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1 Introduction

This paper studies the importance of predictability in stock prices, house prices, and labor income in
a rich life-cycle consumption-portfolio choice problem. We compare the welfare of skilled investors
who are able to time the market and take all sources of predictability into account to unskilled
investors ignoring predictability. A framework with predictable returns is also apt to analyze
welfare effects along a second dimension. Whereas in models with iid returns the expected returns
are always the same and consequently an investor’s market entry date does not matter,1 the values
of the predictor variables indicate whether a particular economic scenario is more or less favorable.
Therefore, investors can enter the market under quite different economic conditions. An investor’s

market entry date is however predetermined by his birthday so a favorable entry date is pure luck.

We can thus compare investors along two dimensions: their skills and their luck to live under
favorable economic conditions. We determine the welfare effects of living under the same economic
conditions, but having different skills, and the welfare effects of living under different economic
conditions. For 16 cohorts of investors entering the market between 1961 and 1976 and retiring 35
years later the certainty-equivalent welfare loss of being unskilled is between 0.3% and 6.8% with
an average of 4.1%.% The three unluckiest but skilled investors entering the market in 1973, 1974,
and 1976 realized average welfare losses of 7.1%, 11.2%, and 13.0% compared to lucky but unskilled
investors entering the market about ten years earlier (1963, 1964, and 1965). In fact, the losses
can be as high as 15.5% (skilled entering in 1974 vs. unskilled entering in 1964). Our findings are
supported by a simulation study. In particular, we find that in 25% of the cases a skilled investor
would rather trade in skill for luck, i.e. he would rather give up all his skills to live under more

favorable economic conditions.

To model skills, we estimate the joint dynamics of stock prices, house prices, and labor income
based on aggregate, annual U.S. data for the CRSP value-weighted stock market portfolio, the
national Case-Shiller home price index, and the disposable income per capita (all series are inflation
adjusted). In our setting the net corporate payout yield predicts both the stock market index and

house prices, whereas the excess growth of the log rent-price ratio over inflation predicts both

'For simplicity, the market entry date is exogenous in our paper. Modeling an endogenous entry decision leads to
an optimal stopping problem, which is not tractable given the number of state variables in our setting.

> Our setting allows investors to exploit predictability more than is typically possible in practice. The numbers
reported here are conservative upper bounds and the effect of predictability is presumably smaller. This strengthens
our conclusion that luck tends to be more important than market timing skills (see Section 6 for a detailed discussion).

®Bach, Calvet, and Sodini (2015) study a related issue empirically.



house prices and labor income.” The predictive power of the net payout yield on stock returns is
known from Boudoukh, Michaely, Richardson, and Roberts (2007), but its relation to house price
growth rates has not been established before. The rent-price ratio is known to predict house prices

(Himmelberg, Mayer, and Sinai (2005); Plazzi, Torous, and Valkanov (2010)).

We embed the estimated dynamics in a rich model of household decisions involving consumption
of perishable goods and housing services, unspanned labor income, stochastic house prices, home
renting and owning, stock investments, and portfolio constraints. Within this model we study the
effect of predictability on welfare and portfolio performance using both a simulation-based and a
historical approach. Our study is the first to analyze the effects of the skill to implement portfolio
decisions that are based on signals predicting the returns of stock prices, house prices, and income.
This joint view is essential for household decisions. Due to the contemporaneous correlation between
the prices and income on one hand and the predictors on the other hand, the model produces a
rich longer-run correlation structure between stock prices, house prices, and labor income that, for

example, allows expected stock returns to be correlated with house prices or labor income.”

The paper considers skilled and unskilled investors who either take all sources of predictability
into account or disregard predictability all together. We also study the performance of what we refer
to as semi-skilled investors who either ignore stock or housing or labor income predictability. This
allows us to quantify the relevance of the skill to predict returns of a particular asset separately. Our
paper thus also complements findings that quantify the impact of return predictability on stock-
bond asset allocation decisions (see e.g. Campbell and Viceira (1999), Barberis (2000), and the
references given below). Most papers focus on a particular type of predictability (in particular stock
return predictability) and do not take the perspective of a household. For households, however,
portfolio decisions should be seen in a life-cycle perspective incorporating human capital and real
estate, the dominant assets for many households (Campbell (2006)). The ability to predict house

prices and labor income is potentially as important for households as stock market predictability.

Our paper builds on the large literature on stock return predictability which reports that ex-
pected stock returns vary with such variables as the price-earnings ratio (Campbell and Shiller
(1988)), the net payout yield (Boudoukh, Michaely, Richardson, and Roberts (2007)), past stock

returns (Fama and French (1988); Moskowitz, Ooi, and Pedersen (2012)), or short-term inter-

“The net payout of a company in a given period equals the dividends plus equity repurchases less equity issuances.

