are given as (ST , VT − ST ). If the service payment is

not accepted, the payoffs are instead max[(VT −K, 0), 0]. As long as ST < CST ,

it is optimal for the debt holders to still accept the offer when ST ≥ max(VT −
K, 0), and to decline otherwise. Given symmetric information, the equity holders

foresee the best-response function of the creditors and choose to set ST = CST

7Note that no bargaining process ensues if the offer is rejected. The alternative that equity
holders submit a new offer, therefore, does not exist.
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if VT − K > CST , and otherwise to set ST = max(VT − K, 0). In sum, the

equilibrium terminal payoffs are given by B(VT ) = min(CST ,max(VT −K, 0)) for

debt and E(VT ) = VT−B(VT ) for equity. Receding backwards in the binomial tree,

the agents will have to account for the possible future values of debt and equity,

weighted by their martingale probabilities and discounted back to the current time

period. The realisation of future cash flows is of course contingent on continuing

firm operations. Formalising this extensive-form game, the service level chosen by

the owners is given by

S(Vt) = min

(
CSt,max(0,max(Vt −K, 0)− pB(uVt) + (1− p)B(dVt)

r

)
. (4.6)

The corresponding instantaneous values of debt and equity are thus

B(Vt) = S(Vt) +
pB(uVt) + (1− p)B(dVt)

r
and (4.7)

E(Vt) = ft − S(Vt) +
pE(uVt) + (1− p)E(dVt)

r
. (4.8)

It should be pointed out that forced liquidation occurs in states where the cash

flows are insufficient to cover the minimal acceptable level of debt service. In this

scenario, the value of debt is given by

B(Vt) = max(0,min(Vt −K,CSt + Pt)). (4.9)

Hereby, the entire strategy space and the resultant security values are defined. It

is thus possible to derive a sub-game perfect equilibrium and use the framework

for debt contract valuation. Observably, the equity holders will service their debt

strategically by continuously evaluating the possibility for underperformance of

their debt contract without provoking a firm liquidation. This behaviour will be

priced into the debt using a binomial grid. A thorough review of the numerical

results of the model is considered beyond the scope of this thesis. One conclusion

of the paper is however that SDS can explain much of the discrepancy observed

between empirically observed - and theoretically predicted credit spreads. The

research suggests that possibilities for renegotiation of debt terms have material

implications for the pricing of corporate securities and, thus, likely also for the

optimal capital structure of a firm.
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4.3 Continuous-Time SDS Model

As a natural continuation of the previous model, Mella-Barral and Perraudin (1997)

extend the analysis to evaluating the debt of a firm that operates in continuous

time. In a familiar fashion, the claimants in this model bargain over the level

of debt servicing at each instant, and not over the firm’s entire principal. As a

consequence of the continuous-time environment, security prices are derived using

contingent claims analysis as expounded in Chapter 2. As will be demonstrated,

it is possible to find closed-form solutions for the value of debt and equity as well

as an optimal SDS function in this setting. To develop the model, we start out by

assessing the pre- and post-bankruptcy values of an unlevered firm. These solutions

can subsequently be used to determine the values of the rejection payoffs that the

agents are faced with when selecting their best responses in the debt-servicing

game.

The authors assume that the firm incurs an instantaneous production cost w

and that the product price p follows a GBM. The net earnings flow consequently

equates

pt − w, (4.10)

which implies that EBIT is only a GBM in the unlikely case that w = 0. The value

of an all-equity financed firm with this earnings capacity is given by a function

W (p). Should the firm go bankrupt, the post-bankruptcy prospect will be impaired.

In this case the firm can only generate net earnings of

ξ1pt − ξ0w where ξ1 ≤ 1 and ξ0 ≤ 1. (4.11)

The value of the firm, given that the earnings capacity has been impaired, is de-

noted by the function X(p). By subjecting the functions X(p) and W (p) to the

appropriate boundary conditions, it can be shown that their closed-form solutions

are given by

W (p) =
p

r − µ
− w

r
+

[
γ − pc

r − µ
+
w

r

](
p

pc

)β
∀p ≥ pc (4.12)

X(p) =
ξ1p

r − µ
− ξ0w

r
+

[
γ − ξ1px

r − µ
+
ξ0w

r

](
p

px

)β
∀p ≥ px (4.13)

where pc and px are the liquidation thresholds for the respective firms and are
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denoted by

pc = − β

1− β
w + rγ

r
(r − µ) (4.14)

px = − β

1− β
ξ0w + rγ

ξ1r
(r − µ). (4.15)

These solutions may later be used as elements in the derivation of the solution for

a leveraged firm with strategically acting equity holders. Particularly, it should be

noted that X(p) is the value that the creditors of a leveraged firm can extract by

declaring the firm bankrupt.

When equity holders can make take-it-or-leave-it offers, strategic debt service

implies that the owners will choose some level of optimal debt servicing for each

level of pt. Hence, a state-dependent service flow function s(p) can be defined.

The form this function must take can be derived by straightforward economic

reasoning. For high states of pt, it is optimal to service the debt fully. This holds,

as the liquidation value of the firm is sufficient to motivate creditors to enforce

immediate liquidation in case of underperformance. For medium to low states of

pt, say when pt is less than some threshold ps, partial debt servicing is optimal, as

creditors find liquidation suboptimal for certain levels of underperformance. For

sufficiently low values of pt, liquidation of the firm will be optimal for the equity

holders such that no servicing will ensue. To formalise this intuition, we can state

that there exists a ps and a p∗c such that

1. liquidation is triggered when pt hits p∗c the first time,

2. s(p) < b ∀p < ps and L(p) = X(p),

3. s(p) = b ∀p ≥ ps,

where b denotes the contracted coupon payment. The value of the debt contract

L(p) must satisfy an ODE that can be derived by applying Itô’s lemma. We can

use the facts that the coupon payments are uncertain and given by the service flow

function s(p), as well as L(p) = X(p) when p ∈ [p∗c , pS ]. Thus; we have that s(p)

must satisfy the ODE:

rX(p) = s(p) + µpX ′(p) +
σ2

p
p2X ′′(p). (4.16)

Note that X(p) on the left-hand side is already known from previous computations.

For this reason, we are able to derive the functional form for s(p):
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s(p) =


rγ, for p ∈ [p∗c , pxx)

ξ1p− ξ0w, for p ∈ [px, ps)

b, for p ∈ [ps,∞) .

(4.17)

In order to complete the full solution, we must find the values of debt and equity

as well as the trigger barriers, p∗c and ps. Once again applying Itô’s lemma, we

have that debt and equity must satisfy

rL(p) = s(p) + µpL′(p) +
σ2

2
p2L′′(p) (4.18)

rV (p) = p− w − s(p) + µpV ′(p) +
σ2

2
p2V ′′(p). (4.19)

In the absence of arbitrage, the value-matching and smooth-pasting conditions

for the bankruptcy threshold p∗c must be

V (p∗c) = 0 (4.20)

L(p∗c) = X(p∗c) (4.21)

V ′(p∗c) = 0. (4.22)

Furthermore, we can define the value of the debt contract for the interval between

the bankruptcy threshold and the service boundary according to (4.23) below. As

the price process approaches infinity, we can use limit arguments similar to those

of the dynamic model presented in Section 3.2 to establish the values of debt

and equity. In (4.23) we see that the value of debt approaches its risk-free value.

Similarly, (4.25) establishes the value of equity in this case by Gordon’s growth

formula,

L(p) = X(p) ∀p ∈ [p∗c , ps], (4.23)

lim
p→∞

L(p) = b/r and (4.24)

lim
p→∞

V (p) =
p

r − µ
− w + b

b
. (4.25)

Given these conditions, we are able to solve for p∗c , ps, V (p) and L(P ), and
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thereby complete the solution of the model. The solution is characterised by

ps = − β

1− β
b+ ξ0w

ξ1r
(r − µ) (4.26)

p∗c = − β

1− β
w + rγ

r
(r − µ) (4.27)

V (p) = W (p)− L(p) (4.28)

L(p) =

b/r + [X(ps)− b/r] (p/ps)
β , if p > ps

X(ps), if p ≤ ps.
(4.29)

This model by Mella-Barral and Perraudin (1997) demonstrates how to combine

a debt renegotiation framework with a classical asset pricing model in continuous

time. Their work has several interesting implications. For certain realisations of the

state variable, the level of debt servicing will vary stochastically and the value of the

debt contract will equate the bankruptcy value of the firm. High bankruptcy costs

can cause strategic debt servicing behaviour even for rather high levels of earnings.

The analysis in the paper is developed assuming the absence of taxes, which renders

it less useful for calculation of an optimal capital structure. The authors pre-empt

this issue by suggesting that a tax advantage would imply that it becomes optimal

to maximise the firm’s leverage. However, expected future debt renegotiation would

then place a binding constraint on the amount of possible debt issuance. The

model has similar implications to that of Anderson and Sundaresan (1996). It

is still assumed that the creditors’ only alternative in case of rejection is to see

the firm go bankrupt. This way, any actual negotiation can hardly be said to take

place. In sum, the model developed in this subsection offers a useful perspective on

methods of analysing debt renegotiation in a continuous time setting. In order to

develop a truly dynamic model that can offer normative capital structure guidance,

there are a number of additional considerations to be made. Furthermore, the

model has some game-theoretical drawbacks, which should be addressed further.

Conveniently, many of these issues will be examined in Section 4.4 below.
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4.4 Full Debt Renegotiation Model

We conclude this chapter with a game-theoretical assessment of the Christensen

et al. (2014) model. We do not aspire to complete a full review of the model since

a similar model will be developed in Chapter 5. Nevertheless, the game-theoretical

arguments in the model are important and much connected to the discussion devel-

oped in this chapter. Therefore, we will focus exclusively on the strategic elements

present in the debt renegotiation phase of the model and compare these to the mod-

els of Anderson and Sundaresan (1996) and Mella-Barral and Perraudin (1997).

Credible Threats

In their discussion of debt renegotiation modelling, Christensen et al. (2014) present

an important criticism of existing SDS models. As demonstrated in the two pre-

vious sections, the SDS frameworks assume that equity holders are able to make

take-it-or-leave-it debt servicing offers to the creditors. However, it is never ques-

tioned whether the threat of withholding coupon payments is in fact credible. As

observed in Nash’s solution, rational agents should consider their own and their

counterparty’s alternative payoffs before responding. We demonstrated how an

agent’s share of the surplus is strictly increasing in the value of his or her rejection

payoff. This is the case because it would be irrational for an agent to accept a value

corresponding to less than the value of their rejection payoffs. Under symmetric

information, this optimal response behaviour can also be foreseen by the other

bargaining agent. We find a similar concept in Rubinstein’s (1982) bargaining

game where agents’ alternative payoffs are comprised by the next-period surplus

realisations discounted back to present value.

In the SDS models presented, the rejection payoff accruing to the creditors is

simply assumed to be the bankruptcy value less costs of liquidation. However, the

rejection payoff of the equity holders is never really assessed. In fact, the equity

holders should be faced with a dilemma in case of rejection. One alternative is

to avoid paying coupon and declaring the firm bankrupt, as they promised when

submitting the debt service offer. Otherwise, they could continue paying coupon,

which would grant them the option value of the firm as a going concern. If it proves

more profitable to keep the firm alive, any rational von Neumann-Morgenstern

utility-maximising agent would choose the latter. The alternative would violate

the rationality principle. Moreover, the creditors should be able to conjecture

whether withheld coupon payments and thus bankruptcy are an optimal response

for equity holders, given rejection. If the equity holders’ payoff from withholding
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coupons is less than they would receive by continuing payments, the threat is non-

credible. In this case, creditors should be able to force further concessions from the

owners. In the SDS models this becomes problematic since they simply assume

that equity holders can make take-it-or-leave-it offers. Consequently, the equity

holders are able to extract a disproportionate amount of surplus from the debt

holders. As previously noted, Anderson and Sundaresan (1996) find that SDS can

explain much of the difference between empirical and theoretically predicted credit

spreads. Conceivably, that finding might be contingent on violation of the ratio-

nality principle. Indeed, predicted credit spreads are bound to rise significantly if

the equity holders frequently can extract abnormal surpluses from the creditors.

Christensen et al. (2014) mediate this issue by allowing the equity holders to appre-

ciate that the debt holders’ acceptance of the offer depends on their prediction of

the equity holders’ subsequent rational response. Conclusively, we therefore argue

that the model rests on a sounder economic foundation than the SDS models.

The Renegotiation Game

Christensen et al. (2014) consider a continuous-time setting where the entire capital

structure is adjustable. The paper assumes that debt and equity are derivatives of

a stochastic EBIT process, ξ, where the perpetual debt is both callable at an upper

boundary and renegotiable at a lower boundary. In order to avoid a continuum

of debt renegotiation proposals, the paper assumes that the firm possesses a finite

number of renegotiation options. This assumption resembles the one made in

Rubinstein’s bargaining game with finite periods in Section 4.1.2. The solution

procedure will thus also be an iterative process of calculating the agreement and

disagreement payoffs in every period. In Rubinstein’s game, two exogenously given

payoffs are assumed in the final time period. The equivalence to these final payoffs

in Christensen et al. (2014) are then given by the value of the debt and equity claims

in case the final bargaining attempt fails. In case of several remaining bargaining

options, the cost of haggling materialises in the form of risk of further deterioration

of EBIT. In accordance with Christensen et al. (2014), we will consider the case of

one remaining option in our analysis.

Applying backwards induction, the initial step in obtaining a solution to the

game is to establish the values of debt and equity in the case of no remaining

renegotiation options. In this situation, the sole alternative at the lower boundary

is to declare the firm bankrupt immediately. The debt and equity values in this

case can easily be derived by contingent claims analysis. In fact, the solution will

essentially be identical to that derived in Chapter 3 as our version of Goldstein
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et al. (2001). We will therefore take the solution as given in this analysis. The

solution is characterised by the constants; u0, d0 and C∗0 8 as well as the claim

values E0(1; 1) and D0(1; 1). Note that EBIT is assumed to start at the point

ξ = 1. For notational ease we can denote the firm value in this time period by

A0 = E0(1; 1)+D0(1; 1). The subscript ”0” signifies zero remaining renegotiation

options. If the very last renegotiation proposal is rejected, the equity holders will

have to choose between continuing to pay the suboptimal coupon and effectively

liquidating the firm by ceasing to pay coupons.

By the homogeneity property, the value of equity under suboptimal coupon can

be valued as a claim with zero remaining renegotiation options, and where EBIT

started at point C1/C
∗
0 rather than at 1. Notice that this starting point would

implicate an optimal coupon choice of C1. Under continuing suboptimal coupon

payments, the equity claim is then denoted by

Ec1 = E0(d̃0ξ0;C1/C
∗
0 ). (4.30)

The value of this claim can thus be derived from the case where no renegotiation

options remained.

