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Executive Summary 

Earnings forecasting is a central topic for many financial statement users in order to predict the future 

performance of a company. These users can generally be grouped in 4 categories. Firstly, investors are 

dependent on the information to identify the correct price of a stock to implement in their trading 

strategies. Secondly, analysts generate and use the forecasts for providing recommendations. Thirdly, 

venture capitalists use future earnings to value non-listed companies. Finally, forecasting earnings is 

imperative for any managerial budgeting and resource allocation process.  

Despite its unneglectable importance, the area of research has been dominated by the same two types 

of models for the past decades. Only recently, the time series and analyst forecasts have been 

challenged, but no accurate contender has been identified yet. One of the main challenges in this regard 

is the requirement for a generally applicable model in order to meet the variety of needs within the 

earnings forecasting community. Therefore, the ideal model is able to apply to listed and non-listed 

companies across a range of sizes and industries.  

The thesis proposes an alternative method for earnings forecasting that it designates the data driven 

model. The model represents a way of combining the most essential advantages from the time series 

and analyst methodologies, whereby it integrates more information than the time series models and is 

less biased than the analyst forecasts. Using a larger and broader dataset than seen in previous 

literature, the thesis proves the superiority of the data driven model over both the time series models 

and analyst forecasts. In this way, the thesis contributes to the earnings forecasting literature with a 

new model and the underlying reasoning that utilizing financial information from comparable 

companies produces better forecasts than solely relying on past earnings of the same company.  

The superiority of the alternative forecasting methodology has several implications for the financial 

statement users. Using the generally applicable data driven approach, the venture capital community is 

now able to generate reliable forecasts for non-listed firms that are superior to the previously used time 

series forecasts. At the same time, investors are able to implement better and almost costless forecasts 

of listed companies’ earnings in their trading strategies, while managers can ease the earnings 

estimation in their budgeting and resource allocation processes. 
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1. Introduction 

In a financial context, being able to correctly predict the earnings of a company has significant 

implications for several stakeholders. The better a forecast an investor can generate, the greater a 

chance to trade at a more accurate earnings’ estimate and hence stock price. In this way, the investor 

will be able to gain an advantage over competitors and be able to implement more profitable trading 

strategies. Further, one of the primary tasks of an analyst is to produce forecasts of the earnings and 

cash flows for a range of companies, which investors can then acquire at a relatively high price. 

However, if the investors have a methodology at their own disposal that is as good or even better than 

the analyst forecasts, they could save the entire cost. In addition, there exists a significant challenge in 

predicting earnings for non-listed companies, where analysts are not producing forecasts. In these cases, 

the forecasts made are either derived from subjective discounted cash flow models or time series 

models. Therefore, there is a gab which concerns the vast majority of companies as only a small fraction 

of firms is listed on an exchange and followed by analysts. Hence, there is a need for a model to forecast 

earnings in the venture capital market as well. Further, earnings forecasting is a vital part of the 

budgeting and resource allocation process so improvements in this area can prove very useful for 

managers within a company as well. 

The earnings forecasting literature dates back to the 1960s, where there was an observed shift in the 

focus of the accounting research (Peek, 1997). It moved from being very descriptive to focusing on 

analyzing and predicting the accounting information of corporations. This change led to an extensive 

search for theories that could support various techniques of predicting earnings, whereby the field of 

earnings forecasting was initiated. Initially, the literature was very focused on how the earnings 

predictions related to the market expectations (Brown, 1993). However, the literature has later directed 

its attention to the process itself of forecasting earnings due to the importance of the earnings forecasts 

in the capital markets (Peek, 1997). Since then, several models and methods for predicting earnings 

have been suggested, though the two methods of time series models and analyst forecasts remain the 

most superior. Recently, some models have tried to enter the discussion but without great success. 

Especially, the general applicability is a main disadvantage of the recent models and the analyst 

forecasts, since they mainly operate with listed firms. This paves the way for new alternative models 

that can improve the forecasting accuracy and applicability.  

In order for one model to cover both the listed firms and the non-listed firms, it has to be created from 

and tested on a very broadly selected dataset. This thesis will utilize a large dataset comprised of more 
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than 350,000 companies including both listed and non-listed firms to ensure a wide applicability. A 

dataset of this magnitude has not been observed in the literature due to the literature’s focus on listed 

firms and neglection of non-listed firms. The thesis will use its dataset to generate an alternative 

method for earnings forecasting, the data driven model. This alternative methodology constitutes a way 

of grouping similar companies in portfolios based on a broad range of metrics such as earnings, industry 

and total assets. For each of the portfolios of comparable companies, the average earnings development 

is tracked and can be applied to out-of-sample companies in order to produce forecasts of their 

earnings. The underlying notion of the approach is that earnings development in similar companies is a 

better indicator of how the company to be forecasted will develop compared to solely using the past 

earnings of the company itself.  

The data driven approach will be compared with the currently dominant forecasting models, which is 

mainly comprised of time series models and analyst forecasts. The superiority of the models will be 

determined based on an array of analyses spanning across several horizons for both the data used and 

the forecast produced. At the same time, the robustness of the forecasts will be ensured by using 

several methods for determining the accuracy as found in the existing literature.  

Thus, the structure of the thesis will be the following. First, the research questions will be outlined and 

elaborated. Then, the thesis will turn towards the theoretical background generated by the literature on 

earnings forecasting. Here, the two primary methodologies and some alternative models will be 

discussed along with the way of measuring accuracy of earnings forecasts. Next, the data driven 

forecasting method is introduced along with the data utilized in the thesis and how that differs from the 

data in previous literature. Thereafter, the variables used in the analyses and the findings of the model 

comparisons will be presented. Finally, the thesis will discuss the results and outline their contributions 

to the existing literature, their implications for the stakeholders of the earnings forecasting field and 

their limitations that further research should seek to improve.  

2. Research Questions 

As introduced above, the most pressing topic under earnings forecasting is to identify an accurate model 

that can be applicable to a large amount of companies. Throughout the thesis, the data driven model 

will be investigated and tested for its applicability and accuracy. The utilized dataset stems from a broad 

range of firms representing both listed and non-listed segments and is thus considered to reflect a 

general illustration of how earnings develop. Further, the data driven model is as applicable as the data 

used to generate it, since it primarily works as a way of structuring the data. Hence, it will be considered 
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as generally applicable when it is generated by this type of dataset. Thereby, the most important topic 

to investigate is whether the model is accurate, which leads to the first research question being 

formulated as: 

Analyze the forecasting accuracy of the data driven model 

This is an important starting point, since it would not add value to the literature to introduce an 

inaccurate model. However, this finding in itself is not sufficient to conclude that the data driven 

method is usable. In order to achieve that result it is compulsory to compare the accuracy of the model 

to the currently dominant models of the time series and analyst forecasts. The two sets of models are 

generally viewed as the most precise methodologies, whereby any model being able to surpass their 

accuracy can contribute significantly to the literature body. Hence, the second research question will 

focus on this comparison and is formulated as: 

Discuss the superiority of the data driven model compared to the time series and analyst forecasts 

In order to answer these two research questions, it is first necessary to identify how accuracy is 

measured and how the time series and analyst methodologies are defined. Thus, the next section will be 

concerned with the theoretical background of the earnings forecasting topic. 

3. Theory 

The theory section will outline the most influential theories within earnings forecasting to provide 

frameworks that the data driven approach can be compared to. More specifically, two time series 

models are chosen for further investigation, the random walk model and the AutoRegressive Integrated 

Moving Average (ARIMA) model, along with the methodology of analyst forecasting. The time series 

models have been chosen both for the ease of testing and for the relevance in the literature body on 

earnings forecasting. In the following, the two models’ forecasting methodology will be elaborated due 

to their complexity. The analyst method is also chosen for its relevance in the literature, though it is 

more challenging to perform large scale tests due to limited data availability, whereby the thesis is only 

able to attain a smaller sample. A more elaborate section on how the analysts produce their forecasts is 

not included as a detailed account of this method is for good reasons not accessible. 

Therefore, the theory section will first introduce and explain the time series models and investigate how 

the models produce their forecasts. Then a determination of accuracy and the measurements hereof is 

necessary in order to enable a discussion of which models are most accurate. Once accuracy is defined 
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the time series models will be discussed in comparison with analyst forecasts to determine the model 

superiority and conditions hereof. In addition, a section on the already proposed alternative models will 

be included to provide a comprehensive account of the existing forecasting methodologies. 

3.1 Time Series Models 

This section will introduce the time series models in questions and elaborate on how their forecasting 

process works. The first model to be introduced in the thesis is that of a random walk. It is one of the 

simpler time series models and assumes that for each time step, the model deviates from its previous 

value with a random increment and potentially a drift (Nau 2014). It is generally expressed as 

(Skovmand 2016): 

𝑥𝑡 = µ + 𝑥𝑡−1 + 𝜖𝑡 

Where x̂t indicates the value to be forecasted, xt-1 is the latest value, µ is the potential drift which is zero 

if there is no drift and ϵ𝑡 is the error term at time t. In a model with no drift, the error term will be the 

only element that can affect the value at time t other than the previous value at time t-1. The error term 

is a random variable and has the property E[ϵt] = 0 meaning that the best prediction of the term is zero 

due to its normal distribution with a mean of zero. Hence, the best prediction of the whole process is its 

previous value and the drift: E[xt] = µ + xt-1. 

Thus, when the random walk produces a forecast it takes the point of departure in the latest value of 

earnings, xt-1, and adds the potential drift along with the random error term to get the first forecasted 

value, xt. In order to get the next forecasted value, it takes xt as point of departure and adds the drift 

and a new random error term, ϵt+1, to get xt+1. It continues in this way until the desired forecasting 

horizon is reached. 

The second model to be investigated is the ARIMA model. It has been introduced in the literature at a 

later stage than the random walk model but has gained popularity more recently (Brown 1993). The 

ARIMA model is a combination of the Autoregressive (AR) and Moving Average (MA) models, which are 

then “Integrated” or differentiated to reach a stationary model (Smith 2015). Stationarity is an essential 

aspect of statistical models and in its essence, it indicates whether the process “wanders off” into a 

direction. It is a very common assumption underlying many models and is necessary for most statistical 

analyses (Skovmand 2016). If the process to be predicted is not stationary then the variables considered, 

here previous earnings and future earnings, might seem to explain each other, but in reality they can be 

independent. Therefore, the model is differentiated until it reaches stationarity.  
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In its general state, the model is expressed as ARIMA(p,d,q) where p indicates the lags (or correlations) 

on earlier data points, d indicates the order of differencing necessary to provide a stationary process 

and q indicates the lags on earlier error terms. The ARIMA model is a more comprehensive model than 

the random walk, in the sense that a random walk can be expressed as a specific case of the ARIMA 

model (Duke 2017b): ARIMA(0,1,0). This case refers to a setting where both the AR and MA process 

have 0 lags and the process is differentiated once. Therefore, the ARIMA model serves as a more general 

framework to also include additional aspects such as correlated earnings, mean reversion, time-varying 

means and seasonality (Duke 2017a). 

In terms of forecasting, the ARIMA model requires more data than the random walk in order to make an 

accurate forecast (Bradshaw et al. 2009). The general forecasting equation is written as (Duke 2017a): 

𝑥𝑡 = 𝜇 + 𝜙1𝑥𝑡−1 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝 − 𝜃1𝜖𝑡−1 − ⋯ − 𝜃𝑞𝜖𝑡−𝑞 

Here, x̂t indicates the value to be forecasted, µ is the drift from the historical data, xt-1 is the previous 

value, ϕ1 is the correlation coefficient with the previous value, p is the lags on the previous value, ϵt-1 is 

the previous value of the error term, θ1 is the correlation coefficient with the previous error term, and q 

is the lags on the previous error term. For the process to be stationary, the ϕ1 must be below 1, which in 

turn means that the process is mean reverting. At the same time, the sign of the coefficient will indicate 

whether the next value will have the same sign as the previous value. To exemplify, the ARIMA(1,0,0), 

also referred to as the Brown-Rozeff model, can be written as: 

𝑥𝑡 = 𝜇 + 𝜙1𝑥𝑡−1 

While, ARIMA(0,1,1) referred to as the Griffin-Watts model can be written as: 

𝑥𝑡 − 𝑥𝑡−1 = 𝜇 − 𝜃1𝜖𝑡−1  ↔ 

𝑥𝑡 = 𝜇 + 𝑥𝑡−1 − 𝜃1𝜖𝑡−1 

Both the ARIMA(1,0,0) and ARIMA(0,1,1) will be included in the analyses of the thesis due to their 

popularity in the literature (Brown 1993). 

3.2 Forecasting Accuracy 

The theory section will cover the determination of which models are most accurate in their earnings 

forecasts. Therefore, it is critical to discuss the underlying meaning and measurements of accuracy, 

which will be the topic of this section. 
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In general, accuracy in earnings forecasts is determined based on the difference between the forecasted 

values and the actual values. However, there are multiple ways of making that calculation. As seen in 

Table 1 from the appendix, the literature body uses a variety of methods, which are summarized below 

in Table 2. 

Table 2: Accuracy Measures 

Measure Abbreviation Calculation Definition Frequency 

Mean Error ME 1

n
 ∑ ai − fi

n

i=1

 
The mean of the difference 
between the actual and forecasted 
values of the firm 

24% 

Mean Absolute 
Error 

MAE 1

n
 ∑ |ai − fi|

n

i=1

 
The mean of the absolute 
difference between the actual and 
forecasted values of the firm 

19% 

Mean Relative 
Error 

MRE 1

n
 ∑

ai − fi

ai

n

i=1

 
The mean of the percentage 
difference between the actual and 
forecasted values of the firm 

10% 

Mean Absolute 
Percentage Error 

MAPE 1

n
 ∑ |

ai − fi

ai
|

n

i=1

 
The mean of the absolute 
percentage difference between the 
actual and forecasted values of the 
firm 

33% 

Mean Squared 
Error 

MSE 1

n
 ∑(ai − fi)

2

n

i=1

 
The mean of the squared 
difference between the actual and 
forecasted values of the firm 

29% 

Mean Squared 
Relative Error 

MSRE 1

n
 ∑ (

ai − fi

ai
)

2n

i=1

 
The mean of the squared 
percentage difference between the 
actual and forecasted values of the 
firm 

10% 

 

The accuracy measures can generally be divided into three groups. The first is the simple Mean Error 

(ME), which takes the average of differences between the forecasted and actual value. The measure also 

appears in a variation where the absolute differences are used instead, which is abbreviated MAE. The 

key benefit of this approach is its simplicity and understandable intuition given that the resulting value is 

quite easy to interpret, especially for the absolute version. For example, in the absolute case a resulting 

value of 3 means that the forecast on average deviates from the actual values with 3 units. However, it 

does not make any statement about how much 3 units are compared to the actual value, hence the 

second group of Mean Relative Errors is required. They compare the mean error or the absolute error 

with the actual value to identify the percentage deviation. This provides a lot more information as 3 is a 

relatively small deviation from an actual value of 10.000 but a rather large deviation from an actual 

value of 1. The relative measure also comes in an absolute version called Mean Absolute Percentage 
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Error (MAPE) that is quite often used as evident from the 33% of the literature utilizing this measure. 

Thus, it is the most utilized accuracy measure for the included literature. The final group of accuracy 

measures is the Mean Squared Error (MSE), which squares the difference between the actual and 

forecasted value. The main difference to the MAPE is that the outliers are weighted more significantly as 

the difference is squared, which allows for easier identification of methodologies exhibiting larger 

outliers. However, the desirability of promoting the outliers depends heavily on the research design. 

From Table 2, it is evident that a significant part of the literature has used one of the two squared 

accuracy measures, whereby it is determined relevant to include in the thesis as well. 

The above accuracy measures will be the foundation for determining the performance of the proposed 

model in the thesis. Thus, when the following sections refer to the superiority or accuracy of a model, it 

is with reference to minimizing the absolute value of the above error measures. However, there are 

some general disadvantages of the measures that need to be considered when evaluating the models. 

First, it is very difficult to track the sign of the deviation in order to determine if a model is consistently 

biased downwards or upwards. It is possible to get an indication through the ME measure as it will be 

negative if there are most average errors below the actual values, though it is still not able to provide 

any meaningful picture of whether there is a consistent trend of a downwards bias. This can be partly 

solved by making some simple counts of the number of negative variations compared to the number of 

positives ones, though these would not take the magnitude of the variations into account. Secondly, 

accuracy can be defined in other ways than just a measure of mean variation, it could for instance be 

interesting to know the number of times the forecast is within an accepted range of the actual value. 

This could provide analyses of whether the forecasts are most often “close enough” to be valuable to 

investors. However, this remains a topic for further research. 

3.3 Model Superiority 

On an overall level, the literature body on earnings forecasting can be divided in three groups in terms 

of the proposed model superiority. The resulting division can be seen in Table 1 of the appendix, which 

outlines to which group each research paper belongs. The first group emphasizes the superiority of time 

series models including the ARIMA and random walk model. The second group directly opposes that 

view and finds that analysts are superior in their earnings forecasts. Finally, a third group attempts to 

contribute with alternative forecasting models as the superior methodology. 

In the following sections, each of the three groups will be reviewed and discussed. For the former two, 

the discussion will be divided in the general advantages of the model and the resulting conditions that 
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the model is superior within. The latter type of model will to a larger extend focus on how the 

alternatives can be utilized to generate an improved and more generally applicable model.  

To assist in the discussion, Table 3 has been generated to outline the key characteristics of the 3 

branches in the literature. In the table, sample size is the number of firms considered in the models, 

latest year refers to the most recent year in the data period of the paper, data horizon refers to the 

years of data used to generate the forecasts and forecast horizon refers to the length of the forecast 

period. 

Table 3: Literature Analysis 

 

Sample Size 
(Firms) 

Latest Year 
(Average) 

Latest Year 
(Maximum) 

Data Horizon 
(Years) 

Forecast Horizon 
(Years) 

Articles 
Included 

Time Series 2743 1984 2010 23 2.5 9 

Analysts 288 1981 1984 10 1.0 7 

Alternatives 373 1996 2009 17 2.2 7 

Full Literature 1369 1986 2010 18 2.0 25 

 

3.3.1 Time Series Models 

In general, there are several arguments why time series models are more accurate than analyst 

forecasts. The initial set of arguments are related to the biases the analysts face when producing their 

forecasts of earnings.  

Firstly, analysts are less accurate in their predictions of larger earnings changes, since their models tend 

to emphasize smooth earnings. This is especially apparent for smaller firms with a less documented 

earnings history and a less diversified business portfolio (Bradshaw et al. 2009). Hence, they are more 

prone to shocks from either economical or market factors. The random walk does not face the same 

challenge as it has shocks integrated in its ϵ-parameter. Due to the assumed normal distribution of the 

parameter with a mean of zero, major shocks are unlikely, though they can appear.  

Secondly, analysts tend to be overly optimistic in their predictions of earnings (O’Brien 1988). One part 

of the optimism is driven by the incentive structure in place at their own institutions, where managers 

do not reward a “buy” and “hold” recommendation equally (Bradshaw et al. 2009). For a brokerage 

making a recommendation for one of their clients, a clear conflict of interest arises if the brokerage 

provides a “sell” recommendation, as the client might find another brokerage that can provide a more 

optimistic recommendation. Thus, the brokerage is in the end left with the choice of making a “buy” 

recommendation or losing the client, where the former is too often chosen (Brown 1993). The second 

part of the optimism arises from the personal relationship that analysts develop with their clients. To 
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attain as much information as possible, the analyst holds meetings with the client and might be invited 

to other excursions or events to get to know the company and its people (Bradshaw et al. 2009). 

Therefore, the analysts risk being too emotionally connected to the client and its business, which causes 

an upwards bias.  

Besides the above biases, there are multiple reasons why the literature advocating analyst accuracy 

does not reflect the full picture (Bradshaw et al. 2009). Firstly, the data utilized is often outdated as seen 

in Table 3, where the latest data is from 1984 since the literature is from the 1980s and 1990s. This is 

naturally suboptimal to use when making statements about forecasting superiority 30 years later. In the 

literature arguing for time series models, Table 3 shows that the articles have data up to 2010, which 

provides more current findings. 

Secondly, the analyst literature has embodied very small sample sizes compared to the current market 

listings with samples of as few as 50 firms. From Table 3, it is evident that the literature advocating time 

series models has much more comprehensive data samples with an average size of more than 9 times as 

many firms. Thus, the analyst literature risks misrepresenting the data population, which can cause 

severe biases in their results. The larger samples allow for a much more representative selection that 

even though it is not free of biases is at least reasonably expected to contain less of a bias.  

Thirdly, the selection of the firms in the literature needs to be considered as mainly large firms with 

many analysts following are chosen (Bradshaw et al. 2009). This selection causes a bias as the size of the 

firms has a negative correlation with the relative accuracy of a random walk model. Hence, the literature 

attempts to make a general model based on data already biased against the random walk model. 

Fourthly, the forecast horizon of the literature is too limited and too few studies have looked at horizons 

over 2 year. As seen in Table 3, the average horizon for the analyst literature is around 1 year, while the 

time series literature has an average of 2.5 years. This is favoring the analyst models since random walk 

models perform relatively better over longer forecast horizons than 1 year (Bradshaw et al. 2009). Thus, 

when only investigating the shorter horizons the research will see a biased picture.  

Fifthly, the data horizon also differs significantly between the two branches of literature. As seen in 

Table 3, the analyst literature has an average of 10 years of data, while the time series literature has an 

average data horizon of almost 2.4 times as much, which increases the usability of the ARIMA model 

(Watts and Leftwich 1977 ; Bradshaw et al. 2009). 

Finally, Bradshaw et al. (2009) outlines that even when the literature find statistically significant results 

for analyst forecasting superiority, it is often not economically significant. Hence, the actual 

interpretation of the results will not display an extensive superiority of the analysts. Even for the 
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literature that finds the analysts and time series model equally precise (Albrecht, Lookabill, and 

McKeown 1977) the analyst forecasts are of less value given the cost of acquiring the forecasts. 

Producing the time series forecasts requires significantly less resources than attaining the analyst 

forecast, whereby the time series models would be the better choice if the forecasts are equally precise 

(Elton and Gruber 1972). 

Given the above arguments, the time series models are indicated to perform well under a set of general 

conditions. First of all, Conroy and Harris (1987) find that the longer the forecasting horizon, the more 

accurate the random walk forecast is compared to the analysts. This effect is confirmed by Bradshaw et 

al. (2009), who find that for horizons over 1 year the random walk model is more accurate than the 

analysts. For the ARIMA model, the same results are apparent in Pagach, Chaney, and Branson (2003). 

Further, Conroy and Harris (1987) find that a random walk outperforms the analyst predictions when 

the forecast is made in the beginning of the fiscal year, while analysts are more accurate comparatively 

speaking towards the end. This result arises mainly due to the negative correlation of the forecast 

horizon and the random walk accuracy and not the increased accuracy of the analyst forecasts. At the 

same time, the random walk process becomes more accurate when annual earnings are used for the 

forecast (Little 1962), which ties back to the random walk being superior on longer horizons. The length 

of the forecast plays a very significant role in many settings such as when using the earnings estimates 

for valuation purposes. In this setting, Allee (2008) also provides evidence of the time series forecasts 

being superior. 

Second of all, the size of the considered firms is an essential factor to consider, where especially for 

smaller firms the random walk and ARIMA models are better predictors than analysts (Bradshaw et al. 

2009 ; Pagach, Chaney, and Branson 2003 ; Branson, Lorek, and Pagach 1995). The advantage mainly 

arises from the fact that fewer analysts follow small firms, so the information available to analysts is less 

significant and hence provides less of an advantage. This also ties closely together with small firms 

having less publicly available information that the analysts can integrate in their forecasts.  

Third of all, as stated above the variability in earnings is positively correlated with the random walk 

superiority. Pagach, Chaney, and Branson (2003) find that the ARIMA model is more precise for firms in 

fewer lines of business, where the lines of business serve as a proxy for the stability of earnings. The 

underlying assumption is that the more diversified the company is, the more stable the earnings are. 

This finding also corresponds to that by Bradshaw et al. (2009) for the random walk, where analysts are 

less superior for companies with more significantly changing earnings. The main reasoning behind is the 
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analyst bias to predict smooth earnings, which the random walk and ARIMA model are not condemned 

to.  

3.3.2 Analyst Forecasts 

In general, there are several arguments why analyst forecasts are more accurate than time series 

models. Firstly, the analysts have a timing advantage (Brown, Richardson, and Schwager 1987), which 

indicates that the analysts can integrate more and more information as the year develops. Thus, just 

before the actual earnings are announced the analyst will have almost as much information as the 

company announcing it. The time series model is not able to update throughout the year as no new 

actual earnings have been published, which puts it at a disadvantage. 

Secondly, the analysts have a contemporaneous advantage (Brown, Richardson, and Schwager 1987), 

which means that at the date of the forecast, the analysts have more information available such as 

industry related metrics to compare to. The time series models only look at past earnings and for the 

random walk it only considers the very latest earning. Therefore, when making the forecast the analyst 

will have much more information available that enables a more accurate forecast.  

Third, since the time series models are available to analysts, the analyst can integrate them in their 

forecast to increase the accuracy (O’Brien 1988). The analysts can use the time series forecast as point 

of departure and enhance them by adding the specific knowledge they possess. This can materialize in 

analysts knowing what items are transitory and which are permanent as that enables them to a much 

larger extend to identify the relevance of previous items in next period’s earnings. An example hereof is 

if a company’s earnings in one period are affected by a lost lawsuit, which will not continue to the next 

period. Then an ARIMA model with p > 0 will put heavy weight on the last earnings despite the 

transitory nature of the law suit. In this case, the analysts will be able to improve the ARIMA model by 

adjusting the forecast to solely rely on the permanent items.  

Finally, Newbold, Zumwalt, and Kannan (1987) confirm the analysts’ superiority to the ARIMA model 

due to their quicker adaptation to economic events. This links heavily with the last two points, but is still 

a separate advantage. It indicates that if an economic event such as the financial crisis has started to 

affect the company to a small degree in the latest earnings, then the analyst will be better able to 

predict the magnitude of the effect on the next period. Here, the time series model would only 

incorporate it to a limited degree in the next period, even though other external parameters show clear 

signs of the economy going into a financial crisis. Thus, the ARIMA model will not be able to integrate 

the additional external information as it relies solely on the past earnings. 
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Based on the above arguments, there exists several conditions under which the analyst forecasts are 

most precise. Firstly, the horizon of the forecast remains the most important condition for analysts to be 

superior to the time series models. The length of the forecast is negatively correlated with the analyst 

accuracy, so that on short horizons below a year the analyst is most precise (Pagach, Chaney, and 

Branson 2003 ; Bradshaw et al. 2009 ; Brown et al. 1987). Even on horizons of a year the analysts are 

considered more accurate Brown et al. (1987). 

Secondly, when making the forecasts based on quarterly earnings, analysts also have superior accuracy 

(Brown 1993 ; Hopwood, Mckeown, and Newbold 1982). This also ties to the above condition of the 

shorter time horizon. 

Thirdly, the analyst accuracy is negatively linked to the time until the actual earnings are announced, 

meaning that the shorter time until the announcement, the more accurate the forecast will be. The 

reasons hereof is the timing advantage (Brown, Richardson, and Schwager 1987). 

Finally, Peek (1997) identifies the prior precision in forecasts to be the most significant factor in the 

companies where analysts are superior in their forecasts. Thus, the more accurate previous forecasts 

have been, the more accurate future forecasts will be. 

3.3.3 Alternative Forecasting Methods 

In addition to the time series and analyst forecast models, some alternative models have been proposed 

to challenge the two dominant methodologies. Thus, attempting to find a more superior model is not a 

new discipline, though none of the alternative models have truly gained traction and fellowship in the 

literature. This section will elaborate on the alternatives along with their advantages, disadvantages and 

applicability. In general, the alternative models can be categorized in 3 groups. The first utilizes 

company, industry or macroeconomic variables to forecast the company’s earnings, which is the 

category this thesis falls into as well. The second seeks to adjust the already generated analyst and time 

series forecasts either by combining them or specifically adjusting for certain trends and biases. The 

third group introduces new statistical models similar to the time series models but with certain 

variations.  

