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Abstract

The purpose of this thesis is to analyse investor’s dynamic asset allocation strate-
gies, when introducing a stochastic interest rate, and a non-constant market price
of risk. This is followed by an evaluation of the costs of applying a suboptimal port-
folio allocation strategy. The starting point is the classical static portfolio result
of the mean-variance analysis developed by Markowitz (1952). This is followed by
a demonstration of the intertemporal portfolio problem under constant investment
opportunities from Merton (1969). The problem is solved by dynamic programming
using the Hamiliton-Jacobian-Bellman equation to obtain portfolio result, the so-
called myopic portfolio. The Merton’s portfolio problem serves as foundation for the
extensions in this thesis. In the first extension, a dynamic portfolio choice model
includes the interest rate as state variable, where interest rate is modelled by a
one-factor Vasicek model, which introduces the set of stochastic investment oppor-
tunities. The result of this model is a closed-form solution and is considered for a
CRRA-investor, which shows that investors should hold the myopic portfolio and a
hedging portfolio, which contains assets that are correlated with the state variable,
the interest rate. From the analysis, the model results show that the stock allocation
is time-invariant and decreasing in risk aversion. The bond allocation is increasing
in investment horizon and risk aversion, since bonds through a hedging term is used
to minimize exposure from the interest rate risk. In the second extension, a dynamic
asset allocation model is developed again with a stochastic interest rate as a state
variable, where the market price of risk is an affine function of the state variable. A
closed-form solution is obtained for the optimal portfolio choice and applied for a
CRRA-investor. The result shows that the stock allocation is still decreasing in risk
aversion, but it also starts to vary over time. This is because the stochastic interest
rate enters directly into the portfolio weight of stocks. The bond allocation under
the second extension is different from the former. With the market price of risk as
an affine function of the stochastic interest rate, the bond allocation fluctuates due
to the changes in the interest rate. As the risk aversion increases, the fluctuations
will be smaller, and the two models will converge to the same bond allocation, which
is increasing in the investment horizon. To evaluate the portfolio choice models, two
loss functions are considered. The loss function evaluates a suboptimal investment
strategy under the optimal assumptions in terms of welfare losses for the investor.
It is shown that applying the result from constant investment opportunities under
the assumptions of the first extension leads to marginal welfare losses. However,
using the investment strategy of the first extension under the assumptions of second
extension shows a significant increase in welfare losses for the investor.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Portfolio and consumption choice problems have been centric in the academic part
of financial literature, since the important paper by Markowitz (1952), who intro-
duced the concept of diversification in a tractable mathematical framework to un-
derstand the trade-offs between risk and return. However, the bridge between prac-
titioners and academia were breached, when Merton (1969) analysed the portfolio-
consumption choice problem in a continuous-time multi-period model. Merton de-
rived a closed-form solution that confirmed Markowitz static portfolio result, that
all investors should hold the same risky portfolio, also called the myopic portfo-
lio. Along with this result, investors was ought to consume a fixed fraction of their
wealth. As Merton later did, we also want to challenge precedent models under
constant investment opportunities. In Section 1.1, we elaborate on the problem of
interest, and explain our motivation for this interest. We formulate the thesis state-
ment in detail and state a formal research question, we intend to answer with this
thesis. Section 1.2 sets field of research with introducing the seminal and pivotal
papers in dynamic asset allocation.

1.1 Problem of Interest and Research Question

We have restricted ourselves to only consider a portfolio choice problem instead of
consumption-portfolio optimisation problem. This restriction will allow us to obtain
tractable closed-form solutions in the most instances. We are applying the analogy
of an institutional investor, since it confines us to only consider the utility, which the
investor derives from terminal wealth. Even though this analogy is not completely
characteristic for all investors who have similar investment behaviour, it is helpful
to set the context of a discussion.
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CHAPTER 1. INTRODUCTION

The myopic portfolio result was considered unrealistic by Merton (1973), and lead
him to put forward the concept of stochastic investment opportunities. This con-
cept implied that the opportunities were ought to be correlated with a set of state
variables. His result under the stochastic investment opportunities showed that in-
vestors should invest in a hedge portfolio in addition to the myopic portfolio.

Our motivation is to apply the Merton’s portfolio problem to a specific case, where
we want to model the optimal portfolio choice under a stochastic interest rate as a
state variable. We use a direct method in solving the portfolio choice problem, this
imply that we do not derive a general solution for any stochastic state variable. The
institutional investor analogy will help lead the discussion about how they are af-
fected by the presence of a stochastic interest rate. In addition, we want to evaluate
costs in terms of welfare losses when investors are employing suboptimal investment
strategies under the given set of assumptions.

This thesis wants to investigate the effect of a stochastic interest rate on the invest-
ment opportunities and its influence on the optimal portfolio choice in a continuous-
time setting. This is done by considering the model implications for institutional
investors which is benchmarked against the myopic portfolio result under constant
investment opportunities1. Moreover, this thesis also wants to evaluate the conse-
quences of applying suboptimal investment strategies within this stochastic frame-
work. From this, we can deduce a specific research question:

How does the introduction of a stochastic interest rate affect the optimal
portfolio allocation, and what are the consequences of suboptimal portfolio
allocation in terms of welfare loss for the institutional investors?

To answer this question, we will consider the following five topics

• Main findings from the mean-variance analysis.

• Optimal allocation under constant investment opportunities.

• Extension of the allocation model with a stochastic interest rate.

• Allocation model with market price risk as an affine function of the stochastic
interest rate.

• Welfare losses from suboptimal portfolio allocation.
1Parts of the initial Chapters 2, 3, and 4 are based on the bachelor thesis by Andersen and

Nørgaard (2014)
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CHAPTER 1. INTRODUCTION

To ensure clarity, the models presented in the following chapters are restricted to
the following properties:

• The investor only gets utility from terminal wealth.

• The investor has Constant Relative Risk Aversion(CRRA)

• The investor receives no non-financial income.

• The investment horizon is known.

• The investor can allocate wealth in risky and risk-free assets.

• The time variation is driven by a single state variable.

• The risky assets are subject to time variation.

• There is no parameter uncertainty.

• There are no restrictions in trading assets.

These properties are common among various optimal portfolio problems, and have
been studied extensively. The field of research is covered in the following section
with a brief literature review.

1.2 Literature Review

A review of the literature is necessary in order to understand how the research field
has been shaped through time and which important contributions to the literature
we could build our analysis upon.

The foundation of optimal portfolio choice originates from the modern portfolio the-
ory in the seminal paper by Markowitz (1952), he put forward a conceptual frame-
work for portfolio management, namely the mean-variance analysis. The mean-
variance analysis has the assumption that the investor’s portfolio choice will only
depend on the mean and the variance of their end-of-period wealth. The investor can
with different combinations of these two moments form portfolios, where Markowitz
defines an efficient portfolio to be either a portfolio with the lowest variance for a
given expected return or the highest return for a given variance, depending on the
investor’s risk return preferences. The underlying idea of the theory was that assets
should be chosen only based on inherent characteristics which were unique to the
security. However, the investor should see how the single security co-moved with all
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CHAPTER 1. INTRODUCTION

other securities. If the investor accounted for these correlations among securities,
then it would enable them to construct a portfolio that yielded the same expected
return with less risk than a portfolio created without considering the correlations
between each security, this is the benefits of diversification.

Tobin (1958) suggested an extension to Markowitz’s mean-variance analysis, where
an introduction of a risk-free asset into the investor’s feasible set of allocation choices
actually simplifies the investor’s problem. Tobin showed that if a risk-free aaset ex-
isted and the investor had access to it, then the choice of the optimal portfolio of
risky assets is clear and independent of the preferences of the investor for expected
return and variance. This is Tobin’s Separation Theorem, where the investor’s prob-
lem is simplified into a choice between the portfolio, which maximises the ratio of
expected return subtracted the return on the risk-free asset relative to the standard
deviation, namely the tangency portfolio and the risk-free asset. Thereby will in-
vestors hold a given combination of the tangency portfolio and the risk-free asset
matching their attitude toward risk, because it assumed that investors can lend and
borrow at the risk-free rate. This separation was interpreted as investing in two
funds, where investors could obtain the desired portfolio by holding a combination
of the two, representing the tangency portfolio and the risk-free asset. This separa-
tion theorem is also known as the mutual fund theorem.

Sharpe (1964) and Lintner (1965) contributed to the work of Markowitz and To-
bin. They added two assumptions in order to identify if a portfolio is mean-variance
efficient, and turn the results from mean-variance model about each investor’s in-
vestment behaviour into a testable hypothesis about the trade-off between expected
return and risk in an equilibrium model, the Capital Asset Pricing Model (CAPM).
The first assumption is complete agree, which imply that investors agree on the joint
distribution of assets return from the current period to the next period. This is the
true distribution, which imply that the distribution actually generates the asset re-
turns. The second assumption is unlimited borrowing and lending at the risk-free
rate, which does not depend on the amount. These assumptions insure that all
investors will have same feasible set of efficient portfolios, and therefore will all use
the tangency portfolio with the risk-free asset. Under these CAPM assumptions,
the tangency portfolio is the market portfolio, and the risk-free rate is set to clear
the market for borrowing and lending along with the prices of the risky assets. The
market portfolio must be on the minimum variance frontier, if the markets are to
clear.

4
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Moving away from single-period models into a multi-period model of the portfolio
problem, where the investment and consumption problem is solved simultaneously
in a continuous-time formulation. This field was pioneered by the publications from
Merton (1969, 1971, 1973) and Samuelson (1969). Merton’s primary result of the
portfolio problem in the continuous-time model is an optimal investment strategy,
which is independent of the time horizon of the investor, and this aligns with the
Markowitz-Tobin discrete mean-variance rules. This is done under the assumptions
of log-normality of the distribution for assets prices instead of a normal distribution,
and with a more general utility function than the quadratic utility function, which
is used in mean-variance analysis. Similar to the myopic case of the mean-variance
result, a higher risk aversion would lead to a lower fraction of wealth invested in tan-
gency portfolio in the continuous-time model. The portfolio result in Merton (1973)
separates itself from the single-period model, since it includes intertemporal hedging
portfolios, which the investor uses to hedge her portfolio against shocks to the state
variables. Samuelson (1969) considers a multi-period problem, which should corre-
spond to a life-cycle problem with consumption and investment decisions both to
be incorporated. He finds that the optimal fraction of wealth to invest in risky as-
sets is constant under similar assumptions to Merton (1969). The life-cycle problem
with consumption and investment produces the same result as Markowitz’s static
mean-variance result.

This thesis focuses on how a stochastic term-structure affects an investor’s optimal
portfolio choice in a continuous-time setting, where the investor only derives util-
ity from terminal wealth. This area within dynamic asset allocation is particularly
well-established, where we choose a few selected papers to lay the foundation. The
predominately approach of solving these continuous-time consumption-investment
choice problems is applying stochastic dynamic programming. This has been used
in papers such as Sørensen (1999), Brennan and Xia (2000), and Munk et al. (2004),
who also consider the problem under a stochastic interest rate. Sørensen (1999) uses
a Vasicek (1977) model to describe the dynamics of interest rate, but Brennan and
Xia (2000) consider the dynamics to be modelled by a two-factor Hull and White
(1996) model. Both papers show that the wealth allocated in stocks and bonds is
increasing in the expected returns, and the hedging portfolio is a zero-coupon bond
with expiration at the investment horizon. The myopic portfolio is still prevalent
under these models, since the stock allocation is constant over the investment hori-
zon because equity is not a part of the hedging portfolio. If the bond’s maturity
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is equal to the investment horizon, the optimal allocations are shown to be inde-
pendent of investment horizon. The stock allocation is decreasing in risk aversion,
while bond and cash allocations are increasing in it. In another paper, Munk et al.
(2004), they look at the dynamic asset allocation problem under the assumptions of
mean-reversion in returns, stochastic interest rates, and uncertainty about inflation.
They consider an investor who wants to maximise her expected utility from real
terminal wealth. In the solution of this they obtain three hedging terms, where an
optimal hedge against changes in the interest is done by only investing in the bond,
since it is perfectly negatively correlated with short interest rate. The optimal hedge
against changes in the expected excess return of equity is obtained by only investing
in stocks, because of the perfect negative correlation between processes of the stock
and excess return. The optimal hedge for inflation is a combination of the stock and
the bond.

Kim and Omberg (1996) model the portfolio choice problem differently, where they
have the risk premium for a risky asset as the state variable. It is assumed to follow
an Ornstein-Uhlenbeck process, and the risk premium is affine in the state vari-
able. They find closed-form solutions to a portfolio choice problem with stochastic
investment opportunities, where the investors have hyperbolic absolute risk aver-
sion (HARA) and only derives utility from terminal wealth. Wachter (2002), on
the other hand, considers a slightly different version of Kim and Omberg’s portfolio
choice problem. The investors are now modelled with constant relative risk aversion
(CRRA) utility, but derive utility from both intermediate consumption and termi-
nal wealth. Liu (2007) provides a general model that incorporates the aspects of
Wachter, and Kim and Omberg while having special cases with time-varying volatil-
ity and inflation uncertainty as in Munk et al. (2004).

Evaluating the investor’s investment strategies which the portfolio models have pro-
vided are important. Because it gives an understanding of how well or by how much
an optimal investment strategy outperforms a suboptimal strategy. This issue is
addressed in Larsen and Munk (2012), where they focus on the costs of suboptimal
asset allocation. They provide a general theoretical framework to evaluate subopti-
mal investment strategies under the assumptions of the optimal investment strategy.
Larsen and Munk do three applications of this general framework, which are focused
on (i) interest rate risk, (ii) stochastic stock price volatility, and (iii) investing in
value stocks and growth stocks. Larsen (2010) considers a portfolio choice problem
with a dynamically complete international markets, and finds the wealth loss for

6
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an investor who do not include international allocation in the investment strategy.
This brief review of literature entails an area which is vast in all its dimensions. In
this context, we want to quote Wachter (2010):

"Ultimately, the goal of academic work on asset allocation is the con-
version of the time series of observable returns and other variables of
interest into a single number: Given the preferences and horizon of the
investor, what fraction of her wealth should she put in stock? The aim is
to answer this question in a “scientific” way, namely by clearly specifying
the assumptions underlying the method and developing a consistent the-
ory based on these assumptions. The very specificity of the assumptions
and the resulting advice can seem dangerous, imputing more certainty to
the models than the researcher can possibly possess. Yet, only by being so
highly specific, does the theory turn into something that can be clearly de-
bated and ultimately refuted in favor of an equally specific and hopefully
better theory."

From this quote, we continue by introducing institutional investors and their pref-
erences towards risk, before we begin with allocation models, which are to answer
our research question.

7
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Chapter 2

Fundamental Theoretical Concepts

This chapter provides the fundamental theoretical building blocks underlying the
area of dynamic asset allocation literature which is important to understand in or-
der to do financial modelling. This is coupled with an formal introduction of the
institutional investor types and their significant role in the financial sector. We have
chosen to limited our problem of interest to only considering institutional investors
rather than considering a private investor, which has modelling implications for the
utility maximisation. The economic problem specifies itself to only consider util-
ity maximisation over terminal wealth, instead of an economic problem which also
includes consumption streams, and for example labour income over an investment
horizon.

This chapter is organised as follows. Section 2.1 provides a formal description of the
institutional investor and motivates why the institutional investor is of interest for
financial modelling, while Section 2.2 introduces the concepts of risk aversion and
utility functions.

2.1 Description of Institutional Investors

Institutional investors are organised as legal entities. According to Çelik and Isaks-
son (2014), the legal form varies across the institutional investors as well as their
purposes, which could be from a profit maximising joint stock company to a limited
liability partnerships (i.e. private equity funds), and in some cases sovereign wealth
funds. Institutional investors may act independently or as part of a larger group of
banks and insurance companies, which is the case of a mutual fund. Institutional
investors and asset managers are often used synonymously, implying an institution
that both manages and invests, but there are exceptions to this. U.S. Securities

8



CHAPTER 2. FUNDAMENTAL THEORETICAL CONCEPTS

and Exchange Commission (2015) defines an institutional investor as an entity that
exercises investment decisions over $ 100 million or more in securities.

The paper by Çelik and Isaksson (2014), provides evidence that pension funds,
investment funds, and insurance companies in the OECD countries have increased
their assets under management from $36 trillion in 2000 to $73.4 trillion in 2011.
The largest increase of these three categories is seen in investment funds as they
have increased by 121%. This made the relative share of total assets under man-
agement held by institutional investors increase from 37% in 2000 to 40% in 2011.
However, both pension funds and insurance companies invest in mutual funds which
are part of the investment fund category. In conclusion, the institutional investors
role as financial intermediaries have a great influence on the investment strategies
over recent years along with deregulation and globalisation of financial markets. As-
set managers are also included under the general heading of institutional investors,
where they have the day-to-day responsibility of managing investments. The capital
under their management is provided by individuals and most types of institutional
investors, implying asset managers invest on the behalf of pensions funds and mutual
funds according to their investment policy. According to Investment and Pension
Europe (2016), the top 400 asset managers have a total of e50.3 trillion worth of
assets under management, where BlackRock is the company with the largest amount
of assets under management, specifically e3,844,383 million.

Table 2.1 highlights the top asset managers in a global context as well as in a Danish
context. This is aggregated numbers for assets under management, that illustrates
the non-trivial sums of capital allocated by the institutional investors. However,
doing a finer segmentation than overall assets under management can show the
distribution of capital invested by the institutional investors. This will show that
specific asset managers are favoured depending on the type of investment.

Institutional Investors and asset managers take part in the economic development
and growth of the global economy. They are at the same time private companies
which are interested in profit maximising and yielding high returns for the share-
holders. However, these companies can of course also be focusing on other aspects
in their investment strategies like environmental issues and corporate social respon-
sibility, but their core business strategy still comes down to generate a high return
to their shareholders.

9
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Denmark AUM em Global AUM em

Nordea IM 173,873 BlackRock 3,844,382.90
Danske Capital 107,413 Vanguard AM 2,577,380.10
PFA Pension 54,724 State Street Global Advisors 2,023,149
Nykredit AM 17,917 BNY Mellon IM EMEA 1,407,164
BankInvest 13,380 J.P. Morgan AM 1,266,805

Table 2.1: Asset under management (AUM) for the top 5 worldwide and Danish asset managers. Source:
Investment and Pension Europe (2016) - Table: Top Global AUM Table 2015 and Danish Asset Managers
Table 2015. Notes: IM:Investment Managment, AM: Asset Management.

To emphasise the large amounts of capital invested by the institutional investors,
Çelik and Isaksson (2014) show that OECD countries like the Netherlands, Switzer-
land, Denmark, and the United Kingdoms have assets under management for more
than twice their GDP. In countries such as Mexico and Czech Republic it however
accounts for less than their GDP.

Due to their size and the goal of maximising return it is of the utmost importance
how institutional investors conduct their investment strategies, and this is exactly
what this thesis intends to investigate. What is the optimal investment strategy
under a set of relaxed assumptions, and what are the costs to the investors if they
choose an suboptimal investment strategy? The next sections will look into how the
institutional investors derive utility and how their risk-taking takes form.

2.2 Risk Aversion and Utility

To model a dynamic asset allocation problem a measure of investor’s attitude to-
wards risk is required in order to rank portfolio choices. An investor’s attitude
towards risk can be represented by a utility function, u(W ), which contains all in-
formation about the investor’s preferences and attitude towards risk. The utility
function must incorporate that it is increasing in terminal wealth.

Furthermore, the different attitudes towards risk should be modelled into the utility
function. This idea is normally presented by a fair game as in Bernoulli’s Saint
Petersburg Paradox described in Seidl (2013). The paradox describes how a risk-
neutral investor will be indifferent between the expected value of the game and a
certain payment of the same amount. On the other hand, a risk-averse investor
will accept a certain payment, the certainty equivalent, which is smaller than the
expected payment from the game, but certain. How large the certain payment must

10
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be to make the investor indifferent, depends on the level of risk aversion and the
uncertainty in the game.

The difference between the expected value from the game and the certainty equiva-
lent, when the investor is indifferent between those two, is the risk premium. It must
compensate the risk-averse investor for the risk of the game. The risk premium will
increase as the uncertainty in the game becomes larger, and the certainty equivalent
thereby becomes smaller1.

Traditionally in financial economics, investors are modelled with being risk averse,
implying that investors should be compensated for their risk-taking. The utility
function of wealth for a risk-averse investor must therefore be concave. Mathemati-
cally this implies that u′(W ) > 0 and u′′(W ) < 0, where utility is strictly increasing
in wealth, but increasing at a decreasing rate. The effect of the concave utility func-
tion shows that the risk averse investor will have a higher weight on losses than on
winnings due to the positive but decreasing marginal effect.

In order to quantify the risk aversion, the Arrow-Pratt risk measures are used.
Arrow (1970) defines two measures; the first measure is the absolute risk aversion
(ARA), which quantifies the aversion towards risk to a monetary amount and is
defined as follows

ARA(W ) = −u
′′(W )

u′(W )
. (2.2.1)

The other measure is relative risk aversion (RRA), which is defined by taking wealth
of the investor into consideration

RRA(W ) = W · ARA(W ). (2.2.2)

The relative risk aversion indicates the willingness of an investor to avoid a risky pay-
ment of a given size relative to the level of wealth. The established literature within
this field tends to model investors with constant relative risk aversion (CRRA). To
be more specific in the discussion of relative and absolute risk aversion, we will
have to assume a form of the utility function. One could start a long and tedious
discussion about the different kinds of utility functions and their advantages and dis-

1In some special cases such as insurance the certainty equivalent will be larger than the expected
value Hiller et al. (2012).
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advantages2. We simply move on by assuming the isoelastic power utility function
that is defined as

u(W ) =
W 1−γ

1− γ
,

which is commonly used in the theory of asset pricing. It is a function of the in-
vestor’s wealth, W , and the risk aversion parameter, γ. It exhibits the requirements
for a risk averse investor with a concave utility function as u′(W ) = W−γ > 0 and
u′′(W ) = −γW−γ−1 < 0. With the definition of the utility function and the mea-
sures of risk aversion from Equation (2.2.1) and Equation (2.2.2). The absolute and
relative risk aversion for this specific investor are

ARA(W ) =
γ

W

RRA(W ) = γ.

From these risk measures of our specific investor assumptions, it is seen that relative
risk aversion is constant when γ > 0. The absolute risk aversion is decreasing as
the initial wealth is increasing. These measures of risk aversion makes an investor
with an initial wealth of $1,000 less averse about betting $10 than an investor with
initial wealth of $10. This seems as a fair assumption as the bet is a much larger
fraction of the wealth for the second investor than for the first investor.

We will use this in modelling our problem in the following chapters. When con-
sidering the model with constant investment opportunities and the following model
assuming a stochastic interest rate, the utility function will be used as a special case.
From the risk aversion measures above, the special case will represent the allocation
for an investor with decreasing absolute risk aversion, but a constant relative risk
aversion. The utility function is an necessary part of the portfolio allocation problem
as the investor is interested in maximisation of the utility.

2For a discussion of utility functions see for example Chapter 1 of Pennacchi (2008)
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Chapter 3

Mean-Variance Analysis

In this chapter the one-period mean-variance analysis described by Markowitz (1952)
is introduced. This chapter will mainly be based on Flor and Larsen (2011), but
the focus here is on the portfolio allocation results and the intuition rather than
the assumptions. This model serves as a good intuitive starting point for the effect
of risk aversion and portfolio allocation. In Section 3.1 the model assumptions are
discussed, while Section 3.2 continues with the general portfolio allocation result,
and finally consider two specific cases of utility functions.

3.1 Introduction to the Model

Without specifying the utility function at this point, the investor is still assumed to
be risk averse implying that the utility is increasing in wealth, but at a decreasing
rate, u′(W ) > 0 and u′′(W ) < 0. The investor can allocate wealth to either risky
assets or a risk-free asset. The risk-free asset will have a certain return equal to
the risk-free interest rate r. The risky assets will on the other hand not have a
simple value for their return. The returns for the risky assets will be normally
distributed, R ∼ N(µ,Σ), where the return vector R contains d risky assets. The
expected returns are given by the vector µ and the variance-covariance matrix Σ.
The investor’s terminal wealth, WT , is the product of the initial wealth, W0, and
the returns from risk-free and risky assets

WT = W0[1 + r + π>(µ− r1)]. (3.1.1)

In Equation (3.1.1), π> is introduced, which is the vector with the weights in the d
risky assets. The vector is defined as π> = (π1, ..., πd). These portfolio weights are
important, as they are what the portfolios must be optimised with respect to.
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3.2 The Optimisation Problem

In the mean-variance analysis the efficient portfolios are the ones that minimise the
variance for a given return with the constraint that the portfolio weights must sum
to one. Mathematically, the minimization problem is

min
1

2
π>Σπ

s.t. π>µ = µ̄,

π>1 = 1.

Given the two constraints, the minimisation can be solved by the use of Lagrange.
The different portfolios for different given levels of return will produce an efficient
frontier. The efficient frontier will be a hyperbola and consists of the portfolios that
minimise the variance for a given return. The frontier consists of the most efficient
combinations of assets.

A second frontier can be generated by introducing the risk-free asset, which the
investor can combine in a portfolio with the risky assets. The efficient frontier from
these portfolio will be a straight line. The straight line will at a certain point be
tangent to the first efficient frontier from the case without a risk-free asset. The
efficient frontiers; the case with and the case without a risk-free asset are illustrated
in Figure 3.1. It also shows an example of the tangency portfolio and inefficient
portfolios which are located below the efficient frontiers. At the tangency point,
investors can by the use of only risky assets produce the same return and variance
as in the case with a risk-free asset. The tangency portfolio can mathematically be
defined by maximising the excess return relative to the variance and will be given
as

πtangency =
Σ−1(µ− r1)

1>Σ−1(µ− r1)
. (3.2.1)

The method to calculate the tangency portfolio leads to two important concepts
about the tangency portfolio. First, it maximises the Sharpe-ratio which Sharpe
(1966) introduced. Secondly, it is also linked to the famous Capital Asset Pricing
Model by a direct link to the security market line where it has the value β = 1.
The result is that the investor will use the tangency portfolio as part of a two-fund
separation, where the investor combines an allocation in the risk-free with the rest
of the wealth allocated in the tangent portfolio.
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Tangency Portfolio
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Figure 3.1: Efficient frontiers for the case with and without a risk-free asset. The blue line indicates the efficient
portfolios, when there is no risk-free asset. The red line is the frontier, when there is a risk-free asset. The two dots
without a label are indicating inefficient portfolios, whereas the two portfolios with labels indicate the tangency
portfolio and the global minimum-variance portfolio.

The optimal combination between the two funds depend on the investor’s utility
function. In Section 2.2, we argued for using a utility function which would have
CRRA. Unfortunately, this will not give a reasonable result in the mean-variance
analysis. By the assumption of such a utility function, the investor will allocate
all her wealth in the risk-free assets due to the probability of negative wealth, as a
consequence of the normally distributed risky returns. An alternative is to assume
a utility function, which will have constant absolute risk aversion (CARA) instead.
This will, depending on the assumed parameters, make the investor allocate wealth
in both of the two funds.

Besides the issues related to a realistic utility function with CRRA, the mean-
variance analysis is a good starting point. It shows that the investor must combine
the different assets to maximise the terminal wealth. Figure 3.1 shows how differ-
ent levels of risk aversion, and thereby different locations on the straight efficient
frontier, will yield different levels of return and variance.
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Chapter 4

Dynamic Model with Constant
Opportunities

To consider a more realistic model, we will go from the one-period mean-variance
model into a dynamic model. This will make the wealth and its elements different.
There will instead of a simple wealth formula be a description of wealth dynamics,
which makes the calculation of the optimal allocation more complex. The chapter
is based on Chapter 6 of Munk (2013).

As for the mean-variance analysis we will start by describing the different wealth
elements before setting up the investors wealth. This is presented in Section 4.1. Af-
terwards we calculate the optimal allocation at a general level in Section 4.2, which
we then use in Section 4.3 for the specific case of an investor with CRRA-utility.

4.1 Investor’s Wealth

New assumptions are introduced for both the risk-free asset and the risky assets,
respectively bonds and stocks. The asset types are presented individually and then
combined in an expression for the investor’s total wealth.

4.1.1 Bonds

For the risk-free, the return is still assumed to be the constant interest rate r. In
this dynamic model the interest rate is assumed to be continuously compounded
and the value of $ 1 today will then be

erT ,
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at time T , when the money has been invested in the risk-free asset for T years.

4.1.2 Stocks

Stocks serve in this model as the risky assets in which the investor can potentially
invest. For this multi-period model a process to describe the development for the
price of the stocks is needed. The stock returns are initially discretely defined to
better understand the steps. First we define the stock price at time t as St. The
return is given as

Rt+∆t =
St+∆t − St

St
= µ∆t+ σεt+∆t

√
∆t, (4.1.1)

from where we can see how the return will be the change in price of the stock over
the time interval ∆t relative to the price at time t. The return is dependent on
the expected return µ, the independent shocks to the economy ε, and the stock
volatility σ. However, moving from discrete time into a model in continuous time
implies ∆t→ 0. The returns in continuous time are thereby written as

dSt
St

= µdt+ σdzt. (4.1.2)

The expression is almost similar, but the assumption of a continuous change in prices
will be more reasonable. According to Hull (2012) this is not only a common way
to model the price; the modelling is also provides a good fit. For example are the
continuous price changes used in the Black-Scholes-Merton model.

In Equation (4.1.2) we use dzt as the expression for zt+∆t − zt = ε
√

∆t as ∆t → 0.
We assume dzt to be a Brownian motion. For this to be true it must fulfil the
following four assumptions, which are given in Øksendal (2003). For consistency we
do however follow the notation as in Appendix B in Munk (2013). The assumptions
are:

1. z0 = 0,

2. zt′ − zt ∼ N(0, t′ − t), for all t, t′ ≥ 0, and t′ > t,

3. zt1−zt0 , . . . , ztn−ztn−1 are mutually independent for all 0 ≤ t0 < t1 < . . . < tn,

4. z has continuous paths.

Then is dzt normally distributed and the stock price will follow a Markov process
and therefore be independent of the past as it is memoryless.
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Itô’s lemma

The stock prices could in the mean-variance analysis potentially take on negative
values. That is unrealistic and changed in this model. We will by the use of Itô’s
lemma find the dynamics of the stock prices, from where we can define the mean
and variance of the returns.

Following Øksendal (2003) for a process as dxt = µtdt + σtdzt, the function yt =

g(xt, t) has the dynamics:

dyt =
∂g

∂t
dt+

∂g

∂x
dxt +

1

2

∂2g

∂x2
(dxt)

2.

Using this formula for the description of the stock returns in Equation (4.1.2), the
stock prices can be shown to be log-normally distributed. The stock price will then
be unable to take on negative values, which is a more realistic assumption than the
alternative from the mean-variance analysis.

Assume g(S, t) = ln(S). This will give the partial derivatives

∂g

∂t
= 0,

∂g

∂S
=

1

St
and

∂2g

∂S2
= − 1

S2
t

.

We can then substitute the partial derivatives into the lemma from above. After-
wards it must be simplified. This is done by the use of a previous result, where
dz is said to be normally distributed. Again with reference to Øksendal (2003) it
can be more precisely defined as dzt ∼ N(0, dt). From that we can use the rules
(dt)2 = dt · dzt = 0 and (dzt)

2 = dt. The dynamics become

d lnSt =
∂g

∂t
dt+

∂g

∂S
dSt +

1

2

∂2g

∂S2
(dSt)

2

= 0dt+
1

St
(µStdt+ σStdz)− 1

2

1

S2
t

(µStdt+ σStdz)2

=

(
µ− 1

2
σ2

)
dt+ σdz.

This is the dynamics for the logarithm of the stock price at time t. To show the dis-
tribution we will use d lnSt = lnSt+∆t− lnSt, where the relative return in Equation
(4.1.2) and Equation (4.1.1) is multiplied with the stock price St. When considering
discrete time for the definition of the drift on the left-hand side, we must also change
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the definition on the right-hand side. The drift is then

ln(St+∆t/St) =

(
µ− 1

2
σ2

)
∆t+ σ(zt+∆t − zt),

lnSt+∆t ∼ N

(
lnSt +

(
µ− 1

2
σ2

)
∆t, σ2∆t

)
where lnSt+∆t afterwards is isolated and defined as a normal distribution. For the
terminal stock price it is written as

lnST ∼ N

(
lnS0 +

(
µ− 1

2
σ2

)
T, σ2T

)
,

which shows that the stock price is no longer normally distributed. The stock price
is instead log-normally distributed and it is therefore impossible for it to become
negative, which is the more realistic. From this we find the mean and variance for
the returns, ln(ST/S0). The mean is given by

E[ln(ST/S0)] = (µ− 1

2
σ2)T

and the variance

Var[ln(ST/S0)] = σ2T.

For calculations of the stock price dynamics, or mean and variance of the returns,
we refer to Appendix A.1.

4.1.3 Total Wealth

In Section 4.1.1 and 4.1.2 the two wealth elements have been described. These terms
will be gathered in a term for the total wealth. The first step is to define the wealth
as the sum of d assets multiplied with their individual price. M i

t−∆t is our number of
asset i from time t−∆t to t and Pt is the price of the asset at time t. By summation
we then have the the wealth at time t:

Wt =
d∑
i=0

M i
t−∆tP

i
t . (4.1.3)

As we here work in a discrete set-up, we cannot have any change of assets between
periods. There is no other income than initial wealth, but likewise there is no outflow
of wealth before the terminal period. The only reason for changes in wealth between
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periods must therefore be changes in prices. The changes in wealth between periods
can therefore be written as

Wt+∆t −Wt =
d∑
i=0

M i
t (P

i
t+∆t − P i

t ).

Changes in prices must more specifically be a consequence of the returns. We want
to rewrite the wealth changes by the use of returns instead. We therefore need some
amounts which we can multiply with the risk-free and risky return assets. By the
definitions from Equation (4.1.3) define element θit = M i

tP
i
t as the value invested in

asset i. The amount in a risk-free asset is defined as θ0
t and for the risky assets the

vector is
θt = (θ1

t , · · · , θdt )>.

To rewrite the changes in wealth use the previous definitions of returns for both
bonds and stocks. The return on the risk-free asset is as before, r. The return for
risky assets is now written in matrix-form

Rt+∆t = µ∆t+ σεt+∆t

√
∆t,

which is based on Equation (4.1.1). Bold notation, x, indicates vectors, and under-
lining, x, indicates a matrix. The wealth changes are rewritten as

Wt+∆t −Wt = θ0
t r∆t+ θ>t (µ∆t+ σεt+∆t

√
∆t).

The changes in wealth are due to returns on risk-free and risky assets. The terms
in the discrete description can be rearranged into continuous time by ∆t → 0. We
will thereby have the continuous description

dWt = [θ0
t r + θ>t µ]dt+ θ>t σdzt. (4.1.4)

The wealth dynamics are to be changed again. Equation (4.1.4) is changed such
that it depends on actual portfolio weights. It thereby presents the risk-free return
and the market price of risk that shall compensate investors for taking risk. First,
to define the market price of risk use the alternative description of price dynamics
for the risky assets

dPt = diag(Pt)[(r1 + σλ)dt+ σdzt], (4.1.5)
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with diag(Pt) being a diagonal matrix of the prices. This introduces a new ex-
pression, (r1 + σλ), where we have the risk-free interest rate and σλ = µ − r1.
In the second term we isolate λ and then have the market price of risk given as
λ = σ−1µ − r1. Secondly, the portfolio weights are defined as the relative amount
of the total wealth which is allocated in risky assets. In vector-form this is

πt =
θt
Wt

.