The value of equity in case of liquidation is given by equation (4.31). It states

that equity holders become residual claimants in case of bankruptcy. In line with

APR, they receive anything that is left after bankruptcy costs have been covered

and the debt repaid:

Eb1 = max [(1− α)A0d1 −D1, 0] ξ0. (4.31)

The equity holders’ choice in case of rejection thus consists of choosing between

Eb1 and Ec1. Notice the difference from the SDS setting where equity holders were

assumed to be pre-committed to declaring bankruptcy in case of rejection. The

rejection value of the equity claim can thus be denoted by (4.32). This claim value

corresponds to the final payoff for equity holders if the agents fail to agree in the

last bargaining attempt in Rubinstein’s bargaining game:

Er1 = max
[
Ec1, E

b
1

]
. (4.32)

The value of debt is conditional on the choice of the equity holders. If the

equity holders continue to pay coupon, the debt claim is worth

8u0: call boundary scaling factor; d0: liquidation boundary scaling factor; c∗0: optimal coupon



4.4. Full Debt Renegotiation Model 55

Dc
1 = D0(d̃0ξ0;C1/C

∗
0 ). (4.33)

In accordance with APR, withheld coupons - and thereby bankruptcy - leaves

the debt holders with

Db
1 = min [(1− α)A0d1, D1] ξ0. (4.34)

Thus; the debt value of the debt claim can be summarised as

Dr
1 =

Dc
1, for Ec1 ≥ Eb1

Db
1, for Ec1 < Eb1.

(4.35)

Again we see that under symmetric information, the creditors recognise that

bankruptcy is not the only possible alternative in case of rejection. They can also

identify the level of EBIT value and corresponding equity value for which it will

be optimal to proceed to liquidation following a rejection. Of course, knowledge

of the creditors’ foresight is in turn also possessed by the equity holders. Under

these circumstances, an optimal renegotiation threshold of EBIT can be estab-

lished. The threshold will be one that actually makes the equity holders’ threat

of bankruptcy credible. Any attempt to threaten the creditors with bankruptcy

before the credibility level of EBIT will fail.

Now, consider the scenario where the proposal is accepted. The total firm value

will be that of an optimally levered firm with no remaining renegotiation options:

Ea1 (d0ξ0, ξ0) +Da
1(d0ξ0; ξ0) = A0d0ξ0. (4.36)

The combined gain from renegotiation can be computed as the difference be-

tween the firm values in the cases of acceptance and rejection. Formally,

R1 = A0d0ξ0 − (Er1 +Dr
1). (4.37)

To determine the split of the agreement surplus, assume that the equity holders

possess an exogenously given bargaining power γ, which determines the fraction

of R1 that they receive. At this point, it is worth highlighting the strong appli-

cability of the NBS example presented in Subsection 4.1. The terms Er1 and Dr
1

represent the disagreement payoffs F1 and F2 in a NBS. The condition for agree-

ment in the NBS was that each bargaining agent received at least as much as their

disagreement payoff. The remaining proceeds would be split equally if both players
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were risk-neutral. In this debt renegotiation setting, R1 is evidently the value of

the remaining agreement proceeds. An apparent difference is that an exogenous

bargaining power determines the split of proceeds rather than two explicit util-

ity functions. However, this can be thought of as a reduced-form NBS. Consider

that the values of debt and equity with one remaining renegotiation option can be

determined as

E1(d1ξ0; ξ0) = γR1 + Er1 (4.38)

D1(d1ξ0; ξ0) = (1− γ)R1 +Dr
1. (4.39)

From the assumed distribution of bargaining power we can make immediate in-

ference about the functional forms of the implied utility functions. For example,

a bargaining power of 0.5 suggests that both agents are risk-neutral or equally

risk-averse. A bargaining power of zero implies that the equity holders are very

risk-averse relative to creditors. Finally, a bargaining power of one implies the op-

posite relationship. In this way, the model accommodates for different assumptions

about the utility of creditors and equity holders.

The expressions (4.38) and (4.39) are the value-matching conditions at the lower

boundary in the case of one remaining renegotiation option. By subsequently defin-

ing the remaining smooth-pasting and value-matching conditions at both the upper

and the lower boundaries, an optimal capital structure can be determined. Upon

solving for the state with one remaining renegotiation option, the procedure can

be extended to solve for states with additional remaining options. The agents’ al-

ternative payoffs can always be derived from the round with n−1 remaining options.

In order to visualise the renegotiation game, it is convenient to create two payoff

trees. These binomial trees show how the logic of backwards induction used in

Rubinstein’s (1982) sequential bargaining game can be applied to this problem.

Figure 4.1 demonstrates the game from the equity holders’ point of view when one

renegotiation option remains. Obviously, the decision of accepting or rejecting the

renegotiation proposal belongs to the creditors. In Figure 4.1 it should thus not

be mistaken for a decision belonging to the equity holders. Figure 4.2 illustrates

the game from the creditors’ perspective when one renegotiation option remains.

Similarly, it should be noted that the debt holders are not in control over the

decision of whether to continue coupon payments or withhold them after a rejection.

For notational briefness, the variable Dr
1 has been denoted in a slightly different

way in Figure 4.2. The 1s are simply dummy variables that indicate the expected
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choice of the equity holders. The interpretation however remains the same as in

equation (4.35).

Er1 + γR1

Proposal Ec1 = E0(d̃0ξ0;C1/C
∗
0 )

Er1 = max
[
Ec1, E

b
1

]

Eb1 = max [(1− α)A0d1 −D1, 0] ξ0

Ac
cep
ted

Rejected
Con

tinu
e co

upon
s

Bankruptcy

Figure 4.1: Equity perspective. (Source: Own contribution)

Dr
1 + (1− γ)R1

Proposal Dc
1 = D0(d̃0ξ0;C1/C0)

Dr
1 = Dc

11Ec1≥Eb1 +Db
11{Ec1<Eb1}

Db
1 = min [(1− α)A0d1, D1] ξ0

Acc
ept

Reject
Con

tinu
e cou

pons

Bankruptcy

Figure 4.2: Credit perspective. (Source: Own contribution)

In sum, the model delivers a tractable way of modelling debt renegotiation. It
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further complies with the rationality assumption as well as the conventional game-

theoretical axioms. The model applies backwards induction in a mode similar to

that of Rubinstein (1982). The renegotiation gain is allocated according to an

exogenous bargaining power, which can be seen as a reduced-form of Nash’s bar-

gaining solution. Furthermore, the model realistically allows for renegotiation of

the entire capital structure rather than merely the future coupon payments. These

constitute major differences compared to the SDS models, and can arguably be

considered the main catalysts of the model’s contribution to the capital structure

discussion. The result is a model of dynamic capital structure and debt renego-

tiation resting on sound economic foundations. It is for this reason we find the

model of Christensen et al. (2014) to be a useful platform upon which to build our

proposed model in Chapter 6.



Chapter 5

A GBM-based Model with
Debt Renegotiation

”[M]arriage involves an up-front cost of courtship, with uncertain fu-
ture happiness or misery. It may be reversed by divorce, but only at a
substantial cost.”

- Avinash K. Dixit (1944-pres.) and Robert S. Pindyck (1945-pres.)

In this chapter we develop a GBM-based model of dynamic capital structure, al-

lowing for debt renegotiation at a lower boundary of the EBIT process. The model

is developed along the lines of Christensen et al. (2014) and will be the yardstick

with which we will measure the impact of including mean-reversion in earnings in

Chapter 6. As an intermediate discussion, we will expand the basic GBM-based

model to feature callability of bonds, similar to the setup proposed by Goldstein

et al. (2001). Since this feature should add realism to the model framework, it is

interesting to assess its implications for optimal capital structure and related met-

rics. However, it also increases the computational complexity significantly. We will

therefore consider non-callable debt in the model used for purposes of benchmark-

ing against our own GOU-based model in the next chapter. As we will see, this

enables us to obtain closed-form solutions for the optimal coupon and renegotiation

threshold.

In the framework developed in this chapter we make a number of modifications

to the basic assumptions compared to the Christensen et al. (2014) model. Firstly,

we restrict ourselves to the case where only one renegotiation option exists. Sec-

ondly, we allow a symmetric tax schedule for negative earnings. Thirdly, we assume

that the firm’s assets are sold off at their unlevered value in case of bankruptcy.

59
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The last alternation is in line with the assumption made in the original version of

Goldstein et al. (2001). We discussed the implications of changing this assumption

in Section 3.2.2.

5.1 The Benchmark Model

The model developed in this section will be the benchmark model when we later

analyse the implications of having mean-reversion in EBIT. The model features a

lower boundary where a debt renegotiation game takes place, and assumes non-

callable debt. To explicitly model the game, it will be necessary to work with an

iterative solution procedure. The optimal responses and available alternatives of

the bargaining agents will depend upon the remaining number of bargaining op-

tions. If one option remains, the disagreement payoffs are derived from the case

where no options remain. The section is therefore structured such that we first

solve for the claim values in the case of no remaining options. Subsequently, we

proceed to the case of one option. The game structure is similar to that of the

model in Section 4.4. For an overview of the game it might therefore be convenient

to refer to Figure 4.1 and 4.2.

The state variable considered in this setting is earnings before interest and taxes

(EBIT). Under risk-neutral probabilities it is modelled as a GBM. That is,

dξt = ξtµdt+ ξtσdWt. (5.1)

Naturally, ξt denotes EBIT at a time t. The drift under the risk-neutral measure

is denoted by the constant µ, whereas σ is the constant volatility parameter. The

firm can issue debt and equity, which are claims on the underlying earnings process

ξt. Like in other GBM-based models, the homogeneity of degree one of the claims

in the EBIT process is preserved. Furthermore, there exists a simliar tax regime

including personal taxes τi, corporate taxes τc and dividend taxes τd. In this sense,

the holders of a debt contract with a fixed instantaneous coupon C are entitled to

a net cash flow of (1− τi)C. The flow to the equity holders is ξt after subtracting

coupons, corporate taxes and taxes on dividends. Accordingly, the flow can be

characterised as (1 − τe)(ξ − C), where τe = τc + (1 − τc)τd. The distribution of

earnings is thus equivalent to the one illustrated in Table 3.1.
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5.1.1 No Renegotiation Options

As is common practice in sequential bargaining settings, we apply backwards in-

duction when solving the debt renegotiation game. Hence, we must first solve for

the case with (n−1) remaining renegotiation options. As we will see, this first step

of excluding renegotiation of debt leads to convergence with the model developed

in Chapter 3 along the lines of Leland (1994). Subsequently, we proceed to the

case with n remaining options. In the setting without renegotiation, immediate

liquidation will be the only possible option as ξ hits the lower boundary. In the

notation that follows, the numerical subscript will denote the amount of remaining

renegotiation options that a variable is calculated for.

In accordance with previous models, the general solutions to the values of the

claims following theory of contingent claims pricing can be written on the form

D0(ξt; ξs) = b01ξ
β1

t + b02ξ
β2

t +
C0(1− τi)

r
(5.2)

E0(ξt; ξs) = e01ξ
β1

t + e02ξ
β1

t +
ξ(1− τe)
r − µ

− C0(1− τe)
r

. (5.3)

These equations satisfy an ODE similar to (3.15). ξt is the current state of the

EBIT process and ξs denotes its starting value. For simplicity the process will

be started at s = 0. The parameters b01, b02, e01, and e02 are constants to be

determined. Furthermore, β1 and β2 are defined as the positive and negative roots

of the fundamental quadratic equation, respectively. For more information on the

specifics of this solution procedure, refer to Chapter 2 and 3.

In order to define the constants, we apply familiar economic intuition to derive

the applicable boundary conditions. First of all, we can immediately see that the

constants e01 and b01 belonging to the positive root β1 must be zero. Otherwise the

values of the claims would tend to infinity as EBIT increases. By eliminating e01

and b01 we ensure that the debt claim approaches C(1−τi)
r and that the equity claim

approaches ξ(1−τe)
r−µ − C(1−τe)

r as EBIT grows without bound. Second, note that we

are solving for the case where the firm will be liquidated immediately when EBIT

hits a lower boundary. Following convention of previous capital structure models,

bankruptcy is associated with a cost. Accordingly, a fraction α of the proceeds will

be reserved for facilitating liquidation. Finally, the assumption that the assets are

sold at their unlevered value in case of bankruptcy is carried over from previous
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models. The value of the debt contract when the firm defaults is thus given by

D0(d0ξ0; ξ0) =
(1− α)d0ξ0(1− τe)

r − µ
. (5.4)

Here we can see that the lower boundary value-matching condition differs from

that of the model in Section 4.4. This stems from our differing assumptions about

the going-concern value of the firm’s assets in bankruptcy.

At the bankruptcy threshold the value of equity in the absence of renegotiation

is zero;

E0(d0ξ0; ξ0) = 0. (5.5)

With equations (5.4) and (5.5) it is possible to define algebraic solutions for the

constants b02 and e02. In this specific case, the expressions will be relatively neat.

To stress the underlying calculations, we therefore include them in the notation

here:

b02 =
(d0ξ0)−β2((α− 1)d0ξ0r(τe − 1) + C0(τi − 1)(r − µ))

r(r − µ)
(5.6)

e02 =
(τe − 1)(d0ξ0)−β2(d0ξ0r + C0(µ− r))

r(r − µ)
. (5.7)

In order to obtain a closed-form solution for the optimal bankruptcy threshold,

we must proceed to identifying the applicable smooth-pasting condition. Since the

equity holders choose when to declare bankruptcy, the condition will be related to

the slope of the equity function. Differentiating the equity value-matching condition

on both sides, we conclude bankruptcy is optimal when

∂

∂ξ
E0(d0ξ0; ξ0) = 0. (5.8)

We can then substitute (5.6) and (5.7) into the smooth-pasting condition and solve

for the bankruptcy threshold to obtain

d0ξ0 =
C0β2(r − µ)

r(β2 − 1)
. (5.9)

By calibrating the model parameters and taking the coupon rate as given, we

can depict the firm value as a function of the selected coupon. Figure 5.1 illustrates

the firm value as a function of the coupon rate for a given set of parameters. The
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function for the firm value9 has a clearly indicated maximisation point, which

highlights the possibility of solving for an optimal coupon rate.