The first group of models seeks to utilize the available financial data on companies in a different way. 

The time series models only utilize the past earnings of the company and thus neglect a vast amount of 

financial data on the company itself, its industry and its macroeconomic environment. Bansal, Strauss, 

and Nasseh (2015) generate a model that utilizes 21 variables including both firm-specific and 

macroeconomic variables to increase the information gathered. The firm specific variables mainly evolve 
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around the numeric information found on the financial statements of the company such as stock return, 

gross margin, accounts receivables growth, sales growth, inventory and dividends. Where the economic 

variables utilized are factors such as S&P 500 Dividend yields, treasury bill rates, AAA bond yields and 

inflation. These predictors are combined with the current earnings and an error term to generate the 

estimate of the future earnings following the formula: 

𝑒𝑝𝑠𝑡+𝜏
𝜏 = 𝛼 +  ∑ 𝛽𝑗𝑒𝑝𝑠𝑡−𝑗 + ∑ 𝛾𝑗𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖,𝑡−𝑗 + 𝑒𝑟𝑟𝑜𝑟𝑡+𝜏

𝜏

𝑙2−1

𝑗=0

𝑙1−1

𝑗=0

 

Here, the left side indicates the forecasted earnings pr. share, and the right side includes a constant, the 

current earnings pr. share, one or more of the 21 predictors and an error term. This model and its 

mathematical formulation is especially relevant as there are several similarities to the model of the 

thesis as explained further in the methodology section.  

The model of Bansal, Strauss, and Nasseh (2015) is especially relevant under the fulfillment of 3 

conditions. The first is under scenarios where a single model is not able to fully explain the data-

generation process and hence replicate it. The second condition is that there exists a large number of 

variable that can potentially predict the dependent variable. Finally, the last condition is that variables 

are correlated in ways that can change over time so that the model configuration might require to be 

adjusted. They argue that the earnings forecasting setting fits these conditions to a large extend as there 

is no model fully describing the earnings changes, there are many variables both for the firms and its 

environment available and the central variables might change over time depending on the economic 

situation. In support of this argument they find that their model outperforms the time series models, 

especially when including several predictors in the model. Given these results, the model of the thesis 

will draw inspiration from their methodology.  

However, a few significant disadvantages are present in the model. Firstly, Bansal, Strauss, and Nasseh 

(2015) uses solely listed firms with publicly available information. This mean that the firm-specific 

variables they attain will not be possible to get from non-listed firms, which limits the applicability of the 

model significantly. Secondly, the data sample only contains 30 firms whereby it is not possible to 

determine the representativeness of the sample. Thirdly, their dataset contains solely large firms, 

whereby their findings cannot be concluded applicable to smaller firms despite them being listed on an 

exchange. This is due to the inherent differences in the earnings development between the two types of 

firms driven by factors such as more unstable earnings for small firms. Thus, the approach of Bansal, 

Strauss, and Nasseh (2015) cannot be concluded to be generally applicable, whereby it is still necessary 
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to investigate if another model can produce a more broadly tested methodology with superior 

forecasting accuracy. 

Another model in the first group of methodologies is presented by Reverte and Guzman (2010) who 

focus on circumventing the transitory nature of elements in past earnings. Hence, their methodology 

seeks to capture only the persistent information stored in the earnings to increase the predictability of 

future earnings. They do so through the variable relative efficiency that they define as “the inherent 

ability of a firm – as compared to other similar firms – to make the most productive use of available 

resources”. More specifically, it is measured by the firm’s ability to generate an output of revenue based 

on inputs from material, labor, capital and overheads. In formulating the forecasts, they compare a basic 

model solely including current earnings and book value to their own model where the relative efficiency 

is included. Their model is defined from the formula:  

𝑁𝐼𝑖,𝑡+1 = 𝛽0 + 𝛽1𝑁𝐼𝑖,𝑡 + 𝛽2𝐵𝑉𝑖,𝑡 + 𝛽3𝐸𝐹𝐹𝐼𝐶𝑖,𝑡 + 𝑒′𝑖,𝑡 

Where the left side is the forecasted net income and the right side includes a constant, current net 

income, current book value, the relative efficiency and an error term. The structure of the formula is 

similar to that of Bansal, Strauss, and Nasseh (2015), though the main difference is its focus on the 

relative efficiency solely, instead of integrating other variables.  

Reverte and Guzman (2010) make three important findings that the methodology of the thesis will take 

heavy inspiration from. The first finding is that adding another variable to the current earnings can 

significantly improve the forecasting accuracy, which confirms the findings of Bansal, Strauss, and 

Nasseh (2015). Secondly, they are able to increase the accuracy by comparing the company to be 

forecasted with similar companies and thereby increase the amount of information gathered. Thirdly, 

they make their conclusions utilizing a dataset of 1939 small and medium-sized firms, which is critical to 

the thesis as its dataset contains mostly smaller firms with only a small fraction being large companies. 

This also increases the general applicability of the results and enhances the value added.  

However, the article contains some noteworthy disadvantages. First of all, the analysis solely compares 

the model with the relative efficiency term to the model without the relative efficiency term, whereby it 

does not compare to time series models or analyst forecasts. Thus, despite its two important findings it 

does not contribute significantly to the discussion of the time series and analyst forecasting superiority. 

As this discussion is the foundation of the thesis, the conclusions of the model can only be treated as 

having an indicatory nature for further analysis. Secondly, the model is very narrow in its view on what 

affects earnings. Despite finding that the relative efficiency improves the forecast, it is not able to 
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identify if other measures can provide a greater improvement in accuracy. Thirdly, the relative efficiency 

consists of rather specific information from the income statement such as revenues, personnel expenses 

and cost of material used, whereby it can only provide forecasts for companies where this information is 

available. This is a limiting factor in larger samples, since it might not be explicitly stated in the available 

data, for instance the publicly available data on non-listed Danish companies does not always include 

revenues and cost of materials used.  

The second group of models takes the analyst and time series forecasts as point of departure and 

attempts to find adjustments or combinations of the forecasts that can increase the accuracy. One of 

the papers in this group is Lobo (1991) that tests 5 different combinations of analyst and time series 

forecasts to reach the one with the highest accuracy. The notion of combining forecasts to increase the 

accuracy is supported from several sources in the literature (Newbold, Zumwalt, and Kannan 1987 ; 

Conroy and Harris 1987 ; Kim 1996). The underlying reasoning is to circumvent the biases found in the 

individual models and to put more emphasis on the models that are performing better. Thus, this way of 

forecasting recognizes that there are differences between when the forecasting methods are superior, 

which it attempts to capture and combine into a generally superior model (Conroy and Harris 1987). In 

this setting, the traditional combination places equal weight of the individual forecasts to derive the 

final estimate. However, Lobo (1991) finds that this manner is the least accurate method and instead an 

unequal combination generated from cross-sectional data is more accurate.  

Similar findings are derived by Lo and Elgers (1998) who point to 4 main adjustments that increase the 

accuracy. The first is to adjust for symmetric and forecastable errors in past earnings that can be avoided 

in future earnings predictions. The second is to combine the analyst and time series forecasts based on 

previous accuracy of the methods. Thirdly, they adjust for the over-optimism of the analysts. Finally, 

they adjust for the past general accuracy of the analysts in predicting stock returns.  

Hence, the second group of alternative models serve as a set of important indicators of where the 

analyst and time series models are not sufficiently accurate. Thus, they indicate a clear need for a type 

of model that can combine the best aspects of the analyst and time series forecasts in order to 

circumvent the biases of the individual models. This notion will be integrated in the model of the thesis.  

However, the second group of models are fundamentally relying on analyst forecasts in their 

methodologies, whereby they can only be applied to listed firms. Thus, they are not able to contribute 

with a generally applicable model. 
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The final group of alternative models contains statistical methodologies and regressions that aim to 

generate better models than analysts and time series models. These models exist in many different 

varieties and will merely be exemplified in the thesis for the sake of completion. Ardalan (2016) provides 

a framework for such a model named the Error Correction Model (ECM), which investigates the 

relationship between a company’s earnings and dividends. The statistical properties of the relationship 

between the two make it possible to use both in the forecast of earnings (Ardalan 2016), which indicates 

that earnings information is also stored in the dividend policy. This is an important finding as it confirms 

Bansal, Strauss, and Nasseh (2015) and Reverte and Guzman (2010) in that adding more information 

than current earnings increase the accuracy of the forecasts.  

Similar investigations are performed by Jadhav, He, and Jenkins (2015) who produce 3 models, where 

especially two, Linear Regression (LR) and Multilayer Perceptron (MLP), produce accurate results. 

However, this group of alternative models suffers from 3 main disadvantages. Firstly, the number of 

companies included is very small, which despite the long data horizons only provides a very narrow 

picture. Secondly, only large and listed companies are tested, whereby the general applicability is 

brought into question. Finally, they do not explicitly compare to both the time series models and 

analysts, so their contributions to the discussion of the thesis is limited. 

3.4 Theory Conclusion 

When comparing the time series models of a random walk and ARIMA with analyst forecasts, the time 

series models have several advantages. They are less prone to subjective biases that the analysts are 

affected by, such as earnings smoothing, getting emotionally engaged with the company in question, 

and the incentive structure in place promoting “buy” recommendations over “hold” or “sell” 

recommendations. These biases bring the objectivity and accuracy of the analyst forecasts into 

questions. Further, the literature arguing for analyst superiority has several flaws that makes it prone to 

accepting analysts as superior. These include relatively old data, small sample sizes with mainly larger 

firms and short forecasting horizons. Most of these aspects directly contradict the conditions for when 

time series models are superior and thus create a natural bias for accepting analyst superiority.  

On the other hand, the analyst forecasts have several advantages over the time series models. The two 

main aspects are the timing and contemporaneous advantages that allow the analysts to base their 

forecasts on more information both on the date of the forecast and as the year develops. Further, the 

analysts are able to generate the time series forecasts themselves and only update them if they have 

additional information that they know will have a significant effect on the forecast. This could for 
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instance be when the analyst has knowledge of transitory items or the effects of economic events that 

the time series models will not be able to integrate to a large extend.  

In addition, a set of alternative models can be utilized in comparison to the analyst and time series 

forecasts. These models integrate several useful aspects including increased accuracy from adding more 

data and variables as well as from integrating information from similar companies. However, the 

majority of the alternative models are lacking general applicability and only few are directly compared 

to the analyst and time series forecasts, whereby their contribution to this discussion is limited. Thus, 

they are to a larger extent used to provide support of the general idea of challenging the time series and 

analyst models rather than actually finding a better model than the one of the thesis.  

Thus, the most accurate of the existing models will arise from the time series or analyst methods. 

Though, given the significant arguments present for both cases, it is not a straight forward task to 

determine which of the two sides that contain the most influential arguments. Therefore, the deciding 

factor in terms of the proposed accuracy will be which of the two sets of the conditions that apply the 

most to the research design of the thesis. As will be elaborated in the methodology section, the data of 

the thesis contains more than 350.000 Danish firms with earnings data over an 18-year period from 

1994 to 2012. At the same time, the firms covered are to a great extend small or medium-sized, unlisted 

firms that most likely have no analysts following them. The produced forecasts will be based on yearly 

data and have a forecast horizon of up to 8 years. These research design aspects all fall under the 

conditions where time series models perform best, whereby the conclusion to this theory section is that 

the time series models are assumed more precise for this thesis. Hence, in the analysis and discussion 

sections the models of a random walk and ARIMA will be the main comparative benchmarks for 

determining whether the models developed in the thesis are more accurate than what the literature 

body currently entails. The analyst forecasts will also be analyzed but only for a smaller sample of 

companies. 

4. Methodology 

The section on methodology will discuss the manner in which the results of the thesis are derived. 

Therefore, it will initially outline the data foundation utilized and the characteristics it entails. This will 

include a discussion of the variables used and the necessary formatting of the raw data. Then the 

section will turn towards the forecasting methods applied to generate the predictions. Finally, the 

method for calculating accuracy will be discussed.  
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4.1 Thesis Data 

This section will focus on the type and extend of the data along with its applicability to the analyses in 

question. As the raw data file did not embody the structure required for the analyses, the reformatting 

process will also be elaborated upon. 

The raw data file is attained through the Department of Accounting and Audit (ACC) at Copenhagen 

Business School, which is pulled out from the databases of Orbis (ACC 2014). In the end, Orbis attains 

the data from the CVR register of Erhversstyrelsen. The data consists of 352,496 firms and 2,891,384 

firm years, which is 8 years pr. company on average.  

For each year, 152 variables are included where 12 are characters such as CVR number and industry and 

140 are numeric such as EBIT and Total Assets. The data covers listed and non-listed companies in 

Denmark, Greenland and the Faroe Islands in a broad range of 21 industries including both large, 

medium and small-sized firms. The data spans from 1994 to 2012 (ACC 2014) and attempts to capture as 

much data as possible by applying few restrictions on size, industry, age or financial metrics. However, 

to be included in the analyses the companies are required to have data on EBIT and balance (measured 

as total assets) for the full data horizon of the analyses in the thesis. In addition, the companies need to 

have data on the full forecasting horizons considered, since the produced forecasts are compared with 

the actual values to calculate the accuracy. The exact ranges of the data and forecast horizon vary in 

each analysis but cover up to 12 years of data. Further, the company needs to have an industry and an 

age of the most recent accounting year. 

As touched upon in the theory, the dataset contrasts that of the literature as seen in Table 4 below and 

embodies several of the features that favor time series models (Bradshaw et al. 2009). Firstly, the data is 

very recent as the latest observations are from 2012 in contrast to the average of the literature being 

1986. Thereby, the applicability to current companies is improved since the data includes more recent 

earnings development patterns that are more relevant to use in forecasting today compared to the 

patterns from over 30 years ago. Secondly, the sample size of 352,496 firms is large compared to the 

previous literature, where the average size of the literature is 1,369 companies. The more than 250 

times bigger dataset allows for a much more diverse set of companies, which leads to a more generally 

applicable framework. Especially the fact that not only listed companies are included increases the 

applicability significantly as the findings of the thesis can be applied to non-listed companies. Finally, the 

size of the firms included in the dataset varies greatly. In the dataset of the thesis, only 319 firms or 

0.1% of the firms and firm years arise from listed companies, while the remaining 99.9% of the data 
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stems from non-listed companies. This shapes a very clear contrast to the literature as it mainly deals 

with listed companies. Thus, the general applicability is increased further and enhances the relevance of 

the findings as the majority of companies in the world are non-listed. 

Table 4: Thesis Data Structure 

 

Sample Size 
(Firms) 

Latest Year 
(Average) 

Latest Year 
(Maximum) 

Data Horizon 
(Years) 

Forecast Horizon 
(Years) 

Literature 1,369 1986 2010 18 2.0 

Thesis 352,496 2012 2012 2 to 10 1 to 8 

 

Nevertheless, the data gathering methodology utilized before the dataset is obtained contains some 

noticeable disadvantages highlighted by ACC (2014) that could have an effect on the analyses of the 

thesis. Firstly, there are differences between how Orbis defines and calculates the accounting measures 

and firm characteristics. This can cause misleading interpretations and further calculations of the 

variables given the incoherence.  

Secondly, the database initially had significant challenges with missing data and duplicate values. This is 

attempted solved through merging with additional databases from Orbis, yet the merging process has to 

make some simplifying assumptions. It assumed that all non-numeric variables remained the same for 

each year, for instance that the companies did not change industry. This can be a critical assumption as 

the thesis utilizes the industry as a key component in some of the analyses. Thus, if it has changed 

during the data period, the company might be more appropriately located in another portfolio during 

the analyses. However, the probability of the company changing between the 21 overall defined 

industries is considered very small. Further, during the merge of the databases the missing values from 

previous years are filled out by values from later databases. As an example, if a company is missing data 

on EBIT from 2011 then a database from 2013 with the value for 2011 is included to fill out the missing 

value. This can be misleading if the company has made changes in arrear of their accounting 

information, where the most correct value would have been the originally reported one from 2011. 

However, this issue is not viewed to have a significant impact of the analyses as making accounting 

changes in arrear is not common practice and happens infrequently.  

Third, the variable FOUND is assumed to cover the founding year of the company, but it can also contain 

the latest year where the registered information of the company is changed. Hence, if a company 

changes its name, the variable FOUND will update to that year and the analyses will assume it is the 

founding year of the company. This can lead to significant distortions in the portfolio groupings of the 

analyses as they are based on a relative year to when the company is founded. As an example, a 
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company that after 15 years of operating changes its name will have its 16th financial year stated as the 

1st year in the analyses since the FOUND variable is updated. This will skew the portfolio of the company 

as the financial metrics will not be comparable given its different stage in the company’s life cycle.  

Finally, there are some companies with partial CVR numbers, which could be caused by an incorrect 

addition of a company. This is also indicated by the fact that despite the dataset stating it contains 

352,496 firms, Danmarks Statistik (2014) only identifies 295,220 companies in Denmark in 2012. The 

mismatch can be partially explained by Danmarks Statistik (2014) not including the companies from the 

Faroe Islands and Greenland, but this cannot provide the full explanation. Hence, there are some of the 

CVR numbers that are concluded to be incorrect, though this has not been possible to filter out. Further, 

the dataset includes companies that have been terminated between 1992 and 2012, which would not 

be included in Danmarks Statistik (2014). 

However, the outlined disadvantages in the data collection methodology are not considered to 

significantly affect the comparative results as all models will be affected equally. Nevertheless, they limit 

the number of companies to be used in the analyses, especially due to missing observations for the 

accounting year and EBIT. Hence, in the analysis only 59,404 companies are utilized, where 846 are the 

companies to be forecasted and the remaining 58,558 are used to generate the forecasts. The 846 

companies are chosen randomly from the dataset to avoid selection biases. 

The final step of the data preparation is to convert the data from the ACC format to having the format 

required for the data driven approach. This requires a two-step process, where the first conversion is to 

go from having a firm year for each row to having the unique CVR numbers in each row with the yearly 

EBIT data in the columns. The second step is to transform the dataset from having each firms’ earnings 

categorized by calendar years to the refined data structure of having the earnings categorized by firm 

year. The second step is illustrated in Figure 1a and Figure 1b showing the original data structure and 

the refined data structure, respectively.  

Figure 1a: Original Data Structure 
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Figure 1b: Refined Data Structure 

 

4.2 Forecasting Methodology 

The forecasting methodology is essential in the thesis as this is the core way it differentiates from 

previous literature. Given the extensive dataset previously described, the thesis is able to generate its 

own forecasting technique, the data driven forecasting, through a grouping of variables. This method 

will be contrasted with the more generally accepted and utilized forecasting methods from the time 

series models of the random walk and ARIMA, in order to test which of the methodologies is superior. In 

addition, the data driven forecasting will be compared to a small samples of analyst forecasts to provide 

an indication of the superiority of the models.  

Therefore, the first part will concern how the data driven forecasting is performed, the second part will 

concern how the time series models derive their forecasts, and the third part will outline the 

methodology for attaining the analyst forecasts.  

4.2.1 Data Driven Forecasting 

The data driven forecasting is a way of grouping similar companies based on a variety of measurable 

variables. The first step in the method is to identify groups or portfolios of comparable companies. Once 

portfolios of similar companies have been formed, the development in earnings in the portfolios can be 

identified for each year. Then, the development in the portfolios is utilized to predict the future 

development for other companies exhibiting the same characteristics. The underlying notion of the 

model is that similar companies will exhibit a similar development in earnings. Hence, the data driven 

model can be formulated in the below expression: 

𝐸𝐵𝐼𝑇𝑡+𝑖 = 𝐸𝐵𝐼𝑇𝑡  × (1 + 𝑒𝑔𝑝𝑗,1) × (1 + 𝑒𝑔𝑝𝑗,2) × … × (1 + 𝑒𝑔𝑝𝑗,𝑖) 

Where t is the data horizon, i is the forecast horizon, egp is the EBIT growth of the portfolio and j is the 

variable(s) the portfolio is based on. The methodology is probably best explained through an example. 

The example will take its point of departure in a single company needing to be forecasted. The company 

has been operating for 6 years and a venture capital fund wants to produce a forecast for the next 3 
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years of earnings. To do so, they have identified a portfolio of comparable companies within the same 

industry that have similar EBIT in their 6th year of operating and which has at least 9 years of EBIT 

available in total. Then, the average EBIT of the portfolio of companies is attained for each year, so the 

yearly growth can be calculated. Here, the average growth in the portfolio from their 6th to 7th year of 

operating is 10%, while the next two years exhibit growth rates of -5% and 20%. At the same time, the 

company to be forecasted has an EBIT of 100 in its 6th year of operating. 

Hence, in this example the data horizon is 6 years, the forecast horizon is 3 years, the EBIT in year 6 is 

100, the variables used for forming the portfolio are EBIT&Industry and the growth rates in the portfolio 

for the 3 years are 10%, -5% and 20%. Then, the methodology will predict the earnings in year 9 to be: 

𝐸𝐵𝐼𝑇9 = 𝐸𝐵𝐼𝑇6 × (1 + 𝑒𝑔𝑝𝐸𝐵𝐼𝑇&𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦,1) × (1 + 𝑒𝑔𝑝𝐸𝐵𝐼𝑇&𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦,2) × (1 + 𝑒𝑔𝑝𝐸𝐵𝐼𝑇&𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦,3) ↔ 

𝐸𝐵𝐼𝑇9 = 100 × (1 + 10%) × (1 − 5%) × (1 + 20%) = 125.4 

If the earnings in years 7 and 8 are desired to derive explicitly as well, this can easily be done by 

following the same methodology: 

𝐸𝐵𝐼𝑇7 = 𝐸𝐵𝐼𝑇6 × (1 + 𝑒𝑔𝑝𝐸𝐵𝐼𝑇&𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦,1) = 100 ∗ (1 + 10%) = 110 

𝐸𝐵𝐼𝑇8 = 𝐸𝐵𝐼𝑇7 × (1 + 𝑒𝑔𝑝𝐸𝐵𝐼𝑇&𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦,1) = 110 ∗ (1 − 5%) = 104.5 

𝐸𝐵𝐼𝑇9 = 𝐸𝐵𝐼𝑇8 × (1 + 𝑒𝑔𝑝𝐸𝐵𝐼𝑇&𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦,1) = 104.5 ∗ (1 + 20%) = 125.4 

The only difference here is that three forecasts are made with a forecast horizon of 1 year for each 

forecast, while the data horizon is 6, 7 and 8, respectively. However, as visible the final results are the 

same. 

More specifically, to produce the forecasts using the data driven methodology, the following approach is 

undertaken. The method used depends on the type of variables chosen to form the portfolios and in this 

context, there are two types of variables considered: dynamic and static variables. For the dataset of the 

thesis, the overview of variables is shown below in Table 5. A dynamic variable is defined as being 

dependent on the year the portfolios are formed in, whereby the grouping of portfolios will differ based 

on which year the grouping is performed in. An example hereof could be total assets, which changes 

each year whereby the division in portfolios will be different each year. The static variables are defined 

as being constant despite changing the year the portfolios are formed in. An example hereof could be 

industry, which remains the same for a company despite choosing another financial year. In addition, 
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age is considered as static since it remains constant for the same dataset, as it is only if another year of 

data is added to the dataset that the company’s age is changed.  

Table 5 below provides an overview of the utilized variables and their category. In the thesis, dynamic 

variables are EBIT, balance measured by total assets and growth in EBIT, while the static variables are 

industry and age. The reason for this selection is mainly driven by data availability, since these are the 

main variables with consistent data for a sufficient number of companies. 

Further, the table shows the number of portfolios each variable is categorized in, where the dynamic 

variables can be divided in 5 or 10 portfolios according to the 20th or 10th percentiles of the data, 

respectively. Here, the industry and age variables are divided based on the number of industries and 

ages present in the dataset. For the age variable, the oldest company in the dataset is Tivoli A/S that was 

founded in 1843, which is 169 years before the end of the dataset in 2012. Thus, the dataset has at least 

one company founded in each year since 1843 except for 3 years, which brings the total number of ages 

present to 166.  

Table 5: Variable Overview 

Variable Category # of Portfolios Portfolio Method 

EBIT Dynamic 5 or 10 According to each 20th or 10th percentile 

Balance Dynamic 5 only According to each 20th percentile 

Growth in EBIT Dynamic 5 or 10 According to each 20th or 10th percentile 

Industry Static 21 industries According to each of the 21 industries 

Age Static 166 ages According to each of the 166 ages 

 

For dynamic variables, the forecasting is performed in the following manner, which will also be 

illustrated with an example below. First, a grouping year is chosen to determine which year the 

portfolios should be formed in. There are several ways in which the grouping year can be chosen, 

though the arguments are strongest for choosing one of the following two options. The first option is to 

choose the grouping year based on the latest available firm year of the company to be forecasted, so in 

the example above if a company’s 7th year is to be forecasted then the grouping year in the dataset will 

be year 6. This allows for an alignment of the company life cycle, so the companies in the dataset will be 

in the same phase of the life cycle and hence increase the applicability of the forecast. The second 

option is to choose the grouping year as the latest available calendar year in the dataset. This allows for 

the most updated data and takes current economic conditions into account as for very old companies, 

their 6th year could have occurred in a completely different economic climate that might not be 
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applicable today. However, the second method could lead to suboptimal groupings if there are large 

differences in the age of companies considered. In 2017, a company with an age of 50 years will most 

likely have completely different EBIT and Balance values than a company with an age of 6 years, 

whereby it will not be grouped in the same portfolio. Nevertheless, the company might have looked very 

similar when it was 6 years old whereby it actually could contribute with a relevant earnings 

development pattern. Thus, the thesis will use the first way of determining the grouping year, which is 

mainly driven by being able to match the phases in the company life cycle and to avoid the disadvantage 

of the second manner outlined above. Whether the analyses would be affected by choosing the 

grouping year in a different manner will be for further research to investigate.  

The second step in forecasting the dynamic variables is to divide the dataset in a set of portfolios based 

on the variable in the grouping year, such as dividing in 5 portfolios based on the Balance for each 20th 

percentile. Thus, it is required to determine the number of portfolios desired in the analysis. Arguments 

for choosing a small number of portfolios evolve around ensuring to have sufficient data in each 

portfolio, so forecasting is not based on undesired outliers. However, choosing a larger number of 

portfolios allows for a more nuanced range of potential developments of the company’s earnings, which 

could produce more accurate groupings and hence forecasts. There is yet to be established a guideline 

for the minimum size of a portfolio, though given that averages are used in the next step it is advisable 

to maintain a decent size to avoid too significant weight placed on outliers.  

The third step is to take the average earnings for each portfolio for each forecast year in order to 

identify the percentage development in earnings from year to year. Thus, the result is a matrix with 

portfolios and firm years showing the percentage changes. 

Finally, the company to be forecasted is assigned a portfolio based on the dynamic variable in its latest 

year to ensure the portfolio shows the most relevant development. Then the percentage development 

in earnings for the portfolio is applied to the latest earnings of the company to achieve a forecast of the 

desired horizon. The first three steps are performed once as the portfolios do not change based on the 

company to be forecasted, whereby for the next company in questions it is only necessary to repeat the 

last step and apply the relevant portfolio development to generate the forecast. 

To illustrate the approach, an example is calculated in the following. Here, 4 companies represent the 

dataset, while 1 company is to be forecasted with a data horizon of 3 years and a forecast horizon of 2 

years. The data horizons are here driven by the 4 data companies having an age of 5 years, while the 

forecast company has an age of 3 years. Figure 2 illustrates how a timeline for the 5 companies could 

look, where the data companies have data from year 2012 to 2016 and the forecast company has data 
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from 2014 to 2016. The forecast is then performed for 2017 and 2018, which is the firm year 4 and 5 for 

the forecast company. 