The final definition of the wealth dynamics under the assumption of constant in-
vestment opportunities is

dWt = Wt[r + π>t σλ]dt+Wtπ
>
t σdzt. (4.1.6)

This definition is central for the rest of the chapter. The investor’s utility is directly
dependent on maximising the terminal wealth, and we want to do this maximisation
with respect to the portfolio weights, π, for risky assets. After including the portfolio
weights in the definition of the wealth dynamics, we are therefore able to move on
to the maximisation problem for the institutional investors.

4.2 Utility Maximization

Two different asset types have been gathered into a combined expression for the
investor’s wealth dynamics. The investor’s maximization problem is then one step
closer the solution for optimal allocation. For maximising the utility, there are still
two steps left. First, the maximisation of the investors utility is done at a general
level without specifying the utility function. It is however restricted to only focusing
on terminal wealth as defined in Section 2.2. The final step is to define the utility
function and use the general solution of the maximisation problem to define the
optimal portfolio weights for the investor.

4.2.1 Utility Maximization

The investor wants to maximise the expected utility, where utility is only a function
of the investor’s terminal wealth as previously specified. We therefore have the
maximization problem

J(W, t) = sup
π

EW,t [u(WT )] .
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As for the dynamics of the stock, Itô’s lemma must also be applied to this max-
imization problem. These dynamics will be the Hamilton-Jacobi-Bellman (HJB)
which must be solved for the optimal portfolio weights π in order to maximise the
expected utility. By the use of Itô’s lemma and substitution of the wealth dynamics,
the HJB equation will be

0 = sup
π

{
∂J

∂t
(W, t) + rWJW (W, t) +

1

2
JWW (W, t)W 2π>σσ>π +WJW (W, t)π>σλ︸ ︷︷ ︸

Portfolio weight dependent

}
.

This HJB equation must be solved under the terminal condition J(W,T ) = ū(W ).
We maximise with respect to the portfolio weights, and the interest is therefore in
the two terms on the right-hand side which are dependent on the portfolio weights.
Following the literature these are defined as

LπJ(W, t) = sup
π

{
WJW (W, t)π>σλ+

1

2
JWW (W, t)W 2π>σσ>π

}
. (4.2.1)

Next step is to differentiate with respect to the portfolio weights and obtain

WJW (W, t)σλ+ JWW (W, t)W 2σσ>π = 0,

where we afterwards isolate π

− JW (W, t)

JWW (W, t)W
(σσ>)−1σλ = π.

In this, the multiplication of the variance-covariance matrices is reduced such that
the general result for optimal portfolio weights are given as

π = − JW (W, t)

JWW (W, t)W
(σ>)−1λ. (4.2.2)

For a meaningful interpretation of the portfolio weights, a definition of the utility
function is needed, which must be verified as a solution. Two comments can be
made at this point; The fraction is the inverse of the relative risk aversion from
Section 2.2, and the expression (σ>)−1λ makes the investor follow the result from
the mean-variance analysis in Chapter 3 with two-fund separation. The wealth in
risky assets will be allocated among them according to the tangency portfolio

πtangency =
(σσ>)−1(µ− r1)

1>(σσ>)−1(µ− r1)
.
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It is important to notice that even though the results are very similar, the assump-
tions are different.

The general descriptions of the optimal portfolio weights are then substituted back
into Equation (4.2.1)

LπJ(W, t) = WJW (W, t)

(
− JW (W, t)

JWW (W, t)W
(σ>)−1λ

)
σλ

+
1

2
JWW (W, t)W 2

(
− JW (W, t)

JWW (W, t)W
(σ>)−1λ

)
σσ>

(
− JW (W, t)

JWW (W, t)W
(σ>)−1λ

)
,

and it is then reduced to the following expression

LπJ(W, t) = −1

2

(
JW (W, t)2

JWW (W, t)
‖λ‖2

)
.

The reduction of the expression is shown in more steps in Appendix A.2. The two
terms on the right-hand side of the HJB equation, which are dependent on π, are
maximised and substituted back into the equation which is then

0 = −1

2

JW (W, t)2

JWW (W, t)
‖λ‖2+

∂J

∂t
(W, t) + rWJW (W, t). (4.2.3)

To maximise the investor’s utility, we must as the next step define a utility function,
which can solve the HJB equation. After verifying it to be a solution to the HJB
equation it can be used to give a more specific definition of the portfolio weights,
which were defined in Equation (4.2.2).

4.3 Findings for a CRRA-investor

As in Section 2.2, we follow the existing literature and suggest the isoelastic utility
function

J(W, t) =
g(t)γW 1−γ

1− γ
(4.3.1)

as a potential solution to the HJB equation in (4.2.3). It follows our previously
defined criteria for a utility function; it only gives utility from terminal wealth, it
is concave in wealth, and it can be shown to give the investor constant relative risk
aversion. The partial derivatives are calculated in Appendix A.3, but in this case
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only the following three are necessary

JW (W, t) = g(t)γW−γ

JWW (W, t) = −γg(t)γW−γ−1 (4.3.2)
∂J

∂t
(W, t) =

γ

1− γ
g(t)γ−1g′(t)W 1−γ.

By substitution of the three derivatives, the HJB equation will become

0 = −1

2

(g(t)γW−γ)2

−γg(t)γW−γ−1
‖λ‖2+

γ

1− γ
g(t)γ−1g′(t)W 1−γ + rWg(t)γW−γ, (4.3.3)

which must be fulfilled with the terminal condition g(T ) = 1. Equation (4.3.3) can
be reduced. Create two terms within a parenthesis and take W 1−γg(t)γ−1 outside
the parenthesis. It will not make sense for neither W 1−γ nor g(t)γ−1 be to zero.
Therefore must the two terms

0 =

(
−r − 1

2γ
‖λ‖2

)
g(t)− γ

1− γ
g′(t),

which are left on the right-hand side of the HJB equation, have to be equal to zero.

Define the constant A =
1− γ
γ

(
−r − 1

2γ
‖λ‖2

)
such that the function g(t) from

the defined utility must solve the ordinary differential equation

g′(t) = A · g(t), (4.3.4)

with the terminal condition g(T ) = 1. For this case with an investor, who only gets
utility from terminal wealth, the ordinary differential equation is solved by

g(t) = exp {−A(T − t)} .

This solution solves the ordinary differential equation, and the partial differential
equation is thereby also solved. The suggested utility function from Equation (4.3.1)
is therefore a solution to Equation (4.2.3) and we can continue by considering the
optimal portfolio. Recall the general definition of the portfolio weights from Section
4.2.1:

π = − JW (W, t)

JWW (W, t)W
(σ>)−1λ.

24



CHAPTER 4. DYNAMIC MODEL WITH CONSTANT OPPORTUNITIES

Substituting the relevant partial derivatives of the utility function and rearranging
will give

Π(W, t) =
1

γ
(σ>)−1λ. (4.3.5)

This is the optimal portfolio weights of wealth to be allocated in risky assets for an
investor, with utility from terminal wealth only, and who has constant relative risk
aversion.

4.3.1 Implications for a CRRA-investor

This model will serve as our benchmark case in the world of dynamic portfolio mod-
els. It is the most simple case because of the assumption about constant investment
opportunities.

For institutional investors it is clear how they should invest. As in the explana-
tion of the intuition under the mean-variance analysis, the investor will have to
allocate wealth between a risk-free asset and the tangency portfolio. Under both
models the tangency portfolio is used, but the use of the dynamic model makes it
possible to specify an allocation for the CRRA-investor between risk-free and risky
assets, which was not possible in the previous model.

Realism of assumptions and results are the main reasons for going from a simple
one-period model into a dynamic multi-period model. Assuming constant invest-
ment opportunities may not be very realistic. This is the topic for the next chapter,
where more specifically the assumption of a constant interest rate is relaxed.
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Chapter 5

Dynamic Model with a Stochastic
Interest Rate

The concept of constant investment opportunities are illusory in the eyes of a finan-
cial professional. In this chapter, we therefore relax one of the underlying assump-
tions by making the interest rate stochastic.

In Section 5.1, we discuss why you should let the interest rate be stochastic and in
Section 5.2, we introduce the Vasicek model that is used to determine the stochastic
behaviour of interest rate. Section 5.3 deals with the new price dynamics under the
stochastic interest rate. In Section 5.4 the results under the new model are calcu-
lated, but we do not introduce any specific utility function before going through
the case of a CRRA-investor in Section 5.5. The allocation results are analysed in
Section 5.6, and related to the real world in Section 5.7. Finally, Section 5.8 relates
the findings to other interest rate models.

5.1 Motivation for a Stochastic Interest Rate

We choose to introduce a stochastic interest rate as both the nominal and the real
interest rates are known to vary across time. In Figure 5.1, it is shown how the
interest rate has behaved for Treasury Bonds with different maturities, respectively
for 3 month, 10 years and 30 years. Incorporating the feature of a stochastic interest
rate into the model for optimal portfolio choice imply relaxing the assumption re-
garding the constant interest rate, hence moving away from the constant investment
opportunity set and toward the stochastic investment opportunity set.
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Figure 5.1: The figure presents the daily interest rates for three different U.S. Treasury Bonds from 1985 to 2015,
which are not seasonally adjusted. Data source: FRED: DTB3, DGS10, and DGS30.

5.2 The Stochastic Interest Rate

In the seminal paper by Merton (1969), he looks into how an investor chooses the
optimal investment strategy, specifically how many shares of which security the in-
vestor should over the given investment horizon to maximise expected utility from
terminal wealth. In Merton’s problem, essentially the investor can invest in a riskless
money market account and n different stocks with different degrees of risk, however,
a strong assumption in Merton’s model is that the interest rates are deterministic.
We want to introduce a stochastic process for the interest rate, and compare the
analytical results to the case with constant investment opportunities.

We follow the existing literature such as Merton (1973) and Vasicek (1977) when
modelling the stochastic interest rate, where the short rate is assumed to follow an
Ornstein-Uhlenbeck process, which satisfies the stochastic differential equation:

dxt = θ[µ− xt]dt+ σdWt
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where θ > 0, µ > 0 and σ > 0 are parameters and Wt denotes a Wiener process.
Moreover, the process has the characteristics of mean-reversion, implying that over
time the process will drift towards the long-term mean.

We analyse portfolio problems in which the interest rate dynamics of the economy is
described by the Vasicek model. In Vasicek (1977) the terminology is different, but
it is here aligned with the notation used so far. The Vasicek model is a one-factor
short rate model since all the behaviour of the interest rate is only determined by
the market risk. The Vasicek model determines the instantaneous interest rate by
the following stochastic differential equation:

drt = κ[r̄ − rt]dt− σrdz1t. (5.2.1)

For the process it is here assumed that κ, r̄ and σr are constant and positive. Fur-
ther, mean-reversion is expected for rt, which makes rt 6= r̄ lead to expected changes
in the short rate. If the change will be upwards or downwards depends on the devi-
ation from the mean. The mean-reversion in the process is due to the drift κ[r̄− rt],
which makes the process work towards the mean r̄. The second term, σr, in the
process is the stochastic element which leads the fluctuations around the long term
mean r̄.

In the literature the process is criticized for making the future short rate normally
distributed, which makes it able to take on any negative value. The current mone-
tary policies following the financial crisis in 2008 imply negative short-term interest
rates by national banks in some countries and even the European Central Bank as
presented in articles such as Randow and Kennedy (2015) and McAndrews (2015).
This does however not fully justify the normal distribution as the distribution makes
the short rate potentially take on any negative value. The previously mentioned
properties are illustrated in the Figure 5.2 below, with different initial values and
with parameter values of κ, r̄ and σr.

Figure 5.2 shows a simulation of the short rate paths for the parameters of r0 = 0.03,
κ = 0.03, θ = 0.10, and β = 0.03 for a Vasicek Model. The simulation is conducted
with 10 trails with T = 30, where there is 200 sub-intervals. The expected value of
rt is included along two times the standard deviation to indicate how the short rate
paths behave over time. It is seen there are paths that takes on negative values,
which is not unnatural. Since the Vasicek model is based on a Ornstein-Uhlenbeck
process, and it is likely for this process to generate negative values.
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Figure 5.2: Illustrate simulated short rate paths of Vasicek One-Factor Model. The basic parameter values
r0 = κ = 0.03, θ = 0.10, and β = 0.03

The interest rate process is used in the next section, where it is part of the wealth
dynamics. The stochastic interest rate is included through the bond pricing and
thereby also the bond dynamics.

5.3 New Description of Wealth Elements

A change of an assumption will lead to changes in the model. This section covers the
descriptions of the wealth elements, because they have changed as a consequence of
going from a constant to a stochastic interest rate. First we find the new dynamics
for bonds and stocks, before combining them in the total dynamics for the investor’s
wealth.

5.3.1 Bond pricing and Dynamics

In Section 4.1.1, the terminal value of 1 monetary unit invested in a bond is given
by erT when assuming a constant continuous interest rate. In this new set-up with a
stochastic, but still continuous, interest rate, the price of a zero-coupon bond under
a risk-neutral assumption is therefore written as

B(t, T ) = Et

[
e−

∫ T
t rτdτ

]
. (5.3.1)
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The price is the payment at maturity T discounted by the use of the definite integral
of the interest rate from time t until maturity T . Subscript t indicates that this is
the expected value at time t. Expectations are necessary as the interest rate is no
longer constant nor certain.

This bond price is also the starting point for Vasicek’s paper, where the finding
for the specific case of an Ornstein-Uhlenbeck process is a zero-coupon bond price.
We rewrite Vasicek’s pricing equation to ensure consistency with our notation. For
a step-by-step rewriting from one result to the other please refer to Appendix B.1.
The calculations from the general price in Equation (5.3.1) to the zero coupon bond
price, when assuming an Ornstein-Uhlenbeck process for the short-term interest
rate, in Equation (5.3.2) are given in Appendix B.2. Following our notation the
price is given as

BT̄
t = e

−y∞

τ−1

κ
(1−e−κτ )

− σ2
r

4κ3
(1−e−κτ )2−

1

κ
(1−e−κτ )

rt
= e−a(T̄−t)−b(T̄−t)rt , (5.3.2)

where

b(τ) =
1

κ

(
1− e−κτ

)
a(τ) = y∞(τ − b(τ)) +

σ2
r

4κ
b(τ)2

y∞ =

(
r̄ +

λ1σr
κ
− σ2

r

2κ2

)
.

By the use of Itô’s lemma the movements in the bond price can be found. As
described in Section 4.1.2 it is known that when the interest rate follows a process
dxt = µtdt+ σtdzt, then will the function yt = g(xt, t) have the dynamics

dyt =
∂g

∂t
dt+

∂g

∂x
dxt +

1

2

∂2g

∂x2
(dxt)

2.

As seen from Equation (5.2.1), our interest rate follows a process similar to the one
described just above. Our function yt = g(xt, t) can then be the bond price. Using
notation for the bond price, it will be

dB =
∂B

∂t
dt+

∂B

∂rt
drt +

1

2

∂2B

∂r2
t

(drt)
2
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Then substitute in the movement for the interest rate, which in a general form is
given as drt = µtdt+σtdzt. This is of the same form as assumed in Equation (5.2.1).
After the substitution and rearranging the process will be

dB =

(
∂B

∂t
+
∂B

∂rt
µ

)
dt− ∂B

∂rt
σdzt +

1

2

∂2B

∂r2
t

(σ2dz2
t + µ2dt2 − 2σdztµdt)

Using the results (dt)2 = dt · dzt = 0 and (dzt)
2 = dt the equation will be

simplified and in a general form the bond price dynamics are given as

dB =

(
∂B

∂t
+ µ

∂B

∂r
+ σ2 1

2

∂2B

∂r2

)
dt+ σ

∂B

∂r
dzt.

In a model with Ornstein-Uhlenbeck as the interest rate process has the required
form, the zero-coupon bond has the process

dBT̄
t =

(
∂BT̄

t

∂t
+ κ(r̄ − rt)

∂BT̄
t

∂r
+ σ2

r

1

2

∂2BT̄
t

∂r2

)
dt+ σr

∂BT̄
t

∂r
dz1t.

The steps are to insert the first order partial derivative with respect to the interest
rate, the second order derivative with respect to the interest rate, and the partial
derivative with respect to time. This is followed by rearranging of the expression.
Following the same steps as in Section 4.1.2, we can specify the function g(xt, t) =

BT̄
t . We therefore take the derivatives of Equation (5.3.2) with respect to time and

the interest rate. They are

∂BT̄
t

∂t
=

(
σ2
r(1− e−κ(T−t))

2κ2eκ(T−t) −
(
λ1σr
κ

+ r̄ − σ2
r

2κ2

)(
e−κ(T−t) − 1

)
+ re−κ(T−t)

)
BT̄
t

∂BT̄
t

∂rt
= −1− e−κ(T−t)

κ
BT̄
t

∂2BT̄
t

∂r2
t

=

(
1− e−κ(T−t)

κ

)2

BT̄
t .

They can be substituted into the process for the bond price, which is shown above.
With substitution we will have

dBT̄
t =

(
σ2
r(1− e−κ(T−t))

2κ2eκ(T−t) −
(
λ1σr
κ

+ r̄ − σ2
r

2κ2

)(
e−κ(T−t) − 1

)
+ re−κ(T−t)

)
BT̄
t dt

−

(
κ(r̄ − rt)

1− e−κ(T−t)

κ
− σ2

r

1

2

(
1− e−κ(T−t)

κ

)2
)
BT̄
t dt

+ σr
1− e−κ(T−t)

κ
BT̄
t dz1t.
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The bond price BT̄
t is multiplied onto every term on the right-hand side of the

equation, and we therefore divide by it. This reduces the right-hand side, which we
are trying to simplify. It is then

dBT̄
t

BT̄
t

=

(
σ2
r(1− e−κ(T−t))

2κ2eκ(T−t) −
(
λ1σr
κ

+ r̄ − σ2
r

2κ2

)(
e−κ(T−t) − 1

)
+ re−κ(T−t)

)
dt

−

(
κ(r̄ − rt)

1− e−κ(T−t)

κ
− σ2

r

1

2

(
1− e−κ(T−t)

κ

)2
)
dt− σr

1− e−κ(T−t)

κ
dz1t.

We remove parentheses and terms which cancel out. Showing this many steps may
seem tedious, but is done to ensure clarity.

=

(
σ2
r(1− e−κ(T−t))

2κ2eκ(T−t) − λ1σr
κ

(
e−κ(T−t) − 1

)
− r̄

(
e−κ(T−t) − 1

)
+
σ2
r

(
e−κ(T−t) − 1

)
2κ2

)
dt

−

(
r̄ − rt − r̄e−κ(T−t) + rte

−κ(T−t) − re−κ(T−t) −
σ2
r

(
1− e−κ(T−t))2

2κ2

)
dt

− σr
1− e−κ(T−t)

κ
dz1t

Several terms in the expression above cancel out and we can do some rearranging

dBT̄
t

BT̄
t

=

(
σ2
r(1− e−κ(T−t))

2κ2eκ(T−t) +
σ2
r

2κ2

(
e−κ(T−t) − 1

)
+
σ2
r

(
1− e−κ(T−t))2

2κ2

)
dt

+

(
rt +

λ1σr
κ

(
1− e−κ(T−t))) dt+ σr

1− e−κ(T−t)

κ
dz1t

The main focus is on the first parenthesis as it contains three fractions which will
end up being equal to zero

dBT̄
t

BT̄
t

=

(
−σ2

r − σ2
re
−2κ(T−t) + 2σ2

re
−κ(T−t)

2κ2
+
σ2
r + σ2

re
−2κ(T−t) − 2σ2

re
−κ(T−t)

2κ2

)
︸ ︷︷ ︸

=0

dt

+

(
rt +

λ1σr
κ

(
1− e−κ(T−t))) dt+ σr

1− e−κ(T−t)

κ
dz1t.

Removing the first parenthesis simplifies the expression into

dBT̄
t

BT̄
t

=

(
rt +

λ1σr
κ

(
1− e−κ(T−t))) dt+ σr

1− e−κ(T−t)

κ
dz1t.
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Recall from the definition of the bond price above that b(T̄ − t) =
1− e−κ(T̄−t)

κ
,

which makes it possible to simplify the movement of the zero-coupon bond even
further into

dBT̄
t

BT̄
t

=
(
rt + λ1σrb(T̄ − t)

)
dt+ σrb(T̄ − t)dz1t

or equivalently

dBT̄
t =BT̄

t

((
rt + λ1σrb(T̄ − t)

)
dt+ σrb(T̄ − t)dz1t

)
.

This is the dynamics of the price of a zero-coupon bond. Similarly, dynamics of
any bond can be found. The more general version of the dynamics for a continuous
coupon bond are found in Appendix B.3 and given as

dBt =Bt ((rt + λ1σB(rt, t)) dt+ σB(rt, t)dz1t) . (5.3.3)

5.3.2 Dynamics of the Stock Price

This section is inspired by the Appendix B in Munk (2013) and Pennacchi (2008).
When determining the dynamics of the stock price, we often want to incorporate
multiple price processes for different assets. We want to determine the covariances
and correlations between the processes, since we are interested in knowing how
these processes interact with each other. In our case, we are interested in seeing
how the price processes of stocks and bonds respond to an exogenous shock, where
the shock is defined as a one-dimensional process z = (zt)t∈[0,T ]. But in this case the
instantaneous increments of any two processes will be perfect correlated, which do
not consider non-linear movements between the two processes. These processes are
defined by two Itô processes as B and S

dBt = µBtdt+ σBtdzt, dSt = µStdt+ σStdzt

However, we are interested in having the characteristics of imperfect correlation in
the changes over the shortest time period for the two processes. To obtain this, we
must introduce an additional shock vector for the exogenous shock. By introducing
a second exogenous shock z2 = (z2t)t∈[0,T ], we consider a two-dimensional set-up and
we can thereby circumvent the issue of perfect correlation. The two processes for
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bonds and stocks can then be written as

dBt

Bt

= µBtdt+ σB1tdz1t + σB2tdz2t
dSt
St

= µStdt+ σS1tdz1t + σS2tdz2t,

where z1 = (z1t) and z2 = (z2t) are independent Brownian motions. Having two-
dimensional processes (dBt, dSt) we need to determine the first-order and second-
order moments in order to find covariance and correlation for the two processes.
The first-order moments are fully specified by µBt and µSt, where the four shock
coefficients σB1t, σB2t, σS1t, and σS2t fully specify the second-order moments. The
correlation function between the processes is

Corrt[dBt, dSt] =
σB1tσS1t + σB2tσS2t√

(σ2
B2t + σ2

B2t) · (σ2
S1t + σ2

S2t)
.

The two instantaneous variances and the instantaneous correlation are determined
by the four shock coefficients, where different combinations of these coefficients give
the same variances and correlation. This implies that we have an additional degree
of freedom, and can therefore fix one of the four shock coefficients by setting it equal
to zero. Since we are interested in how the stock price is affected by changes in the
bond price, we choose to fix the shock coefficient, σB2t = 0. This will simplify the
expressions for the two processes of Bt and St and yield the following dynamics

dBt

Bt

= µBtdt+ σBtdz1t
dSt
St

= µStdt+ σSt(ρtdz1t +
√

1− ρ2
tdz2t).

A different way to look at this is, the Weiner process dz2t can be written as a linear
combination of two other Weiner processes, one being dz1t, and another process that
is uncorrelated with dz1t, such as dz2t: dz2t = ρdz1t +

√
1− ρ2dz2t.

Focusing on the process for the stock price, we can substitute in the definition
of µSt = rt + ψσSt, which gives

dSt
St

= (rt + ψtσSt)dt+ σSt(ρtdz1t +
√

1− ρ2
tdz2t). (5.3.4)

The correlation parameter is ρt, that shows how the market returns of the stock and
the bond is correlated over time, σS is the volatility of the stock, and the ψ is the
Sharpe ratio of the stock which is assumed to be constant. The relationship between
the two processes are now described as

Covt[dBt, dSt] = σBtσBtCovt
(
dz1t, ρtdz1t +

√
1− ρ2

tdz2t

)
= σBtσStρtdt.
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If σBt and σSt are both positive, then the instantaneous correlation between the
stock and bond processes is ρt. If σBt and σSt have opposite signs, then the instan-
taneous correlation is −ρt. The dynamics of the stock price now is dependent on
how the bond dynamics evolve over time, and the correlation between these two
price processes depends on the signs of the shock coefficients of each process. For
detailed calculations, we refer to Appendix B.4.

5.3.3 Expression for Total Wealth Dynamics

A more in-depth description of the different steps in the process of combining the
wealth dynamics is given in Section 4.1.3. We use the previous results and change
them by describing how the different elements vary from before.

As defined in Section 4.1.3, we will use π as the vector containing the investments
in risky assets and thereby being the fraction of the total wealth, which the investor
has invested in risky assets. Previously it was said to represent the fraction of wealth
in stocks, however this is misleading in this model with a stochastic interest rate,
since the bonds are also uncertain. The price dynamics

dPt = diag(Pt)[rt1 + σ(rt, t)λt)dt+ σ(rt, t)dzt]

will therefore also be related to bonds. The wealth dynamics does look similar
to our previous finding in Equation (4.1.6) for constant investment opportunities.
As mentioned, the portfolio weight vector π is changed, but the uncertain part
represented by the matrix σ

t
(r, t) is also different. In this stochastic case we have

shown that the uncertain part is not only related to the point in time, but also
related to the interest rate r. We write the wealth dynamics as

dWt = Wt[rt + π>t σ(rt, t)λt)]dt+Wtπ
>
t σ(rt, t)dzt, (5.3.5)

based on a combination of the dynamics for a bond and for a stock, which are given
in Equation (5.3.3) and Equation (5.3.4). We define the volatility matrix as

σ(rt, t) =

(
σB(rt, t) 0

ρσS
√

1− ρ2σS

)
,

and the three vectors as

π =

(
πB

πS

)
λ =

(
λ1

λ2

)
dzt

(
dz1t

dz2t

)
.
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5.4 Model under new Assumptions

This model is based on the same utility assumptions as we made in Section 4.2 for
constant investment opportunities. Assume the utility function

J(W, r, t) = sup
π

EW,r,t [u(WT )] .

As shown in Section 5.3.3, we are able to write the wealth dynamics as in Equation
(5.3.5) and together with the stochastic interest rate in Equation (5.2.1), we will
have to consider a case with two stochastic processes. Following Øksendal (2003)
on Itô’s lemma, we will in general terms for the function Yt = g(Xi, Xj, t), with two
stochastic processes, have the dynamics

dYt =
∂g

∂t
dt+

∂g

∂xi
dXi +

1

2

∂2g

∂x2
i

(dXi)
2 +

∂g

∂xj
dXj +

1

2

∂2g

∂x2
j

(dXj)
2 +

∂2g

∂xi∂xj
(dXi)(dXj).

The dynamics are the same as used for the dynamics of wealth elements, but it
includes a final term to consider the relation between the two stochastic processes.
If this result is used for the indirect utility function J(W, r, t) with wealth and
interest rate as stochastic processes, the dynamics will be given as

dJt =
∂J(W, r, t)

∂t
dt+

∂J(W, r, t)

∂r
drt +

1

2

∂2J(W, r, t)

∂r2
(drt)

2

+
∂J(W, r, t)

∂W
dWt +

1

2

∂2J(W, r, t)

∂W 2
(dWt)

2 +
∂2J(W, r, t)

∂r∂W
(drt)(dWt).

Or written in another way to follow our notation:

dJt =
∂J

∂t
(W, r, t)dt+ Jr(W, r, t)drt +

1

2
Jrr(W, r, t)(drt)

2 + JW (W, r, t)dWt

+
1

2
JWW (W, r, t)(dWt)

2 + JrW (W, r, t)(drt)(dWt)

Next is to substitute in the two stochastic processes. The wealth dynamics are

dWt = Wt[rt + π>t σ(rt, t)λ]dt+Wtπ
>
t σ(rt, t)dzt,

and the process for the interest rate is

drt = κ[r̄ − rt]dt+ σ>r dzt.
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where the vector for interest rate volatility is defined as

σr =

(
−σr

0

)
.

After substitution, the dynamics will have the following expression

dJt =
∂J

∂t
(W, r, t)dt+ Jr(W, r, t)(κ[r̄ − rt]dt+ σ>r dzt)

+
1

2
Jrr(W, r, t)(κ[r̄ − rt]dt+ σ>r dzt)

2

+ JW (W, r, t)(Wt[rt + π>t σ(rt, t)λ]dt+Wtπ
>
t σ(rt, t)dzt)

+
1

2
JWW (W, r, t)(Wt[rt + π>t σ(rt, t)λ]dt+Wtπ

>
t σ(rt, t)dzt)

2

+ JrW (W, r, t)(κ[r̄ − rt]dt+ σ>r dzt)(Wt[rt + π>t σ(rt, t)λ]dt+Wtπ
>
t σ(rt, t)dzt).

Using the following results (dt)2 = 0, (dt) · (dz) = 0 and (dzt)
2 = dt in order to

reduce the expression1

dJt =
∂J

∂t
(W, r, t)dt+ Jr(W, r, t)(κ[r̄ − rt]dt+ σ>r dzt) +

1

2
‖σr‖2Jrr(W, r, t)dt

+ JW (W, r, t)(Wt[rt + π>t σ(rt, t)λ]dt+Wtπ
>
t σ(rt, t)dzt)

+
1

2
JWW (W, r, t)W 2

t π
>
t σ(rt, t)σ(rt, t)

>πtdt

+ JrW (W, r, t)σrWtπ
>
t σ(rt, t)dt.

The focus is on the drift part of the stochastic process. From the dynamics, the
drifts can be defined as

Drift =
∂J

∂t
(W, r, t) + Jr(W, r, t)(κ[r̄ − rt]) + JW (W, r, t)Wt[rt + π>t σ(rt, t)λ]

+
1

2
JWW (W, r, t)W 2

t π
>
t σ(rt, t)σ(rt, t)

>πt + JrW (W, r, t)σrWtπ
>
t σ(rt, t)

+
1

2
‖σr‖2Jrr(W, r, t).

1In vector form: (v>dzt)
2 = v>vdt and (v1

>dzt)(v2
>dzt) = v1

>v2dt = v2
>v1dt
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which leads to the HJB equation associated with our problem. The HJB equation
that must be solved for this specific maximisation problem is

0 = sup
π

{
∂J

∂t
(W, r, t) + Jr(W, r, t)(κ[r̄ − r]) + JW (W, r, t)W [r + π>σ(r, t)λ]

+
1

2
JWW (W, r, t)W 2π>σ(r, t)σ(r, t)>π + JrW (W, r, t)σrWπ

>σ(r, t)

+
1

2
‖σr‖2Jrr(W, r, t)

}
.

To find a potential candidate for the allocation, which will maximize the investor’s
utility, differentiate the right-hand side of the HJB-equation with respect to the
portfolio weights

0 =JW (W, r, t)Wσ(rt, t)λ+ JWW (W, r, t)W 2σ(r, t)σ(r, t)>π

+ JrW (W, r, t)σrWσ(r, t).

After isolating π the weights are

π =− JW (W, r, t)

JWW (W, r, t)W

(
σ(r, t)>

)−1

λ− JrW (W, r, t)

JWW (W, r, t)W

(
σ(r, t)>

)−1

σr. (5.4.1)

The expression is quite similar to portfolio weights under the assumption of con-
stant investment opportunities in Equation (4.2.2), but an additional term appears
in the portfolio weights. This second term is related to the stochastic interest rate.
It considers the volatility and the second order partial derivative with respect to
the short-term interest rate and the wealth. It is therefore a hedging term, which
increases as the uncertainty regarding the interest rate increases.

To find a less general result, we continue by substituting the result from Equa-
tion (5.4.1) into the HJB equation. This is because the utility must be maximized
with respect to the portfolio weights. After substitution of the portfolio weights it is
seen how the volatility matrix is present in almost every term but ends up cancelling
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out, and it is therefore not part of the rewritten equation

0 =
∂J

∂t
(W, r, t) + Jr(W, r, t)(κ[r̄ − r]) +

1

2
‖σr‖2Jrr(W, r, t) + JW (W, r, t)Wr

+ JW (W, r, t)W

(
− JW (W, r, t)

JWW (W, r, t)W
λ> − JrW (W, r, t)

JWW (W, r, t)W
σ>r

)
λ

+
1

2
JWW (W, r, t)W 2

(
− JW (W, r, t)

JWW (W, r, t)W
λ> − JrW (W, r, t)

JWW (W, r, t)W
σ>r

)
·
(
− JW (W, r, t)

JWW (W, r, t)W
λ− JrW (W, r, t)

JWW (W, r, t)W
σr

)
+ JrW (W, r, t)σrW

(
− JW (W, r, t)

JWW (W, r, t)W
λ> − JrW (W, r, t)

JWW (W, r, t)W
σ>r

)
.

Next step in the simplification of the equation is multiplication of the parentheses.
This changes the equation and some terms are present both on the inside and the
outside of the parentheses and thereby cancel out

0 =
∂J

∂t
(W, r, t) + Jr(W, r, t)(κ[r̄ − r]) + ‖σr‖2 1

2
Jrr(W, r, t) + JW (W, r, t)Wr

− ‖λ‖2 JW (W, r, t)2

JWW (W, r, t)
− σ>r λ

JrW (W, r, t)JW (W, r, t)

JWW (W, r, t)
+ ‖λ‖2 JW (W, r, t)2

2JWW (W, r, t)

+ λ>σr
JrW (W, r, t)JW (W, r, t)

2JWW (W, r, t)
+ σ>r λ

JrW (W, r, t)JW (W, r, t)

2JWW (W, r, t)

+ ‖σr‖2 JrW (W, r, t)2

2JWW (W, r, t)
− λ>σr

JW (W, r, t)JrW (W, r, t)

JWW (W, r, t)
− ‖σr‖2JrW (W, r, t)2

JWW (W, r, t)
.

After multiplying the parentheses it is seen from the expression above how some
terms are identical except for their opposite signs, which means that the equation
can be simplified even further into the partial differential equation

J(W, r, t) =
∂J

∂t
(W, r, t) + Jr(W, r, t)κ[r̄ − rt] +

1

2
Jrr(W, r, t)‖σr‖2

+ JW (W, r, t)Wr − 1

2
‖λ‖2 JW (W, r, t)2

JWW (W, r, t)
(5.4.2)

− 1

2
‖σr‖2JrW (W, r, t)2

JWW (W, r, t)
− λ>σr

JW (W, r, t)JrW (W, r, t)

JWW (W, r, t)
,

where the potential solution J(W, r, t) as in Chapter 4 must satisfy the terminal
condition J(W, r, T ) = ū(W ). The definitions of the vectors λ and σr follows from
the wealth dynamics of one bond and a stock index in Section 5.3.3. As it was also
the case, when we considered constant investment opportunities it is not possible to
come any further without assuming a utility function.
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5.5 CRRA Utility and Stochastic Interest Rate

In this section, we will assume a specific utility function. The assumed utility
function will, as in the case of constant investment opportunities, have to fulfil some
mathematical criteria in order to be a potential solution. We therefore determine
a partial differential equation based on our Hamilton-Jacobi-Bellman equation and
find the ordinary differential equations to verify our suggested solution. After the
verification of the suggested solution we determine the optimal portfolio weights in
the case of a CRRA-investor.

5.5.1 Partial Differential Equation for CRRA-investor

In the process of finding a less general result, a certain utility function is assumed.
We continue with the same utility function as in the case of constant investment
opportunities. The utility function is given in equation (4.3.1) but for convenience
restated here:

J(W, t) =
g(r, t)γW 1−γ

1− γ
. (5.5.1)

Similar are some of the necessary partial derivatives previously found, but repeated
here and also including the derivatives with respect to the interest rate. The calcu-
lations of the derivatives above are shown in Appendix A.3.

