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The Effect of Investment Horizon on Equity Allocation: 
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Abstract 
This paper examines the effect of investment horizon on the optimal allocation to equities in order to find 

evidence of time diversification. By using genetic optimization, we create optimal portfolios for different 

time horizons. Each portfolio has an ideal equity allocation based on a value at risk (VaR) or an expected 

utility framework. The optimization is based on a dataset covering U.S. real return data for a number of 

asset classes for the years 1802–2016. 

In 1969, Paul Samuelson provided mathematical proof against time diversification that was reliant on 

three assumptions; that investors exhibit constant relative risk aversion (CRRA), that asset returns are 

independently and identically distributed (IID) and that wealth is only a function of returns from financial 

assets. The subsequent time diversification debate has centred on these three assumptions. This paper 

provides input to the debate by discussing the validity of, as well as relaxing, the three assumptions. The 

first assumption is relaxed by introducing a VaR framework and other risk preferences than CRRA. The 

second and third assumption are relaxed when we find evidence of mean reversion in the equity return 

data and when we introduce a fixed non-financial asset, respectively. 

We find solid historical evidence to support the notion that a higher allocation to equities is optimal 

for agents with longer investment horizons, and that the time diversification effect is present over time. 

The mean reversion characteristic in our dataset is sufficiently strong to show equity allocation increasing 

with time horizon irrespective of VaR or utility framework. The introduction of a fixed non-financial asset 

leads to more aggressive optimal equity allocations, with time diversification still being present. 
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1. Introduction 
This paper investigates the effect of investment horizon on equity allocation by creating optimal portfolios 

using various asset classes. We find solid historical evidence to support the notion that a higher allocation 

to equities is optimal for investors with longer investment horizons. Our framework is robust to different 

extensions and the driving characteristics in the data has persisted over time. 

Equities are known to provide a higher mean rate of return than bonds, and in order to obtain higher 

returns the investor has to accept greater risk. However, there is doubt as to whether the return versus risk 

trade-off for an investor depends on the investment horizon. When looking at long horizons, returns on 

stocks have been positive, and the standard deviation of annualized returns has decreased.1 Hence, there is 

a belief that, when investing for a long horizon, a portfolio consisting of high-risk assets will outperform a 

portfolio consisting of low-risk assets. It then follows that the optimal portfolio should have a greater 

allocation to equities, the longer the investment horizon. This is known as time diversification. 

The existence of time diversification has been the subject of a longstanding debate that essentially 

began with a seminal paper by Samuelson (1969). In this paper, Samuelson (1969) disproved time 

diversification by showing that investors should not change their exposure to risky assets on the basis of 

time horizon, given three central assumptions. The three assumptions are: (1) that the investor’s utility 

function exhibits constant relative risk aversion (CRRA); (2) that equity returns are independently and 

identically distributed (IID); and (3) that wealth is only a function of returns from financial assets. The 

academic debate has centred on these three assumptions. An important paper focusing on the first two 

assumptions is Kritzman and Rich (1998) who review how the allocation of risky assets depends on risk 

preferences and the return process of the risky asset. Hanna and Chen (1997) relaxes the third assumption 

by introducing non-financial assets, specifically measuring what effect this introduction has on the optimal 

equity allocation. Proponents of time diversification are market practitioners, and scholars such as Siegel 

(2014), Thorley (1995) as well as Hanna and Chen (1997), whose arguments mainly rest on historical 

return patterns. Those who believe that time diversification is a fallacy, most notably Samuelson (1963, 

1969, 1971, 1989 and 1994) and Kritzman (1992, 1994 and 1998), base their arguments on rigorous 

mathematical proof combined with perfectly simulated returns, most often IID. 

The time diversification debate is interesting since its contents and possible conclusions are highly 

relevant to financial markets, specifically asset allocation, and ultimately the global economy. At the end of 

2016, pension fund asset managers in 22 major pension markets had over 36 trillion USD in assets under 

management, which corresponded to 62 percent of GDP in these economies.2 Therefore, it is reasonable 

to assume that the prevailing investment philosophy at these institutions matter, even to the average 

citizen. Pension funds take investment horizon into account when allocating their assets, and some, like 

Sweden’s AP3 pension fund, explicitly engage in dynamic asset allocations that incorporate time 

diversification.3 Further, Bennyhoff (2008) shows that a number of professional asset managers consider 

                                                           
1 For historical stock returns and annualized standard deviation, see figure 1 and table 5. 
2 Willis Towers Watson (2017). 
3 OECD (2015). 
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investment horizon to be a key factor when recommending asset allocations and suggest higher allocation 

to equities for longer time horizons.4 

Due to the relevance of time diversification among market practitioners, together with the lack of 

consensus within the academic world, Nordea’s Wealth Management wanted to know more about the 

topic and asked us if we could write this paper. Specifically, they informed us that they wanted to know if 

the risk of equities was the same for investors with different investment horizons. And if the risk of 

equities differed between investment horizons, how would this affect the optimal portfolio for investors 

with differing risk preferences? After an initial meeting with Nordea, together with an overview of the 

topic, we became aware of the extensive academic debate and its lack of consensus. Once we understood 

the difficulty in providing meaningful additions in the form of mathematical proof for or against time 

diversification, as well as the limited practical use of a purely theoretical application, we decided on 

applying a relatively practical approach. Our primary goal has been to produce results that are valuable to a 

market practitioner such as Nordea. 

We apply an optimal portfolio approach in order to achieve this goal. Optimal portfolios are created 

based on a dataset consisting of historical returns for a number of asset classes. The data set was made 

available to us by Nordea and includes the following U.S. data for the years 1802–2016: annual returns for 

stocks, Treasury Bills, Treasury Bonds, gold and the consumer price index. Using genetic optimization, we 

derive optimal portfolios using overlapping time periods, for different investment horizons, in the data set 

in order to see if the allocation to equity changes. The portfolios are derived using a value at risk (VaR) 

method as well as an expected utility framework. The VaR framework chooses the allocation to equity in 

the beginning of the time period that maximizes wealth at the end of the time period, while avoiding 

returns lower than a defined target, with a specified probability. The expected utility method chooses the 

start-of-period equity allocation that maximizes the end-of-period utility, which is a function of the end-

of-period wealth. 

Even though this paper is skewed towards a practitioner approach, it provides input to the academic 

debate by relaxing or violation the three assumptions by Samuelson (1969). We test and find that there is 

mean reversion in our dataset of equity real return data, thus violating Samuelson’s second assumption. By 

applying a VaR framework to this dataset, we violate both the first and second assumption. By using the 

VaR approach, we find that the optimal equity allocation increases with investment horizon. The paper 

also applies a CRRA utility function in line with Samuelson’s first assumption and find that the optimal 

equity allocation is higher for investors with longer investment horizons. Even when we relax the second 

assumption by extending the utility function, so that the function exhibits decreasing relative risk aversion 

(DRRA) and increasing relative risk aversion (IRRA), we find that the optimal allocation to stocks 

increases with time. The third assumption is violated when we introduce a fixed non-financial asset. The 

introduction of this asset leads to more aggressive equity allocation, ceteris paribus. The framework still 

exhibits time diversification with the optimal equity allocation increasing with time. Furthermore, the 

                                                           
4 Since Bennyhoff (2008) is from a number of years back, it is worth noting that the prevailing philosophy among professional 
asset managers is the same today. For a more thorough view, see J.P. Morgan (2017). 



6 

paper finds that a time diversification strategy is resistant to future decreases in the equity risk premium 

(ERP), and that the time diversification effect is still prevalent when limiting the analysis to more recent 

return data. Lastly, anomalies in the form of kinks, displayed in our primary optimal allocation outputs, 

seem to be randomly distributed among investment horizons and can be explained by a limited number of 

time periods in which equities greatly underperform relative to Bonds and Bills. 

This paper is organized as follows. Section 2 consists of a literature review which contains an overview 

of Markowitz’s modern portfolio theory, a description of Samuelson’s three assumptions, a section 

including fundamental utility theory, and an outline of the relevant academic papers in the time 

diversification debate. Section 3 contains the theoretical framework where we present our application of 

autoregressive models (AR), the formal framework and optimization procedure for the VaR and expected 

utility approach, as well as our use of genetic optimization. Section 4 presents an overview and evaluation 

of our data set. Section 5 covers the results of our paper, primarily the outputs showing the optimal 

allocation for the VaR and expected utility framework, but also outputs depicting the effect of introducing 

a non-financial asset as well as the time diversification effect when using a restricted version of our data 

set. Section 6 includes the conclusion and discussion in which we validate our results and discuss the 

validity of Samuelson’s three assumptions.  
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2. Literature review 
The time diversification literature treats the question of whether an investor’s investment horizon should 

have an influence on his or her portfolio allocation, specifically with respect to the allocation of risky 

assets. Time diversification is summed up by Dorsett and Reichstein (1995) in the following two tenets: 

 The longer the investment horizon, the greater should the allocation of stocks and other high-

return assets be in the portfolio. 

 In the long run, one can essentially be certain that a portfolio consisting of high-risk assets will 

outperform a portfolio consisting of low-risk assets. 

In this section, we recap Harry Markowitz’s single-period modern portfolio theory and introduce a multi-

period setting. We present Paul Samuelson’s theoretical proof that investors should not alter their 

allocation of risky assets as a result of time horizon, and the three assumptions on which this is based. 

Proceeding from these assumptions we provide an outline of fundamental utility theory due to its central 

role in this paper. Lastly we present the two strands of literature into which we have chosen to divide the 

papers, the theorist and the practitioner strand (papers belonging to different sections are not mutually 

exclusive). The literature that is represented in the theorist section mainly concerns the debate 

surrounding risk preferences. The theoretical strand is primarily represented by Samuelson (1963, 1969, 

1971, 1989 and 1994) and Kritzman (1992, 1994 and 1998). The literature in the practitioner section uses 

historical data to estimate future returns, and combines this with plausible and practical expected utility 

functions to create ideal portfolios. The main proponents of this view are Siegel (2014), Thorley (1995), 

and Hanna and Chen (1997). 

2.1 Markowitz’s modern portfolio theory 

Before we explore time diversification in more detail, we should first establish the subject in the field of 

finance. One of the most seminal theories in finance is the modern portfolio theory (MTP) by Harry 

Markowitz.5 

Markowitz (1952) adopted the rule that an investor considers expected return a desirable thing and 

variance of return (a proxy for risk) an undesirable thing. Starting from these rules, Markowitz (1952) 

created a parametric optimization model that could be generally applied while at the same time being 

simple enough for theoretical analysis and numerical solutions. According to the model, an asset’s risk and 

return should not be evaluated in a vacuum but as part of a portfolio consisting of several different assets.  

Formally, a portfolio, 𝑝, is said to be mean-variance efficient, i.e. is considered a superior portfolio, if it 

has a higher expected return than any other portfolio, 𝑞 – choosing from a universe consisting of the 

same assets – with the same variance of return, that is, 

 𝐸[𝑅𝑝] >  𝐸[𝑅𝑞] 𝑤ℎ𝑒𝑟𝑒 𝜎𝑝
2 = 𝜎𝑞

2. (1) 

                                                           
5 In order to highlight the importance of MTP, we should add that the Swedish Adademy of Sciences said – when awarding 
Markowitz the Nobel Price in 1990 – that “Markowitz's work on portfolio theory may be regarded as having established financial 
micro analysis as a respectable research area in economic analysis”. 
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Or equivalently it can have a lower variance of return for the same level of expected return, assuming the 

same available set of assets: 

 𝜎𝑝
2 < 𝜎𝑞

2 𝑤ℎ𝑒𝑟𝑒 𝐸[𝑅𝑝] =  𝐸[𝑅𝑞]. (2) 

Equation 3 and 4 below depicts expected return and return variance for the portfolio, 𝑝, of 𝑛 assets, 

and are derived as follows: 

 𝐸[𝑅𝑝] = 𝑤′𝑅, (3) 

 𝜎𝑝
2 = 𝑤′∑𝑤. (4) 

In the above equations, 𝑤′ and 𝑤 represent, respectively, the row and column vectors of the portfolio 

weights of 𝑛 assets, while R denotes the vector of expected returns for 𝑛 assets, and ∑ represents the 

matrix of variances and covariances between the 𝑛 assets. 

Despite its theoretical importance, the MTP by Markowitz (1952) has been criticised in literature. The 

critique focuses on the assumptions of MTP; of these assumptions, the one that is most relevant to this 

literature review is the single-period assumption. The single-period assumption in MPT implicitly relies on 

two points, the first one is that assets are to be held for one period, and the second one is that the 

optimization procedure only needs to be performed once, since it is based on a single, static estimation of 

the inputs, i.e. the variables expected return and return variance in equation 3 and 4.6 

However, in reality most assets are held for multiple periods and investors treat portfolio decisions as 

repetitious. Detemple (1986) seeks to further understand asset prices by relaxing the assumption that 

investors observe the state of the economy, i.e. have perfect information. Detemple (1986) points out that 

in MPT, observed state variables in the economy affect the parameters expected return and return 

variance in equation 3 and 4. This implies a continuous change in the two main parameters in MTP, and 

subsequently a deformation of the opportunity set over time.  

Brennan (1997) builds on the work by Detemple (1986) by showing that the effect of potential future 

learning about return and mean variance parameters increases with the degree of uncertainty over the 

parameter as well as with the investment horizon. The effect of the agent knowing that he or she will be 

able to learn more about the stated parameters induces the agent to invest more or less in the risky assets. 

Brennan (1997) shows that this uncertainty has a significant effect on the investment decisions for an 

investor with a 20-year horizon. Detemple (1986) and Brennan (1997) show that MTP’s single-period 

assumption stands in contrast to the realities of investing. 

2.2 Samuelson’s three assumptions 

When introducing multiple periods, is it then safe to say that the time diversification tenets in the 

beginning of this section are true? Can we decrease the relatively higher risk inherent in equities by 

investing over longer time periods? 

In one of his fundamental papers, Samuelson (1963) shows that even though risk is reduced by 

subdividing (a practice familiar to an insurance company) it is not reduced by increasing the number of 

                                                           
6 Formal framework is the same as in Bianchi et al. (2016) (p. 16). 
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periods. Samuelson (1963) exemplifies this by telling a story in which he offered one of his colleagues a 

favourable coin toss. Samuelson (1963) tells his colleague that he will pay $200 in the event the colleague 

wins, while the colleague only has to pay $100 if Samuelson wins. The colleague answered that he would 

not accept the gamble since he would feel the loss more than the gain (even though the expected value of 

the coin toss was positive). However, Samuelson’s colleague added that he would take the bet if he were 

promised 100 such coin tosses. The colleague’s supposed rationale being that 100 tosses, contrary to a 

single toss, would lead to a more favourable outcome on his part. Specifically, the colleague’s intuition was 

based on a loose application of Bernoulli’s Law of Large Numbers; he believed that if the number of 

tosses approached infinity, the probability of winning would essentially be one. Samuelson (1963) clarifies 

this misinterpretation of Bernoulli’s Law of Large Numbers by pointing out the law refers to averages and 

not sums. As the gamble is repeated, the distribution of potential outcomes spreads. According to 

Samuelson (1963), if a person would always refuse to take favourable odds on a single gamble, one must 

rationally refuse to participate in any finite sequence of such gambles.7 

In one of his seminal papers, Samuelson (1969) focused on the essential dichotomy of the time 

diversification debate, which Merill and Thorley (1997) phrased as such: “The objective in the time 

diversification debate is to compare risk at different time horizons (p. 62).”8 Samuelson (1969) 

incorporates expected utility theory in order to convincingly show that investors should not change their 

exposure to risky assets on the basis of time horizon. 

Samuelson’s conclusions are based on the following three assumptions: 

1. Investors have constant relative risk aversion (CRRA), which means that their percentage 

exposure to risky assets is independent of their wealth. 

2. Investment returns are independently and identically distributed (IID), i.e. they follow a 

random walk and do not exert mean reversion. 

3. Wealth is only a function of returns from financial assets; the wealth attributed to returns from 

human capital and non-financial assets equals to zero. 

If these three vital assumptions hold, it follows mathematically that Samuelson’s result is true and time 

diversification is hence a fallacy. Due to this, the majority of the academic stream of literature surrounding 

time diversification bring up – often in the form of challenging – one, two or all of these three 

assumptions. 

