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Abstract

In this study we propose the use of text mining and machine learning methods to predict and

detect Surgical Site Infections (SSIs) using textual descriptions of surgeries and post-opera-

tive patients’ records, mined from the database of a high complexity University hospital.

SSIs are among the most common adverse events experienced by hospitalized patients;

preventing such events is fundamental to ensure patients’ safety. Knowledge on SSI occur-

rence rates may also be useful in preventing future episodes. We analyzed 15,479 surgery

descriptions and post-operative records testing different preprocessing strategies and the

following machine learning algorithms: Linear SVC, Logistic Regression, Multinomial Naive

Bayes, Nearest Centroid, Random Forest, Stochastic Gradient Descent, and Support Vec-

tor Classification (SVC). For prediction purposes, the best result was obtained using the Sto-

chastic Gradient Descent method (79.7% ROC-AUC); for detection, Logistic Regression

yielded the best performance (80.6% ROC-AUC).

1. Introduction

Surgical Site Infections (SSIs) are one of the predominant types of infection in Brazilian hospi-

tals [1]. About one in thirty "clean" surgeries will suffer from complications due to SSIs. The

rate is significantly higher if we consider "dirty" (i.e. contaminated), emergency, and prolonged

surgeries, or procedures performed on patients with clinical comorbidities [2]. SSIs are also

among the most frequent Adverse Events (AEs) reported on hospitalized patients, causing a

substantial increase in mortality, re-hospitalization rates, and care costs [2,3].

Traditional methods for the prevention and detection of infections typically use resources

(mostly human) in an intensive and time-consuming way. Computerized techniques, mainly

based on Artificial Intelligence, may provide expedite and cost-efficient alternatives to the

analysis of infections [4–6]. For that, it is necessary to verify the applicability of those tech-

niques in the detection of AEs and control of hospital infections, particularly in large scale,

data-rich environments such as the Brazilian healthcare system [7].
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Health surveillance has been described as an essential part of infection prevention and con-

trol programs due to its ability to promote a decrease in infection rates [8–10]. In healthcare

institutions, patient information is stored mainly in the form of narrative texts and clinical

reports [11]. Passive search for infections is usually carried out analyzing spontaneous reports

made by health professionals (i.e. healthcare providers report clinical signs and a possible

infection diagnosis in the patient’s medical record, but not necessarily make the statement of a

hospital infection to the surveillance entities). However, most mild and self-limiting infections

are likely to remain unreported. On the other hand, surveillance and the active search for

infections usually do not provide real-time information, since data collection, analysis and

feedback traditionally rely on time and resource consuming methods [12]. Data Mining (DM)

and Machine Learning (ML) techniques provide an alternative for that.

The use of DM to support health surveillance has been reported in the literature [13–15].

When applied to unstructured textual data, DM is referred to as Text Mining (TM); DM and

TM share the same process and goal of identifying non-trivial patterns in data that are both

meaningful and useful to users [16]. Both groups of techniques often use ML algorithms

[17,18], enabling the prediction and classification of new records based on knowledge gathered

from existing records.

There is some evidence in the literature reporting the successful use of TM and ML meth-

ods in the analysis of events that cause harm to patients; see [4–6]. Machine learning has been

shown to be an effective tool for predicting infections [19,20]. In the same way, significant

advances were also reported on the subject of adverse events’ extraction and detection using

free text to improve patients’ diagnosis [21,22]. However, there is a gap in the literature regard-

ing the joint application of TM and ML to predict SSI mining textual records of surgical

descriptions, which we aim to bridge with our study.

2. Materials and methods

TM methods were used to process surgeries’ and post-operative patients’ records of a Brazilian

hospital aiming to set the best practices for predicting and detecting SSIs using ML algorithms.

An optimization of hyperparameters has also been performed for each algorithm. We analyzed

a dataset comprised of textual descriptions of surgeries and post-operatives patients’ records

up to 30 days after the procedure.

The dataset was obtained from Hospital de Clı́nicas de Porto Alegre (HCPA), an 842-bed,

tertiary care teaching hospital located in the city of Porto Alegre, Brazil. The hospital is deemed

best in the country in its category, providing average and high complexity care through the Bra-

zilian Unified Health System (SUS). There are 14 surgical specialties considered in the analysis.