JW (W, t) = g(r, t)γW−γ

JWW (W, t) = −γg(r, t)γW−γ−1

∂J

∂t
(W, r, t) =

γ

1− γ
g(r, t)γ−1gt(r, t)W

1−γ

Jr(W, r, t) =
γ

1− γ
g(r, t)γ−1gr(r, t)W

1−γ (5.5.2)

Jrr(W, r, t) =
γW 1−γ

1− γ
(
(γ − 1)g(r, t)γ−2g2

r(r, t) + g(r, t)γ−1grr(r, t)
)

JrW (W, r, t) = γg(r, t)γ−1gr(r, t)W
−γ
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These partial derivatives are substituted into the HJB equation. The substitution
does not make the expression prettier, but it can be simplified. Initially it is:

0 =
γ

1− γ
g(r, t)γ−1gt(t)W

1−γ +
γ

1− γ
g(r, t)γ−1gr(r, t)W

1−γκ[r̄ − r]

+
1

2

γW 1−γ

1− γ
(
(γ − 1)g(r, t)γ−2g2

r(r, t) + g(r, t)γ−1grr(r, t)
)
‖σr‖2+g(r, t)γW−γWr

− 1

2
‖λ‖2 (g(r, t)γW−γ)2

−γg(r, t)γW−γ−1
− 1

2
‖σr‖2 (γg(r, t)γ−1gr(r, t)W

−γ)2

−γg(r, t)γW−γ−1

− λ>σr
g(r, t)γW−γγg(r, t)γ−1gr(r, t)W

−γ

−γg(r, t)γW−γ−1
.

The wealth W 1−γ is part of all the terms in the equation and is therefore removed.
The fractions are reduced by multiplication and it is then seen that two of the terms
related to the volatility of the interest rate will cancel out. After these three steps,
the partial differential equation is

0 =
γ

1− γ
g(r, t)γ−1gt(t) +

γ

1− γ
g(r, t)γ−1gr(r, t)κ[r̄ − rt] +

1

2
‖λ‖2 g(r, t)γ

γ

+
1

2

γ

1− γ
g(r, t)γ−1grr(r, t)‖σr‖2+g(r, t)γr + λ>σr

γg(r, t)γ−1gr(r, t)

γ
.

To reduce further we divide by g(r, t)γ−1 and multiply with
1− γ
γ

. The equation is

0 =gt(t) + gr(r, t)κ[r̄ − rt] +
1

2
‖λ‖2 (1− γ)g(r, t)

γ2

+
1

2
grr(r, t)‖σr‖2+

1− γ
γ

g(r, t)r + λ>σr
(1− γ)gr(r, t)

γ
,

which is simpler than the initial partial differential equation. To make the following
steps faster, we can create parentheses for terms related to the same partial deriva-
tive. It then takes less substitution of the derivatives of g(r, t), when we write the
partial differential equation as

0 =gt(r, t) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
gr(r, t)

+

(
1− γ
γ

r +
1− γ
2γ2
‖λ‖2

)
g(r, t) +

1

2
grr‖σr‖2. (5.5.3)

Compared to the case with constant investment opportunities, the partial differential
equation that the function g(r, t) has to solve now looks fairly more complicated.
It is, however, still a necessity for g(r, t) to solve the partial differential equation
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with the terminal condition g(r, T ) = 1 for our guess from Equation (5.5.1) to be a
solution to the HJB equation.

5.5.2 Ordinary Differential Equations

The partial differential equation to solve, the function g(r, t), and the ordinary
differential equations are more complex. Following literature such as Larsen (2010),
Liu (2007), and Sørensen (1999) we will expect a solution to the partial differential
equation with the terminal g(r, T ) = 1 to be of the form

g(r, t) = exp

{
1− γ
γ

A0(T − t) +
1− γ
γ

A1(T − t)r
}
,

where A0 and A1 are two ordinary differential equations. To move on in the process,
the relevant derivatives of the function g(r, t) are calculated and substituted into
Equation (5.5.3). First, the relevant partial derivatives are

∂g(r, t)

∂t
=

(
−1− γ

γ
(rA′1(τ) + A′0(τ))

)
· g(r, t)

∂g(r, t)

∂r
=

(
1− γ
γ

A1(τ)

)
· g(r, t)

∂2g(r, t)

∂r2
=

(
(1− γ)2

γ2
A2

1(τ)

)
· g(r, t),

where the definition of g(r, t) is used in the partial derivatives. After substitution,
the partial differential equation will be

0 =

(
−1− γ

γ
(rA′1(τ) + A′0(τ))

)
· g(r, t)

+

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)(
1− γ
γ

A1(τ)

)
· g(r, t)

+

(
1− γ
γ

r +
1− γ
2γ2
‖λ‖2

)
· g(r, t) +

1

2

(
(1− γ)2

γ2
A2

1(τ)

)
· g(r, t) · ‖σr‖2.

The function g(r, t) is a part of all the terms. To simplify we divide all terms with
g(r, t), and thereby have the expression

0 =− 1− γ
γ

(rA′1(τ) + A′0(τ)) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
1− γ
γ

A1(τ)

+
1− γ
γ

r +
1− γ
2γ2
‖λ‖2+

(1− γ)2

2γ2
A2

1(τ) · ‖σr‖2.
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We then multiply with the fraction
γ

1− γ
and isolate A′0(τ) as it is not multiplied

with other terms. This is relevant as the function A′0(τ) will be part of the system
of ordinary differential equations

A′0(τ) =− rA′1(τ) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
A1(τ)

+ r +
1

2γ
‖λ‖2+

1− γ
2γ

A2
1(τ) · ‖σr‖2.

We gather terms which are related to the interest rate r by multiplication, such that
we can put the interest rate outside a parentheses and thereby have the possibility
to solve a second term for A′1(τ).

A′0(τ) =
1

2γ
‖λ‖2+

(
κr̄ +

1− γ
γ

λ>σr

)
A1(τ) +

1− γ
2γ

A2
1(τ) · ‖σr‖2

+ r(1− A′1(τ)− κA1(τ))

We can then write the condition as two ordinary differential equations, which must
be solved by functionA0 andA1 in order to continue with the main partial differential
equation problem. The two ordinary differential equations are

A′0(τ) =
1

2γ
‖λ‖2+

(
κr̄ +

1− γ
γ

λ>σr

)
A1(τ) +

1− γ
2γ

A2
1(τ) · ‖σr‖2

A′1(τ) =1− κA1(τ), (5.5.4)

with the initial conditions A0(0) = 0 and A1(0) = 0 because of the terminal condition
g(r, T ) = 1. When solving the ordinary differential equation A′1(τ) with A1(0) = 0,
we can use the general solution given in theorem C.2 of Munk (2013) for a ordinary
differential of the same shape as this problem. The solution is then given as

A1(τ) =
1

κ
(1− e−κτ ). (5.5.5)

For the other ordinary differential equation, A′0, we will use the initial condition
A0(0) = 0 such that it can be written as

A0(0) = A0(τ)− A0(τ)

A0(τ) = A0(τ)− A0(0)

A0(τ) =

∫ τ

0

A′0(s)ds.
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From the function A′0 above, the function can be defined as

A0(τ) =

∫ τ

0

1

2γ
‖λ‖2+

∫ τ

0

(
κr̄ +

1− γ
γ

λ>σr

)
A1(τ) +

∫ τ

0

1− γ
2γ
· ‖σr‖2A2

1(τ),

where we have used the integral. As some values are constant and therefore does
not depend on time, the expression can be rewritten as

A0(τ) =
1

2γ
‖λ‖2τ +

(
κr̄ +

1− γ
γ

λ>σr

)∫ τ

0

A1(s)ds+
1− γ

2γ
· ‖σr‖2

∫ τ

0

A2
1(s)ds.

We need expressions for the integrals of A1(τ) and A2
1(τ), and for this refer to

Appendix C.2 in Munk (2013) and simply use the general result. We can then write
the two integrals as∫ τ

0

A1(s)ds =
τ − A1(τ)

κ
and

∫ τ

0

A2
1(s)ds =

τ − A1(τ)

κ2
− A2

1(τ)

2κ

and will then have the equation

A0(τ) =
1

2γ
‖λ‖2τ +

(
κr̄ +

1− γ
γ

λ>σr

)
τ − A1(τ)

κ

+
1− γ

2γ
· ‖σr‖2

(
τ − A1(τ)

κ2
− A2

1(τ)

2κ

)
. (5.5.6)

There are now solutions for the two ordinary differential equations presented above.
These functions are used together with the function g(r, t) to show that the sugges-
tion is actually a solution to the Hamilton-Jacobi-Bellman equation.

5.5.3 Verifying Solution

In the following calculations the function A0(τ) is not necessary, but the functions
A1(τ), A′1(τ), and A′0(τ) are needed. This is because we skip the step of finding
the partial derivatives of g(r, t) as this is already done at a general level above.
After substitution of the general partial derivatives, we have the following partial
differential equation to solve:

0 =− 1− γ
γ

(rA′1(τ) + A′0(τ)) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)(
1− γ
γ

A1(τ)

)
+

1− γ
γ

r +
1− γ
2γ2
‖λ‖2+

1

2

(
(1− γ)2

γ2
A2

1(τ)

)
· ‖σr‖2
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Reduce by multiplying all terms with
γ

1− γ
and substitute in the function A1(τ)

0 =− rA′1(τ)− A′0(τ) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
(1− e−κτ )

κ

+ r +
1

2γ
‖λ‖2+

1

2
‖σr‖2

(
1− γ
γ

(
(1− e−κτ )

κ

)2
)
.

We then substitute in the two missing functions, A′0(τ) and A′1(τ), from Equation
(5.5.4) and rearrange

0 =− re−κτ − 1

2γ
‖λ‖2+

(
r +

1

2γ
‖λ‖2

)
+

(
κ[r̄ − r] +

1− γ
γ

λ>σr

)
(1− e−κτ )

κ

−
(
κr̄ +

1− γ
γ

λ>σr

)
1− e−κτ

κ
+

1

2

(
(1− γ)

γ

(
(1− e−κτ )

κ

)2
)
· ‖σr‖2

− 1− γ
2γ
· ‖σr‖2

(
1− e−κτ

κ

)2

.

Simplifying the equation and rearranging again gives the expression

0 =r − re−κτ − r(1− e−κτ ) +
1

2γ
‖λ‖2− 1

2γ
‖λ‖2+

(
κr̄ +

1− γ
γ

λ>σr

)
1− e−κτ

κ

−
(
κr̄ +

1− γ
γ

λ>σr

)
1− e−κτ

κ
+

1− γ
2γ
· ‖σr‖2

((
1− e−κτ

κ

)2

−
(

1− e−κτ

κ

)2
)

From this expression it is seen that all terms cancel out and our suggested form of
the indirect utility function is thereby verified, as it solves the partial differential
equation based on the Hamilton-Jacobi-Bellman equation.

Another way to prove that the partial differential equation is solved is to take a
step back and use Equation (5.5.3), which the partial derivatives have not yet been
substituted into. From here it is possible to calculate the partial derivatives of the
function g(r, t), for which we have specified the functions A0(τ) and A1(τ), when
the system of ordinary differential equations from Equation (5.5.4) was solved. The
result will be the same; it will solve the partial differential equation.

5.5.4 Portfolio Weights for the CRRA-investor

As the suggested solution in Equation (5.5.1) is shown to actually be a solution
to the HJB equation, we can use the general portfolio weights, and for shorthand
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notation use σ(rt, t) = σ.

π = − JW (W, r, t)

WJWW (W, r, t)
(σ>)−1λ− JrW (W, r, t)

WJWW (W, r, t)
(σ>)−1σr,

for which the partial derivatives of our suggested solution have to be used. The
relevant partial derivatives are:

JW (W, t) = g(r, t)γW−γ

JWW (W, t) = −γg(r, t)γW−γ−1

JrW (W, r, t) = γg(r, t)γ−1gr(r, t)W
−γ.

By substitution the expression for optimal portfolio weights will change into

π =
g(r, t)γW−γ

Wγg(r, t)γW−γ−1
(σ>)−1λ+

γg(r, t)γ−1gr(r, t)W
−γ

Wγg(r, t)γW−γ−1
(σ>)−1σr

=
1

γ
(σ>)−1λ+

γg(r, t)γ−1gr(r, t)W
−γ

γg(r, t)γW−γ (σ>)−1σr

=
1

γ
(σ>)−1λ+ g(r, t)−1gr(r, t)(σ

>)−1σr. (5.5.7)

To get further in the specification of the portfolio weights, we use some of the findings
from the verification of the suggested solution to the partial differential equation.
We will use

g(r, t) = exp

{
1− γ
γ

A0(T − t) +
1− γ
γ

A1(T − t)r
}

gr(r, t) =
∂g(r, t)

∂r
=

(
1− γ
γ

A1(τ)

)
· g(r, t)

A1(τ) =
(1− e−κτ )

κ
.

We substitute in the definitions and simplify the expression such that

Π(W, r, t) =
1

γ
(σ>)−1λ+

1− γ
γ

(1− e−κτ )
κ

(σ>)−1

(
−σr

0

)

Π(W, r, t) =
1

γ
(σ>)−1λ+

γ − 1

γ
(σ>)−1

(
σr

0

)
b(T − t)

Using definitions made in Section 5.3.3 the portfolio weights can be split up into
stock and bond weights. The volatility matrix and the vector for the market price
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of risk were defined as

σ =

(
σB(rt, t) 0

ρσS
√

1− ρ2σS

)
and λ =

(
λ1

λ2

)
.

In the expression for optimal portfolio the inverse of the transposed volatility matrix
is used. After inverting and transposing the volatility it is together with the vector
for market price of risk substituted into the portfolio weights. The portfolio weights
are then

(
ΠB

ΠS

)
=

1

γ


√

1− ρ2σS√
1− ρ2σSσB(rt, t)

λ1 +
−ρσs√

1− ρ2σSσB(rt, t)
λ2

σB(rt, t)√
1− ρ2σSσB(rt, t)

λ2


+
γ − 1

γ


√

1− ρ2σS√
1− ρ2σSσB(rt, t)

σr

0

 b(T − t)

where several terms cancel out and can be written as

(
ΠB(W, r, t)

ΠS(W, r, t)

)
=

1

γ


λ1

σB(rt, t)
− ρλ2√

1− ρ2σB(rt, t)
λ2√

1− ρ2σS

+
γ − 1

γ

 σr
σB(rt, t)

0

 b(T − t).

Moving away from matrices, the fraction of the wealth which is invested in bonds is

ΠB(W, r, t) =
1

γ

(
λ1

σB(rt, t)
− ρλ2√

1− ρ2σB(rt, t)

)
+
γ − 1

γ

σrb(T − t)
σB(rt, t)

,

and the fraction of the wealth, which is allocated in stocks will be

ΠS(W, r, t) =
1

γ

λ2√
1− ρ2σS

.

Having the portfolio weights, one can follow the structure in Munk (2013) to find the
amount of wealth allocated into the locally risk-free asset and thereby the complete
allocation strategy. By using the zero-coupon bond as the bond instrument, he
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shows how the investment in the locally risk-free will be

Π0 = 1− ΠB − ΠS

=
1

γ

(
1− 1>(σ(rt, t)

>)−1λ
)
,

which follows as we for the zero-coupon bond previously have defined σB(r, t) =

σrb(T − t). The bond allocation can be written as

ΠB(W, r, t) =
1

γ

(
λ1

σB(rt, t)
− ρλ2√

1− ρ2σB(rt, t)

)
+
γ − 1

γ
,

and the vector containing portfolio weights for both stocks and bonds will be(
ΠB(W, r, t)

ΠS(W, r, t)

)
=

1

γ

(
σ(rt, t)

>
)−1

λ+
γ − 1

γ

(
1

0

)

Due to the rewritten bond weight, the total portfolio weights can therefore be written
as a combination of the portfolio for an investor with a log-utility (γ = 1), who does
not hedge, and the zero-coupon bond. The investment strategy is then defined asΠ0

ΠB

ΠS

 =
1

γ

Πlog
0

Πlog
B

Πlog
S

 γ − 1

γ

0

1

0

 .

These results for a CRRA-investor are in the next section compared to the findings
for the model in Chapter 4.

5.6 Results under new Assumptions

This section will mainly focus on the interpretation of the results. This is primarily
done by comparing the recent findings with the results of the model with constant
investment opportunities.

5.6.1 Assumptions

As mentioned at the beginning of this chapter, an extension of the model has been
developed, since a stochastic interest rate seems more realistic than a constant in-
terest rate.
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When moving from the mean-variance model into the dynamic model with con-
stant investment opportunities, the result was similar, but it was obtained under
more realistic assumptions with stock prices being log-normally distributed so that
they would not take on negative values. When extending with the stochastic interest
rate, a model under a set of more realistic assumptions is developed, but the findings
for this model are different than our previous results.

5.6.2 Mathematical Results

The difference in the results are best explained by considering the portfolio weights.
In the model with constant investment opportunities the weights are

Π(W, t) =
1

γ
(σ(rt, t)

>)−1λ

and in the model with a stochastic interest rate, the allocation was given as

Π(W, r, t) =
1

γ
(σ(rt, t)

>)−1λ+
γ − 1

γ
(σ(rt, t)

>)−1

(
σr

0

)
b(T − t).

The model with stochastic interest rate has a new additional term compared to
the model with constant investment opportunities, this is the hedging term. This
changes the result from the previous two-fund separation into a result with three-
fund separation. This new hedging term is interesting in several ways. The risk
aversion parameter, γ, will have a different effect than previously. An increasing
value of γ would previously have had a clear impact on the portfolio weights, where
an increasing γ would reduce the allocations in risky assets. The second term in
the new model makes the effect of γ ambiguous, as γ now has two opposite effects
on the portfolio weights. An increasing γ will give the second term, which is the
hedging part, a larger impact.

It works as a hedging term due to the effect of volatility. In comparison with
the model with constant investment opportunities, we now consider the volatility of
the interest rate, as the interest rate no longer is constant. Larger volatility on the
interest rate will lead to larger uncertainty and because of the hedging term, the
investor will allocate more wealth in bonds to hedge the interest rate risk. The spe-

cific expression for the hedging term is
γ − 1

γ

σrb(T − t)
σB(rt, t)

. From this it is seen how it

leads to a trade-off between hedging the interest rate risk or hedging the short-term
risk. This is happening by moving wealth from cash towards bonds. We can also see
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the prioritization between the two sources of risk in the hedging term, where higher
interest rate risk increases the hedge while higher volatility on the bonds will reduce
the hedging.

Finally, b(T − t), which was previously defined as b(T − t) =
1

κ
(1 − e−κ(T−t)), has

two interesting effects. First, an increase in the value of the constant κ would make
the numerator smaller. Intuitively, this is because the short-term interest rate is
faster at returning to its long-term mean and therefore there is less reason to hedge.
Second, this introduces an element, which was not present in the case of constant
investment opportunity set. Specifically, the horizon over which investors invest will
now play a role when determining the optimal portfolio allocation. When investing
over a longer time horizon the interest rate risk has an increasing importance rela-
tive to the bond volatility, and the investor will hedge more. A longer time horizon
will increase the value of the function and thereby increase the numerator.

5.6.3 Difference in Implications

The mathematical descriptions of differences can also be shown by numerical exam-
ples. Inspired by other papers, we will for this numerical example and those in the
following chapters use the estimates

µB = 2.1% σB = 10% r̄ = 1% σr = 5%

µS = 8.7% σS = 20.2% ρ = 0.2

where subscript r indicates interest rate, B indicates bond, and S indicates stock.
The estimates are from the book Dimson et al. (2002). By the use of these estimates
in the model, we can define the values

ψ = 0.3812 λ1 = 0.11 λ2 = 0.3666 κ = 0.4965

We present Table 5.1 and Table 5.2; one table for portfolio values when using the
model for constant investment opportunities and a table for portfolio values, from
the model with the assumption of a stochastic interest rate. We start with Table
5.1, which is presenting a numerical example for the CRRA-investor under the as-
sumption of constant investment opportunities.

In Table 5.1 we present less figures than in the case with stochastic interest rate,
since the results are independent of time as described earlier. The risk aversion will
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γ Stock Bond Cash Exp. return Std. dev.

0.5 3.7049 0.7032 -3.4081 0.3030 0.7656
1 1.8525 0.3516 -1.2041 0.1565 0.3828
2 0.9262 0.1758 -0.1020 0.0833 0.1914
5 0.3705 0.0703 0.5592 0.0393 0.0766
10 0.1852 0.0352 0.7796 0.0247 0.0383
20 0.0926 0.0176 0.8898 0.0173 0.0191
100 0.0185 0.0035 0.9780 0.0115 0.0038
150 0.0123 0.0023 0.9853 0.0110 0.0026

Table 5.1: Portfolio allocation for a CRRA-investor for different levels of risk
aversion under constant investment opportunities.

however make the results change. Naturally, we see lower weights for stocks and
bonds as the risk aversion is increasing. This reduction in the wealth allocated in
the tangency portfolio will then lead to a higher allocation in our second fund. As
one would expect, this will reduce the expected return, but most importantly for the
risk averse investor, there will also be a reduction in the volatility of the investment.

T γ Stock Bond Cash Hedge Exp. return Std. dev.

T = 2.5 0.5 3.7046 -0.0126 -2.6919 -0.7160 0.2951 0.7481
1 1.8523 0.3517 -1.2040 0.0000 0.1565 0.3827
2 0.9261 0.5338 -0.4600 0.3580 0.0872 0.2046
5 0.3705 0.6431 -0.0136 0.5728 0.0456 0.1080
10 0.1852 0.6796 0.1352 0.6444 0.0317 0.0839
20 0.0926 0.6978 0.2096 0.6802 0.0248 0.0758

T = 5 0.5 3.7046 -0.2196 -2.4850 -0.9229 0.2928 0.7442
1 1.8523 0.3517 -1.2040 0.0000 0.1565 0.3827
2 0.9261 0.6373 -0.5634 0.4615 0.0883 0.2094
5 0.3705 0.8087 -0.1791 0.7383 0.0474 0.1207
10 0.1852 0.8658 -0.0510 0.8306 0.0338 0.1010
20 0.0926 0.8944 0.0130 0.8768 0.0270 0.0950

Table 5.2: Portfolio allocation for a CRRA-investor for different investment horizons and risk aversion levels
under stochastic investment opportunities. The portfolio now contains a hedging term, which is increasing
in risk aversion and investment horizon.

Next, Table 5.2 with values from the model with stochastic short-term interest rate.
We do again use the result for a CRRA-investor and the assumed figures described
above. As mentioned, there is three-fund separation and the tangency portfolio will
still be bonds and stocks, but it will have the hedging subtracted. The allocation
in the tangency portfolio will be the same as in the case with constant investment
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opportunities, but the bond allocation will be different. The stock allocation will
be identical to the previous one because the mathematical expressions are identical.
The total allocation in bonds will be different, since it is implied that there will be a
different fraction of the wealth remaining for the locally risk-free asset, than in the
case of the constant investment opportunities. When working with the stochastic
model, considering multiple time horizons is important because the hedging term
makes the allocation result dependent on time.

The hedging term makes the long-term investors willing to take on more short-
term risk, as the time horizon increases. This is because they become more focused
on hedging the future interest rate risk. This is seen in Figure 5.3 where the efficient
frontier moves towards the southeast as the time horizon increases.
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Figure 5.3: Efficient frontiers for different investment horizons. They represent return and variance for different
portfolios chosen by an investor. The frontiers are created, as the investor chooses different allocations depending
on the level of risk aversion.

5.6.4 The Effect of Risk Aversion

The tendency to focus more on hedging the future interest rate risk can both be
seen from the figures in Table 5.2, but the tendencies are seen more clearly in Figure
5.4 for the allocation in bonds across different levels of risk aversion, γ. Each line
represent either the allocation at different time horizons or the constant investment
case. From this it is seen how the fraction of wealth allocated in bonds is increasing
as the time horizon is increasing. The increasing allocation in bonds, must lead to a
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reduced allocation somewhere else. The allocation in stocks does not depend on the
time horizon which is the case both when working with a constant or a stochastic
interest rate. The increase in bond allocation must therefore lead to a reduction in
the fraction on wealth which is held in the locally risk-free asset. Refer to Figure
5.5, where the allocation in cash across different levels of risk aversion is decreasing
as the time horizon is increasing.
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Figure 5.4: Illustrates the bond allocation for a CRRA-investor under the model with constant opportunities and
the model with a stochastic interest rate for an investment horizon of T = 2.5 and T = 5.

This result is different from the case with constant investment opportunities. As
mentioned, the result for allocation in stocks will be the same. However, in the
case with constant investment opportunities, there is no variation in the allocation
of wealth in bonds and cash across time. As previously shown in Section 4.3 the
allocations, when considering constant investment opportunities, are constant. This
is also presented in Table 5.1.

The two models differ, when looking at the allocations in bonds and locally risk-free
asset across different levels of risk aversion. From Figure 5.4 and Figure 5.5, it is
for the model with the constant investment opportunities seen that the allocation
in the locally risk-free asset will increase, as the risk aversion is becoming higher.
In the stochastic model an increase in risk aversion will also increase the locally
risk-free asset. The main difference between the two models is the bond allocation.
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Figure 5.5: Illustrates the allocation in cash as the locally risk-free asset for a CRRA-investor. Panel (a) presents
the model with constant opportunities. and Panel (b) is the model with a stochastic interest rate.

While the constant model will move towards an allocation of zero in bonds as the
risk aversion increases. The stochastic model, on other hand, will move in the oppo-
site direction with an increasing bond allocation as risk aversion is increasing. The
difference is due to the hedging term, which is also pointed out in Section 5.5 and
Section 5.6.2. There is, however, an upper limit to the bond allocation, but this
limit is time dependent and will increase, as the time horizon gets expanded. This
effect is shown in Figure 5.4.

5.6.5 The Effect of Time

Different from the model with constant investment opportunities it is now interest-
ing to consider how the time horizon will affect the investment strategy. When the
efficient frontiers for a couple of fixed time horizons were presented in Figure 5.3, the
allocation in bonds and the locally risk-free asset would change if the time horizon
was changed. Increase in time horizon will lead to a lower allocation in the locally
risk-free asset. This is also seen in Figure 5.6, where the allocation in cash, bonds,
and the specific hedging term is presented. We see how a longer time horizon will
move the investor’s focus from a local risk to hedging the potential future interest
rate fluctuations. Allocation in hedging is the only factor that moves the bond al-
location, which is why the two curves will increase in a parallel manner, when the
investor has a risk aversion γ > 1. In the case with γ < 1 the investor would for an
increasing time horizon allocate in the opposite direction, with a decrease in hedging
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Figure 5.6: Illustrates the allocation for a CRRA-investor under the dynamic model with a stochastic interest rate
over investment horizon, and for different risk aversion levels, γ = 2 and γ = 10.

but an increase the fraction of wealth allocated in cash.

An increasing time horizon will lead to more hedging, but the effect of time is
not constant. As seen from the expression for bond allocation, the level of risk aver-
sion will also play a role. As the risk aversion increases, the effect of time will also
increase. The mathematical term is already presented, but Figure 5.6 shows that
the allocation effect from a change in time will in absolute values have an increasing
slope parameter as γ is increasing. For illustration we have plotted the functions for
an investor with a risk aversion of γ = 2 and another investor with a risk aversion
of γ = 10.

5.7 Real World Advice

There is not always congruence between suggestions from financial advisers and fi-
nancial theory. Advisors sometimes use arguments for which there are no theoretical
foundation and sometimes the theoretical models are to simple. In papers, such as
Munk and Sørensen (2001), it is shown how a model with constant investment op-
portunities can be extended to also consider the individual’s labour income. This
makes the results more realistic, and approaches the advice which is given by prac-
titioners.

When only considering institutional investors, it would not make sense to consider
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the labour income extension. Our extension with the assumption of a stochastic in-
terest rate is, however, very relevant for institutional investors. It is also relevant for
households as it changes an assumption about the investment opportunities which
both groups of investors consider.

Assuming that institutional investors will have to follow the same advice as house-
hold investors, such as an increasing allocation in stocks when the investment horizon
is increasing, we are able to relate our findings for the stochastic model to the real
world advices.

Our comparison between the model with a constant interest rate and the model
with a stochastic short-term interest rate has shown that the result does not change
much. We still see exactly the same allocation in stocks. The fraction in stocks
reacts in a natural way to the value of the risk aversion, but the fraction is still
independent of time which is inconsistent with the standard advice for investors
where an increasing time horizon should lead to a larger fraction in risky assets.

We do, however, see a more realistic fraction invested in bonds, as we now have
a hedging term. This makes the fraction invested in bonds dependent on the time
horizon. The effect of the hedging term combined with its effect of time makes the
stochastic model more realistic. Risk aversion leads to a hedging against the future
risk instead of just buying the locally risk-free asset, cash. There is still an increase
in cash when risk aversion is increasing, but the model now includes hedging against
future risk, which makes it closer to real-world advices.

The conclusion is that the extension changes the way in which institutional investors
shall invest. It does, however, not affect the stock allocation.

5.8 Comparison to Other Interest Rate Models

This section intends to do an outward look to compare our findings to results under
different interest rate models in a qualitative approach, namely (i) Two-Factor Va-
sicek Model, (ii) Cox-Ingorsoll-Ross (CIR), and (iii) Other interest rate models.

(i) Two-Factor Vasicek: In Brennan and Xia (2000), they consider the portfolio im-
plication from a two-factor Vasicek interest rate model, where an investor only yield
utility from terminal wealth. They assume the equity risk premium, in excess of
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the instantaneously risk-less interest rate, to be a constant. It is assumed to be a
bivariate Markov process:

dr = [θ(t) + λr + u− ar]dt+ σrdzr

du = [λu − bu]dt+ σudzu

The new element, u, introduces variability in the long-run target for the short-term
interest rate for which the short rate is adjusting. Specifically, this new process al-
lows for independent variation in the short and long term of the yield curve. Future
values of r and u are normally distributed.

In the paper, the optimal portfolio is found to be a weighted sum of three portfo-
lios. The first portfolio is the mean-variance portfolio, which is optimal for investors
characterized by log utility or a short investment horizon. The two other portfolios
are constructed in order to hedge against the movements in the two state variables
r and u.

Investors create a perfect hedge against the two variables in a stochastic invest-
ment opportunity set using two bonds and cash, which implies that the proportion
of stock in the portfolio is solely determined by the investor’s myopic demand as
under constant investment opportunities.

The portfolio result implies that the bond-stock ratio increases with the risk aversion
parameter, when one of the bonds that is available need to have a maturity equal
to the investment horizon, and if the investor has a positive holding of stock. This
is inherently similar to our result with the one-factor Vasicek model for the interest
rate. However, if assuming the two-factor Vasicek and there is not a bond with ma-
turity equal to the investment horizon, then the bond-stock ratio is not necessarily
increasing in the risk aversion parameter. Therefore, the a two-factor interest model
produces a qualitatively differently result than a one-factor model in its predictions
regarding the relationship between risk aversion and the bond-stock ratio.

(ii) CIR: Some suggest the Cox-Ingersoll-Ross model as an alternative to the Vasicek
model. It does for example deviate from the one-factor Vasicek model by having a
volatility which is dependent on the interest rate as seen from the equation

drt = κ[r̄ − rt]dt− σr
√
rtdz1t.
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However, the results from the CIR model are not much different from the Vasicek
model. In Deelstra et al. (2000), there is a comparison of the investment strategies
under the one-factor Vasicek and the Cox-Ingersoll-Ross model. They have a set-up,
where the interest rate models and investment strategies are comparable. Consid-
ering the stock weight first, we see that both interest rate models yield the same
weight in stock. However, the hedging term and hence the total bond demand de-
pends on the interest rate model. The hedging and thereby also the bond allocation
is for γ > 1 increasing in the time horizon.

(iii) Other: Chan et al. (1992) did an empirical comparison of eight different models
for modelling the short interest rate dynamics to see which model performs best or
has the best fit regarding the 1 Month Treasury bond. Their results tell the story
about the importance of correctly modelled volatility. The models performing best
in describing the dynamics of interest rate over time allow the conditional volatility
of interest rate changes to be highly correlated with the level of the interest rate.
Despite expectations, they find that the widely used models Vasicek (1977) and Cox
et al. (1985) perform relative poorly compared the other models such as Dothan
(1978) and Black and Karasinski (1991). Since interest rate volatility is of crucial
importance in hedging interest risk, and since the most commonly used models do
not capture this dependence, this will have implication regarding the optimal port-
folio choice.

In Kraft (2004), he considers the Black and Karasinski (1991) model for the short
rate. The optimal portfolio yields the investment strategy where the investor should
put all her wealth into the money market account. This is a so-called ’Passive’
investment strategy and it is optimal both with and without investors having the
ability to trade in other assets like stocks, bonds or any other asset. Remember our
findings of the portfolio with the Vasicek model, then this result stands out. In an
economy where investors can invest in assets such stocks and bond, but choose not
to, implies that such a solution cannot be in a state of equilibrium.
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Chapter 6

Dynamic Model with a
Non-Constant Market Price of Risk

To extend the allocation model by introducing a stochastic interest rate, as in the
previous chapter, is not the only solution. We have discussed that the interest
rate can modelled in several ways. One can also change the modelling of other
parameters. In this chapter, we will show how we can extend the model with a
non-constant market price of risk in combination with a stochastic interest rate.
Section 6.1 describes different ways to model a non-constant market price of risk.
In Section 6.2 we motivate why the market price risk could be linked to the interest
rate. We therefore suggest a new description of the market price of risk in Section
6.3. The optimal portfolio for the new dynamics are presented in Section 6.4, and
the chapter ends with an analysis in Section 6.5.

6.1 Market Price of Risk

Extending the allocation problem with a non-constant market price of risk can be
done in different ways, see for example Duarte (2004), Dai and Singleton (2000),
Kim and Omberg (1996), and Duffee (2000) for different methods and tests. One of
the approaches is to make the market price of risk, λ, stochastic. In papers such as
Tanaka (2009) the model is extended by assuming a stochastic interest rate and a
stochastic market price of risk. Here we choose another method to make the market
price of risk non-constant. We find it realistic for it to be related to the interest
rate, and we therefore choose to make it a function of the stochastic interest rate.
We intend to keep the short-term interest rate following the same process as in the
previous chapter, namely the Vasicek model, but now it will additionally also affect
the market price of risk.
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6.2 Interest Rate as a Market Predictor

According to Damodaran (2012), market timing is a practice of relying on a signal
of when to enter or exit the market, and it stems from investor believe that mar-
kets do not account for all information available from the market fundamentals. In
this section, we attempt to explain why the interest rate can potentially serve as
a predictor for market movements. We will elaborate on why the interest rate is
one of the strongest indicators for the market. As conventional wisdom dictates, an
investor should sell stocks when the interest rates are low and buy when they are
high. There is strong empirical evidence supporting this conventional advice that a
decrease in the short interest rate seems to predict a high stock market return.

In Ang and Bekaert (2007), who looked at multiple predictors for the excess re-
turns, they find that the interest rate has a predictive ability on the short-term
horizon, since the short interest rate is strongly negative correlated with excess re-
turns. A study by Breen et al. (1989) evaluated an investment strategy of alternating
between stock and cash depending on the level of treasury bond rate and found that
investors applying this strategy would see an additional 2% in excess return if the
portfolio was actively managed.

However, there is some restrictions to this strategy, which a paper by Abhyankar
and Davies (2002) investigated. For this, they used the correlation structure be-
tween the short interest rate and stock market returns from 1929 to 2000. They find
limitations to the predictability of stock market return and it is only exhibited in
1950 to 1975. Afterwards the short interest rate has had a low predictive power on
the general market. However, the predictability has some industry presence.

