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Abstract 

The thesis finds evidence supporting that the assumptions surrounding the Basel 

framework are inadequate. Both risk measures applied in Basel, value-at-risk and 

expected shortfall, fails in their most standard form to provide estimates which are 

sufficiently reducing losses. In particular, the assumption of Gaussian distributed 

returns surrounding the Basel framework is found to be wrong. Both the 

homoscedastic volatility estimates provided by the model and the assumption of 

identically and independent returns are found to be violated.  

The returns are found to be relatively stable from day-to-day over the whole period, 

but is at times quite volatile. Analyses of the observations show that, when divided 

into two subsamples, a normal and extreme market, the empirical distribution of the 

two differs significantly from each other and from a Gaussian distribution. Both are 

found to have high kurtosis and negative skewness, in addition to volatility clustering. 

The two market states differ the most in tail properties, as the extreme market is 

described by the large magnitude of the returns at each end of the distribution, whereas 

the normal market displays more moderate values. The findings suggest that it may not 

be suitable to use one single model to describe a market characterised by large 

differences in stability, but rather apply two models conditionally of the given market 

state. 

To adjust the approach of the Basel framework, two models are proposed for the 

normal and extreme market respectively. A student’s t-distributed GARCH (1,1) 

model is used during normal market conditions to incorporate the distribution 

properties of the sample, while at the same time incorporating heteroskedastic 

volatility estimates. Extreme value theory is proposed applied for extreme market 

conditions in the form of a conditional peak-over-threshold model to account for both 

the extremity of the tails and to incorporate heteroskedastic volatility. The two models 

are also combined into one applicable model to provide a realistic setup for a portfolio 

manager. The models are found to violate the risk limits of VaR and ES far less than 

the Basel framework, during both normal and non-normal market conditions. In 

addition, the two models prove to be more adaptable to the state of the market, quickly 

incorporating changing volatility and thus effectively notifying a portfolio manager of 

adjusted risk exposure.   
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Chapter 1 

 1 Introduction 

This chapter is meant to give the reader an introduction to thesis. Insight into the 

reflections done in the process of writing the thesis will be presented. First, the choice 

of topic and reasoning behind the choice will be presented. In section 1.2 the specific 

problem in which the thesis is trying to solve will be elaborated upon. Then, the topic 

will be delimited and the structure of the thesis explained.  

To motivate and introduce the reader to each respective subject, every chapter 

throughout the thesis will begin with a short introduction.   

1.1 Motivation 

“A fraud.” This is the characteristic Nassim Taleb, the author of “The Black Swan”, 

describes the risk measure value-at-risk (VaR) in the NY Times article “Risk 

Mismanagement” (2009). Other quotes originated from the same article such as “VaR 

is a very limited tool.” Or: “Risk modelling didn’t help as much as it should have,” 

and: “[..] relatively useless as a risk-management tool and potentially catastrophic 

when its use creates a false sense of security [..] This is like an air bag that works all 

the time, except when you have a car accident.” Quotes which stems from a risk 

consultant, a former risk manager at Morgan Stanley and a hedge fund founder 

respectively tells a story of a risk measure which, in the least, is disputed. The article 

has its origin as a backdrop to the Financial Crisis of ’08 where VaR was one of the 

factors blamed for the magnitude of the crisis.  

Value-at-risk was introduced in banking regulations in 1996. In the run-up to the 

financial crisis it failed completely to capture the risks, which for the largest banks and 

investment firms were excessive. As VaR was used to set capital requirements this had 

severe consequences, when companies failed to model their own actual risk levels. A 

result of the crisis and the failure of the model to capture the true market risk lead to 

regulatory reactions. The VaR requirements was changed to include a “Stressed VaR 

measure” and later the Basel committee has suggested the inclusion of the required use 
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of another risk measure, conditional value-at-risk (CVaR), designed to deal with 

‘black swan’ loss events, or so-called tail risk.1  

As VaR measures portfolio risk along the Gaussian distribution curve it makes certain 

assumptions, one being, in short, that tomorrow will be more or less like today. The 

result being, VaR estimates the risk under normal market conditions. This raises the 

question of the ability of VaR to measure risk in a turbulent market such as the 

Financial Crisis of ’08, dot-com bubble and Black Monday. If limited by certain 

market conditions one might think that another measure is needed in the case of non-

normal markets.   

The greatest risks are not the ones you can see or measure, but the ones you cannot see 

and as a result not measure. These are the risks found to be far outside the limits of 

Gaussian probability, and as such are not thought to happen. Yet they do. Only, 

historically, the input into risk-management models has been recent information rather 

than historic periods of stress, which has led to low capital requirements. Further, VaR 

as a risk measure in the Basel framework deals with 99% of the cases, as this is the 

standard confidence level. As a result, it tells you nothing about the cases that happens 

in the other 1%, the extreme observations or the ‘black swans’. In other words, VaR 

tells you that you are unlikely to lose more than a certain amount 99% of the time, but 

says nothing about what could potentially happen the remaining 1% of the time.  

In the 1% you could lose two million instead of one million, and this could happen 

once or twice a year without consequences. The problem is if you lose 10 or 100 times 

that, and end up going bankrupt. VaR has no way of measuring this. As a 

consequence, CVaR has been introduced. It tells you the expected loss, conditional on 

the losses exceeding the 1% threshold set by the VaR. The introduction of CVaR 

should as a result be, by definition, a more conservative risk measure. Which raises the 

question of its ability where VaR fails; does it handle turbulent markets and do we 

obtain information about the losses beyond the 99% limit as is intended? Further, does 

CVaR also suffer beneath the assumptions of normality as has been the critique of 

VaR?  

The starting point of the thesis is the failure of VaR and the subsequent increased 

requirements of risk management, in particular the introduction of CVaR. The failure 

of the financial systems has broad consequences for the society, and better risk 

                                                      
1 See [1] 
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management tools, at the disposal of large banks and investment firms, could help 

mitigate the risks of such failures. As such, it would help not only the companies itself, 

but also the stakeholders, which in the broadest sense also mean society.  

1.2 Problem 

Throughout the thesis, theoretical risk models will be described and elaborated upon 

using our dataset. 2 In particular, VaR and CVaR will, as motivated upon above, be 

analysed thoroughly. The performance of these models will be tested to be able to 

show potential shortcomings of each methodology. As a result, when knowing the 

potential problems, we will be able to adjust the models to mitigate any flaws, which 

in turn should give more accurate market risk exposure estimates.  

We know we will observe periods with continued increased volatility, which will 

make it possible to distinguish between two market states; first, normal market 

conditions where volatility per definition should be lower, and second, non-normal or 

extreme market conditions, where we will observe higher and more fluctuating 

volatility levels. This distinction in market conditions makes it possible to statistically 

define two different market states, to see if there is a difference in modelling the two. 

If so, the best fit model, given the market setting, must be identified. 

Summarised this has led to the following question: 

How does the quantified output of VaR and CVaR perform under normal and non-

normal market conditions? 

Both value-at-risk (VaR) and conditional value-at-risk (CVaR) or expected shortfall 

(ES) as it will be denoted from this point on, will be tested in different forms. The 

corresponding assumptions, advantages and disadvantages will be described to be able 

to answer the question. By presenting a set of models we believe we will be able to 

present a general view of the two market states true risk profiles. To answer the main 

problem defined above, we will throughout the thesis seek to answer a set of 

questions:  

 What is, or what can be assumed to be, a standard value-at-risk and expected 

shortfall model? 

                                                      
2 See section 2.1 
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 What is the characteristics of normal and extreme market conditions, and how 

can they be statistically defined? 

 Is there a difference in how the risk models perform during normal and 

extreme market periods? If so, which type of model do best estimate risk 

under each condition? 

 How can we best decide which model to apply at different points in time?  

 Is it possible to make qualified guesses on future market movements, to be 

able to choose which model to apply? 

In addition, much emphasis will be laid upon the choice of distribution to accurately 

model the risk. We will seek to explore whether the often assumed Gaussian 

distribution fit our empirical data and is able to give precise risk estimates. If not, 

other choices of distributions will be investigated to see which best describe the 

empirical data.   

1.3 Delimitation 

The focus of the thesis is to effectively estimate VaR and ES through the appropriate 

distribution models during different market states. Therefore, the main priority is to 

explore how the underlying models’ ability of estimating future risk exposure is 

affected by market movements, given the empirical distribution of returns. As a result, 

since the market movements from day-to-day is crucial, the overall volatility of the 

returns and its direct impact is important for the estimation of risk exposure. Because 

of this, the modelling of explicit changes in correlation, interest and exchange rates 

and their effect on the risk measures are not of primary focus. We know all three 

factors to continuously influence portfolio values, and as a result they are important to 

take into consideration. Yet, the explicitly given market movements and the challenge 

in how to model these are the primary focus.  

Further, the scope is limited to model the risk of stock indices, represented by a 

diversified, long positioned portfolio3 in the thesis. As a consequence, financial 

derivatives or other financial products are not considered. The selection of the 

portfolio is not subject to any optimisation, and we assume the portfolio as explicitly 

given. The portfolio weights will be held constant and the portfolio value will evolve 

freely in line with the market movements throughout time. As a result, all estimations 

                                                      
3 Defined in chapter 2.1 
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related to the risk measures are done on the portfolio as it is, the result being that it is 

not possible to directly compare the size of the portfolio values at the end of the period 

with the beginning, as the portfolio evolves with time. 

The findings of the thesis are applied to two sets of data, the original sample and an 

out-of-sample. Because of this, the results are mainly applicable to the contents of the 

two datasets, and only the tendencies found can be argued to be relevant to similar 

data. The validity is the empirical data used, and cannot as a result be generalised to 

other markets and financial products.  

Lastly, the area of application for the thesis is to see how changes in risk measures 

affect institutional investors, in particular portfolio managers, which could have 

constraints regarding risk exposure. A specific risk constraint or cap will not be 

defined, but consequences of shifting risk exposure will be discussed. In other words, 

no specific calculations on the consequences of the risk exposure found throughout the 

thesis will be done, rather the findings will be thoroughly discussed at each point in 

time.  

1.4 Structure 

Chapter 2 & 3: Market characteristics, VaR and ES 

The characteristics of the data are explored. Normal and extreme market conditions are 

defined. Then, value-at-risk and expected shortfall are described and a standard 

approach to modelling the two introduced.  

Chapter 4 & 5: Normality, GARCH, extreme value theory 

In this part of the thesis, the normality and statistical characteristics of the normal and 

extreme samples are investigated. Alternative ways to describe the two subsamples are 

explored.  

Chapter 6 & 7: Thorough testing of discovered models   

The properties of the different market conditions and the appropriate models are put 

together. Through chapter 6 and 7 the assumptions, advantages and disadvantages of 

the models are explained and their performance tested. The findings are further 

explored through an out-of-sample test to better be able to draw conclusions on the 

results.  
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Chapter 8: A deeper look into extreme periods 

In this chapter we look further into the characteristics of the extreme periods, as we 

have defined them in chapter 2. The properties of the extreme periods are explained 

and the time leading up to extreme market conditions explained, in an attempt to make 

qualified guesses on future extreme returns. Furthermore, we seek to test the findings 

in the chapter and its abilities in guessing future extreme market movements. 

Data processing 

To gather the empirical data used in the thesis, Thomson Reuters Datastream will be 

used as primary source of information. Implementation and calculations of empirical 

data will be performed using the RStudio and Microsoft Excel. R-codes can be 

acquired by email at: andreasbarfod[at]gmail.com or  sondre.valle[at]hestvik.no. 

  

 

  

  

mailto:andreasbarfod[at]gmail.com
mailto:sondre.valle.hestvik@gmail.com
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Chapter 2 

2 Data characteristics 

As we seek to find how value-at-risk and expected shortfall perform under normal and 

non-normal market conditions, we need to first define a dataset so that we are able to 

investigate both market states. The observations have to span over a large enough time 

period in order for there to be enough non-normal or extreme returns to model 

properly. Further, the definition of extreme have to be determined such that it is 

possible to, in a statistical manner, pick up the returns to best model their performance 

against the ‘normal’ market returns. When investigating the performance of each 

model later, we emphasise that we do not see risk management as precise science, but 

rather a tool intended to provide an overview of risk exposure, with the purpose to 

manage it.  

2.1 The Dataset 

The rationale behind our choice of data is explained in this section. As the estimates of 

VaR and ES need to span over a large time period to get accurate estimates, it is also 

important to know the market development over the period. The dataset forms the 

basis of the context in which estimates are conducted, which makes it important that 

the data best resembles the real world, as we wish to build models on the correct 

empirical basis.  

The basis for our chosen dataset was to construct an investment universe as close to 

that of the average investor as possible, which also should concern the likely risk a 

portfolio manager could be exposed to. Some investors will invest in less risky 

products such as bonds and indices. Others, on the other hand, will be interested in an 

increased risk exposure with positions in stocks, by gearing investments or by taking 

long or short positions in derivatives. We have, as a consequence, chosen to base our 

data on stock indices alone, in an attempt to capture the “average” of the different risk 

exposure. In addition, we think it is important not to overcomplicate the estimation 

with complex products that is difficult to model and does not in itself contribute to the 

overall problem, namely the estimation of VaR and ES. 
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The use of indices gives us indirect diversification effects, by the pooling of large 

amounts of stocks these conduct. With the inclusion of several geographically 

diversified indices, this effect is further amplified, while capturing a larger investment 

universe at the same time, again, with the underlying thought being that the data 

should best reflect an average risk profile.  

Our data spans over a period of 40 years from, 1977 to year-end 2016, and consists of 

three indices, the S&P 500, DAX 30 and NIKKEI 225. We have chosen indices with 

as long a history of returns as possible, while still being relevant to the average 

portfolio manager. The length of our time series affect the accuracy of our statistical 

analysis and, as such, the robustness of our thesis. This affects the availability of 

indices to our dataset. An Emerging Markets index, for instance, which would further 

expand the investment universe could not be included as we could not find one with 

long enough history of returns to justify its inclusion.   

Therefore, the investment universe consists of America, with the S&P 500 consisting 

of the 500 largest companies listed on NYSE or NASDAQ; Europe, where DAX 30 

consists of the 30 major German companies listed on the Frankfurt Stock Exchange; 

and Asia where the NIKKEI 225 index represents the 225 stocks in the 1st section of 

the Tokyo Stock Exchange, which is for the large companies listed on the exchange.  

The dataset has daily returns from the beginning of 1977 while the cut-off date is 

December 31st 2016. The total sample is therefore 10,160 daily returns on each index, 

and a total of 40,640 daily returns. This gives an average of 254 trading days per year. 

The data uses daily close prices from Datastream Reuters. All returns have been 

calculated from prices quoted in the local currency of the index. We have chosen to 

use log-returns, as this is the often applied method in the financial literature today. 

From this point on log-returns will be referred to as returns.  

We have chosen a simple combination of our indices to form the portfolio used to 

conduct calculations in the thesis, with equal weights attributed to each of the three. 

The portfolio is not recalculated at any point during the time period, meaning that each 

index has a constant weight of one-third during the whole period. The reasoning 

behind choosing such a simple portfolio is that portfolio optimisation is not a focus of 

the thesis, and we see the portfolio as explicitly given from this point on, meaning that 

our concern is to use it to find the best estimate for market risk.  
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2.2 Market Characteristics 

Figure 2.1 displays the daily returns of the portfolio from 1977-2016 on the y-axis 

while the x-axis is time displayed as years. Most intraday returns are centred around 

zero, with a large majority within the interval of plus/minus 1%. A few observations 

are outside this interval, with most still being within a 5% intraday movement in both 

directions.   

Figure 2.1: Return plot dataset 

 

The dataset contains returns from a large period in time, and observations over 40 

years should include a large variety of market states. The time period of the dataset is 

covering several crises in global financial markets, such as Black Monday (1987), the 

Dot-com bubble (2000) and the Late 2000s Financial Crisis (2008). All of which can 

be observed as relatively large vertical movements in the plot, expanding the range of 

returns observed significantly. This should provide us with an adequate number of 

extreme observations, as all three periods were characterised by large fluctuations, and 

combined they spanned over a large number of trading days. Further, the markets 

regularly experience periods of fluctuations with larger corrections or events such as 

Brexit, which, especially if compared with a short-term historical mean and standard 

deviation, might be seen as extreme. In the plot they are typically displayed as dots 

outside the large cluster around +/- 1%, but still well within the interval stretching 

from -5% to +5%.  

A 40-year long period of stock returns will mostly contain observations which could 

not, in any way, be defined as extreme. A majority of the data will be subject to small 

intraday movements in the periods between the corrections and crises the markets 

experience. Such periods are typically characterised by trends, where the markets 

move in one direction when seen over a larger timespan, but where this trend is not 
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observable in the day-to-day returns. These periods will, especially when compared to 

the observations that fall into the extreme category described above, be well within the 

normal state of the market.  

As a major objective of the thesis is to explore how VaR and ES are affected, in 

particular by so called "extreme conditions", the dataset will be divided into two 

subsamples; one for normal conditions and one for extreme conditions. The reasoning 

behind this is twofold; first, as will be investigated further in the next subchapter, we 

believe financial markets have different statistical properties during “extreme” 

conditions and "normal" states. This could possibly affect the choice of distribution 

model, and bias results if not taken into consideration. Second, as we later will 

investigate VaR and ES' characteristics when conditions in the financial markets 

change, it could be advantageously to be able to distinguish each period's statistical 

properties from one another, and as such use a different approach to each market state. 

Even though it is possible to observe when the occurrence of so called extreme periods 

discussed earlier happens in the market by simply looking at the returns, it would not 

be a quantitative definition of extremeness, but rather a qualitative assessment. In 

addition, we would not be able to pick up all market periods where the fluctuations are 

extreme at that exact time, as this is not observable in one return alone, but rather 

needs to be observed over a larger time frame. As such, we would not be able to define 

one return as extreme as a result of the state of the market, but rather as a result of the 

return’s extremeness when compared to the whole sample.  In the next section, we will 

therefore further investigate the possibility of defining the extremeness of the returns, 

based on a quantitative measure that takes into account the current state of the market. 

2.3 Dividing into Subsamples 

Built on the statistical properties of the returns we want to define them as normal or 

extreme to be able to model VaR and ES accurately, in particular, when markets 

experience large fluctuations, as this has proved to be where the risk measures in their 

standard form experience problems.4 Distinguishing between normal and extreme 

returns could provide us with an option to better measure the risk in the periods 

characterised by large fluctuations, as we get the ability to customise the modelling of 

these observations. This gives us the opportunity to use the specific characteristics of 

                                                      
4 See [2] and [3] 
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each subsample to measure the risk through separate choice of distributions fitted 

individually on both selections.  

When defining the returns, it is important to distinguish between events happening in 

the market every 50-100 years, which there is no meaning in modelling as they are so 

rare, and extreme events happening a handful of days every year on average. In other 

words, the meaning of the word extreme here is not events which are only likely to 

happen every few years, but rather can be observed a few times a year. As such, they 

are extreme compared to the state of the market at that time, for instance over the last 

year, and not extreme over a larger historic perspective. Therefore, when defining the 

extreme observations, we have to make sure that they are not defined too extreme, as 

we rather want too many, than too few extreme observations, since these are the 

interesting events to investigate further.  

When dividing the complete sample in two, we use the properties of a Gaussian 

distribution when defining an extreme period. The Gaussian distribution is a common 

distribution used to represent real-value random variables with unknown 

distributions.5 Since we have no information of our distribution yet this is a natural 

starting point. Therefore, when finding an appropriate probability to define as extreme, 

we will use the probability theory surrounding such a distribution. However, we 

cannot expect a theoretical probability of a certain number of returns to be accurate, as 

this would assume the distribution to be exactly equal to a Gaussian distribution. We 

assume the distribution to be Gaussian up until this point, as we have done no 

empirical estimations to confirm otherwise, but this is merely a tool to find 

probabilities within an approximate interval, and as such the exact fit of distribution is 

not important yet.  

We want our definition of extreme to contain some information of the short-term state 

of the market, i.e. over the last year, as the extremeness should be relative to that of 

the market condition at any given point in time. Further, we want a definition that 

include a certain percentage of the values that lie outside the given measure to be 

flagged as extreme, such that the extreme returns are defined relative to the properties 

of the given dataset. An appropriate measure, then, would involve an assessment of a 

given standard deviation around the mean, as we would be able to both take into 

account the current market conditions through a rolling mean and standard deviation, 

                                                      
5 See [4] 
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and the extreme sample would be relative to the properties of the dataset as a whole, 

and as such applicable on other data. 

In other words, we want a confidence interval giving us a probability of a return being 

within a certain interval around a rolling mean. The probability, given that the 

distribution is normal, i.e. that an observation is within two standard deviations of the 

mean, is given as: 

 ℙ(𝜇 − 2𝜎 ≤ 𝑋 ≤ 𝜇 − 2𝜎) =  𝜙(2) − 𝜙(−2) ≈ 0.9772 − (1 − 0.9772) ≈ 0.9545 (2.1) 

So that approximately 5% of the returns will be more than +/- two standard deviations 

from the mean. Choosing the returns to be either +/- one or +/- three standard 

deviations from the mean would lead to probabilities of approximately 68.27% and 

99.73% respectively and would as such be too loosely and tightly defined to find the 

appropriate number of extreme returns. We further assume that the returns are iid, i.e. 

independent and identically distributed, so that each return has the same probability 

distribution as others and all returns are mutually independent.6 Then the probability of 

seeing one such return over, say one week, or five trading days is given as: 

(
𝑛

𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥 =  (

5

1
) 0.051 ∙  0.954 = 20.36%    (2.2) 

Assuming that returns are iid, the probability of observing one return approximately 

+/- two standard deviations from the mean is 20.36%. A sensitivity analysis, where the 

columns represent number of trading days, i.e. a week, two weeks and a month, and 

the rows represent number of extreme observations during the same periods, yields the 

following probabilities: 

Table 2.1: Gaussian probability of extreme returns 

 

As these are theoretical figures only, we apply the same input parameters to the 

empirical data, i.e. we count the number of occurrences where we see 1-5 returns that 

are +/- two standard deviations from the mean over 5-20 trading days. The mean and 

                                                      
6 See [5] 
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standard deviation are rolling averages over the last year (254 trading days), so that the 

extremeness of the returns is a constant factor of the current state of the market. This 

results in the following figures: 

Table 2.2: Empirical probability of extreme returns 

 

The actual percentage of the returns that are classified as extreme, i.e. the number of 

observations being +/- two standard deviations from the mean, are significantly higher 

than the theoretical probabilities suggested by a Gaussian distribution. However, the 

probability of observing one extreme return is more similar to a Gaussian distribution 

compared to the probability of observing several extreme returns over a given period, 

which is increasing empirically. It seems as if extreme returns are more likely to occur 

after one another and thus increasing the actual probability of observing several 

extreme observations over a short time period.  

We have several possibilities when defining the extreme sample which yields a 

percentage of extreme returns that are within an interval where we have a handful of 

observations each year, on average. A figure around 5% would result in the number of 

extreme returns each year being around 13 out of the 254 trading days per year we 

have in our sample. Further, we need to take into account the sample size of the 

extreme returns. A too low share of returns being defined as extreme would lead to a 

small sample, which in turn could lead to difficulties in both fitting a distribution to 

the observations and drawing conclusions about it in general. Another factor to 

consider is the length of the period in which we want to count the number of 

observations being +/- two standard deviations from the mean. A month long 

perspective (~20 trading days) would require a large number of observations, five or 

more, and as such the number of “normal” returns included in the twenty day period 

then being defined as extreme would be up to 75%. With a week long period (five 

trading days), up to 60% of the returns would be normal, with two returns being 

defined as extreme. A two-week long perspective (10 trading days) with three extreme 

returns would result in up to 70% of the returns being normal. At the same time, the 

period in itself is long enough to draw conclusion on each period on its own. With 10-
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day long periods we also have twice as many individual intervals to analyse as the 20-

day long periods.  