®The housing collateral ratio and the ratio of aggregate labor income to aggregate consumption are also reported
to help predicting stock returns (Lustig and van Nieuwerburgh (2005); Santos and Veronesi (2006)), which supports
our assumption that the expected stock return can be correlated with house prices and labor income.



est rates (Ang and Bekaert (2007)). Koijen and van Nieuwerburgh (2011) survey this literature.
The implications for stock-bond asset allocation have been explored by Kim and Omberg (1996),
Campbell and Viceira (1999), Barberis (2000), and Wachter (2002) in stylized models disregarding
housing and income. Since expected stock returns vary counter cyclically in these models, intertem-
poral hedging considerations lead to an increased demand for stocks. However, it is well known
by now that optimal portfolios change substantially with the inclusion of labor income or housing,
so the impact of stock return predictability on household portfolios should be explored in richer

models.

Cocco, Gomes, and Maenhout (2005) show that a labor income process calibrated to life-cycle
data is more bond-like than stock-like and thus induces agents to invest a large share of financial
wealth in stocks, in particular early in life where human capital dominates. Two papers extend their
study by allowing the expected income growth to depend on a business cycle variable, either the
level of the short-term interest rate level (Munk and Sgrensen (2010)) or the stock market dividend
yield (Lynch and Tan (2011)). Furthermore, similar as in our paper, Michaelides and Zhang (2017)
jointly model stock market predictability and non-diversifiable background labor income risk and
analyzes the normative implications for optimal consumption and portfolio choice over the life cycle.

However, all these papers ignore housing aspects.

Only few papers derive life-cycle consumption and investment strategies in settings capturing
both human capital, housing, and investment risk. Assuming for tractability a perfect correlation
between house prices and aggregate income shocks, Cocco (2005) concludes that house price risk
crowds out stock holdings and can therefore help in explaining limited stock market participation.
Yao and Zhang (2005) generalize Cocco’s setting to an imperfect house-income correlation and
endogenize the renting/owning decision. They find that home-owners invest less in stocks than
home-renters, which confirms that housing risk crowds out stock market risk (see also Vestman
(2018)).° In our more general setting, we also find that the optimal stock investment is zero or low
for many young households. Our paper documents that this result dampens the welfare effect of

stock return predictability.

While several papers find evidence of predictability in real estate prices (Case and Shiller (1990),
Poterba (1991), Malpezzi (1999), Ghysels, Plazzi, Valkanov, and Torous (2013)), only few papers

discuss the implications for household decisions. Fischer and Stamos (2013) solve a life-cycle utility

bvan Hemert (2010) generalizes further by allowing for stochastic variations in interest rates and thereby intro-
ducing a role for bonds, but his focus is on the interest rate exposure and mortgage choice over the life cycle.



maximization problem assuming that expected housing returns depend on realized past returns. We
add time-varying drift rates in stocks and income, and we allow the drift rates to be correlated with
the levels of stock, house price, and income, which can substantially affect the magnitude and risk
characteristics of human capital and therefore optimal investment and consumption decisions. In a
model without stock or income predictability, Corradin, Fillat, and Vergara-Alert (2014) show that
predictability in house prices causes house [stock] investments to be increasing [decreasing] in the
current expected house price growth. As in our paper, they also find cross effects of predictability

in house prices on stock investments.

The remainder of the paper is organized as follows. Section 2 sets up and estimates the dynamic
model of stock prices, house prices, and labor income. In Section 3 we formulate the life-cycle
utility maximization problem of an individual consumer-investor and explain how we solve it.
Section 4 presents the welfare effects that emerge in a simulation study. We also discuss the
portfolio performances of the various investors. Section 5 determines the welfare effects for 16
cohorts of investors entering the market between 1961 and 1976. Section 6 argues that relaxing
some of our model assumptions potentially reduces the welfare losses of being unskilled. Finally,

Section 7 concludes.

2 The joint dynamics of stock prices, house prices, and income

This section presents our model for the joint dynamics of labor income, stock prices, and house
prices, and calibrates it to U.S. data. We use a continuous-time formulation since this facilitates

the derivation of the optimal consumption and investment decisions in subsequent sections.