A recent study by Rapach et al. (2016), focuses on the short interest rate abil-
ity to predict the aggregate stock returns. They find evidence which shows that
the interest rate does contain information about future market returns when it is
an aggregate measure. They use their measure, the short interest index (SII). It
predicts lower future returns if SII obtains higher values. They illustrate the power
of their index by comparing it to the range of different predictors used in Welch and
Goyal (2008), where it significantly outperforms all of them at different horizons.
The SII performs well both in in-sample and out-of-sample tests and statistics. At
the same time, the SII provide economic significance of its predictive ability, since a
mean-variance investor is seen to generate large utility gains from allocating between
stocks and bonds.
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6.3 Changes in Dynamics

In this chapter, we will make the market price of risk dependent on the interest
rate. For the interest rate dynamics, we will have the price of risk associated with
z1 given as

λ1t = λ̄1 + λ̃1rt.

As argued in Section 6.2, the expected return on the stock market is related to the
interest rate. To capture the market price of risk associated with z2 we therefore
write

λ2t = λ̄2 + λ̃2rt.

6.3.1 Bond Price and Dynamics

For the new situation with λ1t = λ̄1 + λ̃1rt, we use the new price of the bond

BT̄
t = e−a(T̄−t)−b(T̄−t)rt ,

which is given in Munk (2013). It is almost the same as before but with b(T − t) =
1− eκ̃(T−t)

κ̃
, where κ̃ = κ−σrλ̃1. In the previous model with constant market prices

of risk, the dynamics of bond were described in the following way

dBT̄
t

BT̄
t

= (rt + λ1tσrb(T̄ − t))dt+ σrb(T̄ − t)dz1t.

However, this model is differently defined, since b(T̄ − t) =
1− e−κ̃(T̄−t)

κ̃
where

κ̃ = κ − σrλ̃1 and λ1t = λ̄1 + λ̃1rt. λ̄1 and λ̃1 are constants. The expression of the
expected rate of return changes to account for the relationship between the interest
rate and the market prices of risk

rt + σrb(T̄ − t)
(
λ̄1 + λ̃1rt

)
= σrb(T̄ − t)λ̄1 +

(
1 + σrb(T̄ − t)λ̃1

)
rt

Substituting this into expression of the zero-coupon bond dynamics

dBT̄
t

BT̄
t

=
[
σrb(T̄ − t)λ̄1 +

(
1 + σrb(T̄ − t)λ̃1

)
rt

]
dt+ σBdz1t.
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This is the new bond dynamic under the Vasicek model, where the market price of
risk is an affine function of the interest rate. A high interest rate will in the Vasicek
model with constant market prices of risk lead to a higher return. In this model,
it still has the positive effect from the interest rate itself, but it does also have an
effect via the relationship with the market price of risk, λ1t. Depending on the sign
and the size on the coefficient λ̃1 and b(T̄ − t), there will be either an increased or
a decreased effect of the interest rate.

Assuming λ̄1 + λ̃1rt on average will be equal to the previously assumed constant
value of λ1 and λ̃1 > 0, there will be a lower constant compensation for the risk.
The investor will therefore have a part of the compensation, as dependent on the
level of the interest rate.

6.3.2 Stock Price and Dynamics

In the Chapter 5, the stock dynamics were defined as

dSt = St

[
(rt + σSψt)dt+ ρσSdz1t +

√
1− ρ2σSdz1t

]
.

Papers such as Fama and Schwert (1977) finds evidence for the excess return on the
stock markets to vary negatively with the level of the interest rates. We therefore
include the new definition of the market price in the bond price dynamics. The
expected excess rate of return on an asset equals the product of its vector of sen-
sitivities to the shocks and the vector of market prices of risk associated with the
shocks. Applying this to the stock in our case gives

σSψt = ρσSλ1t +
√

1− ρ2σSλ2t. (6.3.1)

The benefit of having the market price of risk, as an affine function of interest rate
is that the function enables the model to potentially capture the predictability in
stocks. This predictability can be shown from Equation (6.3.1) in the following way

ψt =
1

σS

(
ρσSλ1t +

√
1− ρ2σSλ2t

)
=
(
ρλ̄1 +

√
1− ρ2λ̄2

)
+
(
ρλ̃1 +

√
1− ρ2λ̃2

)
rt (6.3.2)
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This can be substituted in and gives the dynamics of the stock process under this
model, where market price of risk is an affine function of the interest rate

dSt
St

=
(
rt + σS

((
ρλ̄1 +

√
1− ρ2λ̄2

)
+
(
ρλ̃1 +

√
1− ρ2λ̃2

)
rt

))
dt

+
(
ρ+

√
1− ρ2

)
σSdz1t

From Equation (6.3.2), if ρλ̃1 +
√

1− ρ2λ̃2 < 0 the model would fit the observations
that average excess stock return tend to be low when interest rates are high and the
opposite case is also true.

6.3.3 New Wealth Dynamics

We have new dynamics of the wealth elements and as a consequence, we will have a
new expression for the dynamics of the wealth. The expression is similar to Equation
(5.3.5), where the dynamics were defined as

dWt = Wt[rt + π>t σ(rt, t)λt)]dt+Wtπ
>
t σ(rt, t)dzt. (6.3.3)

When considering the different elements, most of the vectors and the matrix for
volatility are unchanged. The difference is the new definition

λt =

(
λ̄1 + λ̃1rt

λ̄2 + λ̃2rt

)
.

6.4 Optimal Portfolio

The wealth is of the same form as before, when we write it in matrix form. The
vector containing the market prices of risks is different, but besides that we will
have the same HJB equation as presented in Equation (5.4.2). Due to the same
indirect utility function, we will also have the same partial differential equation for
the function g(r, t) to solve. From Equation (5.5.3), we have the partial differential
equation given as

0 =gt(r, t) +

(
κ[r̄ − r] +

1− γ
γ

λ>σr

)
gr(r, t)

+

(
1− γ
γ

r +
1− γ
2γ2
‖λ‖2

)
g(r, t) +

1

2
grr‖σr‖2,

with the terminal condition g(r, T ) = 1. The form of the function g(r, t) is this time
different, as we are in a quadratic framework. We extend the previous form with a
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quadratic term such that we have a qualified guess of the form

g(r, t) = exp

{
1− γ
γ

A0(T − t) +
1− γ
γ

A1(T − t)r +
1

2

1− γ
γ

A2(τ)r2

}
.

Following the same procedure as in Chapter 5, we find the partial derivatives of the
function, and substitute the results into the partial differential equation, which we
will have to solve. The partial derivatives are

∂g(r, t)

∂t
=

(
−1− γ

γ

(
1

2
r2A′2(τ) + rA′1(τ) + A′0(τ)

))
· g(r, t)

∂g(r, t)

∂r
=

(
1− γ
γ

(A1(τ) + A2(τ)r)

)
· g(r, t)

∂2g(r, t)

∂r2
=

((
1− γ
γ

(A1(τ) + A2(τ)r)

)2

+
1− γ
γ

A2(τ)

)
· g(r, t),

and after substituting the partial derivatives into the partial differential equation,
we will have it given as

0 =− 1− γ
γ

(
1

2
r2A′2(τ) + rA′1(τ) + A′0(τ)

)
· g(r, t)

+

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
·
(

1− γ
γ

(A1(τ) + A2(τ)r)

)
· g(r, t)

+
1

2

((
1− γ
γ

(A1(τ) + A2(τ)r)

)2

+
1− γ
γ

A2(τ)

)
· g(r, t)‖σr‖2

+

(
1− γ
γ

r +
1− γ
2γ2
‖λ‖2

)
· g(r, t).

To simplify the equation, we remove the expression for g(r, t) as done with the model

in Chapter 5, and then divide both sides with
1− γ
γ

0 =− 1

2
r2A′2(τ)− rA′1(τ)− A′0(τ) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
· (A1(τ) + A2(τ)r)

+ r +
1

2γ
‖λ‖2+

1

2

(
1− γ
γ

(A1(τ) + A2(τ)r)2 + A2(τ)

)
‖σr‖2. (6.4.1)
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The parentheses are removed by rearranging and multiplying

A′0(τ) =− 1

2
r2A′2(τ)− rA′1(τ) + κr̄A2(τ)r − κrA1(τ)− κrA2(τ)r + κr̄A1(τ)

+
1− γ
γ

λ>σrA2(τ)r +
1− γ
γ

λ>σrA1(τ) + r +
1

2γ
‖λ‖2+

1

2
A2(τ)‖σr‖2

+
1− γ

2γ
A2

1(τ)‖σr‖2+
1− γ

2γ
A2

2(τ)r2‖σr‖2+
1− γ

2γ
2A1(τ)A2(τ)r‖σr‖2,

We will as the next step substitute in some of the vectors. This is a necessity in this
model as the vector containing the market prices of risk is related to the interest
rate. Following the previous procedure, we will afterwards isolate terms related to
the short-term interest rate. We therefore have to know how the market price of
risk will change this partial differential equation. It is relevant for the expression
‖λ‖2 and the multiplication λ>σr. Remembering the definitions of the vectors

λt =

(
λ̄1 + λ̃1rt

λ̄2 + λ̃2rt

)
and σr =

(
−σr

0

)
.

From these vectors we can find the following two expressions

‖λ‖2 =
(
λ̄1 + λ̃1r

)2

+
(
λ̄2 + λ̃2r

)2

= λ̄2
1 + λ̃2

1r
2 + 2λ̄1λ̃1r + λ̄2

2 + λ̃2
2r

2 + 2λ̄2λ̃2r

λ>σr =
(
λ̄1 + λ̃1r λ̄2 + λ̃2r

)(−σr
0

)
= −σrλ̄1 − σrλ̃1r,

which are substituted in and we will have the following equation

A′0(τ) =− 1

2
r2A′2(τ)− rA′1(τ) + κr̄A2(τ)r − κrA1(τ)− κrA2(τ)r

+
1− γ
γ

(
−σrλ̄1 − σrλ̃1r

)
A2(τ)r + κr̄A1(τ) +

1− γ
γ

(
−σrλ̄1 − σrλ̃1r

)
A1(τ)

+ r +
1

2γ

(
λ̄2

1 + λ̃2
1r

2 + 2λ̄1λ̃1r + λ̄2
2 + λ̃2

2r
2 + 2λ̄2λ̃2r

)
+

1

2
A2(τ)‖σr‖2

+
1− γ

2γ
A2

1(τ)‖σr‖2+
1− γ

2γ
A2

2(τ)r2‖σr‖2+
1− γ

2γ
2A1(τ)A2(τ)r‖σr‖2.

The equation is rewritten, and terms related to the interest rate, r, are isolated in
an order such that they fit three ordinary differential equations. This is done by
creating parentheses for each of the ordinary differential equations in the same way,

65



CHAPTER 6. DYNAMIC MODEL WITH A NON-CONSTANT MARKET PRICE OF RISK

as we did in the previous chapter. We divide it into the following three functions

A′0(τ) =κr̄A1(τ)− 1− γ
γ

σrλ̄1A1(τ) +
1

2γ

(
λ̄2

1 + λ̄2
2

)
+

1

2
A2(τ)‖σr‖2+

1− γ
2γ

A2
1(τ)‖σr‖2

0 =r

(
1− A′1(τ) + κr̄A2(τ)− κA1(τ)− 1− γ

γ
σrλ̃1A1(τ)− 1− γ

γ
σrλ̄1A2(τ)

)
+ r

(
1

2γ

(
2λ̄1λ̃1 + 2λ̄2λ̃2

)
+

1− γ
2γ

2A1(τ)A2(τ)‖σr‖2

)
0 =r

(
−1

2
rA′2(τ) +

1

2γ

(
λ̃2

1 + λ̃2
2

)
r +

(
−κ− 1− γ

γ
σrλ̃1

)
rA2(τ)

)
+ r

(
1− γ

2γ
A2

2(τ)r‖σr‖2

)
.

For the second equation, we can remove r on the outside the parentheses, isolate
A′1(τ) and then reduce the parentheses until we have the ordinary differential equa-
tion given as

A′1(τ) =1 +
1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

)
+

(
κr̄ − 1− γ

γ
σrλ̄1

)
A2(τ)

+

(
−κ− 1− γ

γ
σrλ̃1 +

1− γ
γ

A2(τ)‖σr‖2

)
A1(τ)

If we now focus on the last equation, we can isolate A′2(τ) by changing some of the
parentheses and afterwards moving A′2(τ) to the other side of the equality sign

1

2
rA′2(τ) =

1

2γ

(
λ̃2

1 + λ̃2
2

)
r +

(
−κr − 1− γ

γ
σrλ̃1r

)
A2(τ) +

1− γ
2γ

A2
2(τ)r‖σr‖2

We have A′2(τ) isolated after multiplication such that the ordinary differential equa-
tion is given as

A′2(τ) =
1

γ

(
λ̃2

1 + λ̃2
2

)
+ 2

(
−κ− 1− γ

γ
σrλ̃1

)
A2(τ) +

1− γ
γ

A2
2(τ)‖σr‖2.

The three ordinary differential equations are changed such that the terms A′0(τ),
A′1(τ), and A′1(τ) are isolated. We still have to solve this system of ordinary differ-
ential equations in our process of solving the partial differential equation. The three
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equations are

A′0(τ) =
1

2γ

(
λ̄2

1 + λ̄2
2

)
+

(
κr̄ − 1− γ

γ
σrλ̄1

)
A1(τ) +

1

2

(
A2(τ) +

1− γ
γ

A2
1(τ)

)
‖σr‖2

A′1(τ) =1 +
1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

)
+

(
κr̄ − 1− γ

γ
σrλ̄1

)
A2(τ)

+

(
−κ− 1− γ

γ
σrλ̃1 +

1− γ
γ

A2(τ)‖σr‖2

)
A1(τ) (6.4.2)

A′2(τ) =
1

γ

(
λ̃2

1 + λ̃2
2

)
+ 2

(
−κ− 1− γ

γ
σrλ̃1

)
A2(τ) +

1− γ
γ

A2
2(τ)‖σr‖2.

Two of the ordinary differential equations which we have found are in the form
similar to the ones in Appendix C.3 of Munk (2013). We therefore already have
the solution to the system of ordinary differential equations, which consists of A′1(τ)

and A′2(τ) from above and their initial conditions; A1(0) = 0 and A2(0) = 0. For a
system of equations of the form

A′2(τ) = a− bA2(τ) + cA2(τ)2

A′1(τ) = d+ fA2(τ)−
(

1

2
b− cA2(τ)

)
A1(τ),

we will have the following solutions

A2(τ) =
2a (evτ − 1)

(v + b) (evτ − 1) + 2v

A1(τ) =
d

a
A2(τ) +

2

v
(db+ 2fa)

(
evτ/2 − 1

)2

(v + b) (evτ − 1) + 2v

with v =
√
b2 − 4ac. The ordinary differential equations above fit into the form,

which is necessary to use the solutions to the system. As the ordinary differential
equations are written in the same order as the definition of the forms above, we can
directly define the expressions

a =
1

γ

(
λ̃2

1 + λ̃2
2

)
b = 2

(
κ+

1− γ
γ

σrλ̃1

)
c =

1− γ
γ
‖σr‖2

d = 1 +
1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

)
f =

(
κr̄ − 1− γ

γ
σrλ̄1

)
.
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The expressions are substituted into the general solution for this type of system.
We have the following solutions to the system of ordinary differential equations

A2(τ) =
2
(

1
γ

(
λ̃2

1 + λ̃2
2

))
(evτ − 1)(

v + 2

(
κ+

1− γ
γ

σrλ̃1

))
(evτ − 1) + 2v

(6.4.3)

A1(τ) =

1 +
1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

)
(

1
γ

(
λ̃2

1 + λ̃2
2

)) A2(τ) +
2

v

((
1 +

1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

))

· 2
(
κ+

1− γ
γ

σrλ̃1

)
+ 2

(
κr̄ − 1− γ

γ
σrλ̄1

)(
1

γ

(
λ̃2

1 + λ̃2
2

)))
(6.4.4)

·
(
evτ/2 − 1

)2(
v + 2

(
κ+

1− γ
γ

σrλ̃1

))
(evτ − 1) + 2v

.

A0(τ) is not considered as it is unnecessary when solving the partial differential
equation.

6.4.1 Verification of Solution

The next step is to verify our suggested form of the utility function by solving the
partial differential equation from Equation (6.4.1). We will use the definitions of
the vectors λ and σr, as defined earlier, and the functions A′0(τ), A′1(τ), and A′2(τ).
First, substitute in the ordinary differential equations A′0(τ), A′1(τ), and A′2(τ) which
are given in Equation (6.4.2). The partial differential equation becomes

0 =− 1

2
r2

(
1

γ

(
λ̃2

1 + λ̃2
2

)
+ 2

(
−κ− 1− γ

γ
σrλ̃1

)
A2(τ) +

1− γ
γ

A2
2(τ)‖σr‖2

)
− r

(
1 +

1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

)
+

(
κr̄ − 1− γ

γ
σrλ̄1

)
A2(τ)

)
+

(
r +

1

2γ
‖λ‖2

)
− r

(
−κ− 1− γ

γ
σrλ̃1 +

1− γ
γ

A2(τ)‖σr‖2

)
A1(τ)− 1

2γ

(
λ̄2

1 + λ̄2
2

)
−
(
κr̄ − 1− γ

γ
σrλ̄1

)
A1(τ)− 1

2

(
A2(τ) +

1− γ
γ

A2
1(τ)

)
‖σr‖2

+

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
A1(τ) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
A2(τ)r

+
1

2

(
1− γ
γ

(A1(τ) + A2(τ)r)2

)
‖σr‖2+

1

2
A2(τ)‖σr‖2.
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Several terms cancel out, such that the equation is

0 =− 1

2
r2

(
1

γ

(
λ̃2

1 + λ̃2
2

)
+ 2

(
−κ− 1− γ

γ
σrλ̃1

)
A2(τ)

)
− r

(
1 +

1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

)
+

(
κr̄ − 1− γ

γ
σrλ̄1

)
A2(τ)

)
+

(
r +

1

2γ
‖λ‖2

)
− r

(
−κ− 1− γ

γ
σrλ̃1

)
A1(τ)− 1

2γ

(
λ̄2

1 + λ̄2
2

)
−
(
κr̄ − 1− γ

γ
σrλ̄1

)
A1(τ)

+

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
A1(τ) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
A2(τ)r.

Then substitute in the vector ‖λ‖2, which we defined earlier when we found the
ordinary differential equations. In the same step, we also remove r as it is present
with both a positive and a negative sign, such that the equation becomes

0 =− r2

(
−κ− 1− γ

γ
σrλ̃1

)
A2(τ)− r

(
κr̄ − 1− γ

γ
σrλ̄1

)
A2(τ)

− r
(
−κ− 1− γ

γ
σrλ̃1

)
A1(τ)−

(
κr̄ − 1− γ

γ
σrλ̄1

)
A1(τ)

+

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
A1(τ) +

(
κ[r̄ − rt] +

1− γ
γ

λ>σr

)
A2(τ)r

The final step is to multiply the two vectors λ and σr as we also did when finding the
ordinary differential equations. It is thereby seen how all the terms cancel out, and
we have proven that our suggestion is a possible solution to the partial differential
equation.

6.4.2 Portfolio Weights

As mentioned earlier, we are using the same utility function and HJB equation, as
in the previous model. When considering the portfolio weights, we will therefore
only have a difference in the form of the function g(r, t), which we defined in a new
way for the case with non-constant market price of risk. We therefore use Equation
(5.5.7) where we have the portfolio weights in the case of a CRRA investor. The
portfolio weights are under this model given as

π =
1

γ
(σ(rt, t)

>)−1λ+ g(r, t)−1gr(r, t)(σ(rt, t)
>)−1σr.

for which we will use the function g(r, t) and the partial derivative gr(r, t). Both are
defined previously in this chapter. After substituting in these two functions we will
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have the portfolio weights given as

π =
1

γ
(σ(rt, t)

>)−1λ+ (σ(rt, t)
>)−1σr

(
1− γ
γ

(A1(τ) + A2(τ)r)

)
.

It does not seem very different from our previous result, when we write it in matrix
form. When considering the elements of the equation it is however different from
our previous findings. We still have the portfolio weights, the volatility matrix and
vector for interest rate risk

πt =

(
πB

πS

)
σ(rt, t) =

(
σB(rt, t) 0

ρσS
√

1− ρ2σS

)
σ =

(
−σr

0

)
.

The vector for the market price of risk is defined differently, which is the idea with
this new model, and it is given as

λt =

(
λ̄1 + λ̃1rt

λ̄2 + λ̃2rt

)
.

Substituting in the definitions of the matrix and the vectors makes expression ugly.
We therefore directly specify the allocation in the two types of assets, where we have
the allocation in bonds given as

πB =
1

γ

 λ̄1 + λ̃1r

σB(rt, t)
−

ρ
(
λ̄2 + λ̃2r

)
√

1− ρ2σB(rt, t)

+
γ − 1

γ

σr
σB(rt, t)

(A1(τ) + A2(τ)r) ,

and the weight for allocation in stocks will be

πS =
1

γ

λ̄2 + λ̃2r√
1− ρ2σS

.

6.5 Analysis of Allocation Results

For the rest of this chapter, we will analyse the new portfolio results. As in Chapter
5, we will start with interpretation of the mathematical result. This is followed by
a numerical analyses. Finally, we conduct an alternative calibration of the market
price of risk.
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6.5.1 Mathematical Implications

In this section, we will examine the mathematical implication of the newly developed
model for optimal portfolio choice and how it differs from the former model. Both
are repeated here for convenience. First, the model only extended with a stochastic
interest rate is given as

π =
1

γ
(σ(rt, t)

>)−1λ+ (σ(rt, t)
>)−1σr

(
1− γ
γ

A1(τ)

)
, with A1(τ) =

1

κ
(1− e−κτ ).

Secondly, the model with a stochastic interest rate and the market price of risk as
an affine function of the interest rate given as

π =
1

γ
(σ(rt, t)

>)−1λ+ (σ(rt, t)
>)−1σr

(
1− γ
γ

(A1(τ) + A2(τ)r)

)
where A1(τ) and A2(τ) for the latter model are

A2(τ) =
2
(

1
γ

(
λ̃2

1 + λ̃2
2

))
(evτ − 1)(

v + 2

(
κ+

1− γ
γ

σrλ̃1

))
(evτ − 1) + 2v

A1(τ) =

1 +
1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

)
(

1
γ

(
λ̃2

1 + λ̃2
2

)) A2(τ) +
2

v

(
1 +

1

γ

(
λ̄1λ̃1 + λ̄2λ̃2

))

·
(

2

(
κ+

1− γ
γ

σrλ̃1

)
+ 2

(
κr̄ − 1− γ

γ
σrλ̄1

)
1

γ

(
λ̃2

1 + λ̃2
2

))
·

(
evτ/2 − 1

)2(
v + 2

(
κ+

1− γ
γ

σrλ̃1

))
(evτ − 1) + 2v

.

The difference between the two models lies in the hedging term, and the direct
effect of the interest rate in the fraction of wealth allocated to stocks and bonds.
The hedging term is more complex in its interpretation, because of the functional
expressions of the ordinary differential equations. The A1(τ) is differently formulated
in the models, while A2(τ) is new in the model with affine market price of risk. If
we consider the scenario, where investors can invest in stocks and bonds, we will
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have the following expressions

πB =
1

γσB

(
λ̄1 + λ̃1rt −

ρ√
1− ρ2

(λ̄2 + λ̃2rt)

)
+
γ − 1

γ

σr
σB

(A1(τ) + A2(τ)r)

πS =
1

γ

λ̄2 + λ̃2r√
1− ρ2σS

If we look at the fraction of wealth invested in bonds, the decomposed expression
sheds light on how the hedging term can have a positive effect on the amount of
wealth allocated to bonds under the assumption of γ > 1. However, it is still difficult
to state any analytical results from this portfolio weight, because of the complex-
ity of the ordinary differential equations. To disentangle this effect we will resort
to a numerical analysis in Section 6.5.2. This is to analyse the effects of different
parameters and how the model behave under the set of historical estimates, which
we introduced in Section 5.6.3.

Considering the stock weight in the portfolio, the fraction of wealth invested in
stock will be directly affected by the interest rate. This is due to the affine relation-
ship between the market price of risk and the interest rate. This is a new effect,
which differs from the model with a constant market price of risk. From this weight,
the amount of wealth allocated to stock is increasing in the interest rate.

6.5.2 Model Implications and Comparison of Models

To generate the numerical results in a consistent fashion with our analysis of the
model with only a stochastic interest, the same historical estimates are used to
model the portfolio results. The parameters for the simulation of the interest rate
are restated together with the estimates used for the portfolio weights

rt = 1% r̄ = 1% κ = 0.4965 ρ = 0.2 λ1 = 0.11

λ̄1 = 0.109 λ̃1 = 0.067 λ2 = 0.3666 λ̄2 = 0.3650 λ̃2 = 0.06

σs = 0.202 σr = 5% σB = 0.1

The values of λ̄i and λ̃i are calibrated to make the average value of the new de-
scription λ̄i + λ̃ir equal to the value of the constant market prices of risk, λ1 and
λ2.
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6.5.3 Wealth Invested in Bonds

Considering the allocation of wealth in bonds, in order to understand the impli-
cations of the model with affine market price of risk compared to the model with
constant market price of risk. Figure 6.1 illustrates the two model’s relationship
between the amount of wealth invested in bonds and investment horizon for four
different levels of risk aversion, and it shows that the models differ in terms of their
bond allocation. The thick green function in all four panels indicates the allocation
for the model with non-constant market price of risk. The thin blue function is the
allocation in bonds from the model with constant market price of risk. The pink
shaded area between the functions indicates the difference in the amount of wealth
allocated to bonds between the new model and the previous model from Chapter 5.
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Figure 6.1: The four panels show the bond allocation for the two models with stochastic interest rate at four
different levels of risk aversion. The thick blue functions is the model with non-constant market price of risk,
whereas the thin blue function is assuming constant market price of risk. The pink shaded are indicates the
difference in bond allocation from assuming a non-constant market price of risk.

The model with only a stochastic interest rate has a permanent increase in the
amount of wealth invested in bonds over the entire investment horizon. Extending
the model with an affine market price of risk makes the change in the bond alloca-
tion vary with the interest rate. There is still an increasing trend in the allocation of
wealth towards more bonds, but the increase does not follow the same well-behaved
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increase as the model from Chapter 5.

The fluctuations in the bond allocation for the new model are decreasing in risk
aversion. The two allocation models also converge towards the same bond allocation
as the risk aversion is increasing. In order to shed more light on why the fluctuations
decrease and why the two models converge, we again consider the weight of wealth
allocated to the bonds

πB =
λ̄1 + λ̃1rt
γσB︸ ︷︷ ︸

First term

− 1

γσB

ρ(λ̄2 + λ̃2rt)√
1− ρ2︸ ︷︷ ︸

Second term

+
γ − 1

γ

σr
σB

(A1(τ) + A2(τ)r)︸ ︷︷ ︸
Hedging term

.

From this expression, the increase in bond allocation can only originate from two
terms of the three terms, as the second term will have a negative impact. This is
because the correlation between stocks and bonds is positive, ρ = 0.2. In Table 6.1,
the expression for the bond has been decomposed into the different terms, namely
the first term, the second term and hedging term. A1(τ) and A2(τ) are included
as well. The first term will be defined as the investment incentive, which is the
incentive to allocate wealth only due to investment purposes, whereas the following
two terms are either related to the stock allocation or the hedging purpose.

From the terms in Table 6.1, it is seen that the investment incentive decrease with
an increase in the risk aversion. The second term is decreasing if the risk aversion
or the volatility of bonds are increasing. The decrease makes the correlation with
stocks less influential. The hedging term is, on the other hand, increasing in risk
aversion. This can imply that the investor employs bonds as a hedging instrument
rather than a investment vehicle.

The overall increase in bonds in the model with an affine market price of risk can
only arise from the investment incentive or the hedging incentive of the investor
given that γ > 1. We already addressed that the investment incentive of bonds
is decreasing in risk aversion, and that the hedging incentive is increasing in risk
aversion. When the investor’s risk aversion is increasing, we therefore see a shift
from investment incentive to hedging incentive, which reduces the fluctuations in
the bond allocation. This is because the interest rate has less impact in the hedging
term than in the investment term.

This change is also the reason why the two models will converge in their bond
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γ T 1st 2nd Hedge A1(τ) A2(τ)

0.5 1 2.193 -1.493 -1.058 2.117 0
30 2.176 -1.489 -1.588 3.176 0.016

1 1 1.097 -0.746 0 2.058 0
30 1.088 -0.745 0 3.095 0.008

2 1 0.548 -0.373 0.507 2.029 0
30 0.544 -0.372 0.764 3.054 0.004

5 1 0.219 -0.149 0.805 2.012 0
30 0.218 -0.149 1.212 3.030 0.002

10 1 0.110 -0.075 0.903 2.006 0
30 0.109 -0.074 1.360 3.022 0.001

20 1 0.055 -0.037 0.951 2.003 0
30 0.054 -0.037 1.434 3.018 0.0004

Table 6.1: A decomposed view of how the different terms affect the bond
allocation. 1st and 2nd term should be constant over time but varies because
of the interest rate simulation.

allocation, as the risk aversion is increasing. For an increasing risk aversion, the
hedging term will in both models have an increasing impact. The two models are
therefore converging in bond allocation, because their respective values of A1(τ) and
A2(τ), which are used in the hedging terms, are converging.

If γ = 1, the hedging incentive is not present and if γ < 1 the hedging incen-
tive is negative. For both cases, the investment incentive will be the only positive
effect in bond allocation and investment incentive is now relevant. The overall effect
of a lower risk aversion is a lower bond allocation. A larger fraction of the investor’s
wealth must therefore be allocated in stocks or the locally risk-free asset.

Under the model with affine market price of risk, the interest rate takes on a dual
role in its analytical implication for the investment strategy. If we again consider
the expression of wealth allocation in bonds, the interest rate enters in all terms.
The first term, the investment incentive in bonds is increasing in the interest rate.
The second term, that accounts for the correlation between stocks and bonds, is in-
creasing in the interest rate. The hedging term is also increasing in the interest rate,
but the effect of the interest rate is small, since it is multiplied with A2(τ). The dual
role comes into effect in the weight of bonds, where the interest rate is pulling the
amount of wealth allocated in two opposite directions. The investment incentive and
hedging incentive increase the amount of wealth allocated in bonds, while the term
correlated with the stocks is reducing the amount of wealth in bonds. The effect of
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the interest rate’s dual role is dependent on the parameter in the market price of
risk, which is multiplied with the interest rate. If λ̃i > 1, then the interest rate’s
effect becomes more pronounced, and if λ̃i < 1 the effect becomes less pronounced.

6.5.4 Wealth Invested in Stocks

The weight of wealth invested in stock is given as

πS =
1

γ

λ̄2 + λ̃2r√
1− ρ2σS

.

The weight shows that stocks are directly independent of time, but it will vary over
time as the interest rate is stochastic. An example is shown in Figure 6.2, where
the stock allocation is changing over time since the interest rate is. As mentioned
earlier and as seen from the equation just above, the interest rate will in the model
with an affine market price of risk have a direct positive effect on the amount of
wealth allocated to stock. The weight is as in the previous model decreasing in risk
aversion.
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Figure 6.2: Allocation in stocks across a 30 year investment horizon. M2 indicates the extended model with an
affine market price of risk. M1 indicates the model from Chapter 5, which is only extended with a stochastic interest
rate.
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In Section 6.2, we explained how investors use the interest rate as a predictor of
where the market is heading in order to make their timing of the investment de-
cision. Under this model with an affine market price of risk, Figure 6.2 shows the
information content in the interest rate is rich in terms of market timing. We use the
same interest rate simulation for the four panels in the figure. This makes the evo-
lutions in the optimal stock allocations identical, but at different levels. At T = 4,
the optimal portfolio weights reaches its minimum, whereas it at T = 14 reaches its
maximum. This is because of the relation with the interest rate, and the fluctuations
would therefore be even larger if λ̃2 was increased.

An interesting feature of the model with affine market price of risk is that the mean
value of the varying investment in stocks is equal to the weight of the former model,
where the stock weight is constant over the investment horizon. This is because the
portfolio weights for stocks in the two models become identical, due to the way we
calibrate the market price of risk in the model, where it is non-constant.

6.5.5 Comparison of Models

In Table 6.2, we are considering the wealth allocation at two terminal periods be-
tween a stock index, a bond, and the locally risk-free asset, across different levels of
risk aversion to compare the investment strategies between the models.

Affine Market Price of Risk Stochastic Interest Rate

T γ Stock Bond Hedge Cash Stock Bond Hedge Cash

T=1 0.5 3.692 0.280 -0.416 -2.972 3.705 0.309 -0.394 -3.014
1 1.846 0.348 0.000 -1.194 1.852 0.352 0.000 -1.204
2 0.923 0.374 0.200 -0.297 0.926 0.373 0.197 -0.299
5 0.369 0.387 0.318 0.244 0.370 0.386 0.315 0.244
10 0.185 0.391 0.356 0.424 0.185 0.390 0.355 0.425
20 0.092 0.393 0.375 0.515 0.093 0.392 0.374 0.515

T=30 0.5 3.696 -0.355 -1.059 -2.341 3.705 -0.304 -1.007 -2.401
1 1.848 0.352 0.000 -1.200 1.852 0.352 0.000 -1.204
2 0.924 0.689 0.513 -0.613 0.926 0.679 0.504 -0.606
5 0.370 0.885 0.815 -0.255 0.370 0.876 0.806 -0.246
10 0.185 0.950 0.915 -0.135 0.185 0.942 0.906 -0.127
20 0.092 0.982 0.964 -0.074 0.093 0.974 0.957 0.067

Table 6.2: A comparison between the two portfolio models, where the optimal portfolio choices are displayed
across different risk aversion levels for two investment horizon, T = 1 and T = 30.
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The allocation of wealth in stocks between the two models show to marginally differ.
For a perfectly calibrated model the results should be the same because the affine
market price of risk is calibrated such that it on average will equal the constant
market price of risk. The additional assumption about affine market price of risk
can therefore make a difference in the stock allocation, if calibrated differently. In
Table 6.2, the stock allocation is decreasing in risk aversion. The effect of the in-
vestment horizon is a consequence of the simulation of the stochastic interest rate.
This analytical result is expected, and states that an investor, who is becoming more
averse to risk will reduce his allocation in stocks.

Table 6.2 should show how the bond allocations in the two models converge to-
wards each other, as we also presented in Figure 6.1. The deviations from this are
because of the imperfect calibration of the market price of risk. From the table it is
however also seen that our argument of converging hedging terms is true. At both
time time horizons, we see that the hedging terms converge towards the same values
as the risk aversion is increasing.

The result from the comparison of the two extended models is that they are al-
most identical, where our calibration makes the hedging term the only difference
between the two models. To show the effect of the calibration, the next section will
show the allocation result under an alternative calibration.

6.5.6 Alternative Calibration of the Market Price of Risk

In Section 6.5.5, the market price of risk was calibrated such the fixed part of the
market price of risk was having the largest weight, while the part which is multiplied
with the interest rate was fairly small in magnitude. This will be referred as the
base case specification.

In this section, an alternative calibration of market price of risk parameters is per-
formed. In order to determine the pure effect of changing to an alternative specifi-
cation, the interest rate is kept constant. This makes us able to calibrate the market
price of risk perfectly. We also consider the alternative calibration in the situation
with a stochastic interest rate, and its effect on the bond allocation.