Figure 2: Forecasting Example Timeline 

 

The EBIT and forecasting values are show in Table 6a and 6b below, which are noted in firm years and 

not calendar years. To produce the forecast a dynamic variable of EBIT is chosen and it is decided to 

produce 2 portfolios from the data. Using the steps above, the first step in the forecasting process is 

choosing the grouping year. This is chosen as firm year 3 to align the companies in terms of the company 

life cycles. Second, the number of portfolios is chosen as 2 in order to secure that only relevant firms are 

compared to the forecast company. In this specific example, one could argue that there is not sufficient 

data to split in multiple portfolios, but for the sake of providing a simple example the data is divided in 2 

portfolios. Third, Table 6b is calculated with the average earnings for each portfolio and the growth 

rates from year 3 to 4 and 4 to 5. Finally, the forecast company is assigned a portfolio based on the EBIT 

in year 3. Here, the EBIT is higher than the 50th percentile, so the forecast company is assign portfolio 1. 

Then, the growths in portfolio 1 of 11% and 4% from Table 6b are applied to the EBIT of the forecast 

company in year 3 of 90, which leads to a value of 90*(1+11%) = 100 in year 4 and 100*(1+4%) = 104 in 

year 5. 

Table 6a: Forecasting Example, Company Data 

Company Y1 Y2 Y3 Y4 Y5 Portfolio 

Data Company 1 70 80 100 120 130 1 

Data Company 2 10 5 9 14 17 2 

Data Company 3 100 105 107 110 110 1 

Data Company 4 50 40 30 40 20 2 

Forecast Company 75 80 90 100 104 1 
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Table 6b: Forecasting Example, Portfolio Data 

Portfolio Y1 Y2 Y3 Y4 Y5 Growth 3-4 Growth 4-5 

Portfolio 1 85 93 104 115 120 11% 4% 

Portfolio 2 30 23 20 27 19 38% -31% 
 

The above example can also be applied to the formula expressing the data driven model. Thus, the 

formula for the forecast of year 5 is: 

𝐸𝐵𝐼𝑇5 = 𝐸𝐵𝐼𝑇3 × (1 + 𝑒𝑔𝑝𝐸𝐵𝐼𝑇,1) × (1 + 𝑒𝑔𝑝𝐸𝐵𝐼𝑇,2) ↔ 

𝐸𝐵𝐼𝑇5 = 90 × (1 + 11%) × (1 + 4%) = 104 

For static variables, the first two steps from the dynamic variable process are simplified significantly as 

the creation of portfolios is performed by combining the companies in the dataset based on their static 

variable such as industry, where each portfolio represents an industry. Thus, it is necessary to consider 

the number of portfolios arising from the static variable to ensure a reasonable balance between 

nuanced groupings and sufficient data points in each group. The latter is especially important to 

emphasize since the risk of having few observations is greater once the portfolios are not divided evenly 

based on percentiles, but rather based on a variable that has no guarantee of an equal division. An 

example hereof could be a niche industry that only few companies in the dataset belong to, which 

increases the risk of basing portfolio developments on outliers. Finally, the third and the fourth step are 

performed in the same way as under the dynamic variables in order to produce a forecast for the 

company in question. 

When forming portfolios based on only one variable, there is a significant risk that the portfolios 

become too broad and lose some of their applicability. Therefore, it is relevant to test whether a 

combination of variables can generate a more precise prediction than single variables can. The 

methodology for creating multi-variable portfolios is similar to the above and falls into the following 

steps. Initially, if one or more dynamic variables are included the grouping year needs to be determined 

as discussed above. Then each company in the dataset is assigned to a portfolio for each variable 

included. Thus, if three variables are included with three portfolios each, a given company in the dataset 

will have three portfolio numbers from one to three assigned. Thereafter, an additional step is required 

to convert the three portfolio numbers into one overall portfolio. This is managed through a portfolio 

table as seen in Table 7 in the appendix, where each possible combination of the three variables is 

outlined and assigned a final portfolio number. As visible from the example, the number of final 
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portfolios is the number of portfolios in each variable multiplied with each other, which creates an 

exponential increase in the number of portfolios. Thus, even more caution must be applied in ensuring 

that each portfolio has sufficient data points to avoid relying on outliers. This is especially apparent 

when including static variables as outlined above, for instance if the age and industry variables are 

combined in the analysis the number of portfolios would be 21*166 = 3486. In this case, less than 17 

companies are on average in each portfolio, which means that most likely a portion of the portfolios 

would be based on much fewer companies and hence be very prone to outliers. Finally, step three and 

four are the same as above using the final portfolios as basis of the development to generate the 

forecast for the companies in question. 

The reason why the data driven approach to forecasting is relevant to consider is that it incorporates 

some of the advantages that only analysts currently possess, while still embodying many of the same 

advantages as the time series models contain. The main new advantage is the incorporation of 

information from comparable firms, so the forecast goes beyond the past earnings of the company. This 

will decrease the contemporaneous advantage outlined by Brown, Richardson, and Schwager (1987) as 

analysts go through the same exercise of gathering comparable companies and evaluating how they 

have developed over time in order to incorporate that in their forecasts. Any quantifiable variable that 

the analysts could find comparable companies with can be integrated in the data driven approach to 

increase the accuracy of the forecast. This is a significant change as no time series model has been able 

to integrate information on similar companies. Furthermore, the approach allows for integrating future 

stages of the company’s life cycle by comparing to companies who have been through the same stages.  

The other main advantage is the method’s ability to integrate information on the general changes in 

economic conditions that companies go through. This is indirectly included when taking the firm year of 

earnings for all companies, so that a company who started operating in 1995 can be compared with a 

company starting to operate in 2000 despite being in very different phases of the dot-com bubble (Stern 

NYU 2017). In this case, year one of earnings would be 1996 and 2001, respectively, with one being on 

the rise of the bubble where earnings were high on average, while the other exhibits the opposite case. 

Hence, by integrating the information indirectly stored in the earnings for these companies, the data 

driven approach can provide a picture of how earnings vary on average across economic conditions as 

well. This aspect is considered an advantage rather than a disadvantage since the magnitude of the 

dataset will ensure that the forecasts are not based on outliers, while the effect is still included. 

At the same time, the method entails several of the same advantages as the time series models do, such 

as avoiding earnings smoothing or emotional biases in the earnings estimations that the analysts exhibit. 
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Further, this dataset includes very recent data with a large sample size covering a wide range of 

companies, which increases its applicability as previously discussed.  

However, the data driven methodology also comes with some general disadvantages compared to the 

time series and analyst models. First, it requires significant amounts of data to generate the models as 

the portfolios require a certain number of firms to be relevant as elaborated upon above. This can be a 

critical disadvantage in replicating experiments as acquiring access to a sufficiently large pool of 

company data is challenging. Nevertheless, the thesis entails a large dataset and therefore does not 

suffer from this disadvantage. Further, for the methodology to be generally applicable, the dataset 

needs to contain a wide variety of firms and not just large firms that are listed on an exchange. In many 

settings, attaining this data proves a big challenge due to the limited public information available on 

non-listed companies. However, in the thesis it has been possible to attain data for both listed and non-

listed companies, whereby this disadvantage does not affect the analyses significantly.  

Secondly, the main difference between the data driven approach and the time series models is the 

integration of previous earnings of the company in question when making the forecast. This occurs 

either through the trend analysis of the ARIMA model or the drift term in the random walk. In the data 

driven method, only the latest year of the company in question is utilized as a starting point for the 

forecast, though all the information included in the previous years are not utilized. Thus, it does not 

integrate the information stored in the previous earnings, which can cause the forecast to be less 

accurate. 

Thirdly, the data driven approach places heavy weight on the latest financial year of the company 

depending on which variables are considered in the portfolio groupings. However, this approach can be 

misleading if the latest year has a considerable number of transitory items or in any other way did not 

represent the company’s true outlook going forward. Thereby, the company risks getting categorized 

incorrectly so that the expected earnings development might not be the most applicable one.  

Finally, it is not straight forward to identify what a truly comparable company is. Even for companies 

that appear comparable such as companies of the same age in the same industry might have radically 

different outlooks and future earnings due to different strategies or other critical components that are 

difficult to quantify. Even parameters that might work well in identifying similar firms in one segment 

might be misleading in another. Thus, the model is forced to make the underlying assumption that in 

general the law of large numbers indicates that as the number of firms included increases, a mean 

reverting effect occurs in order for the model to be generally applicable. 
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In the end, the question of whether the time series models are better than the data driven method will 

boil down to whether past earnings of the same company is a better predictor of future earnings than 

the earnings of comparable companies. The results of this test will be elaborated upon during the 

analysis and discussion sections. 

The above methodology for the data driven approach entails three key restrictions that need to be 

fulfilled to achieve unbiased and relevant forecasts. Firstly, to circumvent the risk of portfolios with few 

companies, it is essential that the dataset used is of a significant size. In this way, portfolios will 

statistically have a better chance of getting allocated a sufficient number of firms. Secondly, it is 

essential to use out of sample companies to determine the forecasting accuracy. This is especially critical 

for small datasets since if the company is included in the portfolio used to forecast it, the forecast will be 

biased towards the actual values of the company. Thus, the accuracy will appear artificially improved. 

Therefore, the portfolio developments are derived from a different part of the dataset than the firms 

used to determine the accuracy of the techniques. Finally, it is important that the same group of firms is 

used to determine the forecasting accuracy for each analysis in order to secure comparability. Thus, the 

thesis has ensured to be in compliance with all three aspects. 

4.2.2 Time Series Model Forecasting 

The time series models are introduced in the theory section and consist in this context of the ARIMA 

model and the random walk model. As their general composition and forecasting method has already 

been explained, this section will seek to expand on why they are relevant to compare to and what 

varieties of the models are utilized in the thesis. 

As visible in the theory section, the majority of the literature is concerned with testing the accuracy of 

analyst forecasts compared to time series model forecasts. It concludes that for a dataset containing a 

large sample of recent data with a wide range of firms such as the one seen in the thesis, the time series 

models will be superior to the analysts. Hence, the time series models are the most accurate and 

relevant model to be used to test the data driven approach against. Further, if the data driven method 

proves superior to the time series models, it will then indirectly be superior to the analyst forecasts as 

well. This would be a major finding, especially considering the general applicability of the models due to 

the wide range of companies included in the data. Thus, as most companies are not listed, then 

whichever model proves superior for this dataset will be the most accurate model for majority of 

companies in general. 
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The analyses of the thesis will include several variations of the time series models to ensure that the 

findings are as profound as possible. For the ARIMA models, the statistical program of R that the thesis 

uses has two ways of applying the model to the data. The first one is the auto.arima function that takes 

the past earnings of the company as input and attempts to identify which ARIMA variation has the best 

fit. R uses the Akaike Information Criterion (AIC) of each potential ARIMA variation to identify which 

model is able to capture the tendencies in the data most appropriately (OTexts 2017). The AIC is a way 

of comparing the fit of statistical models, where it takes both the actual fit of the data and the generally 

expected fit for any dataset into account (Bozdogan 1987). Thus, R runs through the possible ARIMA 

models for each firm and chooses the one with the best fit, which it then uses for making a forecast. This 

is an efficient way of ensuring that the most fitting and accurate ARIMA model is applied. The second 

function is ARIMA, which takes a series of earnings as input along with values of p, d and q. In order to 

test the theory the popular models of ARIMA(0,1,1) and ARIMA(1,0,0), also called the Griffin-Watts and 

Brown-Rozeff models (Brown 1993), are included. 

For the random walk models, R provides the function rwf which takes a period of actual earnings as 

input and then produces a forecast with a desired horizon using the random walk model. In the function, 

it is possible to define if R should include a drift term, so the rwf function is included both with and 

without a drift to ensure the broadest spectrum of the tests. In the variation without the drift, the 

model purely forecasts the future values as the latest actual value. However, when including the drift 

term the model forecasts the earnings to change each year with the drift (Hyndman 2017). These two 

cases exhibit very simple ways of forecasting the random walk, whereby a third random walk forecast is 

integrated in the analysis. This forecast utilizes the Brownian motion, where the change in earnings can 

be expressed as dx = µ dt + σ dWt, where dWt = ϵt√dt (Liang 2003). This indicates that the difference 

in the variable, dx, can be expressed as the mean of variable, µ, multiplied by the time increment of 1 

year dt, added with the variance of the variable, σ, times an increment of the Wiener process, dWt. The 

latter is defined by a random error term at time t, ϵt, multiplied by the square root of the time 

increment, dt. The underlying notion of this type of process is that the next value will be the current 

value plus its mean and a random shock scaled by the variance of the variable. Thereby, it is another 

way of expressing the general random walk process defined in the theory section. The difference 

between the Brownian motion and the random walk with a drift from R is found in the shock or Wiener 

process that is added to the forecasted value. This is in order to take the unpredictable variations in the 

variable into account, which has the effect of increasing the volatility of the forecast. An argument 

supporting this type of model is that it overcomes the excessive earnings smoothing applied by analysts. 
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However, the shocks might also lead to more significant outliers. Thus, the method is included to create 

a broader range of models to test. 

4.2.3 Analyst Forecasting 

To directly compare the data driven forecasting with analyst predictions, a small dataset of forecasts is 

gathered. The dataset contains 30 listed companies from the dataset of the thesis, while the analyst 

forecasts are attained through the Bloomberg database. The companies are selected through 2 criteria. 

The first is that they have 10 years of data in the dataset of thesis in order to be able to generate 

combinations of data and forecasting horizons that are comparable to those made for the other 

analyses. This criterion narrows the number of companies to a large extend due to the shortcomings of 

the dataset as commented earlier. The second criterion is that the companies have analyst forecasts 

from 2007 to 2010 in Bloomberg as that period is chosen for the forecasting horizon to maximize the 

data availability from the dataset of the thesis. For smaller Danish stocks, this criterion is rather limiting 

as despite the large database of Bloomberg, it requires analysts to perform predictions of the stocks. 

Thus, smaller deviations in this criterion are accepted to keep the number of included companies 

decent, whereby 6 companies do not have a forecast for 2007 but only 2008-2010. In the end, 30 

companies are left as shown in Table 8 of the appendix. This amount is not sufficient for ensuring a 

certainty in the results since the sample only constitutes 2% of the average sample size of the literature 

as seen in Table 3. However, it will still serve as an important indication of the results a larger sample 

could produce.  

In this context, Bloomberg is chosen as provider for 2 reasons. Firstly, it is easily accessible and the 

historic forecasts are an integrated function. Secondly, the quality of the data and the number of 

analysts are high compared to other software, whereby the most accurate estimates are deemed to be 

on Bloomberg.  

However, Bloomberg has two disadvantages worth mentioning. The first is its limitation on data for 

smaller Danish companies as noted earlier. The second is the drawback of not being able to identify the 

forecast horizon of the historical forecasts. Thus, it is not certain whether the forecast of 2008 is 

performed on 1-Jan-2008 so it is a one year forecast, or if it is produced before and constitute a forecast 

horizon of more than one year. Therefore, it is necessary to produce 2 tables showing the result of each 

scenario as will be elaborated upon in the analysis section.   
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4.3 Forecasting Accuracy 

The forecasting accuracy measures and a discussion on their relevance has already been provided in the 

theory section. Thus, this section will elaborate on how the accuracy measures are implemented in 

practice and how that can affect the analyses.  

The accuracy calculations work in the same way for all forecasts and evolve around the 6 included 

measures as displayed in Table 2 in the theory section. Once the forecasts from the previous sections 

have been performed, the actual values of the same companies for the forecast horizon are extracted 

from the data. Then the forecasted values are subtracted from the actual values to attain a matrix with 

the differences. Thereafter, the 6 accuracy measures are calculated for each company using the 

formulas in Table 2. In order to attain one set of accuracy measures for each method, the average is 

taken for the test firms for each forecasting method. Thus, the resulting tables contain 6 columns with 

accuracy measures along with 6 rows for the time series models and 13 rows with the data driven 

methods.  

Taking the simple average of the test firms can cause a bias towards zero in the non-absolute accuracy 

measures of the ME and MRE. This could arise from outliers on either side offsetting each other and 

making it appear as if the ME or MRE is close to zero, despite the absolute value being far away from 

zero. Thus, these two measures will be utilized to a lesser extend as the absolute measures are deemed 

less prone by this bias. However, taking the absolute value will not indicate whether the forecast is 

generally forecasting above or below the actual values, which can prove as useful information as well. 

Further, as the dataset contains many small companies with EBIT close to 0, the relative measures of 

MRE, MAPE and MSRE will experience a bias. This is caused by an absolute small change that can have a 

significant relative value. Especially for values around zero, when a company moves from an absolute 

small loss to a small profit or visa versa, then the relative value risks being very high and negative. The 

latter negative effect mainly causes a bias in the MRE measure, as MAPE and MSRE convert to positive 

values. However, the same issues are present in the literature (Albrecht, Lookabill, and McKeown 1977), 

whereby it is not deemed a severe disadvantage of this research design.  

Furthermore, as the Brownian motion method utilizes random elements, it will generate a new estimate 

every single time it is executed. In order to take those deviations into account and to approach a more 

normalized solution, the Brownian motion forecast is run 1000 times and then only the average is 

compared to the other forecasting techniques. This relies on the assumption of mean reversion and the 
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law of large numbers, and could potentially suffer from the aforementioned bias when taking the means 

of the non-absolute measures.  

5. Analysis 

This section will analyze the accuracy of the data driven approach compared to the dominant models 

presented by the theory. To ensure as robust results as possible, this will be performed over multiple 

data and forecast horizons along with analyzing several accuracy measures.  

The analysis section will first consider the included variables and how these are combined in the 13 data 

driven analyses. This will also include how the variables are correlated and how that correlation affects 

the analyses. Then, the data driven approach is analyzed in comparison to the time series models and 

the analyst forecasts. In addition, the thesis investigates other relevant results relating to which of the 

specific models are most accurate and how the number of portfolios and variables affect the data driven 

approach. 

5.1 Analyses and Variables 

As described in the methodology, the variables selected for the data driven analysis are EBIT, total 

assets, growth in EBIT, industry and age. The reason for selecting these variables mainly involves the 

data availability to ensure as many companies to be included in the analysis as possible. In the analysis, 

the 5 variables are both tested individually and in a combination with other variables which leads to a 

total of 13 data driven analyses. These consist of 7 analyses with individual variables, 3 analyses with 

two variables combined and 3 analyses with three variables combined. In addition, out of the 13 

analyses 3 are tested with 10 portfolios instead of 5 in either the absolute EBIT or the EBIT growth 

variable. This is done to identify the impact of changing the number of portfolios.  

The analyses performed are displayed below in Table 9, which shows the specific and general models 

used from the time series and data driven methodologies. In addition, for the data driven models it 

shows the number of variables, the number of portfolios the individual variables use and the resulting 

total number of portfolios when the variables are combined. 
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Table 9: Model Overview 

Specific Model General Model # of Variables 
Individual Variable 

Portfolios 
Total Number of 

Portfolios 

AutoArima Time Series NA NA NA 

ARIMA(0,1,1) Time Series NA NA NA 

ARIMA(1,0,0) Time Series NA NA NA 

rwfNoDrift Time Series NA NA NA 

rwfDrift Time Series NA NA NA 

rwBrown Time Series NA NA NA 

EBIT5 Data Driven 1 5 5 

Industry Data Driven 1 21 21 

EBIT5&Industry Data Driven 2 5 & 21 105 

Age Data Driven 1 166 166 

Balance Data Driven 1 5 5 

EBIT5&Balance Data Driven 2 5 & 5 25 

Growth5 Data Driven 1 5 5 

EBIT5&Growth5 Data Driven 2 5 & 5 25 

EBIT5&Growth5&Balance Data Driven 3 5 & 5 & 5 125 

EBIT5&Growth5&Industry Data Driven 3 5 & 5 & 21 525 

EBIT5&Growth10&Balance Data Driven 3 5 & 10 & 5 250 

EBIT10 Data Driven 1 10 10 

Growth10 Data Driven 1 10 10 

 

In the multi-variable analyses, the underlying reasoning of how the combination of variables is chosen 

requires some elaboration. The overall reason for combining variables is to integrate multiple 

dimensions of a company to ensure as much relevant information is utilized to perform the earnings 

forecasts. A way of identifying how variables interact is by determining their correlations. Here it can be 

argued that two uncorrelated variables would span different dimensions to what makes a company and 

hence provide more information when combined. Therefore, Table 10 shows the correlations between 

the numeric variables in consideration and the one period ahead earnings, EBITt+1, which serves as an 

indication of the correlation with future earnings. The table displays several relevant indications, where 

the most important ones are found in the second column. Here, it is visible that the variables most 

correlated with the future earnings is the current earnings, EBITt, and the growth in current earnings, 

Growtht. The balance, Balancet, shows some correlation but not to as large an extend, while the age, 

Aget, has almost no correlation with future earnings. The negative correlation with the growth variable 

primarily arises from the volatility in the variable especially given the small absolute sizes of the EBIT, 
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which can cause large relative changes. Further, the table displays that the growth in EBIT is 

uncorrelated with the current EBIT and the balance, which could indicate that integrating this in an 

analysis would add more information and hence improve the forecast. At the same time, the current 

EBIT and balance variables are positively correlated, which indicates that their developments support 

each other to a certain degree. However, the magnitude of the correlation estimate indicates that they 

do not contain the exact same information and are therefore still relevant to combine.  

Table 10: Correlation Matrix 

 EBITt+1 EBITt Growtht Balancet Aget 

EBITt+1 1.00     
EBITt 0.60 1.00    
Growtht -0.27 0.00 1.00   
Balancet 0.10 0.41 0.00 1.00  
Aget 0.01 0.01 0.00 0.01 1.00 

 

Despite the low correlations of the age variable with current EBIT, growth and balance, it will not be 

utilized in the multi-variable analyses. This is due to its biases caused by the previously mentioned 

disadvantages of the FOUND variable. As visible from Figure 3a, the number of new companies in the 

years of 1999 and 2000 are above 30,000, which is heavily inflated when comparing to Danmarks 

Statistik (2001) and Danmarks Statistik (2003) reporting values of around 18,000 for both years. In the 

dataset, this has the effect of 50% of the FOUND variable being located in the years of 1999 to 2003 as 

visible in Figure 3b. This can cause small sample biases in the remaining years, especially when 

combined with other variables. Thus, to secure as little bias in the analyses as possible, the age variable 

is only included by itself, where that analysis will mostly serve indicatory purposes rather than being 

directly explanatory. 

Figure 3a: Number of New Companies                           Figure 3b: FOUND Variable Distribution 
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In addition to the correlation matrix, the current EBIT is considered an essential aspect to estimate the 

future EBIT. This is apparent from the literature on time series models, where the current EBIT is the 

point of departure of statistical models and is hence a critical part of the forecast. Given that EBIT is 

included it is not found relevant to include other similar metrics from the income statement such as 

EBITDA or contribution margin as these would span a similar dimension and thus not add sufficiently 

new information. Further, the current growth in EBIT can provide valuable information on the future 

value of EBIT, which is apparent in a valuation context as well, where the growth rates are important 

predictors of the development and hence value of the company. Moreover, the balance sheet aspect of 

the company shows the assets generating the growth and thereby should provide an additional 

dimension to the company’s profile. The balance sheet aspects also become important to consider when 

determining the value of a company both through the calculation of the cash flows and when deriving 

the market value of equity from the enterprise value. 

Hence, the three variables of absolute EBIT, growth in EBIT and the balance measured by total assets are 

the main variables considered in the multi-variable analyses. Based on the above reasons, it is assumed 

that they will provide three different aspects to a company’s current performance and future outlook 

and thus integrate more information in order to provide the most accurate forecasts. 

5.2 Results 

In this section, the results of the analyses will be discussed along with their robustness to changes in key 

variables. The section will be split in three, where the first two parts focus on the model superiority 

between the data driven and the time series forecasts both in terms of the general and specific models. 

The third part will then focus on the results from comparing the data driven models with the analyst 

forecasts.  

The investigations are analyzed in three dimensions: the data horizon, the forecast horizon and the 

accuracy measure. The data horizon is divided in partial, 1-4 years, and full, 5-10 years, while the 

forecast horizon is split in short, 1-2 years, medium, 3-4 years and long, 5-8 years as illustrated below in 

Table 11. 

Table 11: Data and Forecast Horizons 

Years 1 2 3 4 5 6 7 8 9 10 

Data Horizon Partial Full 

Forecast Horizon Short Medium Long  
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The accuracy measures will primarily concern MAPE, MSRE and MAE. MAPE is utilized due to its 

superiority to biases in the other measures as previously mentioned and due to its frequent use in the 

theory as seen in Table 2, whereby it will be taken as the primary measure of accuracy. It is 

complemented by MSRE in order to identify the magnitude of the outliers in the results. Here MSRE is 

chosen over the more frequently utilized MSE, because the broadness of the dataset of the thesis causes 

large variations in the absolute values, whereby the relative values are more relevant to compare. 

Further, the MAE measure is included to confirm the MAPE and MSRE robustness as it is the least biased 

metrics in the first group of accuracy measures.  

5.2.1 Time Series Comparison 

One of the most important investigation of the thesis is the accuracy of the data driven approach 

compared to the time series models. Table 12 depicts a summary of this investigation using MAPE, while 

Figure 4a and 4b graphically illustrates the results. Figure 4a and 4b display the analyses of the MSRE 

and MAPE metrics on a partial and full data horizon, respectively. In Table 12, the time series models are 

represented by the AutoArima function from R, as that provides the most superior results and is by 

definition using the ARIMA model that fits the data best. From the data driven approach, the two most 

accurate models, EBIT&Balance and EBIT&Growth&Balance, are included along with the single variable 

analyses that they are comprised of. The EBIT&Balance analysis means the method, where companies 

are grouped in portfolios based on both their absolute EBIT and total asset values. The full overview 

with all variables is displayed in Table 13 of the appendix.  

Table 12: Time Series Comparison, Summary, MAPE 

Data Horizon Partial Full 

AutoArima 4.1 3.0 

EBIT 11.9 4.4 

Balance 50.3 18.3 

Growth 45.6 3.9 

EBIT&Balance 5.4 2.4 

EBIT&Growth&Balance 6.3 2.3 
The table only includes the data driven variables using 5 portfolios 

From Table 12, it is visible that whenever the data horizon is partial, the time series models have the 

lowest value and hence best accuracy. This is evident for all forecasting horizons, though the tendency is 

strongest when the forecasting horizon is long, where all three ARIMA models are superior to all the 

data driven models. The results of Table 12 can be viewed in Figure 4a, where the lowest MAPE for the 
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partial data horizon occurs for 3 of the time series models. This result speaks to the necessity of utilizing 

a vast dataset when generating the data driven estimates as less than 5 years of data is not sufficient to 

generate superior forecasts. The result is especially noticeable as Bradshaw et al. (2009) state that the 

ARIMA models require 10 years of data to be optimal. Thus, it can be derived that the data driven 

approach has an even greater requirement for data than the ARIMA models do. 