                                                           
7 Samuelson (1963) precedes what today is the core of the time diversification debate. The paper is central, primarily in the sense 
that it is quoted in many other papers in the time diversification literature. This is mainly because a number of scholars mistakenly 
refer to Samuelson (1963) when they write about the birth of the time diversification debate, while the debate actually stems from 
Samuelson (1969). Samuelson (1963) is also significant because it in some ways serve as a precursor for Samuelson (1969). 
8 This quote is included to highlight an opaque difference between Samuelson (1963) and Samuelson (1969), i.e. the fact that the 
time diversification debate is about the relative risks of horizons with different length, as opposed to comparative performance of 
strategies of the same horizon, but with different investment frequencies. 
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2.3 Fundamental utility theory 

Since expected utility theory is a central component in the time diversification debate – and consequently 

central to this paper – this section is included to outline the relevant central parts of utility theory.9 

In one of his classical papers, Bernoulli (1738) stated that “the determination of the value of an item 

must not be based on its price, but rather on the utility it yields. The price of an item is dependent only on 

the thing itself and is equal for everyone; the utility, however, is dependent on the particular circumstances 

of the person making the estimate. Thus, there is no doubt that a gain of one thousand ducats is more 

significant to a pauper than to a rich man though both gain the same amount (p. 24).” Stated differently, 

Bernoulli (1738) claims that it is evident that no valid measurement of risk can be acquired without taking 

its utility into consideration.  

Kritzman (1992) expands on Bernoulli’s notion of utility, which by today’s economists is referred to as 

diminishing marginal utility. Technically, Bernoulli’s notion of utility, which has profound implications for 

the theory of risk and investment decisions, assumed that the first derivative of utility with respect to 

wealth is positive and the second derivative with respect to wealth is negative. Formally, this is expressed 

 𝑈′(𝑊) > 0, 𝑈′′(𝑊) < 0, (5) 

where 𝑈 is utility and 𝑊 is wealth. 

From this assumption of diminishing marginal utility, it follows that an individual will reject what is 

known as a fair game, i.e. a game where the expected value is zero.10 This phenomenon, what today is 

referred to as risk aversion, was by Bernoulli (1738) described as “Nature’s admonition to avoid the dice 

altogether”. 

However, even though Kritzman (1992) concludes that Bernoulli’s view of utility is plausible, he states 

that one cannot conclude that it describes all agents’ attitude toward risk. The insights of Bernoulli (1738) 

have been generalized into a complete theory of risk preferences. Primarily, economists distinguish 

between those who are risk-averse (will reject a fair game), risk neutral (will be indifferent to accepting a 

fair game) and risk-loving (will seek out a fair game). Kritzman (1992) highlights the distinction between 

the absolute amount of an investor’s wealth invested in a risky asset versus the percentage of an investor’s 

wealth invested in a risky asset. The amount or percentage of wealth can be a function that is decreasing, 

staying constant or increasing with wealth. 

Table 1 – Risk aversion11 

 Absolute Relative 

Decreasing Increase Risky Amount Increase Risky Percentage 

Constant Maintain Risky Amount Maintain Risky Percentage 

Increasing Decrease Risky Amount Decrease Risky Percentage 

                                                           
9 The content of this section might be seen as less complicated to some readers, but it is nonetheless included due to the fact that 
the same concepts can be seen as nebulous by other readers. 
10 It is worth pointing out that Samuelson’s colleague could be assumed to have a utility function similar to the one described by 
Bernoulli (1738) since he would not accept a gamble where the expected value was well in the positive. 
11 Table 1 is a reproduction of table II (p. 19) in Kritzman (1992). 
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Table 1 provides an overview of the risk aversions described by Kritzman (1992). As shown in table 1, 

a CRRA utility function – the function referred to in Samuelson’s first assumption – results in the 

percentage allocation to equities being independent of wealth.  

2.4 The theorist strand 

The papers belonging to this strand tend to make use of simulated return data rather than historical. The 

papers generally dismiss the notion of time diversification. However, the dismissal of time diversification 

is dependent on Samuelson’s first and second assumption. The main focus lies on the importance and 

viability of Samuelson’s first assumption. Specifically, there exists a discussion as to whether CRRA is the 

most plausible risk preference of the average agent. Samuelson’s third assumption, that wealth is only a 

function of returns from financial assets, are relaxed by some, but most of the authors take it as a 

necessary assumption to investigate the topic. 

How important is the first assumption made by Samuelson (1969), i.e. that investors exhibit CRRA? 

Would one be able to show that asset allocation is insensitive to investment horizon by only relying on 

Samuelson’s other two assumptions? Readers of Samuelson (1969) got these questions answered as soon 

as they read the following article in the same journal, which was a companion paper by Merton (1969). In 

this paper, Merton (1969) derives the optimal equations for a multi-asset problem with a particular case of 

a two-asset (a risk-free and a risky asset) model while using a CRRA utility function. This results in a 

confirmation of Samuelson’s finding of a constant percentage allocation to the risky assets. However, 

Merton (1969) extends his analysis by deriving an explicit solution for the case of constant absolute risk 

aversion (CARA). From this extension, Merton (1969) states the following: “As one becomes wealthier, 

the proportion of his wealth invested in the risky asset falls (p. 256).” Consequently, as wealth reaches 

infinity the investor invests all his or her wealth in the risk-free asset. By relaxing the first of Samuelson’s 

three assumptions, Merton (1969) is able to show that the investment horizon, since the expected return is 

positive, affects the asset allocation. 

The proof against time diversification provided by Samuelson (1969) is hence reliant on his first 

assumption of utility exhibiting CRRA. A natural question is then if there is consensus around whether 

CRRA best describes the utility function of the typical investor. Merton (1969) states that he finds CARA 

less plausible from a behavioural perspective than CRRA. Due to this he applies his derivation of the 

CARA utility function as an extension he does not put much weight into. However, Thorley (1995) claims 

that a decreasing relative risk aversion (DRRA) utility function best captures rational investor preferences 

over different investment horizons. 

There is also a discussion as to whether the utility function of the average agent is continuous or not. 

Samuelson (1989) highlights a situation in which the agent has a discontinuous utility function since he or 

she requires a minimum level of wealth in order to maintain a certain subsistence level. Kritzman (1994) 

expands on this by explaining that the agent’s lifestyle might be drastically affected were he or she to fall 

below this minimum level of wealth, while further reductions would be less meaningful. Gollier (2001) 

also finds proof of discontinuity in the form of increased risk aversion with the introduction of liquidity 

constraints. In some ways similar to a discontinuous utility function, Panyagometh (2011) uses a value at 
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risk (VaR) approach together with bootstrapping simulation from empirical data. Using a VaR approach, 

his results indicate that the risk of losing wealth decreases as the investment period increases, and that the 

investor should therefore increase his or her allocation to equities as the time horizon lengthens. 

The fact that Samuelson’s first assumption is examined and often criticised in the literature has led to 

authors taking a step back and evaluating the debate itself. Kritzman and Rich (1998) discuss the meaning 

of risk and point out that even though it is a fact that the probability of loss falls with time for assets with 

a positive expected return, the question of whether risk increases or decreases with time has to do with the 

agent’s perception of risk. This is due to the fact that the distribution of terminal wealth increases with 

time, thus increasing the potential size of losses. An investor with a continuous utility function will 

experience considerable disutility for all levels of such a potential loss, while an investor with a 

discontinuous utility function (as in the case of VaR as a risk measure) would be less affected once the 

losses passes a certain level. Kritzman and Rich (1998) state that “the truth is that risk has no universal 

definition; rather, like beauty, it is in the eye of the beholder. Unfortunately, for many the time 

diversification debate has degenerated into a referendum on the meaning of risk, which is futile. For 

others, it is a debate about mathematical truth, which is absurd (p. 67).”12 

Stangeland and Turtle (1999) review the discussion surrounding utility functions and state that there is 

little value in debating the merits of time diversification for the typical investor unless an agreed upon 

definition of the typical investor exists. In order to mitigate this problem, Stangeland and Turtle (1999) 

apply an extended power utility function which allows them to take preference variability into account.13 

Through their binomial tree simulation, they show that time diversification is affected by the agent’s risk 

preferences as well as the return process of risky assets. Stangeland and Turtle (1999) also claim that apart 

from risk preference and return process, there are externalities which are essential when it comes to stating 

the presence of time diversification: (1) the ability of the agent to change his or her work habits, (2) the 

frequency of required withdrawal from the agent’s portfolio, (3) the existence of a non-tradable asset, e.g. 

human capital, and (4) the potential for changes of the agent’s investment knowledge over time.14 

Kritzman and Rich (1998) provide an extensive overview of how the allocation of risky assets is 

dependent on risk preference, i.e. utility function, and return process of the risky asset. Kritzman and Rich 

(1998) show that for an investor with log wealth utility, the indifference between a safe and a risky asset of 

equal expected utility persists, irrespective of the length of the investment horizon. This result is not 

limited to agents with log wealth utility functions, but to all agents who have utility functions exhibiting 

CRRA, given that returns of the risky asset follow a random walk. Furthermore, Kritzman and Rich 

(1998) look at the square root utility function and the power utility function; they find that the square root 

function is less risk-averse than log wealth, while the power utility function implies higher risk aversion 

than log wealth. They also test with quadratic utility as well as combination utility to conclude that both 

these utility functions result in a non-constant risky asset allocation over time when the risky asset return 

                                                           
12 A summary of different definitions of risk can be found in exhibit 1 in Kritzman and Rich (1998) (p. 67). 
13 The extended power utility function in question can be found in Stangeland and Turtle (1999) (p. 2). 
14 A more comprehensive description of these factors, specifically with respect to the effect on the weight of equities resulting 
from a change in one of these factors, ceteris paribus, can be found in table 2 (p. 9) in Stangeland and Turtle (1999). 
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process exhibits a random walk. In the case of a random walk process, equity allocation decreases with the 

number of time periods for agents with quadratic utility, while agents with combination utility increases 

equity allocation with the number of time periods. A summary of these results can be found in table 2. 

Table 2 – The impact of preferences and return characteristics on time diversification15 

Utility Specification 

Absolute 

Risk 

Aversion 

Relative 

Risk 

Aversion 

Impact of Time on Equity Allocation 

Random 

Walk 

Mean 

Reversion 

Mean 

Aversion 

Log Utility = ln(𝑊𝑒𝑎𝑙𝑡ℎ) Decreasing Constant 
Hold 

Constant 

Hold 

Constant 

Hold 

Constant 

Square Root Utility =

(𝑊𝑒𝑎𝑙𝑡ℎ)1/2 
Decreasing Constant 

Hold 

Constant 
Decrease Increase 

Power Utility =  −1/𝑊𝑒𝑎𝑙𝑡ℎ Decreasing Constant 
Hold 

Constant 
Increase Decrease 

Quadratic Utility = 25 ×

𝑊𝑒𝑎𝑙𝑡ℎ + 0.1 × 𝑊𝑒𝑎𝑙𝑡ℎ2 
Increasing Increasing Decrease Decrease Decrease 

Combination Utility =
1

𝑊𝑒𝑎𝑙𝑡ℎ
+

ln (𝑊𝑒𝑎𝑙𝑡ℎ) 

Decreasing Decreasing Increase Decrease Increase 

Other scholars and other papers, e.g. Kritzman (1994), Levy and Spector (1996), Van Eaton and 

Conover (1998) as well as Samuelson (1971 and 1994) acknowledge that the optimal allocation of the risky 

asset over time depends on the utility function, and that their findings might not hold with alternative 

utility functions. As early as the 1950s, Roy (1952) pointed to this weakness of the utility function 

approach, saying that “in calling in a utility function to our aid, an appearance of generality is achieved at 

the cost of a loss of practical significance and applicability in our results (p. 433)”. 

Views and criticisms surrounding Samuelson’s first and to a lesser extent second assumption are found 

in several papers in the theoretical strand of literature. The third assumption, that wealth is a function only 

of returns from financial assets, is discussed less often. However, one notable exception to this is Pástor 

and Stambaugh (2012) who extend their formal framework to include labour income. Also, Bianchi, Drew 

and Walk (2014) highlight the fact that income from human capital and other factors of potential income 

are somewhat overlooked. Campbell and Viceira (2002) point out that it is unreasonable to assume that 

investors’ wealth only consists of financial assets, and that one should optimally take into account human 

capital as well as non-financial assets. The third externality highlighted by Stangeland and Turtle (1999), 

the existence of a non-tradable asset such as human capital, also challenges Samuelson’s third assumption. 

2.5 The practitioner strand 

The papers in this strand tend to use historical data to help model future returns. The papers generally 

find evidence of time diversification. Several authors find mean reversion characteristics in historical data, 

                                                           
15 Table 3 is a reproduction of exhibit 2 (p. 68) in Kritzman and Rich (1998). 
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thus violating Samuelson’s second assumption of IDD returns. Authors who create optimal portfolios 

tend to assume CRRA utility, mainly due to plausibility and convenience. One paper relaxes Samuelson’s 

third assumption. Our paper is more in line with the papers in this strand, hence the focus is more on the 

results of the papers rather than the overarching debate. 

One of the main advocates for a greater equity allocation for longer investment horizons is Siegel 

(2014).16 He states that when one looks at historical returns, it is clear that stocks have, on average, 

produced positive real returns in excess of both bonds and bills. Siegel (2014) finds, when looking at 

return data dating back to year 1802, that stocks, in contrast to bonds and bills, have never produced a 

negative real return for investment horizons lasting 17 years or more. Siegel (2014) also highlights the fact 

that bonds and bills are subject to inflation uncertainty. Since the introduction of fiat money without a 

conversion feature in combination with governments engaging in expansionary monetary policy, fixed 

income is no longer synonymous with fixed purchasing power. This is echoed by Bodie (1995) who points 

out that investing in bonds exposes the investor to inflation risk, as well as Cagan (1974) who finds that 

stocks have historically performed well relative to inflation. Siegel (2014) points to the fact that 

Samuelson’s second assumption, that risky asset returns are IID, does not hold for equities when 

observing historical data. Rather than being IID, equity returns have according to Siegel (2014) been 

characterized by mean reversion. 

Unlike Siegel (2014) who uses data from one country, Blanchett et al. (2013) use real returns of cash, 

bonds and stocks for 20 different countries in the DMS dataset which stretches from 1900 to 2012. Due 

to this Blanchett et al. (2013) are able to use 2,260 years of return data. Blanchett et al. (2013) find mean 

reversion in the data, thus violating Samuelson’s second assumption. They use optimal portfolios and find 

that the equity allocation tends to increase with investment horizon, and that time diversification does 

exist, or has at least existed historically. Blanchett et al. (2013) also find that optimal equity allocations for 

the United States (U.S.) have been relatively similar to the optimal equity allocations for the 20-country 

average. Another scholar who uses data from outside the U.S. is Panyagometh (2011) who runs his 

analysis using data from financial markets in Thailand together with a bootstrapping simulation.  

Butler and Domian (1991) use past return data (Ibbotson-Sinquefield stock and long-term Treasury 

bond indexes over the period 1926-1988) with an empirical resampling procedure to estimate the 

prevalence of time diversification in portfolio risk. Butler and Domian (1991) point out that estimation 

based on historical data is disadvantaged by the fact that the number of observations, at least in their case, 

is limited. They also admit that returns and risk premiums do not appear to be constant over time, hence 

extrapolations from the data must be analysed in combination with knowledge of current market 

conditions. However, despite these factors, Butler and Domian (1991) claim that historical asset returns 

represent an objective foundation on which to base forecasts on future investment performance, 

especially forecasts for longer horizons. Using the past data at their disposal, Butler and Domian (1991) 

find that the chance of earning less on the stock index than the long-term Treasury bond index tend to fall 

                                                           
16 The references in this paper refers to the fifth edition of Stocks for the Long Run, however Jeremy Siegel has pushed the same 
pro time diversification thesis since the first edition of the same book was published in 1994. 
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with the investment horizon. Specifically, they find that there is a 5% chance of earning less on the stock 

index than the long-term Treasury bond index when investing over a 20-year horizon. 

Barberis (2000) examines how investors with long horizons should alter their allocation to risky assets 

when predictability in asset returns is introduced. Barberis (2000) finds that even after taking uncertainty 

about model parameters, mean return and return variance, into account, there is still enough predictability 

in asset returns to make long-horizon investors allocate more to equities. According to Barberis (2000), all 

but the most risk-averse investors should allocate 100 percent of their optimal portfolio to equities if their 

investment horizon is 10 years or more. Barberis (2000) use data spanning from June 1952 through 

December 1995; a value-weighted index of stocks in combination with returns from U.S. Treasury bills. 

Hansson and Persson (2000) use a bootstrap approach to investigate whether the weights for bills and 

equities vary with time horizon in an optimal portfolio. They use monthly data for US stocks and US 

Treasury bills from 1900 to 1997. Hansson and Persson (2000) conclude that their evidence supports the 

existence of time diversification, the equity weights in their efficient portfolios are slightly higher for 

longer than for shorter horizons. 