The alternative specification is done by changing both λ1 and λ2. The estimates
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under this case are the following

λ̄1 = 0.06 λ̃1 = 5

λ̄2 = 0.301 λ̃2 = 6.5

Attaching a larger part of the market price of risk for both λ1 and λ2, which is
multiplied with interest rate, implies that shocks to the interest rate have a greater
impact on investors portfolio choice. In order to counter this effect, investors in-
crease their long-term hedging and thereby increase the overall allocation to bonds.
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Figure 6.3: Illustrates the bond allocations of the two extended models, where the market price of risk is perfectly
calibrated under a constant interest rate, r = 0.01. The upper thick blue function is the model with non-constant
market price of risk. The lower thin blue function is the model extended with a stochastic interest rate

In Figure 6.3, there is a large difference between the bond allocations of the two
models. In contrast to our previous findings with the base specification, we here see
an increasing difference between the models’ bond allocation, when the risk aversion
is increasing. This is because the hedging terms no longer converge towards each
other, since the differential equations, A1(τ) and A2(τ), in the model with an affine
market price of risk are more sensitive to changes in the calibration, than A1(τ) in
the model which is only extended with a stochastic interest rate. As the risk aver-
sion increases, the hedging term differences become more important, as the hedging
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term will account for a larger part of the bond allocation formula.

To compare this case with the case from Figure 6.1, we will have to present Figure
6.4, where the bond allocations for the alternative calibration is based on a stochas-
tic interest rate. Due to the differences in the simulated interest rate, we cannot
perfectly calibrate the market price of risk.
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Figure 6.4: Illustrates the bond allocations of the two extended models, where the market price of risk is not
perfectly calibrated, where the interest the interest rate follows a one-factor Vasicek model.

Comparison between the two figures shows how the fluctuations increase signifi-
cantly, when the market price is highly dependent on the interest rate. The fluctu-
ations are especially severe in panel (a) of Figure 6.4, in which we can see points
through time where an investors will actually short bonds. As the risk aversion
increases, the fluctuations become smaller, which was also the case under the base
specification in Figure 6.1. However, the bond allocation converges towards the same
level as in Figure 6.3, and thereby moves away from the model only extended with
a stochastic interest rate. This is different from Figure 6.1, where the two allocation
results converged.
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Chapter 7

Suboptimal Allocation and its Costs

This chapter is focused on finding a function for the loss as a consequence of sub-
optimal portfolio allocation. The idea is to show how important it is to allocate
optimally, and thereby show that the extensions in the previous chapters are rele-
vant.

Suboptimal allocation can actually have greater importance than just represented by
the utility loss. When considering institutional investors one could also consider the
potential loss from providing a suboptimal return, which is lower than the returns
from direct competitors. Annual comparisons between pension fund’s returns and
industry rankings could potentially increase the effect of suboptimal returns. We
do, however, focus on the case where changes in the wealth from today and until its
terminal period only happens as a result of changes in the different assets and prices.

We will start by defining the loss function at a general level in Section 7.1, and
in Section 7.2 show the effect of deviating from the optimal portfolio under con-
stant investment opportunities, where we follow Munk (2013). We continue with
two specific cases. First, in Section 7.3 the loss from assuming constant investment
opportunities, when the true model in fact has a stochastic interest rate. Secondly,
we consider the loss from only extending the model with a stochastic interest rate,
when the investor should follow a model with both a stochastic interest rate and
a non-constant market price. This loss function and its results are presented in
Section 7.4.
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7.1 Loss Function at a General Level

We remember the utility function from the previous chapters

J(W, r, t) =
g(r, t)γW 1−γ

1− γ
,

which we will use, when we define the loss function. We want to obtain the same
utility level in both the optimal and suboptimal case and will therefore set the two
utility functions equal. Due to the lower utility in the suboptimal case, the investor
will have to put up additional wealth equal to W · ` to make the utility levels equal.
To find the percentage of extra wealth, `, we set the two utility functions equal

ĝγ(W (1 + `))1−γ

1− γ
=
gγW 1−γ

1− γ
ĝγ(W (1 + `))1−γ = gγW 1−γ

(1 + `)1−γ =
gγ

ĝγ

` =

(
gγ

ĝγ

) 1

1− γ − 1, (7.1.1)

where we have used g = g(r, t) for shorter notation, and the hat above g is used
to indicate the suboptimal case.. We can see it as the percentage of extra wealth,
which the investor will need to have when utility should be the same, as under the
optimal strategy. We can switch the sign and we will have the loss function. Then
will ` instead be the percentage of wealth, which the investor will pay for having the
optimal investment strategy instead. The idea is similar to the certainty equivalent
and risk premium, which we presented in Section 2.2 about utility and risk aversion.
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7.2 Suboptimal Allocation for Constant Investment

Opportunities

The model under constant investment opportunities has been solved in Chapter 4.
From this model, we have the function

g(r, t) = e
−
γ − 1

γ

r+ 1

2γ
||λ||2

(T−t)

,

which we will use as our optimal case. For some suboptimal case we have

ĝ(r, t) = e
−
γ − 1

γ

(
r+πσλ−

γ

2
π2σ2

)
(T−t)

,

where the portfolio weights, π, can be set to different values to illustrate the con-
sequences of suboptimality for extra wealth needed. When having both of these
functions we can substitute them into the general description of the loss function.
We can thereby calculate the function which will represent the loss from not follow-
ing the optimal allocation result. By substitution, the loss function will be

` =


e−

γ − 1

γ

r+ 1

2γ
||λ||2

(T−t)


γ

·

e−γ − 1

γ

(
r+πσλ−

γ

2
π2σ2

)
(T−t)


−γ

1

1− γ
− 1

= e

r+ 1

2γ
||λ||2

(T−t)−
(
r+πσλ−

γ

2
π2σ2

)
(T−t)

− 1

= e

 1

2γ
||λ||2−πσλ+

γ

2
π2σ2

(T−t)

− 1

` = e
1

2γ
(λ−γπσ)2(T−t) − 1. (7.2.1)

This loss function shows the loss from choosing an allocation which is different from
the optimal allocation in Equation (4.3.5). The effect of suboptimal allocation does
of course vary with the values of the other parameters in the loss function. We
focus on the risk aversion and the time horizon. The loss for different levels of risk
aversion is illustrated across deviating portfolio weights in panel (a) of Figure 7.1.
Similarly, panel (b) of Figure 7.1 shows how the loss varies across portfolio weights
for different lengths of the time horizon.
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From the panel (a), it is clearly seen that under the presented levels of risk aver-
sion, an increasing deviation will lead to an increasing loss. This increasing effect is
getting even stronger, as the risk aversion increases. The same effect is seen for an
increasing time horizon. The optimal portfolio does not vary, as time is irrelevant in
the model with constant investment opportunities, but time definitely has an effect
on the loss from deviating. Intuitively, it makes sense that an investor who invests
suboptimally for several years will have a greater loss than an investor, who only
invest for one year. We therefore have that, for the same deviation, an investor with
a high risk aversion, and a long time horizon will have a greater loss than an investor
with a lower risk aversion and a shorter time horizon.
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Figure 7.1: Loss at different levels of risk aversion and different time horizons. Panel (a) illustrates the additional
wealth for different risk aversion levels across different portfolio weights. Panel (b) presents the additional wealth
for different time horizons across different portfolio weights. Both are based on Equation (7.2.1) with σ = 0.2 and
λ = 0.3.

7.3 Suboptimal Allocation in a Stochastic setting

We have extended the model with constant investment opportunities by introducing
a stochastic interest rate. This new model is now assumed to be our optimal case.
It is therefore interesting to see how the investor’s wealth will behave if she does not
recognize that the stochastic model is in fact the correct model. From Section 7.2 we
expect the loss to be dependent on risk aversion and investment horizon. The loss
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function will also show if the extension of the model actually has a notable effect.
The loss under a stochastic interest rate has also been considered by others. See for
example Larsen (2010) who calculates how a local bias under a stochastic interest
rate will lead to a wealth loss.

We know from the general finding of the loss function that we will need the two
different expressions of g(r, t). They are both of the form

g(r, t) = exp

{
1− γ
γ

A0(T − t) +
1− γ
γ

A1(T − t)r
}
,

and it is then the ordinary differential equations which makes the difference. From
Chapter 5 we have the optimal case, and the ordinary differential equations are
therefore already given as

A1(τ) =
1

κ
(1− e−κτ )

A0(τ) =

∫ τ

0

1

2γ
‖λ‖2+

(
κr̄ +

∫ τ

0

1− γ
γ

λ>σr

)
A1(τ) +

∫ τ

0

1− γ
2γ
· ‖σr‖2A2

1(τ).

The next step is to find the ordinary differential equations in the suboptimal case.

7.3.1 Ordinary Differential Equations for the Suboptimal Case

We use the model with constant investment opportunities as our suboptimal sit-
uation. For the suboptimal case, we will have to evaluate the suboptimal port-
folio weights under the optimal assumptions. We will therefore use the portfolio
weights from the model with constant investment opportunities, which previously
for a CRRA-investor were defined as

π(W, t) =
1

γ
(σ(rt, t)

>)−1λ,

but they will be substituted into the HJB equation from the model with a stochastic
interest rate. For convenience, it is here restated:

0 = sup
π

{
∂J

∂t
(W, r, t) + Jr(W, r, t)κ[r̄ − r] +

1

2
Jrr(W, r, t)‖σr‖2

+ JW (W, r, t)W (r + π>σ(r, t)λ) +
1

2
JWW (W, r, t)(W 2π>σ(r, t)σ(rt, t)

>π)

+ JrW (W, r, t)σrWπ
>σ(r, t)

}
.
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Instead of maximizing by differentiating with respect to the portfolio weights we
will simply substitute in the suboptimal weights from the model with constant in-
vestment opportunities. After substitution, the volatility matrix in every term will
cancel out. We thereby have the new partial differential equation

0 =
∂J

∂t
(W, r, t) + Jr(W, r, t)κ[r̄ − r] +

1

2
Jrr(W, r, t)‖σr‖2+JW (W, r, t)W

(
r +

1

γ
λ̂>λ

)
+

1

2
JWW (W, r, t)

(
W 2 1

γ2
‖λ̂‖2

)
+ JrW (W, r, t)

(
W

1

γ
λ̂>σr

)
.

The same utility function is assumed and we therefore have the same partial deriva-
tives as when we considered the stochastic interest rate model. They are given in
Equation (5.5.2) and written here again:

JW (W, t) = ĝγW−γ

JWW (W, t) = −γĝγW−γ−1

∂J

∂t
(W, r, t) =

γ

1− γ
ĝγ−1ĝtW

1−γ

Jr(W, r, t) =
γ

1− γ
ĝγ−1ĝrW

1−γ

Jrr(W, r, t) =
γW 1−γ

1− γ
(
(γ − 1)ĝγ−2ĝ2

r + ĝγ−1ĝrr
)

JrW (W, r, t) = γĝγ−1ĝrW
−γ.

With these partial derivatives substituted into the equation, the following expression
is obtained

0 =
γ

1− γ
ĝγ−1ĝtW

1−γ +
γ

1− γ
ĝγ−1ĝrW

1−γκ[r̄ − r]

+
1

2

γW 1−γ

1− γ
(
(γ − 1)ĝγ−2ĝ2

r + ĝγ−1ĝrr
)
‖σr‖2+ĝγW−γW

(
r +

1

γ
λ̂>λ

)
− 1

2
γĝγW−γ−1

(
W 2 1

γ2
‖λ̂‖2

)
+ γĝγ−1ĝrW

−γW
1

γ
λ̂>σr,

where the wealth, W 1−γ is removed, as it is part of all terms. The equation is
reduced to

0 =
γ

1− γ
ĝγ−1ĝt +

γ

1− γ
ĝγ−1ĝrκ[r̄ − r] +

1

2

γ

1− γ
(
(γ − 1)ĝγ−2ĝ2

r + ĝγ−1ĝrr
)
‖σr‖2

+ ĝγ
(
r +

1

γ
λ̂>λ

)
− ĝγ 1

2γ
‖λ̂‖2+ĝγ−1ĝrλ̂

>σr.
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We use the same partial derivatives of ĝ(r, t) = ĝ. We can reduce the derivatives by
defining ĝ = exp

{
1−γ
γ
Â0(T − t) + 1−γ

γ
Â1(T − t)r

}
and present them as

∂ĝ

∂t
=

(
−1− γ

γ
(rÂ′1(τ) + Â′0(τ))

)
· ĝ

∂ĝ

∂r
=

(
1− γ
γ

Â1(τ)

)
· ĝ

∂2ĝ

∂r2
=

(
(1− γ)2

γ2
Â2

1(τ)

)
· ĝ.

This changes the partial differential equation, as it now contains both Â′0(τ) and
Â′1(τ)

0 =
γ

1− γ
ĝγ−1

(
−1− γ

γ
(rÂ′1(τ) + Â′0(τ))

)
· ĝ +

γ

1− γ
ĝγ−1

(
1− γ
γ

Â1(τ)

)
· ĝκ[r̄ − r]

+
1

2

γ

1− γ

(
(γ − 1)ĝγ−2

((
1− γ
γ

Â1(τ)

)
· ĝ
)2
)
‖σr‖2

+
1

2

γ

1− γ

(
ĝγ−1

(
(1− γ)2

γ2
Â2

1(τ)

)
· ĝ
)
‖σr‖2+ĝγ

(
r +

1

γ
λ̂>λ

)
− ĝγ 1

2γ
‖λ̂‖2

+ ĝγ−1

(
1− γ
γ

Â1(τ)

)
ĝλ̂>σr.

We divide the equation by ĝ. Where it is not present we will raise ĝ to the power of
−1. As a result there will be ĝγ−1 as a part of every term. The equation is therefore
divided by ĝγ−1, as a second part of this step

0 =
γ

1− γ

(
−1− γ

γ
(rÂ′1(τ) + Â′0(τ))

)
+

γ

1− γ

(
1− γ
γ

Â1(τ)

)
κ[r̄ − r]

+
1

2

γ

1− γ

(
(γ − 1)

(
1− γ
γ

Â1(τ)

)2
)
σ2
r +

1

2

γ

1− γ
(1− γ)2

γ2
Â2

1(τ)‖σr‖2

+

(
r +

1

γ
λ̂>λ

)
− 1

2γ
‖λ̂‖2+

(
1− γ
γ

Â1(τ)

)
λ̂>σr.

The next step is to reduce the equation by multiplying the fractions and parenthesis
containing the risk aversion parameter, γ. Following this, the reduced equation is
rearranged such that terms related to the interest rate are gathered

0 =− Â′0(τ) +

(
κr̄ +

1− γ
γ

λ̂>σr

)
Â1(τ) +

1− γ
2

Â2
1(τ)‖σr‖2+

1

γ
λ̂>λ− 1

2γ
‖λ̂‖2

− rÂ′1(τ)− Â1(τ)κr + r.
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The equation is then divided into two differential equations. They are

Â′0(τ) =
1

2γ
‖λ̂‖2+

(
κr̄ +

1− γ
γ

λ̂>σr

)
Â1(τ) +

1− γ
2

Â2
1(τ)‖σr‖2

Â′1(τ) =1− Â1(τ)κ,

which are almost similar to our previous ordinary differential equations from the
optimal case. The only difference is the last term in the equation for A′0(τ), which
no longer is divided by γ. Due to the high degree of similarity to our previous
equations, we simply state the solutions to the above system of ordinary differential
equations:

A1(τ) =
1

κ

(
1− e−κτ

)
A0(τ) =

1

2γ
‖λ̂‖2τ +

(
κr̄ +

1− γ
γ

λ̂>σr

)
τ − Â1(τ)

κ
(7.3.1)

+
1− γ

2
‖σr‖2

(
τ − Â1(τ)

κ2
− Â2

1(τ)

2κ

)

7.3.2 The Loss Function

We have all the necessary information to determine the additional wealth needed
to obtain the same utility level, when using the model with constant investment
opportunities, even though the interest rate is stochastic. The general loss function
is given in Equation (7.1.1), and we have the form

g(r, t) = exp

{
1− γ
γ

A0(T − t) +
1− γ
γ

A1(T − t)r
}
.

By substitution of g(r, t), we will have the loss function

` =


(

exp
{

1−γ
γ
A0(T − t) + 1−γ

γ
A1(T − t)r

})γ
(

exp
{

1−γ
γ
Â0(T − t) + 1−γ

γ
Â1(T − t)r

})γ


1

1− γ
− 1

=
exp {A0(T − t) + A1(T − t)r}

exp
{
Â0(T − t) + Â1(T − t)r

} − 1

= exp
{
A0(T − t)− Â0(T − t) + A1(T − t)r − Â1(T − t)r

}
− 1

By comparing definitions of A1(τ) from the optimal case in Equation (5.5.5), and
Â1(τ) from the suboptimal case in Equation (7.3.1). The similarity is clear, and
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they therefore cancel out. The loss function is reduced to

` = exp
{
A0(T − t)− Â0(T − t)

}
− 1,

and it is then the definition of A0(τ) and Â0(τ) that makes the difference. Again
refer to the optimal case in Equation (5.5.6) and the suboptimal case in Equation
(7.3.1) for definitions. Most terms cancel out, and the loss function is reduced even
further

` = exp

{
1− γ

2γ
· ‖σr‖2

(
τ − A1(τ)

κ2
− A2

1(τ)

2κ

)

− 1− γ
2
· ‖σr‖2

(
τ − Â1(τ)

κ2
− Â2

1(τ)

2κ

)}
− 1.

Since A1(τ) and Â1(τ) are equal. We choose to write them both as A1(τ) and can
simplify the function

` = exp

{(
1

γ
− 1

)
1− γ

2
· ‖σr‖2

(
τ − A1(τ)

κ2
− A2

1(τ)

2κ

)
r

}
− 1.

We can use the definition A1(τ) =
1

κ
(1−e−κτ ) and substitute it into the loss function

` = exp

{(
1

γ
− 1

)
1− γ

2
· ‖σr‖2

(
κτ − (1− e−κτ )

κ3
− (1− e−κτ )2

2κ3

)
r

}
− 1. (7.3.2)

We have hereby defined the loss function from following the suboptimal allocation
result from the model with constant investment, when the interest rate is in fact
stochastic.

7.3.3 Interpretation and Implications of the Loss Function

In this section, we have found an expression for the loss, which an investor incurs
when she is applying the incorrect portfolio model given the assumptions of the mar-
ket variables. Specifically, we have considered the scenario where the investor uses
the portfolio model strategy with constant investment opportunities. This choice is
evaluated under the assumptions of the optimal investment strategy with a stochas-
tic interest rate.

In this analysis, we would expect that an investor committing the same mistake
over a longer investment horizon would incur a larger welfare loss, implying that the
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welfare loss must be increasing in the investment horizon. However, the impact of
risk aversion is not clear cut from the loss function mathematically defined above.
Therefore, we use the historical estimates from the numerical analysis in Section
5.6.3 to illustrate the welfare losses in Figure 7.2.
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(d) Risk Aversion = 20

Figure 7.2: Illustrates the percentage of additional wealth needed for different values of risk aversion parameter,
γ, for a CRRA-investor over an investment horizon of 30 years. The numerical results are based on the historical
estimates previously used.

First, we consider the effect from the investment horizon on the additional wealth
needed when using a suboptimal portfolio choice under this scenario. Figure 7.2
displays the percentage of additional wealth needed for different levels of the risk
aversion, γ, over a investment horizon of 30 years. It is increasing in the investment
horizon, which aids to the analogy of an investor, who has suboptimal investment
strategies over a longer period of time will be punished more by committing to the
same mistake for several periods.

The effect of risk aversion was unclear from Equation (7.3.2), but Figure 7.2 shows
that the welfare loss is increasing in risk aversion. The increase in the additional
wealth needed, as the risk aversion increases, is because the investor uses the subop-
timal model with constant investment opportunities. In the optimal model with a
stochastic interest rate, the investors will hedge more as the risk aversion increases,
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but the investor does not hedge in the suboptimal scenario and is punished for
this lack of hedging. The needed wealth is increasing for higher levels of γ, since
the hedging significantly increases, but is absent under the model with constant
investment opportunities.

7.4 Loss when Assuming Constant Market Price of

Risk

This section calculates the loss from only following the first extension with a stochas-
tic interest rate against, when the true models is the second extension, where the
interest rate is stochastic and the market price of risk is non-constant. The first
model is assumed to yield a suboptimal allocation result, whereas the second model
is assumed to be the true model and thereby give the optimal allocation result.

7.4.1 The New Set-up and Ordinary Differential Equations

The utility function and the wealth dynamics are the same as in Chapter 6. The
definition is different for some of the wealth matrices. However, in matrix form, we
will have the same HJB equation to solve

0 = sup
π

{
∂J

∂t
(W, r, t) + Jr(W, r, t)(κ[r̄ − r]) + JW (W, r, t)W [r + π̂>σ(r, t)λ]

+
1

2
JWW (W, r, t)W 2π̂>σ(r, t)σ(r, t)>π̂ + JrW (W, r, t)σrW π̂

>σ(r, t)

+
1

2
‖σr‖2Jrr(W, r, t)

}
,

with the terminal condition ĝ(r, T ) = 1. The suboptimal portfolio weights from the
case with constant market price of risk are

π̂ =
1

γ
(σ(rt, t)

>)−1λ̂+
γ − 1

γ
(σ(rt, t)

>)−1

(
σr

0

)
b(T − t).

91



CHAPTER 7. SUBOPTIMAL ALLOCATION AND ITS COSTS

We substitute them into the HJB equation and reduce the expression by multiplying
σ(rt, t) into the parentheses such that

0 =
∂Ĵ

∂t
(W, r, t) + Ĵr(W, r, t)κ[r̄ − r] +

1

2
Ĵrr(W, r, t)σ

2
r

+ ĴW (W, r, t)Wtr + ĴW (W, r, t)Wt

(
1

γ
λ̂>λ− γ − 1

γ
σr(λ̄1 + λ̃1r)b(T − t)

)
+

1

2
ĴWW (W, r, t)W 2

t

((
1

γ2
λ̂>λ̂+

(γ − 1)2

γ2
σ2
rb(T − t)2 + 2

1

γ

γ − 1

γ
σrλ̂1b(T − t)

))
− ĴrW (W, r, t)Wtσr

(
1

γ
λ̂1 +

γ − 1

γ
σrb(T − t)

)
.

We use the partial derivatives which are similar to the ones before in the case with
non-constant market price of risk. They are:

ĴW (W, r, t) = ĝγW−γ

ĴWW (W, r, t) = −γĝγW−γ−1

∂Ĵ

∂t
(W, r, t) =

γ

1− γ
ĝγ−1ĝtW

1−γ

Ĵr(W, r, t) =
γ

1− γ
ĝγ−1ĝrW

1−γ

Ĵrr(W, r, t) =
γW 1−γ

1− γ
(
(γ − 1)ĝγ−2ĝ2

r + ĝγ−1ĝrr
)

ĴrW (W, r, t) = γĝγ−1ĝrW
−γ.

The derivatives are substituted into the partial differential equation and it is seen
how W 1−γ appears in every term. We therefore divide the equation with W 1−γ to
remove it. After substitution, the partial differential equation is

0 =
γ

1− γ
ĝγ−1ĝt +

γ

1− γ
ĝγ−1ĝrκ[r̄ − r] +

1

2

γ

1− γ
(
(γ − 1)ĝγ−2ĝ2

r + ĝγ−1ĝrr
)
σ2
r

+ ĝγr + ĝγ
(

1

γ
λ̂>λ+

γ − 1

γ
σr(λ̄1 + λ̃1r)b(T − t)

)
− 1

2
γĝγ

(
1

γ2
λ̂>λ̂+

(γ − 1)2

γ2
σ2
rb(T − t)2 + 2

γ − 1

γ2
σrλ̂1b(T − t)

)
− γĝγ−1ĝrσr

(
1

γ
λ̂1 +

γ − 1

γ
σrb(T − t)

)
,

Again, we use the definition

ĝ = exp

{
1− γ
γ

Â0(T − t) +
1− γ
γ

Â1(T − t)r +
1

2

1− γ
γ

Â2(τ)r2

}
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to find the partial derivatives and to shorten the expression for the derivatives

∂ĝ

∂t
=

(
−1− γ

γ

(
1

2
r2Â′2(τ) + rÂ′1(τ) + Â′0(τ)

))
· ĝ

∂ĝ

∂r
=

(
1− γ
γ

(Â1(τ) + Â2(τ)r)

)
· ĝ

∂2ĝ

∂r2
=

((
1− γ
γ

(Â1(τ) + Â2(τ)r)

)2

+
1− γ
γ

Â2(τ)

)
· ĝ.

After substitution, it is seen how we can remove ĝ and afterwards remove ĝγ−1 from
the partial differential equation. Following the same procedure, as in the previous
chapters, we can continue by multiplying parentheses. This simplifies the expression
by removing several of the risk aversion terms. After these four steps, the partial
differential equation is given as

0 =− 1

2
r2Â′2(τ)− rÂ′1(τ)− Â′0(τ) + (Â1(τ) + Â2(τ)r)κ[r̄ − r]

− 1

2

(γ − 1)2

γ

(
Â1(τ) + Â2(τ)r

)2

σ2
r +

1

2

(
1− γ
γ

(
Â1(τ) + Â2(τ)r

)2

+ Â2(τ)

)
σ2
r

+ r +
1

γ
λ̂>λ+

γ − 1

γ
σr(λ̄1 + λ̃1r)b(T − t)−

1

2γ
λ̂>λ̂− (γ − 1)2

2γ
σ2
rb(T − t)2

− 2
γ − 1

2γ
σrλ̂1b(T − t) + (γ − 1)(Â1(τ) + Â2(τ)r)σr

(
1

γ
λ̂1 +

γ − 1

γ
σrb(T − t)

)
.

The vectors for the market price of risk were in the suboptimal and optimal case
defined as

λ̂ =

(
λ̂1

λ̂2

)
and λ =

(
λ̄1 + λ̃1r

λ̄2 + λ̃2r

)
,

which makes it possible to write out some of the terms in the expression above. We
will use the result

λ̂>λ = λ̂1λ̄1 + λ̂2λ̄2 + λ̂1λ̃1r + λ̂2λ̃2r,
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which is substituted into the expression. The expression is now

0 =−
(

1

2
r2Â′2(τ) + rÂ′1(τ) + Â′0(τ)

)
+ (Â1(τ) + Â2(τ)r)κ[r̄ − r]

− 1

2

(γ − 1)2

γ

(
Â1(τ) + Â2(τ)r

)2

σ2
r +

1

2

(
1− γ
γ

(
Â1(τ) + Â2(τ)r

)2

+ Â2(τ)

)
σ2
r

+ r +

(
1

γ

(
λ̂1λ̄1 + λ̂2λ̄2 + λ̂1λ̃1r + λ̂2λ̃2r

)
+
γ − 1

γ
σr

(
λ̄1 + λ̃1r

)
b(T − t)

)
− 1

2γ
λ̂>λ̂− (γ − 1)2

2γ
σ2
rb(T − t)2 − 2

γ − 1

2γ
σrλ̂1b(T − t)

+ (γ − 1)(Â1(τ) + Â2(τ)r)σr

(
1

γ
λ̂1 +

γ − 1

γ
σrb(T − t)

)
.

The equation can be rearranged by isolating the terms depending on, if they are
related to r2, r, or not related to the interest rate

0 =− 1

2
r2Â′2(τ)− A2(τ)r2κ− (γ − 1)2

2γ
Â2

2(τ)r2σ2
r +

1− γ
2γ

A2
2(τ)r2σ2

r

+ r − rÂ′1(τ)− Â1(τ)κr + Â2(τ)rκr̄ − (γ − 1)2

γ
Â1(τ)Â2(τ)rσ2

r

+
1− γ
γ

Â1(τ)Â2(τ)rσ2
r +

γ − 1

γ
λ̃1rσrb(T − t) +

1

γ
λ̂1λ̃1r +

1

γ
λ̂2λ̃2r

+ (γ − 1)Â2(τ)rσr

(
1

γ
λ̂1 +

γ − 1

γ
σrb(T − t)

)
− Â′0(τ) + Â1(τ)κr̄ − (γ − 1)2

2γ
Â2

1(τ)σ2
r +

1

2
Â2(τ)σ2

r +
1− γ

2γ
Â2

1(τ)σ2
r

+
γ − 1

γ
λ̄1σrb(T − t) +

1

γ
λ̂1λ̄1 +

1

γ
λ̂2λ̄2 −

1

2γ
λ̂>λ̂− (γ − 1)2

2γ
σ2
rb(T − t)2

− 2
γ − 1

2γ
σrλ̂1b(T − t) + (γ − 1)Â1(τ)σr

(
1

γ
λ̂1 +

γ − 1

γ
σrb(T − t)

)
From the rearranging above, the partial differential equation can be divided into
three ordinary differential equations. As before, we want an expression for Â′0(τ),
Â′1(τ), and Â′2(τ). We find these from the equation above, and simplify the expres-
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sions for ordinary differential equations such that we can write them as

Â′2(τ) =− 2A2(τ)κ+ (1− γ)A2
2(τ)σ2

r

Â′1(τ) =1 +
1

γ

(
λ̂1λ̃1 + λ̂2λ̃2

)
+
γ − 1

γ
λ̃1σrb(T − t)−

(
κ+ (1− γ) Â2(τ)σ2

r

)
Â1(τ)

+

(
κr̄ + σr

(
γ − 1

γ
λ̂+

(γ − 1)2

γ
σrb(T − t)

))
Â2(τ)

Â′0(τ) =

[
κr̄ + (γ − 1)σr

(
1

γ
λ̂1 +

γ − 1

γ
σrb(T − t)

)]
Â1(τ) +

1− γ
2

Â2
1(τ)σ2

r

+
1

2
Â2(τ)σ2

r +
γ − 1

γ
λ̄1σrb(T − t)−

γ − 1

γ
σrλ̂1b(T − t)

− (γ − 1)2

2γ
σ2
rb(T − t)2 − 1

2γ
λ̂>λ̂+

1

γ
λ̂1λ̄1 +

1

γ
λ̂2λ̄2,

where we still have the condition Â0(0) = Â1(0) = Â2(0) = 0 to satisfy the terminal
condition ĝ(r, T ) = 1. Following Appendix C.3 in Munk (2013) a system of ordinary
differential equations of the form

A′2(τ) =a− bA2(τ) + cA2
2(τ)

A′1(τ) =d+ fA2(τ)−
(

1

2
b− cA2(τ)

)
A1(τ)

with the initial conditions A1(0) = A2(0) = 0, will have the following solutions

A2(τ) =
2a(evτ − 1)

(v + b)(evτ − 1) + 2v

A1(τ) =
d

a
A2(τ) +

2

v
(db+ 2fa)

(
evτ/2 − 1

)2

(v + b)(evτ − 1) + 2v
,

with v =
√
b2 − 4ac. From the system of ordinary differential equations it is seen

that a = 0. For the differential equation Â′2(τ) the result is therefore Â2(τ) = 0.
With this result, the solution for Â′1(τ) will be simplified. The differential equation

for Â′1(τ) will fit into the form Â′1(τ) = d − 1

2
bÂ1(τ) and we can use the solution,

which was also used in Section 5.5.2, with

A1(τ) =
d
1
2
b

(
1− e−

1
2
bτ
)
.
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From the equations we define

d =1 +
1

γ

(
λ̂1λ̃1 + λ̂2λ̃2

)
+
γ − 1

γ
λ̃1σrb(T − t) and b = 2κ.

The solution is thereby

Â1(τ) =

(
1 +

1

γ

(
λ̂1λ̃1 + λ̂2λ̃2

)
+
γ − 1

γ
λ̃1σrb(T − t)

)
(1− e−κτ )

κ
.

Before the calculation of the percentage of additional wealth needed, a solution to
the differential equation A′0(τ) must also be found, as it is part of the loss function.
To find the solution we refer to Section 5.5.2, where we defined

A0(τ) =

∫ τ

0

A′0(s)ds.

This is combined with Â0(τ) from above. Before using the integral, Â2(τ) is removed,
as it is equal to zero. For the integration we again use the results∫ τ

0

A1(s)ds =
τ − A1(τ)

κ
and

∫ τ

0

A2
1(s)ds =

τ − A1(τ)

κ2
− A2

1(τ)

2κ
,

such that we can write the equation

Â0(τ) =
γ − 1

γ
λ̄1σrb(T − t)τ −

γ − 1

γ
σrλ̂1b(T − t)τ −

(γ − 1)2

2γ
σ2
rb(T − t)2τ

− 1

2γ
λ̂>λ̂τ +

1

γ
λ̂1λ̄1τ +

1

γ
λ̂2λ̄2τ +

1− γ
2

σ2
r

(
τ − Â1(τ)

κ2
− Â2

1(τ)

2κ

)

+

[
κr̄ + (γ − 1)σr

(
1

γ
λ̂1 +

γ − 1

γ
σrb(T − t)

)]
τ − Â1(τ)

κ
.

7.4.2 Calculation of the Loss

We can calculate the loss from following the model in Chapter 5, when the true model
is given in Chapter 6, where the market price of risk is non-constant. The three
necessary ordinary differential equations for the suboptimal situation are defined
above, and we are thereby halfway in having the necessary information to calculate
the loss function. With the general definition from Equation (7.1.1), the form of
g(r, t), and the result Â2(τ) = 0, we can define the loss function as

` = exp

{
A0(T − t)− Â0(T − t) + (A1(T − t)− Â1(T − t))r +

1

2
A2(T − t)r2

}
− 1.
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Two of the three ordinary differential equations for the optimal situation are defined
in Equation (6.4.3) and Equation (6.4.4). The solution to A′0 is still missing. The
integrale of the ordinary differential equation A′0 is complicated and even though
Kim and Omberg (1996) show that a solution to a similar system exist, we follow
Moos (2011) and choose not to calculate the closed-form solution. The expression
for A′0 will not be easy to interpret and we therefore use numerical integration to
determine the value of A0. See Appendix C for justification of this approach.

As there is no closed-form solution to the loss function, we go directly to presentation
and interpretation of the estimated loss.

7.4.3 Interpretation and Implications

In this section, we again consider a loss function for an investor who is employing
a suboptimal model. In this case, we are considering an investor who uses a model
with a stochastic interest rate and a constant market price of risk. The investor’s
strategy is evaluated under the optimal assumptions of a investment strategy with
a stochastic interest rate and a non-constant market price of risk.

As in the previous analysis of a loss function in Section 7.3.3, we expect that an
investor who is using a suboptimal investment strategy consistently over a longer
investment horizon will have an additional amount wealth needed to obtain the
same utility level. The effect of risk aversion is again difficult to back out from the
loss function expression. Especially in this case, as we do not have a closed-form
solution. However, in Section 6.5.2 it was shown that the amount of wealth invested
in stocks and bonds was approximately close to each other between the two models.
The difference was due to the amount of hedging an investor required.

In Figure 7.3, we can see the behaviour of the loss function across investment horizon
and risk aversion levels. This behaviour confirms that the percentage of additional
wealth needed is increasing in the investment horizon, since making a suboptimal
choice of investment strategy consistently, naturally builds up a loss as time passes.

The wealth needed is decreasing in risk aversion, and this result is the opposite
of the former loss function. This is quite a surprising result, but a decomposition of
this result can be useful. As mentioned earlier, the two investment strategies yield
almost the same amount of wealth allocated to stocks and bonds, but there was a
discrepancy between the strategies in terms of the hedging required. The hedging
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Figure 7.3: Illustrates the additional wealth for investors who are assuming a constant market price of risk, while
it is non-constant under the optimal assumptions. The additional wealth is displayed for different levels of risk
aversion over an investment horizon of T = 30.

term under the model with stochastic interest rate and non-constant market price of
risk is slightly more complex than its comparable in the model only extended with
a stochastic interest rate. This implies, that the surprising effect of risk aversion
could originate from the hedging terms.