2.1 Ouwur main model

The time t level of the (ex dividend) stock market index is denoted by S;, the unit house price by

H,, and the labor income rate by L;. In our framework, the dynamics of these variables (in real

terms) are

dsS

?t = (r+ pg + xg1¢) dt + 0gdBgy, (1)
t

dH N

?tt = (r+ pg + X#e® + Xaryyi) dt +op (prs dBgy + prdBry) | (2)

dL . N

T: = (pr(t) + xrye) dt + o (prs dBsy + pruadByy + pr,dBry) - (3)



Here = and y are the predictors with x; represented by the corporate net payout yield and y, by
the excess growth of the log rent-price ratio over inflation (more details will be given below). Both

predictors are detrended and demeaned following

dwt = —hRgTy dt + Oy (pa:S dBSt + ﬁerBHt + ﬁrL dBLt + ﬁz dBmt) P (4)

dyt = _Hyyt dt + Oy (pyS dBSt + pAdeBHt + ﬁyL dBLt + lay;r dB:vt + Iay dByt) ) (5)

where Bg, By, By, By, B, are independent standard Brownian motions. All instantaneous corre-
lations are constant. We let pyg = pgy denote the instantaneous correlation between stock price
and the house price and use similar notation for the other pairs of processes. In addition, define

the following derived correlation parameters

N 2 A PLH — PLSPHS A 2 ~2
pu=\/1=phg,  pig = DL PLSPHS b=\l - phs — P (6)

PH
R PzH — PesPHS - PzL — PzSPLS — PeHPLH - 2 .2 ~2
PzH = = AzS ) Pzl = = “ ~ = ’ pw:\/1_px‘g_paJH_p‘TL7 (7)
PH PL
.~ PyH — PysPHS ~ _ PyL — PySPLS — PyHPLH A 2 2 2 2
Py = ———F————, Py = - s Py =1 = Pys — Py — PyL — Pye »
P PL
(8)
and
pAy$ _ pya: - pySpmS _ngpacH - ppracL ) (9)
x

By construction pug and py are the long-term average expected growth rates of the stock and house
prices per year in excess of the real risk-free interest rate r, which is assumed constant. The stock
price and house price volatilities 0g and oy are also constant. The stock index pays a constant
dividend yield of D so that the total dividends paid out over a short interval [t,t + dt] are DS, dt.
The parameters «, and o, denote the speed of mean reversion and the diffusion parameter of the
net payout yield. Similarly for , and o,. Increments to z and y are correlated with increments to
S, H, and L, which implies that the longer-term relations between S, H, and L can be markedly

different from the short-term relations.

2.2 Estimation and calibration

We estimate the above dynamics on time series of the stock market index, the national Case-Shiller

home price index, and aggregate labor income. Then we adjust the estimates of the house price and



income volatilities to be more representative of individual house prices and labor income and to be
in line with the related literature. More precisely, we increase the volatilities without changing the

. 7 . . .
correlation structure of the processes.’ In this estimation we assume py, X, and o;, are constant.

We use annual U.S. data for stock prices, house prices, and aggregate labor income from the
beginning of 1960 (where available data on the home rent-price ratio begins) until the end of
2010 (where available data on net payout yield ends). As stock market data, we use returns on the
CRSP value-weighted market portfolio inclusive of the NYSE, AMEX, and NASDAQ markets (cum
dividend). The risk-free asset is estimated from the Treasury bill yield provided by the Risk Free
File on CRSP Bond tape. The house price is represented by the national Case-Shiller home price
index with data taken from Robert Shiller’s h01rnepage.8 From the National Income and Product
Accounts (NIPA) tables published by the Bureau of Economic Analysis of the U.S. Department of
Commerce, we obtain quarterly U.S. data for aggregated disposable personal income (per capita).
The annual returns are computed from quarterly data. To obtain real values, all time-series are
deflated using the consumer price index (CPI) taken from the website of the Bureau of Labor

Statistics.”

As suggested by Boudoukh, Michaely, Richardson, and Roberts (2007) we use the log of the
sum of 0.1 and the net payout yield as our x-variable (for simplicity, we refer to x as the net
payout yield in the following), and Professor Michael Roberts supplies the data until 2010 on his
homepage.10 We use the net payout yield for nonfinancials, but obtain very similar results when
including all firms. The data for the rent-price ratio is described in Davis, Lehnert, and Martin
(2008) and is downloaded from the homepage of the Lincoln Institute of Land Policy."" Since the
log rent-price ratio is nonstationary but integrated of order one, we use the difference in the log
rent-price ratio. This is normalized by subtracting the growth of CPI. Hence, the y-predictor is
the excess growth of the log rent-price ratio over inflation. In other words, we benchmark rent

12

increases against inflation.”” We will refer to y as the (normalized) change of the log rent-price

"See Appendix A.