Figure 4a: MAPE and MSRE on Partial Data Horizon         Figure 4b: MAPE and MSRE on Full Data Horizon 

 

However, when the data horizon is 5 years and above, two of the data driven approaches become 

superior to the time series models. The results can be viewed in Figure 4b, where the lowest MAPE and 

MSRE for the full data horizon occurs for the data driven models. This is also evident for all forecasts 

horizons, though especially at the short term where 4 of the 5 most accurate methods are from the data 

driven approach. This shows that the data driven approach produces more accurate predictions than 

time series models on all forecast horizons as long as more than 4 years of data is utilized to generate 

the forecasts. The superiority on the medium and long term forecasts is especially interesting, since the 

accuracy of the time series models increase relative to the analysts as the forecast horizon increases 

(Conroy and Harris 1987). Despite this effect, the data driven models remain superior which indicates 

that they increase in precision at a faster rate than the time series models. This can best be illustrated by 

Figure 5, where it is visible that the time series models initially have the lowest MAPE, indicating a 

higher precision, but as the data horizon increases the data driven models increase more in precision 

than the time series models. From Figure 5 it is visible that the tipping point is at 5 years of data, after 

which the data driven models exhibit superior accuracy.  
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Figure 5: The Effect of the Data Horizon on Accuracy 

 

Due to the contradiction of the findings compared to the existing literature, the robustness of the 

results is an essential aspect to investigate. Therefore, the analysis has been performed on 17 different 

combinations of data and forecast horizons and on 6 different accuracy measures, where selected 

results are visible in Table 13 to 15 of the appendix. The amount of combinations performed increases 

the robustness towards outliers caused by the data and forecasting horizons and ensures that the 

results are reliable and generated by a sufficient amount of data points. Furthermore, the analyses have 

been performed for multiple accuracy measures to secure that the results are not affected by biases in 

these measures. The MSRE and MAE results further confirmed the MAPE findings with the data driven 

approach being superior when generated from more than 4 years of data. At the same time, both 

measures find that the data driven approach is also superior on a short and medium forecasting horizon 

for a data horizon of 1-4 years. Thus, the MAPE analyses are more conservative in their findings than the 

other accuracy measures. The findings from the MAE and MSRE analyses are very relevant as they 

confirm that the forecasts are also more precise when comparing the absolute values and in terms of 

outliers, respectively, which is fundamental support to the argument of superiority. 

5.2.2 Specific Model Comparison 

In addition to the main finding, the analyses of the thesis have produced several other findings that are 

worth mentioning. This includes which of the specific models and variables that are most accurate, the 

impact on the number of portfolios in the data driven model and the impact on the number of variables 

in the data driven model. A summary of these findings is included below in Table 16, while the full 

analyses are in the appendix in Table 17 to 19.  
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From Table 16, it is visible that for the time series models the ARIMAs are most accuracy and that the 

random walks are the least precise models for the full data horizon. The slight increase in the ARIMA 

models in the full data horizon occurs from the two other ARIMA models analyzed and not the 

AutoArima function, as that decreases from a MAPE of 4.1 to 3.0 as shown in Table 12. It is further 

visible that of the data driven variables, the analyses including the absolute EBIT are most accurate for 

both data horizons. The analyses including the balance are not nearly as accurate, which is mainly driven 

by the analysis using only the balance variable has a high MAPE as seen in Table 12. 

Table 16: Time Series Comparison, Summary Grouped, MAPE 

Data Horizon Partial Full 

Time Series 12.0 8.0 

ARIMAs 4.2 5.0 

RWs 19.9 11.0 

Data Driven 24.2 5.5 

EBITs 10.4 4.3 

Balances 19.0 7.2 

Growths 32.2 4.3 

Industries 13.7 5.5 

5 ports 14.7 3.8 

10 ports 44.0 5.3 

1 variables 36.4 6.8 

2 variables 9.2 3.7 

3 variables 10.5 4.4 
 

For the number of portfolios in the data driven analysis, it produces more accurate results to use 5 

portfolios instead of 10. This could be caused by the analyses increasing in precision as the amount of 

data increases, hence if each portfolio is based on less data, then the forecast is less accurate. It is 

further visible that analyses with more than one variable provides better forecasts than the ones with 

only one variable. This is confirmed in Table 18 of the appendix as the MSRE measure for single-variable 

analyses is substantially higher than the rest of the analyses, which indicates large outliers. Finally, Table 

16 shows that the analyses with 2 variables are slightly more accurate than the ones with 3 variables for 

both data horizons.  

5.2.3 Analyst Comparison 

In addition to comparing the data driven approach to the dominant times series models, it is compared 

to 30 analyst forecasts to provide an indication of the superiority of the models. As touched upon in the 

methodology section, Bloomberg does not clearly state whether the produced forecasts are 1 year 
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predictions or have been produced earlier. It is assumed that the forecasts are done on a yearly basis 

and thus have a forecast horizon of 1 year, though it has not been possible to verify. Hence, for 

completion the thesis includes 2 comparisons to the analyst forecasts. 

The results for the first analysis assuming 1-year forecasts are shown in Table 20 in a summary format, 

while the full analysis is displayed in Table 21 in the appendix. Here, the forecast horizon is 1 for all the 

analyses, while the data horizon differs. In Table 20 is included the analyst forecasts along with the 3 

superior models from the previous analyses for consistency, which is the AutoArima, the EBIT&Balance 

and EBIT&Growth5&Balance. Further, the most precise time series model in this analysis, random walk 

with no drift, and most precise data driven model in this analysis, EBIT growth in 10 portfolios, are 

included as well. It is visible that for all the 4 data horizons, the data driven models are more accurate 

than the analyst forecasts. Especially in the 6 and 7-year data horizon, where the forecasts are up to 12 

times as accurate. As visible in Table 21, the superiority applies to up to 11 out of the 13 data driven 

models for the two data horizon. The number decreases for the data horizons of 8 and 9 years, but still 

maintains a value of above 50% of the data driven models proving superior across the 4 data horizons. 

This is a major result despite having an indicative nature and it validates the data driven approach’s 

superiority significantly. Further, the absolute values of the MAPE for the data driven models have 

decreased significantly compared to the previous analyses, which could indicate they perform better 

under more stable company settings. 

Table 20: Analyst Forecast Comparison, Fixed Forecast Horizon 

  MAPE 

Data Horizon 6 7 8 9 

Forecast Horizon 1 1 1 1 

Analysts 1.2 1.3 1.2 1.4 

AutoArima 1.6 1.4 1.3 1.6 

rwfNoDrift 0.6 1.4 1.7 1.5 

EBIT&Balance 0.8 0.9 0.9 0.9 

EBIT&Growth5&Balance 0.2 0.4 0.5 0.6 

Growth10 0.1 0.3 0.5 0.7 
 

In addition, it is visible from Table 20 that the time series models only produce more accurate forecasts 

on 1 data horizon compared to the analyst, even though the accuracies are relatively close. As the data 

driven methods are superior to the time series forecasts on all horizons, it further validates the previous 

findings of the data driven approach being superior to the time series models. Table 21 proves an even 
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stronger superiority as between 8 and 10 data driven models are superior to all time series models for 

all data horizons.  

An interesting aspect in this analysis is the superiority of the growth variables with 10 portfolios in the 

data horizons of 6 and 7. This is especially worth noting as it is one of the least accurate variables when 

considering the full dataset as seen in Table 13. However, when it is solely listed companies included the 

growth variable is a good predictor. This could indicate that the growth in the listed companies is more 

stable and predictable than the full dataset including a more varied group of companies. The accuracy of 

the growth variable also causes the EBIT&Growth model to surpass the EBIT&Balance model in 

superiority. The earnings stability is confirmed by the random walk with no drift being superior to the 

ARIMA models in 2 out of 4 data horizons. Thus, it appears that the listed firms are better forecasted by 

more stable models or models that are able to capture the stability in growth.  

Contradicting to the previous analysis, the growth variable shows worse results for the longer data 

horizons, which affects all the data driven models including the variable. This is not considered a general 

model result, as it is mostly attributed to the outliers in the dataset of the 30 listed companies.  

The analysis assuming that the forecasts in Bloomberg are made with a forecast horizon of more than 1 

year is shown in summary in Table 22 and in full as part of Table 21 of the appendix. Thus, in the below 

it is assumed that the forecasts for 2010 are made on 1-Jan-2007, which is deemed unlikely but included 

for testing the robustness of the results. Hence, the data driven forecasts are also updated to have a 

data horizon of 6 years and then a varying forecast horizon. Generally, the same conclusions hold true as 

the data driven models outperform the analyst and time series forecasts. The data driven models are 

slightly less superior in this setting, as the MAPE values get closer to the values of the analysts. However, 

still around 50% of the data driven models are superior for all 4 forecast horizons, which indicates very 

robust results as the data driven model is generally worsened when the forecast horizon increases. 

Table 22: Analyst Forecast Comparison, Fixed Data Horizon 

  MAPE 

Data Horizon 6 6 6 6 

Forecast Horizon 1 2 3 4 

Analysts 1.2 1.3 1.2 1.4 

AutoArima 1.6 2.5 3.9 3.3 

rwfNoDrift 0.6 1.1 1.6 1.7 

EBIT&Balance 0.8 0.9 1.0 1.0 

EBIT&Growth5&Balance 0.2 0.9 1.1 1.3 

Growth10 0.1 0.8 1.1 1.3 
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However, if the analyst forecasts are actually performed on a yearly basis, the results of Table 22 are 

even more significant. Then it would mean that 6 of the data driven models produce better forecasts 4 

years into the future than the analysts can produce looking 1 year into the future. So even when the 

analysts are 3 years ahead of the data driven forecasts and know the current value in 3 years, they are 

still not able to beat the data driven forecasts.  

However, there is one important comment to be made concerning the analyst forecasts. The accuracy 

measure is to some extent driven by 6 outliers in the dataset, where the analyst accuracy is significantly 

worsened by MAPE values of 5 to 7. Thus, if the median values are utilized instead, the results are quite 

different. The analysts have a median value of 0.2 for the 4 horizons, which is slightly lower than all the 

data driven models. Nevertheless, the thesis has throughout the entire analysis section utilized simple 

averages, whereby the most comparable and relevant results are the ones displayed in the tables above.  

Due to the outliers in the analyst forecasts, the results of the comparison using the MSRE measure is 

even more in favor of the data driven approach as visible in Table 23 in the appendix. Here, the average 

MSRE for all horizons is 11.6 for the analysts, which is inferior to 11 out of the 13 data driven models. At 

the same time, 8 of the 13 data driven models have an average of less than 4.5, which is significantly less 

than the analyst forecasts. This confirms the results outlined above to an extensive degree. 

5.3 Analysis Conclusion 

The section analyzes the accuracy of the data driven approach compared to the dominant models in the 

earnings forecasting literature and makes several findings. One of the primary findings is that the data 

driven model is more accurate than the time series models for all forecast horizons when the data 

horizon is above 4 years. The data driven models that achieve the superiority are comprised of the 

variables of absolute EBIT, growth in EBIT and the balance, whereby these variables are deemed to 

sufficiently span the dimensions of what makes a company. Further, the data driven approach proves 

more accurate than the small sample of analyst forecasts for all data and forecast horizons. This is 

especially noteworthy as it applies to around half of the data driven models, whereby it is an even more 

significant superiority than compared to the time series models. 

In addition, the analyses find that having fewer portfolios increases the accuracy for the general dataset 

due to the additional data available for each portfolio. Though for the listed firms with more stable 

earnings, the growth variable with 10 portfolios is superior. Finally, multi-variable analyses perform 
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better than single-variable analyses, which can be explained by the additional information incorporated 

in the forecasts. 

6. Discussion 

6.1 Result Deliberation 

The result deliberation section will critically evaluate the results attained and compare towards the 

outlined research questions. This will enable a more in-depth discussion on the findings and the 

underlying reasoning hereof. More specifically, this section will focus on four elements where the 

former addresses the first research question and the latter three address the second research question. 

First, the size of the accuracy measures will be held towards what the literature attains to evaluate the 

absolute interpretation of the results. Second, it will discuss the superiority of the time series models 

compared to the data driven models. Third, the specific models both within the time series and data 

driven frameworks will be discussed along with the general composition of the data driven models. 

Finally, the superiority of the data driven models compared to the analyst forecasts will be elaborated 

upon.  

6.1.1 Accuracy of the Data Driven Models 

This section will seek to answer the first research question relating to the absolute accuracy of the data 

driven forecasts. In the main analysis of Table 13, the lowest of the MAPE measures are around a value 

of 2 with 1.9 being the minimum. The interpretation of this number indicates that the best forecast 

produced is around 200% higher or lower than the actual value, i.e. if the actual value is 1,000 then the 

forecasted value would be 3,000 or -1,000. In many applications of these forecast such as for valuation 

purposes, a potential difference of 300% in earnings and hence the value of a company is very 

substantial and potentially too substantial to be useful. Similar results reflect in Table 13, where the 

lower MAE measures are between 400 and 500 with a minimum of 413 thousand DKK. If this is assumed 

to be the average error in forecasting the earnings of a company, then the resulting valuation can differ 

with several million DKK depending on the other variables in the valuation. This difference is in itself 

difficult to determine if it makes the forecast irrelevant, since this absolute deviation for larger 

companies might be acceptable. However, when it is combined with a MAPE of 2.2 it is a significant 

deviation, as it indicates that the absolute value of the earnings is either 129 or 1,322 thousand DKK.  

In the additional analysis comparing to the analyst forecasts, the MAPE measures are significantly lower 

with a minimum value of 0.13 achieved by the growth in EBIT with 10 portfolios. Further, as seen in 
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Table 21 in the appendix, there are numerous MAPE measures below 1, which serves as an 

improvement to the main analysis.  

In determining the effect of the accuracy measures’ magnitude, it is necessary to compare with the 

previous literature in order to attain an insight into the norm values of the accuracy measures. Albrecht, 

Lookabill, and McKeown (1977) use both MAPE and MSRE in their article to determine the accuracy of 

similar ARIMA and random walk models as seen in Table 1. They find MAPE results with a minimum of 

0.01 and maximum of 0.8, along with MSRE results ranging between 0.07 and 4.1. In addition, Conroy 

and Harris (1987) find MAPE results ranging between 0.24 and 0.47 for similar ARIMA and random walk 

models. Thus, both findings are significantly lower than the main results of the thesis. However, this 

might be explained by the data horizon in the articles of 25 years and 20 years, respectively. If a best-fit 

trendline is added to Figure 5, then it would for the EBIT&Balance curve predict a MAPE accuracy of 0.08 

and 0.04 for the 20 and 25-year data horizon, respectively. These results would be very comparable to 

those of Albrecht, Lookabill, and McKeown (1977) and serve as an improvement compared to Conroy 

and Harris (1987). In addition, as seen in the comparison to the analyst forecast the MAPE and MSRE 

values for listed firms are significantly lower and very similar to the findings of the literature. This is an 

important aspect, since the literature solely uses listed firms, so this comparison is more relevant. 

Moreover, it is relevant to compare the MAPE results of the alternative approach of the thesis to the 

results achieved in the alternative methods the literature proposes. Reverte and Guzman (2010) attain 

MAPE results of between 1.31 to 2.87 along with Lobo (1991) getting values around 0.6, which is more 

comparable with the results of the main analysis.  

In summary, the sizes of the accuracy measures are not determined to be outside an acceptable range, 

since the data driven models produce low MAPE and MSRE results for the listed firms. Thus, the non-

listed firms are indicated to be more difficult to forecast than listed firms. Nevertheless, the data driven 

forecasting method is concluded to be accurate in absolute terms. Moreover, the second aim of the 

thesis is to provide a comparison between the models, whereby the accuracy measures are in the 

following treated in a relative manner. 

6.1.2 Superiority Compared to Time Series Models 

In the theory section, 3 conditions are outlined for which the time series models would perform 

optimally compared to analysts. These include a positive impact on the relative superiority from an 

increasing forecasting horizon, decreasing size of the firms and increasing earnings variability. The latter 

two are fulfilled for all the analyses as the dataset includes a large set of firms where 99.9% of the 
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companies are not listed and the majority of the companies do not exhibit stable earnings. At the same 

time, several analyses are performed with a long forecasting horizon to test the first condition. Thereby, 

all the 3 conditions are met, which should result in superior results for the time series models and in 

particular the ARIMA models. This expectation is confirmed to some degree as visible in Table 24, which 

shows the effect of the forecast horizon on accuracy when including all data horizons. Here, the ARIMA 

model gets relatively better when the forecasting horizon increases compared to the data driven 

models. When moving from the short to the long horizon, the ARIMA model decreases by 48% in 

accuracy, while the two most accurate data driven models decrease with 70% and 82%.  

Table 24: The Effect of the Forecasting Horizon on Accuracy 

Forecast Horizon Short Medium Long 

AutoArima 3.0 3.6 4.4 

EBIT 5.7 8.2 10.4 

Balance 14.8 18.5 34.4 

Growth 3.6 10.1 33.3 

EBIT&Balance 2.8 3.3 4.8 

EBIT&Growth&Balance 2.7 3.6 5.0 
 

However, the above results are mainly determined by the loss of accuracy of the data driven approach 

in the partial data horizon. As seen in Table 13 of the appendix, when more than 4 years of data are 

utilized to generate the forecasts, the data driven approach is superior on all forecasting horizons. 

This leads to three main conclusions about the two types of models. Firstly, the data driven model 

exhibits similar characteristics as the ARIMA model in terms of horizons given that it increases in 

accuracy for an increase in the data horizon, while it decreases in accuracy for an increase in the 

forecasting horizon. However, what is noticeable here is that it does so even more exponentially than 

the ARIMA model. The increase in precision when including more data is shown in Figure 5 in the 

analysis section, while the decrease in precision from a longer forecasting horizon is shown below in 

Figure 6a.  
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Figure 6a: Forecasting Horizons with All Data Horizons      

 

In both figures, it is visible that the models exhibit the same tendencies though with the data driven 

approach having a steeper slope. This can be explained by the integration of data points in the models. 

When a new year is added in the ARIMA model, it attains one additional data point to integrate in its 

forecast. However, when a new year is added in the data driven model, it attains as many data points as 

there are comparable companies, which can be several thousand new data points. Hence, the effect of 

the additional data is more extensive, which corresponds to the resulting accuracy in Figure 5. For the 

forecasting horizon, the effect on the two types of models is similar, where the slightly steeper slope is 

caused by the data driven models’ insufficient data on the partial data horizon. Thus, it is important to 

note that the ARIMA superiority on forecast horizons of 5-8 years from Figure 6a is only apparent when 

all data horizons are included, i.e. both the results from the partial and full data horizons are included. 

Figure 6b shows the result using only the full data horizon where the data driven models remain more 

accurate for all forecasting horizons. 
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Figure 6b: Forecasting Horizons with Full Data Horizon 

 

The second major conclusion is that the data driven models embody a contemporaneous advantage 

compared to the time series models. As outlined in the theory, the integration of information on 

comparable companies is a key component for analysts to gain an advantage of the time series models 

on the day of forecasting. This analyst advantage is decreased when comparing to the data driven model 

as it is built on information from comparable firms. The effect of the advantage is mostly visible in the 

short term as that is where the analyst incorporating the information is most accurate as seen in the 

theory section. Thus, the above Table 24 proves that this advantage is present as both multi-variable 

analyses are more accurate in the short and medium forecast horizon compared to the ARIMA model. 

The third finding is that the ARIMA model is more robust towards smaller amounts of data, which 

contrasts the general view presented in the literature when comparing to analyst forecasts. This finding 

is closely connected to the first finding but constitutes a separate point of interest as it indicates that 

there is a lower bound for which the data driven approach cannot provide accurate forecasts. The 

ARIMA model is not limited in the same degree and can thus be utilized more appropriately than the 

data driven models for shorter data horizons. This is illustrated in Table 13 as the ARIMA model still 

performs decently when the data horizon is partial.  

6.1.3 Superiority of Specific Models 

In discussing the results of the specific time series and data driven models, the focus will first be on the 

time series models and then turn towards the variables of the data driven models.  

In Table 13, it is visible that for almost all data and forecast horizons the ARIMA models are superior to 

the most accurate random walk model, the random walk with no drift. In fact, for all the 17 different 
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tests combining the data and forecast horizons, the random walk model is only more accurate than the 

ARIMA models for 1 combination as visible in Figure 7.  

Figure 7: Superiority Amongst Time Series Models 

 

In the test, where the data and forecast horizon are 2 years the random walk with no drift is 6% more 

accurate than the ARIMA models. This is surprising when compared to the literature stating that ARIMA 

models require up to 10 years of data (Bradshaw et al. 2009) and the property of the random walk 

models that they only require 1 year of data when they do not include a drift term. This would indicate 

that even for the partial data horizons, the increased data included in the ARIMA model is sufficient for 

it to have an advantage over the random walk. The advantage is seen to be very small in the 2-year data 

horizon in Figure 7, where the random walk model has similar accuracy to the ARIMA models in 3 out of 

4 forecasting horizons.  

Moreover, from Table 13 it is visible that amongst the random walk models the most accurate one is 

without a drift, while the Brownian motion is the least accurate. This shows that despite the volatile 

earnings in the dataset, the Brownian motion predicts too significant changes. In addition, the Brownian 

motion has the largest measures of MSRE of the time series models in general, as seen in Table 14. This 

could be caused by the instances where the model predicts a high volatility in one direction, while the 

earnings exhibit a volatility in the opposite direction, which would result is a significant outlier. The 

Brownian motion is more prone to this type of error than the random walk with no drift, which produces 

more smoothened forecasts. 

In terms of the data driven models, the results show several relevant aspects that require additional 

discussion. Firstly, from Table 13 it is clear that the most accurate single variable overall is the absolute 

EBIT. This result is not surprising when looking at the correlations in Table 10, since the absolute EBIT 

has the highest correlation with the future EBIT. Despite the result being expected, it is a crucial finding 
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in validating the data driven model, since it heavily relies on the latest earning as outlined in the 

methodology section. Thus, as the latest earning is the best single-variable to predict the future 

earnings, it seems appropriate to place weight on it when performing the forecasts. 

Secondly, the growth in the EBIT variable yields noticeable results. As seen from Table 12, the growth 

variable is the most accurate single variable when the data horizon is full, while it is very inaccurate for 

the partial horizon. This is especially evident when it is divided in 10 portfolios, where it becomes the 

least accurate variable. The result proves that the growth for companies in the full dataset is relatively 

dispersed, whereby 1 to 4 years of growth data is not sufficient to generate reliable results. However, as 

visible in Table 13 when the absolute EBIT is combined with the growth in EBIT the forecasts are 

improved both for a partial and full data horizon. Thus, the growth variable contains additional 

information that is not found in the absolute EBIT. This is also confirmed from the correlations in Table 

10, where the growth in EBIT is completely uncorrelated to the current EBIT, while still having some 

correlation with the future EBIT. Nevertheless, in the analyses comparing the data driven models to the 

analysts, the growth variable with 10 portfolios performs very well. This finding confirms that accuracy 

of the growth variable forecasts is positively correlated with the stability in earnings.  

Thirdly, the balance variable shows slightly contradictory results. By itself, the variable has the second 

least accurate forecasts in the time series comparison, only surpassed by the growth variable divided in 

10 portfolios. However, as with the growth variable it significantly improves the forecasts of EBIT in the 

multi-variable analyses to such an extent that both of the most precise data driven models include the 

balance. This finding contradicts the correlation explanation as the balance variable is only slightly 

correlated with the future EBIT and relatively correlated with the current EBIT. If the correlation notion 

is the only determinant, the balance would not be able to explain the future EBIT and most of the 

information stored in the balance values would already be integrated in the current EBIT values. 

However, as it manages to improve the EBIT forecasts with around 100% it is concluded to add relevant 

information to the forecast, which indicates that there are other explanations than the variables’ 

correlations determining their contributions in multi-variable analyses. Thus, additional explanations to 

the information added is suggested as a point of further research. 

Fourthly, the industry variable provides relevant insights as well. Similar to the growth and balance 

variables, the industry variable by itself provides less accurate forecasts when compared to the absolute 

EBIT. However, when combined with the EBIT variable the multi-variable forecast is less accurate than 

the EBIT forecast for all combinations of data and forecast horizons, which contrasts that of the above 

multi-variable analyses. A similar result is seen in the multi-variable setting, where the industry variable 
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is added to the absolute EBIT and growth in EBIT forecast. Here, the addition of the industry variable 

also makes the forecasts less accurate for all combinations of data and forecast horizons. These results 

prove that the industry does not contain additional information that is not already stored in the EBIT 

and growth variables.  

Another important aspect of the data driven models is their general composition. The first aspect of the 

composition is the number of portfolios in the analysis, where Table 16 shows that the analyses with 5 

portfolios give better results compared to using 10 portfolios as more data is included. This is deemed 

the general result for a dataset including a broad range of companies, while smaller deviations may 

occur in other datasets such as seen in the analysis only including 30 listed firms.  

The second aspect concerns the number of variables to include in the analyses. Table 16 shows that 

analyses with 2 variables perform better than those with 3 variables which goes against the logic of 

adding more information by adding more variables. However, in this context it is important to 

investigate the underlying analyses that generate Table 16, as the grouping of 3 variables contains the 

test using 10 portfolios for the growth variable. This skews the results as there are no tests with 10 

portfolios in the grouping of 2 variables. Thus, Table 25 is created to show the effect of taking that 

analysis out of the 3-variable grouping. 

Table 25: Multi-Variable Analyses 

Data Horizon Partial Full 

1 variables 36.4 6.8 

2 variables 9.2 3.7 

3 variables 10.5 4.4 

3 variables wo. 10 port. 8.9 3.8 
 

The table shows that the new 3-variable grouping is very similar to the 2-variable grouping and serves as 

a slight improvement on the partial data horizon. Hence, it can be concluded that including a third 

variable might improve the forecast slightly or at least provide similar accuracy. At the same time, the 

table could indicate that there is a limit to the information brought in, whereby bringing in a fourth or 

fifth variable might not improve the forecast to a significant degree. This effect will also be a relevant 

investigation of further research. 

6.1.4 Superiority Compared to Analyst Models 

When discussing the results from the analyst models compared to the data driven models, it is 

important to recall the conditions from the theory section that the analysts would perform relatively 
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better under. The 4 conditions are short forecast horizon, forecasting based on quarterly earnings, short 

time until announcement and high prior precision of the analysts. These have been accommodated to 

some degree as the forecast horizon and time until announcement is down to 1 year. However, the 

dataset only utilizes yearly data and prior precision has not been able to be integrated in the analyses. 

As discussed above, the data driven models exhibit many of the same characteristics as the time series 

models, whereby it is also relevant to include the 3 conditions for which the time series models are 

superior to the analyst forecasts. They are outlined above but boil down to longer time horizon, smaller 

firms and unstable earnings. These 3 are particularly interesting since the sample of 30 firms and 

corresponding forecasts exhibited short time horizons, large firms and stable earnings. Thus, despite 

only 2 out of 4 conditions being met for the analyst to be superior, all 3 conditions are met for the time 

series models to be inferior. Therefore, there are 2 conclusions that are especially relevant to highlight. 

In the below, the analysts are assumed to be producing 1-year forecasts as that is the most likely 

scenario. 

First, the forecasting horizon is interesting to consider. As illustrated in Figure 8, the data driven 

forecasts perform significantly better than the analyst forecasts for the short forecast horizon of 1 year 

for all data horizons.  

Figure 8: Superiority on the 1-Year Forecast Horizon

 

The figure shows that the time series forecasts are less accurate for the short forecast horizon of 1 year, 

which is as expected from the conditions outlined in the theory. However, the figure shows that the 

data driven forecasts do not suffer from the same disadvantage as the time series models when 

comparing to the analyst forecasts. This is a very interesting result as the short-term horizon is a key 
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advantage for the analysts over the time series forecast that they now do not possess compared to the 

data driven approach. 

Secondly, the results above are generated using solely large, listed firms with stable earnings, which 

should according to the theory provide the analysts with an advantage. In addition, the forecasts from 

Bloomberg used up to 20 analysts in combination, which should further enhance the accuracy. This 

effect is seen to be sufficient for the analysts to beat the time series forecasts as expected. However, the 

data driven forecasting utilizes the stability of earnings to a larger degree and is even more precise for 

this segment than when forecasting for all types of firms in the dataset as illustrated in Figure 9. 

Figure 9: The Effect of Listed Firms on Accuracy

 

The figure shows that the data driven forecasting is consistently more accurate when large and listed 

firms with stable earnings are forecasted rather than all types of firms of the dataset, where only 0.01% 

are listed. Thus, the analyst forecasts do not possess an advantage over the data driven approach for 

more stable earnings and listed firms.  