The 30-day observation period established in this study to monitor the occurrence of post-

surgical infections is grounded on empirical evidence as shown in Table 1, which was obtained

mining a database of surgeries performed by each specialty in the past 5 years.

In Table 1, ni denotes the number of records found in the 5-year period, and ti denotes the

average number of postoperative days of hospital stay demanded by specialty i. Statistic ti is a

weighted average, which considered the average number of postoperative hours of hospital

stay demanded by each type of procedure within specialty i and their frequency of occurrence

in the database. Most specialties require post-operative stays shorter than 30 days (the overall

mean is 20.5 days), justifying the observation period established here.

Data were used to train and compare classification algorithms and text preprocessing tech-

niques. The study was conducted in four stages (Fig 1), which were adapted from [23].

Data were managed using PostgreSQL 9.6 [24]. Text preprocessing was carried out in

Python 3.5 [25], which was also used to run TM and ML methods, and evaluate their
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performance. Python provides libraries to support processing of records, information retrieval,

application and validation of methods; we used the NLTK [26] and scikit-learn [27] libraries.

In the data retrieval stage, we retrieved textual information on surgeries and patients’ post-

operative records from HCPA’s unified database, which was then combined with inputs from

the hospital’s Internal Committee for Infection Control (ICIC). The committee retrospectively

reviews records identifying the ones that led to infections, following an active search strategy.

Records reviewed are manually selected among those more likely to display a patient infection

outcome; i.e. patients to whom antibiotics were prescribed, cases in which positive wound cul-

tures are reported or those associated to patients displaying signs and symptoms of fever,

hyperemia or presence of secretion in their evolutions, older or obese patients, and those car-

rying chronic diseases such as diabetes. The committee reviewed the selected post-operative

records and reached a conclusion, assigning one of two possible outcomes (patient infected or

not infected).

There are two parts to the text records used here: (i) a technical description of the surgical

procedure, and (ii) follow-ups on the evolution of patients during hospitalization and consul-

tations, up to 30 days after surgery. Records analyzed were written in Brazilian Portuguese.

The occurrence of infections is reported in both parts by those providing care to patients,

Table 1. List of surgical specialties and associated post-operative length-of-stay.

Specialty, i ni ti
1. Pediatrics 2,963 58.5

2. Colorectal 2,516 32.8

3. Neurosurgery 2,392 27.1

4. Digestive System 9,930 26.6

5. Urology 11,136 22.0

6. Vascular 3,435 21.9

7. Plastic 1,663 21.8

8. Thoracic 3,213 20.6

9. General 9,294 15.7

10. Orthopedics and Traumatology 6,468 13.0

11. Gynecology and Obstetrics 5,398 8.8

12. Otorhino 5,652 8.5

13. Oral and Maxillofacial 278 7.5

14. Mastology 2,034 3.0

https://doi.org/10.1371/journal.pone.0226272.t001

Fig 1. Overview of the proposed method.

https://doi.org/10.1371/journal.pone.0226272.g001
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leading to a highly unbalanced dataset: 1.2% of the records report infections in part (i), while

1.6% report infections in part (ii). Records reporting infections on the 31st day after surgery or

later were disregarded, as well as those of patients who had more than one surgery performed

on the same day with different infection outcomes.

The response variable used in the text mining step to obtain predictions of outcomes was

the “gold standard” established by the ICIC, and not the caretakers’ reports. Thus, we may

have situations in which the surgery was reported infected by caretakers, but no infection was

reported by them during the post-operative period, although the case was considered infected

since that was the conclusion issued by the ICIC. Note that the ICIC issued one conclusion per

case; thus, whenever the ICIC concluded that a case was infected, the conclusion was valid for

both surgery and post-operative descriptions.