Dolvin et al. (2010) suggest that financial planners consider a 100 percent allocation to equities for 

their clients for investment horizons stretching 10 years to more. When less than 10 years is left until 

retirement a more conservative allocation is preferred. Dolin et al. (2010) use annual returns starting in 

1926 and then apply a simulation method to review potential future results. 

Lebowitz and Kogelman (1991) focus on the balance between equity, which they use as a proxy for all 

risky assets, and risk-free assets. They measure downside risk by fulfilling what they refer to as a shortfall 

constraint. This shortfall constraint is similar to a discontinuous utility function and a VaR approach, e.g. 

there must be a probability of 5% or less that returns fall below 2% over a one-year horizon. This shortfall 

constraint is then related to a minimum return threshold. Lebowitz and Kogelman (1991) then combine 

the allowed probability and the corresponding minimum return with investment horizon. The result of 

their model shows them that when investing for a relatively shorter horizon, the volatility inherent in 

equities creates a high probability of poor returns. However, when they increase the investment horizon 

they find that there is sufficient time to capture the equity risk premium. Hence, Lebowitz and Kogelman 

(1991) find that the allocation to risky assets should increase with time horizon. 

Thorley (1995) is one of few authors in this strand to bring up Samuelson’s third assumption. Thorley 

(1995) uses historical S&P 500 return data from 1947 to 1993 (Ibbotson Associates data) in combination 

with a CRRA utility function to find that the historical mean reversion phenomenon ends at a four-year 

horizon. Thorley (1995) points out that these results stand in contrast to conventional wisdom of mean 

reversion of returns for very long horizons such as 20 years. Thorley (1995) finds the most likely 

explanation to the break after four years to be the fact that Samuelson’s third assumption is unrealistic. 

According to Thorley (1995), expected utility theory, if applied only to the agent’s financial assets, may not 

be a very useful model of investment behaviour and preferences. 

Hanna and Chen (1997) are the only authors who relax Samuelson’s third assumption by adding a fixed 

non-financial asset to their optimization framework. They find that the inclusion of a fixed non-financial 

asset leads to a higher equity allocation. Hanna and Chen (1997) specifically examines risk tolerance and its 
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implications for investment portfolios. They conclude that even investors who possess a relatively high 

level of risk aversion should have portfolios with a large allocation to risky assets if their investment 

horizon is 20 years or more. Hanna and Chen (1997) make use of data obtained from Ibbotson Associates 

(1996), with real US returns from 1926 to 1995 for six categories of financial assets. In line with the 

conclusions by Siegel (2014), they find mean-reversion in equity returns, hence Samuelson’s second 

assumption is violated. They then calculate expected utility of all possible portfolios, using overlapping 

periods within the data set, for different investment horizons, and find that equity allocation is positively 

related to investment horizon.  
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3. Theoretical framework 
In this section, we explain and justify our choice of theoretical framework, and how the approach relates 

to a market practitioner such as Nordea. The section also touches on why the approach is important from 

an academic viewpoint, specifically with respect to Samuelson’s three assumptions. 

Our approach consists of creating optimal portfolios for different investment horizons using a value at 

risk (VaR) and an expected utility framework in combination with historical return data. We have chosen 

to use historical data, instead of simulated returns that are perfectly random, to ensure that our 

conclusions capture all the information inherent in the historical data set. The section also present our use 

of autoregressive models and genetic algorithms. 

3.1 Autoregressive model and information criteria 

The autoregressive (AR) model is a specific application of the linear regression model. It is mainly used to 

forecast future values of a single time series by regressing the time series value on its past values.17 Applied 

to stock returns, the 𝑝𝑡ℎ-order AR model takes the form of the following formal regression: 

 𝑅𝑡 = ∑ 𝛽𝑖 ∙

𝑝

𝑖=1

𝑅𝑡−𝑖 + 𝑒𝑡, (6) 

where 𝑅𝑡 denotes the stock returns at time 𝑡, 𝛽𝑖′𝑠 are estimated coefficients, and 𝑒𝑡 is the error term. 

We apply the model in equation 6 to stock returns in order to find evidence of historical mean 

reversion (alternatively momentum or neither). Negative estimated coefficients will indicate mean-

reversion because it means that stock returns are negatively related to past returns. If estimated 

coefficients are positive, it is a sign of momentum due to the fact that stock returns are positively related 

to past values. If mean reversion is found, it adds to the argument for time diversification due to low 

returns being followed by high returns and vice versa. Essentially, this tells us that the risk of stocks 

decreases over time since large deviations from the average return are relatively unlikely.  

When deciding on 𝑝, i.e. the number of time-lagged values to be included, we make use of an 

information criterion, specifically the Akaike information criteria (AIC). The AIC chooses the order 𝑝 

through a trade-off between the marginal benefit of including more lags to increase the goodness of fit 

and the marginal cost of the additional complexity added to the model. Having too few lagged variables 

increases the risk of missing important information contained in the omitted variables, and having too 

many increases the level of over-fitting, thus increasing the estimation error.18  

Formally, the AIC is defined as follows: 

 𝐴𝐼𝐶(𝑝) = 𝑙𝑛 (
𝑆𝑆𝑅(𝑝)

𝑇
) + (𝑝 + 1) ∗

2

𝑇
. (7) 

                                                           
17 Stock & Watson (2012) (p. 571). 
18 Stock & Watson (2012) (p. 584-586). 
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In equation 7 the 𝑆𝑆𝑅(𝑝) is the sum of squared residuals of the estimated 𝐴𝑅(𝑝), 𝑇 is the total number 

of periods, and 𝑝 is the number of lags used. The AIC gives us different values for different number of 

lags, the lower the AIC value the better is the specification in question according to the AIC.19 

In our application, we incorporate the recommendation of the AIC in making our decision regarding 

the amounts of lags in our AR model; this is mainly because we believe using the AIC constitutes a less 

parsimonious approach than simply relying our own intuition. 

3.2 Value at risk 

Value at risk (VaR) is a measure of the risk of investments. In this paper, we will focus on percentage 

VaR, which will hence be what we refer to when we write VaR. Simplified, VaR summarizes the worst 

percentage loss over a target horizon that will not be exceeded with a specific certainty. For example, a 

portfolio might have a one-year VaR of -10 percent at a 95 percent confidence level, this means that for 

an investment period of one year we can say with 95 percent certainty that the portfolio will not lose more 

than 10 percent of its initial value.20  

Similar to Panyagometh (2011), we use VaR as a risk measure in order to construct optimal portfolios. 

The main reason is because VaR is used by market practitioners such as Nordea’s Wealth Management. In 

turn, this is due to its pedagogic features, i.e. when using VaR it is relatively easy to explain the risk of a 

portfolio to a layman investor. VaR is also increasingly used since it is a risk measure that provides for an 

aggregate view of a portfolio’s risk. As a result of its usability and relative simplicity, regulators demand its 

use for better control of financial risks.21 Furthermore, regulators believe a risk measurement that is 

relatively easy to understand will serve to mitigate the degree of asymmetric information between the bank 

and the client in financial transactions.22 The general mathematical definition of VaR is the following (not 

corresponding to percentage VaR but depicts VaR for real values):23 

 𝑉𝑎𝑅𝛾(𝑊) = 𝑖𝑛𝑓 {𝑥 ∈ ℝ: 𝑃(𝑊 + 𝑥 < 0) ≤ 1 − 𝛾}. (8) 

In equation 8, VaR of the underlying 𝑊, with a confidence level 𝛾 ∈ (0,1), is equal to the infimum of 𝑥 

which is a member of the set of real numbers such that the probability of W + 𝑥 being less than 0 is equal 

to or less than 1 − 𝛾. 

This paper makes use of a type of historical VaR. As mentioned by Pérignon and Smith (2010), 

historical VaR is quite intuitive and easy to calculate on a portfolio level since it does not assume a 

particular parametric distribution of 𝑊. According to Pérignon and Smith (2010), historical VaR is the 

most popular VaR method in the world, as 73% of banks prefer to use historical VaR rather than 

alternative VaR methods. The downside of historical VaR is that the data needs to be gathered and 

available. Also, when one uses historical VaR it is important to keep in mind that there exists a risk of 

underestimating future variance since historical VaR assumes that distributions realized historically also 

                                                           
19 Stock & Watson (2012) (p. 575). 
20 Jorion (2006) (p. 8). 
21 Jorion (2006) (p. 9). 
22 Jorion (2006) (p. 10). 
23 A similar equation can be found in Artzner et al. (1998) (p. 13.). 
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will be realized in the future. For example, during times of crises, VaR measures tend to increase. 

Regardless of the potential downsides, we believe a form of historical VaR is most appropriate for our 

framework. This is because, as Pérignon and Smith (2010) mention, parametric VaR methods are hard for 

practitioners to implement in practice. Many banks deal with thousands of risk factors and therefore 

choose not to attempt to estimate time-varying volatilities and covariances for risk factors. A historical 

VaR measure is suitable for a practitioner approach. Nordea’s Wealth Management also uses a form of 

historical VaR. 

By applying VaR in our creation of optimal portfolios, and not a CRRA utility function, we are relaxing 

Samuelson’s first assumption. Despite the fact that the VaR approach is not explicitly a utility function, 

and is hence limited with respect to its contribution to the academic debate, it is something we believe is 

valuable to a market actor. 

3.2.1 VaR optimization method 

In our application, we optimize portfolios by maximizing expected terminal wealth over different 

investment horizons given specific constraints. Specifically, we decide the optimal initial allocation for the 

period from the standpoint of maximal wealth at the end of the period.  

We use overlapping periods rather than distinct. For example, for 10-year periods, instead of 

optimizing over 1981-1990 and 1991 to 2000 we optimize over 1981-1990, 1982-1991, 1983-1992 etc. The 

main reason for using overlapping rather than distinct periods is to gain more observations. Using 10-year 

periods we would only have 21 distinct periods compared to 206 overlapping periods. Also, when using 

distinct periods the choice of initial starting year can have a big impact on the results. The negative aspects 

of overlapping periods are made up of the correlation between the periods and the fact that it 

underweights the earliest and latest return periods. The correlation issue will make statistical claims less 

reliable. With regards to the underweighting, it is best explained with an example; the first and last year in 

the data set will only be used once in an optimization using investment periods of 10 years, while the 

middle periods in the same optimization will be used 10 times. This means that the results produced will 

be slightly biased towards the middle periods. We do not believe the underweighting will have any notable 

effect on our results, however, we acknowledge the correlation issue and that one should have it in mind 

when interpreting our results.24 

Formally, for a given VaR profile our optimization model is defined as follows: 

 𝑚𝑎𝑥
𝒘

𝐸[𝑊(𝒘)] =
∑ 𝑊𝑡(𝒘)𝑇

𝑡=1

𝑇
 (9) 

 𝑤ℎ𝑒𝑟𝑒 𝑊𝑡 = 𝒘 ∙ 𝒓𝑡
𝑇 (10) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖 = 1

𝑁

𝑖=1

, 0 ≤ 𝑤𝑖 ≤ 1, (11) 

                                                           
24 We are aware that the unusually large negative return resulting from the financial crisis of 2008 will be weighted relatively less 
for longer horizons. On the other hand, we note that 8 out of the 10 periods with the lowest stock returns are counted in full, 
including those relating to the great depression of 1931. 
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 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦[𝑊𝑡 > (1 − 𝑧)] ≥ 𝛾 (12) 

In equations 9 and 10, 𝑊𝑡 is the end of period wealth at time 𝑡, 𝒘 represents a vector of weights (𝑤𝑖) in 

the different asset classes while 𝒓𝑡
𝑇 denotes the transposed vector of returns for time 𝑡. 𝑇 represent the 

total number of overlapping rolling periods while 𝑁 corresponds to the number of asset classes. The 𝛾 

and z values are the confidence level and maximum loss percentage respectively for the specific VaR case. 

Equation 11 ensures that the weights of the asset classes must sum to one and that we are not allowed to 

short any of the assets, and equation 12 represents the VaR restriction.  

3.3 Utility functions 

Apart from using VaR as a tool when constructing optimal portfolios, we incorporate expected utility 

functions. Despite the issue of limited practical significance for some cases, i.e. no single utility function is 

applicable to all agents; expected utility has – ever since Bernoulli (1738) – been fundamental when 

determining the value of an asset. 

As highlighted by scholars such Kritzman and Rich (1998), Stangeland and Turtle (2001) and Kritzman 

(1992), the allocation of risky assets with respect to investment horizon is sensitive to the utility function. 

Due to this we optimize using different utility functions. One of these functions serve as our primary 

utility function, on which we run a number of tests. Other utility functions are used mainly in order to 

provide perspective to our primary specification. 

Our chosen primary utility function is a CRRA utility function, corresponding to the one used by 

Hanna and Chen (1997). We decided to use a CRRA utility function because we believe, in line with 

scholars such as Merton (1969) and Jane�̌�ek (2004), that CRRA is the most general, and hence most 

reasonable, characteristic of a utility function when it comes to approximating real world agent behaviour. 

Formally, our primary utility function is the following:25 

 𝑈(𝑊) =
𝑊1−𝛼

1 − 𝛼
 ∀ 𝛼 ≠ 1, (13) 

 𝑈(𝑊) = 𝑙𝑛(𝑊) ∀ 𝛼 = 1. (14) 

Relative risk aversion (RRA) is defined mathematically as 𝑅(𝑊) = −𝑊𝑈′′ ∕ 𝑈′ which, when applied to 

equation 13 and 14, gives 

 𝑅𝑅𝐴(𝑊) = 𝛼. (15) 

In equation 13 and 14, 𝑊 represents total wealth while equation 15 confirms that 𝛼 represents the level of 

relative risk aversion.26 Alto note that when 𝛼 = 1, this utility functions is analogous to the log utility 

function in table 2. Choosing this framework enables us to test different levels of relative risk aversion. In 

turn, such a feature allows us to easily describe the effect investment horizon has on equity allocation for a 

number of different investors characterised by CRRA. According to Jane�̌�ek (2004), there is a relatively 

                                                           
25 A formula analogous to the one in equation 9 can be found in Hanna and Chen (1997) (p. 19). 
26 A derivation of equation 15 can be found in equation A1 to A8 in the appendix. 
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broad consensus around a level of relative risk aversion of between 2 and 10. Cagetti (2003) estimates that 

the coefficient of risk aversion is usually higher than three and quite often higher than four. 

Having introduced our primary CRRA utility function we are looking to compare it to utility functions 

that are characterised by DRRA and IRRA. We think these tests will be interesting since there is no 

consensus as to which one of these three measures is the “correct” one. As mentioned, Merton (1969) 

finds the CRRA to be the most plausible of the three, while Thorley (1995) claims that the observed 

behaviour of investors together with conventional wisdom suggests that the DRRA best captures 

preferences over different investment horizons for rational investors. When we asked Nordea, we were 

told that their clients tend to show a greater aversion to risk as their portfolio increased in value, i.e. that 

they are characterised by IRRA. 

In line with the contents of table 1, one should expect the DRRA function to produce equity 

allocations that are increasing with investment horizon, relative to CRRA. The opposite should be the case 

for IRRA: the equity allocation should in this case decrease with investment horizon, relative to CRRA. 

The utility function we use for this test is an extension of our primary utility function in equation 13, and 

similar to the utility function used by Thorley (1995).  

The utility function is the following:  

 𝑈(𝑊) =
(𝑊 − 𝜃)1−𝛼

1 − 𝛼
 ∀ 𝛼 ≠ 1. (16) 

 𝑈(𝑊) = 𝑙𝑛(𝑊 − 𝜃) ∀ 𝛼 = 1 (17) 

The function is the same as our primary function with the exception of the utility parameter 𝜃. Applying 

RRA in the same way as we did to equation 13 and 14 we get:27 

 𝑅𝑅𝐴(𝑊) =
𝛼

1 − (𝜃 𝑊⁄ )
. (18) 

As we can see from equation 18, 𝜃 is a parameter by which we can decide whether the agent has a 

utility function with CRRA, DRRA or IRRA. If 𝜃 = 0 then the utility functions in equation 16 and 17 are 

analogous to the utility functions in equation 13 and 14, respectively, which means that the agent is 

characterized by CRRA. If 𝜃 > 0, then the investor is characterized by DRRA, and if 𝜃 < 0 the investor 

has an IRRA utility function. It is worth noting that the utility function described by equation 16 and 17 

exhibit decreasing absolute risk aversion (DARA) with compatible levels of the parameter 𝜃. This means 

that when the agent becomes wealthier, he or she will invest a higher absolute amount in risky assets.28 

When optimizing utility functions with DRRA and IRRA we are relaxing Samuelson’s second 

assumption. 