Figure 5.1: Firm value as a function of coupon. See Table 5.1 for base case param-
eter values. (Source: Own contribution)

Before deriving a solution, it is convenient to impose the simplifying assumption

that the EBIT process starts at ξs = 1. Utilising the positive homogeneity property,

we can define the initial debt and equity values as

D0(ξs; ξs) = ξsD0(1; 1) (5.10)

E0(ξs; ξs) = ξsE0(1; 1). (5.11)

Recognising that the firm incurs an issuance cost q when issuing new debt, the

initial firm value can then be characterised as

A0 = E0(1; 1) + (1− q)D0(1; 1). (5.12)

We assume that the manager wishes to maximise the initial firm value as defined

in equation (5.12). The manager’s decisions thus amounts to choosing an optimal

coupon:

C∗0 = max
C0∈R+

A0. (5.13)

With a closed-form system, the maximisation problem simply amounts to differ-

entiating the firm value function with respect to C0 and solving for the optimal

coupon. This yields

9Note than firm value is calculated accounting for issuance costs: FV = D(·)(1 − q) + E(·).
The notation is compressed in graphical output.
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C∗0 =
r(β2 − 1)

[
1− (q−1)β2(α(τe−1)−τe+τi

q(τi−1)+τe−τi

] 1
β2

β2(r − µ)
. (5.14)

Subsequently, the optimal coupon can be inserted into the expressions for the

constants to define the values of debt and equity. This will determine the optimal

capital structure under the optimised coupon with no possibility to renegotiate

debt.

5.1.2 The Option to Renegotiate

In the previous subsection we obtained a solution for the case with no remaining

renegotiation options. Hence, we can proceed to solve for the case with one remain-

ing renegotiation option. We can use the results from Section 5.1.1 to determine the

agents’ disagreement payoffs when one renegotiation attempt remains. In theory,

we could continue this procedure for an infinite amount of renegotiation options.

However, most of the interesting model features will be captured by solving for

the case with one remaining option. We therefore limit the analysis to this specific

case10.

As a first step, we must consider what the alternatives to a successful renego-

tiation attempt are. If the agents fail to renegotiate the debt, the equity holders

will be faced with a dilemma. One alternative is to continue paying the suboptimal

coupon even though EBIT is now at a lower point. To evaluate the equity claim

under this scenario, we compute its value at the bankruptcy threshold under subop-

timal coupon and zero renegotiation options. We perform a very similar derivation

to that of the preceding section. Making use of the homogeneity property, we can

value this claim as one that would have started at the point ξ0 = C1/C
∗
0 . The

equity claim would have a general solution corresponding to

E0(d̃0ξ0;C1/C
∗
0 ) = e21ξ

β1

t + e22ξ
β2

t +
ξ(1− τe)
r − µ

− C1(1− τe)
r

. (5.15)

The debt claim in a situation of continued coupon payments would have a

general solution given by

D0(d̃0ξ0;C1/C
∗
0 ) = d21ξ

β1

t + d22ξ
β2

t +
C1(1− τi)

r
. (5.16)

10We refer to Christensen et al. (2002) for an analysis of the situation with n > 1 renegotiation
options.
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Solving for the values of the claims is again going to involve determination of the

constants by using the same value-matching conditions as in the previous case with

no possibility of restructuring. The sole difference is that EBIT has deteriorated

and that the firm operates under a suboptimal coupon, C1, that was determined

when one renegotiation option remained. The scaling factor of the bankruptcy

threshold under this coupon and EBIT level is denoted by d̃0. For conciseness, we

can denote the equity value in case of continued coupon payments by

Ec1 = E0(d̃0ξ0;C1/C
∗
0 ). (5.17)

The alternative to continue paying coupons is to cease the coupon payments. This

will allow the creditors to enforce an immediate liquidation of the firm. The equity

claim will then assume the value

Eb1 = 0. (5.18)

The equity holders will attempt to maximise the value of their own claim. Their

dilemma can thus be summarised accordingly:

Er1 = max
[
Ec1, E

b
1

]
. (5.19)

The value derived by the creditors will be contingent on the choice of the equity

holders. Under a scenario of continued debt servicing, the value of the debt contract

will be given by

Dc
1 = D0(d0ξ0;C1/C

∗
0 ). (5.20)

On the other hand, the value of the debt contract in case of liquidation will be the

remaining value of the unlevered firm at bankruptcy less bankruptcy costs. This

condition can be denoted

Db
1 =

(1− α)d1ξ0(1− τe)
r − µ

. (5.21)

The value of the debt contract can then be summarised as

Dr
1

Dc
1, for Ec1 ≥ Eb1

Db
1, for Ec1 < Eb1.

(5.22)

The attentive reader will notice that the notation is slightly altered from that of the

Christensen et al. (2014) model in Section 4.4. More specifically, the bankruptcy
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conditions Eb1 and Db
1 do not contain any minimum or maximum statements. This

stems from the fact that we simply assume that bankruptcy will always leave

the equity holders with zero proceeds, whereas debt holders will take over the

remnants of the unlevered firm. On the contrary, Christensen et al. (2014) account

for the possibility that value will be left to equity claimants even after senior claim

holders have received the full value of their claims in a small fraction of bankruptcy

proceedings.

With the above notation established, we can identify an expression for the joint

gain following a successful renegotiation attempt. Intuitively, the total gain will be

the value of the optimally levered firm at the lower boundary with no remaining

renegotiation options less the value of the firm if the renegotiation proposal had

been rejected. The joint gain can then be formalised as 11

R1 = A0d1ξ0 − (Er1 +Dr
1). (5.23)

The above expression implies that the explicit form for the value-matching condi-

tion will differ depending on the relative level of the renegotiation threshold. If

Ec1 > Eb1, it implies that d1 < d̃0. This would suggest that the value function

for equity under one remaining renegotiation option makes it optimal to wait even

longer than when no renegotiation option remains before initiating renegotiation.

Conversely, if Ec1 < Eb1, the bankruptcy thresholds would be located such that

d1 > d̃0, and it would then be optimal to declare bankruptcy at a higher level of

EBIT when one option remains. A last possibility would be that Ec1 = Eb1 and the

bankruptcy thresholds are located at the same level of EBIT, d1ξ0 = d̃0ξ0. It would

seem intuitive that d1 = d̃0, but this can of course only be accepted by considering

all scenarios in turn. Thus to avoid unsubstantiated exclusion, we investigate all

three cases and verify the correct solution. First, we must define the share of the

renegotiation gain attributable to the equity holders. The fraction is defined by

an exogenous bargaining power, γ ∈ [0, 1] . This division is again reminiscent of

a reduced-form NBS. The lower boundary value-matching condition for equity can

be written on the following form:

E1(d1ξ0; ξ0) = γR1 + Er1 . (5.24)

Since the value of the debt claim depends on the choices of the equity holders, we

can define it in a similar manner:

11Note that the value of A0 was obtained from the setting with no renegotiation options.
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D1(d1ξ0; ξ0) = (1− γ)R1 +Dr
1. (5.25)

In the base case it is assumed that γ = (1− γ) = 0.5. As discussed in Chapter 4,

this can be attributed to risk-neutrality of the bargaining agents, but will hold in

any case where the agents exhibit equal risk-aversion. Although this equality could

be discussed from the perspective of typical investor risk profiles, we will simply

assume risk-neutrality in our base case.

The applicable lower boundary smooth-pasting condition is found by differenti-

ating the equity value-matching condition on both sides. Hence, it can be defined

as a contingency on the relative levels of the lower boundaries as well. In general,

it always holds that the smooth-pasting condition equals

∂E1(d1ξ0; ξ0)

∂ξ
=
∂(γR1 + Er1)

∂ξ
. (5.26)

To determine the relative level of d1, we can plot the lower boundary smooth-

pasting condition as a function of the bankruptcy threshold. There will be discon-

tinuity in the function at the point where d1 = d̃0. If the jump is located such that

no solution for ∂E1(d1ξ0;ξ0)
∂ξ =

∂(γR1+Er1 )
∂ξ = 0 exists, we can conclude that d1 = d̃0 is

a viable solution. If there is a point where the smooth-pasting condition crosses the

horizontal axis, we can see that there exists a solution where d1 is either larger or

smaller than d̃0. It will be necessary to calibrate the model numerically in order to

plot the smooth-pasting condition. We refer to Table 5.1 for the selected numerical

values of the parameters. Figure 5.2 illustrates the smooth-pasting condition for

the calibrated parameter values.
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Figure 5.2: Smooth-pasting condition. Parameter values are defined in Table 5.1.
(Source: Own contribution)

It becomes apparent from the figure that the discontinuity is in fact located such

that d1 = d̃0. Hence, the equity holders will initiate renegotiation at exactly the

bankruptcy level of EBIT under coupon C1 and zero renegotiation options. This

follows intuitively from the need for credibility of their threat before starting negoti-

ations. The applicable smooth-pasting condition will be ∂E1(d1ξ0;ξ0)
∂ξ =

∂(γR1+EC1 )
∂ξ .

The equity and debt claims in this period E1(d1ξ0; ξ0) andD1(d1ξ0; ξ0) are again

defined by functions similar to (5.15) and (5.16). With all necessary conditions

established, we can maximise the firm value by selecting an optimal coupon. This

in turn determines the optimal capital structure when one renegotiation option

remains, which completes the solution procedure.

5.1.3 Numerical Results for the Benchmark Model

This section calibrates the GBM-based model that has been developed in Section

5.1. The numerical results will be analysed along two lines. Firstly, we assess intra-

model performance by examining sensitives to exogenous parameters. Secondly, we

compare the results to the case with no possibility of debt renegotiation. In this

manner, we identify the general implications of the model as well as isolate the

specific impact of debt renegotiation. The base case parameter values are defined

in Table 5.1 below.
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Symbol Value

Drift of EBIT µ 2%

Risk-free rate r 5%

Volatility of EBIT σ 30%

Effective dividend tax rate τe 40%

Tax rate on interest payments τi 20%

Bankruptcy cost α 10%

Issuance cost of debt q 3%

Call premium λ 5%

Equity holders’ bargaining power γ 50%

Table 5.1: Base case parameter values applied to sensitivity testing.

In Figure 5.3 we conduct sensitivity analysis of a number of metrics with respect

to selected parameters. Chart 5.3a illustrates how the values of debt and equity

change with EBIT. Debt converges to its risk-free value as EBIT grows, whereas

equity becomes linearly increasing in EBIT. These findings are in line with the

expected functional forms of debt and equity. Note also that the equity function

equals its value-matching condition at the lower boundary and thus never takes on

a value of zero. This is contrasted to the models with no renegotiation option.

The bond yield as a function of the volatility of EBIT is depicted in Figure 5.3b.

Comparing this figure with that of the Leland (1994) model (Chart 3.3b), we easily

see that our model implies higher credit spreads. This prediction is satisfactory, as

the prediction of too low credit spreads has long been a problem in classical static

capital structure models. The result is also in concurrence with earlier models

of dynamic re-optimisation such as Goldstein et al. (2001) and Christensen et al.

(2014). The implications of earnings volatility is further examined in Figure 5.3c.

We can see how the optimal debt-to-value ratio decreases linearly in volatility.

The economic reason for this behaviour is that both gearing and earnings volatility

increase the risk of bankruptcy for a given earnings level. Hence, increases in one

must come at the expense of the other in order to maintain the firm’s risk policy.

Lastly, we find that the optimal leverage is strictly increasing in effective corporate

tax rate. This relationship is depicted in Figure 5.3d and stems from the familiar

effect of increasing tax advantage to debt.
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(a) Value functions and EBIT level
(b) Bond yield and EBIT volatility

(c) Leverage and EBIT volatility (d) Leverage and effective tax rate

Figure 5.3: Sensitivity analysis of the benchmark model. See Table 5.1 for parameter
values. (Source: Own contribution)

Another interesting aspect that arises in the presence of debt renegotiation is

the existence of APR violations. We define APR violations as the share of the firm

value that is attributable to the equity holders at the lower boundary. The level

of APR violations is thus measured as E1(d1ξ0;ξ0)
E1(d1ξ0;ξ0)+D1(d1ξ0;ξ0) . The two variables

that are most interesting to examine in the light of APR violation are bargaining

power of equity holders and bankruptcy costs. In Figure 5.4d it is illustrated

how APR violations are linearly increasing in equity bargaining power γ. This

result is much expected due to the model specification. The exogenous bargaining

power directly affects the share of the restructuring gain that is attributable to

the equity holders. APR violations are non-existent when the equity holders have

zero bargaining power. With maximum bargaining power, we can observe APR

violations in the magnitude of 10% in this model. The effect of bankruptcy costs on

APR violations is large and strictly increasing. As bankruptcy costs increase from

0% to 50%, we see in Figure 5.4b that the degree of APR deviations increases from

0% to 25%. We can thus infer that the existence of bankruptcy costs is critical in

order for equity holders to be able to extract positive surplus from the creditors.

Figure 5.4 also shows how the recovery rate of debt holders varies with equity

holder bargaining power and bankruptcy costs. We see that both variables have
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(a) APR violation and bargaining power (b) APR violations and bankruptcy cost

(c) Recovery rate and bargaining power (d) Recovery rate and bankruptcy costs

Figure 5.4: Bargaining power and bankruptcy cost. APR violation is defined as the
share of the firm value that is attributable to equity holders at the bankruptcy threshold.
Recovery rate is defined as the share of the principal that is reclaimed by debt holders in
case of bankruptcy. See Table 5.1 for parameter values. (Source: Own contribution)

positive relationships to the recovery rate. Bargaining power however has a more

limited effect than bankruptcy costs.

We present a more detailed comparative statics analysis in Table 5.2. Each

exogenous variable is analysed for levels below and above the assumed base case

specifications. All other variables are held fixed in order to isolate the analysed

parameter’s effect on key metrics. Observably, leverage and firm value are mostly

sensitive to changes in the drift rate. Under a zero-drift assumption, the firm value

is decreased sharply, whereas the leverage rate remains at a reasonable level. Debt

and equity, thus, seem to deteriorate equally much in this case. However, when the

drift rate is increased to four percent, the equity value increases dramatically. The

total firm value jumps to a value of 66 and leverage decreases to 44%. This signifies

that equity is strongly dependent on the long-term drift. A related observation is

that a high drift rate decreases the TAD, which suggests an accelerating effect

on the drop in optimal leverage. Under mean-reversion in EBIT, the positive

drift is bound to disappear. Consequently, our observations in this section suggest

strong implications for leverage and firm value when introducing mean-reversion

in Chapter 6.
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Regarding other relations, the bond yield mainly responds to volatility, the

interest rate environment and changes in taxes, which appears reasonable. APR

violations are affected by changes in the equity holder’s bargaining power as well

as the bankruptcy costs. The assumed level of risk-free rate appears to have rather

large implications for the optimal coupon, the firm value and the bond yield. Lastly,

issuance costs have only minor effects on the key metrics. Its chief influence is

observed with respect to the TAD as well as the recovery rate.

d C* FV L* BY RR APRV TAD

r = 4% 0.44 2.03 33.95 72.42% 7.43% 51.49% 5.00% 13.15%

r = 6% 0.47 1.39 17.08 73.17% 10.33% 53.34% 5.00% 13.85%

σ = 25% 0.49 1.47 22.71 72.82% 8.89% 52.50% 5.00% 13.53%

σ = 35% 0.43 1.78 22.41 71.34% 11.11% 48.38% 5.00% 12.06%

µ = 0% 0.44 1.04 13.46 71.47% 10.80% 48.78% 5.00% 12.20%

µ = 4% 0.23 2.20 65.86 44.43% 7.53% 42.53% 5.00% 9.76%

α = 5% 0.46 1.65 22.60 73.62% 9.92% 50.18% 2.50% 13.02%

α = 15% 0.46 1.57 22.47 70.26% 9.92% 50.18% 7.50% 12.35%

q = 0% 0.48 1.70 23.05 74.75% 9.86% 53.05% 5.00% 15.23%

q = 6% 0.42 1.50 22.04 68.47% 9.94% 47.24% 5.00% 10.22%

γ = 25% 0.46 1.65 22.60 73.62% 9.92% 50.18% 2.50% 13.02%

γ = 75% 0.46 1.57 22.47 70.26% 9.92% 50.18% 7.50% 12.35%

τe = 30% 0.42 1.47 24.34 65.84% 9.18% 54.22% 5.00% 4.30%

τe = 50% 0.47 1.65 20.75 75.54% 10.52% 44.38% 5.00% 24.48%

τi = 10% 0.46 1.64 24.01 74.40% 9.18% 46.43% 5.00% 20.06%

τi = 30% 0.43 1.51 21.07 67.20% 10.65% 53.88% 5.00% 5.34%

Table 5.2: Detailed sensitivity analysis of the benchmark model. d = renegotiation
threshold, C∗ = optimal coupon, FV = firm value, L∗ = optimal leverage, BY = bond
yield, RR = recovery rate, APRV = APR violations, TAD = tax advantage to debt.