However, these results can only serve as indicators of the relation between the data driven and analyst 

forecasting methodologies, since the sample of 30 firms is too small for more robust conclusions to be 

drawn. Nevertheless, the indications are very relevant and contrast the expectations from previous 

literature, whereby further research is encouraged to perform the same analyses on a larger data 

sample to verify the conclusions. 
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6.2 Contributions 

Based on the above discussion, the thesis is able to provide two main contributions to the existing 

literature on the subject of earnings forecasting. The primary contribution is the notion of the data 

driven approach and its superiority over the time series models and analyst forecasts. The secondary 

contribution is to the discussion on the superiority between the ARIMA and random walk models. In this 

context, the thesis is able to contribute to the discussion with its finding of superiority between the two 

types of models.  

6.2.1 Data Driven Forecasting 

The main contribution of the thesis is the presentation of the data driven approach to earnings 

forecasting. The approach constitutes a new way of utilizing financial information on companies to 

produce accurate forecasts of a company’s earnings. The data driven approach utilizes financial metrics 

from comparable companies and makes the underlying assumption that similar companies develop their 

earnings through similar patterns. Thus, it clearly differs from the currently accepted and utilized 

models, which mainly includes time series models and analyst forecasts. At the same time, it embodies 

several key advantages over both types of models in order to integrate the most essential information 

into the forecast.  

Compared to the time series models it proves a more accurate way to estimate future earnings as long 

as more than 4 years of data are utilized to generate the model. The data driven models are up to 25.3% 

more accurate than the time series models and the accuracy is greater for all forecasting horizons 

between 1 and 8 years. Further, the most accurate data driven model only loses 28.6% in accuracy when 

going from the short to the long forecasting horizon compared to the best time series model losing 

52.5%. However, the time series models are more accurate for less than 5 years of data, which pertains 

to all forecasting horizons. Nevertheless, as visible in Table 3 most researchers and forecasters have 

more than 4 years of data at their disposal, whereby the data driven model is deemed the superior 

manner for forecasting earnings.  

Furthermore, the data driven models prove up to 8 times as accurate as the analyst forecasts for 

forecast horizons of 1 year, which should be the horizon where analysts are strongest. At the same time, 

the data driven method is most likely able to make 4 year forecasts that are up to 36% more accurate 

than the 1 year forecasts made by analysts. 

As the results contradict the previous literature significantly, they have been thoroughly tested to 

ensure a well-documented contribution. Thus, 19 different time series and data driven methodologies 
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have been included and analyzed through 6 different measures of accuracy. These methodologies and 

accuracy measures have been tested by 17 different combinations of data and forecasting horizons. 

Hence, with a total of 1938 tests the results are treated as having a high robustness. 

For the general applicability of the results, it is important to note the difference of the dataset compared 

to what is generally used in the literature. The data of the thesis includes a broad range of both listed 

and non-listed Danish companies, which with its 352,496 firms constitutes a 252 times larger dataset 

than the average of the literature. Especially the size of the dataset is expected to benefit the data 

driven approach as it is able to utilize a much larger part of the data in its forecasts compared to the 

time series models. In addition, the analysis comparing to the analyst forecasts indicated that the 

approach can also be utilized in forecasting earnings for listed companies as well.  

6.2.2 Time Series Models 

The secondary contribution of the thesis is to the discussion on the superiority amongst the time series 

models, since the thesis tests 6 different time series models including 3 ARIMA models and 3 random 

walk models. They are tested through multiple accuracy measures and horizons, whereby the thesis is 

able to contribute to the discussion on their superiority. For the full dataset, it finds that the 3 random 

walk models are inferior to one or more of the ARIMA models for 94% of all data and forecasting 

horizons. This clearly proves that the ARIMA model is the superior time series model for the broad 

dataset. However, the random walk with no drift proves more accurate when forecasting earnings for 

listed companies, especially when measuring on the generated outliers. 

For the ARIMA models, the thesis finds the AutoArima function to be most precise for the majority of 

data and forecasting horizons, which contrasts the literature as it mostly uses the Griffin-Watts model of 

ARIMA(0,1,1) and Brown-Rozeff model of ARIMA(1,0,0). This is due to the AutoArima function 

automatically detecting the most fitting ARIMA model, whereby it will only choose the above two if they 

explain the data most accurately. Hence, the thesis encourages earnings researchers to integrate this 

forecasting method in further papers using ARIMA models.  

Amongst the random walk models, the thesis can contribute with its finding of the most accurate 

forecasting method being the simple random walk model without a drift. This model is superior for all 

data and forecasting horizons to the random walk model with a drift and the model generated by a 

Brownian motion. Especially the Brownian motion forecasts are found very inaccurate for this type of 

data and cannot be recommended for use by earnings researchers. Thus, for both listed and non-listed 
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firms, the thesis suggests to utilize the random walk without a drift if random walk models are to be 

used. 

6.3 Implications 

The findings of the thesis have several implications for the research community and financial statement 

users, which can be categorized into two main groups. The first one concerns the data driven models’ 

superiority over time series models and what that superiority means for the relevant stakeholders. The 

second one builds on top of the first one to compare the data driven models to the analyst models in 

order to determine the superiority and its implications. 

6.3.1 Data Driven Superiority over Time Series Models 

One of the primary finding of the thesis is the superiority of the data driven method over the time series 

models. This is a key finding as it introduces a new branch of models to be used in the literature and by 

stakeholders interested in forecasting company earnings. As this finding contrasts the previous 

literature, it has several implications for the earnings forecasting community that are necessary to 

elaborate upon. 

First of all, as touched upon in the methodology the core implication of the findings is that earnings from 

comparable companies is a better predictor of future earnings than past earnings of the company. This 

proves that the information stored in the financial parameters of other companies who have been 

through a similar phase in their company life cycle exceeds the information from the past earnings.  

Secondly, the findings imply that the research community previously using time series models to predict 

earnings will be better off by using the data driven approach instead. This will increase the forecasting 

accuracy and provide a more precise picture of the expected outlook of a company. At the same time, 

the data driven models allow for a broader range of tests as researchers can integrate any measurable 

variable in the forecasts. 

Thirdly, the results are relevant for financial statement users who utilize the time series models either 

instead of analyst forecast or in combination with them. They are now able to use a more precise 

measure to the forecast the earnings and validate the analyst accuracy.  

6.3.2 Data Driven Superiority over Analyst Forecasts 

The end goal of introducing the data driven approach is to test if it is a superior forecasting methodology 

compared to all the dominant models. The main analysis of the thesis is comparing the data driven 
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approach with the time series models as discussed above, while the secondary analysis is comparing 

with analyst forecasts. From the latter, it is apparent that the data driven approach is superior to the 

analyst forecasts for all data and forecast horizons. However, since the analysis used a small sample size, 

it can only contribute with indicatory results as robust conclusions cannot be directly drawn from it. 

Therefore, the thesis also uses a more indirect way of comparing the data driven approach with the 

analysts. In order to make the indirect comparison, it is necessary to refer to the findings of the theory 

section. There it concluded that in the setting where the dataset includes small firms with no analysts 

following and where the forecasts are on yearly data for a forecast horizon of more than 1 year, the 

time series models are superior to the analyst forecasts. As all of these conditions apply to the data of 

the thesis, the time series models are expected to be superior to the analysts’ forecasts, if they had 

been included in the main analysis. Thus, as the data driven models are superior to the time series 

models, they are indirectly determined to be superior to the analyst forecasts for this type of data as 

well. This finding carries multiple implications as will be outlined in the following paragraphs. 

First, this is a very important finding for non-listed firms. It is especially interesting for these firms as the 

potential for improving the forecasts is the greatest and since the number of firms in this category is far 

larger than the category of listed firms. The finding of the thesis makes it possible for researchers and 

other stakeholders to produce accurate forecasts for these companies despite lack of analyst 

projections. This enables an immense number of companies to be generally available for further 

research and analyses, which can improve the research results as the amount of data increases. Thus, 

broader and more generally applicable research can be performed. 

The finding further enables a considerably easier valuation process of non-listed firms as potential 

investors only need a few key variables of the company in order to forecast their expected earnings and 

apply a discounted cash flow model to attain the value. Thus, the findings are also relevant for the 

venture capital community along with other pre-IPO investors.  

Second, the findings also have important implications for listed firms. Here, the data driven models can 

be utilized to increase the coverage on the companies and to assess the accuracy of the analyst 

forecasts made, which is important information for several stakeholders. For traders and investors, the 

new approach can contribute with a way to determine if the stocks are correctly priced by using the 

earnings forecasts to derive the value of the company. For current analysts, it provides a way of 

determining the accuracy of their own forecasts and suggestions for improving these. For potential new 
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analysts, they can determine if the stock is properly covered or if they can benefit sufficiently from 

providing coverage for it.  

Thirdly, the data driven approach is costless to utilize once the main dataset is attained given that some 

basic information such as current earnings and total assets is available for the companies to be 

forecasted. Thus, there are large cost saving opportunities present for researchers and earnings forecast 

users, who would otherwise have purchased access to analyst forecasts. At the same time, this serves as 

an easier and more accurate way for managers to perform earnings forecasts for the budgeting and 

resource allocation processes. 

7. Limitations 

The findings of the thesis have some limitations which should be paid attention towards in replicating 

analyses and hence require a more elaborate discussion. The limitations can be grouped into 4 main 

categories. The first is concerning the country specificity of the dataset to only include Danish 

companies. The second is the dataset’s composition in terms of listed and non-listed companies and 

how that can have a limiting effect on the applicability of the findings. The third is the general 

requirement for a vast amount of data in order to generate the data driven models. Finally, the 

limitation of how to identify comparable firms will be touched upon. 

One of the main limitations of the dataset is its sole inclusion of Danish companies. This can potentially 

serve as a challenge in producing a generally applicable framework, since the findings can only be tested 

for the market in Denmark. The effect of the limitation is that the model might not apply to other 

markets since companies in other countries could have different development patterns caused by 

regional contexts. There could also exist a different correlation between the listed and non-listed firms, 

which would further decrease the applicability of the findings. To circumvent this limitation, it is 

necessary to produce the same analyses with international datasets containing multiple countries. Thus, 

further research is encouraged to test if the same results are applicable in other countries.  

One of the main benefits of the dataset is its general applicability given the broad range of company 

profiles included. Though, if the model is to be used for large listed companies, the inclusion of 319 

listed firms might not be sufficient to generate accurate results. This limitation arise as the Danish stock 

market is very limited compared to other countries such as USA and UK, whereby more listed companies 

could not be integrated. The effect of the limitation is that listed companies could exhibit different 

earnings developments and variability, which cannot be predicted with the current dataset. Thus, to 
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meet this limitation more listed companies might need to be included in order for the data driven 

models to accurately predict their earnings. This could be a natural extension once the dataset is also 

expanded geographically as outlined above. 

As touched upon earlier, the data driven model has a noticeable limitation in its requirement for data to 

be able to generate accurate forecasts. This is visible in the less accurate forecasts for variables split in 

10 portfolios rather than 5 caused by less data being present in each portfolio. Further, it is confirmed 

by the less accurate results of the data driven approach compared to the time series models, when a 

data horizon of less than 5 years is utilized. Thus, to solve this limitation the dataset needs to be 

relatively extensive, which causes replicating analyses to be more complicated. In this sense, the Danish 

system is very beneficial as most of the required information is publicly stored in the official company 

register, Det Centrale Virksomhedsregister (CVR). Hence, attaining the same information for other 

countries to satisfy the first two limitations might be challenging.  

The final limitation is how to identify the best approach of finding comparable companies and more 

specifically how to identify the variables that make them comparable. As described earlier, the 

correlation between variables and future earnings is able to provide some identification of relevant 

variables. However, it does not provide the full picture as shown by the information contributions by the 

balance variable despite its low correlation with the future EBIT and high correlation with the current 

EBIT. The effect of this limitation can be an incorrect grouping of companies, whereby a company risks 

being grouped in a portfolio with non-comparable companies, which would decrease the forecasting 

accuracy of the model. Thereby, further research can enhance this area of the data driven methodology 

by investigating additional ways of identifying comparability. 

8. Conclusion 

This thesis seeks to introduce a new methodology to the topic of earnings forecasting that is superior to 

the existing models. Besides being superior in accuracy, the model should have a broader applicability to 

properly apply to the less covered areas of earnings forecasting such as non-listed companies. The way 

the thesis proposes to meet this challenge is through the data driven model for earnings forecasting. 

Firstly, the model is concluded to be accurate in absolute terms. This is determined by investigating the 

absolute sizes of the accuracy measures, which lie within an acceptable range of findings from earlier 

research. Secondly, it is compared to the dominant models of the time series and analyst forecasts to 

identify if the model can contribute to the topic of earnings forecasting. In the literature section, it is 
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concluded that the two dominant models perform best under two different sets of conditions. Thus, the 

thesis creates two main parts of the analysis where each is tailored to meet these conditions to ensure 

the data driven model is compared to the best version of the dominant methods. From the analyses 

performed, it is apparent that the data driven model is more accurate than the time series models as 

long as more than 4 years of data is utilized to generate the forecasts and that it is more accurate than 

the analyst forecasts for all horizons.  

In comparison with the time series models, the data driven approach exhibits many of the same 

characteristics, but achieves superiority by integrating more information and by embodying a 

contemporaneous advantage. For the specific models, the data driven approach generates the best 

results using a combination of the EBIT and total assets to form portfolios. Further, the data driven 

analyses using multiple variables are more accurate.  

In comparison with the analyst forecasts, the superiority is identified in two ways. The first is through 

the small sample of 30 forecasts, where the data driven method is more accurate for all horizons. The 

second is indirectly through the data driven models being superior to the time series models, which for 

this type of data are superior to the analyst forecasts, whereby the data driven model is superior to the 

analysts.  

Hence, the thesis has two main contributions to the literature. The first is the introduction of the data 

driven approach and its superiority to the time series and analyst forecasts. This means that earnings 

development in similar companies is a better indicator of how the company to be forecasted will 

develop compared to solely using the past earnings of the company itself. The second contribution is the 

finding that the ARIMA model is generally superior to the random walk forecasts. Both findings have 

been thoroughly tested for their robustness through 19 different models, 6 accuracy measures and 17 

different combinations of data and forecast horizons, which leads to a total of 1938 tests.  

Further, the findings have two main implications for the stakeholders of the earnings forecasting topic. 

Given the superiority of the data driven method compared to the time series models, it enables 

stakeholders of the venture capital community to make accurate forecasts for non-listed firms and 

thereby ease the valuation process significantly. At the same time, the data driven model is superior to 

analyst forecasts, whereby it can be applied to listed firms as well to provide an almost costless way of 

accurately predicting future earnings. Thereby, the model can also be of use to the managerial 

budgeting and resource allocation processes.  
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Nevertheless, the thesis is contingent on some limitations worth mentioning. The first two limitations 

relate to the dataset, which is bound to the Danish market and contains relatively few listed companies. 

Thus, the model’s degree of international applicability remains a question for further research. The 

latter two limitations surround the data driven model’s methodology and especially its requirement for 

data along with its way of identifying comparable companies. Therefore, the thesis encourages further 

research on this type of model to identify the feasibility of replication and to contribute to the method 

for identification of comparable firms. 
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Table 1: Literature Overview 

Paper Sample Size and 
Data Horizon 

Models  
Tested 

Forecast 
Horizon 

Superiority Accuracy 
Measures 

Allee (2008) 12,682 firms 
from 1970 to 
2010 

ARIMA(0,2,2) NA, explains 
historical 
data rather 
than 
forecasting  

Time Series 
models are 
superior 

ME 

Elton and 
Gruber (1972) 

180 firms from 
1962 to 1967 

MA, 
5 other TS 
models 

1-3 years Time Series 
models are at 
least as good 
as analysts 

MSE 

Albrecht, 
Lookabill, and 
McKeown 
(1977) 

49 firms from 
1947 to 1975 

Random Walk, 
ARIMA(0,0,0), 
ARIMA(0,0,1), 
ARIMA(0,0,2), 
ARIMA(0,0,3), 
ARIMA(0,1,1), 
ARIMA(0,1,2), 
ARIMA(0,2,1), 
ARIMA(0,2,2), 
ARIMA(1,0,0), 
ARIMA(1,0,1), 
ARIMA(1,1,0), 
ARIMA(1,2,0), 
ARIMA(1,2,1),  
ARIMA(2,0,0), 
ARIMA(2,1,1), 
ARIMA(2,2,0), 
ARIMA(2,2,1) 

3 years Random Walk 
is superior 

MRE, MAPE, 
MSRE 

Little (1962) 522 firms from 
1951 to 1959 

Random Walk 3-5 years Random Walk 
is superior  

ME 

Watts and 
Leftwich 
(1977) 

32 firms from 
1908 to 1974 

Random Walk, 
ARIMA(1,0,0), 
ARIMA(0,1,1), 
ARIMA(0,1,2) , 
ARIMA(0,1,4) 

1-3 years Random Walk 
is superior 

MAE 

Bradshaw et 
al. (2009) 

10,140 firms 
from 1983 to 
2007 

Random Walk  
 

1-36 months Random Walk 
is superior for 
horizons 
above 1 year 

ME, MAPE 

Branson, 
Lorek, and 
Pagach (1995) 

223 firms from 
1988 to 1989 

ARIMA(0,1,1) 1 quarter Random Walk 
is superior for 
smaller firms 
with few 

MAPE 
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analysts 
following 

Pagach, 
Chaney, and 
Branson 
(2003) 

250 firms from 
1979 to 1989 

ARIMA(1,0,0) 
without drift 

1-8 quarters ARIMA is 
superior for 
smaller firms 
with high 
earnings 
variability and 
at longer time 
horizons 

MAPE 

Conroy and 
Harris (1987) 

600 firms from 
1963 to 1983 

Random Walk, 
Simple 
Average, 
ARIMA(0,1,1), 
ARIMA(0,2,2), 
ARIMA(0,3,3) 

1-9 months Random Walk 
is superior for 
longer 
horizons. 
Analysts are 
superior closer 
to the year 
end. 

MAPE 

Brown (1993) NA, no data 
considered 

Random Walk, 
ARIMA(0,1,1), 
ARIMA(1,0,0) 

1-4 quarters Analysts are 
superior to 
time series 
models. 
Random Walk 
is superior to 
ARIMA. 

ME 

Brown et al. 
(1987) 

233 firms from 
1975 to 1980 

3 TS models 1-3 quarters Analysts are 
superior 

ME 

Brown, 
Richardson, 
and Schwager 
(1987) 

702 firms from 
1977 to 1982 

Random Walk 1-6 quarters Analysts are 
superior 

MSE 

O’Brien (1988) 184 firms from 
1975 to 1982 

ARIMA(1,0,0) 5 days to 1 
year 

Analysts are 
superior 

MAE 

Peek (1997) NA, no data 
considered 

Time Series 
models in 
general 

NA, no data 
considered 

Analysts are 
superior 

MRE, MAE 

Hopwood, 
Mckeown, and 
Newbold 
(1982) 

258 firms from 
1974 to 1978 

Random Walk, 
7 other TS 
models 

1-4 quarters Analysts are 
superior on 
quarterly 
earnings 

MAE 

Newbold, 
Zumwalt, and 
Kannan (1987) 

65 firms from 
1962 to 1984 

ARIMA(0,1,1), 
ARIMA(1,0,0) 
with drift 

1 year Analysts are 
superior to 
ARIMA, but 
combination is 
superior to 
both 

MSE 
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Bansal, 
Strauss, and 
Nasseh (2015) 

30 firms from 
1970 to 2009 

AR, variable 
driven model 

4 to 8 
quarters 

Variable 
driven 
forecasts are 
superior 

MSE 

Reverte and 
Guzman 
(2010) 

1939 firms from 
1999 to 2004 

Relative 
efficiency 
model 

1 year Variable 
driven 
forecasts are 
superior 

MAPE 

Lobo (1991) 96 firms from 
1961 to 1983 

ARIMA(0,1,1) 6 years Combinations 
of forecasts 
are superior 

MAPE, MSRE 

Kim (1996) 30 firms, period 
is not available 

ARIMA(0,1,1), 
ARIMA(1,0,0), 
random walk 

1 year Combinations 
of forecasts 
are superior 

NA 

Lo and Elgers 
(1998) 

511 firms from 
1976 to 1989 

Analyst 
forecast only 

1 year Combinations 
of forecasts 
are superior 

MSE 

Jadhav, He, 
and Jenkins 
(2015) 

6 firms, period 
is not available 

LR, RBF and 
MLP 

NA Statistical 
models are 
superior 

NA 

Ardalan (2016) 2 indices for a 
period of 27 
years 

Error 
Correction 
Model (ECM) 

NA Statistical 
models are 
superior 

MSE 

 

Table 7: Portfolio Example 

Variable 1 Variable 2 Variable 3 Final Portfolio 

1 1 1 1 

2 1 1 2 

3 1 1 3 

1 2 1 4 

2 2 1 5 

3 2 1 6 

1 3 1 7 

2 3 1 8 

3 3 1 9 

1 1 2 10 

2 1 2 11 

3 1 2 12 

1 2 2 13 

2 2 2 14 

3 2 2 15 

1 3 2 16 

2 3 2 17 

3 3 2 18 

1 1 3 19 
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2 1 3 20 

3 1 3 21 

1 2 3 22 

2 2 3 23 

3 2 3 24 

1 3 3 25 

2 3 3 26 

3 3 3 27 
 

Table 8: Analyst Companies 

Company Name CVR Forecast Horizon 

COLOPLAST A/S DK69749917 4 years 

IC GROUP A/S DK62816414 4 years 

CARLSBERG A/S DK61056416 4 years 

FLSMIDTH & CO. A/S DK58180912 4 years 

H. LUNDBECK A/S DK56759913 4 years 

ROCKWOOL INTERNATIONAL A/S DK54879415 4 years 

ROYAL UNIBREW A/S DK41956712 4 years 

BANG & OLUFSEN A/S DK41257911 4 years 

GN STORE NORD A/S DK24257843 4 years 

NOVO NORDISK A/S DK24256790 4 years 

A.P. MØLLER - MÆRSK A/S DK22756214 4 years 

BAVARIAN NORDIC A/S DK16271187 4 years 

VESTAS WIND SYSTEMS A/S DK10403782 4 years 

NOVOZYMES A/S DK10007127 4 years 

DSV A/S DK58233528 4 years 

NETOP SOLUTIONS A/S DK16221503 4 years 

RTX A/S DK17002147 4 years 

TK DEVELOPMENT A/S DK24256782 4 years 

Santa Fe Group A/S DK26041716 4 years 

BOCONCEPT HOLDING A/S DK34018413 4 years 

NORTH MEDIA A/S DK66590119 4 years 

SJÆLSØ GRUPPEN A/S DK89801915 4 years 

NEUROSEARCH A/S DK12546106 4 years 

SOLAR A/S DK15908416 4 years 

SANISTÅL A/S DK42997811 3 years 

MONBERG & THORSEN A/S DK12617917 3 years 

NORDICOM A/S DK12932502 3 years 

COLUMBUS A/S DK13228345 3 years 

JEUDAN A/S DK14246045 3 years 

TORM A/S DK22460218 3 years 
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Table 13: Time Series Comparison, Full, MAPE 

 MAPE 

Data horizon Partial Partial Partial Full Full Full Partial Full 

Forecast horizon Short Medium Long Short Medium Long All All 

AutoArima 4.3 3.8 4.1 2.4 3.4 3.7 4.1 3.0 

ARIMA(0,1,1) 7.0 3.8 3.1 7.6 3.4 4.9 4.3 6.0 

ARIMA(1,0,0) 7.0 3.8 3.1 7.6 3.4 4.9 4.3 6.0 

rwfNoDrift 6.7 6.7 8.0 4.6 4.7 5.6 7.3 4.9 

rwfDrift 13.5 19.4 29.9 6.3 9.2 13.0 23.2 8.3 

rwBrown 19.6 23.7 36.4 14.7 23.4 31.2 29.1 20.0 

EBIT5 11.2 12.0 12.2 3.5 4.4 6.8 11.9 4.4 

Industry 19.0 9.3 20.2 5.3 6.0 8.8 17.2 6.4 

EBIT5&Industry 12.8 12.9 12.2 3.8 4.9 8.0 12.5 4.8 

Age 12.1 12.7 11.8 4.4 3.4 4.0 12.1 4.2 

Balance 19.4 18.3 81.6 13.0 18.6 9.6 50.3 18.3 

EBIT5&Balance 5.1 4.0 6.3 1.9 2.6 3.3 5.4 2.4 

Growth5 6.4 15.8 80.0 2.4 4.3 8.9 45.6 3.9 

EBIT5&Growth5 7.9 8.7 11.1 3.2 4.1 6.0 9.7 3.9 

EBIT5&Growth5&Balance 4.2 4.8 8.1 2.2 2.4 2.8 6.3 2.3 

EBIT5&Growth5&Industry 9.1 11.6 12.5 4.1 5.2 7.9 11.4 5.2 

EBIT5&Growth10&Balance 10.0 13.6 15.9 4.3 9.6 5.5 13.8 5.8 

EBIT10 10.1 10.9 13.4 6.2 4.4 6.0 11.9 5.7 

Growth10 8.3 292.0 62.2 2.3 7.7 8.1 106.1 4.4 

 

Table 13: Time Series Comparison, Full, MAPE (Continued) 

 MAPE 

Data horizon All All All All 

Forecast horizon Short Medium Long All 

AutoArima 3.0 3.6 4.4 3.5 

ARIMA(0,1,1) 7.4 3.6 3.9 5.2 

ARIMA(1,0,0) 7.4 3.6 3.9 5.2 

rwfNoDrift 5.2 5.7 6.6 6.0 

rwfDrift 8.4 14.3 22.4 15.3 

rwBrown 16.1 23.6 32.4 24.2 

EBIT5 5.7 8.2 10.4 7.9 

Industry 9.2 7.6 16.0 11.5 

EBIT5&Industry 6.3 8.9 10.5 8.4 

Age 6.6 8.1 8.8 7.9 
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Balance 14.8 18.5 34.4 33.3 

EBIT5&Balance 2.8 3.3 4.8 3.8 

Growth5 3.6 10.1 33.3 23.5 

EBIT5&Growth5 4.5 6.4 8.6 6.7 

EBIT5&Growth5&Balance 2.7 3.6 5.0 4.2 

EBIT5&Growth5&Industry 5.5 8.4 10.9 8.1 

EBIT5&Growth10&Balance 6.0 11.6 9.3 9.6 

EBIT10 7.3 7.6 9.6 8.6 

Growth10 4.0 149.8 42.8 52.3 

 

Table 14: Time Series Comparison, Full, MSRE 

 MSRE 

Data horizon Partial Partial Partial Full Full Full Partial Full 

Forecast horizon Short Medium Long Short Medium Long All All 

AutoArima 3866 2361 1941 243 683 946 2527 591 

ARIMA(0,1,1) 5287 2361 982 8732 683 1859 2403 5408 

ARIMA(1,0,0) 5287 2361 982 8732 683 1859 2403 5408 

rwfNoDrift 4879 4174 7076 2194 711 1973 5801 1844 

rwfDrift 11881 70657 118567 3042 2571 9402 79918 3970 

rwBrown 39744 41731 96436 8813 22445 50456 68587 19685 

EBIT5 5207 4305 4028 1094 471 2128 4392 1127 

Industry 170641 8950 78508 3008 1374 7248 84152 3452 

EBIT5&Industry 9755 18146 4559 1324 721 4197 9255 1535 

Age 15373 17325 14969 2031 374 989 15659 1461 

Balance 48082 31650 2218807 29088 9487 5583 1129337 35572 

EBIT5&Balance 1146 502 2748 362 203 387 1786 366 

Growth5 4626 64470 2970614 766 1161 5308 1502581 1432 

EBIT5&Growth5 2960 2647 6368 1177 554 1935 4586 1124 

EBIT5&Growth5&Balance 843 911 8585 273 153 106 4731 207 

EBIT5&Growth5&Industry 5430 5407 6791 1680 1726 4247 6105 2342 

EBIT5&Growth10&Balance 7413 33082 79268 1299 16485 528 49758 4502 

EBIT10 9502 11059 23387 4290 572 2062 16834 2917 

Growth10 5453 95189334 901264 1342 10319 2854 24249329 3452 
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Table 15: Time Series Comparison, Full, MAE 

