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Priority and proportionality in bankruptcy∗

Karol Flores-Szwagrzak (*)† Jaume Garćıa-Segarra‡ Miguel Ginés-Vilar§

September 10, 2019

Abstract

We study the problem of distributing the liquidation value of a bankrupt
firm among its creditors (O’Neill, 1982; Aumann and Maschler, 1985). Real-
life distribution rules prioritize predetermined creditor groups, dividing the
amount assigned to each group proportionally to claims. We provide the first
axiomatic characterization of such rules. In addition to the classical consis-
tency and continuity axioms, these rules are characterized by the following
properties: (i) bankruptcy problems with the same claims and where each
claimant’s award is positive in each problem can be solved either jointly or
separately without altering the recommended awards, (ii) a dual property
specifying that bankruptcy problems with the same claims and where each
claimant’s loss is positive can be solved either jointly or separately without
altering the recommended awards.

Keywords: Bankruptcy problem, Proportional rule, Priority
JEL classification: D70, D63, D71

1 Introduction

When a firm goes bankrupt, how should its liquidation value be divided among
its creditors? In bankruptcy proceedings, creditors are prioritized according to their
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individual characteristics: for example, employees may be first in line, tax authorities
second, and other creditors third. Within each creditor class, the available amount
is distributed proportionally to the creditors’ claims.

Bankruptcy settlement follows this general structure in many countries. Natu-
rally, countries differ in how they prioritize different creditors. However, the assets
available to creditors who are deemed to have equal priority are adjudicated propor-
tionally to their claims. For example, the United States Bankruptcy Code specifies
how different creditors are sorted into priority classes (§507 in the Title 11 of the
United States Code) and that “the payments within each priority class shall be made
pro rata among claims of the same class” (§726b). European bankruptcy law also
specifies proportionality among creditors of the same standing where the standing
refers to the position in the priority order (Council Regulation EC No 1346/2000 of
May 29th on insolvency proceedings).

Though bankruptcy rules combining priority and proportionality are common, the
axiomatic literature on bankruptcy rules lacks a characterization of these “priority-
augmented proportional rules.”1 The challenge is that these rules combine two seem-
ingly contradictory normative principles with very different formal content: Prior-
ity stresses the importance of the creditors’ individual characteristics, beyond their
claims. These characteristics are formally outside of the model.2 Proportionality, in
contrast, stresses that only the size of the claims matters and not any other char-
acteristics of their holders; every dollar claimed should be treated equally (Young,
1994).

We address this challenge by identifying four formal properties of the proportional
rule compatible with priority structures that characterize these priority-augmented
proportional rules. Two of these properties, “continuity” and “consistency,” are
classical and satisfied by all major families of rules (those of Young, 1987; Moulin,
2000; Stovall, 2014a,b). Continuity requires that small changes in the claims or
endowment do not result in significant changes in the recommended distribution;
consistency requires that, if a distribution is considered desirable for a group of
creditors, it remains so when restricted to each creditor subgroup.

The other two properties, “restricted additivity” and “dual restricted additivity,”
are new. Restricted additivity concerns creditors’ incentives in specifying the assets

1For surveys, see Moulin (2002) and Thomson (2003, 2015); Thomson (2019) provides an in
depth treatment. The proportional rule, without priority structures, has been extensively studied;
characterizations include those of O’Neill (1982), Chun (1988), Young (1988), de Frutos (1999),
Moreno-Ternero (2006), Ju et al. (2007), Csoka and Herings (2016), and Thomson (2016).

2See Moulin (2000) and Stovall (2014a) for detailed motivation of the importance of acknowl-
edging individual claimant characteristics in the classical bankruptcy problem.
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and claims to be adjudicated in a bankruptcy court. It eliminates incentives for
litigation to consolidate assets and claims from multiple cases. Since it may not be
feasible to consolidate claims across arbitrary bankruptcy cases, we do not impose the
condition on arbitrary cases. We only impose it on bankruptcy problems where (i) the
standing of creditors is the same and (ii) all creditors receive positive awards, none
is marginalized in the adjudication. Why (ii)? Estate division offers a transparent
motivating example: A mother and a father pass away within a short period of
time leaving behind their estates to their children. The forgiving mother leaves a
will specifying her money goes to all of her children; the resentful father excludes a
rebellious child from inheriting anything. In respecting the wishes of the deceased,
the two estates and the claims on these should not simply be merged and settled
jointly. On the other hand, if the father’s will is like the mother’s, the two estate
problems may as well be consolidated and settled as one.

To better explain dual restricted additivity, first recall the central “duality” prin-
ciple for bankruptcy problems (Aumann and Maschler, 1985). It captures the idea
that instead of distributing what is available and recommending awards we can re-
solve a bankruptcy case by distributing the shortfall - the sum of the claims minus the
available amount - and recommend losses relative to claims across creditors. Dual
restricted additivity is then the requirement that the consolidation of two bankruptcy
cases can only go forward if (i) the standing of creditors is the same in both cases
and (ii) all creditors endure losses, none is marginalized in the dual adjudication.3

Even though the priority-augmented proportional rules have not been character-
ized before, they belong to the class of asymmetric rationing rules (Moulin, 2000).
These rules also involve different priority groups. The amount available to each
priority group is distributed using the proportional rule, a weighted version of the
constrained equal awards rule, or a weighted version of the constrained equal losses
rule. The sub-class of asymmetric rationing rules using either a weighted constrained
equal awards rule or a constrained equal losses rule within each priority group has
been characterized using standard axioms (Flores-Szwagrzak, 2015). In this paper,
we characterize the rules using the proportional rule within each priority group.

The remainder of this paper is organized as follows: Section 2 introduces the
model and the priority-augmented proportional rules. Section 3 contains the ax-
iomatic analysis and our results. We also provide three additional characterizations
of the PAP rules. Section 4 concludes. An Appendix contains the proofs.

3The rationale for (ii) is dual to that for restricted additivity.
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2 Definitions

2.1 Model

An endowment of a divisible resource is to be distributed among a finite group of
claimants. These groups are drawn from a countable set of “potential claimants”
that we identify with N, the natural numbers.4 Let N denote the collection of finite
subsets of N. For each N ∈ N , a claims problem is a pair consisting of a profile
of claims and an endowment (c, E) ∈ RN

+ × R+ such that
∑

N ci ≥ E. For each
N ∈ N , let CN denote the class of claims problems involving the claimants in N .
An allocation for the problem (c, E) ∈ CN is a profile z ∈ RN such that

∑
N zi = E

and, for each i ∈ N , 0 ≤ zi ≤ ci; we refer to zi as the award of claimant i. Let
Z(c, E) denote the collection of all allocations for claims problem (c, E). A rule is
a function f recommending an allocation for each possible claims problem: for each
N ∈ N and each (c, E) ∈ CN , f(c, E) ∈ Z(c, E).5

2.2 Rules

We start by introducing three classical rules. The proportional rule, P , awards
each claimant an equal fraction of her claim. Formally, for each N ∈ N , each
(c, E) ∈ CN , and each i ∈ N ,

Pi(c, E) = λci where λ =
E∑
N cj

whenever the sum of the claims is positive, otherwise each claimant receives a null
award. The constrained equal awards rule, CEA, is such that for each N ∈ N ,
each (c, E) ∈ CN , and each i ∈ N , CEAi(c, E) = min{ci, λ} where λ is chosen so
that

∑
N min{ci, λ} = E. The constrained equal losses rule, CEL, is such that

for each N ∈ N , each (c, E) ∈ CN , and each i ∈ N , CELi(c, E) = max{0, ci − λ}
where λ is chosen so that

∑
N max{0, ci − λ} = E.