8http://www.econ.yale.edu/EB\simSBshille:f/data.htm

9ht‘u:ps://www.bls.gov/cpi/

1Ohttp: //finance.wharton.upenn.edu/~mrrobert/

11http://www.lincolninst.edu/resources/

12Deﬁning y as the difference of the two variables is a pragmatic way to avoid a third predictor and thus an
additional state variable in our portfolio optimization. We could also use a model with predictors (z, g, z) where
x is payout-ratio, § is change in the log rent-price ratio, and z is inflation. Then z predicts stock and housing
returns, ¢ predicts housing returns, and z predicts income. The VAR results are almost equivalent, since § and z
have a correlation of virtually zero. Consequently, our findings on welfare and performance of skilled vs. unskilled or
semi-skilled investors are hardly affected, but the computational complexity is reduced significantly.


http://www.econ.yale.edu/$\sim $shiller/data.htm
https://www.bls.gov/cpi/
http://finance.wharton.upenn.edu/~mrrobert/
http://www.lincolninst.edu/resources/

ratio or change of the log rent-price ratio (benchmarked against inflation). To avoid that extreme
outliers significantly affect the estimation, we winsorize x at the 4% level and y at the 2% level.
This dampens the biases resulting from two outliers of = and one outlier of y. Figure 1 depicts the

time series of the detrended predictors before winsorizing.

In our sample, the net payout yield is a statistically better stock predictor than various alterna-
tives suggested in the existing literature, namely the dividend yield, the log price-earnings ratio, the
cyclically adjusted log price-earnings ratio, and the GDP growth rate, and none of these predictor
candidates notably improve the prediction when added along with the net payout yield. However,
the net payout yield has no predictive power for income growth, and the (normalized) rent-price

ratio has no predictive power for stock returns. Therefore, we arrive at the model (1)-(5).
[INSERT FIGURE 1 ABOUT HERE]

We estimate a VAR(1) system which is a discretization of our continuous-time model and
transform the VAR parameter estimates into estimates of our model parameters. Details including
the point estimates and their statistical and economic significances are given in Appendix A that
explains the estimates of the VAR(1) system reported in Table 10. We estimate both the main
model described above as well as four special cases. For these cases, we remove the predictors from
one or all dynamics of S, H, and L, since we are going to explore the isolated and joint effects of

predictability in stock prices, house prices, and labor income.

Table 1 lists the parameter values used as the benchmark in the following. These values equal
the empirical estimates with a few exceptions. First, we reduce the equity premium from the
estimated 5.6% to 4% to account for survivorship bias (Brown, Goetzmann, and Ross (1995)) as
well as the decline in discount rates and the implied unexpected capital gains over the sample period
(Fama and French (2002)). Moreover, a 4% equity premium is used in related papers such as Cocco,
Gomes, and Maenhout (2005) and Yao and Zhang (2005). Secondly, the use of a house price index
and aggregate income underestimates the volatilities of an individual house price and the labor
income of a typical worker. Maintaining the correlation structure, we increase the volatility of
house prices from the estimated value of 6.1% to 12%, which is identical to the value assumed by
Flavin and Yamashita (2002) and Yao and Zhang (2005) and in the range estimated by Case and
Shiller (1989) and Bourassa, Haurin, Haurin, Hoesli, and Sun (2009). Furthermore, we increase the
income volatility from the estimate of 2.1% to 10%, in line with the estimate in Cocco, Gomes, and

Maenhout (2005). We do not change the volatility in retirement for several reasons: (i) some retirees



continue to earn income from proprietary businesses or other non-traded assets; (ii) uncertainty
about medical expenses implies that the disposable income is risky (De Nardi, French, and Jones
(2010)); (iii) because of mortality risk, the individual may miss retirement payments and, while we

do not model mortality formally, retirement income risk captures this effect parsimoniously.

The average growth rate of the aggregate income series is 1.7% per year, but this is not reflecting
the income growth an individual can expect. As our benchmark we assume an expected income
growth rate of 1% throughout the working life. Over the 35-year working period the income is then
expected to grow by a factor exp(0.01 x 35) &~ 1.42, which seems reasonable and is close to the
38% reported as the median individual’s income growth by Guvenen, Karahan, Ozkan, and Song

(2015). In retirement, we set the growth rate to 0%.

[INSERT TABLE 1 ABOUT HERE]

For our sample, the average excess house price growth g is estimated to be -0.5%. We adjust
this number to -1% so that the average house price growth r + pp is equal to zero, which is for
instance also used in Yao and Zhang (2005). This is in line with the long-term average reported
in Shiller (2005). The net payout yield has a mean reversion speed of 0.234 (expected half-life of
(In2)/k, =~ 3.0 years) and a long-run standard deviation of o,/v/2k, ~ 0.127. The normalized
change of the rent-price ratio has a mean reversion speed of 0.298 (expected half-life of 2.3 years)

and a long-run standard deviation of 0.048.