3.3.1 Utility optimization method 

In our application, we optimize portfolios by maximizing expected utility, which is a function of wealth, 

over different investment horizons given specific constraints. Specifically, we decide the optimal initial 

                                                           
27 A derivation of equation 18 can be found in equation A9 to A18 in the appendix. 
28 A derivation of this result can be found in equations A19 to A22 in the appendix. 
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allocation for the period from the standpoint of maximal utility at the end of the period. As with the VaR 

optimization, we optimize using overlapping periods.29 

For a given investment horizon and level of risk aversion, our optimization model is formally defined 

as follows: 

 
𝑚𝑎𝑥

𝒘
𝐸[𝑈(𝒘)] =

∑
(𝑊𝑡 − 𝜃)1−𝛼

1 − 𝛼
𝑇
𝑡=1

𝑇
  

(19) 

 𝑤ℎ𝑒𝑟𝑒 𝑊𝑡 = 𝒘 ∙ 𝒓𝑡
𝑇 (20) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑡 = 1

𝑁

𝑖=1

, 0 ≤ 𝑤𝑖 ≤ 1 
(21) 

In the above equations 𝑊𝑡 is the end of period wealth for time 𝑡, 𝜃 is the parameter affecting the RRA 

characteristic, 𝛼 is the relative risk-aversion coefficient, 𝒘 represents a vector of weights (𝑤𝑖) in asset 

classes while 𝒓𝑡
𝑇 denotes the transposed vector of returns for time 𝑡. 𝑇 represent the number of 

overlapping rolling periods and 𝑁 corresponds to the number of asset classes. The restricting equation 20 

tells us that the weights of the assets all have to sum to one, and that we are not allowed to short any of 

the assets. The 𝜃 parameter takes on zero for the CRRA case, is positive for DRRA and negative for 

IRRA. 

3.4 Optimization and genetic algorithms 

In order to find optimal portfolios for our chosen frameworks and time horizons, we make use of 

optimization programs and algorithms. As for most optimization problems, we work with objective 

functions, general constraints, and bounds for the variables. Our primary challenge concerns the potential 

existence of local optima, which typically arise due to nonlinearity in either the objective function or the 

general constraints. The overall challenge for the optimization procedure is being able to distinguish 

between a local and a global optimum. Specifically, this is because the program or algorithm can recognise 

whether the obtained solution is optimal within a neighbouring set of solutions, i.e. a local optimum; but 

at the same time it is unable to recognise whether this optimum is the optimum of the optimums, i.e. the 

global optimum. 30 The existence of this challenge will be taken into account in our application. 

When tackling optimization, a straight forward method would be to use the Solver function in Excel. 

The nonlinear optimization program in Solver optimises by using Generalized Reduced Gradient (GRG) 

code.31 According to Lee et al. (2004), the GRG method has been proven to be a relatively precise and 

accurate method for solving nonlinear optimization problems.32 Like virtually all other optimization 

methods, the GRG can easily find a local optimum. This means that when Solver communicates to the 

user that it has found a solution, it means that the GRG code has found a local optimum - but not 

                                                           
29 The rationale for optimizing over overlapping periods rather than distinct can be found in section 3.2.1. 
30 Chinneck (2006) (ch. 16, p. 1). 
31 Frontline Systems (2017) (a). 
32 The basic concept of the GRG method is thoroughly explained in section 2 in Lee et al. (2004). 
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necessarily a global optimum.33 One popular method of mitigating this limitation is to initiate Solver using 

a number of different starting values. Such an approach would, after a number of tries, ideally make Solver 

hit all of the available local optima. The user would then choose the local optimum with the most 

desirable result, which in our case would be the highest expected utility or expected return, which would 

consequently be considered the global optimum. Apart from the limitation of local optima generally 

inherent in nonlinear programming, Solver also produces an output with very limited information about 

the optimization procedure. This is quite natural since Solver is in its core a product designed for an end 

user with a relatively basic degree of technological sophistication. Such a user will most likely not be 

negatively affected by the black box characteristic of Solver. 

For our application, we prefer not to rely on Solver, specifically due to the issues surrounding local 

optima, as well as the lack of control of, and insight into, the optimization procedure. Consequently, we 

have decided on using a programming procedure built on genetic algorithms. A genetic algorithm is an 

optimization technique inspired by natural selection, and it is used to solve a variety of complex 

optimization problems, including nonlinear ones.34 The approach was invented in the 1960s by John 

Holland, who has since written extensively about the topic.35  

In deciding on our optimization approach we have taken inspiration from Holland (1992) and Melanie 

(1998), who both provide various examples of genetic algorithms and their applications.36 Hence, the 

following five step model is not taken from a particular source but is a product of our own intuition 

together with information from the mentioned sources. The genetic algorithm method, applied to our 

optimization problem, works as follows: 

1. Begin by creating one portfolio for each asset class, made up of 100 percent of that specific asset 

class, i.e. one portfolio each for stocks, Bonds, Bills, gold, and cash.  Together these portfolios 

make up what we call the first generation of portfolios, each portfolio representing an individual. 

2. In the next step, pair the different individuals in order to produce an offspring. All possible 

pairwise combinations will be used, resulting in 10 new individuals (children). The new individuals 

consist of a random mix from each parent – e.g. 60 percent from one parent and 40 percent from 

the other.  

3. Next, a fitness function is applied, either the utility function or the expected return depending on 

the problem at hand, to evaluate the five parents plus the 10 offspring. The five best individuals 

survive and the rest are terminated. 

4. Step 2 and 3 are then replicated with the five surviving individuals serving as the new parents, i.e. 

the second generation of individuals. 

5. The process stop when a specified termination requirement is satisfied. Our termination 

requirement is that the process has to reach 100 generations, after which it stops. 

                                                           
33 Frontline Systems (2017) (b). 
34 Melanie (1998) (p. 21). 
35 Melanie (1998) (p. 65). 
36 Another simpler approach can be found in Melanie (1998) (p. 103). 
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To improve the model and make it more reliable, a mutation tool is incorporated. Essentially, a 

mutation tool serves to prevent the model from getting stuck on a local optima.37 In or model, mutation 

plays a role in the second step when the pairing is done. Instead of simply pairing two parents, random 

mutation occurs. This means that for each asset class, there is a small random change (we have applied 

both a percentage mutation as well as a percentage point mutation). We terminate our model when the 

results clearly converge and does not change. We find that this happens after 50-100 generations.  

The genetic algorithm serves as an intuitive instrument for creating optimal portfolios. In essence, it 

starts off with the assumption that all asset classes are equally likely to be relevant, then continuously 

creates new portfolios in order to see if a better alternative can be found. The process is based on 

randomized numbers to create random combinations of the different portfolios, which is why a given 

procedure might produce different results, depending on the randomization. However, given an infinite 

amount of generations, the result from the process should in its limit reach the correct optimal portfolio. 

While an infinite number of generations is not possible in a practical sense, it is that exact idea of the limit 

that makes us use as many as 100 generations, even though the “best” portfolio might already be 

identified, which it in many cases is, after around 50 generations.  

Lastly, we find that the results produced by our genetic algorithm match the solutions provided by 

Excel’s solver for the first and often second decimal for the percentage allocation to stocks. The findings 

and conclusions we report in this paper are not sensitive to the second or even the first decimal of the 

percentage allocation, and hence Excel's solver and our genetic algorithm work to confirm each other. 

   

                                                           
37 Melanie (1998) (p. 129). 
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4. Data  
This paper uses a data set consisting of historical market returns originally obtained by Jeremy Siegel 

(2016).38 Returns for the most previous years, 2014-2016, have been retrieved from Thomson’s 

Datastream. The complete data set is made up of U.S. market data for the years 1802-2016, which makes 

it one of the most extensive sets of market data with respect to the U.S. The data set consists of nominal 

return data for stocks, Treasury bonds, Treasury bills and gold. The stock returns cover publicly listed 

firms and take survivorship bias into account, i.e. the returns also cover firms that have disappeared 

during the time period. Siegel (2014) points out that certain early historical values are unavailable and that 

these have been adjusted for accordingly. For example, Treasury bonds have been unavailable for some of 

the early periods, in those cases high-grade municipality bonds, for which default premiums have been 

estimated and removed, have been used as proxies. The change in the consumer price index (CPI) is also 

included for the entire period. Using the CPI, we converted the nominal returns into real returns and 

constructed return data for cash. The average annual inflation in our data for the full period has been 1.56 

percent. A summary of the real return data can be found in table 3. 

Table 3 – Summary statistics of real returns, 1802-2016 

 Stocks Bills Bonds Gold Cash 

Mean 8.31% 2.82% 3.90% 1.27% -1.23% 

Std.dev 18.08% 5.92% 8.77% 13.29% 5.45% 

Median 7.69% 2.54% 3.88% 0% -1.21% 

Maximum 66.62% 23.68% 35.13% 99.94% 17.98% 

Minimum -38.57% -15.63% -21.86% -38.13% -21.28% 

Skewness 0.0849 0.2122 0.2689 2.8304 -0.1295 

Kurtosis 0.6201 2.1509 1.0554 17.473 2.4378 

The Siegel data set was made available to us by Nordea together with the expressed wish that we 

should use it. However, even if the data set would not have been supplied to us we would still have opted 

for a similar, if not the same, data set. This is mainly due to the fact that the data set includes a long time 

horizon which is extra valuable for our application. Essentially, time diversification analysis quite heavily 

relies on the potential existence of long term trends. Having a data set that includes most of financial 

history also enables us to detect possible paradigm shifts in the return structure of our chosen assets. The 

set is also preferable to us since U.S. market data, echoed by Bianchi et al. (2016), serves as a good proxy 

for aggregate international data. Bianchi et al. (2016) get similar results from using exclusively U.S. data as 

they do when using data from a 20-country average. We believe the positive aspects gained from a high 

degree of generality outweighs the negative aspects of not completely corresponding to an individual 

country such as Denmark. 

We find the data set to be both valid and credible. Partly because the data set is recognised and used by 

scholars, but also because Jeremy Siegel is professor at Massachusetts Institute of Technology (MIT) and a 

                                                           
38 Siegel (2016). 
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widely known financial economist. According to Siegel (2014) the data set has been constructed by 

merging data from different sources. The sources include Goetzmann-Ibbotson, the Cowles Foundation 

and the Center for Research in Security Prices. We find all of these sources to be credible on their own. 

Concerning our addition of data for 2014-2016, Thomson’s Datastream is a large acknowledged financial 

statistical database, and hence we consider it a reliable source of data.39 

  

                                                           
39 Access to Thomson Datastream was provided by the library at Copenhagen Business School. 
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5. Results 

5.1 Returns and risk measures over time and for different investment horizons 

We begin by graphing the historical real returns of asset classes in our data set. Observing figure 1 we can 

see that over the last two centuries the total real return on stocks dominate all other asset classes. If an 

agent invested $1 in stocks in the beginning of 1802, and continuously reinvested the capital gains and 

dividends, the $1 would have grown to $1,258,548 in real terms in 2016. If the same agent would, in the 

beginning of 1802, have invested his or her $1 in bonds, bills, gold or cash the $1 would in 2016 have had 

a real value of $1,756, $274, $3 and 0.05$ respectively. 

Figure 1 – Historical real returns for different asset classes 

 
The figure illustrates characteristics of U.S. data for the years 1802-2016. Logarithmic scale. Initial wealth is $1. Real returns are 

depicted. 

One reason for the superior historical performance of stocks in figure 1 is inflation risk. During the 

inflationary decades of the 1940s, 1950s, 1960s and 1970s, bonds had a negative real rate of return while 

stocks had positive real returns40. The restoration of price stability during the last decades has led to 

positive real return on bonds, and to a lesser extent bills.41 This is in line with Bodie (1995) and Siegel 

(2014) who highlight the exposure of bonds to inflation risk as well as Cagan (1974) who finds that stocks 

have performed well relative to inflation. 

Figure 1 give us an early indication that time diversification is prevalent and that an investor should 

invest all of his or her financial assets in equities if the investment horizon is sufficiently long. From an 

initial glance, the two time diversification tenets by Dorsett and Reichstein (1995) seem to be valid. 

However, Samuelson (1992), being aware of historical return data for stocks and other asset classes, points 

out that we only have one history of capitalism. He points out that inferences based on one sample must 

never be taken as a certainty, regardless of the size of the sample. However, despite Samuelson’s critique, 

scholars as well as market practitioners believe figure 1 provide a strong argument for time diversification. 

                                                           
40 Sowell (2014) (p. 567). 
41 Sowell (2014) (p. 568). 
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As a next step, after having observed the historical real returns, we would like to see if risk for different 

investment horizons also give an indication of time diversification. 

Figure 2 – Interval of real returns for different investment horizons. 

 
The figure illustrates the range of return outcomes for stocks, bonds and bills using U.S. data for the years 1802-2016. Results are 

shown for investment horizons of 1, 5, 10 and 20 years. 

Figure 2 depicts the range of the annualized real return for each asset based on holding period. For an 

investment horizon of one year, we can see that the highest and lowest real return on stocks are 

significantly further apart than the highest and lowest real return for bonds and bills. However, when we 

increase the investment horizon to five years the worst performance of stocks is almost the same as the 

worst performance of bonds and bills. Lengthening the investment horizon to 10 years, we can see that 

the worst performance of stocks is better than that of bonds and bills. For 20 years, the trend is even 

more dominant while all possible outcomes for stocks are above zero. 

Figure 2 stands in contrast to the notion that it is riskier for an investor to invest all of his or her 

financial wealth in stocks rather than bonds or bills for a long investment horizon. These results are in line 

with Lebowitz and Kogelman (1991) who find that the volatility inherent in equities are mitigated for long 

horizons. If an investor were looking to save for retirement while assuming that future returns of assets 

will look somewhat similar to the past, then it would, from looking at figure 2, seem rational for the 

investor to invest most or all of his or her financial assets in stocks. This strengthens the notion that the 

two time diversification tenets by Dorsett and Reichstein (1995) hold true. 

Having observed figure 2, we continue by taking a closer look at different risk measures for stocks and 

how these are affected by the investment horizon. 
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Table 4 – Risk measures of total stock returns for different investment horizons 

Years 1 2 3 4 5 10 15 20 

Mean 0.0831 0.1717 0.2625 0.3607 0.4647 1.0758 1.9861 3.2102 

Std.dev. 0.1809 0.2766 0.3461 0.4216 0.4917 0.8411 1.4282 2.0875 

Variance 0.0327 0.0765 0.1198 0.1778 0.2418 0.7074 2.0396 4.3577 

Range 1.0519 1.5189 1.9859 2.5430 2.7052 4.0900 6.5897 9.5896 

Best return 0.6662 0.9872 1.3852 1.9470 2.2634 3.7475 6.3580 9.8195 

Worst return -0.3857 -0.5317 -0.6007 -0.5960 -0.4418 -0.3424 -0.2317 0.2299 

Semideviation 0.1799 0.2551 0.3063 0.3697 0.4344 0.7100 1.1783 1.5679 

Table 4 includes mean, standard deviation, variance, range, best return, worst return, and semideviation 

for stock returns at different investment horizons. The mean return is included, even though it is not a 

risk measure in itself, because it serves as the primary reason for investing. Unsurprisingly, the mean 

return increases as the time horizon increases. The same is the case for the standard deviation and 

variance. The range of the best and worst return also increases as the time horizon grows. Semideviation, 

which is the standard deviation of all the observations that are below the mean, is not substantially 

different from the standard deviation for all observations. This tells us that the variation for outcomes 

below the mean are not much different from outcomes above the mean. 

Looking at the risk measures of total stock returns it is evident that these give a different picture than 

the one we get from looking at figure 1 and figure 2. However, the results from table 4 provide a 

misleading picture given that they express measures for the total returns rather than the annualized 

returns. Hence, we go on to look at the risk measures once again, however this time we look at the 

annualized returns. 