Therefore, the conclusion is to use 10-day periods as the defined length in which we 

count extreme returns. To have around 5% extreme events to observe each year on 

average, the constraint must be defined such that we observe three returns or more 

being +/- two standard deviations from the mean over each 10-day period. The result 

is an extreme sample containing 590 returns, or 5.96% of the complete sample. The 

normal sample then, which include observations that does not fulfil the extreme 

criterion consists of 9310 returns. In total the normal and extreme subsamples 

corresponds to 39 years of data or 9900 observations, as we use a rolling mean and 

standard deviation of one year when computing two return sets. 

Figure 2.2: Return distribution subsamples 

 

Figure 2.2 illustrates the two subsamples together, where the blue lines represent the 

normal returns, while the red lines are the extreme observations. The definition of the 

extreme sample seems to fit well with the largest fluctuating returns in the dataset. 

Some apparently extreme returns, based on their deviation from the mean of the 

sample, are marked in blue and as such defined in the normal sample, but is then 

extreme individual events not occurring closely enough in time to be defined within an 

extreme period.  

As found earlier, the share of extreme returns in the sample, compared to the 

theoretical probabilities of the Gaussian distribution, are significantly higher 

throughout the varying number of trading days and observations displayed in the 

sensitivity analysis. This could be an indication of the sample not resembling the 

properties found in a Gaussian distribution, and as such it could not be described as 

one. A further investigation into the distribution properties of the normal and extreme 
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subsamples will be conducted in the following sections in an attempt to further 

confirm the non-normality of the returns.   

2.4 Concluding Remarks 

With a large dataset spanning over 40 years combined into a diversified portfolio of 

three large indices, we find the sample to contain enough daily observations to divide 

it into two subsamples. The ‘extreme sample’, in particular, is found large enough to 

model. In addition, the period the dataset is spanning over covers market corrections, 

crashes and crises so that the returns in the extreme sample itself should be defined 

such that they are exactly that – extreme.  

With the observations collected into a dataset, and the normal and non-normal market 

conditions defined, the risk measures, VaR and ES, which quantified output will be 

investigated, have to be explained thoroughly. Both will be defined and a standard 

approach to estimate market risk will be proposed in the next chapter.  
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Chapter 3 

3 Value-at-Risk and Expected Shortfall  

The two risk measures value-at-risk (VaR) and expected shortfall (ES) provides an 

opportunity to produce statistical data on the market risk during the defined normal 

and extreme periods. Both are widely used and standardised through the Basel 

Committee on Banking Supervision, and as such they serve as a good benchmark 

throughout the thesis. Both measures will be introduced and the results of a modified 

version of the Basel VaR and ES run on the dataset presented.  

Both sides of the distribution will be presented, i.e. the loss and gain side of each risk 

measure, denoted VaR-/ES- and VaR+/ES+ respectively, which makes it possible to 

further investigate the differences in the return properties for negative and positive 

observations during normal and extreme market states.  

3.1 Value-at-Risk  

Value-at-risk (VaR) measures the potential loss in the value of a portfolio over the 

next, defined period of time, for a given confidence interval. It is a threshold value 

indicating that by a probability p, one will not lose more than the VaR loss over a 

given time period t. Or, defined the other way around, VaR is the minimum potential 

loss in 1-p cases. What happens beyond this threshold and probability p, is not 

predicted by the framework of VaR. The Basel Committee on Banking Supervision 

applies VaR as a method of quantifying risk exposure. As VaR is a both a required and 

reputable method of quantifying risk, we find it natural to apply VaR when 

determining the risk and measuring the performance of modelling normal and extreme 

market conditions.  

3.1.1 Confidence Level 

A common measurement unit, a time horizon and a probability is needed to calculate 

VaR. The probability of loss chosen usually ranges between one and five percent, 

while the time horizon can be of any length, but with the assumption that the portfolio 

composition does not change during the holding period. The confidence level will be 
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calculated under the same assumptions as the Basel committee guides, namely at a 

level of 99%.7 

3.1.2 Investment Horizon 

The standard of the Basel model is to calculate a daily VaR over a 10-day investment 

horizon.7 The intention of the length of the horizon is such that there is a possibility of 

liquidating the portfolio, in case it is necessary to notably adjust risk exposure. 

Therefore, the investment horizon represents the liquidity level of the portfolio, and 

the more illiquid assets are, the more time is needed to sell of the assets. In other 

words, when new market information is incorporated, risk levels changes and it could 

take time to adjust the portfolio to an appropriate risk level. However, the assets 

combined in the portfolio of the thesis are highly liquid, all of them being stock 

indices in developed economies. For the scope of the thesis, and assuming that buying 

or selling assets does not affect markets dynamics, a one-day horizon for liquidating 

the portfolio should be sufficient.  

Calculating 10-day VaR and ES such as proposed by Basel, implies the use of 

overlapping observations, meaning that observations are counted and included several 

times. This could potentially bias the results, indicating more violations than actually 

present. Hypothetically, one extreme loss (gain) could affect the nine following days 

of observations and thus make the 10-day loss (gain) exceed VaR and ES 10 times in 

total, even though it was caused by only one extreme loss (gain). Due to this potential 

bias, we find a one-day horizon more appropriate and accurate for the intention of the 

thesis, namely modelling distributions conditionally for normal and non-normal 

market states, and measure the performance through VaR and ES. Calculating VaR 

and ES for a one-day horizon gives more precise estimates, making it possible to 

directly compare daily loss (gain) with the corresponding estimate for VaR and ES. 

Therefore, a one-day horizon, rather than a 10-day horizon, will be applied as the 

investment perspective throughout the thesis.  

3.1.3 Formula 

𝑉𝑎𝑅𝛼 % = 𝜋(𝜇𝑖 + 𝑍𝛼𝜎𝑖)        (3.1) 

Where α is the confidence level, 𝜋 is the portfolio value, Z is the number of standard 

deviations corresponding to a confidence level of α, and 𝜎 is the volatility. The Basel 

                                                      
7 See [6] 
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committee advices the use a confidence level at 99%. This implies that a portfolio 

manager, if regulated by Basel directives, should be able to withstand a loss equal to 

99% VaR over a one-day horizon. If the model at 99% confidence level is accurate, 

99% of all observed losses should be less than the VaR threshold, implying 1% loss 

violations. When modelling Basel VaR, the model is indifferent of whether gains or 

losses are calculated, due to the symmetrical properties of the Gaussian distribution.  

3.1.4 Results  

We will backtest the dataset to examine how the Basel VaR performs throughout the 

period. The VaR is measured daily with a risk perspective of one day into the future.  

The portfolio value is calculated by hypothetically investing one million at the start of 

1978 and letting this value evolve by the daily returns of the portfolio. The portfolio 

value at day i-1 is used to calculate the VaR for the following day, i. Actual loss (gain) 

is measured by taking the portfolio value at time i, subtracted by the portfolio value at 

day i-1. Doing this, VaR estimates at day i will be compared with actual (loss) at the 

same day, i. Mean and volatility are calculated using a rolling window of one year.8 At 

each time point the mean and volatility will be calculated based on the preceding 254 

days, i.e. the average number of trading days per year present in the sample. This 

means that our first observation is on the 255th day, at the beginning of 1978.  

3.1.4.1 Violation Analysis 

To quantitatively measure the performance of this VaR model, we will investigate 

how many times actual losses (gains) are exceeding their corresponding VaR 

thresholds. For each time it exceeds, this will be counted as a violation of VaR. A 

violation rate can then be derived, simply by dividing by the sample size. By 

definition, when calculating 99% VaR, 1% of the losses (gains) should intentionally 

exceed VaR, resulting in a target violation rate of 1%. To see how VaR performed 

during different market states, the definition of normal and extreme markets will be 

applied. This makes it possible to identify whether the violation occurred during a 

normal or extreme market state. Combining the normal and extreme sample, the 

complete sample is found. As such, the sum of violations and sample sizes for 

respectively normal and extreme market states should be identical to the number of 

violation and sample size for the complete sample. 

                                                      
8 See [7] 
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Table 3.1: VaR violation rates using Basel model 

 

Examining the numbers more closely, as displayed in table 3.1, results are not as 

accurate as the model projected them to be, as we have far more violations than 1% of 

the total observations for each quantile VaR+ and VaR-. VaR-, the loss side VaR, is 

over the complete sample violated twice as many time as the target rate of 1%, thus 

underestimating the risk. VaR+, the gain side VaR, is more accurate, but still 

underestimating the risk. Investigating further what causes the violations, it is evident 

during which market states most violations occur. For the extreme market states, the 

violations are approximately 17 and 9 times as many, for VaR- and VaR+ 

respectively, as the target violation rate. This is highly inaccurate and makes the model 

as a whole, over the complete sample, violate more often. Looking at violations during 

normal market conditions, these are found to be on a more reasonable level than 

during extreme market states, approximately at the target violation rate. However, the 

slightly higher violation rate suggests an overestimation of the risk, which could be a 

result of a constant high VaR rather than the accuracy of the model. This is easier 

investigated with a plot of the estimates.   

3.1.4.2 Graphical Analysis 

By analysing violation rates it is possible to get an impression of the performance of 

VaR throughout the time period. However, it gives no information about the level of 

VaR in those scenarios where it is not violated. For a portfolio manager the size of the 

VaR might have implications for the exposure to the market, in order not to exceed 

potential constraints regarding VaR levels. As such, it is of great importance that VaR 

is not estimated unnecessary high. Ideally, it should be as low as possible, but still 

derive VaR estimates with a 99% confidence. To see how it performs, it is possible to 

graphically plot VaR estimates and actual losses (gains) for the time period. Figure 3.1 

below, illustrates VaR, losses (gains) and violations over the period 1978-2016. The 

vertical y-axis represents one-day portfolio profit/loss (P/L), while the horizontal x-

axis denotes days i in years. The dark blue lines are the upper and lower quantile of the 

value-at-risk. Between the dark blue lines, the sky blue points represent losses (gains) 

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 206 149 105 97 101 52

Violation rate 2.08% 1.51% 1.13% 1.04% 17.12% 8.81%

Sample size 9900 9900 9310 9310 590 590 

Normal sample Extreme sampleComplete sample
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not violating 99% one-day VaR+ or VaR-. Moreover, the red dots represent losses 

(gains) violating 99% one-day VaR+ or VaR-. 

Figure 3.1: Basel value-at-risk 

 

The visualisation of the Basel VaR show indications of a slow model with long 

memory. The fluctuations in the VaR estimates are small and seem to react slowly 

back to normal levels after spikes or sustained periods of high estimates occur. This 

signalises that the use of one-year historical mean and volatility, and an underlying 

Gaussian distribution is potentially not the best fit for estimating VaR. Using one year 

historical calculations, means that the model is incorporating information that may no 

longer be relevant. Large losses cause an upward bias in VaR estimates, while longer 

periods of returns around zero causes a downward bias. The implications are a model 

reacting too late and underestimating VaR when markets turn volatile, but 

overestimates VaR when markets are less volatile. In addition, the likelihood of 

extreme observations found in the empirical data, is significantly higher than the 

theoretical probability derived by the underlying Gaussian distribution of the model. 

Which confirms the findings in chapter 2.3, namely that the frequency of abnormal 

returns is severely underestimated by a Gaussian distribution.  

3.1.5 Conclusion 

The performance of VaR when applying the Basel framework does indicate a bad fit 

of the model to the data sample, in particular during extreme market states. Violations 

are found to be significantly higher than the target violation rate, which intentionally 

should be 1% for a 99% VaR model. The main reason for the underestimation of risk 

is due to the underlying Gaussian distribution not being able to explain the likelihood 

of extreme events, as the theoretical probability of such abnormal returns is so low that 

it should in practice almost never happen. Still, empirically it is quite frequently 
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observed, potentially causing great losses for a portfolio manager. Further, the 

graphical analysis displayed that the use of one year of equally weighted historical 

data, made the model slow, not incorporating information fast enough.  

3.2 Expected Shortfall 

The second risk measure, expected shortfall (ES) will be presented in this chapter. 

Expected shortfall (ES), or conditional value-at-risk (CVaR), is a risk measure 

extending the properties of value-at-risk (VaR). While VaR is concerned with the 

value occurring at the threshold of a quantile q, ES focuses on what happens beyond 

this threshold. In other words, ES is the expected loss once VaR is reached. Therefore, 

at the same confidence level, ES is by definition always larger than the value-at-risk. 

The Basel Committee has proposed ES to be accompanying VaR as risk measure for 

regulatory standards, due to VaR’s lack of ability to capture tail risk.9 As such, the 

analysis of ES will also be an evaluation of its performance compared to VaR, in order 

to see whether it provides complementary estimates. If a given distribution has fat 

tails, meaning higher probability of extreme events, ES should capture the potential 

riskiness of this distribution and thus the magnitude of the tail loss such that it 

mitigates the underestimation of risk exposure during extreme periods VaR is found to 

do.  

The tail loss is the extreme loss events of the distribution. These extreme events may 

be crucial for the owner of the portfolio, since the impact of tail events could be 

substantial, where a worst case scenario could wipe out a large part of the investment. 

If a good estimate of the portfolio distribution is found, it could extend information 

availability of tail risk and thus capture fat tails, making the portfolio manager aware 

of hidden risk not exposed by VaR. Even though uncovering losses behind heavy tails 

is, in theory, the main objective of ES, it is difficult to do it in practice for an unknown 

distribution. This is an issue of lack of observations as tail events are infrequent 

occurrences, and the outcome of the model is only as good as the input. To explain 

heavy tails, a distribution which is capturing the characteristics and actual movements 

of the returns, would have to be modelled. However, anticipating these returns is 

difficult, as they are rare, only occurring few times per year. Hence, the frequency is 

low, yet sensitivity and impact significant.  

                                                      
9 See [8] 
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3.2.1 Confidence Level 

The risk sensitivity does not increase linearly with a higher confidence level. Moving 

towards the tail, risk sensitivity increases exponentially and when approaching a 

theoretical value of a 100% confidence level, VaR and ES move towards each other.  

Figure 3.2: Risk sensitivity VaR and ES 

 

While the Basel Committee guides the use of a 99% confidence level for VaR, they 

advise the use of 97.5% confidence level for ES.10 The reason why Basel uses 97.5% 

ES, is that it provides approximately the same risk sensitivity as 99% VaR, as the risk 

sensitivity is lower for ES than for VaR.  Eyeballing the graph above, this detail can be 

confirmed. However, while using 99% VaR and 97.5% ES the risk sensitivity might 

be the same, but ES is no longer a direct extension of the 99% VaR. The size of the 

tail is not the same, having 99% VaR estimating a 1% tail quantile, while 97.5% ES 

estimating a 2.5% tail quantile. As the objective of VaR and ES in the thesis is to 

measure the performance of modelling riskiness during normal and non-normal market 

states, we believe consistency between VaR and ES is more important, than having 

equal risk sensitivity. Using 99% VaR and 99% ES would provide alternative 

information about the riskiness at the same confidence level, thus they would 

complement each other. As a result, a 99% ES will be applied, which makes ES an 

                                                      
10 See [9] 
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extension of VaR, providing additional information about the riskiness during normal 

and non-normal market states. 

3.2.2 Investment Horizon 

As for VaR, the Basel Committee advices the use of a 10-day investment horizon for 

ES. This is to be able to liquidate the portfolio over the given horizon, and thus adjust 

the risk exposure in an appropriate manner. However, due to the intentional use of ES 

as a measure of determining risk in normal and non-normal market states, there are 

downsides of using a 10-day investment horizon. Observations are counted several 

times, possibly causing a bias in the risk estimates. Thus, this would weaken the 

accuracy of modelling risk during normal and non-normal market states. A one-day 

investment horizon would be better for the precision of measuring the performance of 

the distribution modelling, and as a result this will be applied. It should be an 

appropriate investment horizon, as the indices used in the portfolio of the thesis are 

highly liquid and could be sold in a day. 

3.2.3 Formula 

𝐸𝑆𝛼 = 𝔼[ 𝐿 | 𝐿 ≥ 𝑉𝑎𝑅𝛼]       (3.2) 

𝐸𝑆𝛼 = 𝜋 (𝜇𝑖 + 𝜎𝑖

𝜙(Φ−1(𝛼))

1−𝛼
)       (3.3) 

As displayed by the first equation, ES is the expected loss given that the loss is higher 

than the VaR. The second equation displays the mathematical formula of ES, where 𝜋 

is the portfolio value, 𝜇 is the daily mean, 𝜎 is the daily standard deviation, 𝛼 is the 

confidence level, 𝜙 is the density function for a standard distribution and Φ−1 is the 

inverse of the cumulative Gaussian distribution. Inserting 99% for 𝛼 provides a 99% 

confidence level. The investment horizon is set to one day. This implies, given a 

constraint on the market risk exposure based on ES, that a portfolio manager should be 

able to withstand a loss equal to the ES-estimate in case of a 1% tail event. 

3.2.4 Results  

In order to determine the performance of modelling ES, results need to be interpreted 

correctly. For VaR, it is possible to simply compare the violation rates against a given 

confidence level. The intention of VaR is producing a confidence interval which 

contains α% of all profits and losses, implying an ideal violation rate of 1-α. For 

expected shortfall this is not the case, as there is no optimal target level of violation 
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rates. ES is a measure of the average loss (gain) beyond a given threshold (VaR), 

hence it is the expected tail loss (gain). Backtesting expected shortfall causes 

difficulties, as the performance is measured daily, while the model is an average 

expectation measure. Therefore, on a day-to-day basis, it is not possible to measure 

average loss (gain) against ES estimates directly, and as such the violation analysis of 

ES cannot be interpreted the same way as for VaR. Hence, it is not possible to 

compare the violations with an ideal violation rate. Yet, analysing violation rates will 

give a clue as to how the risk measure is performing. If violation rates are high, the 

model is not successful because the actual loss is exceeding ES too many times. If 

violation rates are low, the model is conditionally successful, as it is not possible to 

explain the low violation rates without investigating the numbers behind more closely. 

The number of violations only provides information about the frequency of violations, 

but not the seriousness of each violation. Few violations could indicate the confidence 

level of ES being unnecessary large, making it too unlikely to violate ES, or it could 

indicate that ES is adapting very well and provides appropriate risk estimates for each 

time period. 

3.2.4.1 Violation Analysis 

Preferably, a portfolio manager would have a low number of violations, in addition to 

low confidence levels of ES, as this indicates lower risk levels and more room for 

market exposure. To investigate this, an analysis of violation rates should be 

supplemented with a graphical analysis, as well as an exploration of the loss in the 

cases where ES is violated. The analysis will start by looking into violation rates, 

which will be specifically analysed and addressed to their respective subsample, 

normal or extreme. 

Table 3.2: ES violation rates using Basel

  

ES provide lower violation rates than the corresponding statistics for VaR. As 

mentioned earlier, given the mathematical relationship between VaR and ES, this 

tendency is logical. By definition ES estimates are always higher in absolute terms 

than the corresponding VaR estimates, given that they have the same confidence level. 

In other words, when comparing the estimates to the same daily losses, violations for 

ES- ES+ ES- ES+ ES- ES+

Violations 137 88 64 51 73 37

Violation rate 1.38% 0.89% 0.69% 0.55% 12.37% 6.27%

Sample size  9900 9900 9310 9310 590 590

Complete sample Normal sample Extreme sample
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ES should per definition be lower than for VaR. Violations for ES over the complete 

sample are approximately half the size of the corresponding VaR figures. For normal 

market periods, violations are relatively rare. However, due to a high frequency of 

violations during extreme market periods, the total number of violations are quite high 

for the complete sample. An interesting finding is that there are significantly more 

violations for ES- than ES+, especially during extreme market states, which means 

that the loss side is severely underestimated compared to the gain side. This is 

concerning, as the loss side is the vital aspect for a portfolio manager. A systematical 

underestimation of risk could cause critical consequences. The higher number of 

violations for ES- could indicate tendencies of a left skewed data. This will be 

investigated further when analysing statistical properties in chapter 4. 

3.2.4.2 Loss Analysis 

As stated earlier, the accuracy of ES cannot be determined by looking at violation 

rates only, since the consequences of the violations are not known. To explore the 

outcomes of the violations, a loss analysis will be performed, investigating the 

seriousness of violating ES. The total loss is found to be the sum of the difference 

between the ES estimate at each point of violation and the actual observed loss. It 

does only indicate the magnitude of the potential of loss in the portfolio and is not 

netted against gains or adjusted for increases in portfolio value over the period. The 

average loss is total loss over total number of violations. 

Table 3.3: Loss analysis using Basel 

 

As the portfolio value is not constant and changes throughout the time series, the size 

of the losses itself is of little interest to interpret. However, the trend is interesting and 

by matching normal and extreme periods it is possible to compare whether the 

consequences are differing for different market states. Previously, violations during 

extreme periods was found to be more frequent than during normal periods. The loss 

statistics suggests that the seriousness of the extreme periods is also greater, having a 

larger average loss, in addition to a higher number of violations. The larger average 

loss during the extreme periods indicate that during such market conditions the 

consequence of violating ES is more severe.  Later, when modelling distributions for 

ES- Normal Extreme

Total loss -1,485,165      -2,725,256      

Average loss -23,206          -37,332          
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normal and extreme market states, the loss statistics will be compared using these 

figures as a benchmark. 

3.2.4.3 Graphical Analysis 

Up to this point, the accuracy of ES has been determined by the use of violation and 

loss statistics. However, little information has been provided to determine whether 

estimates of ES are unnecessary high, overestimating risk exposure and as such 

causing too many constraints for a portfolio manager. The final step in analysing the 

performance of the Basel model will be a graphical analysis of ES, in order to see how 

ES evolves and fits the data sample throughout the time period. 

Figure 3.3: Expected shortfall Basel 

 

The use of one year of equally weighted historical data, implicates a slow model 

reacting too late to market movements. The ES model seems to be overestimating risk 

in periods where returns are less volatile, with too much distance between ES 

thresholds and a substantial portion of the returns. For a portfolio manager this would 

indicate a high risk exposure, through large ES estimates, while the risk is in fact 

lower. This forces a portfolio manager to be more cautious than necessary and thus 

potentially lowering the profitability. On the other hand, for periods where returns are 

more volatile and the risk is higher, ES applies too low estimates, causing an 

underestimation of risk. This underestimation could make a portfolio manager take on 

too much risk and thus suffer larger losses. Again, the reasoning is that the use of one 

year of equally weighted historical data incorporates information too slowly. In 

addition to the use of a Gaussian distribution, which in general underestimates the 

likelihood of extreme market events. 
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3.2.5 Conclusion 

Expected shortfall has to a great extent confirmed the discoveries found when 

analysing value-at-risk, namely that the Gaussian distribution severely underestimates 

the probability of extreme tail events. In addition, the consequence of these losses are 

showed to be more severe during extreme market states, compared to normal market 

conditions. Further, the use of one year equally weighted historical data results in too 

long a memory in the model, creating an upward bias in the ES estimates after extreme 

market periods, and a downward bias after less volatile periods. 

3.3 Concluding Remarks 

The key takeaway from the chapter is that the Basel model provides inaccurate 

estimates of both VaR and ES over the dataset, severely underestimating risk when the 

volatility in the market suddenly increases, while overestimating risk during less 

volatile market states. This is partly due to a one-year long, equally weighted memory, 

causing a slowly adaptable model, which uses old information no longer relevant for 

the current state of the market. In addition, the use of a Gaussian distribution does not 

seem to facilitate the high frequency of abnormal returns observed during extreme 

market states in particular, potentially resulting in losses for a portfolio manager.  