When a rule varies continuously with the endowment, as is the case with the
above rules, its recommended awards form a continuous path in the space of awards.
In this case, a useful way of describing a rule is through this path. Formally, the
path of awards of a rule f is, for each N ∈ N and each c ∈ RN

+ , the locus

4Mathematical notation is as follows: {Yi}i∈I denotes a family of sets Yi indexed by I and
Y I = "i∈IYi. For each y ∈ Y I and each J ⊆ I, yJ denotes the projection of y onto Y J . For each
pair x, y ∈ RI , x ≥ y means that xi ≥ yi for each i ∈ I and x > y means that xi > yi for each i ∈ I.

5As usual, for each N ∈ N , each c ∈ RN
+ , and each i ∈ N , we will use c−i to denote the more

cumbersome cN\{i}.
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{x ∈ RN
+ : ∃E ∈ [0,

∑
N ci], x = f(c, E)}.

We now introduce the notion of a priority relation over the potential claimants.
Formally, a priority relation is a complete and transitive binary relation % on N;
its asymmetric part is denoted by � while its symmetric part is denoted by ∼. The
statement i � j is read as “i has priority over j.” Since each N ∈ N is finite, %
induces a partition of N into finitely many priority classes as follows:

N1 = {i ∈ N : for each j ∈ N, i % j}
N2 = {i ∈ N \N1 : for each j ∈ N \N1, i % j}
N3 = {i ∈ N \ [N1 ∪N2] : for each j ∈ N \ [N1 ∪N2], i % j}

...

For each N ∈ N , we will denote the partition of N into k ≥ 1 priority classes
by N1, . . . , Nk, suppressing the dependence on % whenever there is no room for
confusion.

For each priority relation %, the priority-augmented proportional rule as-
sociated to %, is the rule denoted by P% such that for each N ∈ N and each
(c, E) ∈ CN ,

for each i ∈ N1, P%
i (c, E) = Pi(cN1

, E1) where E1 = min{E,
∑

N1
cj};

for each i ∈ N2, P%
i (c, E) = Pi(cN2

, E2) where E2 = min{E − E1,
∑

N2
cj};

for each i ∈ N3, P%
i (c, E) = Pi(cN3

, E3) where E3 = min{E − E1 − E2,
∑

N3
cj};

...

We will refer to the rules defined in this way, for each possible priority relation, as
priority-augmented proportional rules or, for brevity, PAP rules. We conclude
this section introducing a rule to illustrate the logical independence of the axioms
in the characterizations of the PAP rules. The larger-claims-first rule, LCF ,
lexicographically favors claimants holding larger claims: The claimants with the
largest claim each receive their claim if possible or divide the endowment equally
among themselves; if a part of the endowment is left over, the claimants with the
second largest claim receive their claim if possible or divide the remaining endowment
equally; the distribution continues in this way until the endowment is exhausted.

5



3 Axiomatic analysis

We start with a central principle in the theory of distributive justice, consistency. It
has been a key axiom in the analysis of claims problems dating back to the seminal
contributions of Aumann and Maschler (1985) and Young (1987, 1988). It captures
that idea that if an allocation is viewed as desirable, then its restriction to each
subgroup of claimants ought to be considered desirable as well. This is expressed
as follows: Given a rule, a claims problem, and its recommended allocation for the
problem, consider the departure of some claimants with their awards; the require-
ment is that, upon reassessing the distribution of the available amount, the rule
recommends, for each remaining claimant, the same amount it did to begin with.

Consistency: For each N ∈ N , each J ⊆ N , and each (c, E) ∈ CN , fJ(c, E) =
f(cJ ,

∑
J xj).

A weaker condition, bilateral consistency, restricts the conclusion to two-
claimant groups (when the cardinality of J is two in the definition of consistency).

Another classical requirement is for a rule’s recommendations not to change sig-
nificantly in response to small changes in the claims and endowment. Thus, the
rule ought to vary continuously on the claims problem with respect to the Euclidean
topology (Young, 1987).

Continuity: For each sequence {(cn, En)} of elements in CN and each (c, E) ∈ CN ,
if (cn, En)→ (c, E), then f(cn, En)→ f(c, E).6

Consistency and continuity are standard axioms. They are satisfied by the con-
strained equal awards rule, the constrained equal losses, the Talmud, and the pro-
portional rules as well as the parametric rules (Young, 1987), the equal sacrifice
rules (Young, 1988), the asymmetric rationing rules (Moulin, 2000), the asymmetric
parametric rules (Stovall, 2014a), and the monotone path rules (Stovall, 2014b).

We now introduce a new additivity axiom. Additivity conditions have been stud-
ied widely in surplus and cost sharing (Moulin, 2002) and in cooperative game theory,
particularly in the characterization of the Shapley value (Shapley, 1953; Roth, 1988).
For claims problems, the most straightforward additivity requirement is that given
two claims problems involving a group of claimants, a rule can, equivalently, recom-
mend allocations for each problem separately or do so jointly, by first adding the

6Two weaker continuity properties can be formulated. Endowment continuity specifies that
a rule varies continuously on the endowment but not necessarily on claims. Formally, for each
sequence {(cn, En)} of elements in CN and each (c, E) ∈ CN , if cn → c and En = E, then
f(cn, En) → f(c, E). Claims continuity specifies that a rule varies continuously on claims but
not necessarily on the endowment. Formally, for each sequence {(cn, En)} of elements in CN and
each (c, E) ∈ CN , if cn = c and En → E, then f(cn, En)→ f(c, E).
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claims of agents across the two problems as well as the endowments. Though it is
a natural requirement, there is no rule satisfying it (Bergantiños and Vidal-Puga,
2004). However, weaker and meaningful additivity properties that are satisfied by
a number of rules have been studied (Moulin, 1987; Chun, 1988; Bergantiños and
Méndez-Naya, 2001; Alcalde et al., 2014; Harless, 2017; Arin et al., 2017); these will
be discussed in more detail below.