Table 5 – Risk measures of annualized stock returns for different investment horizons 

Years 1 2 3 4 5 10 15 20 

Mean 0.0831 0.0748 0.0716 0.0703 0.0695 0.0676 0.0681 0.0686 

Std.deviation 0.1809 0.1290 0.1000 0.0841 0.0732 0.0449 0.0346 0.0260 

Variance 0.0327 0.0166 0.0100 0.0071 0.0054 0.0020 0.0012 0.0007 

Range 1.0519 0.7254 0.5997 0.5130 0.3769 0.2096 0.1597 0.1160 

Best return 0.6662 0.4097 0.3361 0.3102 0.2669 0.1685 0.1423 0.1264 

Worst return -0.3857 -0.3157 -0.2636 -0.2028 -0.1101 -0.0411 -0.0174 0.0104 

Semideviation 0.1799 0.1286 0.1010 0.0863 0.0762 0.0468 0.0366 0.0275 

Table 5 comprises the same risk measures as table 4, with the exception that the measures are for 

annualized returns instead of total returns. The mean annualized stock return decreases slightly with time, 

due to the use of geometric averages. The standard deviation and subsequently the variance is more clearly 

affected as they decrease substantially with investment horizon. Additionally, the range between the best 

and the worst outcome decreases substantially with time, while the worst outcome at the same time 

improves with time to the point that it is in the positive, as also depicted in figure 2. As with the standard 

deviation, the semideviation decreases with the investment horizon. 
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The risk measures of annualized stock returns differ from the risk measures of total returns in the 

sense that they decrease significantly with the length of the investment horizon. Similarly to figure 1 and 

figure 2, this table support the notion of time diversification and is in line with the tenets by Dorsett and 

Reichstein (1995). 

5.2 Autocorrelation in stock returns 

Given the results in section 5.1, particularly the ones in figure 1, a natural next step is to test for mean 

reversion in stock returns. In order to test for mean reversion, we run an autoregressive (AR) model.42 

Initially we test with lags between 1 and 10 in order to check for notable patterns. When conducting these 

tests, we find that lag two and lag five are consistently significant on the five percent level while being 

negative. In all tests, lag 2 has the higher significance of the two, with a p-value lying steadily around 0.01. 

Lag 5 has a p-value slightly below 0.05. 

After reviewing the different AR specifications, we chose the model with five lags, i.e. the AR(5). We 

chose the AR(5) because it represented the best trade-off between the result from the Akaike information 

criteria (AIC) and our own intuition. Would we have relied fully on the recommendation given by the AIC 

we would have ended up with an AR model with two lags, while the second best model according to AIC 

is the AR(5). Opting for an AR model with two lags does not seem realistic since it would imply that the 

stock market recovers (relapse) within two years after a market downturn (upturn), whereas the AR(5) 

model allows for five years.43 In their analysis, Blanchett et al. (2013) also choose an AR(5) model. 

However, they admit that their selection of an AR(5) model is somewhat subjective. 

Table 6 – SAS results from AR(5) model 

Parameter Estimates 

Variable Estimate Standard Error t Value Pr > |t| 

Intercept 0.1197 0.0189 6.32 <0.0001 

Lag1 -0.0080 0.0693 -0.12 0.9082 

Lag2 -0.1850 0.0691 -2.68 0.0081 

Lag3 -0.0616 0.0702 -0.88 0.3807 

Lag4 -0.0454 0.0692 -0.66 0.5125 

Lag5 -0.1396 0.0690 -2.02 0.0444 

Ordinary Least Squares Estimates 

MSE 0.0319  DFE 204 

MAE 0.1364  Root MSE 0.1787 

MAPE 202.8130  AIC -121.3430 

ESS 0.3560  TSS 6.879 

SSE 6.5160  R-Square 0.0518 

Table 6 depict the results of an AR(5) model in SAS. We can see that all lags have a negative coefficient, 

and as mentioned previously, the second and fifth lag are significant on the five percent level. Negative 

                                                           
42 The AR model, AIC and our application is described in section 3.1. 
43 The SAS results for the AR(2) model can be found in table A1 in the appendix. 
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lags indicate mean reversion, and the fact that all lags, particularly the statistically significant ones, are 

negative, supports the notion of time diversification. To put it another way, extreme events smooth out 

over time because negative coefficients resulting in low returns tend to be followed by high returns and 

vice versa.  

The existence of mean reversion in stock returns goes against Samuelson’s second assumption, i.e. that 

stock returns are independently and identically distributed (IID). Since the second assumption is violated, 

is it then safe to claim that an investor should increase his or her allocation to equities as the investment 

horizon increases? According to Stangeland and Turtle (1999), if the return process of the asset exhibits 

mean reversion, a constant relative risk aversion (CRRA) investor should increase his or her exposure to 

risky assets with time. However, looking at table 2 by Kritzman and Rich (1998), an investor with log 

utility, i.e. with CRRA, should hold the exposure to risky assets constant with time. Additionally, we would 

like to know if the potential allocation recommendations from this return process could be compared to 

the VaR results obtained by Panyagometh (2011). We therefore go on to create optimal portfolios by 

using the historical data in combination with our value at risk (VaR) and expected utility frameworks. 

5.3 Optimal equity allocations using the VaR framework 

The first of our two primary specifications is the VaR specification.44 We chose to optimize our 

framework using different VaR levels, which are the same as the levels used by Nordea’s Wealth 

Management. The returns used in this analysis are nominal returns due to nature of the VaR. If we were to 

use real return data the pedagogical feature of the VaR approach would be mitigated. An investor would 

have to take inflation into account when deciding on the VaR limit. Furthermore, the standard approach is 

to use nominal returns when using VaR, for example, Nordea uses nominal returns. The VaR levels 

correspond to different investment profiles: -0 percent (conservative), -7.5 percent (moderate), -15 percent 

(balanced), -20 percent (growth) and -30 percent (return focus). 

                                                           
44 A description of our specification and the justification we have for using VaR as a risk measure can be found in section 3.2. 
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Figure 3 – Optimal stock allocations for different VaR-levels, 95 percent certainty 

 
Framework is optimized over investment horizons ranging from 1 to 10 years, with one-year increments. Five different VaR-

levels are used, -30 percent, -20 percent, -15 percent, -7.5 percent and 0 percent. Each graph depicts the optimal allocation for a 
specific VaR-level. Nominal returns are used.  

Figure 3 shows the optimal allocation to equities given different investment horizons and VaR-levels 

for a 95 percent level of certainty.45 Looking at the two least conservative investment profiles, the -20 

percent (growth) and -30 percent (return focus), we can see that our specification recommends a 100 

percent allocation to equities regardless of the length of the investment horizon.46 This makes us unable to 

see if there is a dime diversification aspect for these allocations, since equities are superior to all other 

assets from year one and onwards. For the three more conservative profiles, -0 percent (conservative), -7.5 

percent (moderate) and -15 percent (balanced), the specification recommends an increasing allocation to 

equites as the investment horizon increases.  

One factor that stands out is the downward kinks at the six-year horizon, which we do not expect to 

find assuming time diversification exists. We believe this can be caused by a few single years in the data 

set. With a 95 percent certainty level as in this case, a drop in the return during just a few years can have a 

significant adverse effect on the equity recommendation. Section 5.9 is devoted to look more into kinks in 

the output(s).  

Having looked at the output for a 95 percent certainty, we would like to know more about the equity 

allocation for a 99 percent certainty. With respect to the profiles for -20 percent (growth) and -30 percent 

                                                           
45 The optimization model used for the VaR profiles can be found in section 3.2.1. The full composition of the optimal portfolios 
can found in tables A3 to A7 in the appendix. 
46 The line for -30 percent (return focus) is excluded since it overlaps perfectly with the line for -20 percent (growth). 
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(return focus), we would like to see if these have a different intercept and if the recommended allocation 

will in such a case increase with the investment horizon. 

Figure 4 – Optimal stock allocations for different VaR-levels, 99 percent certainty 

 
Framework is optimized over investment horizons ranging from 1 to 10 years, with one-year increments. Five different VaR-

levels are used; -30 percent, -20 percent, -15 percent, -7.5 percent and 0 percent. Each graph depicts the optimal allocation for a 
specific VaR-level. Nominal returns are used. 

Observing figure 4, which shows the equity allocation for the same five investment profiles as the ones 

in figure 3, but with a 99 certainty, we can see that all the profiles have an optimal equity allocation of less 

than 100 percent for an investment period of one year. All the profiles also show an increased allocation 

to equity with investment horizon, which is to be expected after seeing the results in figure 3. For an 

investment horizon of 11 years, the framework recommends an equity allocation of 100 percent regardless 

of investment profile. 

Again, we see kinks in the graphs. Instead of the downward kink at an investment horizon of six years 

in figure 3, the allocations in figure 4 display an upward kink for an investment horizon of three years. As 

mentioned, we will look more closely into these kinks later in section 5.9. 

Having reviewed the optimal equity allocation for frameworks with a 95 percent and 99 percent 

certainty we would like to see the results of regressing optimal equity allocation on investment horizon. 
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Table 7 – Linear regressions for different levels of VaR 

99% confidence level 

VaR Adj. intercept Adj. slope 

0% -0.063947 0.1085 

-7.50% 0.2405 0.0799 

-15% 0.4566 0.0610 

-20% 0.6004 0.0429 

-30% 0.8144 0.0206 

95% confidence level 

VaR Adj. intercept Adj. slope 

0% 0.1607 0.1151 

-7.50% 0.5570 0.0724 

-15% 0.8733 0.0245 

-20% 1 0 

-30% 1 0 

90% confidence level 

VaR Adj. intercept Adj. slope 

0% 0.2494 0.1599 

-7.50% 0.7760 0.0671 

-15% 1 0 

-20% 1 0 

-30% 1 0 

Table 6 contains the adjusted intercept and the adjusted slope that best describe the equity allocation 

regressed on investment horizon. The adjustment indicates that the regressions are not created from using 

all observations, only the observations up until when the recommendation reaches 100 percent equities. 

Furthermore, adjusted intercepts refer to a one-year investment horizon instead of zero. Put differently, 

the intercept refers to the recommended allocation for a one-year horizon, and the slope refers to the 

suggested increase in equity allocation given an incremental increase of one year to the investment 

horizon. For each of the three confidence levels, the slope is positive regardless of VaR level. For the less 

conservative VaR levels for the 95 percent and 90 percent confidence levels, the recommendation is to 

have a 100 percent allocation to equities regardless of investment horizon.48  

It is also worth pointing out that the adjusted intercept does not exactly equal the one-year allocation 

depicted in figure 3 and figure 4. This is because the linear regressions are fitted approximations, i.e. 

providing a rule of thumb rather than an exact recommendation. When observing the adjusted 

regressions, it is important to note that these serve as rules of thumb rather than specific 

recommendations. This is because the inputs in the regressions should be uncorrelated, and this is not the 

                                                           
47 Given that we apply a framework where shorting is not allowed, a negative value refers to a zero percent allocation to stocks. 
48 The graphical output for 90 percent certainty can be found in figure A1 in the appendix. 
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case in this framework since the returns used to construct equity allocations for different investment 

horizons are the same. Also, the use of overlapping periods to obtain equity allocation adds further 

correlation. 

The increasing optimal equity allocation with investment horizon in figure 3, figure 4 and table 6 give 

us reason to believe that time diversification is prevalent, and that a market practitioner should 

recommend a higher equity allocation for long term investors than for short term investors. These results 

are similar to those by Panyagometh (2011), who used a VaR approach on data from Thailand. 

However, as Thorley (1995) points out, the chance of stocks providing a negative return decreases with 

investment horizon since the expected return of equities are positive. Thorley (1995) shows that this is 

true even when stock returns are IID, i.e. does not exert mean reversion. As mentioned previously in this 

paper, the VaR approach is similar to a discontinuous utility function, i.e. in the sense that the agent 

prioritizes not violating the specified VaR level above everything else. Given that the probability of 

obtaining a negative return from equities decreases with investment horizon, the presented VaR 

specification is biased towards equities. In general as well as compared to the expected utility framework. 

In other words, we would expect the resulting graphs from the VaR analysis to be upward sloping even 

without mean reversion in the data, although mean reversion should lead to more aggressive equity 

allocation, ceteris paribus. 

In order for us to be able to provide more reliable results surrounding the existence of time 

diversification, we move on to the expected utility framework. 
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5.4 Optimal equity allocations using the expected utility framework 
Figure 5 – Optimal stock allocation for different levels of risk aversion, CRRA utility 

 
Framework is optimized over investment horizons ranging from 1 to 20 years, with one-year increments. Five different risk 

coefficients are used; 1, 2, 4, 8, and 16. Each graph depict the optimal allocation for a specific level of risk aversion. Real returns 
are used. 

Figure 5 depicts the optimal equity allocation for different investment horizons for an investor 

characterized by a utility function with constant relative risk aversion (CRRA).49 Each of the graphs 

correspond to a different risk aversion coefficient (alpha), the higher the risk aversion coefficient the more 

risk averse is the investor. We chose to go with risk aversion coefficients of 1, 2, 4, 8, and 16 since these 

are in line with the coefficients used by Blanchett et al. (2013) as well as consistent with the coefficients 

estimated by Jane�̌�ek (2004) and Cagetti (2003).  

Looking at the figure we can see that the recommendation for an investor with an alpha of one is to 

allocate 100 percent of his or her portfolio to equities for all investment horizons. This result is in line 

with the predictions in table 2 by Kritzman and Rich (1998), that a log wealth investor should have a 

constant percentage allocation to equities irrespective of the investment horizon and the return process of 

the risky asset. Although, since the recommended allocation for one year is 100 percent equities we are 

unable to say if the allocation would have increased with investment horizon if the one-year allocation 

would have been less than 100 percent. Looking at the other risk profiles, it would for example be 

surprising if the recommendation for the log utility investor would been a constant 80 percent allocation 

to equites.  

                                                           
49 The utility function that is used is described by equation 13 and 14, while the optimization model for the expected utility 
framework is found in section 3.3.1. The full composition of the optimal portfolios can found in tables A8 to A12 in the 
appendix. 
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The graphs, with an alpha of 2, 4, 8 and 16, which depict the four other risk profiles all show an 

increasing allocation to equites as the investment horizon increases. Unsurprisingly, the more risk averse 

agents are recommended to allocate a relatively smaller part of their portfolio to equites. However, even 

for the most risk averse investor, with an alpha of 16, is recommended to allocate a certain part of his or 

her portfolio to equities regardless of investment horizon. 

As with our VaR framework, the graphs in figure 5 exhibit some kinks. Especially the one for an 

investor with an alpha of 16, which displays a relatively large downward kink at the 14th and 15th year 

horizons. It is worth adding that the profile with an alpha of 16 describe a highly risk averse investor, who 

is therefore very sensitive to years with low returns. Once again, we refer to section 5.9 for a closer look at 

the kinks. 

We would like to look more closely into this framework, specifically to see if there is a positive slope 

when one regresses equity allocation on investment horizon. When continuing with this specification, 

both in terms of tests and extensions, we use a risk aversion coefficient of four. There is no consensus as 

to which coefficient is most credible. Hence, we chose a coefficient of four partly as a result of our own 

intuition, but also because it lies in line with descriptions by Jane�̌�ek (2004), as well as estimations by 

Cagetti (2003). As a practical example, a CRRA individual with a risk aversion coefficient of four is 

indifferent between an investment opportunity where there is an equal probability between a 15 percent 

gain and a 9.4 percent loss. In contrast, with a coefficient of 16, only a 4.1 percent loss is required to offset 

the 15 percent gain. The contrast is even more apparent, when considering a 30 percent gain. In that case, 

the required loss is 13.5 percent for a coefficient of 4, however, with a coefficient of 16 the loss is 4.5 

percent, which is only marginally lower than the previous case.50 

                                                           
50 The numerical examples are derived by fixing the percentage gain and then solving for the percentage loss. The percentage loss 
must result in the expected utility of the two outcomes equaling the utility from the initial level of wealth. Using a CRRA utility 
function makes the initial level of wealth irrelevant. In the examples provided, a zero percent return is the certainty equivalent of 
the investment opportunity. 
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Figure 6 – Regression of investment horizon on stock allocation 

 
Linear regression depicting stock allocation on investment horizon. CRRA utility with a risk aversion coefficient of four. Each of 

the larger points represent the optimal stock allocation for a certain investment horizon. 

Figure 6 depicts the regression of optimal allocation to equities on investment horizon for an investor 

characterized by a utility function with CRRA and a risk aversion coefficient of four. According to the 

regression, the initial allocation to stocks for one year is 52.19 percent, and for each additional year added 

to the investment horizon, the allocation to stocks should increase by 2.79 percent. 

The results from figure 5 and figure 6 provide a strong argument for historical time diversification. 

Even though Samuelson’s second assumption of IDD is violated, due to mean reversion in historical 

equity returns, both Samuelson’s other assumptions are adhered to in this framework. This fact that the 

investor has CRRA utility and that returns are only a function financial assets, are two things that add 

weight to the academic validity of these equity recommendation. The results from the CRRA framework is 

in line with those by Hanna and Chen (1997), Blanchett et al. (2013) as well as Hansson and Persson 

(2000). Although, the recommended allocation to risky assets is considerably less aggressive than the ones 

proposed by Dolvin et al. (2010) and Barberis (2000). 