The second stage is the Text Mining. There are six steps in this stage: normalization, tokeni-

zation and stemming, vectorization, feature selection, conversion to set-of-words, and defini-

tion of the train and test sets. Textual description of cases was obtained in the previous stage in

comma-separated values (.csv) format and inserted into the PostgreSQL database. The dataset

was structured with three fields of information: (i) the outcome of a binary variable represent-

ing the final status of the patient (1 = infected or 0 = not infected) obtained from the ICIC; (ii)
free-form text entered directly by healthcare providers describing the surgery; and (iii) free-

form text describing the post-operative record, also entered by caretakers. Data from the sec-

ond and third fields were treated in the pre-processing module. Numerical entries were

excluded from fields (ii) and (iii).
In the normalization step, stop words and punctuation were removed and the text was

rewritten with no capital letters. In the tokenization step, continuous text was reduced to

tokens, which are linguistic units such as words and sentences [28]. Morphological normaliza-

tion was also carried out with words reduced to root form such that gender and grade informa-

tion was excluded. After this step, each record was comprised of a set of tokens, delimited by

blank spaces. Once tokens are identified, and prior to the feature selection step, features must

be defined. In general, an n-gram is a sequence of n tokens [29]. In this work, we used uni-

grams, bigrams, and trigrams as features.

In the feature selection step, features were ranked according to two indices. The first is

based on the χ2 test, commonly used to verify the independence between a pair of events; in

the context of feature selection, we test the occurrence of features in classes and their depen-

dence using Eq (1).

w2 d; t; cð Þ ¼
P

et2f0;1g

P
ec2f0;1g

ðNetec
� Eet ;ecÞ

2

Eet ;ec
ð1Þ

where N and E are the observed and expected occurrence frequencies in document d, et is a

binary variable indicating if feature t occurs in d, and ec is a binary variable indicating if d is in

class c. For the independence hypothesis to hold, Netec
and Eet ;ec should converge to 0.5; when

that is not the case and χ2 values are large, feature t should be selected [30].

The second feature selection index is based on F-value, which is calculated as follows [31]:

F value tð Þ ¼
ðXinf

t � X�tÞ
2
þ ðXn inf

t � XtÞ
2

1

ninf � 1

Pninf
k¼1 ðX

inf
k;t � X

inf
t Þ

2
þ 1

nn inf � 1

Pnn inf
k¼1 ðX

n inf
k;t � X

n inf
t Þ

2
ð2Þ

where Xt, X
inf
t and Xn inf

t is the average of the t-th feature in the complete, infected, and non-

infected datasets, respectively; Xinf
k;t is the t-th feature of the k-th infected instance, and Xn inf

k;t is

the t-th feature of k-th non-infected instance; ninf is the number of infected instances, and
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nn_inf is the number of non-infected instances. Eq (2) gives a measure of discrimination

between the two sets (infected and non-infected); whenever the F-value of a feature is greater

than a threshold value the feature is inserted into the selected feature space; otherwise, it is

removed from that space. High F-values indicate discriminating features [31].

Features retained were those above a given percentile of largest values; percentile and index

chosen varied according to the Text Mining method tested. Indices were chosen based on

their good performance in previous studies [5,23], and adequacy to the case under analysis.

In the conversion to set-of-words step, the occurrence of features (selected in the previous

step) in records is evaluated regarding a given indicator, and results are organized in a matrix.

Text records are listed in matrix rows and selected features in matrix columns. Two indicators

were tested here: term frequency (TF), and term frequency-inverse document frequency

(TF-IDF). TF gives the frequency in which a feature appears in a record. TF-IDF reflects the

importance of a feature in a record from a collection of records, increasing proportionally to

the feature’s frequency in a record, but being compensated by the feature’s frequency in the

collection of records, as given next [32]:

TFIDF t; d;Dð Þ ¼
f ðt; dÞ

maxff ðt; dÞ : t 2 dg
� log

jDj
jfd 2 D : t 2 dgj

ð3Þ

where t denotes the feature, d denotes the record, D is the total number of records considered,

and f(t,d) is the number of occurrences of feature t in record d.