To formulate our additivity axiom, we first observe that claims problems with the
same claimants and claims can either be solved separately or jointly. Additivity can
then be satisfied. Imposing additivity in these cases expresses the idea that, when
the standing of claimants in two problems is the same, consolidating the problems is
more natural than when claims differ arbitrarily, rendering the problems qualitatively
distinct. Moreover, we insist on additivity only in situations where all claimants
receive positive awards and are thus not ignored by the adjudication procedure. This
elicits the allocation behavior of a rule when it is effectively balancing the welfare of
all claimants.

Restricted additivity: For each c ∈ RN
+ and each pair E,E ′ ∈ [0,

∑
N ci] such that

f(c, E) > 0 and f(c, E ′) > 0, f(c, E) + f(c, E ′) = f(c+ c, E + E ′).

Restricted additivity is satisfied by several well-known rules beyond the PAP
rules. The CEL rule, the priority-augmented CEL rules, and even the priority-
augmented weighted CEL rules characterized by (Flores-Szwagrzak, 2015) satisfy
this property.

To introduce our next axiom, we first discuss the notion of “duality” (Aumann
and Maschler, 1985). It is one of the most useful concepts describing the structure
of the space of rules (Thomson, 2015) and particularly fruitful in our setting; it
describes the connection between the allocation of awards and losses in a claims
problem: a claimant’s award determines her loss, and conversely. Indeed, we can
define a rule distributing the endowment (E) in terms of its “dual” rule distributing
the shortfall (

∑
N ci − E). Formally, the dual of f , fd, is defined by,

for each (c, E) ∈ CN , fd(c, E) = c− f(c,
∑

N ci − E).

Remark 1. The dual of a PAP rule associated to % is the PAP rule associated to
the “reverse” priority relation.7

Two axioms are dual if whenever a rule satisfies one of them, its dual satisfies the
other one (Thomson, 2003, 2015). Restricted additivity enables claims problems to
be aggregated conditional on every claimant receiving positive awards in the original

7For each pair i, j ∈ N, let i %r j whenever j % i. Then, the dual of P% is P%r

.
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problems; the dual axiom enables aggregation conditional on every claimant making
positive losses in the original problems. The axiom dual to restricted additivity can
thus be stated as follows:

Dual restricted additivity: For each c ∈ RN
+ and each pair E,E ′ ∈ [0,

∑
N ci]

such that f(c, E) < c and f(c, E ′) < c, f(c, E) + f(c, E ′) = f(c+ c, E + E ′).

Like restricted additivity, the dual axiom specifies that additivity applies when
the claims in the to be consolidated problems are the same. Moreover, we insist on
additivity only when all claimants receive positive losses and are thus not ignored by
the loss adjudication procedure. This captures the effective behavior of a rule when
it affects the losses of all claimants.

Dual restricted additivity is satisfied by several well-known rules beyond the
PAP rules. The CEA rule, the priority-augmented CEA rules, and even the priority-
augmented weighted CEA rules characterized by Flores-Szwagrzak (2015) satisfy this
property.

Our main result is that the PAP rules are characterized by the above axioms:

Theorem 1. The PAP rules are the only bilaterally consistent and continuous rules
satisfying restricted additivity and dual restricted additivity.

3.1 Proof overview

The first step shows that a continuous rule satisfying restricted additivity and its dual
satisfies weaker versions of “endowment linearity” (Chun, 1988), the requirement on
a rule that the awards vector should be a linear function of the endowment.

Endowment linearity: For each c ∈ RN
+ , each pair E,E ′ ∈ [0,

∑
N ci], and each

λ ∈ [0, 1], f(c, λE ′ + (1− λ)E) = λf(c, E ′) + (1− λ)f(c, E).

Endowment linearity single-handedly characterizes the proportional rule (Chun,
1988). In contrast, a continuous rule satisfying restricted additivity is a linear func-
tion of the endowment provided that the endowment varies in a range where all
claimants’ awards are positive; similarly, a continuous rule satisfying dual restricted
additivity is a linear function of the endowment provided that the endowment varies
in a range where all claimants’ losses are positive (Lemma 3 in the Appendix).

The second step shows that only two continuous two-claimant rules satisfy our
weaker endowment linearity properties: the proportional rule and the rule fully pri-
oritizing a predetermined claimant (Lemma 4 in the Appendix).

The last step shows that the only bilaterally consistent rule compatible with these
two-claimant allocations is a PAP rule. Indeed, if f denotes a bilaterally consistent
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rule that coincides, in two-claimant problems, with either the proportional rule or
a rule fully prioritizing one of the claimants, we can define a priority relation %
on N: For each pair i, j ∈ N, let i ∼ j if the rule used to settle their claims problem
is the proportional rule and let i � j if the rule fully prioritizes i. By bilateral
consistency, % is transitive.8 The proof of f = P% uses an “Elevator Lemma”
argument (Thomson, 2011) enabled by the fact that P% satisfies a property known
as “converse consistency” (see Appendix A.1) specifying that, if an allocation is such
that its restriction is chosen by the rule for each two-claimant subgroup, then the
allocation is chosen by the rule for the whole group.

3.2 Characterizations of the proportional rule

Imposing additional axioms in Theorem 1 characterizes the proportional rule. The
first of these axioms requires that the allocation of the endowment and the shortfall
should be treated symmetrically. As formalized by Aumann and Maschler (1985),
the dual of a rule be the rule itself:

Self-duality: For each (c, E) ∈ CN , f(c, E) = c− f(c,
∑

N ci − E).

Many rules are self-dual, including the proportional, Talmud, and random arrival
rules.

The central equity criterion for claims problems is that claimants with equal
claims ought to receive equal awards.

Equal treatment of equal claims: For each (c, E) ∈ CN and each pair i, j ∈ N ,
ci = cj implies that fi(c, E) = fj(c, E).

We can also specify that, for each claimant, there is a claim she can hold that
will ensure her a positive award. For the condition to be more meaningful, we will
also require that the endowment falls within a range that ensures that the award of
the claimant is not positive simply due to the feasibility constraints:

Minimal compensation: For each N ∈ N , each i ∈ N , each (c, E) ∈ CN such that
E ∈ (0,

∑
N\{i} cj], there is c′i > 0 such that fi(c

′
i, c−i, E) > 0.

In fact, the only PAP rule that satisfies any one of the above axioms is the
proportional rule.

Corollary 1. The proportional rule is the only rule satisfying the four axioms in
Theorem 1 and any one of the following axioms: self-duality, equal treatment of
equal claims, or minimal compensation.

8See the Proof of Theorem 1 for the argument.
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3.3 Alternative characterizations of the PAP rules

Theorem 2 below provides three further characterizations of the PAP rules. These
replace one or both of our additivity axioms by weak forms of known axioms only
satisfied by the proportional rule, “endowment additivity” (Moulin, 1987; Chun,
1988) and “multiplicative invariance” (Marchant, 2008).

Endowment additivity requires that a claims problem can be solved either directly
or by splitting the endowment into two claims problems, each maintaining the same
claims as in the original problem.

Endowment additivity: For each (c, E) ∈ CN and each pair E ′, E ′′ ∈ R+ such
that E = E ′ + E ′′, f(c, E) = f(c, E ′) + f(c, E ′′).