Having looked at the results for an investor characterized by CRRA, we would like to test what the 

optimal equity allocation would be for an investor with a utility function that has decreasing relative risk 

aversion (DRRA) and increasing relative risk aversion (IRRA). As mentioned in section 3.3, even though 

most scholars consider CRRA to be the most plausible risk characteristic, Thorley (1995) argues that 

DRRA best describes an investor, while Nordea’s Wealth Management has told us that their investors 

exhibit IRRA. It is also interesting to see if the expected utility framework is robust to a relaxation of 

Samuelson’s first assumption. 
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Figure 7 – Optimal stock allocation for DRRA, CRRA and IRRA utility 

 
Framework is optimized over investment horizons ranging from 1 to 10 years, with one-year increments. The graphs depict stock 
allocations for DRRA, CRRA and IRRA utility with a risk aversion coefficient of four. The utility parameters equal to -0.3, 0 and 

0.3. Initial wealth is assumed to be $1. Real returns are used. 

Figure 7 shows the optimal allocation for an investor characterized by a utility function with either 

DRRA, CRRA or IRRA, with a risk aversion coefficient of four.51 The utility parameter, theta, equals -0.3, 

0, 0.3. We chose this level on the parameter because it lies in line with scholars such as Thorley (1995), but 

also because it is compatible with our formal framework.52 It is worth adding that Thorley (1995) applied 

the utility parameter to simulated data, and that no other scholar that we know of have optimized utility 

functions with DRRA and IRRA based on historical data. We note that when applying utility functions 

with IRRA and DRRA it is important to talk about the initial wealth value. By definition, utility functions 

exhibiting IRRA and DRRA will have changing preferences, in percentage terms, given different amounts 

of wealth. Our framework assumed an initial wealth of $1, which makes the application harder to apply 

directly to a real-life situation. However, this extension is primarily applied to test the robustness of the 

CRRA application. In addition, there is no single level of starting wealth that is applicable to the typical 

agent. It could be argued an initial wealth level of $1 is as realistic as any other level. 

Looking at figure 7, we can see that the intercept for the DRRA is below the intercept of the CRRA 

and IRRA. The intercept for the IRRA is above the other two intercepts. All three graphs recommend an 

increasing allocation to equities with investment horizon. However, the optimal equity allocation increases 

faster for a DRRA investor than for the other two, and the allocation for a CRRA investor increases faster 

                                                           
51 The utility function used is described by equation 16 and 17, while the optimization model for the expected utility framework is 
to be found in section 3.3.1. 
52 Thorley (1995) apply a parameter of 0.7 which isn’t compatible with our framework. Looking at the utility function (see section 
3.3) it is evident that the parameter must lie below the worst possible outcome of returns for the utility function to make sense. 
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than the allocation for an IRRA investor. In relative terms, this is in line with the information provided by 

Kritzman (1992) in table 1. However, even the equity allocation for an IRRA investor increases with 

investment horizon. Had the return process of stocks been IID, we would expect such an investor to 

allocate a smaller part or his or her portfolio to equities as the investment horizon increases. We believe 

that the significant mean reversion characteristic inherent in the data leads to increasing equity allocations, 

even in the case of IRRA.  

By extending the framework to include utility functions characterised by DRRA and IRRA, the 

application relaxes both Samuelson’s first and second assumption. The fact the we relax the second 

assumption does not provide a major change in the results since the mean reversion characteristic inherent 

in the historical data provides most of the basis for time diversification. The framework presented in 

figure 5 thus appears robust to a relaxation of Samuelson’s first assumption, giving us further indication of 

historical time diversification. 

Having tested our primary utility framework with respect to Samuelson’s first assumption, we would 

like to test what happens when one relaxes Samuelson’s third assumption, the assumption that total wealth 

is only a function of financial assets. 

5.5 Optimal equity allocation with inclusion of non-financial assets 
Figure 8 – Optimal stock allocation for different investment horizons and percentages of financial wealth as part of 

total wealth 

 
Framework is optimized over different investment horizons using CRRA utility with a risk aversion coefficient of four. The 

graphs depict stock allocations for 1, 5, 10 and 20-year investment horizons dependent on the percentage of financial wealth as 
part of total wealth. Real value of non-financial assets is assumed to be fixed during the investment horizon. Real returns are used. 

Figure 8 represents an extension of the main expected utility framework presented in figure 5. The figure 

depicts optimal allocation to stocks in a portfolio given different percentages of financial assets as part of 

total assets. Each of the recommended allocations for the four investment horizons are for an investor 

with CRRA utility and a risk aversion coefficient of four. For the 20-year horizon allocation, we can see 
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that the allocation to equities is 100 percent regardless of how much financial assets make up of total 

wealth. 

The graphs for a 1, 5 and 10-year investment horizon all show a downward slope. This means that the 

recommended equity allocation for a CRRA investor with a risk aversion coefficient of four decreases 

with the relative weight of financial assets to total assets. These results are not surprising since the 

existence of fixed non-financial assets represent a risk-free asset. With the assumption of fixed real value, 

it essentially fixes a certain percentage of the investor’s wealth to a risk-free asset which, ceteris paribus, 

naturally increases the allocation of financial assets to stocks. It is reasonable to assume that an agent who 

owns a home and has a certain level of human capital will invest his financial portfolio more aggressively 

compared to someone who has most or all of his wealth tied to his financial portfolio. 

The fixed non-financial asset could represent real estate assets, human capital or a combination of 

both. We make a relatively simple assumption that the non-financial asset is fixed in real value during the 

agent’s investment horizon. This assumption is in part made to make the calculations suitable to our 

framework, but also because we find a fixed real value to be more realistic for shorter investment 

horizons. The allocations for the 10 and 20-year horizons should be interpreted with caution. Also, if the 

value of the non-fixed asset were a combination of real estate and human capital, we would expect the 

first of these assets to appreciate during the lifetime of the agent, while the other is expected to depreciate. 

Due to this, one could expect the value development of these two assets to mitigate one another. Lastly, 

we should point out that this assumption is in line with the assumptions made by Hanna and Chen (1997). 

They justify their use of a fixed non-financial asset with the fact that the distribution of human wealth 

rates of return are not available, and that it is very difficult to create reliable long-term estimates of real 

returns from other asset categories. 

One thing that stands out is that both the 1-year line and the 5-year line cross the 10-year line between 

40 and 50 percent of financial assets as part of total wealth. This anomaly stand in contrast to time 

diversification since for this specific area in the figure, an investor with a relatively longer investment 

horizon is recommended to allocate a smaller part of his or her portfolio to equities than an investor with 

a relatively shorter investment horizon. However, apart from this isolated anomaly, which we consider to 

be statistically insignificant, the output speaks in favour of historical time diversification. 

The relaxation of Samuelson’s third assumption leads to equity recommendations that are more 

aggressive than the ones in figure 5. We find that the relaxation of the third assumption increases the time 

diversification effect. The results in figure 8 are similar to the results presented by Hanna and Chen 

(1997). They also find that the introduction of a fixed non-financial asset increases the optimal equity 

allocation, however, the equity allocations given by their framework are slightly less aggressive. 

5.6 Robustness of equity allocations to changes in the equity risk premium 

One risk with using a data set covering such a large part of financial history is that return characteristics 

may have changed over time, leading to bias in our results. For example, the mean return of stocks may 

have been considerably higher during the 19th century, and even if the paradigm has changed since then, 

the higher mean returns will still affect our models. 
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Optimally, for our models to be valid, we would like the return characteristics to be relatively stable 

over time. In order to check if this is the case we divide the data into different sub periods. 

Table 8 – Mean and standard deviation of real returns for each quartile 

First quartile, 1802-1855 

 Stocks Bills Bonds Gold Cash 

Mean 7.32% 5.80% 5.93% 0.76% 0.64% 

Std.dev 14.84% 7.33% 7.85% 6.68% 6.68% 

Second quartile, 1856-1909 

 Stocks Bills Bonds Gold Cash 

Mean 9.96% 4.38% 4.47% 0.15% 0.18% 

Std.dev 18.36% 5.01% 6.20% 4.41% 4.92% 

Third quartile, 1910-1963 

 Stocks Bills Bonds Gold Cash 

Mean 8.77% 0.12% 1.58% -0.79% -2.02% 

Std.dev 21.86% 5.92% 8.49% 10.23% 5.62% 

Fourth quartile, 1964-2016 

 Stocks Bills Bonds Gold Cash 

Mean 7.16% 0.92% 3.63% 5.05% -3.74% 

Std.dev 16.91% 2.32% 11.44% 23.11% 2.64% 

Table 8 include the mean real returns and standard deviation of real returns for the five asset classes, 

divided into quartiles.53 Observing the mean real return of stocks, we can see that these are relatively 

similar in all four periods. The mean real return of equities in the first and fourth quartile only differ by 

0.16 percentage points, which tells us that using data from so far back in time does not bias our 

framework from the standpoint of mean real return of stocks. However, comparing Bills and gold in the 

first and fourth quarter we can see that the difference in mean real returns is more striking. Although, 

since the mean real return of both of these two asset classes have changed over time, we are unable to say 

whether the most recent characteristics represent a new pattern. Looking at table 7, we cannot find any 

factor that gives us reason to believe that the optimal equity allocation given by our framework is driven 

by characteristics in historical data that are no longer prevalent. 

However, observing the mean real returns of the assets classes by themselves does not provide us with 

sufficient information. Optimally, we would like to get a picture of the development of the equity risk 

premium (ERP). 

  

                                                           
53 Summary statistics for the full period can be found in section 4. For a more comprehensive version of table 7, see table A2 in 
the appendix. 
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Table 9 – Equity risk premium, for the full period and quartiles 

Years 
Full period, 

1802-2106 

First quartile, 

1802-1855 

Second quartile, 

1856-1909 

Third quartile, 

1910-1963 

Fourth quartile, 

1964-2016 

ERP 4.40% 1.39% 5.48% 7.18% 3.54% 

Table 8 shows the ERP for the full period as well as for each of the quartiles. The equity risk premium 

is the excess return that investing in the stock market provides over the risk-free rate. In our calculations, 

we have used the return of Bonds as a proxy for the risk-free rate. We could also have chosen Bills as our 

benchmark since both Bills and Bonds are U.S. Treasury securities, and hence considered risk-free. 

However, as we can see by looking at table 7 and figure 1, the real return of Bonds and Bills started to 

diverge, primarily in the 1980s. Ever since this divergence, Bonds have provided a greater real return than 

Bills. Because of this, we use Bonds as benchmark. We believe it is the more attractive of the two assets 

from the standpoint of our framework, and hence serve as the better competing asset to equities. 

Looking at the ERP for the full period in table 8, we can see that is has been at an average of 4.40 

percentage points. This is relatively close, only differing by 0.86 percentage points, to the ERP in the 

fourth quartile, which is at 3.54 percentage points. The 4.4 percentage points are also quite similar the 

result obtained by Blanchett et al. (2013), they find an historical ERP of 3.56 percentage points in their 20 

country data set. However, looking at the second and third quartile, we can see that the ERP is greater 

(the ERP for the second and third quartile are on 5.48 and 7.18 percentage points respectively) than the 

ERP for the fourth quartile. The ERP for the first quartile is in turn considerably smaller than the ERP for 

the other quartiles, at 1.39 percentage points.  

Table 8 tells us that the ERP has not been consistent over time. If the ERP were to change drastically 

in the future, this could have a considerable effect to a long-term investor allocating assets based our 

framework. We would therefore like to know how resistant our horizon-based optimal equity allocations 

are to potential changes in the future ERP. 

Table 10 – ERP decrease that would make a CRRA investor with a relative risk coefficient of four indifferent between 

the strategy depicted in the table and a one-year strategy 

Years 5 10 15 20 

ERP -1.24% -2.09% -2.55% -2.60% 

Table 9 shows the decrease in the ERP that would make an investor with a CRRA utility function and 

a risk coefficient of four indifferent between an allocation strategy for 5, 10, 15 or 20-years and an 

allocation strategy made for one year. To put it differently, if an investor faces a choice between a one-year 

strategy with a relatively low equity allocation, and a more than one-year strategy with a relatively high 

equity allocation; how much of a decrease in the ERP would make the strategy with the higher equity 

allocation provide the same utility as the strategy with the lower equity allocation. For an investor who 

may be sceptical of the merits of time diversification, this table tells him or her that if you are investing for 

10 years, you should allocate assets based on a 10-year time horizon rather than allocating as if you were 

investing for one year. If the investor were to choose the 10-year strategy, he or she would be able to 
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absorb a 2.09 percentage point decrease in the ERP, and still not obtain less utility than from the 

allocation of the one-year strategy. 

A lower ERP in the future is not implausible. One example of this would be if time diversification 

were to become accepted by all market participants, and as a result the benefits from it would be fully 

priced in. In that case, the price of equities would increase relative to other assets, the real returns from 

equities would decrease relative to risk-free assets, which would lead to a lower ERP. Table 9 tells us that a 

long-term investor would be able to absorb a considerable degree of “pricing in” of time diversification 

before the benefits of a time diversification strategy are fully mitigated. 

Having found that equity allocations are robust to potential future changes in the ERP, we would like 

to look more at time diversification. By looking at table 8 we find that the ERP for the fourth quartile is 

lower than the ERP of the second and third quartile. We would like to make sure that the historical time 

diversification effect is not driven exclusively by these middle periods. We therefore move on to look at 

time diversification for only the last of these periods.   

5.7 Persistence of time diversification 
Figure 9 – Optimal stock allocations, data for the full period versus data for the last 50 years 

 
Framework is optimized over investment horizons ranging from 1 to 20 years, with one-year increments. The graphs depict stock 

allocations for CRRA utility with a risk aversion coefficient of four, when using data for the full-period versus the last 50 years. 
Real returns are used. 

Figure 9 shows the optimal allocation to equities for an investor with CRRA utility and a risk aversion 

coefficient of four. The solid line depicts the optimal allocation when optimizing using the whole data set, 

while the dotted line show the optimal equity allocation when optimizing over the last 50 years, i.e. 1966-

2016. 

By observing figure 9 we can see that the time diversification effect is still prevalent when limiting the 

optimization to the last 50 years. This gives us indication to believe that it is still rational for a long 

horizon investor to engage in a time diversification strategy, even if a paradigm shift has occurred 50 years 
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ago which makes the returns before that point in time irrelevant. However, the graphs in figure 9 tell us 

that the effect of time diversification is less strong for the last 50 years than for the whole period. The two 

graphs basically show the same equity allocation for an investment horizon of one and two years, while 

they start to deviate after two years. At a six-year investment horizon we observe that the optimal 

allocation stops increasing for the dotted line, while the allocation continues to increase for the solid line. 

In fact, the optimal equity allocations from an investment horizon of six years up until an investment 

horizon of 16 years are essentially the same. The equity allocation given by the dotted line starts to 

increase more aggressively after a 16-year investment horizon. In aggregate, the time diversification effect 

is stronger for the whole period than for the last 50 years, even though the effect is prevalent in both 

graphs. 

We should note that we have chosen not to optimize using more limited data, such as data restricted to 

the last 20 years, since the conclusions one could draw from such an output would be limited due to the 

relatively low number of observations. For example, the optimization over a 15-year investment horizon 

would only occur five times when optimizing using data for 20 years. In addition, we have no justification 

for claiming that more recent returns are more representative for future returns than returns from further 

in the past. 

Having found that the time diversification effect has not diminished in more recent history, we would 

like to see if the effect, as well as the previous anomalies in the form of kinks, are still present when using 

simulated data. 

5.8 Simulated data 

We are interested in the robustness of time diversification and the existence of the kinks that stand out in 

figure 3, 4, and 5. Because of this we simulate new returns for the 215 years in our data set in order to see 

how the optimal allocations changes and if kinks are still present. 

The data is simulated using the AR(5) model described in section 5.2. By applying the AR(5) model to 

the real life historical returns we find a standard deviation of the error term equal to 0.1836. After this we 

simulate 215 years of new stock returns by using the AR(5) model and a normally distributed error term. 

The error term is calculated using an expected value of zero and a standard deviation equal to the one we 

derived from the real life historical returns, i.e. 0.1836. 
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Figure 10 – Optimal stock allocation for real life and different sets of simulated data, CRRA four 

Framework is optimized over investment horizons ranging from 1 to 20 years, with one-year increments. The actual return data is 

used together with three simulated return series. The graphs depict stock allocations for CRRA utility with a risk aversion 

coefficient of four. Real returns are used. 