Expected shortfall extends information about the tail distribution compared to the sole 

use of VaR estimates. Nevertheless, ES displays the same weaknesses as VaR, in that 

the risk estimates during extreme periods are inaccurate. This might be suggestive of 

the underlying assumption of distribution model, equal for both models in the Basel 

framework, not explaining the tail events appropriately.  

In the next section we will investigate the statistical properties of the normal and 

extreme subsamples, as we seek to identify why the Basel model does not perform as 

well as is intended. 
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Chapter 4 

4 Statistical Properties 

In this subchapter, statistical properties of the normal and extreme samples will be 

analysed. The Basel framework has shown tendencies of not explaining risk 

accurately. Overall, the models displayed signs of responding late and an incapability 

of incorporating recent market information. This caused an overestimation of risk 

during less volatile market periods, while they did not adapt fast enough when markets 

suddenly changed, resulting in an underestimation of risk in periods with higher 

volatility. As a result, the risk during extreme market periods were severely 

underestimated, indicating that the underlying Gaussian distribution did not explain 

such periods adequately. 

The motivation of this chapter is to investigate how appropriate a Gaussian 

distribution is in explaining the dynamics of the dataset. If not sufficient, we want to 

identify the best possible models to fit the distributions and market characteristics of 

the normal and extreme samples. Exploring the statistical properties of each subsample 

separately, could increase our knowledge of the dynamics during different market 

states for the data sample. As such, we investigate how to choose the appropriate 

models to best model VaR and ES for both market states. Each subsample will be 

analysed separately. 

4.1 The Normal Sample 

The normal sample is defined as 10-day periods which does not have at least three 

observations +/- two standard deviations from the mean. Intentionally it should mostly 

be a sample consisting of normal, regular portfolio returns, i.e. returns which are not 

extreme. Observations in the sample are typically from the middle 50% of the 

complete sample and thus the size of the absolute returns are small. However, the 

normal sample could contain single occurrences of abnormal returns, which are not 

qualified to be part of the extreme sample, since an extreme period is defined such that 

at least three non-normal returns must be observed. As the normal sample is much 

larger than the extreme sample and thus make up a large percentage of the total 

returns, it is of great importance to model normal market returns as accurate as 

possible. A small mismatch in predicting one single normal market return, would not 
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cause much concern, since the absolute returns are not large. However, due to the high 

frequency of normal market returns, approximately 94% of the total portfolio returns, 

a small prediction error during all normal market states could have critical 

consequences when using the model to estimate risk at an accurate level. For example, 

a small prediction error may not be much for one single day, but with 9,310 

occurrences of normal market returns, the aggregated consequences could potentially 

be severe. In order to gain more information about the data and thus explore which 

distribution that would be the best fit, a statistical analysis of the normal sample’s 

distribution will be performed.  

4.1.1 Normality Testing 

The Gaussian distribution is by far the most applied distribution in statistics. Many 

other distribution models are built upon, or modified versions of the Gaussian 

distribution. Because of this, it is natural to start the statistical analysis by comparing 

the normal sample, with a Gaussian distribution, to see whether there are any 

noticeable differences in frequency returns. If the normal sample distribution is 

Gaussian, it should follow the red line in the graph below very precisely, as the red 

line is a generated Gaussian distribution with an identical mean and standard deviation 

as the normal sample. 

Figure 4.1: Q-Q plot normal sample 
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The normal sample distribution is following the line very accurately between quantile 

-2 to quantile 2, i.e. the middle 50% of the total observations around the sample mean. 

However, when exceeding these quantiles, returns start to wander off from the 

Gaussian distribution prediction, becoming more extreme both negative and positive. 

To explore why this mismatch occurs, several statistical test will be performed to 

investigate further whether the Gaussian distribution is a bad fit for the normal sample. 

4.1.1.1 Mean 

In order to get a brief overview of the statistical properties of the normal periods, the 

moment statistics will be presented. 

Table 4.1: Mean normal sample 

 

The table above displays the daily mean of the normal period between 1978 and 2016. 

The interpretation of the daily mean is that it is the daily return you would yield on 

average over the normal period, i.e. you would get a positive average return on your 

investment of 0.04% every day. In other words, under normal market conditions you 

would have positive return on the portfolio.  

4.1.1.2 Standard Deviation 

The mean is the average value of a normal sample return, but returns are not a constant 

value. Standard deviation is the square root of the second moment statistics, the 

sample variance, displaying on average how much each day’s return deviates from the 

mean of the normal sample, a return which will vary from day to day. 

Table 4.2: Standard deviation normal sample 

 

On average, returns will over the normal sample deviate by 0.79% from the mean of 

0.04%. However, it is difficult to interpret the size of the standard deviation, without 

comparing it to another sample. Later, the standard deviations of the normal and 

extreme sample will be compared, in order to see whether there is any noticeable 

observation to make. 

4.1.1.3 Skewness 

As we seek to find a distribution which is appropriate for the normal sample, an 

important factor is gaining information about the shape of the distribution. The third 

moment statistics, the skewness of the sample, measures how asymmetric a 

Mean

Normal sample 0.04%

Standard deviation

Normal sample 0.79%
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distribution is around its mean. A Gaussian distribution has a skewness of zero, 

implying that the distribution is perfectly symmetrical with equal amounts of return 

observations on each side of the sample mean. By exploring the skewness, it is 

possible to determine if the sample has similar properties as a Gaussian distribution or 

if other distributions could be more fitting to describe this characteristic subsample. 

Table 4.3: Skewness normal sample 

 

The normal sample is weakly negatively skewed, meaning that the left tail of the 

distribution is longer, comparatively to the right tail. This could be due to a presence 

of negative outliers in the distribution, pulling down the average of the normal sample, 

resulting in a longer left tail and a more asymmetric shape than a Gaussian 

distribution. Figure 4.2 below confirms this, as the sample distribution exceed several 

predicted values of a Gaussian distribution in the lower quantile. When returns get 

low, the probability predicted by a Gaussian distribution is almost zero, while the 

empirical distribution of the normal sample shows that the probability is in fact 

considerably higher than zero. The negative skew, though weak, could indicate that 

the distribution does not follow a Gaussian distribution and that an appropriate model 

for the normal sample should take the asymmetry of this distribution into 

consideration, allowing for a longer left tail. This supports the findings in chapter 3, 

where the loss side was found to have more violations than the gain side, indicating an 

underestimation of the risk.  

Figure 4.2: Left-tail cumulative return distribution plot 

 

Skewness

Normal sample -0.2206              
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4.1.1.4 Kurtosis 

The fourth moment statistics, the kurtosis, quantifies how heavy-tailed a distribution 

is, relatively to a Gaussian distribution. The heaviness of the tails is essential 

information when finding a distribution to explain financial return series. Using a 

distribution with too light tails, implicates an underestimation of the probability of 

outlier returns. Outlier returns is of importance for a portfolio manager, since it results 

in high risk and potentially large losses. If the kurtosis is large, the distribution has 

heavy tails, meaning that the frequency of outlier observations is higher than for a 

Gaussian distribution. As the Gaussian distribution has a kurtosis of three, the excess 

kurtosis will be in focus, defined as kurtosis subtracted the value of three. 

Table 4.4: Excess kurtosis normal sample 

 

Figure 4.3: Distribution plot normal sample 

 

The distribution of the normal sample is leptokurtic, meaning that excess kurtosis is 

positive. The distribution is featuring heavier tails than a Gaussian distribution, due to 

presence of a substantial amount of outliers, increasing the probability of abnormal 

returns. Moreover, the shape of the distribution is more pointed and less flat than a 

Gaussian distribution. Figure 4.3 confirms this analysis, where the normal sample 

displays properties of both heavier tails and higher peakedness, than a Gaussian 

Excess kurtosis

Normal sample 4.2080                
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distribution. As such, a distribution which adjusts for this could be more appropriate 

for the normal sample.  

4.1.1.5 Jarque-Bera Test 

As a validation of previous results, a joint test of both skewness and kurtosis could be 

done by performing a Jarque-Bera test. This is a goodness of fit test, investigating 

whether the dataset has a shape correspondingly to a Gaussian distribution.11 Up to 

this point skewness and kurtosis has been calculated individually, but not whether they 

are significantly different from a Gaussian distribution. This will be tested by a Jarque-

Bera test, where the null hypothesis is whether the normal sample has distribution 

shape similar to a Gaussian distribution.  

𝐻0: 𝑋~𝑁(𝜇, 𝜎2)         (4.1) 

Table 4.5: Jarque-Bera test normal sample  

 

By performing a Jarque-Bera test for the normal sample, the null hypothesis of 

Gaussian normality is rejected. This supports previous findings of negative skewness 

and excess kurtosis, but now also proved to be statistically significant for the sample. 

The output from the test suggests that the underlying distribution of the normal sample 

is not Gaussian distributed and that there might be other distribution models more 

suitable, in order to find a better goodness-of-fit.  

The leptokurtic shape of the distribution, suggests a sizeable frequency of outlier 

returns, found in the tail of the distribution. Since the Gaussian distribution is not 

detecting this characteristic, and as we have observed a negative skewness, we should 

seek an alternative distribution allowing for heavier tails. One such distribution could 

be a student’s t-distribution. 

4.1.1.6 Student’s t-distribution 

Student’s t-distribution is a modified version of a Gaussian distribution, allowing for 

heavier tails and as a result more abnormal observations. The original objective of the 

student’s t-distribution was to be applied to small samples and give more conservative 

distribution estimates, in form of heavier tails. A variable called degrees of freedom 

was implemented, making it possible to adjust the heaviness of tails, depending on the 

                                                      
11 See [10] 

Jarque-Bera Test statistic P-value

Normal sample 6,944.5784     0.0000
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sample size. When degrees of freedom approaches infinity, student’s t-distribution 

converges into a Gaussian distribution. By effective use of degrees of freedom, it is 

possible to adjust the length of each tail, and thus capture outliers to a greater extent. 

To display the difference in properties between the Gaussian distribution and student’s 

t-distribution, both will be compared to the empirical data of the normal sample in 

figure 4.4.  

Figure 4.4: Distribution plot normal sample 

 

The chart above displays the density function of the normal sample, compared to a 

Gaussian distribution and a student’s t-distribution with two degrees of freedom. This 

is only an indicative illustration and the plots are not adjusted to best-fit the empirical 

data of the normal sample. The tails of the student’s t-distribution (sky blue line) is 

clearly heavier than the corresponding Gaussian distribution (red line). In other words, 

the probability of abnormal returns, found in the tails, are much higher for the 

student’s t-distribution, than for the Gaussian distribution. The t-distribution captures 

the outlier returns of the normal sample to a greater extent than the Gaussian 

distribution, and for this reason we believe a student’s t-distribution to be a better 

distribution model for the normal sample. 

Despite modelling heavy tails better, student’s t-distribution is not improving 

prediction of the high frequency of returns around the sample mean. The Gaussian 

distribution predicts this pointed shape slightly better, but neither model is a good fit 
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for this characteristic. If student’s t-distribution is to be an appropriate model to use, it 

needs to be adjusted to the normal sample, so that it takes this peakedness into 

account, as well as the heavy tails.  

4.1.1.7 Conclusion 

The shape of the normal sample distribution is weakly skewed, suggesting an 

asymmetric figure with a long left tail, relative to the right tail. Further, the 

distribution is found to be leptokurtic, containing heavier tails and more peakedness 

than a Gaussian distribution. By performing a joint test of skewness of kurtosis, these 

are found to be significantly different from the properties of a Gaussian distribution, 

resulting in rejecting normality for the empirical data of the normal sample. As an 

alternative, student’s t-distribution is proposed as a better fit for the subsample. 

Up to this point the normal sample has been analysed in a static manner, focusing on 

probabilities and the frequency of observations. To further improve the statistical 

understanding of normal market states, we will explore how the normal market returns 

are distributed as a function of time throughout the sample. 

4.1.2 Volatility Clustering 

In this subchapter, returns will be presented as functions of time, rather than 

frequencies. The normal sample has a much higher frequency of observations around 

the sample mean, than both the Gaussian and student’s t-distribution predicts. This is a 

result of the normal sample containing returns from normal market states, which by 

our own definition are small sized returns mostly clustering around the middle 50% of 

observations. However, for the distribution to be as accurate as possible in such 

normal market states, this peakedness has to be incorporated in a distribution model. 

An important factor when finding the appropriate distribution, is to exploit whether 

error terms of returns are independent and identically distributed variables (iid), as this 

expresses how the variance changes with time. Error terms are defined as the actual 

return, subtracted the mean of the distribution. An important assumption of the 

student’s t-distribution, is iid error terms, and as a result constant variance. A violation 

of this assumption is therefore a violation of student’s t-distribution.  

To explore how returns with iid error terms might look like, a corresponding return-set 

has been generated based on a student’s t-distribution. The sample mean, standard 

deviation and number of observations are identical to those of the normal sample, but 

they are based on randomly generated variables, rather than empirical returns. In this 
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way it is possible to illustrate how a student’s t-distribution distribution could look 

like. 

Figure 4.5: Random generated student’s t-distribution absolute returns 

 

This is only an indicative illustration of a student’s t-distribution, intended for 

comparison, and as such each respective return cannot be compared directly, but rather 

over the sample as a whole. As shown by the chart above, absolute returns are 

distributed with a high degree of symmetry throughout time. Graphically, it looks like 

returns are iid, since there is no distinct pattern where returns occur together in groups. 

There are some outliers in the randomly generated sample, but they seem to occur 

alone and are spread out over the sample, and are thus not causing periods of abnormal 

returns. For instance, absolute returns from year 1980-1990, appears to be very 

similarly distributed, as the returns distributed between year 1990-2000 and year 2000-

2010. If returns are clustered together, the error terms would not be iid and random, 

but rather systematically dependent on each other for some periods of time. More 

specifically, absolute returns for some time periods would be considerably higher than 

the overall sample mean. Other time periods would yield absolute returns significantly 

lower than the sample mean. A further implication of error terms not being iid, would 

be a non-constant variance throughout the sample and thus presence of volatility 

clustering. If heteroscedasticity is the case, assumptions of both constant variance and 

iid error terms in the student’s t-distribution would be violated.  

In order to explore whether the normal sample have presence of volatility clustering, 

the absolute returns from the normal sample will be plotted as a function of time, by 

the same procedure as the standard t-distribution. In this way, any noticeable 

differences between the two datasets, concerning the distribution of returns as a 

function of time, should be disclosed. 
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 Figure 4.6: Absolute returns normal sample 

 

This distribution of the empirical data of the normal sample has to greater extent 

periods where absolute returns are higher than other periods, as if abnormal returns are 

followed and correlated with other abnormal returns. The plot displays significantly 

lower absolute returns than the sample mean for longer periods of time, while other 

periods show much higher absolute returns than the overall mean of the sample. This 

indicates that the error terms, the actual return subtracted by the sample mean, are not 

iid and truly random, but rather dependent on time. If error terms are dependent on 

time, it implies that variance is not constant for all periods of the sample, i.e. the 

normal sample would be heteroscedastic. Graphically there are significant differences 

between the plot of the normal sample and a standard t-distribution. It looks as if error 

terms are not equally distributed throughout time, but rather show signs of volatility 

clustering.  

Volatility clustering is a phenomenon where volatility is conditional of time, i.e. 

heteroscedastic, rather than unconditional and constant. Empirical research of stock 

market mechanisms show that volatility appears to rise in recessions and fall during 

peaks, hence it varies over time and depends on the state of the economy.12 Large 

moves in returns are often followed by large moves in returns the next days, i.e. the 

absolute values of returns are correlated. This feature of conditional volatility, is not 

taken into consideration in the Gaussian distribution, where the volatility is a constant 

value and not a variable changing throughout the dataset. As constant variance is a 

vital assumption in the student’s t-distribution as well, this is an important factor to 

investigate further. The graph suggest that volatility is not constant throughout the data 

sample. However, eyeballing a graph is not enough to statistically test volatility 

                                                      
12 See [11] 
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clustering. To analyse this properly, it is possible to explore whether there is 

autocorrelation present in the normal sample. 

4.1.2.1 Autocorrelation 

By analysing autocorrelation, presence of volatility clustering in the normal sample 

should be discovered. Autocorrelation measures whether the dataset is linearly 

dependent on itself at different points in time, using a time lag k. The intention is to 

explore whether a return at time i, denoted 𝑅𝑖, is affected by the returns of the past 

values at time i-k, 𝑅𝑖−𝑘. Put differently, the purpose is to see if there is any pattern of 

correlation between returns at time i and i-k, or if they are independently distributed of 

each other.  As autocorrelation is a standardised measure, the coefficient value is a 

number between -1 and 1. In the calculations of autocorrelation, returns of the normal 

sample has been transformed to absolute sizes. The reasoning behind this is to exploit 

whether large returns are correlated with other large returns, positive or negative, and 

thus indicating volatility clustering. 

Figure 4.7: Autocorrelation normal sample 

 

 

Figure 4.7 shows a clear tendency of autocorrelation in the normal sample. The dark 

blue spikes in the chart are the size of the autocorrelation coefficients, while the dotted 

red line is the confidence interval, which a value must exceed in order to be significant 

at a 95% confidence level. For lags of 1 to 21 trading days, representing one month of 

data, all autocorrelation coefficients are significant, indicating autocorrelation. This 

means that returns are conditionally dependent of time and are thus violating an 

assumption of the student’s t-distribution.  
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The autocorrelation plot is a test of each correlation coefficient respectively, but to 

confirm whether this is applicable for the normal sample as one, a joint test will be 

performed, testing all coefficients together.  

4.1.2.2 Ljung-Box Test 

Testing autocorrelation for each time lag, gives an indication of whether there is 

presence of autocorrelation in the dataset. However, independent on whether the 

autocorrelation coefficients were significant or not, they were only tested for each 

respective time lag variable. In order to get a more unambiguous conclusion a 

simultaneous analysis of all the autocorrelation coefficients will be performed, in a so-

called joint test. The joint test performed is the Ljung-Box test 13, with a significance 

level of 95% and up to 21 lags: 

𝐻0: (𝜌1, … , 𝜌21) = 0        (4.2) 

𝐻𝐴: (𝜌1, … , 𝜌21) ≠ 0        (4.3) 

𝑄∗ = 𝑇(𝑇 + 2) ∑
𝜌̂𝑘

𝑇−𝑘
𝑚
𝑘=1 ~ 𝜒𝑚

2 𝑤ℎ𝑒𝑛 𝑇 → ∞     (4.4) 

Table 4.6: Ljung-Box test normal sample 

 

The test statistic is higher than the critical value, meaning that the null hypothesis 

should be rejected. The result is supported by the theory in Brooks (2008) p. 210, 

stating “only one autocorrelation coefficient needs to be statistically significant for the 

test to result in a rejection”.14 Since all 21 coefficients was rejected in the last section, 

results are aligned with theory. The joint test rejects the hypothesis of zero 

autocorrelation in the time series, strengthening the conclusion that the normal sample 

does in fact have presence of autocorrelation. We should, as a result seek a distribution 

model that incorporates autocorrelation when explaining the distribution of the normal 

sample returns. 

4.1.2.3 Conclusion 

In contrast to a standard student’s t-distribution, where it is assumed iid error terms 

and homoscedasticity, there is found to be significant presence of heteroscedasticity in 

the normal sample. This indicates volatility clustering, meaning that large returns in 

                                                      
13 See [12] 
14 See [13] 

Ljung-Box Test statistic P-value

Normal sample 285.5000        0.0000



40 

 

the normal sample has a tendency to be followed by other large returns of either sign. 

In order to successfully predict normal market returns, a volatility model should be 

implemented in the student’s t-distribution. Without using such a volatility model, 

which adjusts for autocorrelation in the returns, the likelihood of misestimating market 

risk increases. 

4.2 The Extreme Sample 

The extreme sample consists of the returns which are two standard deviations away 

from the mean, and occurs in clusters of three or more over the last two weeks. In 

addition, up to seven normal returns are included for each three extreme observations, 

as each 10-day interval is incorporated as its own period. As such, the sample will also 

consist of some less extreme returns, which could potentially affect the dynamics of 

the sample as a whole. In general, however, the subsample consists of the absolute 

most extreme returns, such that this should be reflected in the statistics of the sample 

and the distribution of the returns, both which will be investigated further in this 

chapter.  

4.2.1 Normality Testing 

Up until now, no investigation of the distribution properties of the extreme sample has 

been performed, but rather the Gaussian distribution has been used as a base in 

deciding the characteristics of the returns when assigning to subsamples. However, as 

seen in the share of extreme returns found in the empirical data, compared to the 

theoretical probabilities of the Gaussian distribution, it seems as if the data does not fit 

a Gaussian distribution. As such, we will in this chapter further investigate the 

potential non-normality of the extreme sample and attempt to find an alternative 

distribution to describe it.  

Figure 4.8 is a quantile-quantile(QQ) plot which compares the empirical data of the 

extreme sample with the theoretical Gaussian distribution of the same observations, 

through the plotting of sample and theoretical quantiles. Had the returns fitted a 

Gaussian distribution perfectly, the blue dots (returns) would have been aligned with 

the red line (theoretical Gaussian distribution). However, the returns seem to only fit a 

Gaussian distribution for the middle values, approximately the middle 50% of 

observations, found in the +/- two quantiles of the distribution. When moving outside 

of the middle 50%, i.e. the tails of the distribution, the data does not resemble a 

Gaussian distribution, but rather indicates a significant deviation.  
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Figure 4.8: Q-Q plot extreme sample 

 

As the tails deviates severely from the red line, the plot does seem to indicate the data 

to fit a Gaussian distribution badly. It also seems as if the tails of the empirical data are 

asymmetrical as the returns on the left and right side are differently distributed. The 

plot supports our earlier findings when calculating the share of extreme returns in the 

complete sample, where the empirical data was found to contain a much higher 

number of extreme observations than the theoretical probabilities of a Gaussian 

distribution suggested. In the next sections, further investigations of the statistical 

characteristics of the extreme sample will be done, in an attempt to find a proper 

description of the data. 

4.2.1.1 Mean 

Table 4.6: Mean extreme sample 

 

The daily mean of the extreme sample is -0.22% and thus considerably lower than the 

corresponding mean of the normal sample. Compared to the normal sample it is 

approximately fivefold lower. This significant difference is a result of the definition of 

the extreme sample where three or more returns over the last 10 trading days are 

required to be +/- two standard deviations from the mean to be included in the sample. 

However, the fact that the mean is negative indicates that the extreme sample is either 

Mean

Extreme sample -0.22%
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heavily negatively skewed or that a few large observations pulls down the mean, or 

both. On average, sitting with a position in the portfolio of the three indices on the 

days included in the extreme sample, will lose you money.  

4.2.1.2 Standard Deviation 

Table 4.7: Standard deviation extreme sample 

 

The standard deviation of the returns in the extreme sample is 1.90%, over twice as 

high as the corresponding figure for the normal sample. The observed standard 

deviation is a natural result of the definition of the sample, since it is largely based on 

extreme returns being +/- two standard deviations from the mean. As such, since the 

extreme sample is known to comprise of larger fluctuations than the normal sample, 

the standard deviation figures are merely a confirmation of the definition. A high 

standard deviation also fits well with the intention of the properties of the extreme 

sample, where the returns are expected to have large fluctuations on a day-to-day 

basis, on average, which definitely is the case and thus conclusions can be drawn on 

the properties of the returns through the extreme sample.  

Mean and standard deviation are convenient tools to get a brief impression of the data 

sample and its mean values. However, skewness and kurtosis of the distribution will 

be tested in order to determine the shape of the distribution and the spread of returns.  