Comparison to a Static Setting

To better isolate the impact of introducing a scope for debt renegotiation, we

compare the results to the ones obtained in a case with immediate bankruptcy.

Thus; we can calibrate a model derived according to the procedure in Subsection

5.1.1. Essentially, we compare the case when no option to renegotiate exists to the

case when one renegotiation option remains. The analysis is presented in Table 5.3

and assumes exogenous parameter values as in Table 5.1.

As a result of the renegotiation option, management selects a higher coupon
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and assumes more leverage. The riskier profile is motivated by the opportunity

to avoid bankruptcy if earnings deteriorate. The tax advantage to debt is slightly

boosted. The bond yield increases, as we would expect when comparing to a

static model similar to Leland (1994). Management chooses a higher nominal

value of coupon. This will demand a higher minimum EBIT level and raise the

bankruptcy threshold. Consequently, the debt issued from the firm becomes riskier

and rises in value proportionally less than the coupon, which increases the bond

yield. Renegotiation implicates the appearance of APR violations, but at the same

time the expected recovery rate of debt holders increases. This stems from the fact

that both bargaining agents receive a positive renegotiation gain.

No renegotiation Renegotiation

Bankrupt./Reneg. threshold 0.39 0.46

Optimal Coupon 1.44 1.61

Firm value 22.27 22.53

Leverage 67.90% 71.94%

Bond yield 9.50% 9.91%

Recovery rate 46.02% 50.18%

APR Violations 0% 5.00%

Tax advantage to debt 11.34% 12.68%

Table 5.3: The impact of debt renegotiation. See Table 5.1 for base case parameter
values.

5.2 Extension with Callable Debt

In this section we extend the model of the previous section to feature callability

of debt at some upper boundary. This means that equity holders are offered the

opportunity to restructure the firm’s debt if EBIT reaches a sufficiently high level.

As in Goldstein et al. (2001), restructuring is done by calling the firm’s entire

outstanding debt and then issuing new callable bonds. Admittedly, this is an

expensive mode of levering up, but it offers the significant advantage of not dealing

with different debt classes. A potential extension with several debt classes is instead

examined in Section 6.6. In developing this model, we will take the specifications

from the preceding section as given.

In theory, it is rather simple to add an upper boundary to the model developed

in Section 5.1. However, the computational effort involved increases significantly.

Consequently, this enhanced model is best presented under the less complex GBM-
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based paradigm.

5.2.1 Boundary Conditions

The values of the debt and equity claims are still given by the equations (5.2) and

(5.3) when no renegotiation options remains. In the previous model, we set the

constants e01 and b01 to zero in order for the expressions not to explode as EBIT

grows. With both an upper and a lower boundary this restriction no longer applies.

The value-matching conditions for equity and debt enable us to determine all the

constants e01, e02, b01 and b02. In order to be able to solve for two endogenous

boundaries, we also find it necessary to change the assumption regarding the lower

value-matching conditions from Section 5.1. We previously assumed that the firm’s

assets were sold off at their unlevered value in case of bankruptcy. However, in

the computations we perform, we are unable to obtain satisfactory convergence

when the upper boundary is solved for endogenously under this assumption. This

finding is especially interesting considering that Goldstein et al. (2001) choose an

exogenous upper boundary under the same assumption. As discussed in Section

3.2.2, this choice might stem from a similar issue in solving for two endogenous

boundaries under their imposed assumptions. For our purposes, this means that

the firm’s assets are taken over as a going concern in case of bankruptcy. This new

assumption is in line with that made in Christensen et al. (2014).

One drawback is that the alternation introduces some noise when assessing the

impact of callability on capital structure. Additionally, the problem becomes com-

putationally more heavy to solve. Notwithstanding these issues, the bankruptcy

value conditions under the new assumption are

D0(d0ξ0; ξ0) = (1− α)A0d0ξ0 (5.27)

E0(d0ξ0; ξ0) = 0 (5.28)

Db
1 = (1− α)A0d1ξ0 (5.29)

Eb1 = 0. (5.30)

When debt is called, we assume that the firm will have to pay a proportional

call premium λ. The call premium compensates the bond holders for an early

termination of their contract. In this model the call premium, together with the

issuance cost, deter management from continuous restructuring of the firm. This

is an important friction - especially since we do not assume a limited amount of



5.2. Extension with Callable Debt 75

upper restructuring options. The problem of early recapitalisation and optimal

call premium is discussed in more detail by Fischer et al. (1989b). Implementing

the call premium, we have that the value of the original debt contract at the call

boundary equals

D0(u0ξ0; ξ0) = (1 + λ)D0(ξ0; ξ0), (5.31)

where u0ξ0 denotes the EBIT value at the call boundary. Furthermore, the value

of the equity contract will equal the total firm value at the upper boundary less

the price of calling existing debt. Formally, we have

E0(u0ξ0; ξ0) = A0u0 − (1 + λ)D0(ξ0; ξ0). (5.32)

The nature of these value-matching conditions will essentially remain unchanged

when we switch to the state where one renegotiation option exists. To be explicit,

we can state the conditions in this situation as

D1(u1ξ0; ξ0) = (1 + λ)D1(ξ0; ξ0) (5.33)

E1(u1ξ0; ξ0) = A1u1 − (1 + λ)D1(ξ0; ξ0). (5.34)

As in previous cases, the smooth-pasting condition is found by differentiating

the equity value-matching conditions on both sides with respect to unξ0. We have

that the upper boundary smooth-pasting condition is

∂

∂unξ0
En(unξ0; ξ0) = An (5.35)

where n denotes the number of remaining renegotiation options.

5.2.2 Solving the Model

The solution to this model is found in the same manner as in the previous model

with non-calable debt. The first step is to solve for the case where no renegotiation

options remains. Using the system of equations composed by (5.27), (5.28), (5.32),

(5.31), (5.33), (5.34), (5.35) and (5.8) we can determine all constants and the

optimal bankruptcy and call thresholds for the case with zero renegotiation options.

We can also determine the value of the claims under suboptimal coupon, C1, with

zero remaining renegotiation options. This establishes the disagreement payoffs
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to the claimants in the bargaining game when one renegotiation options remains.

Lastly, the optimal capital structure when one option remains can be completed

in the same way as in Section 5.1.2, but adding the upper boundary conditions

(5.33), (5.34), (5.35), and the new expressions for Db
1 and Eb1. We of course still

have to investigate the analytical form of the smooth-pasting condition due to

the maximisation statement present in the equity value-matching condition. The

optimal capital structure is found by maximising the firm value over an optimal

coupon. This completes the solution procedure for the model featuring callable

debt as well as debt renegotiation.

5.2.3 Model Performance

In this subsection we analyse the implications of the model with callability. As

discussed in Section 5.2.2, the numerical comparison with the benchmark model

will be slightly affected by the changed assumption about the firm’s going concern

value at bankruptcy. Despite this small violation of the ceteris paribus principle,

comparison is meaningful - especially from a general model selection perspective.

In Figure 5.5 we conduct a sensitivity analysis for the same base parameters

as in Figure 5.3. Evidently, the value functions of debt and equity still behave

soundly. The equity function smooth-pastes at a slightly lower EBIT value than in

Figure 5.3a. This indicates that the renegotiation threshold is moved further down

in the extended model. The bond yield, as depicted in Figure 5.5b, has a similar

functional relationship with volatility to that seen in Figure 5.3b with a marginally

lower sensitivity. As before, leverage in 5.5a is negatively related to volatility.

However, it decreases more in response to increasing volatility compared to the

benchmark model. The leverage as a function of the effective tax rate still has

a positive slope but diminishes at a higher marginal rate. Regarding bankruptcy

costs and the equity holders’ bargaining power, we find very similar relationships

to those obtained in the benchmark model.
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(a) Value functions and EBIT level (b) Bond yield and EBIT volatility

(c) Leverage and EBIT volatility (d) Leverage and effective tax rate

Figure 5.5: Sensitivity analysis of the model with callable debt. See Table 5.1 for
parameter values. (Source: Own contribution)

To thoroughly examine the implications of the enhanced model, we also conduct

an analysis of the key metrics of both models. Table 5.4 indicates the numerical

results obtained in the models under the base case parameters in Table 5.1. As

seen in the sensitivity analysis, the renegotiation threshold is lowered in the model

with callable debt. In other words, it is optimal for equity holders in the model

with callable debt to wait a bit longer than they would have done in the benchmark

model before initiating renegotiation. This can be explained by the fact that equity

holders now have the option to lever up at a later point in time. Thus; they choose

a lower amount of debt initially, which implies reduced coupon payments to cover.

The optimal renegotiation threshold will consequently be at a lower level of EBIT.

This explanation is confirmed by the values in Table 5.4.

The firm is initially slightly more valuable when a call feature exists, which

can be attributed to a higher equity value. The value of the debt contract only

diminishes marginally. Moreover, we see a higher magnitude of the tax advantage

to debt under the new regime. This result aligns with the results reported by

Christensen et al. (2014) who obtain an increase in the TAD of 50% in comparison

with the findings of Goldstein et al. (2001). Note however also that the assumption

of a symmetric tax schedule in our setup provides for a larger TAD.
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Lastly, the bond yield falls slightly. This effect results from the lower initial

value of coupon. The lower coupon means that the bankruptcy threshold of EBIT

falls such that the firm becomes less risky for a given level of initial debt.

Benchmark Model Callable Debt

Renegotiation threshold 0.46 0.38

Call threshold - 1.81

Optimal Coupon 1.61 1.58

Firm value 22.53 25.93

Leverage 71.94% 60.66%

Bond yield 9.91% 9.44%

Recovery rate 50.18% 54.07%

APR Violations 5.00% 5.00%

Tax advantage to debt 12.68% 31.50%

Table 5.4: Cross-model comparison of key metrics. See Table 5.1 for base case pa-
rameter values.

5.3 Concluding Remarks

In this chapter, we have developed a GBM-based model of dynamic capital struc-

ture with debt renegotiation in two stages. In the first stage, the equity holders

have the option to renegotiate their capital structure instead of going bankrupt.

The renegotiation game is explicitly modelled in a way similar to the bargaining

game introduced by Rubinstein (1982). In the second stage we allow the firm to

issue callable debt. We obtain a solution to this extended model following a similar

logic as in the basic one.

In the model with non-callable bonds and debt renegotiation we obtain a closed-

form solution and identify a number of key relationships. The optimal leverage

choice is mainly driven by the positive drift parameter, taxes, and volatility. The

recovery rate and the size of APR violations are increasing in equity holder bar-

gaining power as well as bankruptcy costs. The bond yield is mainly affected by

volatility fluctuations in EBIT, changes in interest rates and taxes. The comparison

with a static version of the model reveals that debt renegotiation increases leverage,

enhances the tax-advantage and improves the recovery rate of debt holders. APR

violations are a direct consequence of the possibility to renegotiate debt.

Once the analysis is extended to include callability of debt, we must use numer-

ical methods to obtain a solution. Furthermore, the assumptions in the framework
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are slightly modified. The main quantitative implications of an added call feature

are; decreased initial leverage and a higher tax advantage to debt. Additionally,

we note that the optimal EBIT threshold for initiation of debt renegotiation is

reduced in the model featuring callable debt.

The GBM-based model developed here is an excellent point of departure for fur-

ther analysis. The assumption of earnings following a GBM is, however, mostly

grounded on convenience, as detailed in Chapter 2. In reality, practitioners and

academics alike probably do not expect a firm’s earnings to drift constantly towards

infinity or fluctuate in sync with a random-walk process. A more realistic stochas-

tic earnings process would arguably be one reverting to some long-term mean level.

With this motivation, we will carry the analysis of debt renegotiation and dynamic

capital structure over to a framework with mean-reverting earnings in the next

chapter. The game-theoretical infrastructure for debt renegotiation from Chapter

5 can be utilised directly under the new regime. Hence, Chapter 6 extends the

analysis we have developed to a setting more aligned with the observed evolution

of earnings.



Chapter 6

A GOU-based Model with
Debt Renegotiation

”There is no more important proposition in economic theory than that,
under competition, the rate of return on investment tends toward equal-
ity in all industries. Entrepreneurs will seek to leave relatively unprof-
itable industries and enter relatively profitable industries.”

- George J. Stigler (1911 - 1991)

In this chapter we augment the model with debt renegotiation from Section 5.1

by letting EBIT follow a GOU process. We thus unify at least two strands of

literature: We follow the recommendations of the research documenting the need

for the application of mean-reverting processes in models with earnings as the

guiding state variable. Moreover, we add to the current research of optimal capital

structure optimisation by modelling a firm that can optimise under the possibility

to restructure at a lower boundary of the state variable.

The chapter will proceed as follows. Firstly, we provide motivation, theoretical

and empirical, for the imposition of mean-reversion on the EBIT process. Sec-

ondly, we illustrate how the ODE and general solutions for claims on the EBIT

process change with the GOU modification. Thirdly, we solve the model under the

alternative diffusion process and conduct extensive comparative statics analysis.

We benchmark against the GBM version with downwards restructuring introduced

in Chapter 5. Extensions and alternative modifications to the proposed model

conclude the chapter.