A weaker condition, restricted endowment additivity (Harless, 2017), ap-
plies only when no claimant is fully satisfied (when f(c, E) < c in the definition
of endowment additivity). These axioms can be criticized for rendering claims in-
commensurable with the endowment (Thomson, 2003). Only the proportional rule
is endowment additive. However, restricted endowment additivity is satisfied by a
broad class of rules.9

There are important differences between restricted endowment additivity and
our additivity axioms. Our axioms require additivity in both the claims and endow-
ment. The claims and the endowment are thus comparable under the same yardstick.
Moreover, our axioms specify when two problems can be consolidated into a single
problem; in contrast, restricted endowment additivity specifies when a claims prob-
lem can be split into two problems.

Restricted endowment additivity also has a dual:

Dual restricted endowment additivity: For each (c, E) ∈ CN and each pair
E ′, E ′′ ∈ R+ such that E ′ + E ′′ = E +

∑
N ci, if f(c, E) > 0, then c + f(c, E) =

f(c, E ′) + f(c, E ′′).

The next axiom, multiplicative invariance, specifies that what is relevant in com-
paring two claims is not their size but only their ratio. Thus, multiplying all claims
by the same constant should not affect the awards. Of course, this requires that the
constant is such that, upon multiplying, the problem is still such that the sum of the
claims is at least as large as the endowment.

9A rich sub-family, the “PW-proportional rules,” is characterized on the basis of restricted en-
dowment additivity, consistency, and endowment continuity (Theorem 2 in Harless, 2017). The
PW-proportional rules include but are not restricted to the CEA rule and its asymmetric general-
izations (Flores-Szwagrzak, 2015), the PAP rules, as well as the discontinuous LCF rule.
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Multiplicative invariance: For each (c, E) ∈ CN and each λ ∈ R such that
λ
∑

N ci ≥ E, f(λc, E) = f(c, E).

Multiplicative invariance can also be criticized on the grounds that it breaks
the comparability of the claims with the endowment since it enables scaling claims
while keeping the endowment unaltered. It is straightforward to check that only
the proportional rule satisfies multiplicative invariance (Proposition 1 in Marchant,
2008). Our weaker version of the axiom only applies when all claimants make positive
losses. As with multiplicative invariance, we need to specify the range of the scaling
constant; we do so by specifying that all claims increase in the same proportion.10

Restricted multiplicative invariance: For each (c, E) ∈ CN such that f(c, E) < c
and each scalar λ > 1, f(λc, E) = f(c, E).

Restricted multiplicative invariance is satisfied by many rules beyond the pro-
portional rule. The constrained equal awards rule, the priority-augmented weighted
CEA rules (Flores-Szwagrzak, 2015), and the collectively rational solutions (Stovall,
2014b) satisfy this property.

Theorem 2. The PAP rules are the only bilaterally consistent and continuous rules
satisfying any one of the following combinations of axioms:

(a) restricted additivity and restricted endowment additivity,
(b) restricted endowment additivity and dual restricted endowment additivity,
(c) restricted additivity and multiplicative invariance.

Theorem 2 can also be used to characterize the proportional rule in the same way
Theorem 1 was used to characterize it in Corollary 1.

4 Conclusion

Priority and proportionality are two central principles in the theory of distributive
justice (Young, 1994). In the context of the claims problem, their recommendations
seem to be at odds: Either claimants are prioritized on the basis of their non-claim
individual characteristics or the focus is solely on their claims, assigning the same
award to each dollar claimed under proportionality. Real-life bankruptcy rules how-
ever combine priority and proportionality; though stylized, the priority-augmented
proportional (PAP) rules studied here resemble them broadly.

10Alternatively, we could specify that, for each (c, E) ∈ CN such that f(c, E) < c and each λ ∈ R
such that f(c, E) < λc, f(λc,E) = f(c, E).
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P P% CEL CEA LCF
consistency 3 3 3 3 3

continuity 3 3 3 3 7

restricted additivity 3 3 3 7 3

dual restricted additivity 3 3 7 3 3

endowment linearity 3 7 7 7 7

endowment additivity 3 7 7 7 7

restricted endowment additivity 3 3 7 3 3

dual restricted endowment additivity 3 3 3 7 3

restricted multiplicative invariance 3 3 7 3 3

self-duality 3 7 7 7 7

equal treatment of equal claims 3 7 3 3 3

Table 1: Note that P% refers to any PAP rule other than P . Recall that LCF denotes the larger-
claims-first rule introduced in Section 2.

This paper proposes two axioms satisfied by all PAP rules, restricted additivity
and its dual axiom. Within the class of all consistent and continuous rules, only the
PAP rules satisfy these two axioms (Theorem 1). We provide two additional char-
acterizations replacing dual restricted additivity with restricted endowment additiv-
ity and restricted multiplicative invariance; a further characterization also replaces
restricted additivity with the axiom dual to restricted endowment additivity (The-
orem 2). Restricted endowment additivity and restricted multiplicative invariance
are versions of stronger axioms only satisfied by the proportional rule.

A natural question is whether other axioms characterizing the proportional rule
can be adapted to characterize the PAP rules. Unfortunately, the main characteriza-
tions of the proportional rule use axioms specifying that no claimant group should be
able to gain by reallocating or transferring parts of their claims across themselves.11

These axioms cannot formulated naturally together with priorities.
Other additivity axioms identify a sub-class of claims problems where the rule

to be characterized is additive. Examples of this approach include the additivity
axioms used in the characterization of the Ibn Ezra rule (Bergantiños and Méndez-
Naya, 2001), the minimal overlap rule (Alcalde et al., 2014), and the reverse Talmud
rules (Arin et al., 2017). The proportional rule is not additive in these specific do-
mains; moreover, these additivity properties exclude rules that may prioritize certain
claimants.

It is an open question if bilateral consistency can be replaced by other well known

11For example, see O’Neill (1982), de Frutos (1999), Moreno-Ternero (2006), and Ju et al. (2007).
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consistency axioms such as “null claims consistency,” “null compensation consis-
tency,” or “full compensation consistency” in our characterizations.12 It may also
be possible to weaken continuity to claims continuity. Finally, we might ask what
properties lead to rules that replace the proportional rule with the CEA or CEL rules
in our analysis.13
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A Appendix

A.1 Preliminary observations

The PAP rules satisfy two axioms that will be important in our proofs. The classical
endowment monotonicity axiom requires that all awards move in the same direction
in response to a change in the endowment.

Endowment monotonicity: For each (c, E) ∈ CN and each E ′ ∈ [0, E], f(c, E ′) ≤
f(c, E).

Converse consistency requires that if an allocation is such that its restriction is
chosen by the rule for each two-claimant subgroup, then the allocation is chosen by
the rule for the whole group.