4.2.1.3 Skewness 

Skewness is measuring the asymmetry of the probability distribution. A skewness of 

zero shows that the distribution function has the same shape on both sides of the mean.  

Table 4.8: Skewness extreme sample 

 

The extreme sample has a negative skewness, indicating a longer left tail compared to 

the right tail of the distribution. As such, the shape is more asymmetrical than a 

Gaussian distribution where the shape is equal on both sides. It is clear that the losses 

occur with greater frequency than a Gaussian distribution allows. This could be a 

result of large negative observations in the sample, reducing the average and 

increasing the size of the left tail. The negative skewness can be observed in figure 

4.9. 

Standard deviation

Extreme sample 1.90%

Skewness

Extreme sample -0.2808              
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Figure 4.9: Left-tail cumulative return distribution plot extreme sample 

 

The plot shows the distribution of the empirical dataset side by side with a theoretical 

Gaussian distribution of the same data, i.e. the Gaussian line is based on the mean and 

standard deviation of the extreme sample. The negative skewness of the sample is 

clearly displayed as the returns lie consistently on the left-hand side of the normal line, 

again, indicating that the extreme observations have a larger probability of being low 

and negative, with the sample distribution exceeding the predicted values of the 

Gaussian distribution in the lower quantile. The negative skew, does as a result 

indicate that the distribution does not follow a Gaussian distribution and an 

appropriate model for the extreme sample should take the asymmetry of the 

distribution into consideration. 

4.2.1.4 Kurtosis 

Kurtosis measures the tail size in the distribution, i.e. the likelihood of extreme values.  

Table 4.9: Excess kurtosis extreme sample 

 

The extreme sample is slightly more leptokurtic than the normal sample, implying that 

the extreme distribution is even more fat-tailed. This suggests a wide spread in the 

observed extreme returns. In other words, the sample contains a large amount of 

outliers, which increases the probability of abnormal returns. As such, the distribution 

is more pointed and less flat than a Gaussian distribution. This can easily be observed 

Excess kurtosis

Extreme sample 4.3669                
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in the plot, which displays the distribution of the returns in the extreme sample, 

compared to a fitted Gaussian distribution on the same data. 

Figure 4.10: Distribution plot extreme sample 

 

The frequency of outlier returns in the tail of the distribution is not picked up by a 

Gaussian distribution, suggesting that a Gaussian shape does not take into account the 

heavier tails. A consequence of the lack of fit is, in combination with the negative 

skewness, that other distributions may be more fitting in order to model the data 

properly.  

4.2.1.5 Jarque-Bera Test 

A Jarque-Bera test is a goodness of fit test, investigating whether the dataset have 

kurtosis and skewness corresponding to a Gaussian distribution. So far, no tests have 

been done to see whether the skewness and kurtosis of the extreme sample are 

significantly different from a Gaussian distribution. The null hypothesis of the test is 

as such, whether the sample is distributed as a Gaussian distribution.  

𝐻0: 𝑋~𝑁(𝜇, 𝜎2)         (4.5) 

Table 4.10: Jarque-Bera test extreme sample 

 

Jarque-Bera Test statistic P-value

Extreme sample 476.5444       0.0000
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The Jarque-Bera test for the extreme sample reject the null hypothesis of normality, 

which supports our earlier findings of negative skewness and excess kurtosis with 

statistical significance. As such there might be other distribution models which are 

more suitable to find better goodness-of-fit.  

4.2.1.6 Extreme Value Theory 

So far the analyses have shown a bad fit between the extreme sample and a Gaussian 

distribution. The extreme sample has a negative, large mean, experience large daily 

fluctuations on average and is negatively skewed. Combined this makes a case for the 

need of a model capable of modelling the extremeness of the returns clearly present in 

the sample. Mainly, we are most interested in the left tail events of the extreme 

sample, which represent the challenge in handling unusually steep losses, as they are 

by far the most extreme observations in the whole sample. These returns represent the 

presence of so called tail risk in the sample, namely the risk caused by relatively rare 

events, but which can have substantial impact on the portfolio. Since an important part 

of the thesis is the estimation of VaR and ES for non-normal market conditions, 

finding a distribution that is able to fit and model the tails of the extreme sample is 

vital to capture the risk found in the extreme observations. 

Extreme value theory (EVT) is the study of the tails of distributions.15 As the tails of 

the extreme sample contains far more extreme observations than the normal sample, 

finding accurate estimates of the risk concerned with these is crucial. A portfolio loss 

during a tail event has the potential to be catastrophic, due to the large size of the 

returns in the left tail of the extreme sample. EVT is considered a more reliable and 

robust methodology when estimating the outliers of a return distribution for assets 

compared to the properties of a Gaussian distribution. It supplies a framework for 

modelling financial market risks, and extreme losses in particular as it models each tail 

individually.16 It does therefore fit especially well with asymmetrical data, as was 

found to be the case for the extreme sample earlier.  

One of the challenges when analysing left-tail events is the insufficiency of data. The 

extreme sample consists of 590 observations, or approximately 6% of the complete 

dataset. Of the 590 extreme returns, the middle 50% are returns between -1.2% and 

0.7%, meaning that the tails of the sample are found well outside this interval. 

                                                      
15 See [14] 
16 See [15] 
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However, the size of the returns is relatively modest, and even when moving out 

towards the ends of the distribution to the 10% and 90% quantiles respectively, the 

size of the returns is only -2.4% and 1.8%. This indicates that the real steep losses 

found in the tails are extremely rare events. For instance, there is only approximately 

1.5% losses greater than 5% in the extreme sample, while the corresponding figure on 

the right side of the distribution, namely gains greater than 5%, are observed 0.8% 

times in the extreme sample. As such, the availability of data to model is sparse, and 

modelling events that are as infrequent as the empirical data of the extreme sample 

shows, is statistically challenging. Therefore, the estimates found need to be 

significant with little data to analyse. Regardless of the underlying distribution of the 

returns EVT identifies one for fat-tailed returns, as such it does not require any 

information or assumption about the actual return distribution. 17 

Another argument to be made for EVT is its ability to offer information regarding the 

magnitude and probability of potential values being more extreme than those seen 

previously throughout history. When considering the modelling of extreme events, the 

distribution should not be constrained by history, but rather use the previous extreme 

values to offer information about potential worse scenarios. Standard models used to 

measure risk may, by design, fail to warn of the possibility of a return being 

significantly worse than the outliers present in the historical data. The steepest daily 

loss in our portfolio, present in the extreme sample, is approximately 12%. A naive 

viewpoint would be that this is the worst-case scenario. Therefore, there is need for a 

methodology which quantifies the potential ‘black swans’ seen in the historical 

extremes. EVT does, in general, characterise the distribution of values above a given 

threshold, where the returns found above this threshold is the tail events or extreme 

observations. As a result, it should be especially well fitted to model the extreme 

sample. 

By using a distribution which takes into account the properties of each tail on its own, 

it could better describe the challenging properties of the extreme sample. For instance, 

by using a standard historical VaR measure, as the Basel framework applies, the ’87 

crash would cause a large absolute estimate when taking the data of the crash into 

account. But since a crash like Black Monday occurs rarely, say, every 50-100 years, it 

will create an upward bias in the subsequent VaR estimates and as a result the 

consequence will be too conservative risk management. However, when using data 

                                                      
17 See [16] 
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from the tail distribution, the probability of such an event will be much smaller and 

should lead to better estimates.18 

The Gaussian distribution is shown to underestimate the probability of outlier returns. 

A conditional heteroskedastic model such as a standard GARCH approach which uses 

a normal likelihood function to estimate its parameters have bad tail properties. This is 

a result of the likelihood function weighting values close to zero higher than large 

values, so that the contribution of the larger values to the likelihood function is 

relatively small.19 As most of the observations are in the centre they dominate the 

estimation. There is need for a model that does the exact opposite of the Gaussian and 

GARCH setup, since the focus of modelling the extreme sample need to be the tails, 

and the extremeness of the returns found here.   

The plot below displays the empirical cumulative distribution function, for the 

empirical data, the Gaussian distribution and an EVT model fitted to the dataset. The 

whole portfolio is used when modelling, to have a large enough sample to display 

properly. 

Figure 4.11: Cumulative left-tail return distribution plot extreme sample 

 

 

As the whole dataset is used, rather than only the extreme sample, the plot is only 

indicative of the fit of the model. But, by looking into the left tail of the distribution of 

                                                      
18 See [14] 
19 See [14] 
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the portfolio this is where the extreme sample is most present, and as such it is a good 

indication. The EVT-model is a considerable better fit than the Gaussian distribution, 

especially when moving left in the tail, and as the returns become larger, the fit seem 

to increase.  

4.2.1.7 Conclusion 

Both the mean and standard deviation of the extreme sample was found to be in line 

with the definition of the sample itself, showcasing that the returns flagged as extreme 

earlier has a larger, negative mean and high standard deviation. The negative skewness 

and high kurtosis was confirmed by the Jarque-Bera test, which, significantly, showed 

that the shape does not fit as a Gaussian distribution. Further, the extreme sample is 

best described by a distribution which takes into account the asymmetrical tails and 

the extremeness of the returns, especially considering the tail risk which the returns in 

the extreme sample contains. As a result, the need for a distribution that does not 

potentially contribute to an increased upward bias in the estimates of the risk measures 

is clearly present in the sample. In an attempt to mitigate the difficulties in describing 

the data an EVT model was proposed as an alternative to the Gaussian distribution.  

The statistical properties of the extreme sample found so far gives a good indication of 

its characteristics and distribution over the dataset as a whole, but does not take into 

account its evolving properties through time. As a feature of the extreme sample is 

large fluctuations in the returns, often found in clusters, it would be natural to assume 

it to contain characteristics where some of the observations are dependent on each 

other. This could potentially affect the measuring of risk in the portfolio, as it would 

create a bias in an up- or downward direction, and would have to be taken into 

account. We will therefore investigate the possibility of volatility clustering in the 

sample. 

4.2.2 Volatility Clustering 

Volatility clustering is an observation where the volatility is conditional of time, i.e. 

heteroscedastic, rather than unconditional and constant. Put differently, large moves in 

returns are often followed by large moves in returns the next days, meaning that the 

absolute values of the observations are correlated.  

Figure 4.12 shows the distribution of the of the returns in the extreme sample, plotted 

as a function of time. The dots occur as they do in the dataset, i.e. the distance between 

the dots in the plot is equivalent to their distance in time. Even more so, than for the 
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normal sample, there seems to be a clear presence of the returns being correlated with 

each other. The vertical movement of the returns over the same period in time 

indicates that, large fluctuations in the returns of the portfolio, is followed by other 

large movements in the returns.  

Figure 4.12: Absolute returns extreme sample 

 

It may seem as if the variance is not constant, but rather conditionally dependent of 

time, which could mean that there is presence of volatility clustering in the extreme 

sample. Conditional volatility is not a property of a Gaussian normal distribution, 

where the volatility is a constant value and not a variable changing throughout the 

dataset. As such, this is a further verification of the findings in the previous subchapter 

confirming the non-normality of the extreme sample. In addition, this is an indication 

that the returns are not iid, as each return does not seem to be mutually independent, 

but rather dependent on each other through time.   

For the estimation of VaR and ES possible volatility clustering present in the 

subsample should be taken into account, and the graph suggests that volatility is not 

constant throughout the sample. However, the plot needs to be supplemented with 

further statistical evidence, which is where autocorrelation can be used.  

4.2.2.1 Autocorrelation 

Autocorrelation explores further whether the sample has presence of volatility 

clustering. It measures whether the dataset is linearly dependent of itself at different 

points in time, using a time lag k. The test is performed using absolute returns, in order 

to find correlation between large returns with either sign, which in turn indicates 

volatility clustering.  
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Figure 4.12: Autocorrelation extreme sample 

 

There seems to be a clear indication of autocorrelation in the extreme sample. The 

absolute returns are significant until the 21st lag, indicating a clear correlation between 

the returns, which means that the returns are conditionally dependent of time. This is a 

violation of the assumption of the Gaussian distribution where each observation must 

be mutually independent. The plot also shows that the correlation between the returns 

are larger during the extreme periods than for the normal observations, with 

autocorrelation coefficients of absolute returns being between 0.1 and 0.4, compared 

to coefficients of a maximum of approximately 0.2 for the corresponding figures in the 

normal sample. This suggests a higher dependence in the returns of the extreme 

sample. The dependence could be a result of the larger fluctuations in the subsample, 

which in turn means that the large changes observed tend to be followed by large 

changes of either sign.  

Testing for autocorrelation is a test of each correlation coefficient respectively, but to 

confirm its applicability for the whole extreme sample, a joint test will have to be 

performed. As the correlation coefficients above seem to be volatile and only slightly 

above the confidence interval of the sample, testing all coefficients together is needed, 

to be able to draw a definite conclusion.  

4.2.2.2 Ljung-Box Test 

Table 4.11: Ljung-Box test extreme sample 

 

The test statistic is higher than the critical value for the portfolio, meaning that the null 

hypothesis should be rejected. The conclusion is that hypothesis of the dataset 
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containing zero autocorrelation in the time series, is rejected. As a result, presence of 

autocorrelation in the extreme sample is confirmed, and thus also the previous 

indications of volatility clustering. 

4.2.2.3 Conclusion 

There is found presence of volatility clustering in the extreme sample, confirmed by a 

significant presence of autocorrelation. This has a clear influence on how to approach 

the estimation of VaR and ES later in chapter 5, as the lack of mutually independent 

returns needs to be taken into consideration. As a result, observations which are 

dependent on each other could create a potential upward bias, for instance, with too 

high VaR estimates as a result of the clustering of tail returns.   

4.3 Concluding Remarks 

Based on the statistical analysis in this chapter it is clear that normality is rejected for 

both the normal and extreme sample. The lack of normality helps explain the results 

from chapter 3, where the Gaussian Basel model’s VaR and ES estimates were worse 

than expected. Instead, student’s t-distribution and EVT is found to better describe the 

data found in the normal and extreme samples respectively. Further, heteroscedasticity 

is detected in both subsamples, implying that volatility is conditional of time, rather 

than constant. To model the risk more accurately, a time dependent volatility model 

should be considered. 

In the next chapter, student’s t-distribution will be fitted and applied for normal market 

periods, while the extreme value theory will be adjusted to fit extreme market periods. 

The use of these distribution models should intentionally increase the likelihood of 

predicting tail events. In addition, a GARCH volatility model will be applied on both 

samples, in order to address the issue of the slow reacting Basel model. The 

conditional volatility model will be more adaptable and incorporate new market 

information faster by weighting recent returns to a greater extent.  

.   
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Chapter 5 

5 Models & Distributions 

The Basel model has proved to estimate risk insufficiently for both the normal and 

extreme sample, providing inaccurate estimates for VaR and ES in chapter 3. The 

analysis of the fit of a Gaussian distribution in chapter 4 concluded to reject the 

hypothesis of normality for both the normal and extreme sample. As an alternative, 

student’s t-distribution was proposed for the normal sample, while extreme value 

theory (EVT) was suggested as appropriate for the extreme sample. In addition, 

presence of volatility clustering has been detected in both subsamples, indicating that a 

volatility model should be combined with the distribution models in order to explain 

returns adequately.  

The normal sample will be explained using a student’s t-distribution in order to find a 

good fit with the data. Second, EVT will be adjusted and applied to the extreme 

sample. The distribution models for both subsamples will be supplemented with a 

GARCH volatility model, intended to address the issue of volatility clustering found in 

the returns.  

5.1 The Normal Sample 

In this subchapter an appropriate distribution and volatility model, namely student’s t-

distribution and GARCH, will be customised to fit the normal sample. Student’s t-

distribution is proposed as a suitable distribution due to the property of allowing for 

heavier tails. Moreover, the normal sample was found to contain volatility clustering, 

indicating that variance is not constant. This heteroscedasticity is a violation of iid 

error terms and constant variance assumed by student’s t-distribution. A GARCH 

volatility model will be implemented as an attempt to better explain the variance of the 

normal sample. Combining the student’s t-distribution with GARCH a student’s t-

GARCH is derived. This model allows the distribution to have both heavier tails and 

conditional variance throughout the time period. The t-GARCH will be applied on the 

normal sample, in order to see how well it fits the dataset. To test the performance, 

VaR and ES will be used as indicators, making us able to compare the t-GARCH to 

the benchmark Basel framework from chapter 3. 
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5.1.1 Student’s t-distribution 

Students t-distribution will allow for longer tails in order to capture the excess 

kurtosis. More specifically, it will allow for an adjustment to the skewness of the 

sample by using different degrees of freedom on each side of the distribution. The 

fewer degrees of freedom the more the distribution allows for heavier tails and more 

extreme observations when compared to a Gaussian distribution. As analysed in 

section 4.1.1.3, the distribution of the normal sample is left-skewed, indicating an 

asymmetric distribution shape with a longer left tail. Because of this, less degrees of 

freedom will be applied to the left tail or the loss side, than for the right tail or gain 

side. The best fit for the normal sample is found by giving the left tail 20 degrees of 

freedom, while the right tail is found to be best described by 100 degrees of freedom.  

5.1.2 GARCH  

When finding an appropriate distribution for the normal sample, it is, as found earlier, 

crucial to take volatility clustering into account. Without using a volatility model 

which adjusts for autocorrelation in the returns, the likelihood of underestimating the 

risk increases. The volatility needs to be conditionally distributed, rather than 

unconditional and constant throughout time. The most common model when dealing 

these kind of problems in time series, is GARCH – generalised autoregressive 

conditional heteroscedasticity model. 

A GARCH model makes assumptions on the conditional distribution, meaning it 

assumes a dependence through time via a feedback in the volatility. Both conditional 

and unconditional variance are measures of volatility, but the time dependency is what 

distinguish GARCH-modelling from models assuming homoscedasticity. The 

unconditional variance does not account for the current market trends, but is rather an 

equally weighted average measure of variance over a large sample. The conditional 

variance on the other hand, incorporates market movements up until the point where 

the estimation is done, meaning such a variance measure will be superior when dealing 

with heteroskedastic returns. More recent market movements are given much greater 

impact than less recent ones. Here the variances of the error terms will not be equally 

distributed, but rather reasonably expected to be larger for some points of data than for 

others. As seen earlier, in subchapter 4.1.2, the assumption of normal market returns 

being iid was violated due to the autocorrelation and heteroskedastic properties of the 

returns, therefore the use of conditional variance should provide better estimates. 
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5.1.2.1 Formula 

A standard GARCH(p, q)-model uses lag-parameters p and q in order to determine 

how long memory the volatility model should have. The memory is a measure of how 

much history, i.e. how many days, of error terms are included into predictions of 

volatility. When p and q are given higher values, more days of historical error terms 

are included in the model. 

𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞):     𝜎𝑡
2 = 𝜔 + 𝛽(𝐿)𝜎𝑡

2 + 𝛼(𝐿)𝜂𝑡+1
2      (5.1) 

where 𝛼(𝐿) is the lag-operator of the pth order, while 𝛽(𝐿) is the lag-polynomial of 

the qth order. The first value p refers to how many autoregressive lags (ARCH) terms 

appears in the equation, while the second value q refers to how many moving average 

(MA) lags are specified. Lag parameters p=1 and q=1 is found to be most suitable for 

the normal sample20 and by implementing this a GARCH(p, q) could be made into a 

GARCH(1, 1).  

𝐺𝐴𝑅𝐶𝐻(1, 1):     𝜎𝑡
2 = 𝜔 + 𝛽𝜎𝑡−1

2 + α𝜂𝑡
2      (5.2) 

Where 𝜔 is a constant determining the level of the long-time daily variance of the time 

series. 𝛽 is a constant quantifying the persistence of the volatility at previous time 

points. 𝜎𝑡−1
2  is the variance at the previous point in time, t-1. ∝ is a constant 

representing the sensitivity of the lag return error term. 𝜂𝑡
2 is the squared difference 

between the expected return and the actual return of the portfolio, also known as 

residuals.  

5.1.2.2 Parameters 

The GARCH-parameters are estimated with maximum likelihood estimation to give 

the best fit for the distribution of the normal return sample. 

Table 5.1: GARCH (1, 1) parameters normal sample 

 

If everything else is held equal, in this case the error terms of expected returns and 

volatility both being zero, the variance will converge to the value of 𝜔 throughout 

time. The value of 𝜔 is positive, such that the variance is always positive. 𝛽 has a 

value close to one, indicating that high volatility in the foregoing time point will result 

                                                      
20 Appendix table 1: Goodness-of-fit test run combining different p and q. GARCH(1, 1) 

provided highest test results. 

GARCH(1, 1) ω α β

Parameters 4.67E-07 6.32E-02 9.30E-01
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in high volatility at the current point in time. In other words, the variance will be 

highly dependent of its preceding values and thus market shocks integrated in future 

estimations. The size of 𝛼 determines the reaction of misestimating returns, thus a 

large 𝛼  makes the variance highly sensitive to unexpected returns in the market. The 

sum of 𝛼 and 𝛽 is a vital statistic in GARCH-modelling. Together they display how 

long fluctuations in returns are incorporated in future estimations of volatility, i.e. how 

fast volatility decays after-market shocks.  

To see graphically how the GARCH(1, 1) performs when applying the parameters 

above, it is possible to compare the historical absolute returns of the normal sample 

with the estimated volatility by GARCH(1, 1). Ideally, the volatility should increase 

over the same periods as when the absolute values of market returns increase.  

Figure 5.1: Absolute returns normal sample 

 

Figure 5.2: GARCH estimated volatility normal sample 

 

The two graphs above have very much the same trends. When absolute returns 

increases in figure 5.1, the estimated conditional variance (figure 5.2) for the same 

point in time displays a similar trend. In comparison, finding volatility based on 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1978 1983 1988 1994 1999 2005 2010 2016

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

1978 1983 1988 1994 1999 2005 2010 2016



56 

 

maximum likelihood estimation would give a constant variance (red line), not 

adjusting itself to the current state of the market. As seen in the charts, it looks as if 

sudden changes in portfolio returns are successfully incorporated into the GARCH(1, 

1) conditional volatility modelling, meaning that heteroscedasticity is effectively dealt 

with.  

5.1.2.3 Error Terms 

In subchapter 4.1.2, an analysis of autocorrelation was performed, proving that the 

error terms of the returns were not iid. Hence, they do not have constant variance, and 

does therefore violate important assumptions for a Gaussian distribution. However, 

GARCH has a similar assumption of iid. More specifically, the error term 𝜂 should be 

strict white noise, meaning that it has a mean of zero, but vary around the mean of the 

error terms with a conditional standard deviation 𝜎𝑡. Since the error terms, also known 

as residuals, are assumed to be white noise there should no autocorrelation present. 

The variance itself should not be constant, but the error terms should not be serially 

correlated when distributed with a conditional volatility. To test whether this 

assumption holds, another plot of the autocorrelation will be performed. In order to 

compare the error term residuals to one another, they are standardised by dividing with 

a standard deviation. More technically; 𝜂𝑡, the residual at time t, is divided by 𝜎𝑡−1, 

the conditional standard deviation at time t-1. 

Figure 5.3: Autocorrelation error terms normal sample 

 

As displayed above there is little or no presence of autocorrelation in the conditionally 

standardised error terms. For lags between one and three there is a weak 

autocorrelation. However, for lags above this there is no presence of autocorrelation. 

Compared to the original autocorrelation of the normal sample, all coefficients are 

considerably reduced. This indicates that the implementation of GARCH has to a great 

-0.05

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21



57 

 

extent removed serial correlation and thus improved the explanation power of the 

volatility dynamics in the normal sample. 