The pairwise contemporaneous correlations between stock prices, house prices, and labor income
are all positive. The stock price is positively related to the net payout yield, xg > 0.329, and since
the two variables are negatively correlated, the model captures the mean reversion in stock returns.
In contrast, since the house price index is both negatively related to and negatively correlated
with its predictors, the model captures momentum in house prices, referred to as housing cycles
by Fischer and Stamos (2013). The labor income is virtually uncorrelated with its predictor. Note
that p7, = 90.8% of the variance of income shocks is unspanned.

The correlations of prices and income with the predictors generate interesting lagged effects.
For example, a positive shock to stock prices this period tends to be accompanied by a negative
shock to z (since p,g < 0), which increases the expected house price growth next period (since

XHz < 0)



3 The decision problem of a consumer-investor

We embed the estimated model (1)-(5) for the dynamics of stock price S;, house price H;, and
labor income L, in the life-cycle consumption and investment choice problem of an individual agent
(consumer-investor or household). We assume the individual retires at a known time T and lives

on until a known time 7'. At retirement, the income rate drops to by a fixed proportion 1 — T,
Ly, =TLz_,

where T € (0,1) is the so-called replacement rate. This is consistent with the wide-spread final-
salary pension schemes and a common assumption in the literature (e.g., Cocco, Gomes, and
Maenhout (2005); Lynch and Tan (2011)). We assume pup,(t) = pr, = 0.01 before retirement (active
phase) and p,(t) = 0 in retirement and that both the sensitivity y; towards the predictor and the
income volatility are not changing at retirement, i.e. we allow for retirement income risk (see also

our discussion in the previous section).

The agent consumes a perishable good and housing services from living in a house (we let
“house” represent any type of residential real estate). The perishable good serves as the numéraire.
The agent can invest in a bank account with a constant interest rate r and in the stock index with
value S;. The agent can invest in and rent houses. A house is characterized by a number of housing
units, where a “unit” is a one-dimensional representation of the size, quality, and location. Prices of
all houses are assumed to move in parallel. The purchase of ¢ units of housing costs ¢ H,. The unit
rental cost of houses is assumed proportional to their market prices so that the total costs of renting
¢ housing units over a short period [t,t + dt] are pRH, dt. These assumptions are standard in the
consumption and investment literature involving housing (e.g. Yao and Zhang (2005); Fischer and
Stamos (2013)). Following Kraft and Munk (2011) and Vestman (2018), simultaneous owning and
renting is possible. The agent derives utility from the number of housing units occupied, whether

rented or owned.

Kraft and Munk (2011) show that transaction costs are of second-order importance if the
agent has access to derivatives linked to the house price. To facilitate the solution of the agent’s
utility maximization problem, we thus assume that the agent can continuously adjust both the

number of units rented and the number of units owned without transaction costs.'> Observed

13Including transaction costs leads to a complicated impulse-control problem, since our setting involves several
state variables. Solving such a problem is beyond the scope of this paper. However, transaction costs reduce the

10



changes in the physical ownership of housing units seem rare and costly, but the remodeling or
the extension of a house would also count as an increase in the number of housing units owned
due to the higher quality or increased space. Moreover, real-life agents can invest in housing units
through house price linked financial derivatives such as the Case-Shiller Home Price Indices futures
and options, through residential REITs (Real Estate Investment Trusts), or even exchange-traded
funds tracking the REIT market; henceforth, we refer to such assets as Case-Shiller derivatives.'?
Homeowners can implement short-term variations to their desired housing investment position
using Case-Shiller derivatives, whereas they might prefer implementing larger changes in both
desired housing consumption and investment through (rare) physical transactions of housing units.
Note that the welfare gains of skilled investors reported in this paper rely on their ability to time
the housing market by trading Case-Shiller derivatives. If we assumed that the agent has no access

to this asset class, then the welfare gains of taking (housing) predictability into account were

significantly lower (see also Section 6).