In Table 6.1, the hedging term of the optimal investment strategy is decomposed,
where it is seen that the differential equations A1(τ) and A2(τ) are decreasing in risk
aversion. For the suboptimal case is Â1(τ) also decreasing in risk aversion. A com-
parison shows that the decrease in these elements makes them converge towards the
same value. As they are converging, the difference in the hedging term will decrease,
and the two models are thereby coming closer in their allocation. Therefore is the
percentage of additional wealth needed for a highly risk averse investor minimal.
This is why the wealth needed is decreasing, when the risk aversion is increasing.
The high degree of similarity in the allocation results is a consequence of the cali-
bration of the models. When the model is extended with the market price of risk as
a function of the interest rate, the model is calibrated such that the market price of
risk on average will match the constant values for λ1 and λ2 from the previous model.
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Besides the calibration of the model, there is another issue with this calculation
of welfare loss. To simplify the problem, we have used a constant interest rate for
the example in Figure 7.3. Due to the calibration, this makes the portfolio weights
very similar, despite the hedging term. Presenting the loss with a stochastic inter-
est rate would lead to fluctuations in the result, as we saw in Section 6.5. This
is because the stochastic interest rate brings the market timing element into the
investor’s allocation strategy.
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Chapter 8

Numerical Example

In this section we will focus on a specific investor. For this investor we will compare
the findings in the three dynamic allocation models, and afterwards estimate the
loss from choosing the suboptimal solution. We assume one specific institutional
investor with an investment horizon of T = 30, and a risk aversion of γ = 2. The
rest of the numerical values follows the historical estimates, which we introduced in
Section 5.6.3.

Following the three models, we can create Table 8.1 which present the allocation
results for the models. The allocation results are similar to those from Section 5.6.3
and 6.5. The similarity in the allocation for the tangency portfolio is not surprising,
as already described in Section 5.6.2 where the first two models are compared and
in Section 6.5.5, where the two extended models are compared. The common trends

Model Tangency Stock Bond Hedging Cash Exp return Std

Constant 1.102 0.926 0.176 0.000 -0.102 8.33% 0.191
Stochastic 1.102 0.926 0.679 0.504 -0.606 8.88% 0.211
Affine 1.102 0.926 0.688 0.513 -0.615 8.89% 0.212

Table 8.1: Allocation results and their returns for the three different models from Chapter 4, 5, and 6. T = 30
and γ = 2

are the increased hedging and the decreased cash allocation when going from one
model to another. The decrease in the allocation for the locally risk-free asset is
similar to the increase in the hedging term, as the tangency portfolio is unchanged.
The expected return is increasing, but the relative increase in the standard deviation
is even larger. The return per unit of standard deviation is therefore decreasing as
the amount of hedging is increasing, when the model becomes more complicated.
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This means that there is a lower return from following the extended models, but
comparing the result does not make sense. If one model is true, then the other two
must be false. Even though the allocation results are similar, the effect of not using
the correct model can be large. This is what is reflected in the loss functions, which
we defined in Chapter 7. For this specific case the losses are given in Table 8.2. This

Loss: Constant-Stochastic 0.000684%
Loss: Stochastic-Affine 76.44%

Table 8.2: Losses for T = 30 and γ = 2

means that the investor will have to come up with 0.000684% extra initial wealth
to match the result from the model extended with a stochastic interest rate. The
effect is even larger, when this specific investor does not extend the model with the
market price, as an affine function of the interest rate. The investor will have to
bring about 76% of extra initial wealth to match the same result. For these results
to be true, our assumed parameters and the models will have to be true. One could
set the time horizon or the risk aversion to some other level, but we here simply
assume T = 30 and γ = 2 to illustrate how the models work.
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Chapter 9

Conclusion

This thesis has demonstrated the effect that a stochastic interest rate has on the
investor’s wealth dynamics, and how the allocation in the different asset types is
changed by this modified assumption. The model is further extended with a non-
constant market price of risk of which the effects are also analysed. To justify the
extensions, we calculate the loss which an investor faces, when she assumes a sub-
optimal allocation model.

We consider institutional investors and their focus on maximising utility only as
a function of the terminal wealth. The institutional investors are of interest, since
they are companies who have significant amounts of assets under management, and
they have a large role in the global economy.

The maximisation problem has its intuitive starting point in the mean-variance
analysis in Chapter 3, where we have described how the trade-off between return
and risk creates a frontier of efficient portfolios. From here the tangency portfolio is
part of a two-fund separation result. The idea is the same in Chapter 4, where we
introduce the dynamic multi-period model with constant investment opportunities.
The underlying assumptions are more realistic, but the allocation result is again
two-fund separation between a risk-free asset and risky assets.

We extend the relatively simple model by relaxing the assumption of constant in-
vestment opportunities. This is done by introducing a stochastic interest rate, which
is assumed to follow an Ornstein-Uhlenbeck process as in Vasicek (1977). The exten-
sion takes two different forms; one is only extending the model with the stochastic
interest rate, whereas the other extension also makes the market price of risk non-
constant. Both models have closed-form solutions to their maximization problem,
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which we go through by solving a Hamilton-Jacobi-Bellman equation. The alloca-
tion results are similar, but they are not identical.

In the model only extended with a stochastic interest rate, the allocation results
are different from the model with constant investment opportunities. The portfolio
weights for allocation in risky assets have a new component. Besides allocation in
the tangency portfolio and the locally risk-free asset, the investor will also hedge
the interest rate risk. This new hedging term includes the interest rate volatility
and is therefore increasing as the uncertainty about the interest rate is increasing.
The allocation in stocks is still constant over time, whereas the allocation in bonds
through the hedging term will vary over time.

The second extension of the model is making the market price of risk a function
of the stochastic interest rate, which again leads to new allocation results. The
amount of wealth allocated in stocks is still independent of time, but due to the
new definition of the market price of risk, the allocation becomes dependent on the
interest rate level. The hedging term in this quadratic model is complicated. Inter-
pretation of the mathematical result becomes complex, but an increasing volatility
for the interest rate will still lead to an increase in hedging.

To determine whether any of these extensions are relevant, we do in Chapter 7
calculate the losses from following suboptimal allocation results. This is done for
three cases, where the first situation is based on Munk (2013) and shows the situ-
ation where the dynamic model with constant investment opportunities is the true
model. The second case is a calculation from assuming the constant investment op-
portunities, when the interest rate in fact is stochastic. The third case is a numerical
calculation of the loss from only extending the model with a stochastic interest rate,
when the market price of risk, in fact, should be non-constant.

To investigate the effect of the three dynamic allocation models and the poten-
tial loss functions, we do in Chapter 8 consider all models for one specific investor
with T = 30 and γ = 2. Under our assumptions, we do not find changes in the tan-
gency portfolio allocation across models. The new hedging term is, however, changed
across models, which leads to different returns from the models. A calculation of the
loss functions for this specific investor shows that mainly the final extension with
non-constant market price of risk is important to consider, when it is the true model.

103



CHAPTER 9. CONCLUSION

The overall result from the loss functions shows that it makes sense for the investor
to work with the more complicated models, if they are actually true. A simple model
cannot describe the market correctly and an investor will therefore face a loss from
basing her investments on the simple model.

The relative importance of the extensions is ambiguous. Not considering the ex-
tension with a stochastic interest rate leads to a loss, which is increasing as the
risk aversion is increasing. The loss from assuming the market price of risk to be
constant is high, but it is decreasing, when the risk aversion is increasing.

Our extensions are in the interest of the institutional investors due to the welfare
losses from suboptimal allocation. Assuming our model to be perfect would however
also lead to suboptimality, but we still expect it to be a step in the right direction.
Our findings of suboptimality are good arguments for why one should do further
research in creating a more realistic model.

We think, that further research can be within three main categories: models for
different types of investors, changes in market assumptions, or relaxing general mod-
elling assumptions.

Considering a different type of investor such as a private investor, would change
the optimisation problem, since consumption must be considered in the utility func-
tion. In addition, labour income must be a part of the wealth equation. Labour
income is, however, uncertain and the questions is whether the future income is to
be considered as risky as a stock, or as safe as a bond. Current topics in portfolio
optimisation for individuals are for example to include housing decisions, as it for
many individuals will be the largest investment in their life. The length of the in-
vestor’s life is also uncertain, which in most models is assumed to be known.

Considering different investors is not necessarily a choice between institutional in-
vestors or individuals. Other investor types could simply be either of the two groups,
but with a different objective than wealth maximisation to maximise utility. As an
example, an investor could gain utility from investments in green sources of energy.
Across investor types, there are still assumptions to relax. Among others, one should
consider how to create a model that accounts for issues such as stochastic inflation,
stochastic volatility, or other assumptions for the market price of risk. General
modelling assumptions is the third category. We also imagine further work can be
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done in making assumptions about continuous rebalancing, transaction costs, and
taxation more realistic.

Several of the ideas within the three categories are old news, but have only been
considered in isolation. The next step in research is a combination of these ideas to
come a step closer to reality.

The ideas about extensions lead to a trade-off between the amount of extensions
and the interpretation of the model. Building further extensions into an allocation
model can make it so complex that no closed-form solutions exist. Even if closed-
form solutions exist, they may be difficult to interpret, which is already the case for
our model with stochastic interest rate and non-constant market price of risk.

Even a very good model may be wrong, if the input is of low quality. It is therefore
not only a trade-off between extensions and interpretations, but it is also a question
about how good the result will be, when the input is not perfect. Imperfect infor-
mation can thereby make a good model irrelevant, as it will be wrong anyway. This
leads to a whole other research area; model ambiguity and parameter uncertainty,
such as Maenhout (2004) does it for the uncertainty about the return process.
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Appendix A

Constant Investment Opportunities

A.1 Distribution for Stock Price and Stock Returns
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From this, the expected return between time t and t+ ∆t is

E[ln(St+∆t/St)] = E[(µ− 1

2
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where we for the return until the terminal period have

E[ln(ST/S0)] = (µ− 1

2
σ2)T.

Likewise, we can calculate the variance of the stock returns
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+ 2(µ− 1

2
σ2)∆t · σ(zt+∆t − zt)]− (E[(µ− 1

2
σ2)∆t])2

=E[(σ(zt+∆t − zt))2 + 2(µ− 1

2
σ2)∆t · σ (zt+∆t − zt)︸ ︷︷ ︸

∼N(0,1)

]

=E[σ2(zt+∆t − zt)2]

=E[σ2(εt+∆t

√
∆t)2]

=E[σ2∆t]

=σ2∆t,

where it for the terminal period will be

Var[ln(ST/S0)] = σ2T.
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A.2 Reducing the General Hamilton-Jacobi-Bellman

Equation

From substitution we will have the equation

LπJ(W, t) = WJW (W, t)

(
− JW (W, t)

JWW (W, t)W
(σ>)−1λ

)
σλ

+
1

2
JWW (W, t)W 2

(
− JW (W, t)

JWW (W, t)W
(σ>)−1λ

)
σσ>

(
− JW (W, t)

JWW (W, t)W
(σ>)−1λ

)
.

This is reduced as the matrices for the volatility cancel out

= WJW (W, t)

(
− JW (W, t)

JWW (W, t)W

)
‖λ‖2

+
1

2
JWW (W, t)W 2

(
− JW (W, t)

JWW (W, t)W
λ

)(
− JW (W, t)

JWW (W, t)W
λ

)
= WJW (W, t)

(
− JW (W, t)

JWW (W, t)W

)
‖λ‖2+

1

2
JWW (W, t)W 2

(
JW (W, t)

JWW (W, t)W
λ

)2

=

(
− JW (W, t)2

JWW (W, t)

)
‖λ‖2+

1

2

(
JW (W, t)2

JWW (W, t)
‖λ‖2

)
= −1

2

(
JW (W, t)2

JWW (W, t)
‖λ‖2

)
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A.3 Partial Derivatives of Potential Utility Func-

tion

JW (W, t) =
(
g(t)γ(1− γ)W 1−γ−1 + 0 ·W 1−γ) · (1− γ)−1 +

(
g(t)γW 1−γ) · 0

= g(t)γW−γ

JWW (W, t) = 0 ·W−γ + g(t)γ · −γW−γ−1

= −γg(t)γW−γ−1

∂J

∂t
(W, t) =

(
γg(t)γ−1g′(t)W 1−γ) · (1− γ)−1

=
γ

1− γ
g(t)γ−1g′(t)W 1−γ

Jr(W, r, t) =
γ

1− γ
g(r, t)γ−1gr(r, t)W

1−γ

Jrr(W, r, t) =
γW 1−γ

1− γ
(
(γ − 1)g(r, t)γ−2g2

r(r, t) + g(r, t)γ−1grr(r, t)
)

JrW (W, r, t) = γg(r, t)γ−1gr(r, t)W
−γ

114



APPENDIX B. STOCHASTIC INTEREST RATE MODEL

Appendix B

Stochastic Interest Rate Model

B.1 Rewriting Vasicek’s Result for Bond Price

To ensure consistent notation and to show that the results match, we have rewritten
Vasicek’s model for an Ornstein-Uhlenbeck process step-by-step into the model,
which we work with for the zero-coupon bond price. The starting point is the result
from Vasicek (1977), which is rewritten by first changing the order of the terms

P (t, s, r) = exp

[
1

α
(1− e−α(s−t))(R(∞)− r)− (s− t)R(∞)− ρ2

4α3
(1− e−α(s−t))2

]
P (t, s, r) = exp

[
R(∞)(

1

α
(1− e−α(s−t))− (s− t))− (

1

α
(1− e−α(s−t))r

− ρ2

4α3
(1− e−α(s−t))2

]

P (t, s, r) = exp

[
R(∞)(

1

α
(1− e−α(s−t))− (s− t))− ρ2

4α3
(1− e−α(s−t))2

− 1

α
(1− e−α(s−t))r

]

P (t, s, r) = exp

[
−R(∞)((s− t)− 1

α
(1− e−α(s−t)))− ρ2

4α3
(1− e−α(s−t))2

− 1

α
(1− e−α(s−t))r

]

The order of the terms which e is raised to the power of are now in the order, which
we would like. Left is to switch the notation. Here we set

(s− t) = τ, R(∞) = y∞, α = κ, ρ = σ, and
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R(∞)1 = γ + ρq/α− 1

2
ρ2/α2 = y∞ =

(
r̄ +

λ1σr
κ
− σ2

r

2κ2

)
After rewriting using this notation the price of the zero coupon bond will be

BT̄
t = e

−y∞

τ−1

κ
(1−e−κτ )

− σ2
r

4κ3
(1−e−κτ )2−

1

κ
(1−e−κτ )

rt
= e−a(τ)−b(τ)rt

= e−a(T̄−t)−b(T̄−t)rt .

where

b(T̄ − t) =
1

κ
(1− e−κ(T̄−t))

a(T̄ − t) = y∞((T̄ − t)− b(T̄ − t)) +
σ2
r

4κ
b(T̄ − t)2

y∞ =

(
r̄ +

λ1σr
κ
− σ2

r

2κ2

)
.

B.2 Bond Price under an Ornstein-Uhlenbeck Pro-

cess

The calculation of the bond price under the Ornstein-Uhlenbeck process here is
based on method used in Puhle (2008), which we see as the most intuitive method.
For three alternative methods see Mamon (2004), which presents the same price
calculation as we do her but by using three different methods.

As we assume the markets to be complete and arbitrage-free there will exist a
unique stochastic discount factor according to the two fundamental theorems of
asset pricing. We can then write

Pt = Et

[
ζT
ζt
PT

]
,

with ζ being the stochastic discount factor, PT the return at time T , and Pt thereby
being the price at time t. The dynamics of the stochastic discount factor are expected
to be

ζT = ζte
∫ T
t −rudu+Σdi=1

∫ T
t λiudziu−Σdi=1

1
2

∫ T
t λ2

iudu,
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which makes it possible to derive the price of a zero coupon bond as

Pt = Et

[
e
∫ T
t −f(u,u)du+Σdi=1

∫ T
t λiudziu−Σdi=1

1
2

∫ T
t λ2

iudu
]

(B.2.1)

when we assume that PT = 1.

We then need to find the movement of the interest rate and information about
the market price of interest rate risk, λ. We already know that the market price
of interest rate risk is constant. The dynamics of the interest rate is here found by
using Itô’s lemma, where we use the function g = rte

κt. For a better introduction
to Itô’s lemma, we refer to Section 5.3.1. Here we simply use

dg =

(
∂g

∂t
+ µ

∂g

∂r
+ σ2 1

2

∂2g

∂r2

)
dt+ σ

∂g

∂r
dzt,

in which we can substitute the values from the Ornstein-Uhlenbeck process and
obtain

drt =

(
∂g

∂t
+ (κ[r̄ − rt])

∂g

∂r
+ σ2

r

1

2

∂2g

∂r2

)
dt+ σr

∂g

∂r
dzt

=
(
κeκtrt + (κ[r̄ − rt])eκt

)
dt+ σre

κtdzt

=
(
κeκtr̄

)
dt+ σre

κtdzt.

This dynamic can then be substituted into the expression for the interest rate rT .
We directly use the form of the expression from Puhle (2008)

yT = yt +

∫ T

t

κeκur̄du+

∫ T

t

σre
κudzu

rT = rte
−κ(T−t) +

∫ T

t

κe−κ(T−u)r̄du+

∫ T

t

σre
−κ(T−u)dzu

rT = rte
−κ(T−t) + r̄

(
1− e−κ(T−t))+ σr

∫ T

t

e−κ(T−u)dzu.

Even though method for solving for the price is based on Puhle (2008), the dynamics
for rT are however solved in a different way, as we used Itô’s lemma for the Ornstein-
Uhlenbeck instead. We do this to follow the same method as when we are solving for
bond price dynamics in Section 5.3.1. Substituting the future value of the interest
rate into the price formula from equation (B.2.1) will be the next step in to process
of determining the zero coupon bond price, when the interest rate is assumed to
follow the Ornstein-Uhlenbeck process. After substitution and using the result that
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the market price of risk is constant, we will have the price function:

Pt =Et

[
e

(e−κ(T−t)−1)rt
κ

+
r̄(1−e−κ(T−t)−κ(T−t))

κ
+σr

∫ T
t

e−κ(T−t)−1
κ

dzs+σr
∫ T
t

λ
κ
dzs− 1

2
λ2(T−t)

]

= exp

{
(e−κ(T−t) − 1)rt

κ
+
r̄
(
1− e−κ(T−t) − κ(T − t)

)
κ

− 1

2
λ2(T − t)

}

· Et
[
exp

{
σr
κ

∫ T

t

e−κ(T−t) − 1 + λdzs

}]
.

The focus is now on the last part of the equation as it is the stochastic part. This
is why we are only using the expectation operator for this part of the equation. We
then continue by taking the expectation of the stochastic part:

= exp

{
(e−κ(T−t) − 1)rt

κ
+
r̄
(
1− e−κ(T−t) − κ(T − t)

)
κ

− 1

2
λ2(T − t)

}

· exp

{
1

2
var

[
σr
κ

∫ T

t

e−κ(T−t) − 1 + λdzs

]}
= exp

{
(e−κ(T−t) − 1)rt

κ
+
r̄
(
1− e−κ(T−t) − κ(T − t)

)
κ

− 1

2
λ2(T − t)

}

· exp

{
1

2

∫ T

t

(σr
κ
e−κ(T−t) − 1 + λ

)2

ds

}
= exp

{
(e−κ(T−t) − 1)rt

κ
+
r̄
(
1− e−κ(T−t) − κ(T − t)

)
κ

− 1

2
λ2(T − t)

}

· exp

{
−(3 + e−2κ(T−t) − 4e−κ(T−t))σ2

r

4κ3
+

(1− e−κ(T−t))λσr
κ2

+
(σr − κλ)2(T − t)

2κ2

}
This expression for the price can be simplified in such a way that we will have a
more familiar expression.

= exp

{
r̄

((
1− e−κ(T−t))

κ
− (T − t)

)
− 1

2
λ2(T − t) +

λσr
κ

(1− e−κ(T−t))

κ

}

· exp

{
−(3 + e−2κ(T−t) − 4e−κ(T−t))σ2

r

4κ3
+

(σ2
r + κ2λ2 − 2σrκλ)(T − t)

2κ2
+

(e−κ(T−t) − 1)rt
κ

}
= exp

{
r̄

((
1− e−κ(T−t))

κ
− (T − t)

)
+
λσr
κ

(
1− e−κ(T−t)

κ
− (T − t)

)}

· exp

{
−(3 + e−2κ(T−t) − 4e−κ(T−t))σ2

r

4κ3
+
σ2
r(T − t)

2κ2
+

(e−κ(T−t) − 1)rt
κ

}

118



APPENDIX B. STOCHASTIC INTEREST RATE MODEL

= exp

{
r̄

((
1− e−κ(T−t))

κ
− (T − t)

)
+
λσr
κ

(
1− e−κ(T−t)

κ
− (T − t)

)}

· exp

{
−
(
2(1− e−κ(T−t)) + (1− e−κ(T−t))2

)
σ2
r

4κ3
+
σ2
r(T − t)

2κ2
+

(e−κ(T−t) − 1)rt
κ

}

= exp

{
r̄

((
1− e−κ(T−t))

κ
− (T − t)

)
+
λσr
κ

(
1− e−κ(T−t)

κ
− (T − t)

)}

· exp

{
− σ2

r

2κ2

((
1− e−κ(T−t))

κ
− (T − t)

)}

· exp

{
−
(
(1− e−κ(T−t))2

)
σ2
r

4κ3
+

(e−κ(T−t) − 1)rt
κ

}

= exp

{(
r̄ +

λσr
κ
− σ2

r

2κ2

)((
1− e−κ(T−t))

κ
− (T − t)

)
− σ2

r

4κ

(
1− e−κ(T−t))2

κ2

}

· exp

{
(e−κ(T−t) − 1)rt

κ

}
If we then remember the notation

b(T̄ − t) =
1

κ
(1− e−κ(T̄−t))

a(T̄ − t) = y∞((T̄ − t)− b(T̄ − t)) +
σ2
r

4κ
b(T̄ − t)2

y∞ =

(
r̄ +

λ1σr
κ
− σ2

r

2κ2

)
,

which we stated in appendix B.1, then we are able to simplify the price function
into the familiar expression

Pt = BT̄
t = e−a(T̄−t)−b(T̄−t)rt .
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B.3 Continuous Coupon Bond Price Dynamics

This appendix shows the same procedure as the previous appendix did for the zero
coupon bond. This appendix is with fewer steps showing the use of Itô’s lemma to
find the dynamics for a bond with continuous coupon.

The process of the interest rate is still the one, which we have defined in equation
(5.2.1), but the price of the bond is no longer the defined in equation (5.3.2), but
it does however come close. Based on Munk and Sørensen (2004) the price of a
bond which pays a continuous coupon K(t) given as Bt =

∫ T
t
K(t)BT̄

t , where BT̄
t

is the price of the zero coupon bond given in equation (5.3.2). We go directly to
the general result of Itô’s lemma for dynamics of bond prices to avoid repeating
ourselves. Therefore, recall from Section 5.3.1:

dB =

(
∂B

∂t
+ µ

∂B

∂r
+ σ2 1

2

∂2B

∂r2

)
dt+ σ

∂B

∂r
dzt.

With values for the Ornstein-Uhlenbeck process:

dBt =

(
∂Bt

∂t
+ κ(r̄ − rt)

∂Bt

∂r
+ σ2

r

1

2

∂2Bt

∂r2

)
dt+ σr

∂Bt

∂r
dz1t.

As before we simply substitute in the partial derivatives

=

(
σ2
r(1− e−κ(T−t))

2κ2eκ(T−t) −
(
λ1σr
κ

+ r̄ − σ2
r

2κ2

)(
e−κ(T−t) − 1

)
+ re−κ(T−t)

)
Btdt

−

(
κ(r̄ − rt)

1− e−κ(T−t)

κ
Bt − σ2

r

1

2

(
1− e−κ(T−t)

κ

)2

Bt

)
dt

+ σr
1− e−κ(T−t)

κ
Btdz1t.

The steps which then are needed are equivalent to the ones in Section 5.3.1. We
therefore simply state the result, which is

dBt

Bt

=

(
rt + λ1

∫ T
t
K(s)Bs

tσrb(s− t)ds∫ T
t
K(s)Bs

t ds

)
dt+

∫ T
t
K(s)Bs

tσrb(s− t)ds∫ T
t
K(s)Bs

t ds
dz1t
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where we know that σrb(s− t) = σBT̄t

dBt

Bt

=

(
rt + λ1

∫ T
t
K(s)Bs

tσBT̄tds∫ T
t
K(s)Bs

t ds

)
dt+

∫ T
t
K(s)Bs

tσBT̄tds∫ T
t
K(s)Bs

t ds
dz1t

dBt

Bt

=

(
rt + λ1

BtσBT̄tds

Btds

)
dt+

BtσBT̄tds

Btds
dz1t

where we now will use the notation

σB(rt, t) =

∫ T
t
K(s)Bs

tσrb(s− t)ds∫ T
t
K(s)Bs

t ds

to simplify the expression for the bond dynamics, which then can be rewritten as

dBt

Bt

= (rt + λ1σB(rt, t)) dt+ σB(rt, t)dz1t

or equivalently

dBt =Bt ((rt + λ1σB(rt, t)) dt+ σB(rt, t)dz1t) .

B.4 Stock Price Dynamics

For the dynamics of stock price, we introduce a two-dimensional setup, because in
most asset pricing models we have that there are underlying processes which affect
each other, such as price processes for a different asset, i.e. a bond’s price dynamics.
Adding the time-setting adds a second standard Brownian motion. In our system,
we consider two assets, a bond and a stock where Bt and St is the notation for each,
respectively. Let:

dBt

Bt

= µBtdt+ σB,1tdz1,t + σB,2tdz2,t

dSt
St

= µStdt+ σS,1tdz1,t + σS,2tdz2,t

where z1 = (z1t) and z2 = (z2t) are independent Brownian motions. And µSt =

r+ψσS, where ψ is the Sharpe Ratio. Firstly, we want to investigate the correlation
between the two stochastic processes, so we derive the covariance function of these
two as follows:

Cov(X, Y ) = E(XY )− E(X)E(Y )
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Substitute in our processes:

Covt(dBt, dSt) = E[dBt · dSt]− E[dBt] · E[dSt]

= E
[
(µBtdt+ σB1tdzz1 + σB2tdz2t) · (µStdt+ σS1tdzz1 + σS2tdz2t)

]
− E[µBtdt+ σB1tdzz1 + σB2tdz2t] · E[µStdt+ σS1tdz1z + σS2tdz2t]

After multiplying

Covt[dBt, dSt] = E
[
µBµSdt

2 + µBdtσS1tdz1t + µBdtσB2tdz2t

+ σB1tdz1tµS1tdt+ σB1tσS1tdz
2
1t + σB1tdz1tσS1tdz2t

+ σB2tdz2tµStdt+ σB2tdz2tσS1tdz1t + σB2tσS2tdz
2
2t

]
− µBtµSdt2

Imposing the rules of stochastic calculus, where we remember the rules of stochastic
calculus:

dt2 = 0 dz · dt = 0 and (dzt)
2 = dt

Using the rules below

Covt[dBt, dSt] =E
[
µBµSdt

2︸ ︷︷ ︸
=0

+µBdtσS1tdz1t︸ ︷︷ ︸
=0

+µBdtσB2tdz2t︸ ︷︷ ︸
=0

+σB1tdz1tµS1tdt︸ ︷︷ ︸
=0

+ σB1tσS1tdz
2
1t + σB1tdz1tσS1tdz2t︸ ︷︷ ︸

=0

+σB2tdz2tµStdt︸ ︷︷ ︸
=0

+σB2tdz2tσS1tdz1t︸ ︷︷ ︸
=0

+ σB2tσS2tdz
2
2t

]
− µBtµSdt2︸ ︷︷ ︸

=0

.

Now we can further reduce the expression to:

Covt[dBt, dSt] = E[σB1tσS1tdz
2
1t + σB2tσS2tdz

2
2t]

Using the rule (dz)2 = dt again, and taking expectations, we get:

Covt[dBt, dSt] = σB1tσS1tdt+ σB2tσS2tdt.

So the covariance function for the two processes is:

Covt[dBt, dSt] = (σB1tσS1t + σB2tσS2t)dt
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In order to find the correlation function, we must first find the variances of the two
processes, dBt and dSt. Applying the variance formula to each process:

V ar[X] = E[(X − E[X])2] = E[X2]− (E[X])2

For dBt:

V art[dBt] = E[dB2
t ]− (E[dBt])

2

= E[µ2
Btdt

2 + σ2
B1t
dz2

1,t + σ2
B2t
dz2

2,t]− [E[µBtdt+ σB,1tdz1,t + σB,2tdz2,t]]
2

Again taking expectations and using the rules of stochastic calculus:

dt2 = 0 dz · dt = 0 and (dzt)
2 = dt

Then we get:

V art[dBt] = E[µ2
Btdt

2︸ ︷︷ ︸
dt2=0

+σ2
B,1tdt+ σ2

B,2tdt]− [E[µBtdt+ σB,1tdz1,t︸ ︷︷ ︸
=0

+σB,2tdz2,t︸ ︷︷ ︸
=0

]]2

= σ2
B,1tdt+ σ2

B,2tdt− µ
2
Btdt

2︸ ︷︷ ︸
=0

= (σ2
B2t

+ σ2
B2t

)dt

This is the variance for for the bond price process. Now we want to carry out the
same procedure for the variance of the stock price:

V art[dSt] = E[µ2
Stdt

2 + σ2
S1t
dz2

1t + σ2
S2t
dz2

2t]− [E[µStdt+ σS1tdz1t + σS2tdz2t]]
2

= E[µ2
Stdt

2︸ ︷︷ ︸
=0

+σ2
S1t
dt+ σ2

S2t
dt]− [E[µStdt+ σS1tdz1t︸ ︷︷ ︸

=0

+σS2tdz2t︸ ︷︷ ︸
=0

]]2

= σ2
S1t
dt+ σ2

S2t
dt− µ2

Stdt
2︸ ︷︷ ︸

=0

= (σ2
S1t

+ σ2
S2t

)dt

Now that we have the variances for each processes, and the covariance between
them, we are now able to find the correlation function of the two processes. The
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correlation function is given as:

Corrt[dBt, dSt] =
Covt[dBt, dSt]√

V art[dBt] · V art[dSt]

=
(σB1tσS1t + σB2tσS2t)dt√

[(σ2
B2t

+ σ2
B2t

)dt] · [(σ2
S1t

+ σ2
S2t

)dt]

=
σB1tσS1t + σB2tσS2t√

(σ2
B2t

+ σ2
B2t

) · (σ2
S1t

+ σ2
S2t

)

However, from this derivation of the correlation of the two stochastic processes, we
can see that when specifying the two-dimensional process [dBt, dSt], and character-
izing the first-order local and second-order local moments, which are:

• The first-order local moments are µBt and µSt .

• The second-order local moments are the volatility coefficients (shock) coeffi-
cients σB1t ,σB2t , σS1t , and σS2t , which defines the two instantaneous variances
and the instantaneous correlation coefficient.

From the above derivation, it was evident that the four volatility (shocks) coefficient
would give rise to the same variances and the same correlation. This implies, that
we have one degree of freedom extra by fixing the coefficients, which mean that we
choose to fix one of the volatility (shock) coefficients for the process of the bond
price, specific σB2t = 0, since we want to see how the stock price dynamics are
affected the bond price dynamics. So we can simplify our two processes as such:

dBt

Bt

= µBtdt+ σBtdz1t
dSt
St

µStdt+ σSt(ρtdz1t +
√

1− ρ2dz2t)

where ρt is the correlation between the market returns of stock and bond. Now we
can again define the new instantaneous variances and the instantaneous covariance
of the newly defined stochastic processes. Now using prior definition of µSt = r +

ψσS, we can obtain the same stock price dynamics as in Munk (2013), which are
represented by the following process:

dSt
St

= (r + ψσS)dt+ σSt(ρtdz1t +
√

1− ρ2dz2t)

This shows the dynamics of the stock price, where the drift term is defined as a
mean return with addition of the Sharpe ratio with risk adjustment term, and the
volatility term is defined as the correlation between stock and bond market returns.
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Further, in this appendix we want show the relationship between the processes.
Firstly, we consider the instantaneous variance of dBt is:

V art[dBt] = E[(µBtdt+ σBtdz1t)
2]− [E[µBtdt+ σBtdz1t]]

2

= E[µ2
Btdt

2︸ ︷︷ ︸
=0

+σ2
Btdz

2
1t]− [E[µBtdt+ σBtdz1t︸ ︷︷ ︸

=0

]]2

= σ2
Btdt− µ

2
Btdt

2︸ ︷︷ ︸
=0

= σ2
Btdt

And the same is done for the instantaneous variance of dSt:

V art[dSt] = E[[µStdt+ σSt(ρtdz1t +
√

1− ρ2dz2t)]
2]

− [E[µStdt+ σSt(ρtdz1t +
√

1− ρ2dz2t)]]
2

= E[µ2
Stdt

2︸ ︷︷ ︸
=0

+σ2
St(ρtdz1t +

√
1− ρ2

tdz2t)
2

− [E[µStdt+ σSt(ρtdz1t︸ ︷︷ ︸
=0

+
√

1− ρ2dz2t)︸ ︷︷ ︸
=0

]]2

= σ2
St(ρtdz1t +

√
1− ρ2

tdz2t)
2 − µ2

Stdt
2︸ ︷︷ ︸

=0

= V art

[
σ2
St(ρtdz1t +

√
1− ρ2

tdz2t)
2
]

= σ2
StV art

[
(ρtdz1t +

√
1− ρ2

tdz2t)
2
]

= σ2
St

[
(ρ2
tdz

2
1t + (1− ρ2

t )dz
2
2t

]
= σ2

St

[
(ρ2
tdt+ (1− ρ2

t )dt
]

= σ2
Stdt
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Next, we can also find the instantaneous covariance under this new specification:

Covt[dBt, dSt] = E[dBt · dSt]− E[dBt] · E[ESt]

= E[(muBtdt+ σBtdz1t)(µStdt+ σSt(ρtdz1t +
√

1− ρ2dz2t))]

− E[muBtdt+ σBtdz1t︸ ︷︷ ︸
=0

] · E[µStdt+ σSt(ρtdz1t︸ ︷︷ ︸
=0

+
√

1− ρ2 dz2t︸︷︷︸
=0

)]

= E
[
µBtµStdt

2︸ ︷︷ ︸
=0

+µBtσSt(ρt dz1tdt︸ ︷︷ ︸
=0

+
√

1− ρ2 dz2tdt︸ ︷︷ ︸
=0

)

+ σBtµSt dz1tdt︸ ︷︷ ︸
=0

+σBtσSt(ρtdz
2
1t +

√
1− ρ2dz1tdz2t)

]
− µBtµStdt2︸ ︷︷ ︸

=0

= σBtσSt(ρtdz
2
1t +

√
1− ρ2dz1tdz2t)

= Covt

[
σBtσSt(ρtdz

2
1t +

√
1− ρ2dz1tdz2t)

]
= σBtσStCovt

[
z1t, ρtdz

2
1t +

√
1− ρ2dz1tdz2t)

]
This is the instantaneous covariance between the two stochastic processes, dBt and
dSt. However, we can transform the embedded covariance, which are inside the
instantaneous covariance to an embedded correlation in the following way:

Covt[dBt, dSt] =
σBtσStCovt

[
z1t, ρtdz

2
1t +

√
1− ρ2dz1tdz2t)

]
√
σ2
Bt
dt · σ2

St
dt

= σBtσStρtdt

From this expression of the instantaneous covariance, we can see if σBt and σSt are
both positive or both negative, this implies that the instantaneous correlation is ρt
between the two processes dBt and dSt, while if they have opposite signs, then the
correlation will be −ρt.
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Appendix C

Justification for Numerical
Integration

In Section 7.4.2 it is chosen to use numerical integration to estimate the loss from
choosing a suboptimal allocation. The numerical integration of A′0 is done by the
Trapez-formula ∫ t′

t

A′0(s)ds = (t′ − t)A
′
0(t) + A′0(t′)

2
,

where t′ > t. To have a high precision of the estimation of the integral, the size of
the subintervals is set to t′ − t = 0.01. To verify the precision, the two functions
A1(τ) and A2(τ) have been estimated by the Trapez-formula and then compared to
the correct, closed-form solution. Estimation of the value at time t = 3 has been
done for several sizes of the subinterval. As seen from Table C.1 the marginal effect
from a smaller size of subintervals i decreasing. At t = 3 the formula estimates
98.0511% of the actual value of A2(τ). For t = 30 the estimation finds 98.0506% of
the actual value of A2(τ). Even for a long time horizon, the precision is high, and it
does not even seem to decrease very much as time increases. For A1(τ) for precision
at 30 years is 99.5066%.