5.1.2.4 Drawbacks 

As for any statistical model, GARCH is based on historical numbers and will not be 

able to anticipate the future without flaws. A large movement in returns will not be 

incorporated in the model before the next estimation of volatility and thus it will react 

one day too late in order to successfully protect a portfolio manager from taking on too 

much risk 

The benefit of GARCH could also be one of its main disadvantages. The GARCH-

framework should intentionally react quickly to market changes and incorporate these 

changes when estimating future values of volatility. As such, estimates might change 

quickly and the risk measures as a result could end up being substantially higher. On 

the upside this quickly prepares a portfolio manager for higher risk, meaning that 

reduction of risk exposure is needed. However, the downside is that such frequent 

actions of composing the portfolio comes with lower potential upside and gain, in 

addition to higher transaction costs. Also, portfolio managers might argue that the 

rapid changes in risk estimates is only due to a temporary volatility spike and that they 

should hold their portfolio in order to stay profitable. These conflicting opinions and 

interests challenges the use of GARCH-models in the real world. In contrast, the 

Gaussian Basel model estimates of VaR and ES are more stable and has a less 

responsive evolvement. Information is incorporated slowly, making it ascend more 

carefully. A portfolio manager would rarely need to make significant changes in the 

composition of the portfolio, implying less trading costs. However, the long memory 

of the method could potentially force a portfolio manager to comply with information 

no longer relevant for the current state of the market. This property of Basel could lead 

to risk limits being unnecessary high, and therefore reducing the efficiency and 

profitability of the portfolio.  

Even though the practical implementation of GARCH could cause some challenges, 

these are necessary consequences. A portfolio manager cannot have it both ways, with 

a quickly adapting risk model, and infrequent changes in risk exposure. As such, we 

believe that a GARCH model is a more suitable model to estimate tail risk during 

normal market states. In addition, the adaptable properties provide a portfolio manager 

with accurate risk estimates, capping the potential upside as little as possible.  
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5.1.2.5 Conclusion 

The implementation of a GARCH(1, 1) volatility model has successfully removed the 

presence of autocorrelation in the normal sample. This indicates that the model is 

explaining dynamics of volatility and incorporating information at a sufficient level, 

quickly adapting to new market states.  

The next step in the process of explaining the dynamics of normal market conditions, 

is testing the performance of the modelling done so far. In order to see whether the 

modelling is improving risk estimates compared to the Gaussian distribution procedure 

used in the Basel framework, VaR and ES will be applied with the t-GARCH model. 

5.1.3 Value-at-Risk  

A student’s t-GARCH(1, 1) model is run on the normal sample, calculating one-day 

99% VaR.  

Table 5.2: VaR violation rates using student’s t-GARCH(1, 1) 21 

 

As displayed in table 5.2, the violation rates for VaR during normal market conditions 

are very accurate, at a level close to the target rate of 1%. VaR- is spot on 1%, while 

VaR+ is very slightly overestimating the risk. It seems as if the model succeeds in 

estimating an acceptable number of violations for the dataset under normal market 

conditions. Despite the degrees of freedom being fitted for this subsample in 

particular, it is possible to see a weak trend of the distribution skewing left, as we have 

more violations of VaR-, than VaR+. Considering the risk management perspective of 

the thesis, it is more important that VaR- is modelled correctly than VaR+, due to the 

more severe consequences of exceeding VaR-. If VaR- is exceeded, a portfolio could 

potentially experience severe losses. As seen in chapter 3, Basel underestimated the 

risk for both VaR- and VaR+ during normal market states. By comparing the violation 

rates of the two approaches, student’s t-GARCH(1, 1) is found to be more accurate, 

which could be due to the heavier tails of the student’s t-distribution.  

                                                      
21 Appendix table 2: Student’s t-GARCH VaR results for complete and extreme sample. 

VaR- VaR+

Violations 93 89

Violation rate 1.00% 0.96%

Sample size 9310 9310

Normal sample
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The second drawback of using the Basel model was the incorporation of new market 

information, which resulted in overestimated risk during less volatile market periods, 

and oppositely underestimated during highly volatile periods. To see how student’s t-

GARCH(1, 1) incorporates new market information, it will be graphically compared to 

the Basel VaR model in figure 5.4.  

Figure 5.4: Value-at-risk t-GARCH and Basel 

 

The GARCH model effectively adjusts and incorporates new market information. 

When market shocks occur, it seems to be rapidly taken into consideration by the 

volatility modelling performed by GARCH. Intentionally, the VaR should be as low as 

possible, but still estimate risk levels at a 1% violation rate. A low VaR, means lower 

risk exposure and thus higher potential upside for a portfolio manager. By having an 

effective, adaptable VaR, it is possible to react quickly to the market and increase 

exposure when markets cool down, and oppositely reduce risk exposure rapidly when 

markets become more volatile and extreme. This seems to be the case for the GARCH 

model, in particular when compared to the Basel VaR, thus we believe it is more 

flexible and suitable for a portfolio manager to apply. Next, we will analyse ES, in 

order to further discover the performance of the student’s t-GARCH-model. 

5.1.4 Expected Shortfall 

ES will be used as a performance indicator for how tail events are predicted by 

student’s t-GARCH. ES is an extension of VaR and thus provides information, not 

only about the threshold value of the 1% tail event, but also regarding what happens 

beyond this threshold. This will provide more information about the consequences of 

violating VaR, and as such be a supplement to the previously performed analysis.  
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5.1.4.1 Violation Analysis 

Table 5.3: ES violation rates using student’s t-GARCH(1, 1)  22 

 

The number of losses violating ES during normal market states is approximately 

halved, compared to Basel ES. The number of violations is low, indicating that few 

gains and losses are exceeding the estimated expected shortfalls. However, as 

discussed previously, there is no target violation rate for ES, as is the case for VaR. By 

looking at violation rates only, it is not possible to directly determine whether the ES 

estimates in general are too high, or if the conditional variance makes ES successfully 

adaptable as intended.  

5.1.4.2 Loss Analysis 

To further investigate the few violations found in the ES model, total and average loss 

in the case of violation are displayed below. The figures are only indicative of the 

downside of the model, as they do not account for any potential upside. As the 

perspective of the thesis is from the viewpoint of a portfolio manager, consequences of 

violating the left tail of losses will be analysed. 

Table 5.4: Loss analysis using student’s t-GARCH (1,1) 

 

The average loss for ES- is slightly larger than the corresponding figure for the Basel 

ES model presented earlier in section 3.2.4.2. The total loss is significantly reduced, 

and is almost halved compared to the Basel model. The average loss is higher because 

the number of violations are far lower than for the Basel model, implying a lower 

numerator and thus higher average loss. Hence, the losses are rare, but when occurring 

they are more severe. As such, the conclusion of a significant improvement compared 

to the Basel model is supported by the loss analysis. 

                                                      
22 Appendix table 3: Student’s t-GARCH ES results for complete and extreme sample. 

ES- ES+

Violations 27 35

Violation rate 0.29% 0.38%

Sample size 9310 9310

Normal sample

ES- Normal sample

Total loss -795,512            

Average loss -29,463              
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5.1.4.3 Graphical Analysis 

Ideally, the model should be adaptable in such a way that it yields low ES estimates 

under stable market conditions, but high estimates under risky market conditions. This 

would make ES flexible throughout the time period, forcing the portfolio manager to 

reduce exposure only when the actual risk increases. To investigate further, the ES 

student’s t-GARCH model will be compared to the Basel ES model, displayed with 

the P/L’s of the portfolio.  

Figure 5.5: Expected shortfall t-GARCH and Basel 

 

As the plot shows, there are significant differences in the dynamics of the two 

measures. The contrasting dynamics have implications for a portfolio manager, which 

could be required to comply with risk limits given by ES. ES derived by a student’s t-

GARCH (1,1) is far more sensitive with respect to the return movements. In periods 

where returns are more volatile, ES reacts quickly and incorporates the risk by 

increasing the confidence level swiftly. Moreover, when the volatility decreases, it 

quickly lowers the confidence level. In this way a portfolio manager has a more 

dynamic risk measure, highly adaptable and adjusting for the state of the market.  

5.1.5 Conclusion 

For the normal sample, the student’s t-GARCH (1,1) is significantly improving risk 

estimates, displaying lower violation rates for both VaR and ES than the 

corresponding figures found for the Gaussian Basel model. The GARCH model 

handles the volatility clustering, while the student’s t-distribution allows for returns to 

be more leptokurtic, i.e. have fatter tails and experience more extreme outcomes. The 

conditional volatility implemented by GARCH makes it a flexible measure which 

adapts quickly and thus prepares a portfolio manager for both higher and lower risk in 

the market. This property is confirmed by the loss analysis, which shows that total 
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losses during normal market periods is nearly cut in half. In the next chapter we will 

seek to find the best approach to risk management during extreme market conditions. 

5.2 The Extreme Sample 

The extreme sample contains the returns that differs the most, measured in standard 

deviation, from the mean. While differing the most from the mean, they are at the 

same time occurring so often, three times or more, over a two-week period, that the 

theoretical probability is very low, as found in chapter 2, around 1%. Yet, as seen 

before, the extreme returns comprise of 6% of the total return sample. While this is 

still a low percentage of the complete dataset, accurate modelling of the outer 50% of 

the extreme sample on both sides of the distribution is inconvenient, as these are even 

rarer tail observations. The returns found here are infrequent, fluctuations large and the 

losses, as a result, steep, indicating a high risk of large losses on the portfolio. As a 

consequence, Extreme value theory (EVT) was introduced in chapter 4, as a model 

that could provide good estimates with little data available to analyse and a high 

degree of extremeness found in the returns. One central part of the extreme value 

theory is the peak-over-threshold (POT) model.  

5.2.1 POT-model  

There are, in general, two main models under EVT; the block maxima and the peak-

over-threshold (POT) model. Both deal with the extreme deviations from the median 

of the probability distribution.23 As the block maxima approach requires a too large 

sample for accurate estimates compared to the size of the extreme sample, the POT-

model will be applied. The peak-over-threshold approach is also generally preferred 

because of its practical functionality.24 There are two approaches to POT; fully 

parametric models (e.g. the generalized Pareto distribution); and semi-parametric 

models (e.g. the Hill estimator). A fully-parametric model which uses the generalised 

Pareto distribution (GPD) is, as the name suggests, the most general of the two 

approaches. It can be applied to a wide variety of data and does not require prior 

knowledge of the tails, in contrast to the Hill estimator, which is only valid for a 

certain type of distributed data. As a result, we will use a POT-model with GPD fitted 

to the empirical tail distribution. 

                                                      
23 See [17] 
24 See [16] 
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An underlying assumption of the POT model is that returns over a given threshold are 

iid. As investigated in the previous analyses of the extreme sample this is problematic, 

as it was showed that this was not necessarily the case. A result of this assumption is 

that the model does not take into account current market volatility, but rather only 

takes a given 𝛼, i.e. a quantile value, and the current portfolio value into account when 

estimating VaR and ES. As the return sample is relatively dispersing and unevenly 

distributed, combined with the large, rapid fluctuations that tend to occur during the 

extreme market conditions, this could quickly become a limitation of the POT-model. 

We therefore choose to tweak the approach of the POT-model, to be able to take the 

heteroscedasticity into account, with a conditional POT (c-POT) model.  

5.2.2 Conditional POT-model 

The conditional POT (c-POT) model integrates extreme value theory and GARCH-

modelling. The hybrid combines dynamic volatility, i.e. volatility clustering, and non-

normality with the presence of fat tails in the return distribution. In the conditional 

POT model, GARCH is used to fit the return data with maximum likelihood in order 

to estimate the current conditional volatility. The GPD is approximated to model the 

tail of the innovations, i.e. the standardised residuals, of the GARCH model. Since the 

daily returns, as shown earlier, exhibit both autocorrelation and heteroscedasticity, the 

implementation of time-varying volatility into the calculations is needed. Therefore, 

using a dynamic volatility model (GARCH), which incorporates volatility clustering, 

should make the error terms iid. Then, the assumption of normal standard distribution 

in the GARCH model is replaced by applying EVT, in the form of GPD, to the noise 

variable, which is suited for modeling the tails without assuming any specific shape of 

the distribution. As such, conditional VaR forecasts could be derived.  

5.2.2.1 Defining the Model 

The GARCH(1, 1) setup will be implemented, where a return at time i, 𝑋𝑖 is described 

as: 

𝑋𝑖 =  𝜇 + 𝜖𝑖 =  𝜇 +  𝜎𝑖𝑍𝑖       (5.3) 

And where we have: 

 𝜎𝑖
2 = 𝜔 + 𝛽𝜎i−1

2 + α𝜖𝑖−1
2        (5.4) 

The expected return is 𝜇 and the volatility of the returns at time i is 𝜎𝑖. So that, the 

conditional volatility today is dependent on yesterday’s innovations, i.e. 𝜖𝑖 =  𝑋𝑖 −  𝜇𝑖, 
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yesterday’s conditional volatility and the unconditional volatility 𝜔. The innovations 

𝜖𝑡 are defined as the error term between the estimated return and the realised return. 

The standardised residuals or innovations, are then:  

𝑍𝑖 =  𝜖𝑖/ 𝜎𝑖         (5.5) 

The innovations 𝑍𝑖 are, in the conventional GARCH model, assumed to be iid, 

independently and identically distributed,  and to follow a Gaussian distribution. As 

the innovations must be independent of each other, the validity of the model will be 

tested by investigating whether there is autocorrelation in the innovations for various 

lags. Each side of the distribution is show below, with the negative innovations on the 

left side.  

Figure 5.6: Autocorrelation innovations extreme sample 

 

There is no significant tendency of autocorrelation on either side, as the coefficients of 

almost all lags are below the dotted lines, i.e. within the confidence interval of 

significance. As such the assumption must be considered to be fulfilled. Then, by 

minimising the ratio of error in the model, i.e. the innovations, the GARCH model 

with normal innovations is fitted with a maximum likelihood approach. 

In the next sections, the standardised residuals are extracted, so that EVT can be 

applied to the residuals 𝑍𝑖 to model the tail behaviour.   

5.2.2.2 Threshold Determination 

When implementing EVT, i.e. the conditional POT model, a threshold value for the 

innovations has to be determined, as the c-POT is only applied to the tails of the 

distribution. Moving into the centre of the distribution the c-POT becomes 

increasingly inaccurate. There is, however, no universal rule telling when it becomes 

inaccurate, because this depends on the underlying distribution of the data. The most 
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common approach when determining the optimal threshold, is the eyeball method.25 

Here, the focus is to find a region where the tail index seems to be stable. Each tail 

must be estimated individually since it was found that the empirical distribution is 

asymmetrical. From this point on, the tails are investigated separately, by first 

estimating the left side, with only negative returns, then the right side, using only the 

positive returns. Both sides are displayed below as absolute values. 

Figure 5.7: QQ plot innovations extreme sample 

 

Figure 5.7 shows the Q-Q plots for the negative and positive innovations respectively. 

The plots compare the sample quantiles of the innovations with the theoretical 

quantiles of the data normally distributed. If the innovations (blue circles) were 

distributed normally they would align with the red line, meaning that the greater the 

difference between the two, the larger is the evidence for different distributions. While 

close to true for the centre of the distribution, the tails of the innovations show 

significant deviation. For c-POT modelling, the point where the deviation begins is 

that of interest, as we seek to find the point that appears to separate the tails from the 

rest of the distribution. The sky blue lines indicate the values where the deviation 

begins. The threshold for the negative innovations side is therefore determined to be, 

𝑢− = 1.10, while the threshold for the positive side is determined to be, 𝑢+ = 1.15. As 

a results, all innovation values of the respective sides of the extreme sample larger 

than the two thresholds will be used when modelling c-POT with a GPD.  

5.2.2.3 Generalised Pareto Distribution 

In this section, all values larger than the thresholds found previously, will be 

considered. The difference between these values and the thresholds are called 

                                                      
25 See [16] 
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exceedances over the threshold. These exceedances are assumed to have a generalised 

Pareto distribution. The GPD has a distribution function defined by 26:   

𝐺𝜉,𝛽(𝑥) =  {
1 − (1 +

𝜉𝑥

𝛽
)

−
1

𝜉
  𝑖𝑓 𝜉 ≠ 0

1 − exp (−
𝑥

𝛽
)   𝑖𝑓 𝜉 = 0

      (5.6) 

Where the parameters of the distribution are 𝜉 and 𝛽, the shape and scale parameters 

respectively. A maximum likelihood estimate is applied on both sides of the 

distribution to find the optimal shape and scale parameters to describe the positive and 

negative innovations. 27 

To investigate the match of the GPD with the extreme sample, a probability plot will 

be applied on both sides of the distribution, where the negative (left hand plot) and 

positive (right hand plot) innovations are fitted to the GPD, using maximum likelihood 

estimation of the distribution function as described above.  

Figure 5.8: Probability plot extreme sample 

 

The plots show how the data in the extreme sample follows the generalised Pareto 

distribution. The straight line displays the theoretical distribution of the GPD, and is 

estimated on basis of the given scale and shape parameters. Departures from the 

straight line indicate departures from the GPD. As such, the correlation coefficient 

between the theoretical distribution and the empirical data, i.e. the coefficient linked to 

the linear fit of the data, is a measure of the goodness of fit between the two. Both 

sides of the distribution seem to closely follow the GPD with small deviations from 

the straight line, which suggests that the GPD is able to explain the distribution of the 

innovations accurately.  

                                                      
26 See [18] 
27 Appendix table 4: The GPD parameters 
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The c-POT model is a bit of a black box, in terms of the results of its distribution 

modelling. It is difficult to, based on the above, know the accuracy and correctness of 

the model in describing the extreme sample without first estimating VaR and ES. We 

will therefore, as a complementary test to the risk measures, first look further into the 

tail possibilities of the model described above.  

5.2.2.4 Investigating the Tail Possibilities 

The conditional POT-model does in theory fit well to the extremeness of the returns in 

the subsample based on the above findings. However, this could be supplemented 

before moving into risk measure estimation. As the extreme sample consists of only 

590 observations, a Monte Carlo simulation is performed in order to investigate the 

tail possibilities of the subsample further. The simulation is performed by drawing one 

million daily returns based on the EVT modelling above, i.e. by using the parameters 

found to describe the distribution. As the left side of the extreme sample is of 

particular interest for any risk aware investor, we will focus on the loss side in the 

simulation. The simulated left-tail density histogram is displayed, in absolute terms, 

below.  

Figure 5.9: Left-tail generated extreme sample 

 

The plot, displaying the Monte-Carlo simulations of the left tail of the extreme sample, 

suggests that the EVT model manages to capture the negative skewness, and 

extremeness of the data. The potential of large losses is higher compared to what the 

dataset from 1978-2016 implies. The steepest loss in our portfolio was approximately 

12%, while, by contrast, the EVT-based simulation suggests that the worst daily loss 
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on the portfolio could be over 20%. However, most of the simulated losses max out at 

around 15% and the probability of seeing anything larger is extremely low. And, as 

discussed earlier, in subchapter 4.2, the extreme modelling should not necessary be 

limited by the most extreme events observed in our dataset, but rather offer 

information regarding the magnitude and probability of potential values being more 

extreme than those seen previously throughout history. As such, the previous extreme 

values should offer information about potential worse scenarios. Therefore, it seems as 

if the EVT successfully takes into account and quantifies the potential ‘black swans’ 

seen in the historical extremes. 

To further investigate the accuracy of the c-POT model, VaR and ES will be run 

through the dataset in the next two sections, and compared to the Basel figures found 

earlier in the thesis.  

5.2.3 Value-at-Risk 

The value-at-risk is estimated using 28:   

𝑉𝑎𝑅𝛼
𝑖 =  𝜇𝑖+1 + 𝜎𝑖+1𝑞𝛼(𝑍)       (5.7) 

Where Z is the GARCH (1, 1) fitted innovations. The 𝛼 quantile of the innovations are 

scaled with the estimated 𝜎, such that heteroscedasticity is taken into account. Then 

the 𝛽 and 𝜉 are found from fitting the GPD over the innovations, so that the quantile 

can be estimated by using: 

𝑞𝛼 = 𝑢 +
𝛽

𝜉
 ((

1−𝛼

𝐹(𝑈)

−𝜉
) − 1)       (5.8) 

This results in the following VaR estimates: 

Table 5.5: VaR violation rates using c-POT 29 

 

On the loss side, the model now tends to underestimate the risk, meaning that the 

violation rate is higher than the 1% rate the 99% confidence interval suggests. A 

                                                      
28 See [19] 
29 Appendix table 5: Conditional-POT VaR results for complete and normal sample. 

VaR- VaR+

Violations 9 5

Violation rate 1.53% 0.85%

Sample size 590 590

Extreme sample
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further investigation into the nine violations shows that eight out of the nine on the 

loss side are significantly worse than the corresponding VaR, meaning that the loss at 

each point in time is far greater than the VaR level. Which suggests that these are 

extreme observations, even for the extreme sample, which the model does not manage 

to pick up. This follows from the fact that, when accounting for the current volatility 

of the market as the c-POT model does, sudden large fluctuations in returns will not 

always be within the confidence interval of the model. On the other hand, for VaR+, 

the risk seems to be slightly overestimated, with a lower than 1% violation rate. Still, 

the VaR estimates for the conditional-POT model showcase much better estimates 

than the Basel estimates, suggesting the adjustment done to incorporate the 

extremeness of the tails and heteroscedasticity have had effect.  This is also clearly 

evident in figure 5.10 below, where the current market volatility is taken into account, 

displayed by the large fluctuations of VaR estimates. 

 

Figure 5.10: Value-at-risk c-POT and Basel 
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5.2.4 Expected Shortfall 

Expected shortfall for the conditional-POT model, is found to be 30: 

𝐸𝑆𝑞
𝑡 = 𝜇𝑡+1 + ( 

𝑉𝑎𝑅𝑞

1−𝜉
+

𝛽−𝜉𝑢

1−𝜉
)𝜎𝑡+1      (5.9) 

Where 𝜇𝑡+1 and 𝜎𝑡+1 are conditional GARCH estimates of mean and volatility.  

5.2.4.1 Violation Analysis 

The figures for the expected shortfall conditional-POT is: 

Table 5.6: ES violation rates using c-POT 31 

 

As found for the VaR results when applying the conditional POT model, the left side 

of the distribution causes problems for the ES model as well, and results in a relatively 

high violation rate of 1%.  On the right side of the ES model, zero violations are 

found. The high number of violations for the left tail stems from the fact that the 

conditional variance modelling does not account for or pick up the changes in 

volatility to a high enough degree, meaning the ES- is significantly underestimating 

the risk at the points of the violations. The low reduction in violations from VaR to ES 

does indicate that the losses at the time of the violations are in fact very large, so that 

they are not even covered by ES. 

5.2.4.2 Loss Analysis 

A violation rate of approximately 1% is a relatively high rate for ES, resulting in a 

large total loss over the six violations of approximately 400,000, as seen in the table 

below. In addition, the average loss is displayed as a result of the total loss over the 

period. The total loss is found to be the sum of the difference between the ES estimate 

at each point of violation and the actual observed loss. As such, it does only indicate 

the magnitude of the potential of loss of the portfolio and is not netted against gains or 

adjusted for increases in portfolio value over the period. 