A housing investment can be seen as an investment in a Case-Shiller derivative or as a physical
purchase of a housing unit which is then rented out. Ownership entails maintenance costs (including
property taxes) equal to a constant fraction m > 0 of the property value. The rate of return on a

housing investment over a period of length dt is therefore

dH. R
(R—m)dt+ T{t = (r+ wy + Xa®e + Xmy¥e) dt + 0w (prrs dBsy + pr dBpy) |
¢

where jy = iy + R — m is the average excess expected return on housing investments. Let ¢,
and ¢,, denote the number of housing units owned and rented, respectively, at time ¢, and let ¢,
denote the housing units owned via financial assets like Case-Shiller derivatives. What matters for
the agent are the total units of houses occupied, ¢, which provides utility from housing services,
and the total units of housing invested in, ¢y, either physically owned or through Case-Shiller

derivatives, where

ot = ot + Ore Ort = Pot + Pt - (10)

Hence, we have a degree of freedom. Physical ownership and investments in Case-Shiller derivatives

complement each other, but we do not distinguish them in the model.

benefits of predictability. See also Section 6.

"“An investment in Case-Shiller derivatives allows the investor to not only time the stock but also the housing
market. If we do not allow for such an investment, then the effect of predictability becomes even less important and
the component of luck dominates even more. See also our discussion in Section 6.
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Let W, denote the tangible wealth of the agent at time ¢, which includes the positions in the
bank account, the stock index, Case-Shiller derivatives, and physically owned housing units, but
not the agent’s human wealth, i.e., the present value of her future labor income. Let IIg, and
My = ¢ H /W, denote the fractions of tangible wealth invested in the stock and in housing
units, respectively, at time ¢. The wealth invested in the bank account is residually determined as
W,(1 — g, — I g;). The rate of perishable consumption at time ¢ is represented by ¢;. The wealth

dynamics is then

dW, =W, [ (7" + g (p's + x52¢) + Warg (Wer + Xpowe + XHyyt)) dt

+ (g0 + Hpgioppns) dBgt +pgonppy dBHt:| + (Lt — ¢ — ¢ RHy) dt (11)

where g = pg + D.
The objective of the investor is to maximize life-time expected utility from perishable consump-

tion and the number of housing units occupied. The indirect utility function is

T
JEW.H Lay) = s E [/ DU (e, don) du | (12)
(C’¢07HS7HH)€'At t

where W, H, L, x, and y denote time t values of wealth, house price, labor income, and the two
predictors, and where U is a Cobb-Douglas-power utility function

Ute.do) = (o). (13)

Here > 1 is the relative risk aversion, and a € (0, 1) the relative utility weight of the two goods.15
Similar preferences are assumed in other recent papers, such as Cocco (2005), Yao and Zhang
(2005), and van Hemert (2010). The set A; contains all admissible control processes over the time

interval [t, T']. Constraints on the controls are thus reflected by A,. We shall impose the constraints

HS > 07 1_[H > 07 HS + qHH < 17 (14)

which rule out short-selling and limits borrowing to a fraction (1 — ¢) of the current value of the

housing investment.

"We disregard utility of bequests which is known to have a negligible impact on portfolio decisions except maybe
in the final few years of life. In an empirical study, Hurd (1989) concludes that bequest motives in various countries
are close to zero.
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Because of incomplete markets (shocks to labor income and the predictors are not spanned by
traded assets) and portfolio constraints, we are unable to solve the problem in closed form, but
apply the approach introduced by Bick, Kraft, and Munk (2013). The method exploits that we can
derive an explicit expression for the optimal strategy in each of various artificial markets.'® In any
of the artificial markets the agent is unconstrained, has access to the same assets (with identical or
higher returns) as in the true market plus additional assets completing the market, so the agent can
obtain at least as high an expected utility as in the true market. Cvitani¢ and Karatzas (1992) show
theoretically that the solution to the true, constrained and incomplete market problem is identical
to the solution in the worst of all the artificial markets. We can solve the utility maximization
problems in some artificial markets in closed form. The fractions of wealth optimally invested in

stocks and housing units are of the form

1 PHST W+ LF
U= a2 <ug(t’x’y) +xs7 — P (i (b, 2, y) + X e + XHyy)> W (15)
YPHOS
B By W + LF F Fy LF
- (s gt ) S~ (Vs T st ) S
1 PHSO W+ LF
Uy =—— (M%f(ta 2,y) + Xpa + Xy — o (st y) + XSx)) W (16)
YPHO H

Here pis and )y are the adjusted expected excess stock and house returns (including dividends
and rents). The functions F = F(t,z,y) and B = B(t,z,y) are found by solving simple partial
differential equations which involve the Sharpe ratios on the fictitious assets completing the market.
The product LF' is the human capital, which is uniquely determined in any artificial market. The
stock investment consists of the speculative demand, a term hedging the variations in expected
stock returns, and an adjustment for the extent to which the human capital replaces a direct stock

investment. The housing investment consists of three similar terms plus the term k:W;rVLF , Where

k= (1-a)(y—1)/v, that hedges against increases in housing consumption costs.