Subunit 1 0.75 0.5 0.25 0.15 0.1 0.05 0.01

Estimated 31.6% 38.1% 47.9% 65.3% 76.2% 83.0% 90.8% 98.1%

Table C.1: The table illustrates for 8 different subintervals, t′− t, how much of the correct value is estimated
by use of numerical integration for t = 3.
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Appendix D

R-code

All R-programs and Excel files used for this thesis can be provided upon request.
Below is the full R-code provided. We apologise in advance for the length.

Listing D.1: R-code

########################
# PROGRAM 1 TABLE 2.1#
########################

#Load packages
r e qu i r e ( stargazer )

#Set working d i r e c t o r y
getwd ( )
setwd ( "C: /Users / d i t l e /Desktop/" )

#Load Excel f i l e AUM_DK_WW
AUM . d f < data . frame ( AUM_DK_WW )

#Use s t a r g a z e r
stargazer ( AUM . df , type = " la t ex " , summary = FALSE )

##################################################
# PROGRAM 2 MEAN VARIANCE ANALYSIS : FIGURE 3.1 #
##################################################

#CONTENT:
#Plot : E f f i c i e n t Front i e r o f only r i s k y a s s e t
#Plot : E f f i c i e n t Front i e r o f a l l a s s e t s

#Load Excel Mean_Variance
mean . variance . d f < data . frame (mean_variance )
head (mean . variance . d f )
tail (mean . variance . d f )

#Create p l o t
mv . p l o t < ggplot (mean . variance . d f ) +

geom_line ( aes ( x = Std_Dev , y = Exp_Ret , c o l = " blue " ) , size = 1) +
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geom_line ( aes ( x = SD_2 , y = Exp_ret_2 , c o l = " red " ) , size = 1) +
geom_point ( aes ( x = SD_tan , y = Exp_ret_tan ) , size = 3) +
geom_point ( aes ( x = SD_GMV , y = Exp_ret_GMV ) , size = 3) +
geom_point ( aes ( x = A1_SD , y = A1_ret ) , size = 3) +
geom_point ( aes ( x = A3_SD , y = A3_ret ) , size = 3) +
s c a l e_x_continuous ( "Standard Deviat ion (%)" ) +
s c a l e_y_continuous ( "Expected Return (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " E f f i c i e n t Front i e r o f r i s k y ←↩

a s s e t s " , " E f f i c i e n t Front i e r o f a l l a s s e t s " ) ,
values = c ( " blue " , " red " ) ) +

theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 8 , 0 . 8 5 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 11) ,
l egend . direction = " v e r t i c a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

mv . p l o t + geom_text ( aes ( x = SD_tan , y = Exp_ret_tan , label = "Tangency Po r t f o l i o "←↩
) , hjust=1.1 , vjust=0, size = 3) +

geom_text ( aes ( x = SD_GMV , y = Exp_ret_GMV , label = "GMV Po r t f o l i o " ) , hjust←↩
= 0 .1 , vjust=0, size = 3)

##########################################
# PROGRAM 3 INTEREST RATES: FIGURE 5.1 #
##########################################

#'===========================================================================
# ' Var ies i n t e r e s t r a t e s f o r the years 1986 to 2016
#'===========================================================================
#i n s t a l l . packages (" t s e r i e s ") ; i n s t a l l . packages ("quantmod") ; i n s t a l l . packages ("←↩

ggp lot2 ")

# 'Neded packages
# '
l i b r a r y ( tseries ) ; l i b r a r y ( quantmod ) ; l i b r a r y ( ggplot2 )
r e qu i r e ( tseries ) ; r e qu i r e ( quantmod ) ; r e qu i r e ( ggplot2 )

# '
# ' 1 0 Year Treasury Constant Maturity Rate
# '
getSymbols ( c ( "DGS10" ) , src="FRED" )
adjyear10 < DGS10 [ 6 2 9 7 : nrow ( DGS10 ) , ]

# '
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# '3 month Treasury i n t e r e s t r a t e
# '
getSymbols ( c ( "DTB3" ) , src="FRED" )
adjmonth3 < DTB3 [ 8 3 8 3 : nrow ( DTB3 ) , ]

# '
# '30 years Treasury i n t e r e s t r a t e
# '
getSymbols ( c ( "DGS30" ) , src="FRED" )
adjyear30 < DGS30 [ 2 3 5 2 : nrow ( DGS30 ) , ]

# ' Due to data i s s u e s we w i l l have a time per iod with i n t e r e s t r a t e
# ' with the value o f ze ro . This i s because the 3 0 year t r ea su ry bond
# ' was d i s con t in ed on February 19 , 2002 and re in t roduced February 9 , 2006 .

utils : : View ( adjyear30 )
adjyear30 [ i s . na ( adjyear30 ) ] < 5 #Just us ing a random number to avoid ommiting ←↩

l a t e r

#Combine a l l th ree i n t e r e s t r a t e s
combined < cbind ( adjyear10 , adjmonth3 , adjyear30 )

#Rename the columns
colnames ( combined ) < c ( "Tenyear" , "Threemonth" , "Thirtyyear " )

#Inspec t data
utils : : View ( combined )

#We s t i l l have a high number o f miss ing data :
sum( i s . na ( combined$Tenyear ) ) /nrow ( combined ) ∗100
#This i s due to Federa l ho ld idays .
#The problem i s s imply so lved by removing days with miss ing va lue s
combined < na . omit ( combined )

dataframecombined < data . frame ( combined )

p < ggplot ( ) +
geom_line ( data = dataframecombined , aes ( x = index ( combined ) , y = Tenyear , color←↩

= "Ten year " ) ) +
geom_line ( data = dataframecombined , aes ( x = index ( combined ) , y = Threemonth , ←↩

color = "Three month" ) ) +
geom_line ( data = dataframecombined [ 1 : 4 0 0 2 , ] , aes ( x = index ( combined [ 1 : 4 0 0 2 , ] ) , ←↩

y = Thirtyyear , color = "Thirty year " ) ) +
geom_line ( data = dataframecombined [ 4 9 9 7 : nrow ( dataframecombined ) , ] , aes ( x = ←↩

index ( combined [ 4 9 9 7 : nrow ( combined ) , ] ) , y = Thirtyyear , color = "Thirty year←↩
" ) ) +

#labs ( t i t l e ="I n t e r e s t r a t e s from 1986 to 2016" , x="Year " , y="I n t e r e s t r a t e in ←↩
%", c o l o r="Treasury type ")

theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
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ax i s . t i t l e . y=element_text ( size=7) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (1 , 0 . 7 5 ) ,
l egend . key . size = unit ( 0 . 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

p

p+labs ( x="Year" , y=" I n t e r e s t r a t e in %" , color="Treasury type" )

# theme ( ax i s . l i n e = element_l i n e ( co l ou r = "black ") ,
# #panel . g r i d . major = element_l i n e ( co l our = "black ") ,
# #panel . g r i d . minor = element_l i n e ( co l ou r = "black ") ,
# panel . border = element_blank ( ) ,
# panel . background = element_blank ( ) )

#'========================
# ' I n t e r e s t r a t e v o l a t i l i t y
#'========================

retyear10 < log ( lag ( adjyear10 ) ) l og ( adjyear10 )
retyear10 < retyear10 [ 1 ]
p l o t ( retyear10 )
retyear10 < na . omit ( retyear10 )
p l o t ( retyear10 )

retmonth3 < log ( lag ( adjmonth3 ) ) l og ( adjmonth3 )
retmonth3 < retmonth3 [ 1 ]
p l o t ( retmonth3 )
ret3 < na . omit ( retmonth3 )
p l o t ( retmonth3 )

retyear30 < log ( lag ( adjyear30 ) ) l og ( adjyear30 )
retyear30 < retyear30 [ 1 ]
p l o t ( retyear30 )
retyear30 < na . omit ( retyear30 )
p l o t ( retyear30 )

##################################################
## PROGRAM 4 Simulate Sample Paths : FIGURE 5.2 #
##################################################

#Load packages
r e qu i r e ( ggplot2 )

#FUNCTION:
## Def ine model parameters
r0 < 0.03
theta < 0.10
k < 0.3
beta < 0.03

## simulate shor t ra t e paths
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n < 10 # MC s imu la t i on t r i a l s
T < 30 # t o t a l time
m < 200 # sub i n t e r v a l s
dt < T/m # d i f f e r e n c e in time each sub i n t e r va l

r < matrix (0 , m+1,n ) # matrix to hold shor t ra t e paths
r [ 1 , ] < r0

f o r ( j in 1 : n ) {
f o r ( i in 2 : ( m+1) ) {

dr < k∗ ( theta r [ i 1 , j ] ) ∗dt + beta ∗ s q r t ( dt ) ∗rnorm (1 , 0 , 1 )
r [ i , j ] < r [ i 1 , j ] + dr

}
}

## Standard matplot :
t < seq (0 , T , dt )
rT . expected < theta + ( r0 theta ) ∗exp ( k∗ t )
rT . stdev < sqr t ( beta^2/ (2 ∗k ) ∗ ( 1 exp ( 2 ∗k∗ t ) ) )
matplot ( t , r [ , 1 : 1 0 ] , type=" l " , lty=1, ylab=" r t " )
ab l i n e ( h=theta , c o l=" red " , lty=2)
l i n e s ( t , rT . expected , lty=2)
l i n e s ( t , rT . expected + 2∗rT . stdev , lty=2)
l i n e s ( t , rT . expected 2∗rT . stdev , lty=2)
po in t s (0 , r0 )

#Set up f o r ggp lot2 p l o t
r . d f < data . frame ( r )
expected . r < rT . expected
up . limit < rT . expected + 2∗rT . stdev
down . limit < rT . expected 2∗rT . stdev

#ggplot2 p l o t
ggplot ( r . df , aes ( x = t , y= X1 ) ) +

geom_line ( aes ( c o l=" darkpurple " ) ) +
geom_line ( aes ( y=X2 , c o l = " red " ) ) +
geom_line ( aes ( y=X3 , c o l = " green " ) ) +
geom_line ( aes ( y=X4 , c o l = " blue " ) ) +
geom_line ( aes ( y=X5 , c o l = "darkred " ) ) +
geom_line ( aes ( y=X6 , c o l = "darkblue " ) ) +
geom_line ( aes ( y=X7 , c o l = "orange " ) ) +
geom_line ( aes ( y=X8 , c o l = "darkgreen " ) ) +
geom_line ( aes ( y=X9 , c o l = " o l i v e " ) ) +
geom_line ( aes ( y=X10 , c o l = " purple " ) ) +
geom_line ( aes ( y=up . limit ) , linetype = 2) +
geom_line ( aes ( y=down . limit ) , linetype = 2) +
geom_line ( aes ( y=expected . r ) , linetype = 2) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "%" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
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ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . position= "none" )

#################################################################
## PROGRAM 5 CONSTANT AND STOCHASTIC INVESTMENT OPPORTUNITIES #
#################################################################

#CONTENT
#( i ) ggp lot o f E f f i c i e n t Front ie r , Figure 5 .3
#( i i ) ggp lo t o f a l l o c a t i o n r e s u l t s , RA=2 and RA= 10 , Figure 5 .6
#( i i i ) ggp lot o f bond a l l o c a t i o n , constant and s t o c h a s t i c model , Figure 5 .4
#( iv ) ggp lot o f cash a l l o c a t i o n , constant and s t o c h a s t i c model , Figure 5 .5

#Packages
r e qu i r e ( ggplot2 )
r e qu i r e ( gridExtra )

#################################################
#Create dataframe from CSV. f i l e
frontier . d f < data . frame ( Frontier_Rcsv ) ∗100
#View data
head ( frontier . d f )

#E f f i c i e n t f r o n t i e r
frontier . p l o t < ggplot ( frontier . df , aes ( x = Con_Stddev , y = Con_ret ) ) +

geom_line ( aes ( c o l = " black " ) , size = 1) +
geom_line ( aes ( x = Sto_dev2 . 5 , y = Sto_ret2 . 5 , c o l= " blue " ) , size = 1) +
geom_line ( aes ( x = Sto_dev5 , y = Sto_ret5 , c o l= " green " ) , size = 1) +
geom_line ( aes ( x = Sto_dev30 , y = Sto_ret30 , c o l = " reed " ) , size = 1) +
coord_cartesian ( xlim = c (0 ,20 ) , ylim = c (0 ,10 ) ) +
s c a l e_x_continuous ( "Standard Deviat ion " ) +
s c a l e_y_continuous ( "Expected Return" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Constant" , "T=2.5" , "T=5" , "T←↩

=30" ) ,
values = c ( " black " , " blue " , " green " , " red " ) ) +

theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= " r i gh t " , #c (1 . 0 249 , 0 . 8 45 )
legend . key . size = unit ( 0 . 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 9) ,
l egend . direction = " v e r t i c a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) ,
l egend . margin = unit ( 0 . 5 , "cm" ) ,
l egend . background = element_re c t ( fill = "black " , size=0.5 , linetype="←↩

s o l i d " ,
colour ="black " ) )
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##### Bond , Cash and Hedge ###
#Load Excel f i l e
weights . df < data . frame ( weights_csv )
#View date
head ( weights . df )

#Plot o f a l l o c a t i o n r e su l t , RA = 10
p lo t . risk10 < ggplot ( weights . df , aes ( x = Time , y = Bond_10) ) +

geom_line ( aes ( c o l = "blue " ) , size = 1) +
geom_line ( aes ( y = Cash_10 , c o l=" green " ) , size = 1) +
geom_line ( aes ( y = Hedge_10 , c o l=" red " ) , size = 1) +
coord_cartesian ( xlim = c (0 ,20 ) , ylim = c ( 0 . 7 5 , 1 . 1 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds" , "Risk Free " , "Hedge" ) ,←↩

values = c ( " blue " , " green " , " red " ) ) +
labs ( t i t l e=" (b) Risk Avers ion = 10" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (0 . 3 4 5 , 0 . 7 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#Plot o f a l l o c a t i o n r e su l t , RA = 2
p lo t . risk2 < ggplot ( weights . df , aes ( x = Time , y = Bond_2) ) +

geom_line ( aes ( c o l = "blue " ) , size = 1) +
geom_line ( aes ( y = Cash_2 , c o l=" green " ) , size = 1) +
geom_line ( aes ( y = Hedge_2 , c o l=" red " ) , size = 1) +
coord_cartesian ( xlim = c (0 ,20 ) , ylim = c ( 0 . 7 5 , 1 . 1 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds" , "Risk Free " , "Hedge" ) ,←↩

values = c ( " blue " , " green " , " red " ) ) +
labs ( t i t l e=" ( a ) Risk Avers ion = 2" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
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ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (0 . 3 4 5 , 0 . 7 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#Combine p l o t s
g r id . arrange ( p l o t . risk2 , p l o t . risk10 , nco l=2)

#Bond a l l o c a t i o n , Constant and s t o c h a s t i c model , Figure 5 .4

#Load exc e l f i l e
stochas . d f < data . frame ( Stochastic_analysis )
#View data
head ( stochas . d f )

#Bond a l l o c a t i o n f o r constant model
bond . constant < ggplot ( stochas . df , aes ( x = Gamma, y = Con_Bond ) ) +

geom_line ( aes ( c o l = "blue " ) , size = 1 . 5 ) +
coord_cartesian ( xlim = c (0 ,20 ) , ylim = c ( 0 . 7 5 , 1 . 1 ) ) +
s c a l e_x_continuous ( "Risk Avers ion " ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds" ) , values = c ( " blue " ) ) ←↩

+
labs ( t i t l e=" ( a ) Constant Model" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 3 , 0 . 8 7 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#Bond a l l o c a t i o n f o r s t o c h a s t i c model
bond . sto25 < ggplot ( stochas . df , aes ( x = Gamma, y = Bond_2 . 5 ) ) +

geom_line ( aes ( c o l = "blue " ) , size = 1 . 5 ) +
geom_line ( aes ( y = Bond_5 , c o l = "darkred " ) , size = 1 .5 , linetype = 2) +
coord_cartesian ( xlim = c (0 ,20 ) , ylim = c ( 0 . 7 5 , 1 . 1 ) ) +
s c a l e_x_continuous ( "Risk Avers ion " ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
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s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bond , T=2.5" , "Bond , T=5" ) , ←↩
values = c ( " blue " , " darkred " ) ) +

labs ( t i t l e=" (b) S to cha s t i c Model" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 8 2 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#Combine p l o t s
g r id . arrange ( bond . constant , bond . sto25 , nco l=2)

#( iv ) ggp lot o f cash a l l o c a t i o n , constant and s t o c h a s t i c model , Figure 5 .5

#Cash a l l o c a t i o n f o r constant model
cash . constant < ggplot ( stochas . df , aes ( x = Gamma, y = Con_Cash ) ) +

geom_line ( aes ( c o l = " green " ) , size = 1 . 5 ) +
coord_cartesian ( xlim = c (0 ,20 ) , ylim = c ( 0 . 7 5 , 1 . 1 ) ) +
s c a l e_x_continuous ( "Risk Avers ion " ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Cash" ) , values = c ( " green " ) ) +
labs ( t i t l e=" ( a ) Constant Model" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 3 , 0 . 8 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#Cash a l l o c a t i o n f o r s t o c h a s t i c model
cash . sto25 < ggplot ( stochas . df , aes ( x = Gamma, y = Cash_2 . 5 ) ) +

geom_line ( aes ( c o l = " green " ) , size = 1 .5 , linetype = 2) +
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geom_line ( aes ( y = Cash_5 , c o l = "darkgreen " ) , size = 1 . 5 ) +
coord_cartesian ( xlim = c (0 ,20 ) , ylim = c ( 0 . 7 5 , 1 . 1 ) ) +
s c a l e_x_continuous ( "Risk Avers ion " ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Cash , T=2.5" , "Cash , T=5" ) , ←↩

values = c ( " green " , " darkgreen " ) ) +
labs ( t i t l e=" (b) S to cha s t i c Model" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#Combine p l o t s
g r id . arrange ( cash . constant , cash . sto25 , nco l=2)

#############################################################################
## PROGRAM 6 MAIN PROGRAM FOR ALLOCATION RESULTS, PLOTS AND LOSS FUNCTION #
#############################################################################

#CONTENT
#( i ) PORTFOLIO MODEL FOR BOTH MODEL 1 AND MODEL 2
#( i i ) TABLE 6 .1 Bond decomposit ion
#( i i i ) PLOTS f o r Figure 6 . 1 , Figure 6 . 2 , cOMPARE MODEL1 AND MODEL 2
#( iv ) Loss FUNCTIONS BETWEEN CONSTANT MODEL AND MODEL 1

#### Required Packages #####
requ i r e ( ggplot2 )
r e qu i r e ( stargazer ) ;
r e qu i r e ( gridExtra )
#############################################################################

#### In t e r e s t Rate Simulat ion ####

## Def ine model parameters
r0 < 0.01
r_bar < 0.01 #theta
kappa < 0.4965 #k
sigma_r < 0.05 #beta

## simulate shor t ra t e paths
n < 1 # MC s imula t i on t r i a l s
T < 30 # t o t a l time
m < 30 # sub i n t e r v a l s
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dt < T/m # d i f f e r e n c e in time each sub i n t e r va l

r < matrix (0 , m+1,n ) # matrix to hold shor t ra t e paths
r [ 1 , ] < r0

f o r ( j in 1 : n ) {
f o r ( i in 2 : ( m+1) ) {

dr < kappa∗ ( r_bar r [ i 1 , j ] ) ∗dt + sigma_r∗ s q r t ( dt ) ∗rnorm (1 , 0 , 1 )
r [ i , j ] < r [ i 1 , j ] + dr

}
}

## plo t paths
t < seq (0 , T , dt )
rT . expected < r_bar + ( r0 r_bar ) ∗exp ( kappa∗ t )
rT . stdev < sqr t ( sigma_r^2/ (2 ∗kappa ) ∗ ( 1 exp ( 2 ∗kappa∗ t ) ) )
matplot ( t , r [ , 1 ] , type=" l " , lty=1, ylab=" r t " )
ab l i n e ( h=r_bar , c o l=" red " , lty=2)
l i n e s ( t , rT . expected , lty=2)
l i n e s ( t , rT . expected + 2∗rT . stdev , lty=2)
l i n e s ( t , rT . expected 2∗rT . stdev , lty=2)
po in t s (0 , r0 )

#### PORTFOLIO MODEL ####

#Function begin
gammaList = l i s t ( )
gammaVec = c ( 0 . 5 , 1 , 2 , 5 , 10 , 20)

f o r ( g in 1 : l ength ( gammaVec ) ) {
gamma = gammaVec [ g ]

#Parameters
lambda_bar2 < 0.3650 #0.3650 #0.15
lambda_tilde2 < 0.06 #0.06 #8.925
rho < 0.2
sigma_s < 0.202
lambda_bar1 < 0.109 #0.109 #0.05
lambda_tilde1 < 0.067 #0.067 #2.48
tau < t
b_tau < (1/kappa ) ∗ ( 1 exp ( kappa∗ t ) )
sigma_b < 0.1
mu_s < 0.087
mu_b < 0.021
#r < rep (0 . 0 1 , 3 1 )

#### #Model with s t o c h a s t i c i n t e r e s t and a f f i n e market p r i c e o f r i s k ####

#ODE' s
v < 2∗ s q r t ( ( kappa + ( (gamma 1 ) /gamma) ∗sigma_r∗lambda_tilde1 )^2 + ( (gamma 1 ) /←↩

gamma) ∗ ( ( lambda_tilde1^2+lambda_tilde2^2)/gamma) ∗sigma_r^2)

A2_tau < (2 ∗ ( (1 /gamma) ∗ ( lambda_tilde1^2+lambda_tilde2^2) ) ∗ ( exp ( v∗tau ) 1 ) ) / ( ( v←↩
+(2∗ ( kappa + ( ( 1 gamma) /gamma) ∗sigma_r∗lambda_tilde1 ) ) ) ∗ ( exp ( v∗tau ) 1 )+2∗v )

A1_tau < (1+(1/gamma) ∗ ( lambda_bar1∗lambda_tilde1+lambda_bar2∗lambda_tilde2 ) ) /←↩
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((1 /gamma) ∗ ( lambda_tilde1^2+lambda_tilde2^2) ) ∗A2_tau +(2/v ) ∗ ((1+(1/gamma) ∗ (←↩
lambda_bar1∗lambda_tilde1+lambda_bar2∗lambda_tilde2 ) ) ∗

(2 ∗ ( kappa +((1 gamma) /gamma) ∗sigma_r∗lambda_tilde1 ) )+
2∗ ( ( kappa∗r_bar ( 1 gamma) /gamma) ∗sigma_r∗lambda_bar1 ) ∗
( (1 /gamma) ∗ ( lambda_tilde1^2+lambda_tilde2^2) ) ) ∗ ( ( exp ( ( v∗tau ) / 2) 1 ) ^2)/ ( ( v+(2∗ (←↩

kappa+((1 gamma) /gamma) ∗sigma_r∗lambda_tilde1 ) ) ) ∗
( exp ( v∗tau ) 1 )+2∗v )

A_functions < data . frame ( A1_tau , A2_tau , v )

#Stock Weight
pi_s2 < (1/gamma) ∗ ( ( lambda_bar2+lambda_tilde2∗r ) / ( s q r t ( 1 rho^2)∗sigma_s ) )

#Bond Weight
pi_b2 < (1/ (gamma∗sigma_b ) ) ∗ ( lambda_bar1+lambda_tilde1∗r rho/ ( sq r t ( 1 rho^2) )←↩

∗ ( lambda_bar2+lambda_tilde2∗r ) ) +(((gamma 1 ) /gamma) ∗ ( sigma_r/sigma_b ) ) ∗ (←↩
A1_tau +A2_tau∗r )

pi_b2 . 1 term < (1/ (gamma∗sigma_b ) ) ∗ ( lambda_bar1+lambda_tilde1∗r )
mean( pi_b2 . 1 term )

pi_b2 . 2 term < (1/ (gamma∗sigma_b ) ) ∗ ( rho/ ( sq r t ( 1 rho^2) ) ∗ ( lambda_bar2+lambda_←↩
tilde2∗r ) )

mean( pi_b2 . 2 term )

#Hedge part
pi_b2_hedge < ( ( (gamma 1 ) /gamma) ∗ ( sigma_r/sigma_b ) ) ∗ ( A1_tau +A2_tau∗r )

#Mean value o f p i_s2
mean_pi_s2 < rep (mean( pi_s2 ) , 31)

#### Model only s t o c h a s t i c i n t e r e s t r a t e #####

#Parameters :
lambda1 < ( lambda_bar1+lambda_tilde1∗mean( r ) ) #0.11
lambda2 < ( lambda_bar2+lambda_tilde2∗mean( r ) ) #0.3666

#Stock weight
pi_s1 < (1/gamma) ∗ ( lambda2/ ( sq r t ( 1 rho^2)∗sigma_s ) )

stock_weights_old < data . frame ( pi_s1 )

#Bond weight
pi_b1 < (1/gamma) ∗ ( ( ( lambda1 ) /sigma_b ) ( ( rho∗ ( lambda2 ) ) / ( s q r t ( 1 rho^2)∗sigma←↩

_b ) ) )+((gamma 1 ) /gamma) ∗ ( sigma_r/sigma_b ) ∗b_tau

bond_weights_old < data . frame ( pi_b1 )

pi_b1_hedge < ((gamma 1 ) /gamma) ∗ ( sigma_r/sigma_b ) ∗b_tau

#F i l l a vec to r the constant s tock weight
vac < rep ( pi_s1 , 3 1 )

#Hedging importance
hedge1 < pi_b1 pi_b1_hedge
hedge2 < pi_b2 pi_b2_hedge
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#Stock Bond Ratio
ratio_1 < pi_b1/pi_s1
ratio_2 < pi_b2/pi_s2

ratio . d f < data . frame ( ratio_1 , ratio_2)

#Cash f r a c t i o n
cash_1 < 1 pi_s1 pi_b1
check_1 < pi_s1 + pi_b1 + cash_1
cash_2 < 1 pi_s2 pi_b2
check_2 < pi_s2 + pi_b2 + cash_2

#Dataframe f o r s t o ck s
stock_weights < data . frame ( pi_s2 )

#Dataframe f o r bonds
bond_weights < data . frame ( pi_b2 )

hedge_weights < data . frame ( pi_b2_hedge )

bond_terms < data . frame ( pi_b2 . 1 term , pi_b2 . 2 term , pi_b2_hedge , A1_tau , A2_tau )

### LOSS FUNCTION ###
gain_model < (1 /gamma 1) ∗ ( 1 gamma) /2 ∗ sigma_r^2 ∗

( ( kappa∗tau ( 1 exp ( kappa∗tau ) ) ) / ( kappa^3)
( 1 exp ( kappa∗tau ) )^2/ (2 ∗kappa^3) )

loss_model < exp ( gain_model∗r0 ) 1

#as s i gn ( paste0 ("G" , g ) , s tock_weights )
gammaList [ [ paste0 ( "G" , gammaVec [ g ] ) ] ] < stock_weights
gammaList [ [ paste0 ( "A" , gammaVec [ g ] ) ] ] < stock_weights_old
gammaList [ [ paste0 ( "B" , gammaVec [ g ] ) ] ] < bond_weights
gammaList [ [ paste0 ( "O" , gammaVec [ g ] ) ] ] < bond_weights_old
gammaList [ [ paste0 ( "H" , gammaVec [ g ] ) ] ] < hedge_weights
gammaList [ [ paste0 ( "T" , gammaVec [ g ] ) ] ] < bond_terms
gammaList [ [ paste0 ( "V" , gammaVec [ g ] ) ] ] < A_functions
gammaList [ [ paste0 ( "L" , gammaVec [ g ] ) ] ] < loss_model
gammaList [ [ paste0 ( "C" , gammaVec [ g ] ) ] ] < cash_1

}
##############################################
##############################################
#Producing output
##############################################
##############################################
#Set t ing up dataframes
aversion . d f . s2 < data . frame ( gammaList$G0 . 5 , gammaList$G1 , gammaList$G2 , gammaList$←↩

G5 , gammaList$G10 , gammaList$G20 )
aversion . d f . s1 < data . frame ( gammaList$A0 . 5 , gammaList$A1 , gammaList$A2 , gammaList$←↩

A5 , gammaList$A10 , gammaList$A20 )
aversion . d f . b2 < data . frame ( gammaList$B0 . 5 , gammaList$B1 , gammaList$B2 , gammaList$←↩

B5 , gammaList$B10 , gammaList$B20 )
aversion . d f . b1 < data . frame ( gammaList$O0 . 5 , gammaList$O1 , gammaList$O2 , gammaList$←↩

O5 , gammaList$O10 , gammaList$O20 )
aversion . d f . hedge < data . frame ( gammaList$H0 . 5 , gammaList$H1 , gammaList$H2 ,←↩

gammaList$H5 , gammaList$H10 , gammaList$H20 )
aversion . d f . bondterms < data . frame ( gammaList$T0 . 5 , gammaList$T1 , gammaList$T2 , ←↩

gammaList$T5 , gammaList$T10 , gammaList$T20 )
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aversion . d f . A_functions < data . frame ( gammaList$V0 . 5 , gammaList$V1 , gammaList$V2 , ←↩
gammaList$V5 , gammaList$V10 , gammaList$V20 )

aversion . d f . cash . m1 < data . frame ( gammaList$C0 . 5 , gammaList$C1 , gammaList$C2 , ←↩
gammaList$C5 , gammaList$C10 , gammaList$C20 )

new . df . A_functions_gamma2 < data . frame ( aversion . d f . A_functions$A1_tau . 2 , aversion←↩
. d f . A_functions$A2_tau . 2 , aversion . d f . A_functions$v . 2 )

new . df . b2 < data . frame ( aversion . d f . b2 )

# Se l e c t i n g time pe r i od s
new . SW < aversion . d f . s2 [ c (2 , 30 ) , 1 : 6 ]
new . BW < aversion . d f . b2 [ c (2 , 30 ) , 1 : 6 ]
new . HE < aversion . d f . hedge [ c (2 , 30 ) , 1 : 6 ]
new . BT < aversion . d f . bondterms [ ( c (1 , 10 , 20 ,30 ) ) , 1 : 5 ]

### NEW THINGS TABLE MODEL 1 ###
aversion . d f . b1 [ c (2 , 30 ) , 1 : 6 ]
aversion . d f . s1 [ c (2 , 30 ) , 1 : 6 ]
aversion . d f . cash . m1 [ c (2 , 30 ) , 1 : 6 ]

# Def in ing new dataframes
RA . SW < new . SW [ 1 : 2 , ]
RA . BW < new . BW [ 1 : 2 , ]
RA . HE < new . HE [ 1 : 2 , ]
RA . BT < new . BT [ 1 : 4 , ]

#Creat ing a Bond Table with decomposed terms
BT . 05 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 1 : 5 ]
BT . 1 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 6 : 1 0 ]
BT . 2 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 1 1 : 1 5 ]
BT . 5 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 1 6 : 2 0 ]
BT . 10 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 2 1 : 2 5 ]
BT . 20 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 2 6 : 3 0 ]

colnames ( BT . 0 5 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 1 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 2 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 5 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 1 0 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 2 0 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
#########################################################
#( i i ) TABLE 6 .1 Bond decomposit ion
BT . t ab l e < rbind ( BT . 0 5 , BT . 1 , BT . 2 , BT . 5 , BT . 1 0 , BT . 2 0 )
# Stargaze r t ab l e output
BT . t ab l e . latex < stargazer ( BT . tab le , summary = FALSE )

########################################################
#Creat ing a tab l e f o r comparison between the models

#Se t t i ng up the tab l e
dim( RA . SW ) = c ( l ength ( RA . SW ) , 1)
dim( RA . BW ) = c ( l ength ( RA . BW ) , 1)
dim( RA . HE ) = c ( l ength ( RA . HE ) , 1)

SW . d f < t ( RA . SW )
BW . d f < t ( RA . BW )
HE . d f < t ( RA . HE )
SW . t1 . d f < data . frame ( SW . d f [ , 1 ] )
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SW . t30 . d f < data . frame ( SW . d f [ , 2 ] )
colnames ( SW . t1 . d f ) < c ( " Stocks " )
colnames ( SW . t30 . d f ) < c ( " Stocks " )

BW . t1 . d f < data . frame ( BW . d f [ , 1 ] )
BW . t30 . d f < data . frame ( BW . d f [ , 2 ] )
colnames ( BW . t1 . d f ) < c ( "Bonds" )
colnames ( BW . t30 . d f ) < c ( "Bonds" )

HE . t1 . d f < data . frame ( HE . d f [ , 1 ] )
HE . t30 . d f < data . frame ( HE . d f [ , 2 ] )
colnames ( HE . t1 . d f ) < c ( "Hedge" )
colnames ( HE . t30 . d f ) < c ( "Hedge" )

SW . rb ind < rbind ( SW . t1 . df , SW . t30 . d f )
BW . rb ind < rbind ( BW . t1 . df , BW . t30 . d f )
HE . rb ind < rbind ( HE . t1 . df , HE . t30 . d f )
Cash . d f < 1 SW . rb ind BW . rb ind
colnames ( Cash . d f ) < c ( "Cash" )

check . df < Cash . d f + SW . rb ind + BW . rb ind

new . t ab l e . PF < cbind ( SW . rbind , BW . rbind , HE . rbind , Cash . d f )

################################################
#( i i i ) Table 6 .2 f o r comparison
new . t ab l e . PF . d f < new . t ab l e . PF
#Table So lu t i on
PF . t ab l e . latex < stargazer (new . t ab l e . PF , summary = FALSE )
##########################################################

#Label ing to p r i n t
rownames ( BW . d f ) = colnames ( RA . BW )
rownames ( SW . d f ) = colnames ( RA . BW )
rownames ( HE . d f ) = colnames ( RA . HE )
rownames ( SW . d f ) = c (0 . 5 , 1 , 2 , 5 , 1 0 , 2 0 )
rownames ( BW . d f ) = c (0 . 5 , 1 , 2 , 5 , 1 0 , 2 0 )
rownames ( HE . d f ) = c (0 . 5 , 1 , 2 , 5 , 1 0 , 2 0 )

#Print
SW . d f # Stocks at T= 1 and T=30
BW . d f # Bonds
HE . d f # Hegde term

########################################################
#( i i i ) PLOTS f o r Figure 6 . 1 , Figure 6 .2 ###############
########################################################
head ( aversion . d f . b1 )
head ( aversion . d f . b2 )

# Bond Plot f o r RA = 1 #
bond . p l o t . 1 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O1 , c o l = " blue " ) ,←↩

size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B1 , c o l = " green " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B1 , ymin=gammaList$O1 , linetype = NA ) , ←↩

fill="pink" , alpha=.3) +
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coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 0 . 2 5 , 0 . 7 5 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " green " ) ) +
labs ( t i t l e=" ( a ) Risk Avers ion = 1" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= "none" , # c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

bond . p l o t . 1

# Bond Plot f o r RA = 2 #
bond . p l o t . 2 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O2 , c o l = " blue " ) ,←↩

size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B2 , c o l = " green " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B2 , ymin=gammaList$O2 , linetype = NA ) , ←↩

fill="pink" , alpha=.3) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 0 . 2 5 , 0 . 7 5 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " green " ) ) +
labs ( t i t l e=" (b) Risk Avers ion = 2" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= "none" , # c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
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legend . background = element_re c t ( fill=" transparent " ) )
bond . p l o t . 2