80
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6.1 Mean-Reversion in Earnings

As previously noted, the vast majority of dynamic capital structure models repre-

sent the state variable diffusion by a GBM. However, in terms of applying a GBM

to the dynamics of earnings in a capital structure study, the mathematical proper-

ties of unbounded conditional mean and variance considered in Chapter 2 can be

considered somewhat inconsistent with both economic intuition and empirical evi-

dence. It is remarked by e.g. Bhattacharya (1978) and Sarkar and Zapatero (2003)

that the imposition of a random walk property on corporate earnings is of limited

economic relevance. They highlight that cash flows will intuitively revert around

levels that make firms indifferent about making new investments in the particular

opportunity that one given project represents. Put differently, a project can be

expected to have a positive NPV when it earns an economic profit in product or

factor markets. A natural corollary of this is that other firms will replicate the in-

vestment decision, eventually eroding the profit opportunity. This dynamic is well

summarised by Nobel laureate George Stigler (1963) in the quotation introducing

this chapter. Evidently the constant (positive) drift rate assumed in the GBM

framework implies unconstrained upwards-drifting earnings. This is inconsistent

with economic intuition of a certain long-term mean level, which Stigler alludes

to. Furthermore, the GBM properties of unbounded variance and unstationary

probability distribution seem unattractive once it is accepted that the conditional

mean is bounded.

The empirical corroboration of introducing a GOU process as the evolution path

of EBIT in dynamic capital structure frameworks can be found in an array of studies

that find mean-reversion in corporate earnings. Here we will just include a few of

the most significant contributions. Freeman, Ohlson and Penman (1982) find that

book rates of return exhibit mean-reversion and function as a predictor variable for

changes in earnings. Lipe and Kormendi (1987) and Easton and Zmijewski (1989)

examine earnings in related contexts, finding that stock market reactions to profit

warnings are greater when a firm’s earnings show a higher degree of persistence.

This is completed under the assumption that earnings are autoregressive and thus

carries the implication that mean-reverting earnings is a more integrated notion

in the general market sentiment vis-à-vis an extrapolative random walk process.

Using a partial adjustment model, Fama and French (2000) estimate a rate of

mean-reversion in earnings of about 38% for U.S. based firms with a sample time

period from 1964-1996 and +2,000 firms sampled per year. The authors also find

that the mean-reversion trend is somewhat non-linear with faster mean-reversion
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for below-mean and far-above-the-mean values. However, such findings still provide

impetus for the use of GOU for dynamic earnings evolution under uncertainty, as

they are facilitated by the conditional mean property in (2.13).

Following the logical arguments for mean-reversion and the empirical support

for its presence, a number of theoretical models have been developed to cap-

ture the phenomenon. Pioneering the discussion, Bhattacharya (1978) develops

a continuous-time valuation model for a firm with a GOU-based cash flow process.

In a similar spirit, Raymar (1991) argues for a discrete-time model with mean-

reversion in earnings. Both papers make simple predictions about how the speed

of mean reversion is related to various valuation metrics. In a more recent contri-

bution, Sarkar and Zapatero (2003) develop a model featuring mean-reversion in

earnings and test their predictions on empirical samples. The applied stochastic

process is, indeed, a GOU process and the empirical results generally support the

predictions of the model. Finally, Titman and Tsyplakov (2002) consider a model

where firm value is determined by earnings, which in turn is a function of exoge-

nous price changes in the firm’s product market. This price process is assumed to

follow a mean-reverting process. As a consequence, the firm adjusts its leverage

over time according to the firm value supported by the earnings capacity. While

trivially finding evidence that a firm facing a below-mean price chooses a lower

debt-to-value ratio, the authors also find that it chooses a higher debt coverage ra-

tio. Intuitively this is due to the fact that such a firm should expect higher prices

and - by extension - higher earnings in the future, giving it a higher debt capacity.

Following this dynamic, both optimal leverage and earnings level will be expected

to increase in expectation for a firm facing a below-mean price level.

In sum, the tractability of modelling earnings as mean-reverting has been es-

tablished in both empirical and theoretical literature. The argument is constructed

from fundamental economic principles of investments and competition. Approxi-

mating the theoretical and practical capital structure discussions, we couple mean-

reverting earnings with a framework of dynamic capital structure that allows for

debt renegotiation.

6.2 Derivation of the General Solution for a GOU

Process

In this section we will examine the value of the firm as an investment opportunity

under the modified stochastic process as well as the general solutions to the ODE
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satisfied by the firm value function. It is assumed that the EBIT stream follows a

mean-reverting stochastic process with proportional volatility:

dξt = κ(θ − ξt)dt+ σξtdWt (6.1)

where κ represents the speed of mean-reversion, θ is the long-term mean level and

dW is the usual increment of a Wiener process. This is equivalent to the GOU

process introduced in (2.12). As can be seen from the expression in (6.1), the

process will converge to a GBM under two circumstances: i) if κ = 0 it becomes a

GBM with zero drift, and ii) if θ = 0 it becomes a GBM with drift equal to −κ.

Thus; although the stochastic process has been altered, the log-normal earnings

property of the GBM can still be re-established as a special case of the GOU

process.

The assumption of the proportional variance is easily seen as a more realistic

description of earnings volatility. Moreover, as we demonstrate below, an additional

benefit is that the complexity of the obtained solutions will be significantly reduced.

One economic issue, however, which persists under the defined diffusion process

is that the earnings will be strictly positive at all times. This is a potentially

important limitation, which is discussed further in Section 6.6.

6.2.1 Firm Value

Apart from the altered diffusion process, the general setup is carried over from the

benchmark model developed in Chapter 5. Thus; we continue to consider a firm

that issues perpetual debt with a continuous coupon C, such that claims on the

earnings process are time-homogeneous.

Following Sarkar and Zapatero (2003), we can characterise the unlevered firm

value as the equivalent of a firm that consists of one project and where earnings

are not affected by leverage. In this simplistic setup we can define the firm value

for all s > t as the present value of a perpetual earnings stream:

V (ξ) = Et
[∫ ∞

t

ξse
−r(s−t)ds

]
=

∫ ∞
t

Et[ξs]e−r(s−t)ds. (6.2)

The equality between the two expressions follows from Fubini’s theorem. From

(2.13) we know the conditional mean of ξs. Substituting for this we obtain
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V (ξ) =

∫ ∞
t

e−r(t−s)[θ + e−κ(s−t)(ξt − θ)]ds

=

∫ ∞
t

[
er(t−s)θ + e(t−s)(r+κ)(ξt − θ)

]
ds

= −
[
er(t−s)

θ

r
+ e(t−s)(r+κ) ξt − θ

r + κ

]∞
t

=
θ

r
+
ξt − θ
r + κ

.

(6.3)

We immediately observe that the unlevered firm value has two components. The

first term in (6.3) is a permanent component equal to the long-term mean pa-

rameter discounted in perpetuity. This term is unaffected by the fluctuations in

the EBIT process. The second term is a transitory component whose value is a

decreasing function of the speed of mean-reversion. This term catches the value

effect of earnings deviations from the long-term mean. It can easily be seen that

in the extreme case where κ → ∞, this component disappears and θ becomes the

deterministic EBIT level in every period.

6.2.2 Valuation of Claims

The general ODE satisfied by any claim on the process in (6.1) has a general form

similar to the models developed in Chapter 3 and 5. Thus the value of a claim on

the EBIT process following a GOU satisfies

1

2
σ2Fξξ(ξ) + κ(θ − ξ)Fξ(ξ)− rF (ξ) + υH = 0. (6.4)

The solution to (6.4) has a considerably more complex expression than the ones we

have obtained previously with GBM-based state variables due to the implementa-

tion of the mean-reverting property. The general solution to the linear homoge-

neous part of the ODE is given by

k1ξ
β1M1(ξ) + k2ξ

β2M2(ξ), (6.5)

where M1(ξ) = M(−β1; 2−2β1 + 2κ
σ2 ; 2κθ

σ2ξ ) and M2(ξ) = M(−β2; 2−2β2 + 2κ
σ2 ; 2κθ

σ2ξ ).

The function M = (·; ·; ·) is the confluent hypergeometric function that has an

infinite hypergeometric series given by

M(a; b; z) = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+ · · · =

∞∑
n=0

(a)n
(b)n

zn

n!
(6.6)
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where (a)n and (b)n are Pochhammer symbols used to denote rising factorials with

(a)0 = 1 and (b)0 = 112. Depending on the functional form, this series may have a

known solution. β1 and β2 will be determined as the roots

β1,2 =
2κ+ σ2 ±

√
8rσ2 + (2κ+ σ2)2

2σ2
(6.7)

to the quadratic equation

1

2
σ2β(β − 1) + κβ − r = 0. (6.8)

The polynomial in (6.8) is very similar to the fundamental quadratic used in the

GBM-based models of previous chapters. The only difference is that the drift pa-

rameter, µ, has been exchanged for the parameter for the speed of mean-reversion,

κ, in the multiplication with the root in the second term.

In our case, as previously, the upper and lower boundary conditions for the

EBIT process will determine the constants k1 and k2. We omit the expression of

the complete general solution to the inhomogeneous ODE (6.4). The inclusion of

the dividend streams affine in earnings is relegated to the expressions for the debt

and equity claims below.

6.2.3 Scaling Invariance

Before considering the claim values under the necessary boundary conditions, we

include a comment on the property of homogeneity under the proposed GOU pro-

cess. In Chapter 3 we discussed how homogeneity of degree one of the claims and

the coupon in the EBIT process allowed the dynamics of the model to be unaltered

in time. Put differently, the homogeneity implied a scaling invariance that allowed

for transformation of the claim by some time-invariant factor. This meant, for ex-

ample, that if the firm was restructured at the upper boundary and thus initiated

with the EBIT value ξ̄ = uξ0, then the new boundary values would be (u2ξ2, udξ0).

A related benefit of this scaling invariance, which is cited in most of the dynamic

capital structure literature, is that the claim values are insensitive to changes in

the underlying currency.

It turns out that the claims and coupon on the EBIT process under the GOU

modification maintain this homogeneity property. The homogeneity is however

extended under this setup such that the long-term mean level θ is scaled accordingly

with earnings. This is easily illustrated by way of a simple example: Assume that

12We refer to Abramowitz and Stegun (1972) for extensive treatment of the confluent hyperge-
ometric function and its related properties.
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the earnings X of one firm exhibit mean-reversion to X̄ and that the firm merges

with an identical firm. We would naturally expect the joint earnings of these firms

to revert to twice the earnings of the separate entities. By similar intuition, if the

same firm has been recapitalised at some earnings level η · X where η > 0, its

earnings will revert to η · X̄.

To formalise the intuition, suppose that X follows the generic mean-reverting

stochastic process

dXt = f(Xt, X̄)dt+ g(Xt, X̄)dWt. (6.9)

Then for any η > 0, Yt ≡ ηXt should follow the process

dYt = f(Yt, Ȳ )dt+ g(Yt, Ȳ )dWt (6.10)

where Ȳ = ηX̄. We thus observe that the drift and diffusion of the process in (6.9)

is homogeneous of degree one in the value of earnings and the long-term mean

level. Equivalently, we can infer that the EBIT process in (6.1) is homogeneous of

degree one in the pair (ξ, θ)13.

6.3 The GOU-based Model

In this section, we set up the model with mean-reverting earnings and a lower re-

structuring boundary, equivalent to the setup assumed for the GBM-based model

in Section 5.1. Thus; we restrict ourselves to the case with one remaining rene-

gotiation option. As an intermediate step, we must again consider the scenario

with zero remaining renegotiation options. In this case, the general setup will be

comparable to the one assumed by Leland (1994) with two key differences: The

state variable is represented by earnings rather than unlevered firm value, and is

assumed to follow a GOU process rather than a GBM. Subsequently, we can pro-

ceed with the case where equity holders have a renegotiation option, similar to the

framework introduced under a GBM in the previous chapter.

6.3.1 No Renegotiation

The setup for the solution to the step excluding debt renegotiation is effectively

the same as in Section 5.1. However, the augmented stochastic process will alter

the explicit forms of the value functions and the boundary conditions. Earnings

13See for example Bjerrisgaard and Fedoryaev (2011) for a formal proof of this lemma.
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are taxed at τc, debt claims at τi and dividends at τd, such that the effective tax

rate levied on firm owners is τe = τc + (1− τc)τd. Adding the particular cash flow

solution to (6.5) we solve for the claims as

D0(ξt; ξ0) = b01ξ
β1

t M1 (ξt) + b02ξ
β2

t M2 (ξt) + (1− τi)
C0

r
(6.11)

E0(ξt; ξ0) = e01ξ
β1

t M1 (ξt) + e02ξ
β2

t M2 (ξt) + (1− τe)
[
θ

r
+
ξt − θ
r + κ

]
− (1− τe)

C0

r
,

where Mn(·) denotes the confluent hypergeometric functions. Also, β1 and β2

denote the positive and negative roots of the fundamental quadratic equation,

respectively.

We proceed by defining the boundary conditions to the setup with no possibility

to restructure the firm. In the case of bankruptcy, the debt holders take over the

unlevered firm after incurring the bankruptcy cost α. Equity holders are left with

nothing. We define the value-matching conditions accordingly:

D0(d0ξ0; ξ0) = (1− α)(1− τe)
[
θ

r
+
dξ0 − θ
r + κ

]
E0(d0ξ; ξ0) = 0.

(6.12)

With non-callable debt, the bond instrument will become risk-free as earnings

grow to infinity, and the value of debt will equal the perpetuity coupon stream. By

similar logic, the equity claim is defined by the perpetual dividend stream. The

limit conditions are

E0(∞; ξ0)→ (1− τe)
[
θ

r
+
ξ − θ
r + κ

]
− (1− τe)

C0

r

D0(∞; ξ0)→ (1− τi)
C0

r
.

(6.13)

To comply with the conditions in (6.13), we set the constants belonging to the

negative root equal to zero. Moreover, we solve for the remaining constant by

subjecting the value functions to the bankruptcy boundary conditions.

In order to identify the bankruptcy boundary, we subsequently define the smooth-

pasting condition by differentiating the equity value-matching condition on both

sides:
∂E0(d0ξt; ξt)

∂ξt
= 0. (6.14)

By inserting the constants into the smooth-pasting condition, we obtain an ana-

lytical expression. The solution procedure after this is exactly equivalent to that



88 Chapter 6. A GOU-based Model with Debt Renegotiation

of Section 5.1. However, it is not possible to define closed-form solutions for the

optimal coupon and bankruptcy threshold. A complete solution therefore requires

the use of numerical techniques.

6.3.2 Including Renegotiation of Debt

The inclusion of a debt renegotiation option requires that we set up an explicit

game. The disagreement payoffs from the game can be defined from the case of no

renegotiation. The procedure is exactly equivalent to that of Section 5.1. However,

the algebraic forms for the boundary conditions will of course differ. The applicable

smooth-pasting condition must also be investigated due to the conditionality of

the equity value-matching condition. Due to the similarity between the game

settings, we omit the full notation of the bargaining structure and instead proceed

to numerical analysis.