Figure 10 depicts the optimal equity allocations for an investor with CRRA utility and a risk aversion 

coefficient of four, optimized using real life and different sets of simulated data. We can see that in all 

three simulations, the time diversification effect is still present, but to varying degrees. The real data give 

the highest optimal equity allocation at all investment horizons apart from 18 and 19 years. However, we 

believe that this is simply a coincidence due to the limited number of simulations. We should add that we 

considered a Monte Carlo approach, i.e. running several thousand simulations and showing a graph 

representing the average of all allocations from the simulations, contrasted against the graph depicting the 

allocations for the real data. The reason we chose not to do this was that we would have to optimize our 

framework manually for each time horizon in each simulated dataset. Taking the human aspect as well as 

the time required by the computer into account, such an approach was considered outside the scope of 

our project. 

 Figure 10 shows that time diversification exists also when using simulated data. This is not surprising 

since we simulate the new data using features from the real data. Unfortunately, figure 10 does not give us 

any useful information with respect to the kinks in figure 3, 4, and 5. This is partly because figure 10 

depicts the allocation for a CRRA investor with a risk aversion of four, which is a profile that have not 

exhibited any unexpected kinks in the stock allocation for the different investment horizons. Looking at 

figure 5, we can see that the graphs with significant kinks are the ones depicting risk aversions of eight and 

above. Because of this we simulate data for a CRRA investor with a risk aversion coefficient of eight. 
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Figure 11 – Optimal stock allocation for real life and different sets of simulated data, CRRA eight 

 
Framework is optimized over investment horizons ranging from 1 to 20 years, with one-year increments. The actual return 

data is used together with three simulated return series. The graphs depict stock allocations for CRRA utility with a risk aversion 

coefficient of eight. Real returns are used. 

Observing figure 11, we see the different optimal asset allocation for a CRRA investor with a risk 

aversion coefficient of eight. As in figure 10, three of the four graphs representing the different optimal 

allocation are all optimized using simulated data. The fourth graph, i.e. the black solid line, represents the 

optimal allocation using actual historical data. 

Looking at the four different graphs we can see that each display kinks at different investment 

horizons. The dotted line is even, between investment horizons of 13 and 19 years, somewhat inverse to 

the solid line depicting the actual data. This tells us that if the stock returns follow an AR(5) process, the 

graphs depicting optimal allocations tend to display kinks, at least for higher levels of risk aversion. The 

occurrences of kinks seem to be random throughout the investment horizons. 

This section has started looking at the kinks in the allocations for an expected utility investor, with the 

goal of understanding the kinks displayed in figure 5. Next, we look into kinks more thoroughly, also with 

respect to the anomalies in figure 3 and 4. 

5.9 The presence of kinks 

This section is devoted to examining and understanding the kinks that are present in some of the previous 

outputs. Two specific cases are investigated to get a better understanding of the issue; one for the VaR 

approach and one for the utility approach. It should be noted that given the optimization issues that are 

dealt with, the explanations for the kinks are most likely due to multiple characteristics of the data. In the 

following analyses, we simply try to find some of the main drivers. Analyses like the ones we apply here 
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could be done for all single kinks, but we dive into only two selected ones and expect that the remaining 

kinks have similar causes.  

5.9.1 Upward kink in VaR output 

First, we will look closer at the upward kink exhibited by the 99 percent certainty -15 percent VaR graph 

which can be seen in figure 4. Given the 99 percent certainty level we know that just one percent of the 

outcomes can significantly affect the optimal allocations. We approach the issue by noting that the upward 

kink is at the three-year horizon; so we look to identify return characteristics in the data that can explain 

why stocks would be favoured relatively more for the three year horizon as compared to the two and four 

year horizons. For all three horizons, we have just above 200 observations. This means that the one 

percent lowest return is (rounded up) the third lowest return. In other words, when we optimize with the 

VaR, only two out of all the potential outcomes are allowed to be below the VaR limit. Therefore, we look 

at the third lowest return from the different investment horizons.  

Table 11 – Return and years for the third lowest return among the investment horizons, two, three and four years 

 
Investment horizon 

 
2 years 3 years 4 years 

Nominal return -41.46% -38.10% -42.94% 

Years 1973-1974 2000-2002 1930-1933 

Observing table 11, we find supporting evidence of the kink in the data. That is, the third lowest return 

for a three-year horizon is better than for two and four years. This results in a kink in the optimal 

allocation making stocks relatively more favourable for a three-year horizon. The specific years where the 

third lowest returns appear are somewhat equally spread across the full period. In turn, it seems to be 

arbitrary, and we have no reason to believe that the same pattern will be repeated in the future. An 

important remark is that when the stock allocation goes down, it specifically means that another asset is 

included instead. In other words, when examining kinks the stock returns cannot be viewed independently 

of the alternatives. Looking at the derived optimal portfolios, we see that Bonds are the primary 

alternative investment. As can be seen from the Bonds characteristics in table 3, Bonds are much less 

likely than stocks to provide large negative returns, which in turn serve to violate the VaR restriction. We 

acknowledge that this analysis is not perfect, given that inclusion of the other available assets would be 

ideal. However, it does provide insight into why and how the kinks come about. 

5.9.2 Upward kink in utility output 

We go on by looking closer at the downward kink between the investment horizon of 13 and 16 years for 

the CRRA utility framework with a risk-aversion coefficient of 16.54 We note that given the behaviour of 

the utility function, stocks will always be preferred in periods where stocks outperform alternative assets. 

Therefore, we identify what alternative assets are used when the allocation to stocks decreases. It can be 

seen from the optimal portfolios that Bills is the main asset class that increases in allocation when Stock 

allocation falls. Hence, we investigate the periods where bills perform better than stocks. We limit the 

                                                           
54 See figure 5 for this kink. 
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analysis to look at the investment horizons ranging from 13 to 16 years to isolate the issue. Ideally, we 

look for characteristics in the data that can explain a lower (higher) allocation to stocks (bills) for the 14 

and 15-year horizon. It is worth reiterating that the coefficient of 16 means that the investor is extremely 

risk-averse and for that reason is very sensitive to low returns.  

Figure 12 – The excess performance of Bills over stocks, limited to periods where Bills outperform stocks 

 
The graphs depict bills excess performance to stocks in percentage points. Real returns are used. The observation numbers refer 

to instances where bills outperform stocks. 

Figure 12 graphs the percentage points excess return that bills provide over stocks, limited to the 

periods where Bills actually do provide a higher return than stocks. The different graphs shown are for the 

investment horizons of 13, 14, 15, and 16 years. While the output looks confusing at first, we will focus on 

the peaks of the different graphs. What can be seen is that the graphs for the 14 and 15-year horizons 

have the highest peaks. In other words, there are single periods for the 14 and 15-year horizons, where 

bills excess performance to stocks are higher than in any case for the 13 and 16 horizons. For the 

interested reader, we note that the 14-year horizon peak is from 1846 to 1859 and the 15-year horizon 

peak is from 1845-1859. Given the extreme risk-aversion exhibited by the investor, we believe these small 

details exhibited by the return data have a high impact on the output, i.e. result in kink(s). One again, we 

find the the specific years to be arbitrary, and will not expect a similar pattern in the future. 

We acknowledge several explanations could potentially support the kink but believe that the above 

data variation plays an important role. To give an example of the complexity, we highlight that the number 

of times bills outperform stocks changes for the different horizons as can be seen from the different 

lengths of the graphs depicted in figure 13. Notably it decreases from the 13 to 14-year horizon, which in 

itself would be an argument for preferring stocks rather than bills.  
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6. Conclusion and discussion 
This paper has optimized portfolios over different investment horizons for agents with different levels of 

risk preferences, using a dataset covering U.S. return data for number of asset classes for the years 1802–

2016. Using a genetic optimization algorithm together with a value at risk (VaR) and an expected utility 

framework, we found that the optimal allocation to equities tends to increase with the length of the 

investment period. In addition, the annualized standard deviation of equity returns decreases with time 

horizon. Our results are in line with Hanna and Chen (1997), Blanchett et al. (2013), Hansson and Persson 

(2000) and Panyagometh (2011). 

We found mean reversion in the real return of equities in our dataset. This meant that our dataset 

hereby violated Samuelson’s second time diversification assumption: the assumption that asset returns are 

independently and identically distributed (IID). The mean reversion characteristic is sufficiently strong 

that a moderate relaxation of Samuelson’s first and third assumption – the assumptions that the investor is 

characterized by constant relative risk aversion (CRRA), and that wealth is only a function of returns from 

financial assets – did not change the fact that the allocation to equities in our optimal portfolios increased 

with time. Specifically, we were expecting the increasing relative risk aversion (IRRA) to lead to a 

decreasing or somewhat unchanging equity allocation. However, in relative terms, and in line with 

Kritzman (1992), extensions to the primary CRRA utility function, in the form of decreasing relative risk 

aversion (DRRA) showed a stronger time diversification effect than the CRRA, while the opposite was the 

case when extending the function so that it exhibited IRRA. Similar to Hanna and Chen (1997), the 

introduction of a fixed non-financial asset leads to more aggressive equity allocations, ceteris paribus. 

The effect of time diversification exists when optimizing over the full period, as well as when 

optimizing over the last 50 years. This implies that our results are not exclusively driven by return features 

from more than 50 years back. However, the time diversification effect is weaker for the last 50 years in 

the dataset.  

The instability of the optimal allocations, in the form of kinks, can be explained by a limited number of 

observations in our dataset. Considerable sensitivity to negative returns for the more risk averse 

investment profiles, together with the fact that some investment periods stand out by showing large 

negative returns for equities, lead to kinks based on these investment periods. The optimal allocation for 

agents with high levels of risk aversion can be greatly impacted by only a few such periods with large 

negative returns. 

Our results support the notion that a higher allocation to equities is optimal for agents investing over 

longer time horizons, thus adding to the empirical evidence supporting time diversification. An investor 

investing today, with the aim of investing over a longer investment period, should, assuming that the 

future will look somewhat similar to the past, allocate a relatively larger part of his or her portfolio to 

equities. Even the most risk averse investors should according to our framework assign 100 percent of 

their portfolios to equites for long horizons. However, the recommended allocation to risky assets is 

generally less aggressive than the allocations proposed by Dolvin et al. (2010) and Barberis (2000). 

The results generally meet our expectations. Even though Thorley (1995) only showed weak signs of 

time diversification when optimizing over historical data, and only for investment horizons up to four 
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years, Hanna and Chen (1997), Blanchett et al. (2013) and Siegel (2014) presented more convincing results 

showing an increased equity allocation with time. However, we were surprised by a number of things, 

mainly that our main applications, the VaR and CRRA expected utility, gave us very aggressive equity 

allocations for longer horizons, even for the most risk averse agents. The fact that the mean reversion 

characteristic in U.S. return data was strong enough to lead to such high equity allocations in our primary 

outputs, as well as leading to increasing equity allocations in our IRRA extension, was noticeable. The 

kinks shown in the optimal allocations for more risk averse investors was more prevalent than those 

found by other scholars such as Blanchett et al. (2013). This could have to do with Blanchett et al. (2013) 

using a slightly different optimization procedure, but it more likely has to do with them using a data set 

covering several countries. 

The main limitation of the practitioner approach that we have taken, i.e. violating Samuelson’s second 

assumption by optimizing equity allocations based on historical return data, is that we are unable to 

guarantee that the future will look like the past. No one can be certain that a paradigm shift changing the 

return process within financial markets will not occur. There is only one sample of financial history and 

inferences based on a single sample must never be accorded definite interpretations. However, even 

though this is true, we believe that optimizations based on past returns, or as a second alternative, return 

processes based on past returns (such as the simulation that is non-IID and based on an autoregressive 

model, used in this paper), constitute the most plausible approaches. We would argue that the use of 

simulated returns that are IID and perfectly random, while assuming a constant risk-free rate, often 

depicted in the form of a binomial tree, does not take into account the realities of investing.55 Mainly 

because perfectly random returns include a non-negligible possibility of extremely bad return outcomes, 

e.g. that the stock market exhibits double digit negative returns for several years in a row. In the case of 

such extreme outcomes it would not be unreasonable to assume that the risk-free asset is no longer risk-

free, thus leading to the original framework becoming invalid. Adopting a framework that assumes a risk-

free asset under such conditions could be likened to buying either nuclear insurance or credit default 

swaps on German Bunds. 

Another limitation, relating to Samuelson’s first assumption, relates to the loss of practical significance 

that is inherent in utility functions. Like Kritzman (1994), Levy and Spector (1996), Van Eaton and 

Conover (1998) as well as Samuelson (1971 and 1994), we acknowledge that our framework could show 

different results with alternative utility specifications. Rather than exhibiting a continuous utility function, 

such as the ones applied in this paper, the investor might have a discontinuous utility function. For 

example, if the agent’s wealth was to drop below a certain point this could lead to divorce and having to 

move to another residence. After having reached that point, the agent would care relatively little about 

further decreases in wealth. Another example could constitute a reversed scenario, where the agent has 

become wealthy enough to acquire a mansion and a private jet. Such an individual could be considered 

relatively indifferent to increases in wealth beyond what he already has. However, as mentioned, our 

optimization application, due to historical mean reversion, showed increasing equity allocation with 

                                                           
55 For an example of returns that are perfectly random and IID, depicted in a binomial tree, see table 2 and 3 in Kritzman (1994). 
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investment horizon for all applied frameworks. And even if another plausible utility function would give 

us considerably different optimal allocations, it would not be possible to claim that this utility function is 

the one that best describes the average investor. In addition, the VaR framework is similar to a 

discontinuous utility function in the sense that the agent can be interpreted to extract infinite negative 

utility if the VaR level is broken. 

Concerning Samuelson’s third assumption, we believe it is not realistic to assume that terminal wealth 

only depends on financial investment performance. We believe our extension including a fixed non-

financial asset is more applicable to a real-world scenario than our main utility output. However, a 

limitation to the application is that it is relatively simplistic in the sense that it only includes a fixed non-

financial asset which does not serve as an ideal representation of human capital. A representation which is 

more detailed and dynamic could come closer to a real-life scenario. For many younger individuals, about 

to start their career and begin saving, human capital is the most valuable of their assets. In addition, the 

inclusion of a more suited representation of human capital – through wages or other forms of 

compensation – means that the agent has the option of adjusting his or her work habits or occupation. 

For example, if a risky investment was to perform poorly in the beginning or middle of the investment 

period, the agent could mitigate this effect by working more hours. In that case, longer investment 

horizons would, ceteris paribus, lead to a higher allocation to equities, since there would be more time 

available to lessen the negative wealth effects of potential downturns. Having said this, according to us, 

the problem with such a representation of human capital, and why almost no scholars apart from Pástor 

and Stambaugh (2012) include it in their framework, is because it makes the model prone to overfitting. A 

model that is too specific would not be compatible with a practitioner approach. One can also discuss the 

realism in assuming the agent is able to fully adjust his or her work hours. These factors are often 

regulated by law and long-term contracts, even if the agent would like to work more to increase his or her 

income, it is far from certain that this option is available. 

Another limitation to our approach is that all optimal allocations concern initial allocations, i.e. the 

approach does not allow for continuous adjustments over the investment period. This type of non-

adjustable allocation is not completely realistic since an investor could, for example, save and invest on a 

monthly basis. Furthermore, as Detemple (1986) points out, observed state variables in the economy 

changes the opportunity set over time, which could have an effect on the optimal equity allocation over 

the investment period. The equity allocation in the optimal portfolios in this paper will also change over 

the investment horizon due to capital gains and dividends. In addition, allowing for continuous 

adjustments would most likely lead to overfitted recommendations. The output could for example, 

depending on the framework, give a recommendation to invest a certain percentage in equities the first 

year of a five-year horizon, while the percentage for the second year could depend on the returns in the 

first year. It is not unreasonable to assume the future return process will look like the past in a more 

general sense, however, it would not be realistic to assume that the pattern and magnitude of business 

cycles will be exactly the same. 

This paper contains a number of insights for mainly market practitioners, and can be used as a tool 

among others to help decide on investment recommendations to clients. Not counting with a paradigm 
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shift in the future return process of risky assets, clients who are looking to invest for long horizons should 

be recommended a more aggressive equity allocation. Apart from Panyagometh (2011), there are no 

papers that we know of that use a VaR when creating optimal portfolios using historical data. In addition, 

Panyagometh (2011) uses a very limited data set from Thailand which makes his findings hard to 

extrapolate to more general situations. We believe this output is particularly useful to an actor such as 

Nordea Wealth Management since the framework corresponds to the classes into which they divide their 

clients. A client who owns real estate could be relevant to the output showing the changes in optimal 

allocation when introducing a fixed non-risky asset. Such a client could receive recommendations, all else 

being equal, to allocate more aggressively to equites than a client who rents his or her residence. Clients 

could also be interested in seeing how resistant a long-term allocation is to future decreases in the equity 

risk premium (ERP). Specifically, that it would take a considerable degree of pricing in with respect to the 

time diversification feature before the client’s long-term allocation would equalize the utility of a short-

term allocation. 