 MAE 

Data horizon Partial Partial Partial Full Full Full Partial Full 

Forecast horizon Short Medium Long Short Medium Long All All 

AutoArima 1280 1640 1204 910 956 794 1332 908 

ARIMA(0,1,1) 1362 1640 797 1165 956 808 1149 1051 

ARIMA(1,0,0) 1362 1640 797 1165 956 808 1149 1051 

rwfNoDrift 1120 1459 1201 955 983 806 1245 947 

rwfDrift 1545 2150 2734 1041 1264 1232 2290 1153 

rwBrown 3511 5681 4499 2304 2685 2701 4548 2482 

EBIT5 926 1054 1045 726 844 817 1018 780 

Industry 1519 1363 1857 1512 1116 1112 1649 1372 

EBIT5&Industry 941 1040 1029 821 886 845 1010 848 

Age 1172 1385 1294 828 845 715 1286 822 

Balance 2916 3270 7519 2454 3860 1756 5306 3353 

EBIT5&Balance 1120 1163 1026 782 847 660 1084 779 

Growth5 833 1306 3183 528 833 1148 2126 700 

EBIT5&Growth5 722 898 981 500 711 867 895 610 

EBIT5&Growth5&Balance 656 973 1128 413 649 440 971 473 

EBIT5&Growth5&Industry 825 1035 1151 611 796 1031 1041 737 

EBIT5&Growth10&Balance 937 1306 1710 783 744 549 1416 720 

EBIT10 1220 1596 1461 1070 880 835 1434 983 

Growth10 2302 36261 3540 511 950 1110 11411 707 

 

Table 17: Time Series Comparison, Grouped Full, MAPE  

  MAPE 

Data horizon Partial Partial Partial Full Full Full 

Forecast horizon Short Medium Long Short Medium Long 

Time Series 9.7 10.2 14.1 7.2 7.9 10.6 

ARIMAs 6.1 3.8 3.4 5.9 3.4 4.5 

RWs 13.3 16.6 24.8 8.5 12.4 16.6 

Data Driven 10.4 32.8 26.7 4.3 6.0 6.6 

EBITs 8.8 9.8 11.5 3.6 4.7 5.8 

Balances 9.7 10.2 28.0 5.3 8.3 5.3 

Growths 7.6 57.7 31.6 3.1 5.5 6.5 

Industries 13.6 11.3 15.0 4.4 5.3 8.2 

5 portfolios 8.1 10.0 20.4 3.0 4.0 6.2 

10 portfolios 9.4 105.5 30.5 4.3 7.2 6.5 

1 variables 12.3 53.0 40.2 5.3 7.0 7.5 
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2 variables 8.6 8.5 9.9 2.9 3.9 5.8 

3 variables 7.8 10.0 12.2 3.5 5.7 5.4 
 

Table 18: Time Series Comparison, Grouped Full, MSRE  

  MSRE 

Data horizon Partial Partial Partial Full Full Full 

Forecast horizon Short Medium Long Short Medium Long 

Time Series 11824 20607 37664 5293 4629 11083 

ARIMAs 4813 2361 1301 5902 683 1555 

RWs 18835 38854 74026 4683 8575 20611 

Data Driven 22033 7337522 486146 3672 3354 2890 

EBITs 5282 9508 16967 1437 2610 1949 

Balances 14371 16537 577352 7755 6582 1651 

Growths 4454 15882642 662148 1090 5066 2496 

Industries 61942 10835 29953 2004 1273 5231 

5 portfolios 4281 13770 429099 954 712 2615 

10 portfolios 7456 31744492 334640 2310 9125 1814 

1 variables 36983 13618156 887368 5946 3394 3739 

2 variables 4620 7099 4558 954 492 2173 

3 variables 4562 13134 31548 1084 6121 1627 
 

Table 19: Time Series Comparison, Grouped Full, MAE 

  MAE 

Data horizon Partial Partial Partial Full Full Full 

Forecast horizon Short Medium Long Short Medium Long 

Time Series 1697 2369 1872 1257 1300 1192 

ARIMAs 1335 1640 932 1080 956 803 

RWs 2059 3097 2811 1433 1644 1580 

Data Driven 1238 4050 2071 888 1074 914 

EBITs 918 1133 1191 713 795 755 

Balances 1407 1678 2846 1108 1525 851 

Growths 1046 6963 1949 558 780 857 

Industries 1095 1146 1346 981 933 996 

5 portfolios 861 1067 1363 626 795 830 

10 portfolios 1486 13055 2237 788 858 831 

1 variables 1555 6605 2843 1090 1333 1071 

2 variables 928 1034 1012 701 815 790 

3 variables 806 1105 1330 602 730 673 
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Table 21: Analyst Forecast Comparison, Full, MAPE  

 MAPE 

Data Horizon 6 6 6 6 6 7 8 9 All 

Forecast Horizon 1 2 3 4 1 1 1 1 All 

Analysts 1.2 1.3 1.2 1.4 1.2 1.3 1.2 1.4 1.3 

AutoArima 1.6 2.5 3.9 3.3 1.6 1.4 1.3 1.6 2.2 

ARIMA(0,1,1) 1.6 1.1 3.9 3.3 1.6 1.6 1.3 1.6 2.0 

ARIMA(1,0,0) 1.6 1.1 3.9 3.3 1.6 1.6 1.3 1.6 2.0 

rwfNoDrift 0.6 1.1 1.6 1.7 0.6 1.4 1.7 1.5 1.3 

rwfDrift 2.2 3.9 6.5 5.6 2.2 2.9 3.8 1.7 3.6 

rwBrown 4.6 6.2 10.5 9.5 4.6 5.7 7.1 2.1 6.3 

EBITabs5 0.5 1.0 1.3 1.4 0.5 1.2 1.2 0.8 1.0 

Industry 0.8 1.1 1.8 1.7 0.8 1.4 1.9 1.7 1.4 

EBIT&Industry 0.6 1.0 1.3 1.4 0.6 1.1 1.0 1.0 1.0 

Age 0.6 0.8 0.8 0.9 0.6 1.0 1.0 2.0 0.9 

Balance 1.6 1.9 3.3 3.6 1.6 1.4 4.1 1.9 2.4 

EBIT&Balance 0.8 0.9 1.0 1.0 0.8 0.9 0.9 0.9 0.9 

Growth5 0.2 0.9 1.2 1.4 0.2 0.8 0.5 0.8 0.8 

EBIT&Growth 0.2 0.9 1.2 1.3 0.2 0.4 0.6 0.9 0.7 

EBIT&Growth5&Balance 0.2 0.9 1.1 1.3 0.2 0.4 0.5 0.6 0.7 

EBIT&Growth&Industry 0.2 0.8 1.2 1.4 0.2 0.4 1.4 0.6 0.8 

EBIT&Growth10&Balance 1.4 1.6 2.2 2.6 1.4 1.4 2.0 2.8 1.9 

EBITabs10 0.9 1.2 1.6 1.6 0.9 1.4 2.3 2.5 1.6 

Growth10 0.1 0.8 1.1 1.3 0.1 0.3 0.5 0.7 0.6 

 

Table 23: Analyst Forecast Comparison, Full, MSRE 

 MSRE 

Data Horizon 6 6 6 6 6 7 8 9 All 

Forecast Horizon 1 2 3 4 1 1 1 1 All 

Analysts 6.6 6.1 4.8 28.7 6.6 6.1 4.8 28.7 11.6 

AutoArima 29.5 80.1 251.9 191.2 29.5 6.7 6.8 11.1 75.9 

ARIMA(0,1,1) 29.5 5.1 251.9 191.2 29.5 9.3 6.8 11.1 66.8 

ARIMA(1,0,0) 29.5 5.1 251.9 191.2 29.5 9.3 6.8 11.1 66.8 

rwfNoDrift 0.9 5.1 12.8 12.3 0.9 7.0 10.4 9.8 7.4 

rwfDrift 84.8 239.8 839.3 635.4 84.8 75.8 142.4 13.6 264.5 

rwBrown 576.3 912.5 2662.8 1894.4 576.3 540.5 1052.5 16.0 1028.9 

EBITabs5 0.4 3.5 7.6 7.6 0.4 5.5 4.1 1.6 3.8 

Industry 1.5 3.9 16.8 15.7 1.5 6.5 13.5 12.4 9.0 
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EBIT&Industry 0.7 2.6 8.7 9.8 0.7 4.1 2.4 3.1 4.0 

Age 0.4 1.1 0.9 1.1 0.4 2.2 1.9 18.4 3.3 

Balance 2.8 4.5 30.1 31.9 2.8 2.3 38.7 5.4 14.8 

EBIT&Balance 0.6 0.9 2.5 2.4 0.6 1.1 1.4 1.0 1.3 

Growth5 0.1 4.6 6.1 7.3 0.1 3.2 0.9 2.4 3.1 

EBIT&Growth 0.1 4.4 5.3 5.6 0.1 0.6 1.8 8.1 3.3 

EBIT&Growth5&Balance 0.1 4.2 5.1 5.3 0.1 0.2 1.4 2.7 2.4 

EBIT&Growth&Industry 0.1 4.0 6.1 7.8 0.1 0.6 14.9 1.9 4.4 

EBIT&Growth10&Balance 2.7 4.1 23.5 24.8 2.7 3.7 11.7 18.9 11.5 

EBITabs10 3.1 5.3 9.7 9.6 3.1 7.3 28.0 33.7 12.5 

Growth10 0.0 4.2 4.8 7.4 0.0 0.5 1.8 2.4 2.6 

 

10.2 R Code 
rm(list=ls()) 
setwd("~/CBS Courses Master/Master Thesis/Data") 
 
library(scales) 
library(plyr) 
library(haven) 
library(forecast) 
data <- read_sas("dst_jeppe.sas7bdat") 
 
#variable distribution 
FoundNum = as.matrix(Found[complete.cases(Found),]) 
dFound = density(FoundNum) 
plot(dFound,col="black",xlab="Year",xlim=c(1980,2014)) #main="FOUND Distribution" 
NewFirms = dFound$y*352496 
years = round(c(dFound$x[450],dFound$x[460],dFound$x[468],dFound$x[478],dFound$x[486], 
                dFound$x[495],dFound$x[505]),0) 
yearsVec = c(450,460,468,478,486,495,505) 
plot(NewFirms,xaxt = "n",xlab="Year",xlim=c(450,512)) # main="No. of New Companies" 
axis(1, at=yearsVec, labels=years) 
 
#-------- 1.1.2 Data - Forecating Setup ----------  
#Part to be updated every time 
fullDataLength = 1500000 
dataLength = fullDataLength 
dataLengthTest = 0 
 
start = dataLengthTest + 1 
end = start + dataLength - 1  
#end = 2891384 
 
dataStart = 1   #first year of the data used to generate model - HAS TO BE 1 !!! 
dataEnd = 9     #last year of the data used to generate model 
horizon = 1     #forecast horizon after dataEnd 
inputYear = dataEnd   #Year for grouping the portfolios = last data year 
 
dataEndCol = dataEnd-dataStart+1 
horizonStartCol = dataEndCol+1 
horizonEndCol = dataEndCol+horizon 
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#Same part every time 
smallData = data[start:end,] 
firms = length(t(unique(smallData[,1])))  
 
CVR = smallData[,1] 
Industry = smallData[,5] 
CF = smallData[,14] #in thousands DKK 
EBIT = smallData[,40] #in thousands DKK 
Revenue = smallData[,45] #in thousands DKK 
Balance = smallData[,49] #in thousands DKK (Total Assets) 
Found = smallData[,54] 
Aryear = smallData[,55] 
Year = Aryear - Found 
Emps = smallData[,56] 
 
#Year cleanup, removes negative values and values above 40 years 
for (i in 1:dataLength) {  
  if(is.na(as.numeric(Year[i,]))){ 
  } else if(as.numeric(Year[i,])<0){ 
    Year[i,] = NA 
  } else if(as.numeric(Year[i,])>39){ 
    Year[i,] = NA 
  } 
} 
 
IndNo = vector("numeric",length = dataLength) 
Growth = vector("numeric",length = dataLength) 
 
relSmallData = cbind(CVR,Industry,CF,EBIT,Found,Aryear,Year,Balance,Emps,IndNo,Growth) 
relSmallData[1:(dataLength-1),11] = round(relSmallData[2:dataLength,4]/relSmallData[1:(dataLength-1),4],4)-1 
 
Growth = as.matrix(relSmallData[,11]) 
 
relSmallDataUnique = matrix(nrow = firms, ncol = 5) #CVR, Idnustry x2, Found x2 
relSmallDataUnique[,1] = t(unique(CVR)) 
colnames(relSmallDataUnique) <- c("CVR","Industry","Found","IndustryNo","Age") 
 
CFdata = matrix(nrow = firms, ncol = 41) 
CFdata[,1] = t(unique(CVR)) 
 
for (i in 1:dataLength) {  
  CFval = as.numeric(EBIT[i,]) #using EBIT instead of CF 
  CVRval = as.character(CVR[i,]) 
  Yearval = as.numeric(Year[i,]) 
   
  rowNum = which(CFdata[,1]==CVRval) 
  CFdata[rowNum,Yearval+2]=CFval 
   
  relSmallDataUnique[rowNum,2] = as.character(Industry[i,]) 
  relSmallDataUnique[rowNum,3] = as.numeric(Found[i,]) 
 
  if(is.na(relSmallDataUnique[rowNum,3])){ 
    relSmallDataUnique[rowNum,5] = NA 
  } else {relSmallDataUnique[rowNum,5] = 2014-as.numeric(relSmallDataUnique[rowNum,3])} 
}                                        #needs to be 2014 for forecast to work 
 
colnames(CFdata) <- c("CVR",0:39) #first column is CVR, second is year 0 
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Balancedata = matrix(nrow = firms, ncol = 41) 
Balancedata[,1] = t(unique(CVR)) 
 
for (i in 1:dataLength) {  
  Balval = as.numeric(Balance[i,]) 
  CVRval = as.character(CVR[i,]) 
  Yearval = as.numeric(Year[i,]) 
   
  rowNum = which(Balancedata[,1]==CVRval) 
  Balancedata[rowNum,Yearval+2]=Balval 
} 
 
#generating the accuracy measurment errors matrix 
globalErrors = matrix(data=0,nrow=19,ncol=6) # given 13 analyses and 6 stat models 
colnames(globalErrors) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
 
test1 = "EBITabs5"  
test2 = "Industry" 
test3 = "EBIT&Industry" 
test4 = "Age" 
test5 = "Balance" 
test6 = "EBIT&Balance" 
test7 = "Growth5" 
test8 = "EBIT&Growth" 
test9 = "EBIT&Growth5&Balance" 
test10 = "EBIT&Growth&Industry" 
test11 = "EBIT&Growth10&Balance" 
test12 = "EBITabs10"  
test13 = "Growth10" 
 
tests = c(test1,test2,test3,test4,test5,test6,test7,test8,test9,test10,test11,test12,test13) 
models = c("AutoArima","InputArima1","InputArima2","rwfNoDrift","rwfDrift","rwBrown") 
rownames(globalErrors) <- c(models,tests) 
   
#Generating the list of ages 
AgeUniqueLenght = length(unique(relSmallDataUnique[,5])) 
AgeList = matrix(NA,ncol = 1, nrow = AgeUniqueLenght) 
AgeList[,1] = unique(relSmallDataUnique[,5]) 
 
#Generating the list of industries 
Industries = unique(data[,5]) #takes all unique values from master data file for NACED 
IndLength = length(t(Industries)) 
IndType = cbind(Industries,NA) 
 
for(i in 1:IndLength){  
  if(is.na(as.numeric(IndType[i,1]))){ 
    IndType[i,2]="character" 
  } else{IndType[i,2]="numeric"} 
} #will produce warnings, but works 
 
IndustryList = IndType[IndType[,2] == "character",] 
IndUniqueLenght = length(IndustryList[,1]) 
IndustryNo = c(1:IndUniqueLenght) 
IndustryList = cbind(IndustryList,IndustryNo) 
 
for(i in 1:firms){  
  if(is.na(as.numeric(relSmallDataUnique[i,2]))){ 
    rowVal = which(IndustryList[,1]==relSmallDataUnique[i,2]) 
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    relSmallDataUnique[i,4] = IndustryList[rowVal,3] 
  } else{ 
    relSmallDataUnique[i,4] = 1 
  } 
} #will produce warnings, but works 
 
for(i in 1:dataLength){ 
  row = which(relSmallDataUnique[,1]==relSmallData[i,1]) 
  relSmallData[i,10] = relSmallDataUnique[row,4] 
} 
 
#-------- 1.1.3 Data - Test Setup --------  
startRow = 1 
endRow = dataLengthTest 
 
#DataTest = data[startRow:endRow,] 
require(readxl) 
testData <- read_excel("Bloomberg Data.xlsx",sheet = "RexportNew", col_names=TRUE) 
dataLengthTest = length(t(testData[,1])) 
DataTest = testData 
 
firmsTest = length(t(unique(DataTest[,1]))) 
 
CVR.t = DataTest[,1] 
Industry.t = DataTest[,5] 
EBIT.t = DataTest[,40] #in thousands DKK 
Balance.t = DataTest[,49] #in thousands DKK (Total Assets) 
Found.t = DataTest[,54] 
Aryear.t = DataTest[,55] 
Year.t = Aryear.t - Found.t 
Emps.t = DataTest[,56] 
 
#Year cleanup, removes negative values and values above 40 years 
for (i in 1:dataLengthTest) {  
  if(is.na(as.numeric(Year.t[i,]))){ 
  } else if(as.numeric(Year.t[i,])<0){ 
    Year.t[i,] = NA 
  } else if(as.numeric(Year.t[i,])>39){ 
    Year.t[i,] = NA 
  } 
} 
 
IndNo.t = vector("numeric",length = dataLengthTest) 
Growth.t = vector("numeric",length = dataLengthTest) 
relDataTest = cbind(CVR.t,Industry.t,EBIT.t,Found.t,Aryear.t,Year.t,Balance.t,Emps.t,IndNo.t,Growth.t) 
relDataTest[1:(dataLengthTest-1),10] = round(relDataTest[2:dataLengthTest,3]/relDataTest[1:(dataLengthTest-1),3],4)-1 
relDataTestUnique = matrix(nrow = firmsTest, ncol = 5) #CVR, Idnustry x2, Found x2 
relDataTestUnique[,1] = t(unique(CVR.t)) 
colnames(relDataTestUnique) <- c("CVR","Industry","Found","IndustryNo","Age") 
CFdataTest = matrix(nrow = firmsTest, ncol = 41) 
CFdataTest[,1] = t(unique(CVR.t)) 
 
for (i in 1:dataLengthTest) {  
  CFval = as.numeric(EBIT.t[i,])  
  CVRval = as.character(CVR.t[i,]) 
  Yearval = as.numeric(Year.t[i,]) 
  rowNum = which(CFdataTest[,1]==CVRval) 
  CFdataTest[rowNum,Yearval+2]=CFval 
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  relDataTestUnique[rowNum,2] = as.character(Industry.t[i,]) 
  relDataTestUnique[rowNum,3] = as.numeric(Found.t[i,]) 
  if(is.na(relDataTestUnique[rowNum,3])){ 
    relDataTestUnique[rowNum,5] = NA 
  } else {relDataTestUnique[rowNum,5] = 2014-as.numeric(relDataTestUnique[rowNum,3])} 
}                                         
 
colnames(CFdataTest) <- c("CVR",0:39)  
 
for(i in 1:firmsTest){  
  if(is.na(as.numeric(relDataTestUnique[i,2]))){ 
    rowVal = which(IndustryList[,1]==relDataTestUnique[i,2]) 
    relDataTestUnique[i,4] = IndustryList[rowVal,3] 
  } else{ 
    relDataTestUnique[i,4] = 1 
  } 
} 
#only run this part when going to the analyses, not before 
if(IndustryList[1,1]==""){ #IMPORTANT TO KEEP 
  IndustryList[1,1]=" " 
} 
 
for(i in 1:dataLengthTest){ 
  row = which(relDataTestUnique[,1]==relDataTest[i,1]) 
  relDataTest[i,9] = relDataTestUnique[row,4] 
} 
 
BalancedataTest = matrix(nrow = firmsTest, ncol = 41) 
BalancedataTest[,1] = t(unique(CVR.t)) 
for (i in 1:dataLengthTest) {  
  Balval = as.numeric(Balance.t[i,]) 
  CVRval = as.character(CVR.t[i,]) 
  Yearval = as.numeric(Year.t[i,]) 
  rowNum = which(BalancedataTest[,1]==CVRval) 
  BalancedataTest[rowNum,Yearval+2]=Balval 
} 
GrowthdataTest = matrix(nrow = firmsTest, ncol = 41) 
GrowthdataTest[,1] = t(unique(CVR.t)) 
for (i in 1:dataLengthTest) {  
  Growval = as.numeric(relDataTest[i,10]) 
  CVRval = as.character(CVR.t[i,]) 
  Yearval = as.numeric(Year.t[i,]) 
   
  rowNum = which(GrowthdataTest[,1]==CVRval) 
  GrowthdataTest[rowNum,Yearval+2]=Growval 
} 
 
EBITInputYear = CFdataTest[,inputYear+2] 
BalInputYear = BalancedataTest[,inputYear+2] 
#EmpInputYear = EmpdataTest[,inputYear+2] 
GrowInputYear = GrowthdataTest[,inputYear+2] 
IndInput = relDataTestUnique[,4] 
AgeInput = relDataTestUnique[,5] 
PortMatrix = matrix(nrow = firmsTest,ncol = 8) # 8 analyses so far + 2 + (emps removed) 
colnames(PortMatrix) <- c("Bal","EBIT","Growth","EBIT&Ind","EBIT&Bal","EBIT&Growth", 
                          "EBIT&Grow&Ind","EBIT&Grow&Bal")  
 
CFdataTestNum = cbind(CFdataTest[,2:41],EBITInputYear,BalInputYear,GrowInputYear, 
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                      IndInput,AgeInput,PortMatrix) # needs to be from Y0 
CFdataTestComp = CFdataTestNum[complete.cases(CFdataTestNum[,(dataStart+1)]),] 
for (i in (2+dataStart):(horizonEndCol+1)) { 
  CFdataTestComp = CFdataTestComp[complete.cases(CFdataTestComp[,i]),] 
} 
for (i in 41:45) { 
  CFdataTestComp = CFdataTestComp[complete.cases(CFdataTestComp[,i]),] 
} 
CFdataTestComp[is.na(CFdataTestComp)] = 0 
class(CFdataTestComp) <- "numeric" 
 
#-------- 1.2.1 Data Overview - General ---------- 
testYears = 15 
dataOverviewFullForecast = matrix(0,nrow = testYears,ncol = 2) 
dataOverviewFullForecast[,1] = 1:testYears 
colnames(dataOverviewFullForecast) = c("DataYears","HorizonFirms") 
 
for(j in 1:testYears){ 
  CFdataComp = CFdata[,3:41] # removes year 0 
  class(CFdataComp) <- "numeric" 
  inputyear = j 
  years = horizonEndCol+inputyear-1 
  dataOverview = matrix(0,nrow = years,ncol = 2) 
  colnames(dataOverview) = c("DataYears","Firms") 
  for (i in inputyear:years) { #Year 0 is excluded as there are so few data points there 
    CFdataComp = CFdataComp[complete.cases(CFdataComp[,i]),] 
    dataOverview[i,1] = i 
    dataOverview[i,2] = length(CFdataComp[,1]) 
  } 
  dataOverviewFullForecast[j,2] = dataOverview[years,2] 
} 
testYears = 15 
dataOverviewFullTest = matrix(0,nrow = testYears,ncol = 2) 
dataOverviewFullTest[,1] = 1:testYears 
colnames(dataOverviewFullTest) = c("DataYears","HorizonFirms") 
for(j in 1:testYears){ 
  CFdataComp = CFdataTest[,3:41] # removes year 0 
  class(CFdataComp) <- "numeric" 
   
  inputyear = j 
  years = horizonEndCol+inputyear-1 
  dataOverview = matrix(0,nrow = years,ncol = 2) 
  colnames(dataOverview) = c("DataYears","Firms") 
  for (i in inputyear:years) { #Year 0 is excluded as there are so few data points there 
    CFdataComp = CFdataComp[complete.cases(CFdataComp[,i]),] 
    dataOverview[i,1] = i 
    dataOverview[i,2] = length(CFdataComp[,1]) 
  } 
  dataOverviewFullTest[j,2] = dataOverview[years,2] 
} 
#-------- 2.1.1 portfolio development - EBIT5 --------  
portfolios = 5  #no. of EBIT groupings 
CFdataComp = CFdata[complete.cases(CFdata[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
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quantiles = quantile(as.numeric(CFdataComp[,inputYear+2]), c(.2, .4, .6, .8, 1)) 
quantilMatrix = matrix(c(quantiles,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataComp = cbind(CFdataComp,portfolioNo) 
for (i in 1:firmsNo) {  
EBITinputYear = as.numeric(CFdataComp[i,inputYear+2]) 
 
  if(EBITinputYear<quantilMatrix[1,1]){ 
    CFdataComp[i,42]=5 
  } else if(EBITinputYear<quantilMatrix[2,1]){ 
    CFdataComp[i,42]=4 
  } else if(EBITinputYear<quantilMatrix[3,1]){ 
    CFdataComp[i,42]=3 
  } else if(EBITinputYear<quantilMatrix[4,1]){ 
    CFdataComp[i,42]=2 
  } else{ 
    CFdataComp[i,42]=1 
  } 
} 
 
CFdataNum=CFdataComp[,2:42] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
CFdataPortSum = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,41] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
}   
CFdataPortAvg = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
PortSize = vector(mode = "numeric",length = portfolios) 
for (i in 1:portfolios) { 
  PortSize[i] = sum(CFdataNum[,41] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastEBIT1 = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastEBIT1[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastEBIT1[i,(dataEndCol)] 
  if(inputEBIT<quantilMatrix[1,1]){ 
    CFdataTestComp[i,47]=5 
  } else if(inputEBIT<quantilMatrix[2,1]){ 
    CFdataTestComp[i,47]=4 
  } else if(inputEBIT<quantilMatrix[3,1]){ 
    CFdataTestComp[i,47]=3 
  } else if(inputEBIT<quantilMatrix[4,1]){ 
    CFdataTestComp[i,47]=2 
  } else{ 
    CFdataTestComp[i,47]=1 
  } 
  inputPort = CFdataTestComp[i,47] 
  for(j in 1:horizon){ 
    CFforecastEBIT1[i,(dataEndCol+j)] = round(CFforecastEBIT1[i,(dataEndCol+j-1)]* 
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                                        (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastEBIT1[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF7 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF7) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF7[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF7[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF7[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF7[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF7[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF7[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[7,i] = round(mean(localErrorsF7[!rowSums(!is.finite(localErrorsF7)),i]),4) 
#-------- 2.1.2 portfolio development - EBIT10 --------  
portfolios = 10  #no. of EBIT groupings 
CFdataComp = CFdata[complete.cases(CFdata[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
quantiles = quantile(as.numeric(CFdataComp[,inputYear+2]), c(.1,.2,.3,.4,.5,.6,.7,.8,.9,1)) 
quantilMatrix = matrix(c(quantiles,portfolios:1),nrow=portfolios,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataComp = cbind(CFdataComp,portfolioNo) 
for (i in 1:firmsNo) {  
  EBITinputYear = as.numeric(CFdataComp[i,inputYear+2]) 
  if(EBITinputYear<quantilMatrix[1,1]){ 
    CFdataComp[i,42]=10 
  } else if(EBITinputYear<quantilMatrix[2,1]){ 
    CFdataComp[i,42]=9 
  } else if(EBITinputYear<quantilMatrix[3,1]){ 
    CFdataComp[i,42]=8 
  } else if(EBITinputYear<quantilMatrix[4,1]){ 
    CFdataComp[i,42]=7 
  } else if(EBITinputYear<quantilMatrix[5,1]){ 
    CFdataComp[i,42]=6 
  } else if(EBITinputYear<quantilMatrix[6,1]){ 
    CFdataComp[i,42]=5 
  } else if(EBITinputYear<quantilMatrix[7,1]){ 
    CFdataComp[i,42]=4 
  } else if(EBITinputYear<quantilMatrix[8,1]){ 
    CFdataComp[i,42]=3 
  } else if(EBITinputYear<quantilMatrix[9,1]){ 
    CFdataComp[i,42]=2 
  } else{ 
    CFdataComp[i,42]=1 
  } 
} 
 