6.4 Comparative Statics and Cross-Model Com-

parison

In this section we conduct extensive comparative analysis in order to compare the

performance of our GOU-based model vis-à-vis the GBM-based model of Section

5.1. We will aim at stressing both the analysis of the sensitivity to the various

base case parameters of the model internally, as well as a cross-comparison with

our benchmark setup. This structure allows us to illustrate the general model

implications as well as the specific impact of mean-reversion in earnings. The

analysis is followed by a section summarising key findings. Before conducting

numerical analysis, we however consider some important preliminary remarks in

relation to the interpretation and computation of our results.

6.4.1 A Comment on Comparative Statics

In the following part we examine empirical implications of our model results. When

interpreting comparative statics such as the ones we produce, a few notes are worth

considering. Strebulaev (2007) suggests some words of caution to keep in mind in

empirical analysis of dynamic capital structure models, based upon observations of

how these tests are typically carried out. He makes the noticeable comment that in

any cross section firms are at various different stages of their refinancing cycle with

very few being at or close to the theoretical refinancing point date zero that virtually
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all capital structure models initiate the firm at. This is because firms in a dynamic

economy with frictions do not refinance as frequently as such an assumption would

require in practice. This cyclicality arises because firms with different leverage and

accumulation of financial decisions react differently to economic shocks, even if

they are identical from a date zero perspective. As a consequence, even if firms do

in fact follow a capital structure policy that aligns closely with the one proposed in

any given dynamic model, a large discrepancy between optimal and actual leverage

would still persist when conducting cross-sectional tests across a sample of multiple

firms.

Evidently, the observations of Strebulaev do not just apply to the comparative

statics considered in our model. If for example one were to consider comparative

statics for any of the GBM-based models of the previous chapters, the caveat pro-

posed would apply equally well. Thus; emphasising the recommendations proposed

in Strebulaev (2007), empirical tests carried out on the results predicted by our

model should take into account the firms’ positioning in their refinancing cycle as

well as the differing historical information for these firms arising from their different

initiation points.

Procedure for Computations with Hypergeometric Functions

In addition to the general interpretation of the comparative statics, the computa-

tional procedure applied to problems involving hypergeometric functions further

warrants a comment. The computation of such functions is a fairly intricate exer-

cise. The non-trivial structure of the hypergeometric series that defines the function

gives rise to an array of precision issues, which are more pronounced for certain

ranges of the parameters. Thus; some numerical instability is an almost inevitable

issue in most computations, except for the most elementary functions.

For this reason, all software programmes with multi-precision evaluator fea-

tures to handle hypergeometric functions have some drawbacks. The main issue

with Mathematica, which is the computation programme used for this dissertation,

is related to convergence of the algorithm in root-finding and maximisation proce-

dures for non-linear equation systems14. More specifically, the default method for

root-finding and maximisation (FindRoot[] and FindMaximum[], respectively) in

Mathematica is the so-called Newton-Raphson Method, which is based on a linear

approximation. Omitting formal details related to this routine, the iteration pro-

cedure can be described briefly as follows: Let r be a root of a given function f(x)

such that f(r) = 0. Assume further that f ′(r) 6= 0. Let then x1 be a number in

14The issue extends to other computing environments, e.g. MATLAB (see Pearson (2009))
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the vicinity of r. The tangent line to f(x) at (x1, f(x1)) then has another point x2

as its horizontal intercept, which is incrementally closer to the desired value r. We

have that

x2 = x1 −
f(x1)

f ′(x1)
. (6.15)

We can continue by finding x3 through the relation x3 = x2 − f(x2)/f ′(x2). The

iterative procedure xn+1 = xn−f(xn)/f ′(xn) then yields a sequence of xn approx-

imations to r.

The great advantage of the Newton-Raphson Method is its quadratic conver-

gence near the root of an equation. For most well-behaved functions the results will

stabilise after just a few iterations. However, the equations in our model contain

hypergeometric functions, which render the system fairly unstable. The implica-

tions of this is that the approximate zero, or initial guess x0, has to be very close

to r in order to ensure the right convergence. In addition, the non-linearity im-

plies that we do not have a procedure that finds all solutions. In fact, the default

application of the aforementioned built-in functions returns just one solution and

stops the iterative procedure when returning iterations outside the minimum and

maximum values defined for the search interval, even if a correct solution might be

inside the interval. Finally, in many of our computations we work with derivatives

of functions, which may become zero over the iteration procedure. This renders

the derivative at the root non-existent and the function will consequently not be

defined for the given interval.

Notwithstanding these issues, we obtain satisfactory results for most of our sim-

ulations and can analyse comparative statics internally as well as conduct cross-

model comparison with our benchmark model. The relatively high numerical sta-

bility we obtain is promoted by some simplifying assumptions detailed earlier.

Specifically, both the exclusion of a call feature and the assumption that the tax

advantage is lost at bankruptcy simplify the calculations. The computations will

be performed under the base case values listed in Table 6.1. For tractability, the

GOU model will be calibrated with the same parameter values as the benchmark

case. However, for simulations of the GOU-based framework we must further assign

values to κ and θ:
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Symbol Value

Drift of EBIT µ 2%

Risk-free rate r 5%

Volatility of EBIT σ 30%

Effective dividend tax rate τe 40%

Tax rate on interest payments τi 20%

Bankruptcy cost α 10%

Issuance cost of debt q 3%

Call premium λ 5%

Equity holders’ bargaining power γ 50%

Speed of mean-reversion κ 10%

Long-term mean of EBIT θ 1

Table 6.1: Base case parameter values under the GOU-based model.

6.4.2 Model Performance with Mean-Reversion

We start our analysis by assessing the general model implications under inclusion

of mean-reversion in earnings. The mosaic in Figure 6.1 summarises the findings

graphically. In Figure 6.1a, we observe an altered curvature of the equity and debt

claims as a function of a mean-reverting EBIT process. Most notably, we see that

the debt function flattens out much quicker under the GOU modification. This

is attributable to the fact that the volatility becomes bounded and thus that the

value of the claim will tend quicker towards its risk-free value. Corroborating this

finding, Figure 6.1b measures the impact of increases in the speed of mean-reversion

on values of the debt and equity claims. Not surprisingly, the value of the debt

claim is an increasing function of κ, while we observe a decay of the equity value.

As more mean-reverting earnings ensure a higher certainty of coupon servicing

given the lower probability of downward-drifting EBIT levels, creditors naturally

enjoy a less risky claim. This increases its value for a given coupon. Conversely,

equity holders, essentially owning a call option on the value of the firm, see their

upside potential erode with earnings persistence. This economic intuition serves to

explain the curvature of the claim functions.
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(a) Value functions and EBIT level (b) Value functions and mean-reversion

(c) Coupon and mean-reversion
(d) Leverage and EBIT level

Figure 6.1: Sensitivity analysis of the GOU-based model. See Table 6.1 for parameter
values. (Source: Own contribution)

Moreover, in Figure 6.1c we can observe the familiar effect that the coupon

level supported is strictly increasing in κ. Higher earnings stability reduces the

risk of extended earnings shortfalls, which in turn allows the company to service a

higher coupon for a given risk appetite. Equivalently, as we see in Figure 6.2 below,

the property of earnings stability prompts the firm to select a higher leverage. A

related result of this is an increase in the tax advantage to debt as mean-reversion

increases.

Lastly, Figure 6.1d confirms an important result of Sarkar and Zapatero (2003).

Indeed, their chief contribution is the finding that mean-reversion implies that

leverage becomes a decreasing function of earnings. Our results support this pro-

posal in the presence of GOU-based earnings and debt renegotiation possibilities.

The result contrasts Leland (1994) where leverage is independent of earnings. Fur-

thermore, studies by for example Titman and Wessels (1988), Rajan and Zingales

(1995) and Fama and French (2002) have established empirically that a negative

relationship between earnings and leverage exists. Consequently, a realistic model

of dynamic capital structure ought to capture this effect.

Figure 6.2 gauges the sensitivity of optimal leverage to fluctuations in volatility
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and speed of mean-reversion. This illustrates a few insights complementary to the

analysis of changes to the conventional costs and benefits of leverage. The optimal

leverage peaks when mean-reversion is high and EBIT volatility is low. Moreover,

we observe that the existence of mean-reversion has an offsetting effect on the

impact of volatility on leverage. That is, for higher levels of mean-reversion the

effect of higher uncertainty of EBIT has a lower influence on the management’s

initial choice of leverage.

Figure 6.2: Leverage as a function of volatility and mean-reversion. See Table 6.1
for base case parameter values. (Source: Own contribution)

The analysis up until now suggests that the introduction of mean-reversion in

EBIT could improve the firm’s credit terms. In earlier models, we noticed how

EBIT volatility had the opposite effect on the firm. Hence, it would be natu-

ral to investigate how the two parameters interact to establish the firm’s overall

credit profile. Figure 6.3a depicts how the bond yield is determined by the level of

mean-reversion and the volatility. Interestingly, we can observe a highly non-linear

relationship between the three parameters for certain realisations. For intermediate

to large values of κ we see how the presence of mean-reversion essentially eradicates

the effect of volatility. For example, for κ = 10% the bond yield is nonreactive to

changes in volatility. However, as the speed of mean-reversion approaches zero, a

familiar relationship between volatility and bond yield is re-established. This is a

similar, but more pronounced, effect to that seen in the analysis of optimal leverage

in Figure 6.2. This could be partially explained by the fact that volatility spikes

pose a much smaller risk for creditors when coupled with the stabilising drift effect

of κ > 0. From a practical perspective it is, nevertheless, questionable whether
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mean-reversion should be expected to have such major implications for the rela-

tionship between yield and volatility. For example, empirical tests (e.g Fama and

French (2000)) indicate mean-reversion levels of about 38% in the US. Still, we do

observe that yields are sensitive to volatility fluctuations.

(a) Bond yield as a function of σ and κ (b) Leverage as a function of τe and α

Figure 6.3: Sensitivity analysis of the GOU-based model. See Table 6.1 for parameter
values. (Source: Own contribution)

Figure 6.3b presents the, nearly mandatory, analysis of the implications of

bankruptcy costs and taxes on the choice of optimal capital structure. In har-

mony with the trade-off theory, our GOU-based model predicts that managers

trade off the tax advantage to debt with the costs of bankruptcy. Compared to

the GBM-based models presented in the chapters 3 and 5, we see that the relation

between leverage and effective tax rate exhibits a higher degree of monotonicity.

In order to conduct a detailed analysis of the intercorrelations between our

exogenous parameters and key metrics we have comprised a sensitivity table similar

to the one produced in Section 5.1.3. Table 6.2 summarises the realisations of

key metrics when one exogenous parameter is altered and all others equal those

specified in Table 6.1. All exogenous parameters are varied to some levels below and

above their base case specifications. Whereas most variables exhibit only moderate

sensitivities to alternations in the base case parameters, the table enables us to

observe a few interesting effects.

Firstly, optimal leverage appears be relatively insensitive to all parameters ex-

cept for the speed of mean-reversion. A mere 5%p change in κ implicates wide

swings in the optimal leverage. We can thus claim that the degree of mean-

reversion in earnings is of critical importance for any conclusion about optimal

capital structure.

The recovery rate by debt holders exhibits high sensitivity to tax rates. The

reasons for this might not be obvious initially, but is to be found in the specification

of the debt claim. Equation (5.21) explains the strong dependence on the effective



6.4. Comparative Statics and Cross-Model Comparison 95

tax rate. The debt value at bankruptcy is defined by the unlevered value of the

project, which is negatively related to τe. Similarly, the starting value of the debt

claim is observed to be highly dependent on τi in (5.2).

The bond yield is in general only reactive to changes in the interest rate and

the tax on interest income. This differs from the results of the benchmark model

where the yield was more sensitive to movements in other variables.

Lastly, APR violations are insensitive to any moderate base case parameter

fluctuations except for bankruptcy costs and equity holder bargaining power.

d C* FV L* BY RR APRV TAD

r = 4% 0.15 0.72 18.16 77.06% 5.16% 77.03% 5.00% 21.05%

r = 6% 0.17 0.66 11.91 71.54% 7.76% 76.73% 5.00% 19.12%

σ = 25% 0.21 0.71 14.46 75.66% 6.46% 76.78% 5.00% 20.47%

σ = 35% 0.12 0.85 14.36 72.88% 6.45% 76.99% 5.00% 19.67%

θ = 0.9 0.14 0.62 13.36 71.88% 6.46% 76.89% 5.00% 19.30%

θ = 1.1 0.17 0.76 15.44 75.92% 6.46% 76.90% 5.00% 20.62%

α = 5% 0.16 0.67 14.46 75.67% 6.46% 76.89% 2.50% 20.53%

α = 15% 0.16 0.69 14.34 72.42% 6.46% 76.89% 7.50% 19.47%

q = 0% 0.16 0.69 14.73 74.71% 6.27% 74.59% 5.00% 22.75%

q = 6% 0.16 0.85 14.07 73.35% 6.66% 79.35% 5.00% 17.25%

κ = 5% 0.11 0.76 13.85 59.95% 6.48% 76.47% 5.00% 15.42%

κ = 15% 0.19 0.71 14.67 80.54% 6.45% 77.03% 5.00% 22.21%

γ = 25% 0.16 0.67 14.46 75.67% 6.46% 76.89% 2.50% 20.53%

γ = 75% 0.16 0.69 14.34 72.42% 6.46% 76.89% 7.50% 19.48%

τe = 30% 0.15 0.69 15.04 70.87% 6.45% 89.63% 5.00% 7.39%

τe = 50% 0.16 0.69 13.77 77.41% 6.47% 64.16% 5.00% 37.66%

τi = 10% 0.16 0.69 15.72 76.26% 5.75% 68.41% 5.00% 31.03%

τi = 30% 0.16 0.69 13.08 71.33% 7.37% 87.81% 5.00% 8.97%

Table 6.2: Detailed sensitivity analysis of the GOU-based model. d = renegotiation
threshold, C∗ = optimal coupon, FV = firm value, L∗ = optimal leverage, BY = bond
yield, RR = recovery rate, APRV = APR violations, TAD = tax advantage to debt.

6.4.3 Cross-Model Comparison

Equipped with a suitable benchmark model from Chapter 5, we are now able to

proceed to study how our GOU-based model compares with respect to general

sensitivities and key metrics. As noted, the divergence between the two models

exists in the specification of the stochastic earnings process. We are thus able to
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attribute any differences in sensitivities or metrics to the effect of mean-reversion.

As a convenient point of departure, we graphically assess how the two models

perform with respect to changes in a number of selected parameters.

The analysis is presented in Figure 6.4. In figures 6.4a and 6.4b we see how

the optimal leverage per unit of volatility and bargaining power respectively is

elevated in the GOU-based model. The higher level of leverage in the model with

mean-reversion follows intuitively. As earnings become more persistent, the firm’s

managers should find that creditors offer better credit terms. This, should in turn

encourage the use of debt financing.