# Bond Plot f o r RA = 5 #
bond . p l o t . 5 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O5 , c o l = " blue " ) ,←↩

size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B5 , c o l = " green " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B5 , ymin=gammaList$O5 , linetype = NA ) , ←↩

fill="pink" , alpha=.3) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 0 . 5 , 1 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " green " ) ) +
labs ( t i t l e=" ( c ) Risk Avers ion = 5" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position="none" , # c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

bond . p l o t . 5

# Bond Plot f o r RA = 10 #
bond . p l o t . 10 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O10 , c o l = " blue "←↩

) , size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B10 , c o l = " green " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B10 , ymin=gammaList$O10 , linetype = NA ) , ←↩

fill="pink" , alpha=.3) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 0 . 5 , 1 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " green " ) ) +
labs ( t i t l e=" (d) Risk Avers ion = 10" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
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ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= "none" , # c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

bond . p l o t . 10

# Bond Plot f o r RA = 20 #
bond . p l o t . 20 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O20 , c o l = " blue "←↩

) , size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B20 , c o l = " green " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B20 , ymin=gammaList$O20 , linetype = NA )←↩

, fill="pink" , alpha=.5) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c (0 . 7 5 , 1 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " green " ) ) +
labs ( t i t l e=" (d) Risk Avers ion = 20" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= "none" , #c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#Al l p l o t s
g r id . arrange ( bond . p l o t . 2 , bond . p l o t . 5 , nrow = 1 , nco l = 2)
g r id . arrange ( bond . p l o t . 1 0 , bond . p l o t . 2 0 , nrow = 1 , nco l = 2)
g r id . arrange ( bond . p l o t . 1 , bond . p l o t . 2 , bond . p l o t . 5 , bond . p l o t . 1 0 , nrow = 2 , nco l ←↩

= 2)

##########################################################
### STOCKS ##############################################
##########################################################
#RA = 2
stock . p l o t . 2 < ggplot ( aversion . d f . s2 , aes ( x = t , y = gammaList$G2 ) ) +

geom_line ( aes ( c o l = " red " ) , size = 1) +
geom_line ( aes ( y = gammaList$A2 , c o l = "darkred " ) , size = 1 , linetype = 2) +
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coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " Stocks M1" , " Stocks M2" ) , ←↩

values = c ( " red " , " darkred " ) ) +
labs ( t i t l e=" ( a ) Risk Avers ion = 2" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 6 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#RA = 5
stock . p l o t . 5 < ggplot ( aversion . d f . s2 , aes ( x = t , y = gammaList$G5 ) ) +

geom_line ( aes ( c o l = " red " ) , size = 1) +
geom_line ( aes ( y = gammaList$A5 , c o l = "darkred " ) , size = 1 , linetype = 2) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " Stocks M1" , " Stocks M2" ) , ←↩

values = c ( " red " , " darkred " ) ) +
labs ( t i t l e=" (b) Risk Avers ion = 5" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 6 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#RA = 10
stock . p l o t . 10 < ggplot ( aversion . d f . s2 , aes ( x = t , y = gammaList$G10 ) ) +

geom_line ( aes ( c o l = " red " ) , size = 1) +
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geom_line ( aes ( y = gammaList$A10 , c o l = "darkred " ) , size = 1 , linetype = 2) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " Stocks M1" , " Stocks M2" ) , ←↩

values = c ( " red " , " darkred " ) ) +
labs ( t i t l e=" ( c ) Risk Avers ion = 10" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 6 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

## RA = 20
stock . p l o t . 20 < ggplot ( aversion . d f . s2 , aes ( x = t , y = gammaList$G20 ) ) +

geom_line ( aes ( c o l = " red " ) , size = 1) +
geom_line ( aes ( y = gammaList$A20 , c o l = "darkred " ) , size = 1 , linetype = 2) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " Stocks M1" , " Stocks M2" ) , ←↩

values = c ( " red " , " darkred " ) ) +
labs ( t i t l e=" (d) Risk Avers ion = 20" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 6 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

g r id . arrange ( stock . p l o t . 2 , stock . p l o t . 5 , stock . p l o t . 1 0 , stock . p l o t . 2 0 , nrow = 2 , ←↩
nco l = 2)
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###############################################################
### ( iv ) Loss FUNCTIONS BETWEEN CONSTANT MODEL AND MODEL 1 ##
###############################################################
loss . f unc t i on < data . frame ( gammaList$L0 . 5 , gammaList$L1 , gammaList$L2 , gammaList$←↩

L5 , gammaList$L10 , gammaList$L20 )

### Risk Avers ion = 2 ###
plo t . loss . rv2 < ggplot ( loss . funct ion , aes ( x = t , y = loss . f unc t i on $gammaList . L2 )←↩

) +
geom_line ( c o l= " red " , size = 1) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Loss " ) , values = c ( " red " ) ) +
labs ( t i t l e=" ( a ) Risk Avers ion = 2" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=7) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (1 . 0 249 , 0 . 8 45 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 6) ,
l egend . direction = " ho r i z on t a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

p l o t . loss . rv2

### Risk Avers ion = 5 ###
plo t . loss . rv5 < ggplot ( loss . funct ion , aes ( x = t , y = loss . f unc t i on $gammaList . L5 )←↩

) +
geom_line ( c o l= " red " , size = 1) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Loss " ) , values =←↩

c ( " red " ) ) +
labs ( t i t l e=" (b) Risk Avers ion = 5" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5)←↩

,
a x i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "←↩

dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=7) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
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ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (1 . 0 249 , 0 . 8 45 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 6) ,
l egend . direction = " ho r i z on t a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

### Risk Avers ion = 10 ###
plo t . loss . rv10 < ggplot ( loss . funct ion , aes ( x = t , y = loss . f unc t i on $gammaList .←↩

L10 ) ) +
geom_line ( c o l= " red " , size = 1) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Loss " ) , values = c ( " red " ) ) +
labs ( t i t l e=" ( c ) Risk Avers ion = 10" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=7) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (1 . 0 249 , 0 . 8 45 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 6) ,
l egend . direction = " ho r i z on t a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

### Risk Avers ion = 20 ###
plo t . loss . rv20 < ggplot ( loss . funct ion , aes ( x = t , y = loss . f unc t i on $gammaList .←↩

L20 ) ) +
geom_line ( c o l= " red " , size = 1) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Loss " ) , values = c ( " red " ) ) +
labs ( t i t l e=" (d) Risk Avers ion = 20" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=7) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
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legend . position= c (1 . 0 249 , 0 . 8 45 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 6) ,
l egend . direction = " ho r i z on t a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

# Al l p l o t s
g r id . arrange ( p l o t . loss . rv2 , p l o t . loss . rv5 , p l o t . loss . rv10 , p l o t . loss . rv20 , nrow = ←↩

2 , nco l = 2)

######################################################
#### Program 7 Al t e rna t i v e S p e c i f i c a t i o n o f MPR ####
######################################################

#Content#
#( i ) S imulat ion o f models with a constant i n t e r e s t rate , i f r < rep (0 . 0 1 , 3 1 ) i s ←↩

a c t i v e .
#( i i ) S imulat ion o f models with a s t o c h a s t i c i n t e r e s t rate , i f r < rep (0 . 0 1 , 3 1 ) ←↩

i s d eac t i v e .
#( i i i ) Figure 6 .3 and Fiure 6 .4

#### Required Packages #####
requ i r e ( ggplot2 )
r e qu i r e ( stargazer ) ;
r e qu i r e ( gridExtra )
#######################################################

#### In t e r e s t Rate Simulat ion ####

## Def ine model parameters
r0 < 0.01
r_bar < 0.01 #theta
kappa < 0.4965 #k
sigma_r < 0.05 #beta

## simulate shor t ra t e paths
n < 1 # MC s imula t i on t r i a l s
T < 30 # t o t a l time
m < 30 # sub i n t e r v a l s
dt < T/m # d i f f e r e n c e in time each sub i n t e r va l

r < matrix (0 , m+1,n ) # matrix to hold shor t ra t e paths
r [ 1 , ] < r0

f o r ( j in 1 : n ) {
f o r ( i in 2 : ( m+1) ) {

dr < kappa∗ ( r_bar r [ i 1 , j ] ) ∗dt + sigma_r∗ s q r t ( dt ) ∗rnorm (1 , 0 , 1 )
r [ i , j ] < r [ i 1 , j ] + dr

}
}

## plo t paths
t < seq (0 , T , dt )
rT . expected < r_bar + ( r0 r_bar ) ∗exp ( kappa∗ t )
rT . stdev < sqr t ( sigma_r^2/ (2 ∗kappa ) ∗ ( 1 exp ( 2 ∗kappa∗ t ) ) )
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matplot ( t , r [ , 1 ] , type=" l " , lty=1, ylab=" r t " )
ab l i n e ( h=r_bar , c o l=" red " , lty=2)
l i n e s ( t , rT . expected , lty=2)
l i n e s ( t , rT . expected + 2∗rT . stdev , lty=2)
l i n e s ( t , rT . expected 2∗rT . stdev , lty=2)
po in t s (0 , r0 )

#### PORTFOLIO MODEL ####

#Function begin
gammaList = l i s t ( )
gammaVec = c ( 0 . 5 , 1 , 2 , 5 , 10 , 20)

f o r ( g in 1 : l ength ( gammaVec ) ) {
gamma = gammaVec [ g ]

#Parameters
lambda_bar2 < 0.301 #Base : 0 .365 #Al t e rna t i v e : 0 .301
lambda_tilde2 < 6.5 #Base : 0 .06 #Al t e rna t i v e : 6 . 5
rho < 0.2
sigma_s < 0.202
lambda_bar1 < 0.06 #Base : 0 .109 #Al t e rna t i v e : 0 . 0 6
lambda_tilde1 < 5 #Base : 0 .067 #Al t e rna t i v e : 5
tau < t
b_tau < (1/kappa ) ∗ ( 1 exp ( kappa∗ t ) )
sigma_b < 0.1
mu_s < 0.087
mu_b < 0.021
#r < rep (0 . 0 1 , 3 1 ) ######## IMPORTANT: i f ACTIVE: Simulat ion with constant ←↩

i n t e r e s t r a t e ####

#### #Model with s t o c h a s t i c i n t e r e s t and a f f i n e market p r i c e o f r i s k ####

#ODE' s
v < 2∗ s q r t ( ( kappa + ( (gamma 1 ) /gamma) ∗sigma_r∗lambda_tilde1 )^2 + ( (gamma 1 ) /←↩

gamma) ∗ ( ( lambda_tilde1^2+lambda_tilde2^2)/gamma) ∗sigma_r^2)

A2_tau < (2 ∗ ( (1 /gamma) ∗ ( lambda_tilde1^2+lambda_tilde2^2) ) ∗ ( exp ( v∗tau ) 1 ) ) / ( ( v←↩
+(2∗ ( kappa + ( ( 1 gamma) /gamma) ∗sigma_r∗lambda_tilde1 ) ) ) ∗ ( exp ( v∗tau ) 1 )+2∗v )

A1_tau < (1+(1/gamma) ∗ ( lambda_bar1∗lambda_tilde1+lambda_bar2∗lambda_tilde2 ) ) /
( (1 /gamma) ∗ ( lambda_tilde1^2+lambda_tilde2^2) ) ∗A2_tau +(2/v ) ∗
((1+(1/gamma) ∗ ( lambda_bar1∗lambda_tilde1+lambda_bar2∗lambda_←↩

tilde2 ) ) ∗
(2 ∗ ( kappa +((1 gamma) /gamma) ∗sigma_r∗lambda_tilde1 ) )+
2∗ ( ( kappa∗r_bar ( 1 gamma) /gamma) ∗sigma_r∗lambda_bar1 ) ∗
( (1 /gamma) ∗ ( lambda_tilde1^2+lambda_tilde2^2) ) ) ∗
( ( exp ( ( v∗tau ) / 2) 1 ) ^2)/
( ( v+(2∗ ( kappa +((1 gamma) /gamma) ∗sigma_r∗lambda_tilde1 ) ) ) ∗ ( exp ( v∗←↩

tau ) 1 )+2∗v )

A_functions < data . frame ( A1_tau , A2_tau , v )

#Stock Weight
pi_s2 < (1/gamma) ∗ ( ( lambda_bar2+lambda_tilde2∗r ) / ( s q r t ( 1 rho^2)∗sigma_s ) )
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#Bond Weight
pi_b2 < (1/ (gamma∗sigma_b ) ) ∗ ( lambda_bar1+lambda_tilde1∗r rho/ ( sq r t ( 1 rho^2) )←↩

∗ ( lambda_bar2+lambda_tilde2∗r ) ) +(((gamma 1 ) /gamma) ∗ ( sigma_r/sigma_b ) ) ∗ (←↩
A1_tau +A2_tau∗r )

pi_b2 . 1 term < (1/ (gamma∗sigma_b ) ) ∗ ( lambda_bar1+lambda_tilde1∗r )
mean( pi_b2 . 1 term )

pi_b2 . 2 term < (1/ (gamma∗sigma_b ) ) ∗ ( rho/ ( sq r t ( 1 rho^2) ) ∗ ( lambda_bar2+lambda_←↩
tilde2∗r ) )

mean( pi_b2 . 2 term )

#Hedge part
pi_b2_hedge < ( ( (gamma 1 ) /gamma) ∗ ( sigma_r/sigma_b ) ) ∗ ( A1_tau +A2_tau∗r )

#Mean value o f p i_s2
mean_pi_s2 < rep (mean( pi_s2 ) , 31)

#### Model only s t o c h a s t i c i n t e r e s t r a t e #####

#Parameters :
lambda1 < ( lambda_bar1+lambda_tilde1∗mean( r ) ) #0.11
lambda2 < ( lambda_bar2+lambda_tilde2∗mean( r ) ) #0.3666

#Stock weight
pi_s1 < (1/gamma) ∗ ( lambda2/ ( sq r t ( 1 rho^2)∗sigma_s ) )

stock_weights_old < data . frame ( pi_s1 )

#Bond weight
pi_b1 < (1/gamma) ∗ ( ( ( lambda1 ) /sigma_b ) ( ( rho∗ ( lambda2 ) ) / ( s q r t ( 1 rho^2)∗sigma←↩

_b ) ) )+((gamma 1 ) /gamma) ∗ ( sigma_r/sigma_b ) ∗b_tau

bond_weights_old < data . frame ( pi_b1 )

pi_b1_hedge < ((gamma 1 ) /gamma) ∗ ( sigma_r/sigma_b ) ∗b_tau

#F i l l a vec to r the constant s tock weight
vac < rep ( pi_s1 , 3 1 )

#Hedging importance
hedge1 < pi_b1 pi_b1_hedge
hedge2 < pi_b2 pi_b2_hedge

#Stock Bond Ratio
ratio_1 < pi_b1/pi_s1
ratio_2 < pi_b2/pi_s2

ratio . d f < data . frame ( ratio_1 , ratio_2)

#Cash f r a c t i o n
cash_1 < 1 pi_s1 pi_b1
check_1 < pi_s1 + pi_b1 + cash_1
cash_2 < 1 pi_s2 pi_b2
check_2 < pi_s2 + pi_b2 + cash_2
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#Dataframe f o r s t o ck s
stock_weights < data . frame ( pi_s2 )

#Dataframe f o r bonds
bond_weights < data . frame ( pi_b2 )

hedge_weights < data . frame ( pi_b2_hedge )

bond_terms < data . frame ( pi_b2 . 1 term , pi_b2 . 2 term , pi_b2_hedge , A1_tau , A2_tau )

### LOSS FUNCTION ###
gain_model < (1 /gamma 1) ∗ ( 1 gamma) /2 ∗ sigma_r^2 ∗ ( ( kappa∗tau ( 1 exp ( kappa←↩

∗tau ) ) ) / ( kappa^3) ( 1 exp ( kappa∗tau ) )^2/ (2 ∗kappa^3) )
loss_model < exp ( gain_model∗r0 ) 1

#as s i gn ( paste0 ("G" , g ) , s tock_weights )
gammaList [ [ paste0 ( "G" , gammaVec [ g ] ) ] ] < stock_weights
gammaList [ [ paste0 ( "A" , gammaVec [ g ] ) ] ] < stock_weights_old
gammaList [ [ paste0 ( "B" , gammaVec [ g ] ) ] ] < bond_weights
gammaList [ [ paste0 ( "O" , gammaVec [ g ] ) ] ] < bond_weights_old
gammaList [ [ paste0 ( "H" , gammaVec [ g ] ) ] ] < hedge_weights
gammaList [ [ paste0 ( "T" , gammaVec [ g ] ) ] ] < bond_terms
gammaList [ [ paste0 ( "V" , gammaVec [ g ] ) ] ] < A_functions
gammaList [ [ paste0 ( "L" , gammaVec [ g ] ) ] ] < loss_model

}
############################################################
############################################################
#Producing output
############################################################
############################################################

#Set t ing up dataframes
aversion . d f . s2 < data . frame ( gammaList$G0 . 5 , gammaList$G1 , gammaList$G2 , gammaList$←↩

G5 , gammaList$G10 , gammaList$G20 )
aversion . d f . s1 < data . frame ( gammaList$A0 . 5 , gammaList$A1 , gammaList$A2 , gammaList$←↩

A5 , gammaList$A10 , gammaList$A20 )
aversion . d f . b2 < data . frame ( gammaList$B0 . 5 , gammaList$B1 , gammaList$B2 , gammaList$←↩

B5 , gammaList$B10 , gammaList$B20 )
aversion . d f . b1 < data . frame ( gammaList$O0 . 5 , gammaList$O1 , gammaList$O2 , gammaList$←↩

O5 , gammaList$O10 , gammaList$O20 )
aversion . d f . hedge < data . frame ( gammaList$H0 . 5 , gammaList$H1 , gammaList$H2 ,←↩

gammaList$H5 , gammaList$H10 , gammaList$H20 )
aversion . d f . bondterms < data . frame ( gammaList$T0 . 5 , gammaList$T1 , gammaList$T2 , ←↩

gammaList$T5 , gammaList$T10 , gammaList$T20 )
aversion . d f . A_functions < data . frame ( gammaList$V0 . 5 , gammaList$V1 , gammaList$V2 , ←↩

gammaList$V5 , gammaList$V10 , gammaList$V20 )

new . df . A_functions_gamma2 < data . frame ( aversion . d f . A_functions$A1_tau . 2 , aversion←↩
. d f . A_functions$A2_tau . 2 , aversion . d f . A_functions$v . 2 )

new . df . b2 < data . frame ( aversion . d f . b2 )

# Se l e c t i n g time pe r i od s
new . SW < aversion . d f . s2 [ c (2 , 30 ) , 1 : 6 ]
new . BW < aversion . d f . b2 [ c (2 , 30 ) , 1 : 6 ]
new . HE < aversion . d f . hedge [ c (2 , 30 ) , 1 : 6 ]
new . BT < aversion . d f . bondterms [ ( c (1 , 10 , 20 ,30 ) ) , 1 : 5 ]
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# Def in ing new dataframes
RA . SW < new . SW [ 1 : 2 , ]
RA . BW < new . BW [ 1 : 2 , ]
RA . HE < new . HE [ 1 : 2 , ]
RA . BT < new . BT [ 1 : 4 , ]

#Creat ing a Bond Table with decomposed terms
BT . 05 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 1 : 5 ]
BT . 1 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 6 : 1 0 ]
BT . 2 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 1 1 : 1 5 ]
BT . 5 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 1 6 : 2 0 ]
BT . 10 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 2 1 : 2 5 ]
BT . 20 < aversion . d f . bondterms [ ( c (2 , 30 ) ) , 2 6 : 3 0 ]

colnames ( BT . 0 5 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 1 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 2 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 5 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 1 0 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )
colnames ( BT . 2 0 ) < c ( " f i r s t " , "2nd" , "hedge" , "A1" , "A2" )

BT . t ab l e < rbind ( BT . 0 5 , BT . 1 , BT . 2 , BT . 5 , BT . 1 0 , BT . 2 0 )

BT . t ab l e . latex < stargazer ( BT . tab le , summary = FALSE )

#Creat ing a tab l e f o r comparison between the models

dim( RA . SW ) = c ( l ength ( RA . SW ) , 1)
dim( RA . BW ) = c ( l ength ( RA . BW ) , 1)
dim( RA . HE ) = c ( l ength ( RA . HE ) , 1)

SW . d f < t ( RA . SW )
BW . d f < t ( RA . BW )
HE . d f < t ( RA . HE )
SW . t1 . d f < data . frame ( SW . d f [ , 1 ] )
SW . t30 . d f < data . frame ( SW . d f [ , 2 ] )
colnames ( SW . t1 . d f ) < c ( " Stocks " )
colnames ( SW . t30 . d f ) < c ( " Stocks " )

BW . t1 . d f < data . frame ( BW . d f [ , 1 ] )
BW . t30 . d f < data . frame ( BW . d f [ , 2 ] )
colnames ( BW . t1 . d f ) < c ( "Bonds" )
colnames ( BW . t30 . d f ) < c ( "Bonds" )

HE . t1 . d f < data . frame ( HE . d f [ , 1 ] )
HE . t30 . d f < data . frame ( HE . d f [ , 2 ] )
colnames ( HE . t1 . d f ) < c ( "Hedge" )
colnames ( HE . t30 . d f ) < c ( "Hedge" )

SW . rb ind < rbind ( SW . t1 . df , SW . t30 . d f )
BW . rb ind < rbind ( BW . t1 . df , BW . t30 . d f )
HE . rb ind < rbind ( HE . t1 . df , HE . t30 . d f )
Cash . d f < 1 SW . rb ind BW . rb ind
colnames ( Cash . d f ) < c ( "Cash" )

check . df < Cash . d f + SW . rb ind + BW . rb ind
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new . t ab l e . PF < cbind ( SW . rbind , BW . rbind , HE . rbind , Cash . d f )
new . t ab l e . PF . d f < new . t ab l e . PF

#Table So lu t i on
PF . t ab l e . latex < stargazer (new . t ab l e . PF , summary = FALSE )

#Labe l ing to p r i n t
rownames ( BW . d f ) = colnames ( RA . BW )
rownames ( SW . d f ) = colnames ( RA . BW )
rownames ( HE . d f ) = colnames ( RA . HE )
rownames ( SW . d f ) = c (0 . 5 , 1 , 2 , 5 , 1 0 , 2 0 )
rownames ( BW . d f ) = c (0 . 5 , 1 , 2 , 5 , 1 0 , 2 0 )
rownames ( HE . d f ) = c (0 . 5 , 1 , 2 , 5 , 1 0 , 2 0 )

#Print
SW . d f # Stocks at T= 1 and T=30
BW . d f # Bonds
HE . d f # Hegde term

######################################################
####### ( i i i ) Figure 6 .3 and Fiure 6 .4 ###############
######################################################
head ( aversion . d f . b1 )
head ( aversion . d f . b2 )

# Bond Plot f o r RA = 1 #
bond . p l o t . 1 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O1 , c o l = " blue " ) ,←↩

size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B1 , c o l = "darkblue " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B1 , ymin=gammaList$O1 , linetype = NA ) , ←↩

fill="pink" , alpha=.3) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 0 . 2 5 , 0 . 7 5 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " darkblue " ) ) +
labs ( t i t l e=" ( a ) Risk Avers ion = 1" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= "none" , # c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

bond . p l o t . 1
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# Bond Plot f o r RA = 2 #
bond . p l o t . 2 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O2 , c o l = " blue " ) ,←↩

size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B2 , c o l = "darkblue " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B2 , ymin=gammaList$O2 , linetype = NA ) , ←↩

fill="pink" , alpha=.3) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 1 . 5 , 4 . 5 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " darkblue " ) ) +
labs ( t i t l e=" ( a ) Risk Avers ion = 2" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= "none" , # c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

bond . p l o t . 2

# Bond Plot f o r RA = 5 #
bond . p l o t . 5 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O5 , c o l = " blue " ) ,←↩

size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B5 , c o l = "darkblue " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B5 , ymin=gammaList$O5 , linetype = NA ) , ←↩

fill="pink" , alpha=.3) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 1 . 5 , 4 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " darkblue " ) ) +
labs ( t i t l e=" (b) Risk Avers ion = 5" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
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ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position="none" , # c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

bond . p l o t . 5

# Bond Plot f o r RA = 10 #
bond . p l o t . 10 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O10 , c o l = " blue "←↩

) , size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B10 , c o l = "darkblue " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B10 , ymin=gammaList$O10 , linetype = NA ) , ←↩

fill="pink" , alpha=.3) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 1 . 5 , 4 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " darkblue " ) ) +
labs ( t i t l e=" ( c ) Risk Avers ion = 10" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= "none" , # c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

bond . p l o t . 10

# Bond Plot f o r RA = 20 #
bond . p l o t . 20 < ggplot ( aversion . d f . b1 , aes ( x = t , y = gammaList$O20 , c o l = " blue "←↩

) , size = 1 . 2 ) +
geom_line ( ) +
geom_line ( aes ( y = gammaList$B20 , c o l = "darkblue " ) , size = 1 . 2 ) +
geom_ribbon ( aes ( x = t , ymax=gammaList$B20 , ymin=gammaList$O20 , linetype = NA ) , ←↩

fill="pink" , alpha=.5) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 1 . 5 , 4 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion Of Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Bonds M1" , "Bonds M2" ) , ←↩

values = c ( " blue " , " darkblue " ) ) +
labs ( t i t l e=" (d) Risk Avers ion = 20" ) +

157



APPENDIX D. R-CODE

theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=8) ,
ax i s . t i t l e . x=element_text ( size=8) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= "none" , #c ( 0 . 4 , 0 . 8 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

bond . p l o t . 20

#Al l p l o t s
g r id . arrange ( bond . p l o t . 2 , bond . p l o t . 5 , nrow = 1 , nco l = 2)
g r id . arrange ( bond . p l o t . 1 0 , bond . p l o t . 2 0 , nrow = 1 , nco l = 2)
##########################################################
#( i i i ) Figure 6 .3 and Fiure 6 .4
g r id . arrange ( bond . p l o t . 2 , bond . p l o t . 5 , bond . p l o t . 1 0 , bond . p l o t . 2 0 , nrow = 2 , nco l←↩

= 2)
##########################################################

##########################################################
### STOCKS ###
##########################################################

#RA = 2
stock . p l o t . 2 < ggplot ( aversion . d f . s2 , aes ( x = t , y = gammaList$G2 ) ) +

geom_line ( aes ( c o l = " red " ) , size = 1) +
geom_line ( aes ( y = gammaList$A2 , c o l = "darkred " ) , size = 1 , linetype = 2) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " Stocks M1" , " Stocks M2" ) , ←↩

values = c ( " red " , " darkred " ) ) +
labs ( t i t l e=" ( a ) Risk Avers ion = 2" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 6 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
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legend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#RA = 5
stock . p l o t . 5 < ggplot ( aversion . d f . s2 , aes ( x = t , y = gammaList$G5 ) ) +

geom_line ( aes ( c o l = " red " ) , size = 1) +
geom_line ( aes ( y = gammaList$A5 , c o l = "darkred " ) , size = 1 , linetype = 2) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " Stocks M1" , " Stocks M2" ) , ←↩

values = c ( " red " , " darkred " ) ) +
labs ( t i t l e=" (b) Risk Avers ion = 5" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 6 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

#RA = 10
stock . p l o t . 10 < ggplot ( aversion . d f . s2 , aes ( x = t , y = gammaList$G10 ) ) +

geom_line ( aes ( c o l = " red " ) , size = 1) +
geom_line ( aes ( y = gammaList$A10 , c o l = "darkred " ) , size = 1 , linetype = 2) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " Stocks M1" , " Stocks M2" ) , ←↩

values = c ( " red " , " darkred " ) ) +
labs ( t i t l e=" ( c ) Risk Avers ion = 10" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 6 5 ) ,
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legend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

## RA = 20
stock . p l o t . 20 < ggplot ( aversion . d f . s2 , aes ( x = t , y = gammaList$G20 ) ) +

geom_line ( aes ( c o l = " red " ) , size = 1) +
geom_line ( aes ( y = gammaList$A20 , c o l = "darkred " ) , size = 1 , linetype = 2) +
coord_cartesian ( xlim = c (0 ,30 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( " Fract ion o f Wealth" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( " Stocks M1" , " Stocks M2" ) , ←↩

values = c ( " red " , " darkred " ) ) +
labs ( t i t l e=" (d) Risk Avers ion = 20" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=8) ,
ax i s . t i t l e . y=element_text ( size=8) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 4 , 0 . 6 5 ) ,
l egend . key . size = unit ( 0 . 3 5 , "cm" ) ,
l egend . t ex t = element_text ( size = 7) ,
l egend . direction = " v e r t i c a l " ,
l egend . key . size = unit (2 , "cm" ) ,
l egend . background = element_re c t ( fill=" transparent " ) )

g r id . arrange ( stock . p l o t . 2 , stock . p l o t . 5 , stock . p l o t . 1 0 , stock . p l o t . 2 0 , nrow = 2 , ←↩
nco l = 2)

##########################################################

######################################################################
### Program 8 Loss func t i on f o r constant investment oppo r tun i t i e s ##
######################################################################

#Content
#( i ) Loss func t i on f o r r i s k ave r s i on f o r Figure 7 .1
#( i i ) Loss func t i on f o r time hor i zon f o r Figure 7 .1

#Packages
r e qu i r e ( ggplot2 )
####################################################################

#Loss func t i on Gamma
loss . f unc t i on . gamma. df < data . frame ( loss_func t i on_constant1 )
head ( loss . f unc t i on . gamma. df )

loss . con . gamma < ggplot ( loss . f unc t i on . gamma. df ) +
geom_line ( aes ( x = pi , y = gamma_1 , c o l = "blue " ) , size = 1) +
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geom_line ( aes ( x = pi , y = gamma_2 , c o l = " red " ) , size = 1) +
geom_line ( aes ( x = pi , y = gamma_3 , c o l = " green " ) , size = 1) +
geom_line ( aes ( x = pi , y = gamma_6 , c o l = " purple " ) , size = 1) +
s c a l e_x_continuous ( " Fract ion o f Risky Assets " ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "RRA = 1" , "RRA = 2" , "RRA = 3" , "←↩

RRA = 6" ) , values = c ( " blue " , " red " , " green " , " purple " ) ) +
labs ( t i t l e=" ( a ) Time = 10" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 1 4 , 0 . 5 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 9) ,
l egend . direction = " v e r t i c a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

#Loss func t i on Time
loss . f unc t i on . time . df < data . frame ( loss_func t i on_constant2 )
head ( loss . f unc t i on . time . df )

loss . con . time < ggplot ( loss . f unc t i on . time . df ) +
geom_line ( aes ( x = pi , y = time_1 , c o l = "blue " ) , size = 1) +
geom_line ( aes ( x = pi , y = time_10 , c o l = " red " ) , size = 1) +
geom_line ( aes ( x = pi , y = time_20 , c o l = " green " ) , size = 1) +
geom_line ( aes ( x = pi , y = time_30 , c o l = " purple " ) , size = 1) +
coord_cartesian ( xlim = c (0 , 2 ) , ylim = c (0 , 1 ) ) +
s c a l e_x_continuous ( " Fract ion o f Risky Assets " ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "T = 1" , "T = 10" , "T = 20" , "T = ←↩

30" ) , values = c ( " blue " , " red " , " green " , " purple " ) ) +
labs ( t i t l e=" (b) Risk Avers ion = 2" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=9) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=9) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=9, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c ( 0 . 1 3 , 0 . 5 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 9) ,
l egend . direction = " v e r t i c a l " ,
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legend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

g r id . arrange ( loss . con . gamma, loss . con . time , nrow = 2 , nco l =1)

###########################################################
### Program 9 Loss func t i on between model 1 and model 2##
###########################################################

#Content
#( i ) Figure 7 .2 Loss func t i on f o r model and model 2

#Packages
r e qu i r e ( ggplot2 )
r e qu i r e ( gridExtra )

#Load Excel f i l e
loss . f unc t i on . df < data . frame ( loss_func t i on_2)
head ( loss . f unc t i on . df )
tail ( loss . f unc t i on . df )

#Plot f o r RA=2
p lo t . loss . rv2 < ggplot ( loss . f unc t i on . df , aes ( x = time , y = loss_g2 ) ) +

geom_line ( c o l= " red " , size = 1) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c (0 ,80 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "Welfare Loss (%) " ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Loss " ) , values = c ( " red " ) ) +
labs ( t i t l e=" ( a ) Risk Avers ion = 2" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=7) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (1 . 0 249 , 0 . 8 45 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 6) ,
l egend . direction = " ho r i z on t a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

#Plot f o r RA=5
p lo t . loss . rv5 < ggplot ( loss . f unc t i on . df , aes ( x = time , y = loss_g5 ) ) +

geom_line ( c o l= " red " , size = 1) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c (0 , 5 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Loss " ) , values = c ( " red " ) ) +
labs ( t i t l e=" (b) Risk Avers ion = 5" ) +
theme_bw ( ) +
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theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,
ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=7) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (1 . 0 249 , 0 . 8 45 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 6) ,
l egend . direction = " ho r i z on t a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

#Plot f o r RA=10
p lo t . loss . rv10 < ggplot ( loss . f unc t i on . df , aes ( x = time , y = loss_g10 ) ) +

geom_line ( c o l= " red " , size = 1) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 0 , 1 . 5 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Loss " ) , values = c ( " red " ) ) +
labs ( t i t l e=" ( c ) Risk Avers ion = 10" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
ax i s . t ex t . x=element_text ( size=7) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (1 . 0 249 , 0 . 8 45 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 6) ,
l egend . direction = " ho r i z on t a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

#Plot f o r RA=20
p lo t . loss . rv20 < ggplot ( loss . f unc t i on . df , aes ( x = time , y = loss_g20 ) ) +

geom_line ( c o l= " red " , size = 1) +
coord_cartesian ( xlim = c (0 ,30 ) , ylim = c ( 0 , 1 . 5 ) ) +
s c a l e_x_continuous ( "Years" ) +
s c a l e_y_continuous ( "Welfare Loss (%)" ) +
s c a l e_color_manual ( "Legend T i t l e \n" , l a b e l s = c ( "Loss " ) , values = c ( " red " ) ) +
labs ( t i t l e=" (d) Risk Avers ion = 20" ) +
theme_bw ( ) +
theme ( panel . background = element_re c t ( colour = "black " , size=1.5) ,

ax i s . ticks = element_line ( color = "black " ) ,
panel . g r i d . major = element_line ( color = "grey " , linetype = "dotted " ) ,
panel . g r i d . minor = element_blank ( ) ,
l egend . t i t l e = element_blank ( ) ,
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ax i s . t ex t . x=element_text ( size=7) ,
ax i s . t i t l e . x=element_text ( size=9) ,
ax i s . t ex t . y=element_text ( size=7) ,
ax i s . t i t l e . y=element_text ( size=9) ,
p l o t . t i t l e=element_text ( size=8, color="black " ) ,
l egend . justification=c (1 , 0 ) ,
l egend . position= c (1 . 0 249 , 0 . 8 45 ) ,
l egend . key . size = unit ( 0 . 3 , "cm" ) ,
l egend . t ex t = element_text ( size = 6) ,
l egend . direction = " ho r i z on t a l " ,
l egend . background = element_re c t ( fill=alpha ( ' white ' , 0 . 4 ) ) )

#Combine p l o t s
g r id . arrange ( p l o t . loss . rv2 , p l o t . loss . rv5 , p l o t . loss . rv10 , p l o t . loss . rv20 , nrow = ←↩

2 , nco l = 2)
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