CFdataNum=CFdataComp[,2:42] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
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CFdataPortSum = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,41] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
}   
CFdataPortAvg = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
PortSize = vector(mode = "numeric",length = portfolios) 
 
for (i in 1:portfolios) { 
  PortSize[i] = sum(CFdataNum[,41] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastEBIT2 = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastEBIT2[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastEBIT2[i,(dataEndCol)] 
  if(inputEBIT<quantilMatrix[1,1]){ 
    CFdataTestComp[i,42]=10 
  } else if(inputEBIT<quantilMatrix[2,1]){ 
    CFdataTestComp[i,42]=9 
  } else if(inputEBIT<quantilMatrix[3,1]){ 
    CFdataTestComp[i,42]=8 
  } else if(inputEBIT<quantilMatrix[4,1]){ 
    CFdataTestComp[i,42]=7 
  } else if(inputEBIT<quantilMatrix[5,1]){ 
    CFdataTestComp[i,42]=6 
  } else if(inputEBIT<quantilMatrix[6,1]){ 
    CFdataTestComp[i,42]=5 
  } else if(inputEBIT<quantilMatrix[7,1]){ 
    CFdataTestComp[i,42]=4 
  } else if(inputEBIT<quantilMatrix[8,1]){ 
    CFdataTestComp[i,42]=3 
  } else if(inputEBIT<quantilMatrix[9,1]){ 
    CFdataTestComp[i,42]=2 
  } else{ 
    CFdataTestComp[i,42]=1 
  } 
  inputPort = CFdataTestComp[i,47] 
  for(j in 1:horizon){ 
    CFforecastEBIT2[i,(dataEndCol+j)] = round(CFforecastEBIT2[i,(dataEndCol+j-1)]* 
                                        (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastEBIT2[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF18 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF18) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF18[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF18[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF18[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF18[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF18[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
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  localErrorsF18[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[18,i] = round(mean(localErrorsF18[!rowSums(!is.finite(localErrorsF18)),i]),4) 
} 
#-------- 2.1.3 portfolio development - Industry --------  
portfolios = IndUniqueLenght 
CFdataCalc = cbind(CFdata,relSmallDataUnique[,4]) #4 because it takes industry no. 
CFdataComp = CFdataCalc[complete.cases(CFdataCalc[,dataStart+2]),] #plus 2 because CVR and year 0 
 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
CFdataNum=CFdataComp[,2:42] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
CFdataPortSum = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,41] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
}   
CFdataPortAvg = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
PortSize = vector(mode = "numeric",length = portfolios) 
for (i in 1:portfolios) { 
  PortSize[i] = sum(CFdataNum[,41] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastInd = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastInd[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastInd[i,(dataEndCol)] 
  inputPort = CFdataTestComp[i,44] 
   
  for(j in 1:horizon){ 
    CFforecastInd[i,(dataEndCol+j)] = round(CFforecastInd[i,(dataEndCol+j-1)]* 
                                      (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastInd[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF8 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF8) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF8[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF8[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF8[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF8[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF8[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF8[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
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  globalErrors[8,i] = round(mean(localErrorsF8[!rowSums(!is.finite(localErrorsF8)),i]),4) 
} 
#-------- 2.1.4 portfolio development - EBIT&Industry -------- 
portfoliosEBIT = 5  #no. of EBIT groupings 
portfoliosInd = IndUniqueLenght 
portfoliosTotal = portfoliosEBIT*portfoliosInd 
CFdataCalc = cbind(CFdata,relSmallDataUnique[,4]) #4 because it takes industry no. 
CFdataComp = CFdataCalc[complete.cases(CFdataCalc[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
quantiles = quantile(as.numeric(CFdataComp[,inputYear+2]), c(.2, .4, .6, .8, 1)) 
quantilMatrix = matrix(c(quantiles,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataComp = cbind(CFdataComp,portfolioNo 
for (i in 1:firmsNo) {  
  EBITinputYear = as.numeric(CFdataComp[i,inputYear+2]) 
  if(EBITinputYear<quantilMatrix[1,1]){ 
    CFdataComp[i,43]=5 
  } else if(EBITinputYear<quantilMatrix[2,1]){ 
    CFdataComp[i,43]=4 
  } else if(EBITinputYear<quantilMatrix[3,1]){ 
    CFdataComp[i,43]=3 
  } else if(EBITinputYear<quantilMatrix[4,1]){ 
    CFdataComp[i,43]=2 
  } else{ 
    CFdataComp[i,43]=1 
  } 
} 
CFdataNum=CFdataComp[,2:43] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
portfolioList = matrix(0,nrow=portfoliosTotal,ncol=4) #2 cols for each EBIT and Ind 
portfolioList[,1] = IndustryNo 
for(i in 1:portfoliosTotal){ 
  portfolioList[i,2] = sum(portfolioList[1:i,1]==portfolioList[i,1]) 
  portfolioList[i,3] = IndustryList[which(IndustryList[,3]==portfolioList[i,1]),1] 
  portfolioList[i,4] = quantilMatrix[which(quantilMatrix[,2]==portfolioList[i,2]),1] 
} 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for(i in 1:firmsNo){ 
  CFdataNum[i,43] = which(portfolioList[,1]==CFdataNum[i,41] &  
                          portfolioList[,2]==CFdataNum[i,42]) 
} 
CFdataPortSum = matrix(0,nrow = portfoliosTotal,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,43] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
} 
PortSize = vector(mode = "numeric",length = portfoliosTotal) 
for (i in 1:portfoliosTotal) { 
  PortSize[i] = sum(CFdataNum[,43] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
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CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastEBITind = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastEBITind[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastEBITind[i,(dataEndCol)] 
  CFdataTestComp[i,49] = which(portfolioList[,1]==CFdataTestComp[i,44] &  
                               portfolioList[,2]==CFdataTestComp[i,47]) 
  inputPort = CFdataTestComp[i,49] 
  for(j in 1:horizon){ 
    CFforecastEBITind[i,(dataEndCol+j)] = round(CFforecastEBITind[i,(dataEndCol+j-1)]* 
                                          (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastEBITind[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF9 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF9) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF9[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF9[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF9[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF9[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF9[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF9[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[9,i] = round(mean(localErrorsF9[!rowSums(!is.finite(localErrorsF9)),i]),4) 
} 
 
#-------- 2.1.5 portfolio development - Age --------  
portfolios = AgeUniqueLengh 
CFdataCalc = cbind(CFdata,relSmallDataUnique[,5]) #5 because it takes age 
CFdataComp = CFdataCalc[complete.cases(CFdataCalc[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataComp = CFdataComp[complete.cases(CFdataComp[,42]),] #removes where age is NA 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
CFdataNum = CFdataComp[,2:42] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
CFdataPortSum = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,41] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
}   
CFdataPortAvg = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
PortSize = vector(mode = "numeric",length = portfolios) 
for (i in 1:portfolios) { 
  PortSize[i] = sum(CFdataNum[,41] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
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CFforecastAge = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastAge[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastAge[i,(dataEndCol)] 
  inputPort = CFdataTestComp[i,45] 
  for(j in 1:horizon){ 
    CFforecastAge[i,(dataEndCol+j)] = round(CFforecastAge[i,(dataEndCol+j-1)]* 
                                      (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastAge[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF10 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF10) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF10[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF10[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF10[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF10[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF10[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF10[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[10,i] = round(mean(localErrorsF10[!rowSums(!is.finite(localErrorsF10)),i]),4) 
} 
#-------- 2.1.6 portfolio development - Balance --------  
portfolios = 5 
quantilesBal = quantile(as.numeric(Balancedata[,inputYear+2]), c(.2, .4, .6, .8, 1), na.rm = TRUE) 
quantilMatrixBal = matrix(c(quantilesBal,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firms) 
CFdataCalc = cbind(CFdata,portfolioNo) 
for (i in 1:firms) {  
  BalInputYear = as.numeric(Balancedata[i,inputYear+2]) 
  if(is.na(BalInputYear)){ 
    CFdataCalc[i,42]=NA 
  } else if(BalInputYear<quantilMatrixBal[1,1]){ 
    CFdataCalc[i,42]=5 
  } else if(BalInputYear<quantilMatrixBal[2,1]){ 
    CFdataCalc[i,42]=4 
  } else if(BalInputYear<quantilMatrixBal[3,1]){ 
    CFdataCalc[i,42]=3 
  } else if(BalInputYear<quantilMatrixBal[4,1]){ 
    CFdataCalc[i,42]=2 
  } else{ 
    CFdataCalc[i,42]=1 
  } 
} 
CFdataComp = CFdataCalc[complete.cases(CFdataCalc[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataComp = CFdataComp[complete.cases(CFdataComp[,42]),] #removing NA rows from portfolioNo 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
CFdataNum=CFdataComp[,2:42] #Turn the data into only numbers 
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CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
CFdataPortSum = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,41] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
}   
CFdataPortAvg = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
PortSize = vector(mode = "numeric",length = portfolios) 
 
for (i in 1:portfolios) { 
  PortSize[i] = sum(CFdataNum[,41] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastBal = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastBal[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastBal[i,(dataEndCol)] 
  inputBal = CFdataTestComp[i,42] 
  if(inputBal<quantilMatrixBal[1,1]){ 
    CFdataTestComp[i,46]=5 
  } else if(inputBal<quantilMatrixBal[2,1]){ 
    CFdataTestComp[i,46]=4 
  } else if(inputBal<quantilMatrixBal[3,1]){ 
    CFdataTestComp[i,46]=3 
  } else if(inputBal<quantilMatrixBal[4,1]){ 
    CFdataTestComp[i,46]=2 
  } else{ 
    CFdataTestComp[i,46]=1 
  } 
  inputPort = CFdataTestComp[i,46] 
  for(j in 1:horizon){ 
    CFforecastBal[i,(dataEndCol+j)] = round(CFforecastBal[i,(dataEndCol+j-1)]* 
                                      (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastBal[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF11 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF11) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF11[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF11[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF11[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF11[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF11[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF11[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[11,i] = round(mean(localErrorsF11[!rowSums(!is.finite(localErrorsF11)),i]),4) 
} 
#-------- 2.1.7 portfolio development - EBIT&Balance -------- 
portfoliosEBIT = 5  #no. of EBIT groupings 
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portfoliosBal = 5   #no. of Balance groupings 
portfoliosTotal = portfoliosEBIT*portfoliosBal 
quantilesBal = quantile(as.numeric(Balancedata[,inputYear+2]), c(.2, .4, .6, .8, 1), na.rm = TRUE) 
quantilMatrixBal = matrix(c(quantilesBal,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firms) 
CFdataCalc = cbind(CFdata,portfolioNo) 
for (i in 1:firms) {  
  BalInputYear = as.numeric(Balancedata[i,inputYear+2]) 
  if(is.na(BalInputYear)){ 
    CFdataCalc[i,42]=NA 
  } else if(BalInputYear<quantilMatrixBal[1,1]){ 
    CFdataCalc[i,42]=5 
  } else if(BalInputYear<quantilMatrixBal[2,1]){ 
    CFdataCalc[i,42]=4 
  } else if(BalInputYear<quantilMatrixBal[3,1]){ 
    CFdataCalc[i,42]=3 
  } else if(BalInputYear<quantilMatrixBal[4,1]){ 
    CFdataCalc[i,42]=2 
  } else{ 
    CFdataCalc[i,42]=1 
  } 
} 
CFdataComp = CFdataCalc[complete.cases(CFdataCalc[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataComp = CFdataComp[complete.cases(CFdataComp[,42]),] #removing NA rows from BalportfolioNo 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
quantilesEBIT = quantile(as.numeric(CFdataComp[,inputYear+2]), c(.2, .4, .6, .8, 1)) 
quantilMatrixEBIT = matrix(c(quantilesEBIT,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataComp = cbind(CFdataComp,portfolioNo) 
for (i in 1:firmsNo) {  
  EBITinputYear = as.numeric(CFdataComp[i,inputYear+2]) 
  if(EBITinputYear<quantilMatrixEBIT[1,1]){ 
    CFdataComp[i,43]=5 
  } else if(EBITinputYear<quantilMatrixEBIT[2,1]){ 
    CFdataComp[i,43]=4 
  } else if(EBITinputYear<quantilMatrixEBIT[3,1]){ 
    CFdataComp[i,43]=3 
  } else if(EBITinputYear<quantilMatrixEBIT[4,1]){ 
    CFdataComp[i,43]=2 
  } else{ 
    CFdataComp[i,43]=1 
  } 
} 
CFdataNum=CFdataComp[,2:43] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
portfolioList = matrix(0,nrow=portfoliosTotal,ncol=4) #2 cols for each EBIT and Ind 
portfolioList[,1] = quantilMatrixBal[length(quantilMatrixBal[,2]):1,2] 
for(i in 1:portfoliosTotal){ 
  portfolioList[i,2] = sum(portfolioList[1:i,1]==portfolioList[i,1]) 
  portfolioList[i,3] = quantilMatrixBal[which(quantilMatrixBal[,2]==portfolioList[i,1]),1] 
  portfolioList[i,4] = quantilMatrixEBIT[which(quantilMatrixEBIT[,2]==portfolioList[i,2]),1] 
} 
CFdataNum = cbind(CFdataNum,portfolioNo) 
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for(i in 1:firmsNo){ 
  CFdataNum[i,43] = which(portfolioList[,1]==CFdataNum[i,41] &  
                          portfolioList[,2]==CFdataNum[i,42]) 
} 
CFdataPortSum = matrix(0,nrow = portfoliosTotal,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,43] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
} 
PortSize = vector(mode = "numeric",length = portfoliosTotal) 
for (i in 1:portfoliosTotal) { 
  PortSize[i] = sum(CFdataNum[,43] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastEBITbal = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastEBITbal[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastEBITbal[i,(dataEndCol)] 
  CFdataTestComp[i,50] = which(portfolioList[,1]==CFdataTestComp[i,46] &  
                               portfolioList[,2]==CFdataTestComp[i,47]) 
  inputPort = CFdataTestComp[i,50] 
  for(j in 1:horizon){ 
    CFforecastEBITbal[i,(dataEndCol+j)] = round(CFforecastEBITbal[i,(dataEndCol+j-1)]* 
                                          (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastEBITbal[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF12 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF12) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF12[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF12[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF12[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF12[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF12[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF12[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[12,i] = round(mean(localErrorsF12[!rowSums(!is.finite(localErrorsF12)),i]),4) 
} 
#-------- 2.1.8 portfolio development - Growth10 -------- 
portfolios = 10 
CFdataComp = CFdata[complete.cases(CFdata[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataNum = CFdataComp[,2:41] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
growthData = (CFdataNum[,2:40]/CFdataNum[,1:39]-1) 
firmsNo = length(CFdataNum[,1]) 
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cols = length(growthData[1,]) 
for(i in 1:firmsNo){ 
  for(j in 1:cols){ 
    if( growthData[i,j]=="Inf" | growthData[i,j]=="-Inf"){ 
      growthData[i,j]=NA 
    } 
  } 
} 
quantilesGrow = quantile(as.numeric(growthData[,inputYear+1]),c(.1,.2,.3,.4,.5,.6,.7,.8,.9,1), na.rm = TRUE) 
quantilMatrixGrow = matrix(c(quantilesGrow,portfolios:1),nrow=portfolios,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  growthInputYear = as.numeric(growthData[i,inputYear+1]) #+1 because there is year zero 
  if(is.na(growthInputYear)){ 
    CFdataNum[i,41]=NA 
  } else if(growthInputYear<quantilMatrixGrow[1,1]){ 
    CFdataNum[i,41]=10 
  } else if(growthInputYear<quantilMatrixGrow[2,1]){ 
    CFdataNum[i,41]=9 
  } else if(growthInputYear<quantilMatrixGrow[3,1]){ 
    CFdataNum[i,41]=8 
  } else if(growthInputYear<quantilMatrixGrow[4,1]){ 
    CFdataNum[i,41]=7 
  } else if(growthInputYear<quantilMatrixGrow[5,1]){ 
    CFdataNum[i,41]=6 
  } else if(growthInputYear<quantilMatrixGrow[6,1]){ 
    CFdataNum[i,41]=5 
  } else if(growthInputYear<quantilMatrixGrow[7,1]){ 
    CFdataNum[i,41]=4 
  } else if(growthInputYear<quantilMatrixGrow[8,1]){ 
    CFdataNum[i,41]=3 
  } else if(growthInputYear<quantilMatrixGrow[9,1]){ 
    CFdataNum[i,41]=2 
  } else{ 
    CFdataNum[i,41]=1 
  } 
} 
CFdataNum = CFdataNum[complete.cases(CFdataNum[,41]),] #removing NA rows from portfolioNo 
firmsNo = length(CFdataNum[,1]) 
CFdataPortSum = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,41] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
}   
CFdataPortAvg = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
PortSize = vector(mode = "numeric",length = portfolios) 
for (i in 1:portfolios) { 
  PortSize[i] = sum(CFdataNum[,41] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastGrow2 = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastGrow2[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
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for(i in 1:firmsNo){ 
  inputEBIT = CFforecastGrow2[i,(dataEndCol)] 
  inputGrowth = CFdataTestComp[i,43] 
  if(inputGrowth<quantilMatrixGrow[1,1]){ 
    CFdataTestComp[i,48]=10 
  } else if(inputGrowth<quantilMatrixGrow[2,1]){ 
    CFdataTestComp[i,48]=9 
  } else if(inputGrowth<quantilMatrixGrow[3,1]){ 
    CFdataTestComp[i,48]=8 
  } else if(inputGrowth<quantilMatrixGrow[4,1]){ 
    CFdataTestComp[i,48]=7 
  } else if(inputGrowth<quantilMatrixGrow[5,1]){ 
    CFdataTestComp[i,48]=6 
  } else if(inputGrowth<quantilMatrixGrow[6,1]){ 
    CFdataTestComp[i,48]=5 
  } else if(inputGrowth<quantilMatrixGrow[7,1]){ 
    CFdataTestComp[i,48]=4 
  } else if(inputGrowth<quantilMatrixGrow[8,1]){ 
    CFdataTestComp[i,48]=3 
  } else if(inputGrowth<quantilMatrixGrow[9,1]){ 
    CFdataTestComp[i,48]=2 
  } else{ 
    CFdataTestComp[i,48]=1 
  } 
  inputPort = CFdataTestComp[i,48] 
  for(j in 1:horizon){ 
    CFforecastGrow2[i,(dataEndCol+j)] = round(CFforecastGrow2[i,(dataEndCol+j-1)]* 
                                        (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastGrow2[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF19 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF19) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF19[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF19[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF19[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF19[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF19[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF19[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[19,i] = round(mean(localErrorsF19[!rowSums(!is.finite(localErrorsF19)),i]),4) 
} 
#-------- 2.1.9 portfolio development - Growth5 -------- 
portfolios = 5 
CFdataComp = CFdata[complete.cases(CFdata[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataNum = CFdataComp[,2:41] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
growthData = (CFdataNum[,2:40]/CFdataNum[,1:39]-1) 
firmsNo = length(CFdataNum[,1]) 
cols = length(growthData[1,]) 
for(i in 1:firmsNo){ 
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  for(j in 1:cols){ 
    if( growthData[i,j]=="Inf" || growthData[i,j]=="-Inf"){ 
      growthData[i,j]=NA 
    } 
  } 
} 
quantilesGrow = quantile(as.numeric(growthData[,inputYear+1]), c(.2, .4, .6, .8, 1), na.rm = TRUE) 
quantilMatrixGrow = matrix(c(quantilesGrow,5:1),nrow=5,ncol=2) #+1 because there is year zero 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  growthInputYear = as.numeric(growthData[i,inputYear+1]) #+1 because there is year zero 
  if(is.na(growthInputYear)){ 
    CFdataNum[i,41]=NA 
  } else if(growthInputYear<quantilMatrixGrow[1,1]){ 
    CFdataNum[i,41]=5 
  } else if(growthInputYear<quantilMatrixGrow[2,1]){ 
    CFdataNum[i,41]=4 
  } else if(growthInputYear<quantilMatrixGrow[3,1]){ 
    CFdataNum[i,41]=3 
  } else if(growthInputYear<quantilMatrixGrow[4,1]){ 
    CFdataNum[i,41]=2 
  } else{ 
    CFdataNum[i,41]=1 
  } 
} 
CFdataNum = CFdataNum[complete.cases(CFdataNum[,41]),] #removing NA rows from portfolioNo 
firmsNo = length(CFdataNum[,1]) 
CFdataPortSum = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,41] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
}   
CFdataPortAvg = matrix(0,nrow = portfolios,ncol = 40) #year 0 to 39 of data, no CVRs 
PortSize = vector(mode = "numeric",length = portfolios) 
for (i in 1:portfolios) { 
  PortSize[i] = sum(CFdataNum[,41] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastGrow = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastGrow[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastGrow[i,(dataEndCol)] 
  inputGrowth = CFdataTestComp[i,43] 
  if(inputGrowth<quantilMatrixGrow[1,1]){ 
    CFdataTestComp[i,48]=5 
  } else if(inputGrowth<quantilMatrixGrow[2,1]){ 
    CFdataTestComp[i,48]=4 
  } else if(inputGrowth<quantilMatrixGrow[3,1]){ 
    CFdataTestComp[i,48]=3 
  } else if(inputGrowth<quantilMatrixGrow[4,1]){ 
    CFdataTestComp[i,48]=2 
  } else{ 
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    CFdataTestComp[i,48]=1 
  } 
  inputPort = CFdataTestComp[i,48] 
  for(j in 1:horizon){ 
    CFforecastGrow[i,(dataEndCol+j)] = round(CFforecastGrow[i,(dataEndCol+j-1)]* 
                                               (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastGrow[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF13 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF13) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF13[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF13[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF13[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF13[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF13[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF13[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[13,i] = round(mean(localErrorsF13[!rowSums(!is.finite(localErrorsF13)),i]),4) 
} 
#-------- 2.1.10 portfolio development - EBIT&Growth -------- 
portfoliosEBIT = 5  #no. of EBIT groupings 
portfoliosGrowth = 5   #no. of Balance groupings 
portfoliosTotal = portfoliosEBIT*portfoliosGrowth 
CFdataComp = CFdata[complete.cases(CFdata[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataNum = CFdataComp[,2:41] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
growthData = (CFdataNum[,2:40]/CFdataNum[,1:39]-1) 
firmsNo = length(CFdataNum[,1]) 
cols = length(growthData[1,]) 
for(i in 1:firmsNo){ 
  for(j in 1:cols){ 
    if( growthData[i,j]=="Inf" || growthData[i,j]=="-Inf"){ 
      growthData[i,j]=NA 
    } 
  } 
} 
quantilesGrow = quantile(as.numeric(growthData[,inputYear+1]), c(.2, .4, .6, .8, 1), na.rm = TRUE) 
quantilMatrixGrow = matrix(c(quantilesGrow,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  growthInputYear = as.numeric(growthData[i,inputYear+1]) 
  if(is.na(growthInputYear)){ 
    CFdataNum[i,41]=NA 
  } else if(growthInputYear<quantilMatrixGrow[1,1]){ 
    CFdataNum[i,41]=5 
  } else if(growthInputYear<quantilMatrixGrow[2,1]){ 
    CFdataNum[i,41]=4 
  } else if(growthInputYear<quantilMatrixGrow[3,1]){ 
    CFdataNum[i,41]=3 
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  } else if(growthInputYear<quantilMatrixGrow[4,1]){ 
    CFdataNum[i,41]=2 
  } else{ 
    CFdataNum[i,41]=1 
  } 
} 
firmsNo = length(CFdataNum[,1]) 
quantilesEBIT = quantile(as.numeric(CFdataNum[,inputYear+1]), c(.2, .4, .6, .8, 1)) 
quantilMatrixEBIT = matrix(c(quantilesEBIT,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  EBITinputYear = as.numeric(CFdataNum[i,inputYear+1]) 
  if(EBITinputYear<quantilMatrixEBIT[1,1]){ 
    CFdataNum[i,42]=5 
  } else if(EBITinputYear<quantilMatrixEBIT[2,1]){ 
    CFdataNum[i,42]=4 
  } else if(EBITinputYear<quantilMatrixEBIT[3,1]){ 
    CFdataNum[i,42]=3 
  } else if(EBITinputYear<quantilMatrixEBIT[4,1]){ 
    CFdataNum[i,42]=2 
  } else{ 
    CFdataNum[i,42]=1 
  } 
} 
portfolioList = matrix(0,nrow=portfoliosTotal,ncol=4) #2 cols for each EBIT and Ind 
portfolioList[,1] = quantilMatrixGrow[length(quantilMatrixGrow[,2]):1,2] 
for(i in 1:portfoliosTotal){ 
  portfolioList[i,2] = sum(portfolioList[1:i,1]==portfolioList[i,1]) 
  portfolioList[i,3] = quantilMatrixGrow[which(quantilMatrixGrow[,2]==portfolioList[i,1]),1] 
  portfolioList[i,4] = quantilMatrixEBIT[which(quantilMatrixEBIT[,2]==portfolioList[i,2]),1] 
} 
CFdataNum = cbind(CFdataNum,portfolioNo) 
CFdataNum = CFdataNum[complete.cases(CFdataNum[,41]),] #removing NA rows from portfolioNo 
firmsNo = length(CFdataNum[,1]) 
for(i in 1:firmsNo){ 
  CFdataNum[i,43] = which(portfolioList[,1]==CFdataNum[i,41] &  
                          portfolioList[,2]==CFdataNum[i,42]) 
} 
CFdataPortSum = matrix(0,nrow = portfoliosTotal,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,43] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
} 
PortSize = vector(mode = "numeric",length = portfoliosTotal) 
for (i in 1:portfoliosTotal) { 
  PortSize[i] = sum(CFdataNum[,43] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastEBITgrow = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastEBITgrow[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastEBITgrow[i,(dataEndCol)] 
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  CFdataTestComp[i,51] = which(portfolioList[,1]==CFdataTestComp[i,48] &  
                               portfolioList[,2]==CFdataTestComp[i,47]) 
  inputPort = CFdataTestComp[i,51] 
  for(j in 1:horizon){ 
    CFforecastEBITgrow[i,(dataEndCol+j)] = round(CFforecastEBITgrow[i,(dataEndCol+j-1)]* 
                                           (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastEBITgrow[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF14 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF14) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF14[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF14[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF14[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF14[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF14[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF14[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[14,i] = round(mean(localErrorsF14[!rowSums(!is.finite(localErrorsF14)),i]),4) 
} 
#-------- 2.1.11 portfolio development - EBIT&Growth5&Balance ---------- 
portfoliosEBIT = 5  #no. of EBIT groupings 
portfoliosBal = 5   #no. of Balance groupings 
portfoliosGrowth = 5 #no. of growth groupings 
portfoliosTotal = portfoliosEBIT*portfoliosBal*portfoliosGrowth 
quantilesBal = quantile(as.numeric(Balancedata[,inputYear+2]), c(.2, .4, .6, .8, 1), na.rm = TRUE) 
quantilMatrixBal = matrix(c(quantilesBal,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firms) 
CFdataCalc = cbind(CFdata,portfolioNo) 
for (i in 1:firms) {  
  BalInputYear = as.numeric(Balancedata[i,inputYear+2]) 
  if(is.na(BalInputYear)){ 
    CFdataCalc[i,42]=NA 
  } else if(BalInputYear<quantilMatrixBal[1,1]){ 
    CFdataCalc[i,42]=5 
  } else if(BalInputYear<quantilMatrixBal[2,1]){ 
    CFdataCalc[i,42]=4 
  } else if(BalInputYear<quantilMatrixBal[3,1]){ 
    CFdataCalc[i,42]=3 
  } else if(BalInputYear<quantilMatrixBal[4,1]){ 
    CFdataCalc[i,42]=2 
  } else{ 
    CFdataCalc[i,42]=1 
  } 
} 
CFdataComp = CFdataCalc[complete.cases(CFdataCalc[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataComp = CFdataComp[complete.cases(CFdataComp[,42]),] #removing NA rows from BalportfolioNo 
CFdataNum = CFdataComp[,2:42] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
growthData = (CFdataNum[,2:40]/CFdataNum[,1:39]-1) 
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firmsNo = length(CFdataNum[,1]) 
cols = length(growthData[1,]) 
for(i in 1:firmsNo){ 
  for(j in 1:cols){ 
    if( growthData[i,j]=="Inf" || growthData[i,j]=="-Inf"){ 
      growthData[i,j]=NA 
    } 
  } 
} 
quantilesGrow = quantile(as.numeric(growthData[,inputYear+1]), c(.2, .4, .6, .8, 1), na.rm = TRUE) 
quantilMatrixGrow = matrix(c(quantilesGrow,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  growthInputYear = as.numeric(growthData[i,inputYear+1]) 
  if(is.na(growthInputYear)){ 
    CFdataNum[i,42]=NA 
  } else if(growthInputYear<quantilMatrixGrow[1,1]){ 
    CFdataNum[i,42]=5 
  } else if(growthInputYear<quantilMatrixGrow[2,1]){ 
    CFdataNum[i,42]=4 
  } else if(growthInputYear<quantilMatrixGrow[3,1]){ 
    CFdataNum[i,42]=3 
  } else if(growthInputYear<quantilMatrixGrow[4,1]){ 
    CFdataNum[i,42]=2 
  } else{ 
    CFdataNum[i,42]=1 
  } 
} 
quantilesEBIT = quantile(as.numeric(CFdataNum[,inputYear+1]), c(.2, .4, .6, .8, 1)) 
quantilMatrixEBIT = matrix(c(quantilesEBIT,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  EBITinputYear = as.numeric(CFdataNum[i,inputYear+1]) 
  if(EBITinputYear<quantilMatrixEBIT[1,1]){ 
    CFdataNum[i,43]=5 
  } else if(EBITinputYear<quantilMatrixEBIT[2,1]){ 
    CFdataNum[i,43]=4 
  } else if(EBITinputYear<quantilMatrixEBIT[3,1]){ 
    CFdataNum[i,43]=3 
  } else if(EBITinputYear<quantilMatrixEBIT[4,1]){ 
    CFdataNum[i,43]=2 
  } else{ 
    CFdataNum[i,43]=1 
  } 
} 
portfolioList = matrix(0,nrow=portfoliosTotal,ncol=6) #2 cols for each EBIT, Bal and growth 
portfolioList[,1] = quantilMatrixBal[length(quantilMatrixBal[,2]):1,2] 
growthPorts = matrix(data=0,nrow = (portfoliosTotal/portfoliosGrowth),ncol = portfoliosGrowth) 
growthPorts[,1] = 1 
growthVector = growthPorts[,1] 
for(i in 2:portfoliosGrowth){ 
  growthPorts[,i] = i 
  growthVector = c(growthVector,growthPorts[,i]) 
} 
for(i in 1:portfoliosTotal){ 
  portfolioList[i,2] = growthVector[i] 
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  portfolioList[i,3] = sum(portfolioList[1:i,1]==portfolioList[i,1] & 
                             portfolioList[1:i,2]==portfolioList[i,2]) 
   