Converse consistency: For each N ∈ N and each (c, E) ∈ CN ,

[x ∈ Z(c, E) and, for each {i, j} ⊆ N , f(c{i,j}, xi + xj) = x{i,j}] implies f(c, E) = x.

Lemma 1. The PAP rules are consistent, continuous and satisfy restricted additiv-
ity, dual restricted additivity, converse consistency, restricted endowment additivity,
dual restricted endowment additivity, restricted multiplicative invariance, and endow-
ment monotonicity.

Proof. The PAP rules belong to the wider family of consistent, continuous, and
endowment monotonic rules characterized by Moulin (2000). The PAP rules also be-
long to the PW-proportional rules characterized, by among other axioms, restricted
endowment additivity (see Theorem 2 in Harless, 2017). An endowment monotonic
and consistent rule is conversely consistent; Chun (1999) proves that endowment
monotonicity and consistency imply an even stronger converse consistency property.
Thus, each PAP rule is conversely consistent.

It remains to show that the each PAP rule satisfies restricted additivity, dual
restricted additivity, and restricted multiplicative invariance. Let % denote a priority
relation over N and let N1, N2, . . . , Nk denote the partition of N induced by %.

P% satisfies restricted additivity. Let c ∈ RN and E,E ′ ∈ [0,
∑

N ci] be such that
P%(c, E) > 0, and P%(c, E ′) > 0. By the definition of P%, since P%(c, E) > 0, and
P%(c, E ′) > 0,

for each i ∈ N \Nk, P%
i (c, E) = ci and P%

i (c, E ′) = ci, (1)

and, letting Ẽ = E −
∑

N\Nk cj and Ẽ ′ = E ′ −
∑

N\Nk cj,

for each i ∈ Nk, P%
i (c, E) = Pi(cNk , Ẽ) and P%

i (c, E ′) = Pi(cNk , Ẽ
′). (2)
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Thus, by (1),

for each i ∈ N \Nk, P%
i (c, E) + P%

i (c, E ′) = 2ci. (3)

and, by (2),

for each i ∈ Nk, P%
i (c, E) + P%

i (c, E ′) =
Ẽ∑
Nk
cj
ci +

Ẽ ′∑
Nk
cj
ci

=
Ẽ + Ẽ ′∑

Nk
cj
ci =

Ẽ + Ẽ ′

2
∑

Nk
cj

2ci

= Pi(2cNk , Ẽ + Ẽ ′).

(4)

By (3), E + E ′ ≥ 2
∑

N\Nk cj. Thus, by the definition of P%,

for each i ∈ N \Nk, P%
i (2c, E + E ′) = P%

i (2c, E + E ′) = 2ci. (5)

Thus, the excess E + E ′ − 2
∑

N\Nk cj = Ẽ + Ẽ ′ is distributed by P% among the
lowest priority class Nk using the proportional rule,

for each i ∈ Nk, P%
i (2c, E + E ′) = Pi(2cNk , Ẽ + Ẽ ′). (6)

Comparing (3) and (4) to (5) and (6), it follows that P%(2c, E + E ′) = P%(c, E) +
P%(c, E ′). The proof that each PAP rule satisfies dual restricted additivity is anal-
ogous.

P% satisfies multiplicative invariance. Let (c, E) ∈ CN be such that P%(c, E) < c
and λ > 1. By the definition of a PAP rule, P%(c, E) < c implies E <

∑
N1
cj, and

(i) for each i ∈ N1, P
%
i (c, E) = Pi(cNh , E),

(ii) for each t > 1 and each i ∈ Nt, P
%
i (c, E) = 0.

Since E <
∑

N1
cj <

∑
N1
λcj, using the definition of a PAP rule again as well as (i)

and (ii) above,

(i’) for each i ∈ N1, P
%
i (λc, E) = Pi(λcN1 , E) = Pi(cN1 , E), and

(ii’) for each t > 1 and each i ∈ Nt, P
%
i (λc, E) = 0.

Thus, f(c, E) = f(λc, E).
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Lemma 2. Suppose that f satisfies continuity, restricted additivity, and either dual
restricted additivity or restricted multiplicative invariance. Then, f is endowment
monotonic for claims problems involving two claimants.

Proof. Let f satisfy continuity and restricted additivity. Let {i, j} = N ∈ N ,
(c, E) ∈ CN , E ′ ∈ (E, ci + cj], x = f(c, E), and x′ = f(c, E ′).

We will prove that x′ ≥ x. By way of contradiction, suppose that x′i < xi and
xj < x′j. Let yi = x′i + 1

3
(xi − x′i) and zi = x′i + 2

3
(xi − x′i). Since x′i < xi,

0 ≤ x′i < yi < zi < xi ≤ ci.

Let F : [0, 1] → R+ be such that, for each λ ∈ [0, 1], F (λ) = fi(c, λE
′ + (1 − λ)E).

By the continuity of f , F is continuous. Thus, by the Intermediate Value Theorem
and because F (1) = x′i < yi < xi = F (0), there is a λy ∈ (0, 1) such that F (λy) = yi.
Let ey = λyE

′ + (1− λy)E and yj = ey − yi. By definition, F (λy) = yi < zi < xi =
F (0). Thus, by the Intermediate Value Theorem, there is a λz ∈ (0, λy) such that
F (λz) = zi. Let ez = λzE

′ + (1− λz)E and zj = ez − zi.
Since 0 < λz < λy < 1, E < ez < ey < E ′. Since zi + zj = ez < ey = yi + yj

and yi < zi, zj < yj. Since xi + xj = E < ez = zi + zj and zi < xi, xj < zj. Since
yi + yj = ey < E ′ = x′i + x′j and x′i < yi, yj < x′j. Altogether,

0 ≤ xj < zj < yj < x′j ≤ cj.

Let y = (yi, yj) = f(c, ey) and z = (zi, zj) = f(c, ez). Note that 0 < y = f(c, ey) < c
and 0 < z = f(c, ez) < c.

Suppose that f satisfies dual restricted additivity. We distinguish the four possible
cases and arrive at a contradiction in each:

Case 1: f(c, ey − ez) < c. By dual restricted additivity,

f(c, ey) = f(c, ey) + f(c, 0) = f(2c, ey) = f(c, ez) + f(c, ey − ez) ≥ f(c, ez).

This contradicts the fact that yi < zi.

Case 2: f(c, ey− ez) > 0. By restricted additivity, f(2c, ey) = f(c, ey− ez) +f(c, ez).
Since f(c, ey) < c, dual restricted additivity implies that f(2c, ey) = f(c, ey) +
f(c, 0) = f(c, ey). Thus,

f(c, ey) = f(2c, ey) = f(c, ey − ez) + f(c, ez) ≥ f(c, ez).

This contradicts the fact that yi < zi.
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Case 3: fi(c, ey − ez) = ci and fj(c, ey − ez) = 0. By continuity, there is an ε > 0
such that 0 < f(c, ey + ε) < c, f(c, ey − ez + ε) > 0, and zi > fi(c, ey + ε). By dual
restricted additivity, f(c, ey + ε) = f(c, ey + ε) + f(c, 0) = f(2c, ey + ε). By restricted
additivity,

f(2c, ey + ε) = f(c, ey − ez + ε) + f(c, ez).