The explicit, optimal strategy in any of the artificial markets is infeasible in the true market,
but following Cvitani¢ and Karatzas (1992), Ex. 14.9, we can transform it into a feasible strategy
in the true market—and evaluate the expected utility it generates in the true market by standard

Monte Carlo simulation. We then maximize over these feasibilized strategies. The corresponding

16Appendix B explains the construction of the computable artificial markets and the solution to the corresponding
utility maximization problem in more detail.
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maximizer is used in our analysis.

Just as with other numerical methods, the suggested strategy is unlikely to be identical to the
unknown, truly optimal strategy. However, in the examples studied by Bick, Kraft, and Munk
(2013) the relative welfare difference between the suggested strategy and a strategy coming from
a grid-based model, which is supposed to deliver the optimal solution, are typically negligible. In
any case, the number of state variables (five plus time) prevents us from implementing grid-based

methods with reasonable grid sizes that bring us near the continuous-time solution.

4 Simulation results

This section studies the effects of predictability on portfolio decisions and quantifies the welfare
effects of skill and luck in a simulation study. Unless otherwise noted, the estimation-based pa-
rameter values in Table 1 are used. Furthermore, we assume a relative risk aversion coefficient of
v = 5. We set the relative utility weight of the goods to a = 0.7, implying that total consumption
expenditures consist of 70% on perishable goods and 30% on housing consumption, which seems
consistent with observed household expenditure, cf. a report by the U.S. Department of Labor
(2003). The subjective time preference rate is 6 = 0.05. All agents are initially of age ¢t = 30, retire
at age T = 65, and live on until age T' = 80. We assume an income replacement rate of T = 0.6.""
We set the proportional rental rate to R = 0.067 as motivated by Fischer and Stamos (2013) and
assume maintenance costs of m = 0.035 (includes property taxes that constitute 1-2% in many U.S.

states). Finally, we assume a 60% maximal loan-to-value ratio corresponding to ¢ = 0.4.'

To be specific, we think of a housing unit as 1,000 square feet of average quality and location.
Using a monetary unit of a thousand U.S. dollars, we set the initial unit house price to H = 250,
which implies an initial annual rent of $16,750 for a housing unit. Furthermore, the initial tangible
wealth is set to W = $20,000 and the initial annual income to L = $20,000 which are roughly
equal to the median values for individuals of age 30-40 in the 2007 Survey of Consumer Finances

(see Kraft and Munk (2011)). Finally, we set the initial values of the predictors to x = y = 0.

Therefore, all simulations start at the average values of the predictors. However, since the

""The reduction from the 68%-93% estimate of Cocco, Gomes, and Maenhout (2005) is a way to implicitly incor-
porate the higher medical expenses in retirement as well as the increased mortality risk that lowers expected future
income.

'8 Robustness checks for loan-to-value ratios of 80% are available upon request. The portfolio strategies are similar,
but the house becomes even more attractive.
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predictors are rather volatile, there is already quite some dispersion of the predictor values after a
few years so that the investors live under diverse economic circumstances along the corresponding
predictor paths. This allows us to study welfare effects of different economic conditions described

by the values of the predictors.

4.1 Portfolio decisions

The portfolio strategies (15) and (16) depend on time and four state variables and are thus difficult
to depict graphically. To get a first impression of the determinants of the portfolio strategies, we
calculate them for about 1,000,000 grid points (see Table 2) and run three regressions of 7g, 7,
and ¢/W on the state variables and some interaction terms.” The regression outputs are shown
in Table 3 that reports standardized regression coefficients so that we can interpret the magnitude
of the loadings. The high R? values indicate that our specification approximates the true relation

between the decision variables and the explanatory variables well. %
[INSERT TABLES 2 and 3 ABOUT HERE]

The house investment tends to be decreasing in age. This is because the hedging motive for
future housing consumption becomes smaller over time. Besides, housing is more important for
young agents, as it can be used as collateral and gives access to credit. In turn, the stock investment
tends to be increasing in age. Furthermore, the consumption wealth ratio increases over time, which

is a standard result given the size of the agent’s time preference rate.

The predictors affect the decisions in several ways: The house investment decreases in both
predictors because their loadings xp, and xp, in the expected house price return are negative
leading to a momentum effect. This tilts investments towards stocks if the predictor values are
positive. Since a high payout ratio z additionally predicts high stock returns in the future (a well-
known result since x generates mean reversion in stock returns), whereas y has no direct impact
on stock returns, the effect is stronger for x. Notice that a high value of y signals more future
income. Since the agent tries to smooth consumption, the consumption-wealth ratio thus increases

with both x and y.