TFIDF values for each matrix term were normalized using the unitary Euclidian norm [32],

as follows:

vnorm ¼
v
jjvjjp

¼
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vp1 þ v

p
2 þ � � � þ v

p
n

p ð4Þ

where vnorm is the normalized vector, v is the vector to be normalized and ||v||p is the norm

used to promote normalization, such that p = 1 for ‘1norm and p =2 for ‘2norm [33]. Large val-

ues of TFIDF are obtained whenever a term displays high frequency in a document and low

frequency in the complete set of documents.

The last step of the pre-processing stage is the definition of training and testing sets, in

which the set-of-words is divided to allow k-fold cross-validation. We divided the dataset into

kmutually exclusive subsets of equal size, and used one subset for testing and k−1 subsets for

parameter estimation. The process was carried out k = 10 times alternating the test subset, and

performance statistics were calculated from the results [34].

In the Machine Learning stage, we tested different supervised classification algorithms. In

supervised learning the outcome of each analyzed record in known beforehand. Records are in

the format (x,y), where x is the vector of features defined in the preprocessing stage and y is a

binary class identifier, with outcomes 0 for not infected (or clean), and 1 for infected.

We tested the performance of ML algorithms used in similar studies; they are: Support Vec-

tor Machines (SVM) [13,14,35–45], Logistic Regression [37,42], Naive Bayes [35,38,43,44,46],

Boosted Trees [38], Random Forest [38], and Nearest Neighbors [38]. The dataset was split

into training and testing sets. Due to the highly unbalanced dataset, we used a stratified (k−1)

cross-validation strategy, preserving the percentage of samples in each class in each fold, with

k set to 10 [47]; that means the learning process is executed 10 times in different training sets,

and the average of 10 scores is used to obtain an overall accuracy estimate. The goal was to

improve the algorithms’ performance on the classification of records resulting in infection.

Records were randomly picked in the training set such that each class is represented in the
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same proportions observed in the complete sample of records (~98.6% clean and ~1.4%

infected outcomes).

Each ML algorithm has parameters that are not directly learned by the classifier; e.g., C, ker-

nel, and γ in SVM [48]. Parameters’ definition was performed through a random search in a

grid of parameters [49]. The search had the objective of finding the best combination of

parameters to maximize the Area Under the Curve (AUC) of the Receiver Operating Charac-

teristic (ROC) [50]. The grid search was also used to select the percentile and metric (χ2 and F-

score) for attribute selection, and norm for TF-IDF (l1 or l2).

The final stage in our proposed method is performance evaluation. For that, we analyzed

precision, sensitivity, ROC-AUC, and confusion matrices. These indicators are suitable for

classification problems with unbalanced datasets, being used several similar studies reported

in the literature [13,14,43–46,51,35–42].

3. Results

The original database was comprised of 27,648 surgical descriptions and 15,714 post-operative

records (the use of the dataset was approved by HCPA’s Ethics Committee under project num-

ber CAAE 33705014.8.0000.5327). HCPA’s Ethics Committee is coordinated by Drs. Temis

Maria Felix and Marcia Mocellin Raymundo; the complete list of Committee members is avail-

able at https://www.hcpa.edu.br/downloads/pesquisa/ato_n_188-2019.pdf. After excluding

empty records and those that did not fit the criteria of the study, the number of records was

reduced to 15,479 surgical descriptions and 12,637 post-operative records, with 98.6% of the

records negative and 1.4% positive on average, according to Table 2. Table 3 provides a

descriptive view of the final dataset (datasets and codes used in this analysis are given in S1

Supplement). Some remarks are noteworthy. Records in the database cover an 8-month period

starting in 12/2015. During that period: (i) 27,648 surgical descriptions were made; of those,

the ICIC audited a sample and detected 247 infections; and (ii) 15,714 post-operative descrip-

tions were made; of those, the ICIC audited a sample and detected 233 infections. We excluded

records of patients who had more than one surgery in the same day and only one of them was

infected, since there is a single post-operative record in such situation.

In results to follow, text mining classifiers were used in the two parts of the dataset (surgical

descriptions and post-operative descriptions) separately. We refer to results in the first part

(surgical descriptions) as prediction, and to results in the second part (post-operative descrip-

tions) as detection. In both cases, TM pre-processing and ML algorithms were used to classify

cases as clean or infected.