                                                      
30 See [19] 
31 Appendix table 6: Conditional-POT ES results for complete and normal sample. 

ES- ES+

Violations 6 0

Violation rate 1.02% 0.00%

Sample size 590 590

Extreme sample
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Table 5.7: VaR violation rates using c-POT 

 

The large average loss, compared to the previously observed values for student’s t-

GARCH and the Basel model, suggests that each violation on its own is of large 

magnitude, while the total loss over the period is small in comparison. As a whole, the 

ES modelling for the extreme sample better pick up the risk in the portfolio, and 

reduce the potential losses over the whole period, compared to Basel during the 

extreme market periods. The high average loss, however, suggests that the violations 

themselves are of large magnitude. Which could mean that even if ES adjusts to a 

large degree, the fluctuations in the returns are even larger and the risk measure does 

not manage to accurately estimate them.  

5.2.4.3 Graphical Analysis 

To further explore how ES evolve throughout the dataset as compared to the P/L, it is 

plotted together with the Basel ES for comparison in figure 5.11.   

Figure 5.11: Expected shortfall c-POT and Basel 

 

The conditional-POT ES estimates fluctuate to a large degree throughout the dataset, 

in particular when compared to the corresponding Basel ES estimates. It seems as if 

large fluctuations in the returns results in matching movements of the c-POT ES, 

displayed as sudden spikes in the graph. This means that the model is quick in 

adapting to changes in market volatility, and as a result reduces the number of 

violations significantly compared to the more constant Basel model. In addition to the 

rapid reaction rate to sudden increases in market volatility, the model seems to quickly 

reduce its ES estimates as the fluctuations in the market decreases. The quick 
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reduction in ES estimates is important to reduce the potential risk overestimation in 

the model, as the model should not “cap” the potential upside by consistently 

providing too high ES estimates compared to the actual P/L in the market. However, 

the low violation rate in combination with the observable, continual larger ES 

estimates than Basel, as seen in the graph, suggests that risk overestimation might in 

fact be the case for the model. Yet, given that the model is designed and intended to 

deal with extreme observations only such an overestimation might in the end be 

preferable to reduce the probability of tail risk over the sample as a whole.  

5.2.5 Conclusion 

The conditional-POT model is a clear improvement of the standard Basel framework. 

This is first and foremost evident in the highly dynamic modelling of both VaR and 

ES, taking into account the current market volatility. Second, the risk measures do, 

with the c-POT model, not consistently overestimate the risk of the portfolio, so that a 

portfolio manager is not too risk averse. The model provides strong improvements in 

the results of the risk measuring of the extreme observations, but do still display 

problems with some extreme outliers leading to relatively high violation rates on the 

loss side of both VaR and ES.   

5.3 Concluding Remarks 

Through the modelling of the normal sample, where the student’s t-GARCH model 

was applied to estimate VaR and ES separately, and later when using c-POT to model 

the extreme sample, each sample has been processed separately. Modelling the two 

subsamples separately, reduces the applicability of using the models for risk 

management, as the market is not divided into two categories consequently. As such 

we have to apply the two models together to be able to draw conclusions on their 

utilisation for any given market state.    

To further improve our setup, we will in the next chapter look to combine our 

approach by using both the normal and extreme sample. This should provide a model 

which is more applicable to real life use.  
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Chapter 6 

6 Combining Models 

Up to this point in the thesis, the two distribution models have been treated and 

analysed separately. In this chapter we will strive to prepare the applicability of the 

model, in order to make it more practical in terms of real life use. In particular, the 

focus will be on the timing of the switching between the normal and extreme 

distribution, as well as the procedure of collecting the data used to model the 

distributions for normal and extreme market states. The two respective distribution 

models will be implemented into one combined model, using student’s t-GARCH 

(1,1) for normal market conditions and conditional-POT for extreme market 

conditions. The intention of this chapter is, as a result, to determine whether the 

models are applicable for a portfolio manager, not only for each subsample, but for the 

complete sample as one.  

The combination of the modelling procedures will be approached in two phases in 

order to arrive at a model that best describes a real life approach to VaR and ES 

estimation. Both in regard to information availability, in particular, but also in 

reducing the assumptions used so far in the thesis, when estimating the two risk 

measures. The first step, is combining the two models, student’s t-GARCH and c-

POT, into in a “Paired model”. This model will have access to all information in the 

dataset available at all times, and as such serve as a concise, combined version of the 

calculations presented in chapter 5. Later the “Autonomous model” will be presented, 

where assumptions will be tightened and the information available limited to a realistic 

level. The tightening of these assumptions should intentionally produce less bias in the 

results and as such be closer to a real life approach.  

6.1 Paired Model 

When constructing a combined model, the “Paired model” should intentionally shift 

underlying distribution model depending on the market state of the portfolio. Student’s 

t-GARCH (1,1) will be used during normal periods, since this is fitted based on the 

normal sample. If the market state qualifies as extreme, the c-POT will be applied, as 

this is constructed based on the extreme sample. The model is assumed to switch 

between student’s t-GARCH (1,1) and c-POT at a perfect timing. In other words, 
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when an extreme period is occurring the model switches from student’s t-GARCH 

(1,1) to c-POT exactly when the extreme period begins, even though there is no 

indication up to that point in time that an extreme period actually is approaching.  

6.1.1 Value-at-Risk 

Table 6.1: VaR violation rates using Paired model 

 

VaR violation rates for normal periods are identical to the violation rates for the 

normal periods in the student’s t-GARCH(1, 1) model presented in chapter 5.1.3, 

while the extreme period violation rates above are identical to the output from chapter 

5.2.3, when calculating extreme period violations for c-POT model. The equivalent 

results follow from the fact that the Paired model now uses the two methodologies of 

student’s t-GARCH and the c-POT together, only switching when the market 

conditions changes.   

Violation rates over both the normal and extreme period are previously found to be 

yielding around the target rate of 1% violations. VaR- violations for extreme market 

periods are a little high, but this is, as touched upon earlier, caused by a few outliers 

which are difficult to detect by any distribution model. Therefore, when combining the 

two distribution models into the Paired model, violation rates for the complete sample 

are found to be satisfying, violating close to 1% of the total sample size, with a 99% 

confidence interval. It is the number of violations over the complete sample which are 

of the most interest when looking at the results of the combined model, as these are 

taking into account the complexity of modelling the whole period as one. Integrating 

the two models found in chapter 5, it is now possible to draw conclusions over the 

whole dataset, where the results suggests that the model, when presented with both 

normal and extreme market conditions, manages to apply both in an appropriately 

manner leading to almost perfect results. The close to ideal results, naturally stems 

from the timing of the switch between normal and extreme modelling being perfect, 

and the models being run on the same sample in which they have been defined. Both 

‘issues’ will be dealt with, first in subchapter 6.2 and later in chapter 7, with the 

Autonomous model and an out-of-sample test respectively.  

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 102 94 93 89 9 5

Violation rate 1.03% 0.95% 1.00% 0.96% 1.53% 0.85%

Sample size 9900 9900 9310 9310 590 590

Extreme sampleComplete sample Normal sample
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6.1.2 Expected Shortfall 

Table 6.2: ES violation rates using Paired model 

 

As for the value-at-risk figures presented above, the ES results of the normal and 

extreme market are identical to the findings derived in subchapters 5.1.4 and 5.2.4. 

Combining the two provides violation rates over the complete sample at 

approximately 0.3% for both sides of the distribution. The low number of violations 

are good news for any portfolio manager, greatly reducing the potential loss over the 

whole dataset when combining the two models. This further confirms the success of 

the two models found when running VaR above, namely that the two combined are 

able to explain the risk in the returns of complete the dataset accurately. 

However, as seen through the analysis of ES done earlier in the thesis, it is difficult to 

know the nature of potential risk overestimation in the model presented, only by 

investigating the violations. Below, the viewpoint of the analysis is from a left-tail 

perspective, as such the focus is to draw conclusions on the potential losses for a 

portfolio manager. The violation rate is found to be low, but not the degree in which 

the model achieves the low rate, whether it is constantly too high or rather fluctuates 

with the movement in the market. VaR should be 1%, but how low the violation rate 

of ES should be to optimise risk management, is not set. Therefore, to get an 

indication of the ability of the Paired model to successfully adjust to market 

movements and as such not constantly overestimate risk, it will be compared with the 

chosen benchmark model, the Basel framework. Figure 6.1 is used to compare the 

actual value of the loss side of the expected shortfall calculations for the Paired model 

and the Basel model derived in chapter 3, in addition to the historical 99% ES 

estimated as a function of the portfolio. The figures given are displayed in absolute 

terms.  

ES- ES+ ES- ES+ ES- ES+

Violations 33 35 27 35 6 0

Violation rate 0.33% 0.35% 0.29% 0.38% 1.02% 0.00%

Sample size 9900 9900 9310 9310 590 590

Complete sample Normal sample Extreme sample
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Figure 6.1: Expected shortfall comparison 

 

The Paired model fluctuates extremely compared to the Basel and Historical ES 

values. It seems as if the model reacts rapidly to changes in the market with large, 

sudden spikes in the ES estimates when the market moves. The movements are in 

stark contrast to the relatively small movements in both the Basel model and the actual 

historical ES figures. This suggests that that the model is quick to adapt, both on the 

upside and downside of the risk measure, as the large spikes when volatility increases 

is followed by similar movements in the ES downwards. As such, the Paired model 

seem to fluctuate around the mean of the two other ES estimates, but over the time 

period as a whole, it provides higher ES estimates, on average. The quick downward 

move of the ES estimates when large upward movements occur, means that we do not 

cap our potential upside longer than necessary as both Basel and historical ES 

showcase to do.  

6.1.3 Conclusion 

As touched upon in the beginning of this chapter, this an all-knowing model assumed 

to foresee whether a normal or extreme market period is approaching, making it able 

to switch distribution method perfectly with respect to timing. By making use of 

information, not obtainable at each respective day of risk estimation, the Paired model 

relies on observations yet to come. This is not a realistic procedure of switching 

between different distribution methods. A genuinely applicable model cannot know 

the future and thus perfectly predict the state of the market tomorrow. In the next 

section this issue will be addressed, searching for alternative methods of switching 

between distributions, as well as finding a more realistic collection of data for fitting 

distributions; both in order to derive less biased results. 
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6.2 Autonomous Model 

In this section we will present the “Autonomous model”, a model not knowing 

anything about the future when advancing through the dataset. The move from the 

Paired model towards a more realistic model will be two sided. First, we highlight the 

procedure of collecting data used to fit the distribution in normal and extreme periods. 

Second, we focus on the procedure of switching between normal and extreme 

modelling. Both are elements in the Paired model not being strictly forward-looking. 

This means that the decision making process when switching between normal and 

extreme modelling for applying VaR and ES will be made retrospective, not knowing 

when extreme market periods are approaching. Therefore, the Autonomous model will 

mitigate the weaknesses of the Paired model, from a real life perspective, and produce 

risk estimates only based on previously observed data.  

6.2.1 Collection of Data 

Up to this point the distribution has been approximated based on the entire dataset, and 

thus to some extent indirectly been founded on information based on the future. Now 

however, the distribution will be fitted only based on information available at the day 

of estimation. For each day passing, information from this day will be added to a data 

sample and used to improve future predictions. The model is autonomous because of 

its self-learning properties, meaning that it is able to automatically incorporate new 

information, in order to produce better prediction estimates and as a result improve 

itself when the data sample is increasing. 

The starting point of estimation will be in 1978, with one year of data as basis. Then 

the model continuously adds observations to its available data day-by-day, when 

moving forward through to the end of the dataset, in year-end 2016. In practice this 

means that, if a normal day is observed, new information is incorporated into the 

normal data sample and used onwards to fit a student’s t-GARCH (1,1) applied in 

normal market periods. As time passes and new observations of normal periods are 

encountered, the normal data sample increases and the fit of distribution for normal 

periods is additionally improved. Equivalently, the same mechanism is applied for the 

extreme periods and the c-POT model. The reasoning behind using such a model is to 

apply a design that is more "real life like", and which could in fact be used to make 

actual calculations for a portfolio manager.  
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6.2.2 Switching Procedure 

In the attempt of producing a more genuine test of the Paired model’s performance, 

the procedure of switching between distribution models should be done in a way that 

is not all-knowing. In other words, when estimating VaR and ES the use of either 

student’s t-GARCH or the conditional-POT must be determined by information known 

at the time of the decision. This means that the model must base the selection of 

normal or extreme modelling on the basis of history, in contrast to the previous 

subchapter, where information ahead of each decision point in time revealed that 

extreme observations were approaching. Instead now, recent observations in the 

market is used, suggesting whether the market qualifies as extreme, followed by a 

switch into extreme modelling.  

The procedure of switching between normal and extreme modelling will be based on 

the same definition as applied in subchapter 2.3 when defining the subsamples. 

However, in contrast to earlier use, the switching cannot be triggered before the 

extreme observations actually have occurred, in order to maintain a historical 

perspective. As a result, the Autonomous model is now backward-looking, not 

applying any information about the future. More specifically, the model will switch 

into extreme modelling if there is, over the course of the last 10 trading days, detected 

three or more returns being +/- two standard deviations from the mean.32 This 

procedure is repeated every day, potentially allowing the Autonomous model to, if 

necessary, switch between normal and extreme modelling daily. As such, the choice of 

model happens each day after the markets close, so that if three extreme returns are 

observed over the last 10 days the extreme model is applied immediately by the start 

of the next trading day. The result is that there is no lag after the extreme observations 

have in fact occurred, but the switch between the two models happens retrospectively.  

The fact that switching to extreme modelling is performed after three extreme 

observations already have occurred, makes the model more realistic compared to the 

earlier applied methods in the thesis. However, optimally the model should be 

forward-looking, which implies an ability to predict the future or make qualified 

guesses and anticipate when the extreme observations will happen. We will investigate 

the possibility of this, when exploring the properties of the days before extreme 

periods in chapter 8.   

                                                      
32 Estimates of mean and standard deviation are based on one year of data prior to the 

respective day.  
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For now, we assume that extreme market periods cannot be predicted. As such, 

switching to extreme modelling can only be done, after the extreme observations have 

occurred. This backward-looking method of switching distribution models is a 

drawback of the Autonomous model, as the switch happens retrospectively, thus the 

risk of not modelling the correct returns with the correct model to a high enough 

degree is present.  For the model to work as desired, a high share of extreme periods 

should appear consecutively one after another, so that the retrospective switch of 

models succeeds. This method should be appropriate, as discoveries in chapter 4 

suggests substantial presence of volatility clustering in both the normal and extreme 

sample. Put differently, it seems as if volatility today is highly correlated with 

yesterday’s volatility, implying that normal periods are often followed by normal 

periods, and extreme periods are often followed by other extreme periods. Based on 

this, we believe the procedure of switching models retrospectively, despite the delayed 

reaction time, is a reasonable way of deciding whether normal or extreme modelling 

will be applied, without using information about the future.  

By doing this, the procedure of both switching between normal and extreme 

modelling, and fitting the distribution is as realistic as it can be, in regard to the use of 

information available to a portfolio manager.  

6.2.3 Value-at-Risk 

Table 6.3: VaR violation rates using Autonomous model

 

Value-at-risk violation rates over the complete sample are higher for the Autonomous 

model when compared to the Paired model. They are slightly above the desired 1% 

rate, but yet close to an acceptable level for the model as one. However, the violation 

rate being larger than one implies an underestimation of risk, which means the 

likelihood of larger losses is present. Using the results from Basel as a peer, the output 

from the Autonomous model is much closer to the ideal target rate of 1%, compared to 

the findings in chapter 3. However, returns in normal periods are violating the value-

at-risk at a slightly higher level than the corresponding statistic from Basel, indicating 

that the total reduction comes from the extreme sample. The Autonomous model does 

experience significantly fewer violations during extreme periods, than the Basel 

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 140 126 108 109 32 17

Violation rate 1.41% 1.27% 1.16% 1.17% 5.42% 2.88%

Sample size 9900 9900 9310 9310 590 590

Extreme sampleComplete sample Normal sample
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model, indicating that such periods are modelled better by using the conditional-POT 

for extreme periods, also when the model is gradually increasing its data through time. 

Despite the improvement of the Autonomous model over the complete sample 

compared to the corresponding Basel figures, the underestimation of risk during the 

extreme periods, is too high, and displays the continued problems in correct estimation 

of risk for extreme observations.  

6.2.4 Expected Shortfall 

 Table 6.4: VaR violation rates using Autonomous model 

 

The expected shortfall violation rate is slightly up from the corresponding figures 

found for the Paired model, up to approximately 0.5% for the complete sample, from 

0.3% found earlier. As the model is restricted to using only historical information 

observed at any point in time, the violation rate is expected to increase. The advantage 

of knowing the future is removed, and as a result the losses has to increase. However, 

when compared to the Basel model, the improvement is still clearly present, with the 

violations rate for the loss side, in particular reduced, down from the 1.4% found 

earlier in chapter 3. This is, again, mainly driven from reductions of violations in the 

extreme sample, which are reduced around six fold from the corresponding Basel 

violations. The plot of the Autonomous model’s ES estimation below, is compared 

with the Basel ES and the P/L’s of the portfolio. 

Figure 6.2: Expected shortfall Autonomous and Basel 

 

ES- ES+ ES- ES+ ES- ES+

Violations 47 54 31 45 16 9

Violation rate 0.47% 0.55% 0.33% 0.48% 2.71% 1.53%

Sample size 9900 9900 9310 9310 590 590

Complete sample Normal sample Extreme sample
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The Autonomous ES estimates seem to display approximately the same properties as 

the ES of both the student’s t-GARCH and the c-POT, with a highly fluctuating, 

rapidly reacting model. Yet, compared to the latter in particular, the number of 

violations are up, suggesting that, even though the model seem to showcase the same 

trends of behaviour, it does not reach the same level of accuracy when the extreme 

observations occur.  

6.2.5 Conclusion 

Compared to the Paired model, violations are higher for both VaR and ES. The 

tightened assumptions have made the model more realistic, but the results are, not 

surprisingly, less accurate. Violations in normal markets are at a reasonable level, 

while the model still show difficulties when predicting risk during extreme market 

conditions. Despite violations being higher than desired, the Autonomous model 

produces far more precise results for both VaR and ES, than the corresponding output 

derived from the Basel approach. The model’s opportunity to switch between normal 

and extreme modelling, makes it designed to effectively adapt into new market states 

and thus provide better risk estimates for a portfolio manager. The method of 

switching is far more applicable and realistic, than using the Paired model, since the 

procedure of switching now is retrospective and does not take information about the 

future into account when selecting between normal or extreme modelling. In addition, 

the procedure of fitting data only relies on information obtainable at the day of 

estimation.  

6.3 Concluding Remarks 

With the evolving setup of the models in this chapter, from separate units modelling 

each subsample, via an assembly of student’s t-GARCH and the c-POT models 

combined, to the Autonomous model, we have moved from a purely theoretical 

approach to a potential useable model. The Autonomous model has mitigated the two 

parts of the theoretical approach that was highly unrealistic; the collection of data used 

to estimate the distributions of the two models and the switching between the two, 

now based on realised returns only. Moving away from the theoretical approach where 

all information in our dataset was known to the models, we have, at the same time, 

moved from highly accurate risk measure estimates to more underestimation of risk, in 

particular for the extreme observations. This trade-off displays the difference in a 

purely theoretical approach to testing VaR and ES, and a realistic take on finding the 
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accuracy in using the two measures as a tool to reduce risk on the portfolio. Despite 

the less accurate risk estimates, the Autonomous model is still providing significantly 

improved risk estimates for all market states compared to the Basel model. 

Even though the Autonomous model is by far the most genuine model, with the most 

likely real life applications, it is in this chapter run on the same data as it is built upon. 

Potentially, this could lead to a severe bias in the VaR and ES estimates as the model’s 

results could reflect the data it is fitted on, rather than being independent of it. Despite 

that fact that the model is built such that it should only be dependent on the data it is 

run through, i.e. the previous observations in time, testing it on a new sample should 

be done, in order to be certain of its independence.  
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Chapter 7 

7 Out-of-Sample 

The need for an independent test of the VaR and ES estimates done so far is clearly 

present, as all parameter and model estimations done so far are applied on the same 

dataset. This could potentially lead to a bias in the results presented previously, as all 

estimations are based on parameters especially fitted to the particular returns in the 

dataset. Therefore, in this chapter, previous estimations will be applied on a new 

dataset with the goal to further strengthen, or discard the conclusions already drawn.  

When deciding on the original data sample in chapter 2, we chose to include as large a 

time span as possible to have enough data to split it into two subsamples, in particular 

to have enough extreme observations to base the modelling on. This affects the 

possibility of setting up a dataset which in no way is influenced by the original sample 

data. As we are dealing with 40 years of data in the calculations made earlier in the 

thesis, the availability of indices not in the same time frame is sparse. Further, we 

wanted a diversified sample when putting together the original sample, this led to a 

portfolio consisting of three wide and geographically spread indices. The possibility of 

finding a sample which does not correlate with any of S&P, DAX or NIKKEI is 

therefore impossible. These two issues, of not having a separate time frame or an un-, 

or low correlated second sample to test the VaR and ES calculations on, makes the 

independence of the tests performed in this chapter weakened. However, a major 

reason to perform the out-of-sample tests regardless, is the setup of the Autonomous 

model. As discussed earlier it does not base its calculations on data ahead of time and 

its parameters is only based on previous observations, as such the model should not be 

affected by the dependence the two samples have, other than the probable similarity in 

the movement of returns over parts of the time period. To clarify further, the 

Autonomous model is not dependent on any data from the original sample and when 

run on the out-of-sample, all parameters will automatically be based on out-of-sample 

data, as the model makes use of the data when it adds it on a day-to-day basis over the 

period.  

In an effort to reduce the independence on the original dataset as much as possible, 

while still keeping the sample size high, and taking into account the availability of 

data, the out-of-sample is put together as portfolio of three Northern-Europe based 
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indices. Data from the Denmark based OMXC20, Finnish OMXH25 and the Swedish 

OMXS30 are used over a period from 1991 to year-end 2016. The previously 

explained Basel and Autonomous model will be used to calculate VaR and ES 

estimates for the out-of-sample. The Basel model comparison is necessary to be able 

to strengthen the analysis and conclusions drawn from performing a test of the 

Autonomous model, as it has previously served as benchmark for the Autonomous 

model on the original sample. Since the Autonomous model is previously identified as 

the most genuine model of the ones presented in the thesis, this is the natural choice of 

comparison to the original sample. In addition, as discussed above, the Autonomous 

model serves as a way to avoid some of the dependence in the out-of-sample dataset 

on the original data.  

7.1 Basel Model 

Through the thesis the Basel framework has been used as a peer to evaluate the 

performance of the models developed. This will be extended in this chapter.  

Table 7.1: Out-of-sample VaR violation rates using Basel model

 

Running the Basel model on the Nordic out-of-sample results in violation rates 

approximately twice the size of the target rate of 1%. The high violation rate is mostly 

caused by a bad fit in extreme market periods, yielding between 10 and 18 times the 

ideal rate of 1%. The tendency is the same as for the original dataset, i.e. the model 

has trouble estimating value-at-risk accurately, seen through a severe underestimation 

of the risk. Normal periods are violating more frequent than desirable, but is still on a 

more moderate level slightly over 1%.  

Table 7.2: Out-of-sample ES violation rates using Basel model 

 

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 152 114 75 69 77 45

Violation rate 2.34% 1.75% 1.24% 1.14% 17.91% 10.47%

Sample size 6500 6500 6070 6070 430 430

Extreme sampleComplete sample Normal sample

ES- ES+ ES- ES+ ES- ES+

Violations 108 67 51 35 57 32

Violation rate 1.66% 1.03% 0.84% 0.58% 13.26% 7.44%

Sample size 6500 6500 6070 6070 430 430

Complete sample Normal sample Extreme sample
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Naturally, the trend is similar for expected shortfall. Violation rates in normal periods 

seem to be on a reasonable level, although slightly overestimating the risk. However, a 

consequential mismatch during extreme periods is drastically increasing the overall 

violation rate of the model.  