Thus, f(c, ey + ε) = f(2c, ey + ε) = f(c, ey − ez + ε) + f(c, ez) ≥ f(c, ez). Since
z = f(c, ez), this contradicts the fact that zi > fi(c, ey + ε).

Case 4: fi(c, ey − ez) = 0 and fj(c, ey − ez) = cj. Exchanging the roles of i and j in
the previous case, we again arrive at a contradiction.

Suppose that f satisfies restricted multiplicative invariance. We distinguish the four
possible cases and arrive at a contradiction in each:

Case 1: f(c, ey−ez) < c. By restricted multiplicative invariance, f(c, ey) = f(2c, ey).
By restricted additivity,

f(2c, ey) = f(c, ez) + f(c, ey − ez) ≥ f(c, ez).

Thus, f(c, ey) ≥ f(c, ez). This contradicts the fact that yi < zi.

Case 2: f(c, ey− ez) > 0. By restricted additivity, f(2c, ey) = f(c, ey− ez) +f(c, ez).
Since f(c, ey) < c, restricted multiplicative invariance implies that f(2c, ey) = f(c, ey).
Thus,

f(c, ey) = f(2c, ey) = f(c, ey − ez) + f(c, ez) ≥ f(c, ez).

This contradicts the fact that yi < zi.

Case 3: fi(c, ey−ez) = ci and fj(c, ey−ez) = 0. By continuity, there is an ε > 0 such
that 0 < f(c, ey + ε) < c, f(c, ey − ez + ε) > 0, and zi > fi(c, ey + ε). By restricted
multiplicative invariance, f(c, ey + ε) = f(2c, ey + ε). By restricted additivity,

f(2c, ey + ε) = f(c, ey − ez + ε) + f(c, ez).

Thus, f(c, ey + ε) = f(2c, ey + ε) = f(c, ey − ez + ε) + f(c, ez) ≥ f(c, ez). Since
z = f(c, ez), this contradicts the fact that zi > fi(c, ey + ε).

Case 4: fi(c, ey − ez) = 0 and fj(c, ey − ez) = cj. Exchanging the roles of i and j in
the previous case, we again arrive at a contradiction.
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A.2 Proof of Theorem 1

Lemma 3. Let f denote a continuous rule.

If f satisfies restricted additivity, then, for each (c, E) ∈ CN and E ′ ∈ (E,
∑

N ci],

[∀λ ∈ [0, 1], f(c, λE ′+(1−λ)E) > 0]⇒ f(c, λE ′+(1−λ)E) = λf(c, E ′)+(1−λ)f(c, E).

If f satisfies dual restricted additivity, then, for each (c, E) ∈ CN and E ′ ∈ (E,
∑

N ci],

[∀λ ∈ [0, 1], f(c, λE ′+(1−λ)E) < c]⇒ f(c, λE ′+(1−λ)E) = λf(c, E ′)+(1−λ)f(c, E).

Proof. We only prove the first statement; the proof of the second statement is analo-
gous. Let f denote a continuous rule satisfying restricted additivity. Let (c, E) ∈ CN
and E ′ ∈ (E,

∑
N ci] be such that,

for each λ ∈ [0, 1], f(c, λE ′ + (1− λ)E) > 0. (7)

Let i ∈ N , e, e′ ∈ [E,E ′], and e′′ = 1
2
(e + e′). Since [E,E ′] is convex, e′′ ∈ [E,E ′].

Thus, there are λ, λ′, λ′′ ∈ [0, 1] such that

λE ′ + (1− λ)E = e, λ′E ′ + (1− λ′)E = e′, and λ′′E ′ + (1− λ′′)E = e′′.

Thus, by (7), fi(c, e) > 0, fi(c, e
′) > 0, and fi(c, e

′′) > 0. Thus, by restricted
additivity, fi(2c, 2e

′′) = 2fi(c, e
′′) and fi(2c, e + e′) = fi(c, e) + fi(c, e

′). By the
definition of e′′, 2e′′ = e+ e′. Thus, 2fi(c, e

′′) = fi(2c, e+ e′) = fi(c, e) + fi(c, e
′). By

the definition of e′′, 2fi(c,
1
2
e+ 1

2
e′) = fi(c, e) + fi(c, e

′). Thus, we have proven that,

for each pair e, e′ ∈ [E,E ′], fi(c,
e+ e′

2
) =

fi(c, e) + fi(c, e
′)

2
. (8)

Let g : [E,E ′]→ R be defined by g(e) = fi(c, e) for each e ∈ [E,E ′]. By (8), g is
midpoint convex on [E,E ′]. Moreover, since f is continuous, g is continuous as well.
Thus, g is convex on [E,E ′]. Thus, by (8), for each λ ∈ [0, 1], g(λE ′ + (1− λ)E) =
λg(E ′) + (1− λ)g(E). Thus, for each λ ∈ [0, 1],

fi(c, λE
′ + (1− λ)E) = λfi(c, E

′) + (1− λ)fi(c, E).

Repeating the above argument for each i ∈ N , for each λ ∈ [0, 1], f(c, λE ′ + (1 −
λ)E) = λf(c, E ′) + (1− λ)f(c, E).
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For each pair i, j ∈ N and each (c, E) ∈ C{i,j}, let Dij(c, E) ∈ R{i,j} denote the
allocation fully prioritizing claimant i over claimant j,

Dij
i (c, E) = min{ci, E} and Dij

j (c, E) = max{0, E − ci}. (9)

The following lemma shows that, if a rule satisfies continuity, restricted additivity,
and dual restricted additivity, then its recommended allocations in two-claimant
problems involving claimants i and j coincide with those specified by P , Dij, or Dji,
as illustrated in Figure 1.

xi
0

xj

E

c•

P (c, E)•

•
Dij(c, E)

•D
ji(c, E)

Figure 1: A claims problem (c, E) involving claimants i and j. The xi axis measures the award of
claimant i and the xj axis measures the award of claimant j. As E increases from 0 to ci + cj , the
allocations recommended by a continuous rule satisfying restricted additivity and dual restricted
additivity will follow one of the three paths (dashed, solid, gray) connecting the origin and c.

Lemma 4. Let f denote a continuous rule satisfying restricted additivity and dual
restricted additivity. Let Dij and Dji be as defined in (9). Then, for each {i, j} ⊆ N,
f coincides with P , Dij, or Dji for claims problems in C{i,j}.

Proof. Let f denote a rule satisfying the axioms in Lemma 4. By Lemma 2, f is
endowment monotonic for two-claimant problems, a fact we will use repeatedly below.
Let N ∈ N consist of two claimants. Without loss of generality, let N = {1, 2}.

Claim 1. If (c, E) ∈ CN is such that 0 < f(c, E) < c, then f(c, E) = P (c, E).