Table 4 presents the performance of each ML algorithm in predicting infections and the

respective TM settings to achieve the results. ROCs for the prediction algorithms are shown in

Table 2. SSI database analyzed in this study.

Prediction Detection

Description Infected

surgeries

Clean

surgeries

Total Infected

surgeries

Clean

surgeries

Total

Initial sample 247 27,401 27,648 233 15,481 15,714

Empty records -29 -12,103 -12,132 -2 -3,037 -3,039

Records of patients that had more than one surgery, one of which

was reported clean

-4 -7 -11 -3 -9 -12

Infections reported more than 30 days after surgery -26 0 -26 -26 0 -26

Records used in the study (final sample) 188 (1.21%) 15,291

(98.79%)

15,479

(100%)

202 (1.6%) 12,435

(98.4%)

12,637

(100%)

https://doi.org/10.1371/journal.pone.0226272.t002
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Fig 2, Precision-Recall boxplots in Fig 3 and Precision-Recall curves for all tested methods in

Fig 4. The best performance considering the relationship between true positives and false posi-

tives represented by the area under the ROC curve was obtained by the Stochastic Gradient

Descent (SGD) method. The best result was achieved using 75% of the terms selected by the χ2

test in a set of features without normalization, assigning a weight of 0.01 to the negative (clean)

class. Pre-processing strategies for each method were determined from a grid of parameter

options through random search. Chosen Feature Selection method, Percentile, Transforma-

tion, Normalization, and Class_Weight options were those yielding the best ROC-AUC.

SGD classification with the pre-processing settings displayed in Table 4 reached a mean of

79.7% ROC-AUC (SD = 3.3%), mean sensitivity of 89.3% (SD = 6.8%) for positive classes, and

65% (SD = 1.4%) for negative classes. Considering the unbalance between classes, mean preci-

sion values obtained were 3.5% (SD = 0.3%) for the positive class and 99.8% (SD = 0.1%) for

the negative class.

Table 5 presents the performance of each ML algorithm in detecting infections and the cor-

responding TM settings. ROCs for the detection algorithms are shown in Fig 5, Precision-

Recall boxplots in Fig 6 and Precision-Recall curves for all tested methods in Fig 7. Logistic

regression was the method yielding the best results considering the relationship between true

positives and false positives. This result was achieved using 40% of the terms selected from the

χ2 test, in a set of TF-IDF terms normalized using the norm l1, with a weight of 0.01 for the

Table 3. Descriptive view of the dataset.

Characteristic Value

Number of patients 12,483

Mean (and SD) of patients’ age 48.31 (22.03)

Average number of surgeries per patient 1.24

Female patients 7,107

Mean (and SD) of female patients’ age 47.13 (20.44)

Male patients 5,376

Mean (and SD) of male patients’ age 49.88 (23.87)

Number of surgical procedures 18,062

Elective procedures 13,027

Urgent procedures 3,239

Emergency procedures 1,796

Average size (and SD) of surgical team 5.84 (2.81)

https://doi.org/10.1371/journal.pone.0226272.t003

Table 4. Algorithms’ performance in predicting SSI.

ROC-AUC

Method T P FS N CW Mean SD

Random Forest (RF) TF-IDF 85% F l1 1/0.01 76.3% 3.3%

Logistic Regression (LR) TF-IDF 55% F l1 1/0.005 75.9% 2.5%

Linear SVC (LSVC) TF 85% F l1 1/0.005 79.0% 4.7%

SVC TF 10% F l2 1/0.001 75.3% 4.6%

Nearest Centroid (NC) TF 20% χ2 l1 - 78.2% 4.3%

SGD TF 75% χ2 - 1/0.01 79.7% 3.3%

M-Naive Bayes (MNB) TF 40% χ2 - 20/80 75.0% 4.6%

T: Transformation; P: Percentile; FS: Feature Selection; N: Normalization; CW: Class_Weight / Prior Probability; SD: Standard Deviation

https://doi.org/10.1371/journal.pone.0226272.t004
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negative class. The method yielded an ROC-AUC of 80.60% (SD = 2.4%), mean sensitivity of

75.7% (SD = 5.4%) for positive classes, and 85.5% (SD = 1.5%) for negative classes. Mean preci-

sion values were 7.9% (SD = 0.8%) for positive class, and 99.5% (SD = 0.1%) for negative class.