Summarising the results of using the Basel framework on the out-of-sample, the trends 

seem to be very much in line with the original dataset. Partly this is a result of the two 

samples having similar properties, as both includes international indices and have 

observations overlapping the same time period. Regardless of a potential correlation 

with the original sample, the performance of Basel in the out-of-sample test is not 

sufficient for a portfolio manager, with potential losses during extreme periods large. 

The out-of-sample test confirms the previous findings in chapter 3, namely that the 

Basel framework is too static and lack a method of incorporating new information 

quickly and thus adapt when volatility in the market unexpectedly changes.   

Findings in chapter 6, suggested that the performance of the Autonomous model, was 

significantly better than the Basel framework in explaining extreme periods. However, 

as explained earlier, the Autonomous model was constructed based on the original 

sample. Testing the performance on the very same sample could create a bias. Next, 

we will test the Autonomous model on the Nordic out-of-sample, in order to find the 

potential presence of bias, or confirm the properties of the Autonomous model 

regardless of data. 

7.2 Autonomous Model  

As the Autonomous model is only dependent on the data it is run through, it should, in 

theory, not be dependent on the original dataset, even though it was created with it as 

the basis. As such, the results on the out-of-sample should be pretty similar to the 

original results from chapter 6, as the violations are, if the model works as designed, 

purely a result of the properties of the returns in the given dataset it is modelling.  

Table 7.3: Out-of-sample VaR violation rates using Autonomous model 

 

The Autonomous model provides good estimates for the normal sample with 1.2% and 

0.9% violations for the loss and gains side respectively. For the extreme sample, 

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 96 63 73 56 23 7

Violation rate 1.48% 0.97% 1.20% 0.92% 5.35% 1.63%

Sample size 6500 6500 6070 6070 430 430

Extreme sampleComplete sample Normal sample
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however the results are higher than the preferred violation rate. There is a gross 

underestimation of the risk on the left side of the tail, while violations on the right side 

are lower. Despite this, when comparing the Autonomous model and Basel modelling 

for the extreme periods in the out-of-sample, trends are consistent with the findings for 

the original sample. As the violations during extreme periods are heavily reduced, 

down from approximately 18% and 11% for the loss and gain side respectively. This 

suggests, again, that the extreme modelling in the Autonomous model, and the timing 

in the model of extreme versus normal modelling, produces far better results than the 

standard Basel model, also for the out-of-sample.  

Compared to the extreme sample in the Autonomous model run on the original 

sample, the results are pretty similar. The loss side of the VaR calculations in the out-

of-sample are in line with the original sample, while the right side of the distribution is 

slightly better estimated in the out-of-sample. In total, this indicates a consistency in 

the model when estimating the extreme observations, also when presented with a new 

sample. Since the two samples have probable similarities it is, with consistent results 

between the two datasets, difficult to distinguish where the consistency stems from. It 

could be that the model’s structure when analysing data is working as intended or the 

extreme observations it analyses could be too closely matched. But, since the model is 

built as it is, there should be no doubt that the consistency is a result of its properties 

rather than the dependency between the two samples.  

A key takeaway is, however, independent of the potential similarities of the two 

samples, the high violation rate of the Autonomous model on the extreme sample. The 

results above underline the difficulties in finding a more generalised model that is able 

to model extreme observations. 

Table 7.4: Out-of-sample ES violation rates using Autonomous model 

 

When analysing ES the results over the complete return set of the original and out-of-

sample are similar. For ES, as was the case for VaR, the out-of-sample modelling 

seems to provide less violations on the gain side of the distribution, this is a trend 

across both the normal and extreme sample, which could indicate a tendency of less 

outliers on the right side of the data for the out-of-sample.  

ES- ES+ ES- ES+ ES- ES+

Violations 35 21 25 20 10 1

Violation rate 0.54% 0.32% 0.41% 0.33% 2.33% 0.23%

Sample size 6500 6500 6070 6070 430 430

Complete sample Normal sample Extreme sample
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Again, the extreme sample loss side of the distribution proves difficult to model with 

ES, as there is a large underestimation of the risk displayed through a violation rate of 

2.33%. The right side of the extreme sample distribution have only one violation. 

Compared to the Basel ES, the risk estimation has once again improved when applying 

the Autonomous model.  

Looking at the original sample modelling of the extreme sample, the ES figures were 

2.7% and 1.5% for the loss and gain side respectively. The results for ES could 

therefore, as was the case for VaR, suggest that the Autonomous model is in fact only 

dependent on the properties of the particular returns it models, and as such, the small 

fluctuations in the results could stem from differences in the properties of the returns 

between the two datasets. 

7.3 Concluding Remarks 

In general, the results of the out-of-sample testing was very much in line with the 

results of the original sample. Both for each model and risk measure individually, but 

also in the trend between the Basel and Autonomous model. As suggested in the 

beginning of the chapter, this should be the case because of the way the Autonomous 

model works. As such, the working theory was for the Autonomous model to provide 

the needed results to confirm its function, while the Basel model was only a tool to 

compare the two. The deduction is that the consistency in the results across the two 

samples stems from the properties of the Autonomous model, in which it is not 

dependent on the original sample when estimating VaR and ES on other samples. The 

conclusion from chapter 6 is also strengthened, namely that the Autonomous model 

provides more accurate risk estimates than the standard Basel model.  

Even though the results of both the VaR and ES for the Nordic indices are 

significantly better than the corresponding results for the Basel model, the results of 

the extreme sample prove the difficulties in finding a generalised model to 

successfully describe and measure extreme observations. As we believe the 

Autonomous model to be independent of the dataset it is applied upon, this suggests 

the difficulties in modelling the extreme returns to be independent of the return 

sample, but rather is model specific. As such, since the Autonomous model seems to 

have a particular trouble in modelling the extreme parts of the returns it is provided 

with, we want to further explore the properties of such observations in an attempt to 

enhance the results of the model.   
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Chapter 8 

8 A Deeper Look into Extreme Periods 

As we have seen in the analysis of the normal and extreme samples, modelling the 

extreme observations has proved difficult, in particular when applying realistic 

assumptions. Both the original and out-of-sample tests of the Autonomous model 

underlined the difficulties in providing a generalised model to describe the extreme 

returns accurately, independent of the dataset. Therefore, the motivation for the last 

part of the thesis is clear, we want to further investigate the extreme sample and aim to 

understand the non-normal observations in an attempt to uncover the possibilities of 

modelling such returns better. 

The first part of this chapter will be closer to a qualitative analysis, rather than the 

quantitative focus of earlier, as we seek to understand the dynamics of extreme 

periods. A consequence of this is that the analysis is mainly applicable on our dataset, 

and results cannot be generalised to other datasets, without further investigation. The 

focus is mainly on improving the understanding of extreme periods, and help explain 

why they are so difficult to predict and model. In addition, we seek to thoroughly 

investigate whether the extreme sample does in fact display the extreme properties 

wanted, to be able to draw conclusions on the extreme returns of the whole dataset in 

general. In particular, to be able to draw conclusions on the time leading up to each 

extreme period, as the second part of the chapter will investigate the properties of the 

returns leading up to the defined extreme periods. Finally, we will seek to use the 

information obtained to test a new method of defining when to use normal and 

extreme modelling, both on the original sample and out-of-sample. Over the chapter as 

a whole, we will use the properties of each of the three indices in the portfolio used in 

the original sample, to further enhance the analysis with a broader comparison basis. 

As explored earlier, there does not exist a perfect model to define the tails. It is not our 

aim to find one either, but rather explore how to better the models already applied on 

the dataset. Also, it is previously found how value-at-risk and expected shortfall, 

especially in its most general forms, experience problems during extreme periods, 

which in the end is a problem for a portfolio manager. Since the modelling of the 

normal sample mainly has appeared successful, a further exploration of the extreme 

periods is the remaining critical point in the understanding of the two risk measures.  
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When dividing the returns into the extreme sample, as done earlier, the extreme 

periods will only consist of returns defined as extreme, with the definition being that 

during a 10-day period, there is a minimum of three observations being +/- two 

standard deviations from the mean at that time. However, the nature of the mean or 

standard deviation used to estimate this extremeness, is not known, which could mean 

that some of the returns defined as extreme, might be coloured by a lower than average 

mean or standard deviation over the last year, used to define the returns. As such, 

certain periods could be defined as extreme while they, compared to the rest of the 

sample is not, but rather at that exact time is as a result of the characteristics of the 

market over the last year. Further, the properties of the returns “flagged” as extreme is 

only known because of their distance, measured in standard deviations, from the mean. 

However, there is no information of the extremeness of the remaining amount of 

returns defined as extreme in the same period. Of the 10 returns used to characterize 

the 10-day period as extreme, up to seven returns could be less than two standard 

deviations away, but still flagged as extreme due to their surrounding returns. The 

results over each 10-day extreme period could therefore be severely biased by the 

other returns, not flagged as extreme. Although, this bias likely is present in each 10-

day extreme period, it is in many ways a natural bias as a period of extreme returns in 

the market rarely is characterised by exclusively large, negative or positive returns far 

from the mean, but rather some large movements followed by days of consolidation. 

This is observed by the short lasting fluctuations found in the return plots earlier. We 

will further investigate the properties of the extreme 10-day periods in subchapter 8.1 

to see if they show the characteristics of being actual extreme returns. 

8.1 Dynamics During Extreme Periods 

Earlier, in chapter 2 and 4, when analysing the extreme sample, the focus has been the 

sample as a whole. Its statistical properties have been looked into via the distribution, 

its modelling and its characteristics when measuring VaR and ES. Through this, the 

extreme sample has been found to contain the characteristics of extreme observations, 

in that it, compared to the normal sample, has less of a Gaussian distribution, with 

fatter tails, more extreme movements in its return properties, and it has proved harder 

to achieve correct risk measuring. As such, it shown to be accurate, in regard to the 

subsample overall being more extreme than the normal sample. However, we have not 

investigated the specific characteristics of neither the 10-day periods it is divided into, 

as its own units, nor the particular return data on a thorough level as compared to the 
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normal sample. Therefore, we will seek to better understand the extreme returns 

below, to be able to draw conclusions both on if the definition of the extreme sample 

is as accurate as we believe it to be, and to further enhance our grasp on the 10-day 

periods.  

8.1.1 Frequency Analysis 

To better understand the extreme periods, their extent should be explored, how often 

they occur and the timing of each period. Therefore, each 10-day period will be 

analysed in a frequency analysis.  

Table 8.1: Frequency of 10-day extreme periods 

 

The frequency of the extreme periods is around 5-7% over the sample, meaning that 

10-day extreme periods happen approximately 1.5 times every year on average. As 

seen in subchapter 2.3 the extreme sample is defined to be the periods of 10 trading 

days where three or more observations of returns more than +/- two standard 

deviations from the mean are observed. Both the standard deviation and mean are 

calculated as rolling averages over the last year. The theoretical probability of a 10-

day period being defined as extreme is 1.05% as found in subchapter 2.3. However, as 

seen here the number is found to be much higher. This is, as touched upon earlier, 

because the distribution of the sample does not match the properties of the Gaussian 

distribution which is used when calculating the probabilities.   

Table 8.2: Continuity of extreme periods 

 

Of the extreme periods, a relatively high number, between one-fourth and one-third, of 

these are continuous, meaning that one extreme period is followed by another. This 

supports our earlier findings of volatility clustering in the returns. In this regard, 

meaning that large fluctuations in returns follows each other, which leads to 

continuous extreme periods per our definition. As such, the same trend is observed in 

the extreme sample, as in the raw return data. This makes it easier to draw conclusions 

10-day periods S&P 500 NIKKEI 225 DAX 30

Total 990 990 990

Extreme 53 73 65

Frequency 5.35% 7.37% 6.57%

10-day periods S&P 500 NIKKEI 225 DAX 30

Continous extreme 19 18 20

Frequency 35.85% 24.66% 30.77%
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from the extreme sample as the subsamples, according to our definition, are in fact 

representative for the returns.  

Table 8.3: Average days between extreme periods

 

The average length between each extreme period is between 123 and 168 trading days 

over the three indices, meaning that, on average, extreme periods are experienced 

between 1.5 and 2.0 times a year. If the continuous extreme periods are excluded when 

calculating the length, where one continuous extreme period is two or more such 

periods following each other with no normal period in-between, then the extreme 

periods happen 1.0 - 1.5 times a year, on average. The fact that a high proportion of 

the extreme periods occur together makes it so that the periods are clustered, a 

consequence of this is that we experience fewer extreme periods per year, but they last 

longer when they occur.   

8.1.2 Univariate Analysis 

The frequency analysis provides a quick insight into the recurrence of the 10-day 

periods, but tells nothing about the properties of their contents. To further enhance our 

understanding of what happens within each 10-day period, on average, a univariate 

analysis will be performed. Each index is divided into 10-day periods and the 

calculations are done over each period and then averaged over the whole sample. 

8.1.2.1 Mean 

Table 8.4: Mean indices for different market periods

 

The overall mean of each index is lower than the mean of each respective normal 

period, which is due to a negative mean in the extreme periods for each index. Since 

the mean is the weighted average of the mean in the normal and extreme periods, the 

overall mean must by definition be between these two threshold. The means during 

extreme periods are considerably lower than the means for the normal periods. For the 

three indices, the mean of the extreme periods is around 5-6 fold lower than that of the 

10-day periods S&P 500 NIKKEI 225 DAX 30

Days between extreme 168 123 137

Days between extreme (excl. continous) 261 164 197

S&P 500 NIKKEI 225 DAX 30

Complete 0.03% 0.01% 0.03%

Normal 0.05% 0.03% 0.05%

Extreme -0.24% -0.24% -0.25%
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normal periods. This high, negative yield indicates either a large magnitude of 

negative values or a number of large negative values, or both. 

8.1.2.2 Standard Deviation  

Table 8.5: Standard deviation indices for different market periods 

 

Further, the extreme periods have a standard deviation which yields at a ratio of 

approximately 2.5 compared to normal periods, indicating that fluctuations are 

substantially higher for the extreme periods. As we define extreme observations based 

on standard deviations from the mean, this is a natural consequence. Detecting higher 

standard deviation for these periods is a confirmation of our own definition of an 

extreme period. It is, however, interesting to see that the standard deviation of the 

whole extreme sample is as high as it is, considering that the 10-day extreme samples 

also contains a majority of normal observations on average.  

8.1.2.3 Range 

Table 8.4: Range indices for different market periods 

 

During the extreme periods the range of the returns is noteworthy different from that 

of the normal periods. The range increase is between twice and three times when 

comparing the normal 10-day periods with the extreme ones. This is a consequence of 

the way the extreme sample is defined, as an increased standard deviation leads to an 

increase in the fluctuations of the returns, and as such the range increases, reflected 

through larger minimum and maximum values.  

8.1.2.4 Distribution 

Further, we want to investigate the internal distribution properties of each 10-day 

period within the normal and extreme sample. All numbers are based on calculations 

done on each period, which is then averaged over the sample as a whole. 

Table 8.5: Number of negative observations in each 10-day period 

 

S&P 500 NIKKEI 225 DAX 30

Complete 1.09% 1.34% 1.33%

Normal 0.93% 1.16% 1.17%

Extreme 2.61% 2.68% 2.67%

Range S&P 500 NIKKEI 225 DAX 30

Normal sample 0.0277 0.0337 0.0333

Extreme sample 0.0712 0.0765 0.0773

# Negative observations S&P 500 NIKKEI 225 DAX 30

Normal sample 4.4632 4.4896 4.4919

Extreme sample 5.4528 5.0548 5.1077
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The number of negative returns increases significantly during the extreme periods 

when compared to the normal 10-day periods.  Out of the 10 returns the number of 

negative observations goes from being well under half of the returns in the normal 

periods, to over five for all indices during the extreme periods. Even though the 

extreme 10-day periods are, clearly characterised by a predominance of negative 

returns, in combination with a negative mean as observed earlier, it is difficult to draw 

conclusions on the distribution properties of both the extreme samples on their own, 

but also compared to the normal samples. This is a result of the differing means of the 

samples, making it difficult to determine where the returns are distributed. 

To further investigate the distribution of the extreme periods, 10-day periods will be 

plotted in a so called box plot. The plot (figure 8.6) display some of the main 

characteristics of the extreme sample of the S&P 500. The plots for NIKKEI and DAX 

can be found in appendix figure 1 and 2, but contain the same characteristics as the 

S&P and are therefore not included here. The box-and-whisker plot shows the 

distribution of the returns. The inter-quartile range – from the lower to upper quartiles, 

i.e. the middle 50% of the data, is displayed in the clear boxes. The middle quartile, or 

median is shown as the dark line within the clear boxes. The top and bottom 25% of 

the data are shown by the whiskers, the dotted lines on both sides of the boxes. The 

maximum and minimum, excluding any outliers are shown as the end of the whiskers. 

Any outliers, data more or less than 3/2 times of the upper and lower quartiles 

respectively, are marked as clear dots. 

Figure 8.6: Box plot S&P 500 (excl. Black Monday) 

 

As seen in the plot, the extreme 10-day periods of the S&P 500 vary to a relatively 

large degree throughout the dataset. The average of the lower and upper whisker 

values is -3.2% and 3.1% respectively, meaning that excluding the outliers these are 
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the average minimum and maximum values. The minimum and maximum values 

indicate that the range is approximately 0.9% less when taking the outliers into 

account, which would suggest that a few large observations increase the range over the 

whole sample. Yet, the middle 50% of the extreme returns, i.e. the observations 

covered by the boxes, are around two to three times larger than the respective numbers 

for the normal sample, which suggests, also when excluding outliers from the data for 

both the normal and extreme sample, that the observations in the extreme sample 

shows characteristics of exactly that, extremeness. Even though the plot, as such, 

suggests that the extreme sample is in fact extreme, when compared to similar 

numbers from the normal sample, it can be observed that several of the extreme 

periods are characterised by small fluctuations, namely small boxes without any 

outliers. This could, as touched upon earlier in the chapter, be a consequence of the 

market over the last year. As the mean and standard deviation over the last year is used 

to define the extremeness of the returns, a year marked by small fluctuations and a low 

mean would indicate that a 10-day period with large movements compared to the last 

year would be flagged as extreme, but when compared to the rest of the 40-year long 

sample such a period could be "normal". This dynamic could be a potential flaw in the 

definition of the extreme sample done so far, and as such, one to avoid when we later 

look at alternative ways of defining extreme periods. 

8.1.2.5 Conclusion 

The observations above, when analysing the concrete differences between the extreme 

and normal sample, indicate a clear difference between the two subsamples. The 

extreme returns show significantly different properties than the normal returns. 

However, we want to further confirm that the properties of the extreme sample are in 

fact displaying extreme characteristics, in particular by using a more standardised 

measure. 

8.1.3 Bivariate Correlation Analysis 

Previously in this chapter we have performed a univariate analysis to compare 

statistical properties in normal and extreme market periods, in an attempt to improve 

our understanding of the difference in dynamics during these periods. In addition to 

this, we seek to confirm the extremeness of the extreme sample to verify the method of 

defining the returns as extreme.  

In the models applied earlier in the thesis a portfolio consisting of three different 

indices has been applied. A portfolio of assets introduces an important factor to 
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consider when looking into the properties of the extreme periods. Correlation could 

potentially interfere and amplify the results of our modelling. Correlation between 

assets is of great importance for the volatility of a portfolio, due to the effect of 

diversification. The assets should have a correlation less than one, in order to reduce 

the standard deviation of the portfolio. As the correlation approaches a value of one, 

the standard deviation increases. Studies suggest that correlation between assets 

increases during extreme market periods, as businesses is highly interconnected, and 

one extreme result on the gain or loss side could potentially affect others and so on.33 

If true, this change in degrees of connection between the indices, means that there is 

not a constant correlation throughout the dataset, but rather it should be possible to 

observe an increase when comparing the correlation between the indices over normal 

and extreme periods. To explore the correlation mechanisms among the three indices 

in our data sample, we have chosen to investigate the correlation in three scenarios for 

each index; normal & normal, normal & extreme, and extreme & extreme. Each 

correlation coefficient is calculated depending on the state of the two indices, normal 

or extreme. 

Table 8.6: Correlation between indices and market states

 

 

 

The tables display a trend where the correlation is found to be considerably higher 

during extreme periods, compared to normal periods, yielding approximately at a ratio 

of 1.5 higher. Restricted to this data sample and the definition of extreme periods, this 

indicates that the correlation is in fact higher for extreme periods than for normal 

periods. The intention of choosing three worldwide indices in our portfolio was to 

diversify as much as possible. Indices are already diversified to a great extent, 

containing a wide spectre of assets. However, assets have a common factor of 

                                                      
33 See [20] and [21] 

SP500 & DAX30 Normal Extreme

Normal 0.4270 N/A

Extreme 0.2630 0.6073

SP500 & NIKKEI225 Normal Extreme

Normal 0.1072 N/A

Extreme 0.0599 0.1475

DAX30 & NIKKEI225 Normal Extreme

Normal 0.2323 N/A

Extreme 0.2748 0.4161
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geography. To address this issue, three indices from different places in the world was 

chosen, anticipating to diversify even more. The effect of diversification, however, is 

faded in these periods and thus it makes portfolio returns more extreme, than if 

correlation was normal. Correlation dynamics are important in explaining why 

extreme returns are not cancelled out by diversification. The fact that the correlation in 

the dataset is not constant over time, could have affected the dynamics in the portfolio 

returns used earlier between the normal and extreme periods. There could potentially 

be an acceleration of extremeness in the portfolio returns during the extreme periods, 

as the returns move together to a higher degree than they do over the rest of the 

dataset. Finally, as there is a clear increase in correlation between the indices during 

the previously defined extreme periods, this serves as a further confirmation of the 

actual extremeness of the extreme sample. 

8.1.4 Conclusion 

Compared to the normal sample, the extreme sample certainly seem to display the 

characteristics it originally was intended to have. The definition of an extreme period 

used to divide the returns into samples is reflected in the characteristics of the returns. 

As such, it is possible to explain the extreme returns in the dataset as a whole based on 

the extreme sample. In addition, as the sample is now confirmed to be extreme, per 

definition, it can as a result be used to investigate the periods leading up to each 10-

day period, as pre-extreme.  

As the current extreme sample is defined retrospectively, we lack a method in 

identifying the extreme returns in a forward-looking manner without being all-

knowing about the future of the market. Therefore, the identified dynamics of the 

extreme periods found in this chapter serves as a useful tool when investigating the 

probability of identifying the extreme periods before they happen.  

8.2 Dynamics Before Extreme Periods  

In this chapter we will investigate the possibility to predict when to switch from a 

normal model to an extreme model only based on pre-extreme periods, in other words 

we want to use the information in the returns to predict their extremeness. This could 

then be an alternative to the method used in the Autonomous model, where three 

observations were counted which, during the 10 latest days, violated being +/- two 

standard deviations from the mean, before it switched from normal to extreme 

modelling. The downside of this method is the time lag, as switching of models is 
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triggered after the extreme observations have in fact occurred. We will, therefore, 

analyse further the time leading up to the extreme periods, as we have defined them 

earlier, to see whether the data in the returns prior to the extreme period can indicate in 

any way the extreme observations coming up.   

The interval before the previously defined extreme periods are analysed over the 30 

trading days leading up to each extreme period in 10-day intervals. Through this we 

seek to identify any trend in the key statistics used earlier, to analyse the extreme 

periods itself.  

8.2.1 Mean 

When comparing the 1-10 days (-10 days) before an extreme period with the 11-20 (-

20 days) and 21-30 days (-30 days) before, there appears to be a clear trend in the 

mean when moving towards the extreme period itself. 