The figure 6.4c examines how optimal leverage is affected by the effective cor-

porate tax rate in the tax interval 25% ≤ τe ≤ 50%. As alluded to in the analysis of

figure 6.3b, we can confirm that the relationship between taxes and leverage is, ce-

teris paribus, more linear under mean-reverting earnings than under a GBM-based

regime. The policy implication of this follows logically; lowering the corporate

tax rate below 35% would have marginally less negative effect on the use of debt

financing in a GOU-based framework than in a GBM-based one. It appears the im-

provement in credit terms fully offsets the negative incentive effect of lower taxes.

Mean-reversion in earnings thus proves of some significance for the conclusion about

effects of changes in the tax regime.
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(a) Leverage and volatility (b) Leverage and bargaining power

(c) Leverage and effective tax rate (d) Leverage and risk-free rate

(e) Renegotiation threshold and volatility

Figure 6.4: Comparison of the GOU-based model and the GBM-based benchmark
model. See Table 6.1 for parameter values. (Source: Own contribution)

Another parameter for which we see a functionally altered relationship to lever-

age is the risk-free rate. The GBM-based benchmark model suggests that leverage

is positively correlated to the risk-free rate. The economics behind this relationship

appear somewhat unclear. In accordance with standard monetary policy theory,

a higher risk-free rate should discourage borrowing. Figure 6.4d illustrates how

the spurious relationship is mended by assuming that earnings are mean-reverting.

The GOU-based model realistically predicts that the optimal leverage ratio is de-

creasing in r at a marginally diminishing rate.

Lastly, Figure 6.4e establishes that the renegotiation threshold is strictly lower

in the mean-reversion model compared to the GBM benchmark. This originates in

the fact that an EBIT level below the long-term mean in a GOU process provides
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for a stronger expectation of future earnings increases. On the contrary, a GBM

process will not have any mean-reversion in its conditional expectation of the EBIT

level, which introduces more uncertainty. Accordingly, the renegotiation threshold

is higher for the GBM-based model. Moreover, we observe that increased volatility

decreases the threshold, regardless of the diffusion process. This is intuitively

explained by the lower resultant coupon and leverage.

Benchmark

Model

Callable

Debt

Mean-

reversion

Renegotiation threshold 0.46 0.38 0.16

Call threshold - 1.81 -

Optimal Coupon 1.61 1.58 0.69

Firm value 22.53 25.93 14.40

Leverage 71.94% 60.66% 74.05%

Bond yield 9.91% 9.44% 6.45%

Recovery rate 50.18% 54.05% 76.89%

APR Violations 5.00% 5.00% 5.00%

Tax advantage to debt 12.68% 31.50% 20.00%

Table 6.3: Cross-model comparison of key metrics. See Table 6.1 for base case pa-
rameter values.

For a more extensive analysis of the implications of introducing mean-reversion

in EBIT, we compare all key metrics of the three models that we have developed.

Table 6.3, presents the values of the key metrics under the base case parameters

specified in Table 6.1. The metrics of the benchmark model and the model featuring

callable bonds correspond to those presented in Table 5.4.

We can re-confirm that we obtain a higher optimal leverage ratio under the

base case parameters considered when comparing with the GBM-based benchmark

model. As discussed, this is not surprising since the mean-reverting property of

earnings reduces management’s uncertainty about future income levels. In conjunc-

tion with better credit terms, this will provide impetus to select a higher initial

leverage. As observed in Figure 6.2 and Table 6.2, the higher choice of leverage

however decreases with the degree of mean-reversion and eventually converges with

the result obtained for the GBM-based benchmark model. In line with these results,

the tax advantage to debt is increased by about 5% compared to the benchmark

model. Is is, however, still inferior to that observed when including callable debt

in the extended GBM model.
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The value of the firm decreases significantly compared to a GBM-based frame-

work. This result follows from the lack of a positive upward drift in the earnings

process when we apply a GOU. The strong effect of the drift can be seen in Ta-

ble 5.2. As discussed with respect to Figure 6.1b, the value of the equity claim

deteriorates with the introduction of mean-reversion and continues to fall as the

speed of mean-reversion increases. The value of the debt claim also diminishes due

to the lower value of the optimal coupon. The latter effect is however somewhat

counterbalanced by safer earnings. Consequently, we also observe that bond yield

falls compared to the benchmark.

A noteable difference is observed in the recovery rate of the debt holders. Under

the new regime we see an increase of more than 20 percentage points in the recovery

rate at bankruptcy. The initial value of debt will be less valuable under the lower

coupon but will also lose relatively less value in case of bankruptcy. In essence,

this stems from the fact that creditors overtake a less risky project than they do

in the GBM case. APR violations, however, remain constant at around 5% as in

previous models.

6.5 Summary of Key Results

In the preceding section we developed a model of dynamic capital structure with

debt renegotiation and mean-reverting earnings. The model was developed sim-

ilarly to the benchmark model of Chapter 5, but with a modified, GOU-based

earnings process. Through numerical calibration we were able to identify a num-

ber of key findings resulting from the new model specification. Below we present

the most important findings accompanied by brief elaboration.

Result I Optimal leverage is increasing in mean-reversion and negatively corre-

lated to earnings. Furthermore, the relation between leverage and effective tax rate

is linearised compared to the benchmark model.

The introduction of mean-reversion in EBIT increases the optimal leverage as cash

flows are stabilised and credit terms improved. On a related note, the tax advantage

to debt is increased by about 8%. The empirically justified finding that earnings

and leverage correlate negatively is reconfirmed in our dynamic capital structure

model. The result has previously been identified by Sarkar and Zapatero (2003) in

a static framework. Lastly, the fundamental relationship between taxes and gearing

is found positive but more linear than in the benchmark model. The finding implies
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that the existence of mean-reverting earnings can alter conclusions about a given

tax policy.

Result II The total firm value decreases under mean-reverting earnings. The

value of debt is, ceteris paribus, increasing with the speed of mean-reversion, whereas

the equity value decreases proportionately more.

We observe a decrease in the initial firm value, which is driven by decreases in the

values of both debt and equity. Even though debt increases with the persistence

of earnings, the lower upside potential of the firm leads to the selection of a lower

coupon. This prompts a slight decrease in the value of the debt claim compared

to that of the benchmark model. The value of equity deteriorates due to the lack

of a positive drift. Additionally, we note that debt converges to its risk-free value

quicker than it does under the GBM-based regime. This is driven by the increased

safety of cash flows that comes with mean-reversion.

Result III The bond yield decreases under mean-reversion and becomes nonre-

active to volatility fluctuations for medium-to-high values of the speed of mean-

reversion.

A significantly lower bond yield is observed under base case parameters in our

GOU-based model compared to its benchmark. The lower borrowing cost is con-

sistent with the notion of increased optimal leverage. Mean-reversion in EBIT

appears to suppress the correlation between volatility and yield, which was seen in

the GBM-based model. For moderate levels of mean-reversion, changes in volatility

have no implications for the firm’s borrowing costs.

Result IV Mean-reversion in earnings establishes a negative relationship between

leverage and the risk-free rate.

In contrast to many previous GBM-based models, the GOU-driven model suggests

a negative correlation between the risk-free rate and the optimal choice of lever-

age. The benchmark model indicated a slightly positive relation between the two

variables. In accordance with standard theory of monetary policy, we would ex-

pect high risk-free rates to deter borrowing. The GOU-model thus creates a more

satisfactory connection between interest rates and borrowing behaviour.

Result V The size of APR violations is insensitive to our alternation of the

stochastic process. Only changes in bankruptcy costs and equity holder bargain-

ing power affect the magnitude of deviations from the APR.
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The size of APR violations proves to be contingent solely on equity holder bargain-

ing power and bankruptcy costs. This originates from the model specification and

was therefore expected. As discussed in Chapter 4, different levels of bargaining

power implies different relative risk-aversion of creditors and equity holders. We

can therefore establish a link between the size of APR deviations and the relative

risk-aversions of the bargaining agents.

Result VI The recovery rate of debt holders increases in our framework with

mean-reverting earnings compared to the benchmark.

Mean-reversion in earnings has a positive effect on the recovery rate of debt hold-

ers. The recovery rate is increased by more than 25 percentage points in the new

framework. The relation stems from the fact that the initial debt value deterio-

rates, whereas the project value at bankruptcy decreases relatively less than in the

benchmark case. Intuitively, the debt holders overtake a project carrying less risk

at bankruptcy than they do when EBIT follows a GBM.

This summarises the main findings following the implementation of a model of

dynamic capital structure and debt renegotiation with mean-reverting earnings.

6.6 Potential Modifications and Extensions to the

Proposed Model

In order to conclude the treatment of our proposed model of dynamic capital

structure, we will consider a number of alternative modifications to the model that

would complement the proposed setup or extend it in certain directions. Note that

we do not aspire to discuss the implications of these alternative features in their

entirety, but rather discuss the incremental contribution of their inclusion under

certain restrictions.

Evidently, as indicated in the development of the capital structure models of

Chapter 3, 5 and 6, there is a wide array of lines along which a model of dy-

namic capital structure could be extended. Most pertinent is the addition of debt

callability to the model setup proposed in this chapter. Moreover, we have noted

how the log-normality property of both the GBM-based as well as the GOU-based

model restrict the EBIT process from becoming negative. Therefore it could be

considered a natural next step to consider other potential modifications of the

earnings process that would relax this confounding assumption, and in fact this
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has already been investigated by several researchers. The model by Mella-Barral

and Perraudin (1997), which was analysed in Chapter 4, models a GBM-based

price process and considers a constant flow cost in production. In this way, EBIT

can take on negative values. Similar results are obtained in related studies which

consider the effect of operating leverage, i.e. having a higher degree of the cost

base tied in fixed contracts. Berk, Stanton and Zechner (2010) for example con-

sider the need to provide insurance by means of fixed wage contracts to employees

in optimal employment contracting. This leads to a higher operational leverage

and thus crowds out financial leverage, as the firm becomes more risky for a given

level of earnings. Consequently, this is also a feature a dynamic capital structure

modeller can consider for inclusion with the aim of obtaining lower optimal lever-

age ratios. Finally, one could also consider arithmetic versions of the Brownian

Motions and Ornstein-Uhlenbeck processes discussed in Chapter 2, i.e. excluding

the proportionality in the variance term. A model based on the former process is

developed by Genser (2010). While this allows EBIT to attain values below zero,

it also causes the homogeneity property to break down, significantly complicating

the development of any satisfactory model with dynamic optimisation.

A range of other natural extensions could be included in this discussion. For exam-

ple, a relevant but theoretically complex addition would be a framework accounting

for private information on the part of equity holders15. In the following we will

instead examine two potential modifications pertaining specifically to the renego-

tiation of debt, as this constitutes a main focus area of our model. We start out

by considering the introduction of non-successful restructuring attempts between

equity and debt holders. Subsequently, we analyse some implications of imposing

finite maturity on the debt instrument.

6.6.1 Restructuring Failure

In the models developed in Chapter 5 and 6 it is always optimal for equity holders

and debt holders alike to agree on renegotiation of the capital structure of the firm

when the EBIT process hits a lower threshold. In other words, the going-concern

value always exceeds the liquidation value. In practice, however, we clearly observe

a large number of bankruptcies on a continuous basis. Thus; it seems more real-

istic to consider a framework with a positive probability of restructuring failure.

In their suggestions for future research, Christensen et al. (2014) suggest intro-

15See Duffie and Lando (2001) for a first attempt in this direction.
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ducing an exogenously given parameter denoting the probability that negotiations

between debt holders and equity holders break down. While this would be a rather

straightforward means of addressing the technical issue of no predicted bankrupt-

cies, it only marginally adds more realism to the model setup. In fact, it would

be hard to argue for the circumstances under which failed renegotiation would be

plausible when the renegotiation gain is strictly positive.

Lehar (2015) instead suggests some requirements under which it would be pos-

sible to endogenise the positive probability of failed restructuring. He argues that

the firm’s chance of successful renegotiation is critically dependent on its debt

structure. In our analysis we have refrained from considering multiple debt classes,

implying that creditors are effectively united as one negotiating party. Lehar posits

that under these circumstances restructuring will always be successful. The debt

holders will collectively accept the restructuring proposal because they cannot in-

crease their payoff by invoking bankruptcy. This corroborates our conclusion in

this thesis. However, when introducing multiple debt classes there can be ample

scope for failed restructuring. This is seen by assessing the situation where the

most senior claimant (in Lehar (2015) the first claimant in the bankruptcy pro-

tocol) agrees to a debt reduction. Subsequent creditors will then realise that the

value of their claim has appreciated, making them able to extract a higher pre-

mium for agreeing to restructure their claim. In other words, by agreeing to a

debt reduction, the senior debt holder creates a positive externality for less senior

debt holders. The more senior claim holder with information about the value of

the firm’s asset can rationally anticipate that the firm will not be able to make an

acceptable offer to the less senior claim holders and therefore refuses the offer to

restructure.

Lehar (2015) highlights two requirements that must hold in order to allow for

restructuring failures. Firstly, the asset base must have a low value such that the

minimum acceptable offers for all creditors cannot be met. Secondly, bankruptcy

costs must be sufficiently low to render it cost-efficient for creditors to trigger

default. It is easy to see how these two conditions have to be satisfied. In our

model the debt holders will always be better off by accepting the restructuring

proposal even in the extreme case that α = 0%. This is because a strictly positive

restructuring gain is assumed. Thus; it must be coupled with the inclusion of

several debt classes, which can cause a breakdown in negotiations as outlined above.

Conversely, if liquidation costs are prohibitively costly, the chance of successful

restructuring is proportionately higher. In the extreme case that α = 100%, the

value of the creditors’ rejection payoff will be zero and they should accept any



104 Chapter 6. A GOU-based Model with Debt Renegotiation

proposal to restructure.

In order to implement restructuring failure in our model, we would need to

consider the firm’s asset value at the lower restructuring boundary. In concurrence

with Lehar (2015), we can define it as

¯
υ = (1− φ)Adξ0 (6.16)

where φ is a fraction of the asset value assumed to be irreversibly lost to third

parties upon entering renegotiation. The first requirement for restructuring failure

thus restricts us to considering the case where (1−φ)Adξ0 < P . If we let pi be the

sequence of face values claimed by k creditors, then P =
∑k
i=1 di denotes the total

principal outstanding. In this case we can model the requirement for successful

renegotiation as

χP ≤
¯
υ, (6.17)

where χ ∈ [
¯
χ, χ̄] is the rate of exchange of old debt to new debt. This value is

assumed to be given by the arrival order of creditors to the bankruptcy court in

Lehar’s (2015) setup. The restructuring gain from (5.23) accruing to equity holders

can then be re-defined as

RkE = γ(
¯
υ − χP ). (6.18)

We can then proceed to define the conditions under which equity holders ex-post

will find it optimal to enter rentegotiations. These will be the value-matching and

smooth-pasting conditions from (5.25) and (5.26) substituting in the new restruc-

turing gain. This will define a new lower restructuring threshold, which we will

denote dk1 . We can calculate that this new lower EBIT threshold will only be

optimal ex-post when

Ek1 (dk1ξ0; ξ0) ≥ E1(d1ξ0; ξ0). (6.19)

This re-establishes the notion that equity holders will only renegotiate if their payoff

keeps them at least as well off as the option to continue paying the suboptimal

coupon.