The objective of our study is to increase sensitivity in the search for infections, given that

the manual procedure adopted by the surveillance team yields high precision and low sensitiv-

ity. The high sensitivity (and consequent low precision) searched in this study are depicted in

the curves in Figs 4 and 7. Sensitivity was also prioritized here due to the fact that the gold-

standard used in the analysis was based on sampling and selecting patients with higher poten-

tial risk; therefore, patients with lower risk that presented infection were less likely to have

been investigated and accounted for in the gold-standard. Using text mining and machine

learning to direct a more effective sampling by the surveillance team may lead to more infected

patients being detected, yielding more reliable infection indicators and improving the gold-

standard for future studies. Using the best algorithms for predicting and detecting SSIs may

reduce the number of cases to be monitored in the post-operation period by more than 50%

with less than 5% false negatives.

For predicting and detecting SSIs, the parameter CW (Class_Weight) was used to account

for the unbalanced dataset, working similarly to a cost function with the objective of minimiz-

ing the bias between clean and infected classes. A CW = 1/0.01, for instance, implies in

Fig 2. ROC-AUC performance of algorithms in predicting SSIs.

https://doi.org/10.1371/journal.pone.0226272.g002
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assigning a weight of 1 to a positive (infected) classification and 0.01 to a negative (clean)

classification.

Oversampling and undersampling approaches were also tested to account for imbalance in

the dataset (results are presented as S2 Supplement). We were unable to avoid model overfit-

ting when using oversampling, regardless of optimizing hyperparameters. That did not occur

when undersampling, however none of the tested algorithms was able to outperform results

obtained through the Class_Weight method.

A reduction in the number of surgeries to be monitored in the post-operative period repre-

sents a gain in terms of cost reduction and personal involvement in SSI surveillance. To attain

such benefits, we should look for a compromise between the reduction in the number of events

to be surveilled and the number of false negatives (infected surgeries classified as clean). That

is attained analyzing the ROC-AUC mean values of each classification method in predicting

infections, and the confusion matrix associated with the best method.

The best ROC-AUC in Table 4 is given by the SGD method (mean = 79.70%), with confu-

sion matrix displayed in Table 6. Adopting the SGD for prediction would lead in a reduction

Fig 3. Precision-recall percentages and boxplots for surgical descriptions.

https://doi.org/10.1371/journal.pone.0226272.g003
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of 64.3% [= (n –TP–FP)/n] in the number of records to be analyzed by the ICIC, with (FP = )

20 surgeries reported as clean but actually infected not surveilled (approximately 10% of all

infected surgeries). On the other hand, if the objective was to reduce the incidence of false neg-

ative classifications, the best method would be Logistic Regression: with a reduction of 55.59%

Fig 4. Precision-recall curves of methods tested for predicting SSIs.

https://doi.org/10.1371/journal.pone.0226272.g004

Table 5. Algorithms’ performance in detecting SSI.

ROC-AUC

Method T P FS N CW Mean SD

Random Forest (RF) TF 20% χ2 l2 1/0.01 76.1% 3.4%

Logistic Regression (LR) TF-IDF 40% χ2 l1 1/0.01 80.6% 2.4%

Linear SVC (LSVC) TF-IDF 45% χ2 l1 1/0.01 78.1% 2.5%

SVC TF 25% F l2 1/0.1 61.0% 6.3%

Nearest Centroid (NC) TF-IDF 80% χ2 l1 - 76.4% 2.9%

SGD TF 55% F - 1/0.05 63.6% 1.0%

M-Naive Bayes (MNB) TF-IDF 80% F - 20/80 64.1% 6.5%

T: Transformation; P: Percentile; FS: Feature Selection; N: Normalization; CW: Class_Weight / Prior Probability; SD: Standard Deviation

https://doi.org/10.1371/journal.pone.0226272.t005
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in the number of records to be analyzed by the ICIC, it would imply in only 4.26% false nega-

tives. These numbers illustrate the potential of using TM and ML methods to rationalize SSI

surveillance activities.