Suggestions to future research would be to try to completely remove the kinks in the graphs for 

optimal allocations by simulating thousands of returns via a Monte Carlo approach. Such an approach 

would have to include an automated optimization procedure over every horizon for every simulation. The 

simulation could be based on a return process derived from historical returns. Future papers could also 

use alternative data sets covering other nations such as Denmark or the United Kingdom. The main 

challenge would be to obtain data covering a large enough number of years. Lastly, it would be interesting 

to see a more detailed incorporation of human capital that is still relatively generalizable and hence useful 

to a market practitioner. Such an approach could possibly make use of machine learning combined with 

decision trees in order to decide on allocations based on numerous factors, such as years of education, 

centre of learning, degree type and years in the labour market. 
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8. Appendix 
Derivation of equation 15 based on equation 13  

 𝑈(𝑊) =
𝑊1−𝛼

1 − 𝛼
 (A1) 

 𝑈′(𝑊) = (1 − 𝛼) ∙
𝑊−𝛼

1 − 𝛼
= 𝑊−𝛼 (A2) 

 𝑈′′(𝑊) = −𝛼 ∙ 𝑊−𝛼−1 (A3) 

 
𝑅𝑅𝐴(𝑊) = −𝑊 ∙

𝑈′′(𝑊)

𝑈′(𝑊)
= −𝑊 ∙

−𝛼 ∙ 𝑊−𝛼−1

𝑊−𝛼
= 𝛼 (A4) 

Derivation of equation 15 based on equation 14  

 𝑈(𝑊) = ln(𝑊) (A5) 

 𝑈′(𝑊) =
1

𝑊
 (A6) 

 𝑈′′(𝑊) = −𝑊−2 (A7) 

 
𝑅𝑅𝐴(𝑊) = −𝑊 ∙

𝑈′′(𝑊)

𝑈′(𝑊)
= −𝑊 ∙

−𝑊−2

𝑊−1
= 1 (A8) 

Derivation of equation 18 based on equation 16  

 𝑈(𝑊) =
(𝑊 − 𝜃)1−𝛼

1 − 𝛼
 (A9) 

 𝑈′(𝑊) = (1 − 𝛼) ∙
(𝑊 − 𝜃)−𝛼

1 − 𝛼
= (𝑊 − 𝜃)−𝛼 (A10) 

 𝑈′′(𝑊) = −𝛼 ∙ (𝑊 − 𝜃)−𝛼−1 (A11) 

 
𝑅𝑅𝐴(𝑊) = −𝑊 ∙

𝑈′′(𝑊)

𝑈′(𝑊)
= −𝑊 ∙

−𝛼(𝑊 − 𝜃)−𝛼−1

(𝑊 − 𝜃)−𝛼
=

𝛼 ∙ 𝑊

𝑊 − 𝜃
=

𝛼

1 − 𝜃/𝑊
 (A12) 

 𝐹𝑜𝑟 𝜃 = 0 → 𝑅𝑅𝐴(𝑊) = 𝛼  (A13) 

Derivation of equation 18 based on equation 17  

 𝑈(𝑊) = ln(𝑊 − 𝜃) (A14) 

 𝑈′(𝑊) =
1

𝑊 − 𝜃
 (A15) 

 𝑈′′(𝑊) = −(𝑊 − 𝜃)−2 (A16) 

 
𝑅𝑅𝐴(𝑊) = −𝑊 ∙

𝑈′′(𝑊)

𝑈′(𝑊)
= −𝑊 ∙

−(𝑊 − 𝜃)−2

(𝑊 − 𝜃)−1
=

𝑊

𝑊 − 𝜃
=

1

1 − 𝜃/𝑊
 (A17) 

 𝐹𝑜𝑟 𝜃 = 0 → 𝑅𝑅𝐴(𝑊) = 1 (A18) 
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Derivation of absolute risk aversion (ARA) applied on the utility function described by equation 16 and 17  

 𝑈(𝑊) =
(𝑊 − 𝜃)1−𝛼

1 − 𝛼
 (A19) 

 𝑈′(𝑊) = (1 − 𝛼) ∙
(𝑊 − 𝜃)−𝛼

1 − 𝛼
= (𝑊 − 𝜃)−𝛼 (A20) 

 𝑈′′(𝑊) = −𝛼 ∙ (𝑊 − 𝜃)−𝛼−1 (A21) 

 
𝐴𝑅𝐴(𝑊) =

−𝑈′′(𝑊)

𝑈′(𝑊)
=

−𝛼(𝑊 − 𝜃)−𝛼−1

(𝑊 − 𝜃)−𝛼
=

𝛼

𝑊 − 𝜃
 (A22) 
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Figure A1 – Optimal stock allocations for different VaR-levels, 90 percent certainty 

 
Framework is optimized over investment horizons ranging from 1 to 10 years, with one-year increments. Five different VaR-

levels are used, -30 percent, -20 percent, -15 percent, -7.5 percent and 0 percent. Each graph depicts the optimal allocation for a 
specific VaR-level. Graphs for -20 and -30 percent are not shown because they overlap perfectly with the one for -15 percent. 

Nominal returns are used. 

Table A1 – SAS results from AR(2) model 

Parameter Estimates 

Variable Estimate Standard Error t Value Pr > |t| 

Intercept 0.0961 0.0146 6.60 <0.0001 

Lag1 0.0103 0.0679 0.15 0.8797 

Lag2 -0.1734 0.0676 -2.57 0.0110 

Ordinary Least Squares Estimates 

MSE 0.0319  DFE 210 

MAE 0.1369  Root MSE 0.1787 

MAPE 199.8085  AIC -126.0920 

ESS 0.2110  TSS 6.879 

SSE 6.7078  R-Square 0.0305 
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Table A2 – Summary statistics of real returns for each quartile 

First quartile, 1802-1855 

 Stocks Bills Bonds Gold Cash 

Mean 7.32% 5.80% 5.93% 0.76% 0.64% 

Std.dev 14.84% 7.33% 7.85% 6.68% 6.68% 

Median 6.38% 5.45% 6.42% 0.21% 0.21% 

Maximum 62.38% 23.68% 29.76% 17.98% 17.98% 

Minimum -29.87% -9.59% -9.92% -13.67% -13.67% 

Skewness 0.7652 0.4014 0.4020 0.3104 0.3182 

Kurtosis 2.8071 0.1993 0.5945 0.3345 0.3685 

Second quartile, 1856-1909 

 Stocks Bills Bonds Gold Cash 

Mean 9.96% 4.38% 4.47% 0.15% 0.18% 

Std.dev 18.36% 5.01% 6.20% 4.41% 4.92% 

Median 6.92% 4.17% 4.52% 0.22% 0.52% 

Maximum 66.62% 12.28% 15.46% 10.23% 7.69% 

Minimum -28.85% -15.63% -21.86% -20.95% -21.28% 

Skewness 0.4228 -2.1165 -1.4958 -1.9324 -2.7407 

Kurtosis 1.2044 7.2214 5.1201 9.5646 9.8692 

Third quartile, 1910-1963 

 Stocks Bills Bonds Gold Cash 

Mean 8.77% 0.12% 1.58% -0.79% -2.02% 

Std.dev 21.86% 5.92% 8.49% 10.23% 5.62% 

Median 5.77% 1.18% 1.02% -1.29% -1.62% 

Maximum 57.15% 17.38% 30.26% 60.50% 11.97% 

Minimum -38.57% -15.07% -16.91% -17.00% -17.00% 

Skewness -0.0167 -0.0657 0.4270 4.0492 -0.3076 

Kurtosis -0.4015 1.4990 1.6013 24.6000 1.9759 

Fourth quartile, 1964-2016 

 Stocks Bills Bonds Gold Cash 

Mean 7.16% 0.92% 3.63% 5.05% -3.74% 

Std.dev 16.91% 2.32% 11.44% 23.11% 2.64% 

Median 8.71% 1.85% 3.22% -0.62% -1.48% 

Maximum 57.15% 17.38% 35.13% 99.94% 11.97% 

Minimum -37.29% -3.74% -14.54% -38.13% -11.74% 

Skewness -0.7589 0.3188 0.5687 1.4804 -1.4222 

Kurtosis 0.1350 -0.2990 0.0089 4.6513 1.9881 
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Table A3 – Optimal portfolios for zero percent VaR with 95 percent confidence 

Investment horizon Stocks Bills Bonds Gold Cash 

1 0% 0% 0% 0% 100% 

2 29% 19% 52% 0% 0% 

3 46% 22% 30% 2% 0% 

4 57% 23% 9% 11% 0% 

5 79% 9% 10% 2% 0% 

6 66% 15% 17% 2% 0% 

7 87% 12% 1% 0% 0% 

8 96% 3% 1% 0% 0% 

9 100% 0% 0% 0% 0% 

10 100% 0% 0% 0% 0% 

Table A4 – Optimal portfolios for -7.5 percent VaR with 95 percent confidence  

Investment horizon Stocks Bills Bonds Gold Cash 

1 53% 11% 28% 7% 0% 

2 59% 8% 33% 0% 0% 

3 74% 0% 26% 0% 0% 

4 83% 0% 10% 6% 0% 

5 92% 0% 8% 0% 0% 

6 81% 10% 10% 0% 0% 

7 100% 0% 0% 0% 0% 

8 100% 0% 0% 0% 0% 

9 100% 0% 0% 0% 0% 

10 100% 0% 0% 0% 0% 
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Table A5 – Optimal portfolios for -15 percent VaR with 95 percent confidence  

Investment horizon Stocks Bills Bonds Gold Cash 

1 83% 5% 11% 1% 0% 

2 87% 7% 6% 0% 0% 

3 99% 0% 0% 1% 0% 

4 100% 0% 0% 0% 0% 

5 95% 0% 5% 0% 0% 

6 100% 0% 0% 0% 0% 

7 100% 0% 0% 0% 0% 

8 100% 0% 0% 0% 0% 

9 100% 0% 0% 0% 0% 

10 100% 0% 0% 0% 0% 

Table A6 – Optimal portfolios for -20 percent VaR with 95 percent confidence 

Investment horizon Stocks Bills Bonds Gold Cash 

1 100% 0% 0% 0% 0% 

2 100% 0% 0% 0% 0% 

3 100% 0% 0% 0% 0% 

4 100% 0% 0% 0% 0% 

5 100% 0% 0% 0% 0% 

6 100% 0% 0% 0% 0% 

7 100% 0% 0% 0% 0% 

8 100% 0% 0% 0% 0% 

9 100% 0% 0% 0% 0% 

10 100% 0% 0% 0% 0% 
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Table A7 – Optimal portfolios for -30 percent VaR with 95 percent confidence 

Investment horizon Stocks Bonds Bills Gold Cash 

1 100% 0% 0% 0% 0% 

2 100% 0% 0% 0% 0% 

3 100% 0% 0% 0% 0% 

4 100% 0% 0% 0% 0% 

5 100% 0% 0% 0% 0% 

6 100% 0% 0% 0% 0% 

7 100% 0% 0% 0% 0% 

8 100% 0% 0% 0% 0% 

9 100% 0% 0% 0% 0% 

10 100% 0% 0% 0% 0% 
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Table A8 – Optimal portfolios for CRRA with a coefficient of one 

Investment horizon Stocks Bills Bonds Gold Cash 

1 100% 0% 0% 0% 0% 

2 100% 0% 0% 0% 0% 

3 100% 0% 0% 0% 0% 

4 100% 0% 0% 0% 0% 

5 100% 0% 0% 0% 0% 

6 100% 0% 0% 0% 0% 

7 100% 0% 0% 0% 0% 

8 100% 0% 0% 0% 0% 

9 100% 0% 0% 0% 0% 

10 100% 0% 0% 0% 0% 

11 100% 0% 0% 0% 0% 

12 100% 0% 0% 0% 0% 

13 100% 0% 0% 0% 0% 

14 100% 0% 0% 0% 0% 

15 100% 0% 0% 0% 0% 

16 100% 0% 0% 0% 0% 

17 100% 0% 0% 0% 0% 

18 100% 0% 0% 0% 0% 

19 100% 0% 0% 0% 0% 

20 100% 0% 0% 0% 0% 
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Table A9 – Optimal portfolios for CRRA with a coefficient of two 

 Investment horizon Stocks Bills Bonds Gold Cash 

1 81% 0% 19% 0% 0% 

2 81% 0% 19% 0% 0% 

3 86% 0% 14% 0% 0% 

4 89% 0% 11% 0% 0% 

5 94% 0% 6% 1% 0% 

6 97% 0% 0% 3% 0% 

7 97% 0% 0% 3% 0% 

8 97% 0% 0% 3% 0% 

9 96% 0% 0% 4% 0% 

10 96% 0% 0% 4% 0% 

11 97% 0% 0% 3% 0% 

12 97% 0% 0% 3% 0% 

13 99% 0% 0% 1% 0% 

14 100% 0% 0% 0% 0% 

15 100% 0% 0% 0% 0% 

16 100% 0% 0% 0% 0% 

17 100% 0% 0% 0% 0% 

18 100% 0% 0% 0% 0% 

19 100% 0% 0% 0% 0% 

20 100% 0% 0% 0% 0% 
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Table A10 – Optimal portfolios for CRRA with a coefficient of four 

Investment horizon Stocks Bills Bonds Gold Cash 

1 45% 3% 52% 0% 0% 

2 48% 0% 46% 6% 0% 

3 55% 0% 39% 6% 0% 

4 59% 0% 35% 6% 0% 

5 61% 0% 32% 7% 0% 

6 67% 0% 22% 11% 0% 

7 73% 0% 16% 11% 0% 

8 79% 0% 9% 12% 0% 

9 81% 0% 6% 13% 0% 

10 86% 0% 0% 14% 0% 

11 87% 0% 0% 13% 0% 

12 87% 0% 0% 13% 0% 

13 87% 0% 0% 13% 0% 

14 88% 0% 0% 12% 0% 

15 91% 0% 0% 9% 0% 

16 92% 0% 0% 8% 0% 

17 94% 0% 0% 6% 0% 

18 96% 0% 0% 4% 0% 

19 98% 0% 0% 2% 0% 

20 100% 0% 0% 0% 0% 
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Table A11 – Optimal portfolios for CRRA with a coefficient of eight 

Investment horizon Stocks Bills Bonds Gold Cash 

1 23% 51% 21% 4% 0% 

2 27% 51% 14% 8% 0% 

3 35% 48% 10% 6% 0% 

4 39% 48% 7% 5% 0% 

5 39% 50% 6% 6% 0% 

6 48% 35% 8% 9% 0% 

7 55% 32% 5% 9% 0% 

8 55% 37% 0% 8% 0% 

9 55% 36% 0% 9% 0% 

10 62% 29% 0% 10% 0% 

11 59% 33% 0% 8% 0% 

12 70% 22% 0% 9% 0% 

13 80% 7% 1% 12% 0% 

14 75% 17% 0% 9% 0% 

15 76% 18% 0% 6% 0% 

16 93% 0% 0% 7% 0% 

17 93% 0% 0% 7% 0% 

18 96% 0% 0% 4% 0% 

19 98% 0% 0% 2% 0% 

20 97% 0% 0% 3% 0% 
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Table A12 – Optimal portfolios for CRRA with a coefficient of 16 

Investment horizon Stocks Bills Bonds Gold Cash 

1 12% 76% 2% 10% 0% 

2 12% 75% 0% 13% 0% 

3 21% 79% 0% 0% 0% 

4 26% 74% 0% 0% 0% 

5 20% 80% 0% 0% 0% 

6 41% 58% 0% 2% 0% 

7 42% 57% 0% 2% 0% 

8 35% 64% 0% 0% 0% 

9 38% 61% 0% 1% 0% 

10 40% 59% 0% 1% 0% 

11 40% 59% 0% 1% 0% 

12 58% 39% 0% 2% 0% 

13 69% 25% 0% 6% 0% 

14 43% 55% 0% 2% 0% 

15 39% 60% 0% 1% 0% 

16 87% 10% 0% 2% 0% 

17 95% 0% 0% 5% 0% 

18 100% 0% 0% 0% 0% 

19 100% 0% 0% 0% 0% 

20 100% 0% 0% 0% 0% 

 