Covenants as a Commitment Device

It is evident from the analysis of Lehar’s setting that the equity holders choice

of restructuring threshold can influence the outcome of renegotiations. Initiating
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restructuring earlier could ensure a sufficiently high asset value to cover the minimal

acceptable offers for all creditors. Thus; as opposed to the model that we have

proposed with no probability of bankruptcy, it can be optimal for equity holders

to pre-commit to a specific threshold for restructuring. This would ensure a higher

probability of a successful outcome of restructuring negotiations.

Lehar (2015) discusses the possibility to convey this credibly by including a

covenant specifying an EBIT level for technical default in the bond indenture.

Clearly, under the setup with no scope for failed restructurings, firm value would

be strictly decreasing in any such covenant level. However, under this modified

setup firm value can increase with the covenant level when negotiations are moved

to a region where restructuring will be successful and ’dead-weight’ bankruptcy

costs are avoided. Importantly to note, however, the use of covenants as a commit-

ment device should only be optimal for an intermediate level of α. If bankruptcy

costs are sufficiently low, the benefit of saving liquidation costs does not outweigh

the loss incurred for choosing a sub-optimal technical default boundary. Equiva-

lently, if bankruptcy costs are sufficiently high, creditors will be willing to accept

restructuring at any level of the restructuring threshold.

6.6.2 Finite Maturity of Debt

In all dynamic capital structure models developed throughout this thesis, a persis-

tent assumption has been the issuance of perpetual bonds. The infinite maturity

of debt is in fact an assumption that very few researchers have attempted to relax.

The primary reason for this is the possibility to obtain neat and explicit solutions

for the claims on a single state variable when these are time-independent. However,

in practice perpetual bonds - or consols - are virtually non-existent, and it would

thus be natural to investigate what the impact of the infinite-maturity assumption

is on dynamic capital structure optimisation of the kind suggested in our model

and the ones preceding it.

As stated in Footnote 5, Leland and Toft (1996) are among the few theorists

who have introduced finite maturity. Their framework is developed along the lines

of Leland (1994) with a simplistic modification to include expiration of bonds:

The authors assume that new debt contracts are issued at every period in time

with the same finite maturity T as well as a constant aggregate coupon C and

principal P . In this manner, a new bond will have a fixed coupon rate c = C
T

and principal rate p = P
T . With constant debt service, the coupon payment will

equal C+ P
T in every period. Aside from this alteration, the model is equivalent to
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Leland (1994) and the authors in fact conclude that the optimal maturity is infinite.

The paper however considers some important implications of finite-maturity debt

for the issue of asset substitutability, which we discussed in Section 3.2.5. More

precisely, one obtains reasonable incentive alignment between debt holders and

equity holders with respect to risk-taking when debt is issued with short maturities.

The paper thus challenges the sentiment of Jensen and Meckling (1976) that equity

holders will find it optimal to increase risk. Only for longer maturities does the

asset substitutability problem persist. Moreover, with this conclusion the paper

establishes one potential agency-related explanation for why short-term maturity

of debt is frequently observed in practice. It should be noted, however, that the

assumption of a fixed coupon rate is an important driver of this apparent incentive

alignment. In reality, creditors would most likely alter their return requirements

for a given level of coupon in response to observed changes in the firm’s riskiness.

This is not taken into consideration by Leland and Toft (1996).

Flor and Lester (2002) develop an alternative model with endogenised determi-

nation of the debt maturity as a natural extension of the Leland and Toft (1996)

framework. The article takes its point of departure in the model introduced by

Goldstein et al. (2001), which was discussed in Chapter 3. The model results are

analysed both with and without callability on debt, but an analysis of the possi-

bility to renegotiate debt is excluded. For simplicity, we consider the version with

non-callable debt here. This will imply that the capital structure can only be al-

tered upon maturity of debt or in bankruptcy where the debt holders take over the

firm and optimally re-lever the firm. The value-matching conditions at bankruptcy

will thus be equivalent to (3.21).

Another set of value-matching conditions belonging to the claim values at debt

maturity must be considered as well. At this point, debt holders’ principal must

be settled, after which new debt can be issued. Thus; at time T , given debt expiry

without prior default, we have

E(ξT ; ξ0) =
ξT
ξ0
ξ0A− P

D(ξT ; ξ0) = P. (6.20)

The conditions in (6.20) are reminiscent of the boundary conditions examined for

the upper call boundary in (3.18) and (3.19). The smooth-pasting will also take on a

similar form. However, with the finiteness of debt, we are no longer optimising time-

homogeneous claims, for which reason the differential equation satisfied by claims

on the firms remains a PDE. This way of solving PDEs for E and D numerically
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using the defined boundary conditions is a version of finite differencing also referred

to as the Crank-Nicolson Method. The solution procedure is similar to the one of

Section 3.2. In the absence of a call boundary, the maximisation in this problem

is performed over the coupon C and time to maturity T . Defining ϕ = (C,P, T )

as the optimal dynamic debt policy, the maximisation problem is

argmax
ϕ=(C,P,T )

E(ξ0, ϕ) + (1− q)D(ξ0, ϕ) (6.21)

where E and D solve the PDE in (2.22) subject to the given boundary conditions.

Analysing the implications of endogenising the time to maturity decision, Flor

and Lester (2002) find that an interesting maturity trade-off. Particularly, the

authors find that the firm will trade off lower aggregate restructuring costs for

longer maturity of debt against the benefit of more frequent matching of the coupon

with the current EBIT level in the case of shorter debt maturity. This trade-off

would naturally be interesting to investigate in the context of our model with mean-

reversion and a lower restructuring option. We will leave it to be established by

future studies.
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Conclusion

”In the end, a theory is accepted not because it is confirmed by con-
ventional empirical tests, but because researchers persuade one another
that the theory is correct and relevant.”16

- Fischer S. Black (1938-1995)

In this thesis we examine the optimal capital structure decision in the presence

of debt renegotiation and mean-reverting earnings. Drawing on previous mod-

els of optimal capital structure and strategic debt service, we initially assemble

a game-theoretically sound framework that features restructuring of debt and a

GBM-based earnings process. The model serves as the yardstick with which we

measure the impact of two specific augmentations. Firstly, we extend the model to

include callable bonds. Subsequently, we enhance the stochastic earnings process

to one characterised by reversion to a long-term mean. Focusing on the economic

intuition and the ramifications for practical capital structure optimisation, we per-

form rigorous numerical analyses of the three models.

The previous models of optimal capital structure initially examined are the

renowned works of Leland (1994) and Goldstein et al. (2001). To establish a solid

foundation for our own capital structure model, we re-derive the results of the

two publications. The Goldstein et al. model is adapted to our purposes by

applying refined assumptions. Numerical simulations are performed to illuminate

the implications and deficiencies of the previous models.

The analysis is extended by introducing two models of strategic debt service

and assessing their compliance with game-theoretical principles. We observe how

their results might be contingent on violation of the rationality assumption. Ul-

timately, a model by Christensen et al. (2014) is presented as the economically

16Fischer Black quoted by Derman (2004)
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sound alternative. The model serves as the groundwork for our own models of

debt renegotiation.

We proceed to develop a benchmark model that includes the option to rene-

gotiate debt and assumes that EBIT follows a GBM. Extending the benchmark

model, we analyse the possibility to include callability of debt. However, the com-

putational complexity renders the extended model inelegant to work with when

analysing the impact of mean-reverting earnings. The implications of the two mod-

els are examined through numerical tests, and conclusions regarding the effects of

debt renegotiation and callability are made. The chief quantitative implications of

debt renegotiation are; increased optimal leverage and a higher tax advantage to

debt. Callability implies decreased initial leverage, a higher tax advantage to debt

and a reduced optimal renegotiation threshold.

In a final advancement, we derive a model of dynamic capital structure and debt

renegotiation with earnings following a GOU process. The model is calibrated and

comparative statics are computed. A cross-model comparison is conducted to un-

cover further effects of mean-reverting earnings. We conclude that the optimal

leverage increases and becomes negatively related to earnings as a consequence of

mean-reversion. Correspondingly, the tax advantage to debt increases significantly.

The debt contract benefits from increased earnings safety, whereas equity deteri-

orates by lost upside potential. Mean-reversion improves the firm’s credit profile,

which is reflected in a reduced bond yield. Lastly, the recovery rate is boosted,

while the size of APR violations remains unchanged.

Our model of dynamic capital structure with debt renegotiation and mean-reverting

earnings has several interesting implications for capital structure research. Con-

sidering the model’s high leverage ratio in a wider model selection perspective, the

modelling of dynamic capital structure choice with a GOU-based state variable dif-

fusion poses a dilemma. While the imposition of mean-reversion brings the model

closer to how earnings observably evolve, it does not constitute a means through

which the prediction of optimal leverage can be better aligned with observed prac-

tice. We would however argue that any theoretical endeavour to develop a model

that predicts lower leverage ratios should still support the implementation of mean-

reversion in earnings. This assertion originates in the empirical corroboration of

earnings persistence. A first step would arguably be to develop a GOU-based model

that features callability of bonds, which was seen to decrease leverage in previous

models.
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Appendix A

Boundary Conditions with

Dynamic Programming

Consider a firm that faces some choices at each period t, which we can represent by

the choice variable u. The state and control at time t affects the firm’s profit flow,

which accordingly can be denoted π(x(t), u(t)). Allowing the drift and variance

parameters to depend on the choice variable u, the general diffusion of the state

variable can then be represented as

dx = µ(x, u, t)dt+ σ(x, u, t)dW. (A.1)

Note how dx depends on the choice u. We can apply Itô’s lemma to F (x, t) in

order to derive the value function

ρF (x, t) = π(x, u∗, t) +
∂F

∂t
+
∂F

∂x
µ(x, u∗, t) +

1

2

∂2F

∂x2
σ(x, u∗, t)2 (A.2)

where u∗ = u(x, t) is the optimal value of the control variable and ρ is the discount

rate per unit of time. Equation (2.24) is a second-order PDE and a version of the

Hamilton-Jacobi-Bellman (HJB) equation. Since many solutions exist to solve this

PDE, we need to consider two boundary conditions and the economics of the value

function F .
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The Stationary ∞-Horizon Problem

If the firm’s problem was subjected to a fixed time limit T at which point it would

receive the terminal payout Ω(x, T ), equation (2.24) would have the boundary

condition

F (x, T ) = Ω(x, T ) ∀x. (A.3)

This problem could be solved with techniques analogous to backward induction by

finding F (x, t) for all earlier instants. However, for an infinite-horrizon problem

there is no fixed payoff point for the decision problem and thus no known value

function from which we can apply backward induction. Instead the problem be-

comes recursive. Under the assumptions that the profit function π, the discount

rate ρ and the probability distribution function are independent of the time incre-

ment, this causes the value function to be independent of time. Accordingly, we

can express the modified HJB equation as

ρF (x) = π(x, u∗) + µ(x, u∗)F ′ +
1

2
σ(x, u∗)2F ′′, (A.4)

which has now become an ODE with x as the only independent variable. In general,

many functions are consistent with this ODE, for which reason we must consider

some other constraints to pick out a single, deterministic solution.

This procedure is often referred to as optimal stopping of an Itô process. The

easiest analogy to represent this problem is a firm, which faces the binary decision

of continuing operations to retain a profit flow π(x, t)dt, or cease operations and

earn a termination payoff Ω(x, t). Thus the HJB equation for the optimal stopping

problem becomes

F (x, t) = max(π(x, t)dt+ (1 + ρdt)−1E[F (x+ dx, t+ dt)|x],Ω(x, t)) (A.5)

Intuitively we can see that for each t there will be a value for x, x∗(t), where

stopping will be optimal for lower values and continuation will optimal for higher

values, i.e.

If

x > x∗(t), continue

x ≤ x∗(t), stop.
(A.6)

It is thus evident that, in the continuation region, the first term of the maximisation
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problem in (2.27) will be higher. Expanding this term by Itô’s lemma we obtain

ρF (x, t)dt = π(x, t)dt+

[
∂F

∂t
+
∂F

∂x
µ(x, t) +

1

2

∂2F

∂x2
σ(x, t)2

]
dt, (A.7)

which holds for x > x∗(t). From (2.25) we know that F (x, t) = Ω(x, t) in the

stopping region so that one set of boundary conditions is

F (x, t) = Ω(x, t) ∀(x, t) such that x(t) ≤ x∗(t). (A.8)

Equation (A.8) represents the value-matching condition. We need to introduce a

smooth-pasting condition to uncover the value of the boundary in the region x∗(t)

in (x, t) space for which the PDE in (A.7) is valid. This condition will require the

values F (x, t) and Ω(x, t) as functions of x to meet tangentially, i.e.

∂F (x∗(t), t)

∂x
=
∂Ωx(x∗(t), t)

∂x
∀t. (A.9)

As it be seen by comparison with (2.34) and (2.35), the value-matching and smooth-

pasting conditions will be similar, regardless of whether dynamic programming or

contingent claims pricing is used for the dynamic optimisation problem.



Appendix B

Tax Shelter From Negative

Earnings

In the version of the Goldstein et al. (2001) model that we consider in Chapter
3, the firm is able to deduct the entire coupon even if earnings are insufficient to
cover the amount of the coupon payments. This is clearly inconsistent with how
interest payments are deducted in practice. Normally the tax shelter is partially
lost in case of negative earnings. This issue is expounded in depth by Graham
(2000). Goldstein et al. (2001) extend this tax regime by allowing for a loss of the
tax shelter when net income is negative. It assumed that the after-tax payout rate
to equity holders δξ + b is given by

δξ + b =

{
(1− τe)(ξ − C), for ξ ≥ C
(1− τe)ξ − (1− ετe)C, for ξ < C.

(B.1)

where ε ∈ [0, 1] is an exogenously given parameter for the degree of tax shelter lost
and carried forward. Implementing ε, the expressions for equity and debt given in
(3.17) instead become

D(ξ) = d1ξ
β1 + d2ξ

β2 + (1− τi)
C

r

E(ξ) =

{
e1ξ

β1 + e2ξ
β2 + (1− τe) ξ

r−µ − (1− τe)Cr , for ξ ≥ C
e1ξ

β1 + e2ξ
β2 + (1− τe) ξ

r−µ − (1− ετe)Cr , for ξ < C.
(B.2)

The boundary conditions for the maximisation will be the same as before with the
additional requirement that equity value is continuous and differentiable at ξ = C,
i.e. E(C)ξ≥C = E(C)ξ<C and E′(C)ξ≥C = E′(C)ξ<C .
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