4. Discussion

In this paper, we addressed patient safety surveillance through the use of text mining and

machine learning methods using a database of surgical descriptions and post-operative follow-

ups obtained from a high complexity University hospital. Our main goal was to establish the

best TM and ML techniques for SSI prediction and detection using only textual data. For that,

different methods of TM and ML were tested based on similar applications reported in the lit-

erature. Our results demonstrated that TM and ML are effective tools to support surveillance

teams in the prediction and detection of SSIs, leading to improved patient care and safety.

Based on the TM and ML methods applied to our database of surgical descriptions it was

possible to optimize surveillance efforts by reducing 55.59% of the volume of surgeries to be

followed preventively, with only 4.26% of infections not detected using the Logistic Regression

method. Using the SGD method, it was possible to reduce the volume of surgeries to be fol-

lowed by 68.98%, although with a higher number of infections going undetected (10.64%).

Fig 5. ROC-AUC performance of algorithms in detecting SSIs.

https://doi.org/10.1371/journal.pone.0226272.g005
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Independent of the ML method chosen, it is possible to optimize the time and resources

invested in SSI surveillance, potentially increasing the number of SSIs that are currently unde-

tected by the ICIC.

TM and ML methods rely on accurate classification of clean and infected surgeries by the

surveillance team. Some factors may affect such classification, having a direct impact on the

precision and sensitivity of TM methods. The identification of SSI requires interpretation of

clinical and laboratory findings [52]. However, some surgical patients experience a short

period (or no period) of hospitalization after surgery. The identification of patients developing

infections after early discharge has been one of the challenges faced by infection surveillance

methods [12].

The high unbalance in the dataset analyzed also imposes a challenge to the performance of

TM and ML methods. The large number of negative SSI cases contributes to the increase in

the false positive rate. We tried to compensate that using TM techniques combined with fea-

ture selection, TF-IDF transformation, and analysis of bigrams and trigrams. Another factor

that contributes to increasing the number of false positives concerns the medical narrative

described in the post-operative record, in which the patient is alerted to the risk of SSI. When

Fig 6. Precision-recall percentages and boxplots for post-operative notes.

https://doi.org/10.1371/journal.pone.0226272.g006
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constructing the bag of words, such alert may confuse classifiers since records of clean surger-

ies have terms that are usually related to the occurrence of infection. Alerting physicians about

the impacts of misleading narratives on TM performance may help overcome the problem.

TM and ML methods have the potential to play an important role in adverse events’ surveil-

lance, as pointed out in the literature [2], in the context of machine learning. Specifically

regarding SSI, we demonstrated that TM and ML may be applied on reports created shortly

after surgery to predict the occurrence of infections and on post-operative narrative records,

to detect infections (and therefore develop preventive measures for future patients). The

knowledge on SSI rates may be used as part of a feedback mechanism to decrease the future

incidence of such infections [53], as well as in the training of ML algorithms in TM.

Fig 7. Precision-recall curves of methods tested for detecting SSIs.

https://doi.org/10.1371/journal.pone.0226272.g007

Table 6. SGD method for prediction–confusion matrix.

n = 15,479 Predicted clean Predicted infected

Actual clean True negatives (TN): 9,930 False positives (FP): 5,352 15,291

Actual Infected False negatives (FN): 20 True positives (TP): 168 188

9,959 5,520

https://doi.org/10.1371/journal.pone.0226272.t006
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As future study we plan to explore the use of TM and ML to follow the post-operative rec-

ords of specific groups of patients, selected by medical condition or age group, for example.

We also view the use of additional information, such as examinations and prescriptions of

medications available in the computerized system of the hospital, as potentially beneficial to

improve the performance of TM and ML methods in the detection of SSIs. Finally, the litera-

ture dealing with the study of unbalanced datasets in text mining is constantly evolving. In our

study, we followed the bootstrap strategy proposed by [54] to handle sample imbalance and

tested binary classifiers suitable for unbalanced datasets; however, the study of alternative sam-

ple pre-treatment and classifiers is also a promising research direction.
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