Table 8.7: Mean before extreme periods 

 

As showed earlier the mean is around five times lower than the average of the normal 

periods. In the 30 days leading up to an extreme period on average, the mean, moves 

from slightly negative, but still lower than the mean of the normal sample, to a 4 to 5-

fold decrease from here. Over the last 10-day period before an extreme period, the 

mean is only slightly higher than that of the extreme 10-day period itself.  

8.2.2 Standard Deviation 

Table 8.8: Standard deviation before extreme periods 

 

The table above displays an increasing deviation from 1.1 - 1.2% in the five to six 

weeks (30 trading days) leading up to the extreme period, to between 1.6-1.7% in the 

last 10-day period before the extreme period itself. As shown earlier, the standard 

deviation during the extreme period is even higher, around 2.2-2.4% over the three 

indices. The increased standard deviation in the weeks before the extreme periods 

S&P 500 NIKKEI 225 DAX 30

Mean -10 days -0.0025 -0.0028 -0.002843

Mean -20 days -0.0018 -0.0020 -0.002095

Mean -30 days -0.0006 -0.0008 -0.000317

S&P 500 NIKKEI 225 DAX 30

Standard deviation - 10 days 0.0161 0.0155 0.0170

Standard deviation - 20 days 0.0135 0.0139 0.0138

Standard deviation - 30 days 0.0122 0.0112 0.0118
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shows that the market is more volatile, with larger fluctuations in the returns on a day-

to-day basis, before the actual extreme observations occur. As the extreme periods 

themselves are defined by returns with large movements from the mean, measured in 

standard deviations, it is expected that the data around these periods will display some 

of the same characteristics as shown in table 8.8. However, it is not given that the 

returns before the extreme observations themselves show such a clear trend, but the 

fact that they do could prove useful when trying to predict when the extreme 

observations occur.  

8.2.3 Distribution  

Another clear trend in the data is the increase of negative returns compared to positive, 

as the extreme period is approaching. 

Table 8.9: Number of negative returns before extreme periods 

 

As seen earlier the number of negative returns during the extreme periods is higher 

than the corresponding number during the normal periods, with 5.1-5.5 negative 

returns on average observed during the extreme periods, to approximately 4.5 in the 

normal sample. As the extreme period comes closer, the number of negative returns 

seems to follow this trend, increasing from 4.4 - 4.9 to 5.0 - 5.2 over the three indices. 

Once again it is observable, as was the case for both the mean and standard deviation, 

that an extreme period is approaching, in terms of the statistical properties of the 

returns gradually getting closer to the data observed during the 10-day extreme period 

itself.  

8.2.4 Range 

When investigating the range of the returns over the 30 days, a trend is found, 

corresponding well to the increased standard deviation. 

Table 8.10: Range before extreme periods 

 

S&P 500 NIKKEI 225 DAX 30

# Negative returns -10 days 5.1887 4.9589 5.0000

# Negative returns -20 days 4.9057 4.8630 5.1077

# Negative returns -30 days 4.6981 4.3836 4.8615

S&P 500 NIKKEI 225 DAX 30

Range -10 days 0.0516 0.0499 0.0524

Range -20 days 0.0438 0.0448 0.0427

Range -30 days 0.0389 0.0359 0.0373
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The ranges grow consistently as the extreme period is closing in, increasing roughly 

1.5 times from trading day 30-21 to trading day 10-1. It seems as higher standard 

deviations in pre-extreme periods are directly reflected in the range for the same 

periods. This increased range could be caused by negative extreme values only, but as 

seen in table 8.11 this is not the case. Both minimum values and maximum values 

becomes higher in absolute terms, as extreme periods are approaching, indicating that 

the market dynamics become more unstable for both negative and positive returns.   

Table 8.11: Min and max returns before extreme periods 

 

The larger fluctuations in returns observed through the increased standard deviation 

naturally leads to greater variation in the minimum and maximum values. The 

increased range, minimum and maximum values, although increasing over the 30 

days, are still far lower than the corresponding observed values during the extreme 

period. As seen before, the range is between 7% and 8% during the 10-day extreme 

periods on average. Given the observed higher standard deviation during these 

periods, this is natural. As such, there seems to be a consistency in the observations of 

both range and standard deviation during and before the extreme periods. 

The key takeaway from the above numbers is that extreme periods are not only getting 

closer with respect to time, but also in trend. It seems that the closer we get to an 

extreme 10-day period, the more we approximate the actual returns found in it. This 

could, if we are able to isolate these effects from the noise of the day-to-day volatility 

in the market mean that we, prospectively could define when an extreme period is 

coming. However, as these effects are observed as a gradual approximation to the 

extreme period, it could be difficult to pick up on the changes on a day-to-day basis, as 

there are no definite signs that an extreme period is actually approaching, rather a 

trend in the data. It is this change in trend, moving from a normal period towards an 

extreme, we will try to seek out when defining the parameters to determine if an 

extreme period is approaching.  

S&P 500 NIKKEI 225 DAX 30

Min -10 days -0.0280 -0.0278 -0.0285

Min -20 days -0.0238 -0.0241 -0.0233

Min -30 days -0.0200 -0.0201 -0.0191

Max -10 days 0.0236 0.0221 0.0239

Max -20 days 0.0201 0.0207 0.0193

Max -30 days 0.0189 0.0158 0.0183
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8.2.5 Switching Procedure 

An important factor when establishing parameters to predict the extreme periods 

before they happen, in order to switch from the normal to extreme model, is to avoid 

“false alarms”, meaning that models should not be switched if there turns out to be no 

basis to do so. To use the extreme model in a normal state would imply an 

overestimation of the risk. We will therefore try to minimise the probability of 

switching to extreme modelling without cause, by using two different parameters to 

decide whether an extreme period is approaching, only shifting model when both 

statements are true. 

We have seen that there is a significant predominance of negative returns in the two 

weeks before the extreme periods, on average. Further, there is an increased range in 

the returns over the same 10 trading days, as there are larger minimum and maximum 

values in the observations, indicating a higher standard deviation at the same time. As 

both the number of negative returns and the increased range of returns are clearly 

observed trends and entirely separate observations, which both are indications on their 

own, the two are suited as parameters when choosing if the extreme model should be 

used.  

The number of negative returns have proven to be significantly higher when 

approaching an extreme period than over the rest of the dataset. The higher number of 

red trading days reflects both the negative mean and skewness of the returns over the 

10-day period. Increased range reflects the greater fluctuations in the returns, while 

also accounting for the magnitude of the returns being large, not only as a factor of the 

mean, but being large enough to be “extreme” measured on their own merit. This is a 

potential mitigation of including extreme periods which are only a result of the market 

over the last year, rather than taking into account its extremeness in a larger historic 

perspective, as observed in the box-plot earlier. 

Using the number of negative returns as selection criteria when choosing between 

normal and extreme modelling, could potentially affect the results by implicitly 

excluding extreme positive return periods, not containing 5 or more negative returns. 

However, as shown in this chapter, pre-extreme periods for the extreme sample is 

largely characterised by a magnitude of negative returns and thus we argue that this is 

an appropriate constraint to include.  
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8.2.6 Conclusion 

Combined, the number of negative returns and increased range size, provide a robust 

measure of extremeness approaching. The two constraints together exclude periods of 

negative consolidation in the market, where several marginally negative returns occur, 

by ensuring that the range of the returns in the 10-day period has to be large enough. 

Further, the two combined also increases the probability of accurate results through 

ensuring that the range of the returns is not affected by one or two outliers increasing 

the range, in including the criterion of a predominance of negative numbers, proved to 

be the case when approaching an extreme period. In addition, periods where only one 

of the two is true is defined as normal. This ensures that the number of periods where 

the extreme model is applied is not too high, leading to a smaller number of false 

alarms.  

With the parameters to notify if an extreme period is approaching in place, the setup of 

the Autonomous model from chapter 6 will be modified to switch prospectively in the 

next section.  

8.3 Pre-Extreme Switching of Model 

The value-at-risk and expected shortfall is now modelled on a basis of the switch 

between normal and extreme, i.e. student’s t-GARCH and conditional POT, happening 

before the actual extreme observations occur. The model does its calculations on a 

day-to-day basis, meaning it estimates when to switch based on the properties of the 

last 10-day period each day. When the requirements of switching to extreme 

modelling is fulfilled, the model uses extreme modelling the next trading day. In 

theory this should mean that the model better takes into account the characteristics of 

the extreme observations as it then, theoretically, applies the correct model to all 

normal and extreme returns. However, we must expect the model to falsely predict 

extreme returns approaching, and vice versa, model actual extreme returns as normal. 

This is only natural, as the parameters cannot correctly take into account every 

extreme case without being too tightly defined. The criteria for switching to the 

extreme modelling of VaR and ES is set to be a range greater than 2.5% and over five 

negative returns observed over the last 10 trading days.  

The definition of an extreme period, and as a consequence a normal period, is the 

same as applied earlier in the thesis. The reasoning for using the same approach in 

deciding the normal and extreme subsamples is twofold; first, if the subsamples are 
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defined by using the pre-extreme parameters, it is not certain whether the actual 

extreme observations are modelled, as a forward-looking measure is used, rather than 

a retrospective measure deciding the extremes. As such, the risk of modelling the 

distribution parameters and then later VaR and ES on the wrong returns is present, 

since the pre-extreme forward-looking definition in no way can hit the extreme returns 

as accurately as the original, retrospective definition. Second, we want consistency in 

the models, and using pre-extreme parameters would mean we would not be able to 

compare the different models. It is the application of the VaR and ES models that is 

important, as the successfulness of the different approaches is measured based on their 

respective results. Further, we have seen in chapter 8.1 that the original definition of 

the extreme sample is a good fit, and as such it is the switch between the different VaR 

and ES models that lacks in hit rate.  

8.3.1 Autonomous Model 

The Autonomous model is still realistic in terms of actual usage, only using 

information from the past in determining the choice of how to model the next day. As 

such the trade-off compared to the earlier applied, all-knowing, models is clear, and a 

worsened estimation of the risk compared to these is expected. Therefore, it only 

makes sense to compare the results of this approach to the Autonomous model 

presented in chapter 6, where the switch between normal and extreme VaR 

calculations were done after three extreme observations were observed. As a 

consequence, we expect, predicting extreme observations in advance, to improve the 

accuracy of the model – given that actual prediction is succeeding. 

8.3.1.1 Original Sample 

When applying this procedure on the original sample, using pre-extreme parameters to 

decide when to switch between normal and extreme modelling, the Autonomous 

model yields the following results for the extreme periods: 

Table 8.12: Violation rates using pre-extreme switching procedure 34 

 

                                                      
34Appendix table 7 and 8:  Violation rates for the complete and normal sample. 

VaR- VaR+ ES- ES+

Violations 27 15 13 7

Violation rate 4.58% 2.54% 2.20% 1.19%

Sample size 590 590 590 590

Extreme sample
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The violation rate of the VaR on both the loss and gain side is quite high. This means 

the model underestimates the risk quite severely, as we have far more violations than 

the wanted 1% level. However, compared to the earlier presented Autonomous model, 

which switches from normal to extreme retrospectively, the results have improved. 

Here, the VaR violation rate was 5.4% and 2.9% for the left and right side of the 

distribution respectively. Although small, the fact that the results have improved could 

suggest that extreme observations are modelled more correctly now, by predicting 

when these returns occur before they do. The continued high number of violations 

suggest that modelling VaR when lacking the answer to when the extreme 

observations actually occur is problematic. The expected shortfall numbers show the 

same trend as the VaR estimates when compared to the earlier tested Autonomous 

model. The ES violation rates are down for both the loss and gain side, compared to 

the corresponding figures of 2.7% and 1.5% found earlier, when using the 

retrospective switching procedure in the Autonomous model.  

8.3.1.2 Out-of-Sample 

To further strengthen the robustness of the results, we apply the same model and 

methodology on the out-of-sample previously presented. The logic behind using this 

sample is the same as earlier, we wish to test the model on a dataset in which the 

model is not perfectly fitted on. As the pre-extreme information is based on 

information in the original sample, the results above is somewhat biased. Therefore, 

by using an out-of-sample we can either be able to further generalise the results above, 

or have to limit the results to the particular data they are fitted on. 

Table 8.13: Violation rates using pre-extreme switching procedure 35 

 

The VaR out-of-sample estimates showcase approximately the same trend as for the 

original sample on the loss side. The VaR+ has a much lower violation rate, indicating 

that the model overestimates the VaR on the gains side. Once again it makes sense to 

compare these results with the Autonomous out-of-sample numbers found earlier, 

where the VaR for the left and right side were 5.4% and 1.6% respectively. This 

                                                      
35 Appendix table 9 and 10:  Violation rates for the complete and normal sample. 

VaR- VaR+ ES- ES+

Violations 19 3 7 1

Violation rate 4.42% 0.70% 1.63% 0.23%

Sample size 430 430 430 430

Extreme sample
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means that the difference between the two models is very similar to the differences 

found for the original sample. Through applying the new model, the VaR estimates are 

improved on both sides of the distribution as the numbers are closer to the preferred 

1% violation rate. The expected shortfall figures suggest the same trend in the 

violation rates.  

The fact that the model performs as similar on the out-of-sample as the original 

sample, showcasing the same positive trend when moving to the pre-extreme 

parameter model versus the original Autonomous model, suggests the definition 

applied to predict the extreme observations might work. The results indicate an 

improvement of estimates for both VaR and ES, when switching based on the 

prediction of extreme observations coming up, and the fact that this is the case for the 

two independent samples supports this.  

As we saw in subchapter 8.1, between one-third and one-fourth of the extreme periods 

are continuous, as a result we would expect to miss out on modelling quite a few 

extreme observations correctly when switching retrospectively. Then, given that we 

are able to predict the extreme observations better than the number of returns we miss 

out on due to switching too late, we would expect the new Autonomous model, using 

pre-extreme parameters, to produce better estimates than the old model. As we have 

seen above, this seems to be the case, and as such we can conclude that the 

methodology and parameters chosen to predict the extreme observations are somewhat 

accurate. However, the violation rates are still high, especially for the loss side of the 

distribution, meaning that the prediction, and as a result, switching of models between 

normal and extreme is off, in particular from the almost perfect results obtained when 

we know the timing of the observations. Still, this is expected due to the difficult 

nature of the properties of returns, and especially the extreme observations. We would 

not expect a model to perfectly hit the 1% violation rate when it is based on realistic 

terms, in the meaning that it is estimated as a model that knows nothing about the next 

day it will model. As such, we should get the same results if we on a day-to-day basis 

today apply the model on the next day and saves the result continuously. If we were 

able to get a perfect hit rate then, the model would be perfect as a risk management 

tool, which is an unrealistic thought.  
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8.4 Concluding Remarks  

The extreme period investigation in this chapter has given insight into the properties of 

the returns defined as extreme throughout the thesis. The findings seem to support the 

actual extremeness of these returns when compared to the dataset as a whole. Further, 

we were able to incorporate the use of information obtained about the properties of the 

dynamics during the extreme periods with an analysis of the dynamics before the 

extreme periods. Together they serve as a way to predict the extreme observations 

with a certain degree of success compared to the earlier applied retrospective method.  

For a portfolio manager, the high failure rate of the somewhat realistic Autonomous 

model is worrying. We wanted to improve the failure rate of the model found in 

chapter 6 by trying to predict the timing of the extreme observations in the sample. We 

were able to lower the failure rate by about 0.5 percentage points in the original 

sample, but the violations for the VaR is still about 4.6% for the loss side of the 

distribution, meaning that the underestimation of risk in the model will lead to higher 

than expected losses.   

The difficulties in both modelling and predicting extreme returns is no surprise. They 

are extreme and causes severe losses for a portfolio manager for a reason – they 

cannot be anticipated and when they eventually happen they hit hard. A final violation 

rate of approximately 5% for VaR and 2% for ES on the loss side of the distribution 

suggests that using the Autonomous model will lead to no different results.   
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Final Remarks 

Our thesis has tested a Gaussian Basel in order to see how well it estimates risk, 

through the performance of value-at-risk and expected shortfall. A well-diversified 

portfolio is set, consisting of three geographically spread stock indices. Moreover, the 

portfolio is found to consist of several periods with persistent increased volatility, and 

is as a result divided into a normal and an extreme sample, to identify how the Basel 

framework performs under different market conditions. 

The most noticeable errors of the Basel framework are during extreme market periods, 

where risk level estimates exceed the 99% VaR and ES too often. Implementation of 

ES should intentionally provide more information about tail events, however the 

output is only as good as the input; if the underlying historical data and Gaussian 

distribution give little information or underestimates probability of tail events, ES will 

not give adequate estimates of risk exposure. The underestimation of risk is a result of 

the bad fit between the empirical data and the assumption of a Gaussian distribution. 

This results in a higher frequency of extreme returns in the dataset, compared to the 

corresponding theoretical probability of extreme returns derived by a Gaussian 

distribution. It is further found, that the use of one year equally weighted mean and 

standard deviation in the Basel framework leads to slow risk measures not capable of 

incorporating new market information sufficiently quick, such that the current state of 

the market is not included in the estimation to a large enough degree. The result is an 

overestimation of risk during less volatile periods, while the risk is underestimated 

when markets turn more volatile.    

The market characteristics of the normal and extreme samples are found to differ. The 

shape and distribution of both subsamples is different from a Gaussian distribution, 

and normality is rejected on a statistical significant level. A student’s t-distribution is 

found to be a good fit for the normal sample, as it takes into account the heavy tails 

and negative skewness it consists of. Further, extreme value theory and a generalised 

Pareto distribution is deemed to be able to describe the extremeness of the extreme 

sample by explaining the large returns found in the tails of the subsample accordingly. 

Moreover, both samples are characterised by volatility clustering, which suggests that 

the variance of the returns is conditional of time. This is dealt with by the 

implementation of a volatility model – GARCH, to increase the adaptability to the 

current state of the market.  
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The choice of distributions and implementation of conditional volatility modelling 

results in a student’s t-GARCH model for the normal sample. For the extreme sample, 

extreme value theory is employed through a conditional peak-over-threshold model. 

Both are found to provide clear improvements to the Basel framework estimation of 

VaR and ES. The two models are, in contrast to Basel, able to incorporate and adapt to 

new market information quickly, while at the same time incorporate the tail risk found 

to be present in both subsamples.  

To move from a theoretical setup to a real life applicable approach, the two models are 

combined into the Autonomous model. Now, the switch between normal and extreme 

modelling is retrospective, and in addition the fitting of distributions is done 

continuously from day-to-day. As such, the assumptions of student’s t-GARCH and 

the c-POT model are tightened. It is found that this results in less accurate estimates, 

in particular for the extreme returns, when compared to the results of the two 

theoretical models separately. Yet, the Autonomous model outperforms the Basel 

framework significantly both on the original sample and in an out-of-sample test on 

three Nordic stock indices.  

As a consequence of the underestimation of risk for extreme observations, the extreme 

periods itself and the time leading up to them is analysed further. It is found, through 

the analysis of pre-extreme periods, that the switching procedure can be optimised 

compared to the retrospective method. By using two parameters, the number of 

negative returns observed and the range of the returns, over the last 10 days, qualified 

guesses are performed to anticipate extreme returns approaching. Even though the 

results of VaR and ES is found to be improving, the violation rate is still high, 

implying a systematic underestimation of risk in the model.  

The Autonomous model is, overall, reckoned to be more applicable and appropriate 

for a portfolio manager to use. The risk is far more accurately estimated than the 

standard Basel framework for both normal and extreme periods. However, the 

violation rate during extreme periods for the Autonomous model is still too high, and 

of concern for its ability to provide sufficient coverage during non-normal market 

conditions. Nevertheless, for a portfolio manager, the improvement compared to the 

Basel framework is still directly transferable to better risk management potential by 

generating far fewer losses. The enhancement in risk measuring could provide a larger 

upside, as the model, in addition to fewer losses, is more adjusting to the current state 

of the market compared to the Basel framework. All in all, this results in less 

overestimation of risk exposure and less violations of risk limits.
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Appendix  

List of Appendix Tables 

Appendix table 1: 

Akaike-, Bayesian-, Schwarz- and Hannan-Quinn Information Criterion for different p 

and q. Average results of the four models are presented below. 

 

 

Appendix table 2: 

VaR violation rates student’s t-GARCH(1,1) 

 

 

Appendix table 3: 

ES violation rates student’s t-GARCH(1,1) 

 

 

 

 

 

1  2  3 

1  7.0969 7.0968 7.0966

2  7.0963 7.0967 7.0962

3  7.0958 7.0962 7.0957

Students t-GARCH 

(p , q ) 

q  

p  

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 126 108 93 89 33 19

Violation rate 1.27% 1.09% 1.00% 0.96% 5.59% 3.22%

Sample size 9900 9900 9310 9310 590 590

Complete sample Normal sample Extreme sample

ES- ES+ ES- ES+ ES- ES+

Violations 41 41 27 35 14 6

Violation rate 0.41% 0.41% 0.29% 0.38% 2.37% 1.02%

Sample size 9900 9900 9310 9310 590 590

Extreme sampleComplete sample Normal sample
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Appendix table 4:  

Generalised Pareto Distribution parameters for each tail of the distribution, found by 

maximum likelihood estimation 

 

 

Appendix table 5: 

VaR violation rates conditional-POT 

 

 

Appendix table 6: 

ES violation rates conditional-POT 

 

 

Appendix table 7: 

Original sample VaR violation rates using pre-extreme switching procedure 

 

 

GPD Parameters β ξ µ q 99%

Negative returns 7.87E-01 8.23E-02 4.09E-03 3.62E+00

Positive returns 6.31E-01 4.17E-02 4.50E-03 2.84E+00

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 38 54 29 49 9 5

Violation rate 0.38% 0.55% 0.31% 0.53% 1.53% 0.85%

Sample size 9900 9900 9310 9310 590 590

Complete sample Normal sample Extreme sample

ES- ES+ ES- ES+ ES- ES+

Violations 13 17 7 17 6 0

Violation rate 0.13% 0.17% 0.08% 0.18% 1.02% 0.00%

Sample size 9900 9900 9310 9310 590 590

Extreme sampleComplete sample Normal sample

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 133 115 106 100 27 15

Violation rate 1.34% 1.16% 1.14% 1.07% 4.58% 2.54%

Sample size 9900 9900 9310 9310 590 590

Complete sample Normal sample Extreme sample
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Appendix table 8: 

Original sample VaR violation rates using pre-extreme switching procedure 

 

 

Appendix table 9: 

Out-of-sample VaR violation rates using pre-extreme switching procedure 

 

 

Appendix table 10: 

Out-of-sample ES violation rates using pre-extreme switching procedure 

 

 

 

 

 

 

 

  

ES- ES+ ES- ES+ ES- ES+

Violations 44 47 31 40 13 7

Violation rate 0.44% 0.47% 0.33% 0.43% 2.20% 1.19%

Sample size 9900 9900 9310 9310 590 590

Complete sample Normal sample Extreme sample

VaR- VaR+ VaR- VaR+ VaR- VaR+

Violations 92 53 73 50 19 3

Violation rate 1.42% 0.82% 1.20% 0.82% 4.42% 0.70%

Sample size 6490 6490 6070 6070 430 430

Complete sample Normal sample Extreme sample

ES- ES+ ES- ES+ ES- ES+

Violations 32 17 25 16 7 1

Violation rate 0.49% 0.26% 0.41% 0.26% 1.63% 0.23%

Sample size 6490 6490 6070 6070 430 430

Complete sample Normal sample Extreme sample
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List of Appendix Figures 

Appendix figure 1: 

Box plot DAX 30  

 

Appendix figure 2: 

Box plot NIKKEI 225

 

 