  portfolioList[i,4] = quantilMatrixBal[which(quantilMatrixGrow[,2]==portfolioList[i,1]),1] 
  portfolioList[i,5] = quantilMatrixGrow[which(quantilMatrixGrow[,2]==portfolioList[i,2]),1] 
  portfolioList[i,6] = quantilMatrixEBIT[which(quantilMatrixGrow[,2]==portfolioList[i,3]),1] 
} 
CFdataNum = cbind(CFdataNum,portfolioNo) 
CFdataNum = CFdataNum[complete.cases(CFdataNum[,42]),] #removing NA rows from portfolioNo 
firmsNo = length(CFdataNum[,1]) 
for(i in 1:firmsNo){ 
  CFdataNum[i,44] = which(portfolioList[,1]==CFdataNum[i,41] &  
                            portfolioList[,2]==CFdataNum[i,42] & 
                            portfolioList[,3]==CFdataNum[i,43]) 
} 
CFdataPortSum = matrix(0,nrow = portfoliosTotal,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,44] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
} 
PortSize = vector(mode = "numeric",length = portfoliosTotal) 
for (i in 1:portfoliosTotal) { 
  PortSize[i] = sum(CFdataNum[,44] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastEBITbalGrow = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastEBITbalGrow[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastEBITbalGrow[i,(dataEndCol)] 
  CFdataTestComp[i,53] = which(portfolioList[,1]==CFdataTestComp[i,46] &  
                                 portfolioList[,2]==CFdataTestComp[i,48]& 
                                 portfolioList[,3]==CFdataTestComp[i,47]) 
   
  inputPort = CFdataTestComp[i,53] 
  for(j in 1:horizon){ 
    CFforecastEBITbalGrow[i,(dataEndCol+j)] = round(CFforecastEBITbalGrow[i,(dataEndCol+j-1)]* 
                                                      (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastEBITbalGrow[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF15 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF15) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF15[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF15[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF15[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF15[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF15[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF15[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[15,i] = round(mean(localErrorsF15[!rowSums(!is.finite(localErrorsF15)),i]),4) 
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} 
#-------- 2.1.12 portfolio development - EBIT&Growth&Industry ---------- 
portfoliosEBIT = 5  #no. of EBIT groupings 
portfoliosInd = IndUniqueLenght 
portfoliosGrowth = 5 #no. of growth groupings 
portfoliosTotal = portfoliosEBIT*portfoliosInd*portfoliosGrowth 
CFdataCalc = cbind(CFdata,relSmallDataUnique[,4]) #4 because it takes industry no. 
CFdataComp = CFdataCalc[complete.cases(CFdataCalc[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataNum = CFdataComp[,2:42] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
growthData = (CFdataNum[,2:40]/CFdataNum[,1:39]-1) 
firmsNo = length(CFdataNum[,1]) 
cols = length(growthData[1,]) 
for(i in 1:firmsNo){ 
  for(j in 1:cols){ 
    if( growthData[i,j]=="Inf" || growthData[i,j]=="-Inf"){ 
      growthData[i,j]=NA 
    } 
  } 
} 
quantilesGrow = quantile(as.numeric(growthData[,inputYear+1]), c(.2, .4, .6, .8, 1), na.rm = TRUE) 
quantilMatrixGrow = matrix(c(quantilesGrow,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  growthInputYear = as.numeric(growthData[i,inputYear+1]) 
  if(is.na(growthInputYear)){ 
    CFdataNum[i,42]=NA 
  } else if(growthInputYear<quantilMatrixGrow[1,1]){ 
    CFdataNum[i,42]=5 
  } else if(growthInputYear<quantilMatrixGrow[2,1]){ 
    CFdataNum[i,42]=4 
  } else if(growthInputYear<quantilMatrixGrow[3,1]){ 
    CFdataNum[i,42]=3 
  } else if(growthInputYear<quantilMatrixGrow[4,1]){ 
    CFdataNum[i,42]=2 
  } else{ 
    CFdataNum[i,42]=1 
  } 
} 
firmsNo = length(CFdataNum[,1]) 
quantilesEBIT = quantile(as.numeric(CFdataNum[,inputYear+1]), c(.2, .4, .6, .8, 1)) 
quantilMatrixEBIT = matrix(c(quantilesEBIT,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  EBITinputYear = as.numeric(CFdataNum[i,inputYear+1]) 
  if(EBITinputYear<quantilMatrixEBIT[1,1]){ 
    CFdataNum[i,43]=5 
  } else if(EBITinputYear<quantilMatrixEBIT[2,1]){ 
    CFdataNum[i,43]=4 
  } else if(EBITinputYear<quantilMatrixEBIT[3,1]){ 
    CFdataNum[i,43]=3 
  } else if(EBITinputYear<quantilMatrixEBIT[4,1]){ 
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    CFdataNum[i,43]=2 
  } else{ 
    CFdataNum[i,43]=1 
  } 
} 
portfolioList = matrix(0,nrow=portfoliosTotal,ncol=6) #2 cols for each EBIT, Ind and growth 
portfolioList[,1] = IndustryNo 
growthPorts = matrix(data=0,nrow = (portfoliosTotal/portfoliosGrowth),ncol = portfoliosGrowth) 
growthPorts[,1] = 1 
growthVector = growthPorts[,1] 
for(i in 2:portfoliosGrowth){ 
  growthPorts[,i] = i 
  growthVector = c(growthVector,growthPorts[,i]) 
} 
for(i in 1:portfoliosTotal){ 
  portfolioList[i,2] = growthVector[i] 
  portfolioList[i,3] = sum(portfolioList[1:i,1]==portfolioList[i,1] & 
                           portfolioList[1:i,2]==portfolioList[i,2]) 
   
  portfolioList[i,4] = IndustryList[which(IndustryList[,3]==portfolioList[i,1]),1] 
  portfolioList[i,5] = quantilMatrixGrow[which(quantilMatrixGrow[,2]==portfolioList[i,2]),1] 
  portfolioList[i,6] = quantilMatrixEBIT[which(quantilMatrixGrow[,2]==portfolioList[i,3]),1] 
} 
 
CFdataNum = cbind(CFdataNum,portfolioNo) 
CFdataNum = CFdataNum[complete.cases(CFdataNum[,42]),] #removing NA rows from portfolioNo 
firmsNo = length(CFdataNum[,1]) 
for(i in 1:firmsNo){ 
  CFdataNum[i,44] = which(portfolioList[,1]==CFdataNum[i,41] &  
                          portfolioList[,2]==CFdataNum[i,42] & 
                          portfolioList[,3]==CFdataNum[i,43]) 
} 
CFdataPortSum = matrix(0,nrow = portfoliosTotal,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,44] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
} 
PortSize = vector(mode = "numeric",length = portfoliosTotal) 
for (i in 1:portfoliosTotal) { 
  PortSize[i] = sum(CFdataNum[,44] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastEBITindGrow = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastEBITindGrow[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastEBITindGrow[i,(dataEndCol)] 
  CFdataTestComp[i,52] = which(portfolioList[,1]==CFdataTestComp[i,44] &  
                               portfolioList[,2]==CFdataTestComp[i,48]& 
                               portfolioList[,3]==CFdataTestComp[i,47]) 
   
  inputPort = CFdataTestComp[i,52] 
  for(j in 1:horizon){ 
    CFforecastEBITindGrow[i,(dataEndCol+j)] = round(CFforecastEBITindGrow[i,(dataEndCol+j-1)]* 
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                                              (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastEBITindGrow[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF16 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF16) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF16[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF16[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF16[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF16[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF16[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF16[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[16,i] = round(mean(localErrorsF16[!rowSums(!is.finite(localErrorsF16)),i]),4) 
} 
#-------- 2.1.13 portfolio development - EBIT&Growth10&Balance ---------- 
portfoliosEBIT = 5     #no. of EBIT groupings 
portfoliosBal = 5      #no. of Balance groupings 
portfoliosGrowth = 10  #no. of growth groupings 
portfoliosTotal = portfoliosEBIT*portfoliosBal*portfoliosGrowth 
quantilesBal = quantile(as.numeric(Balancedata[,inputYear+2]), c(.2, .4, .6, .8, 1), na.rm = TRUE) 
quantilMatrixBal = matrix(c(quantilesBal,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firms) 
CFdataCalc = cbind(CFdata,portfolioNo) 
for (i in 1:firms) {  
  BalInputYear = as.numeric(Balancedata[i,inputYear+2]) 
  if(is.na(BalInputYear)){ 
    CFdataCalc[i,42]=NA 
  } else if(BalInputYear<quantilMatrixBal[1,1]){ 
    CFdataCalc[i,42]=5 
  } else if(BalInputYear<quantilMatrixBal[2,1]){ 
    CFdataCalc[i,42]=4 
  } else if(BalInputYear<quantilMatrixBal[3,1]){ 
    CFdataCalc[i,42]=3 
  } else if(BalInputYear<quantilMatrixBal[4,1]){ 
    CFdataCalc[i,42]=2 
  } else{ 
    CFdataCalc[i,42]=1 
  } 
} 
CFdataComp = CFdataCalc[complete.cases(CFdataCalc[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
CFdataComp = CFdataComp[complete.cases(CFdataComp[,42]),] #removing NA rows from BalportfolioNo 
CFdataNum = CFdataComp[,2:42] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
growthData = (CFdataNum[,2:40]/CFdataNum[,1:39]-1) 
firmsNo = length(CFdataNum[,1]) 
cols = length(growthData[1,]) 
for(i in 1:firmsNo){ 
  for(j in 1:cols){ 
    if(growthData[i,j]=="Inf" || growthData[i,j]=="-Inf"){ 
      growthData[i,j]=NA 
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    } 
  } 
} 
quantilesGrow = quantile(as.numeric(growthData[,inputYear+1]),c(.1,.2,.3,.4,.5,.6,.7,.8,.9,1), na.rm = TRUE) 
quantilMatrixGrow = matrix(c(quantilesGrow,portfoliosGrowth:1),nrow=portfoliosGrowth,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  growthInputYear = as.numeric(growthData[i,inputYear+1]) #+1 because there is year zero 
  if(is.na(growthInputYear)){ 
    CFdataNum[i,42]=NA 
  } else if(growthInputYear<quantilMatrixGrow[1,1]){ 
    CFdataNum[i,42]=10 
  } else if(growthInputYear<quantilMatrixGrow[2,1]){ 
    CFdataNum[i,42]=9 
  } else if(growthInputYear<quantilMatrixGrow[3,1]){ 
    CFdataNum[i,42]=8 
  } else if(growthInputYear<quantilMatrixGrow[4,1]){ 
    CFdataNum[i,42]=7 
  } else if(growthInputYear<quantilMatrixGrow[5,1]){ 
    CFdataNum[i,42]=6 
  } else if(growthInputYear<quantilMatrixGrow[6,1]){ 
    CFdataNum[i,42]=5 
  } else if(growthInputYear<quantilMatrixGrow[7,1]){ 
    CFdataNum[i,42]=4 
  } else if(growthInputYear<quantilMatrixGrow[8,1]){ 
    CFdataNum[i,42]=3 
  } else if(growthInputYear<quantilMatrixGrow[9,1]){ 
    CFdataNum[i,42]=2 
  } else{ 
    CFdataNum[i,42]=1 
  } 
} 
quantilesEBIT = quantile(as.numeric(CFdataNum[,inputYear+1]), c(.2, .4, .6, .8, 1)) 
quantilMatrixEBIT = matrix(c(quantilesEBIT,5:1),nrow=5,ncol=2) 
portfolioNo = vector(mode="numeric", firmsNo) 
CFdataNum = cbind(CFdataNum,portfolioNo) 
for (i in 1:firmsNo) {  
  EBITinputYear = as.numeric(CFdataNum[i,inputYear+1]) 
  if(EBITinputYear<quantilMatrixEBIT[1,1]){ 
    CFdataNum[i,43]=5 
  } else if(EBITinputYear<quantilMatrixEBIT[2,1]){ 
    CFdataNum[i,43]=4 
  } else if(EBITinputYear<quantilMatrixEBIT[3,1]){ 
    CFdataNum[i,43]=3 
  } else if(EBITinputYear<quantilMatrixEBIT[4,1]){ 
    CFdataNum[i,43]=2 
  } else{ 
    CFdataNum[i,43]=1 
  } 
} 
portfolioList = matrix(0,nrow=portfoliosTotal,ncol=6) #2 cols for each EBIT, Bal and growth 
portfolioList[,1] = quantilMatrixBal[length(quantilMatrixBal[,2]):1,2] 
growthPorts = matrix(data=0,nrow = (portfoliosTotal/portfoliosGrowth),ncol = portfoliosGrowth) 
growthPorts[,1] = 1 
growthVector = growthPorts[,1] 
for(i in 2:portfoliosGrowth){ 
  growthPorts[,i] = i 
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  growthVector = c(growthVector,growthPorts[,i]) 
} 
for(i in 1:portfoliosTotal){ 
  portfolioList[i,2] = growthVector[i] 
  portfolioList[i,3] = sum(portfolioList[1:i,1]==portfolioList[i,1] & 
                           portfolioList[1:i,2]==portfolioList[i,2]) 
   
  portfolioList[i,4] = quantilMatrixBal[which(quantilMatrixBal[,2]==portfolioList[i,1]),1] 
  portfolioList[i,5] = quantilMatrixGrow[which(quantilMatrixGrow[,2]==portfolioList[i,2]),1] 
  portfolioList[i,6] = quantilMatrixEBIT[which(quantilMatrixEBIT[,2]==portfolioList[i,3]),1] 
} 
CFdataNum = cbind(CFdataNum,portfolioNo) 
CFdataNum = CFdataNum[complete.cases(CFdataNum[,42]),] #removing NA rows from portfolioNo 
firmsNo = length(CFdataNum[,1]) 
for(i in 1:firmsNo){ 
  CFdataNum[i,44] = which(portfolioList[,1]==CFdataNum[i,41] &  
                          portfolioList[,2]==CFdataNum[i,42] & 
                          portfolioList[,3]==CFdataNum[i,43]) 
} 
CFdataPortSum = matrix(0,nrow = portfoliosTotal,ncol = 40) #year 0 to 39 of data, no CVRs 
for (i in 1:firmsNo) { 
  portNum = CFdataNum[i,44] 
  CFdataPortSum[portNum,]=CFdataNum[i,1:40]+CFdataPortSum[portNum,] 
} 
PortSize = vector(mode = "numeric",length = portfoliosTotal) 
for (i in 1:portfoliosTotal) { 
  PortSize[i] = sum(CFdataNum[,44] == i) 
} 
CFdataPortAvg = CFdataPortSum[,(dataStart+1):(horizonEndCol+1)]/PortSize 
#forecasting 
firmsNo = length(CFdataTestComp[,1]) 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastEBITbalGrow2 = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataTestComp[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastEBITbalGrow2[,1:dataEnd] = CFdataTestComp[,(dataStart+1):(dataEnd+1)] 
CFdataPortPer = CFdataPortAvg[,2:(horizonEndCol)]/CFdataPortAvg[,1:(horizonEndCol-1)]-1 
for(i in 1:firmsNo){ 
  inputEBIT = CFforecastEBITbalGrow2[i,(dataEndCol)] 
   
  CFdataTestComp[i,53] = which(portfolioList[,1]==CFdataTestComp[i,46] &  
                               portfolioList[,2]==CFdataTestComp[i,48]& 
                               portfolioList[,3]==CFdataTestComp[i,47]) 
  inputPort = CFdataTestComp[i,53] 
  for(j in 1:horizon){ 
    CFforecastEBITbalGrow2[i,(dataEndCol+j)] = round(CFforecastEBITbalGrow2[i,(dataEndCol+j-1)]* 
                                              (1+CFdataPortPer[inputPort,(dataEndCol+j-1)]),2) 
  } 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastEBITbalGrow2[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF17 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF17) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF17[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF17[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF17[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF17[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF17[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
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  localErrorsF17[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[17,i] = round(mean(localErrorsF17[!rowSums(!is.finite(localErrorsF17)),i]),4) 
} 
#-------- 3.1.1 ARIMA - Best fit -------- 
CFdataComp = CFdataTest[complete.cases(CFdataTest[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
CFdataNum=CFdataComp[,2:41] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecast = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataNum[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecast[,1:dataEnd] = CFdataNum[,(dataStart+1):(dataEnd+1)] 
for(i in 1:firmsNo){ 
  tsData = ts(CFactual[i,1:dataEnd]) 
  model = auto.arima(tsData) 
  fullForecast = forecast(model,h=horizon) 
  tsForecast = fullForecast$mean 
  CFforecast[i,(dataEnd+1):(dataEnd+horizon)] = round(tsForecast) 
} 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecast[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF1 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF1) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF1[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF1[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF1[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF1[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF1[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF1[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[1,i] = round(mean(localErrorsF1[!rowSums(!is.finite(localErrorsF1)),i]),4) 
} 
#-------- 3.1.2 ARIMA - Input -------- 
#ARIMA model 1 
p1 = 0   #AR order 
d1 = 1   #degree of differencing  
q1 = 1   #MA order 
#ARIMA model 2 
p2 = 1   #AR order 
d2 = 0   #degree of differencing  
q2 = 0   #MA order 
CFdataComp = CFdataTest[complete.cases(CFdataTest[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
CFdataNum=CFdataComp[,2:41] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
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class(CFdataNum) <- "numeric" 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecast1 = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFforecast2 = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataNum[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecast1[,1:dataEnd] = CFdataNum[,(dataStart+1):(dataEnd+1)] 
CFforecast2[,1:dataEnd] = CFdataNum[,(dataStart+1):(dataEnd+1)] 
for(i in 1:firmsNo){ 
  tsData = ts(CFactual[i,1:dataEnd]) 
  model1 = Arima(tsData,c(p1, d1, q1),method="ML")  
  fullForecast1 = forecast(model1,h=horizon) 
  tsForecast1 = fullForecast1$mean 
  CFforecast1[i,(dataEnd+1):(dataEnd+horizon)] = round(tsForecast1) 
  model2 = Arima(tsData,c(p2, d2, q2),method="ML") 
  fullForecast2 = forecast(model2,h=horizon) 
  tsForecast2 = fullForecast2$mean 
  CFforecast2[i,(dataEnd+1):(dataEnd+horizon)] = round(tsForecast2) 
} 
#model input 1 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastRWND[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF2 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF2) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF2[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF2[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF2[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF2[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF2[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF2[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[2,i] = round(mean(localErrorsF2[!rowSums(!is.finite(localErrorsF2)),i]),4) 
} 
#model input 2 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastRWND[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF3 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF3) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF3[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF3[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF3[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF3[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF3[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF3[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[3,i] = round(mean(localErrorsF3[!rowSums(!is.finite(localErrorsF3)),i]),4) 
} 
#-------- 3.2.3 Random Walk - rwf -------- 
CFdataComp = CFdataTest[complete.cases(CFdataTest[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
CFdataNum=CFdataComp[,2:41] #Turn the data into only numbers 



Page 106 of 107 
 

CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFforecastRWND = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFforecastRWD = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
CFactual = CFdataNum[,(dataStart+1):(dataEnd+horizon+1)] 
CFforecastRWND[,1:dataEnd] = CFdataNum[,(dataStart+1):(dataEnd+1)] 
CFforecastRWD[,1:dataEnd] = CFdataNum[,(dataStart+1):(dataEnd+1)] 
for(i in 1:firmsNo){ 
  tsData = ts(CFactual[i,1:dataEnd]) 
  fullForecast1 = rwf(tsData,h=horizon,drift=FALSE) 
  tsForecast1 = fullForecast1$mean 
  CFforecastRWND[i,(dataEnd+1):(dataEnd+horizon)] = round(tsForecast1) 
  fullForecast2 = rwf(tsData,h=horizon,drift=TRUE) 
  tsForecast2 = fullForecast2$mean 
  CFforecastRWD[i,(dataEnd+1):(dataEnd+horizon)] = round(tsForecast2) 
} 
#without drift accuracy 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastRWND[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)] 
localErrorsF4 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF4) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF4[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF4[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF4[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF4[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF4[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF4[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[4,i] = round(mean(localErrorsF4[!rowSums(!is.finite(localErrorsF4)),i]),4) 
} 
#with drift accuracy 
CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
CFdifference = as.matrix(CFactualComp - CFforecastRWD[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
localErrorsF5 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
colnames(localErrorsF5) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
  localErrorsF5[i,1] = round(mean(CFdifference[i,]),2) # Error 
  localErrorsF5[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
  localErrorsF5[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
  localErrorsF5[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
  localErrorsF5[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
  localErrorsF5[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
} 
for(i in 1:6){ 
  globalErrors[5,i] = round(mean(localErrorsF5[!rowSums(!is.finite(localErrorsF5)),i]),4) 
} 
#-------- 3.2.4 Random Walk - Brownian -------- 
runs = 1000 
dt = 1 #1 year is the delta 
BMerrorMatrix = matrix(data = 0,nrow = runs, ncol = 6) 
colnames(BMerrorMatrix) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
CFdataComp = CFdataTest[complete.cases(CFdataTest[,dataStart+2]),] #plus 2 because CVR and year 0 
for(i in (dataStart+1):(dataEnd+horizon)){ 
  CFdataComp = CFdataComp[complete.cases(CFdataComp[,i+2]),] #plus 2 because CVR and year 0 
} 
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firmsNo = length(CFdataComp[,1]) 
firmsList = CFdataComp[,1] 
CFdataNum=CFdataComp[,2:41] #Turn the data into only numbers 
CFdataNum[is.na(CFdataNum)] = 0 
class(CFdataNum) <- "numeric" 
CFactual = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon))  
CFactual = CFdataNum[,(dataStart+1):(dataEnd+horizon+1)] 
for(n in 1:runs){ 
  CFforecastRWBM = matrix(data=0,nrow = firmsNo,ncol = (dataEnd-(dataStart-1)+horizon)) 
  CFforecastRWBM[,1:dataEnd] = CFdataNum[,(dataStart+1):(dataEnd+1)] 
   
  for(i in 1:firmsNo){ 
    tsData = ts(CFactual[i,1:dataEnd]) 
    s2 = sd(tsData) 
    mean = mean(tsData) 
    for(j in 1:horizon){ 
      x = CFforecastRWBM[i,dataEnd+j-1] 
      eta = rnorm(1,0,sqrt(s2)) 
      dw = eta*sqrt(dt) 
      dx = mean * dt + sqrt(s2) * dw 
      CFforecastRWBM[i,dataEnd+j] = round(x+dx) 
    } 
  } 
  CFactualComp = as.matrix(CFactual[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
  CFdifference = as.matrix(CFactualComp - CFforecastRWBM[,(dataEnd-dataStart+2):(horizon+dataEnd-dataStart+1)]) 
  localErrorsF6 = matrix(data=0,nrow = firmsNo,ncol = 6) #as there are 6 errors to test 
  colnames(localErrorsF6) <- c("ME","MAE","MRE","MAPE","MSE","MSRE") 
  for(i in 1:firmsNo){ # removes the observations that are INF or NAN 
    localErrorsF6[i,1] = round(mean(CFdifference[i,]),2) # Error 
    localErrorsF6[i,2] = round(mean(abs(CFdifference[i,])),2) # Abs Error 
    localErrorsF6[i,3] = round(mean(CFdifference[i,]/CFactualComp[i,]),2) # Rel Error 
    localErrorsF6[i,4] = round(mean(abs(CFdifference[i,]/CFactualComp[i,])),2) # Abs Rel Error 
    localErrorsF6[i,5] = round(mean(CFdifference[i,]^2),2) # Squared Error 
    localErrorsF6[i,6] = round(mean((CFdifference[i,]/CFactualComp[i,])^2),2) # Squared Rel Error 
  } 
  for(i in 1:6){ 
    BMerrorMatrix[n,i] = mean(localErrorsF6[!rowSums(!is.finite(localErrorsF6)),i]) 
  } 
} 
for(i in 1:6){ 
  globalErrors[6,i] = round(mean(BMerrorMatrix[,i]),4) 
} 