Let (c, E) ∈ CN be such that 0 < f(c, E) < c. Let λ ∈ [0, 1] and e∗ = λE+(1−λ)0.
Since f(c, E) < c and f(c, 0) = 0 < c, by Lemma 3,

f(c, e∗) = f(c, λE) = λf(c, E).
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Since f(c, E) > 0, then f(c, e∗) = λf(c, E) > 0. By endowment monotonicity, if
e1 ≥ E, then f(c, e1) ≥ f(c, E) > 0. Let β ∈ (0, 1). Given that f(c, λ(c1 + c2) + (1−
λ)βE) > 0, by Lemma 3, f(c, λ(c1+c2)+(1−λ)βE) = λf(c, c1+c2)+(1−λ)f(c, βE).
By endowment monotonicity, f(c, ·) is continuous. Taking limits as β → 0,

f(c, λ(c1 + c2) + (1− λ)0) = λf(c, c1 + c2) + (1− λ)f(c, 0)

Thus, for each λ ∈ [0, 1], f(c, λ(c1 + c2)) = λf(c, c1 + c2). Note that f(c, E) > 0
implies c > 0. Letting λ∗ = E

c1+c2
, f(c, λ∗(c1 + c2)) = λ∗f(c, c1 + c2) = λ∗c. Thus,

f(c, E) = E
c1+c2

c = P (c, E).

Claim 2. If (c, E) ∈ CN is such that 0 < f(c, E) < c is not true, then either
f(c, E) = D12(c, E) or f(c, E) = D21(c, E).

If (c, E) ∈ CN is such that 0 < f(c, E) < c is not true then, either f1(c, E) =
min{c1, E} or f2(c, E) = min{c2, E}.

Let D ⊆ CN consist of all (c, E) ∈ CN such that c > 0 and 0 < E < c1 + c2. Note
that all rules coincide for claims problems in CN \ D.

Claim 3. Let (c, E) ∈ D.

(i) If f(c, E) = P (c, E), then, for each (c′, E ′) ∈ CN , f(c′, E ′) = P (c′, E ′).

(ii) If f(c, E) = D12(c, E), then, for each (c′, E ′) ∈ CN , f(c′, E ′) = D12(c′, E ′).

(iii) If f(c, E) = D21(c, E) then, for each (c′, E ′) ∈ CN , f(c′, E ′) = D21(c′, E ′).

We prove statement (i); the proofs of (ii) and (iii) are analogous. Let (c, E) ∈ D
and suppose that f(c, E) = P (c, E). Suppose, by way of contradiction, that there
is (c′, E ′) ∈ CN such that f(c′, E ′) 6= P (c′, E ′) which requires that (c′, E ′) ∈ D. For
each λ ∈ [0, 1], let

(cλ, eλ) = λ(c′, E ′) + (1− λ)(c, E) and G(λ) = f1(c
λ, eλ)− P1(c

λ, eλ).

Since f and P are continuous, G : [0, 1] → R is a continuous function and, from
its definition, G(0) = 0 and G(1) 6= 0. Let µ = sup{λ ∈ [0, 1] : G(λ) = 0}. By
continuity, G(µ) = 0. Thus, µ < 1. Consider a sequence {λk} converging to µ and
such that, for each k ∈ N, λk ∈ (µ, 1]. By Claims 1 and 2, we can further select the
members of the sequence so that at least one of the following cases holds:

Case 1: For each k ∈ N, f1(c
λk , eλk) = D12

1 (cλk , eλk).
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Case 2: For each k ∈ N, f1(c
λk , eλk) = D21

1 (cλk , eλk).

In Case 1, by the continuity of D12 and P ,

G(λk)
k→∞→ D12

1 (cµ, eµ)− P (cµ, eµ) = min{cµ1 , eµ} −
eµ

cµ1 + cµ2
cµ1 6= 0.

In Case 2, by the continuity of D21 and P ,

G(λk)
k→∞→ D21

1 (cµ, eµ)− P (cµ, eµ) = max{0, eµ − cµ2} −
eµ

cµ1 + cµ2
cµ1 6= 0.

However, since G is continuous, {λk} converges to µ, and G(µ) = 0, a contradiction.
Thus, f1(c

′, E ′) = P (c′, E ′).

Taken together, Claims 1, 2, and 3 complete the proof.

Proof of Theorem 1. By Lemma 1, each PAP rule satisfies bilateral consistency,
continuity, restricted additivity, and dual restricted additivity. Conversely, let f
denote a rule satisfying these axioms. By Lemma 4 we can define a complete binary
relation % over N from f as follows: for each pair i, j ∈ N,

i � j ⇔ for each (c, E) ∈ C{i,j}, f(c, E) = Dij(c, E),

i ∼ j ⇔ for each (c, E) ∈ C{i,j}, f(c, E) = P (c, E),

i % j ⇔ i � j or i ∼ j.

(10)

By bilateral consistency, % is transitive.14 We now prove that f = P%. Let N ∈ N ,
(c, E) ∈ CN , and x = f(c, E). By consistency,

for each pair i, j ∈ N , f(c{i,j}, xi + xj) = x{i,j}. (11)

By Lemma 4, for each pair i, j ∈ N , one of the following equations holds:

f(c{i,j}, xi + xj) = P (c{i,j}, xi + xj),

f(c{i,j}, xi + xj) = Dij(c{i,j}, xi + xj),

f(c{i,j}, xi + xj) = Dji(c{i,j}, xi + xj).

(12)

14Let i, j, k ∈ N be such that i % j % k. We need to show that i % k. Suppose, by way
of contradiction, that k � i. Let (c, E) ∈ C{i,j,k} be such that ci = cj = ck = E = 1 and let
x = f(c, E). By bilateral consistency, x{i,j} = f(c{i,j}, xi + xj), x{i,k} = f(c{i,k}, xi + xk), and
x{j,k} = f(c{j,k}, xj + xk). Using (10), k � i implies xi = 0; j % k implies xj ≥ xk; and, i % j

implies xi ≥ xj . Thus, xi + xj + xk = 1 implies xj + xk = 1. Thus, xj ≥ 1
2 . Thus, xi ≥ xj > 0, a

contradiction. Thus, in fact, i % k. Thus, % is transitive.
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By (10), for each pair i, j ∈ N ,

f(c{i,j}, xi + xj) = P (c{i,j}, xi + xj)⇒ i ∼ j,

f(c{i,j}, xi + xj) = Dij(c{i,j}, xi + xj)⇒ i � j,

f(c{i,j}, xi + xj) = Dji(c{i,j}, xi + xj)⇒ j � i.

(13)

By the definition of P%, for each pair i, j ∈ N ,

i ∼ j ⇒ P%(c{i,j}, xi + xj) = P (c{i,j}, xi + xj),

i � j ⇒ P%(c{i,j}, xi + xj) = Dij(c{i,j}, xi + xj),

j � i⇒ P%(c{i,j}, xi + xj) = Dji(c{i,j}, xi + xj).

(14)

Since % is complete, for each pair i, j ∈ N , we have three possibilities: i ∼ j, i � j,
and j � i. Thus, by (11), (12), (13), and (14),

for each pair i, j ∈ N , P%(c{i,j}, xi + xj) = x{i,j}.

By Lemma 1, P% is conversely consistent. Thus, P%(c, E) = x = f(c, E).

A.3 Proof of Theorem 2

By Lemma 1, the PAP rules satisfy all of the axioms in Theorem 2. The proof that
there are no other rules satisfying these axioms parallels that of Theorem 1. However,
the role of Lemma 4 in that proof is replaced by the following analogous result.

Lemma 5. Suppose that rule f is continuous and satisfies any one of the following
combinations of axioms:

(a) restricted additivity and restricted endowment additivity,
(b) restricted endowment additivity and dual restricted endowment additivity,
(c) restricted additivity and restricted multiplicative invariance.

Then, for each {i, j} ⊆ N, f coincides with P , Dij, or Dji for claims problems in
C{i,j}.15

Proof. Let f denote a continuous rule, let N ∈ N consist of two claimants, let
(c, E) ∈ CN be such that 0 < f(c, E) < c, and define C =

∑
N ci.

We only need to prove that, if f satisfies the axioms in (a), (b), or (c), then
f(c, E) = P (c, E). This is analogous to proving Claim 1 in Lemma 4; the proof of
Claims 2, 3, and 4 in Lemma 4 then goes through unchanged, thus proving Lemma 5.

15Recall that Dij and Dji be as defined in (9).
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Suppose that f satisfies the axioms in (a). For each λ ∈ [0, 1], let Eλ = λC+(1−λ)E.
Since the combination of endowment continuity and restricted endowment additivity
implies endowment monotonicity (as noted in page 756 of Harless, 2017), Thus, for
each λ ∈ [0, 1], f(c, Eλ) ≥ f(c, E) > 0. Thus, by the first statement in Lemma 3,

for each λ ∈ [0, 1], f(c, Eλ) = λf(c, C) + (1− λ)f(c, E).

Thus, f(c, E) < c and λ < 1 imply that f(c, Eλ) < c. Thus, by Lemma 1 in Harless
(2017), for each α ∈ [0, 1] and each λ < 1, f(c, αEλ) = αf(c, Eλ). By endowment
continuity, as λ→ 1, f(c, αC) = αf(c, C) = αc. Letting α = E

C
, f(c, E) = P (c, E).

Suppose that f satisfies the axioms in (b). Let fd denote the dual of f . By duality,
fd(c, C − E) = c − f(c, E) < c. By duality, fd satisfies restricted endowment
additivity. By Lemma 1 in Harless (2017), for each α ∈ [0, 1],

fd(c, α(C − E)) = αfd(c, C − E).

By duality, for each α ∈ [0, 1], c − f(c, C − α(C − E)) = α(c − f(c, E)). Letting
Eα = (1− α)C + αE and rearranging, for each α ∈ [0, 1],

f(c, Eα) = (1− α)c+ αf(c, E).

Since f(c, E) < c, for each α > 0, f(c, Eα) < c. Let α > 0. By Lemma 1 in Harless
(2017), for each β ∈ [0, 1], f(c, βEα) = βf(c, Eα). By endowment continuity, as α→
0, for each β ∈ [0, 1], f(c, βC) = βf(c, C) = βc. Letting β = E

C
, f(c, E) = P (c, E).

Suppose that f satisfies the axioms in (c). For each α ∈ [0, 1], let

Eα = αC + (1− α)E and Fα = α2C + (1− α)E.

By Lemma 2, for each α ∈ [0, 1], f(c, Eα) ≥ f(c, E) > 0. By the first statement in
Lemma 3, for each α ∈ [0, 1],

f(c, Eα) = αf(c, C) + (1− α)f(c, E) = αc+ (1− α)f(c, E). (15)

By restricted multiplicative invariance, f(c, E) < c implies f(2c, E) = f(c, E) > 0.
By Lemma 2, for each α ∈ [0, 1], f(2c, Fα) ≥ f(2c, E) > 0. By the first statement
in Lemma 3, for each α ∈ [0, 1],

f(2c, Fα) = αf(2c, C) + (1− α)f(2c, E) = α2c+ (1− α)f(2c, E). (16)

Let α ∈ (0, 1). Let β be such that Eα = F β; equivalently, β = Eα−E
2C−E . By (15),

f(c, Eα) < c. Thus, by restricted multiplicative invariance, f(2c, Eα) = f(c, Eα).
Thus, f(2c, F β) = f(c, Eα). Thus, combining , (15) and (16), and noting that
f(2c, E) = f(c, E), β2c+ (1− β)f(c, E) = α2c+ (1− α)f(c, E). Solving, f(c, E) =
α−2β
α−β c. Plugging in β = Eα−E

2C−E and Eα = αC + (1 − α)E and simplifying, f(c, E) =
E
C
c = P (c, E).
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A.4 Logical independence and robustness

We introduce one further rule to illustrate the logical independence of the axioms in
Theorems 1 and 2. Let G denote the rule that coincides with the proportional rule
for all claims problems with the exception of those involving only claimants i, j ∈ N
where it maximizes i’s award. Formally, for each N ∈ N such that N 6= {i, j} and
each (c, E) ∈ CN , G(c, E) = P (c, E) and, for each (c, E) ∈ C{i,j}, G(c, E) = Dij(c, E)
where Dij is as defined according to (9) in Subsection 3.1.

Table 2 below shows that non-PAP rules becomes admissible after dropping any
one of the axioms in the characterizations given in Theorems 1 and 2.16

CEL CEA LCF G
bilateral consistency 3 3 3 7

continuity 3 3 7 3

restricted additivity 3 7 3 3

dual restricted additivity 7 3 3 3

restricted endowment additivity 7 3 3 3

dual restricted endowment additivity 3 7 3 3

restricted multiplicative invariance 7 3 3 3

Table 2

Finally, we show that weakening our additivity axioms in a natural way no
longer enables us to characterize the PAP rules. Both restricted additivity and
dual restricted additivity imply the following axiom: For each pair c ∈ RN and
each pair E,E ′ ∈ [0,

∑
N ci] such that 0 < f(c, E) < c and 0 < f(c, E ′) < c,

f(c, E) + f(c, E ′) = f(c + c, E + E ′). This axiom is satisfied by all the asymmet-
ric rationing rules (Moulin, 2000), a class containing a number of continuous and
consistent rules beyond the PAP rules.

16The priority-augmented weighted CEA rules and the priority-augmented weighted CEL rules
characterized by Flores-Szwagrzak (2015) could also be used as examples in the table instead of
the CEA and CEL rules, respectively. Rule G could be replaced by any rule obtained by applying
a different PAP rule to each N ∈ N .

25