Since the optimal spending on housing consumption relative to perishable consumption is equal to a constant we
do not consider ¢ separately.

20f course, this is only true for the grid values. For outliers the relation is weaker. This is why one cannot simply
use the approximation in the portfolio choice problem. Notice also that this is not a linear approximation. If we
interpret our approximation as Taylor expansion, then the interaction variables are second-order terms.
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Furthermore, a high income-wealth ratio indicates high current and future income. The agent’s
motive to smooth consumption thus drives him to increase both perishable and durable consump-
tion. To hedge his future housing consumption, he also increases his housing investment, which in

turn leads to a smaller stock investment (see fourth row of Table 3).

Finally, we study the effect of interaction variables between the income-wealth ratio and time
t or the predictors x and y. For the optimal investments the signs do not change compared to
loadings on ¢, x, and y alone. Notice however that the consumption-wealth ratio loads negatively
on the payout ratio interacted with the income-wealth ratio. In this case, the agent cuts down on
both perishable and durable consumption and invests heavily in stocks, since = signals high stock

returns in the future. In turn, he reduces his housing investment.

To assess average life-cycle patterns, we perform the following analysis: We simulate 10,000
paths of exogenous state variables and calculate the optimal consumption, housing, and investment
strategies as well as the resulting wealth along these paths. Finally, we calculate expectations of

consumption, wealth, investments, and portfolio weights by averaging over the simulations.
[INSERT FIGURE 2 ABOUT HERE]

Figure 2 illustrates the average optimal investment strategy over the life cycle with baseline
parameter values. The horizontal axes depicts the time passed after the initial date where the
agent is assumed to be of age 30. The left panel shows the amounts invested in the housing asset,
the stock index, and the risk-free asset (bond), whereas the right panel depicts the portfolio weights
relative to tangible wealth. The agent builds up wealth in the active phase to finance consumption
in retirement where income is markedly lower. The portfolio is dominated by housing, especially
early in life, where the investment is maximally leveraged. Later in life, borrowing is less than
the allowed 60% of the house value. The stock weight is around 25% early in life, but increases
rather quickly to around 50%, where it remains relatively stable. In settings ignoring housing, labor
income typically leads to a full stock investment being optimal (leveraged if possible), cf. Cocco,
Gomes, and Maenhout (2005), even for relatively high levels of risk aversion. Our results confirm
the findings of Cocco (2005), among others, that housing crowds out stocks. Not only is housing
a decent investment in itself (especially considering the rents), it also provides access to leverage,

and constitutes a hedge against increases in housing consumption costs.

Now, we compare the investment profiles of agents accounting for predictability and agents

disregarding predictability. We refer to these agents as skilled and unskilled investors. The latter
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agent assumes that the dynamics of stock prices, house prices, and labor income are given by (1)—
(3), but without the terms involving z and y, i.e., effectively imposing xg = X = X#y = X1, =0,
and thus arriving at the parameter estimates in the column labeled “Not at all” of Table 1. The solid
lines in Figure 3 show the two agents’ expected portfolio weights over the life cycle. Predictability
materializes as mean reversion in stock returns and thus leads to a larger average portfolio share
of the stock as found in simpler settings by Kim and Omberg (1996) and others. In contrast,
predictability in house price growth emerges as momentum and thus lowers the average share of

housing in the portfolio.
[INSERT FIGURE 3 ABOUT HERE]

Looking at unconditional averages is however too simplistic if asset returns are predictable. A
skilled investor tries to take advantage of the information contained in the values of the predictors.
We thus perform a scenario-based analysis of the portfolio decisions. Since the distributions of both
predictors x and y are symmetric around zero, we study scenarios where the predictors are positive

or negative.

As can be seen on the right-hand side of Figure 3, not surprisingly the decisions of the unskilled
agent are hardly affected by the values of the predictors. The small deviations of the strategies are
solely driven by wealth effects. This is in sharp contrast to the decisions of the skilled agent. He
times the market and for instance significantly reduces his stock investment if the payout ratio x
is low. In this case the optimal stock investment is even lower than the one of the agent ignoring
predictability (except for the first years). Put differently, although the average is higher it turns
out that the optimal stock demand is in 50% of the cases smaller. In that sense, statements like

“stock predictability increases the stock demand” are only half-true.

Furthermore, as in Corradin, Fillat, and Vergara-Alert (2014) there are cross-effects of the house
return predictor y on stock investments, although the stock returns are not predicted by y. Since
low values of y predict high house returns, the optimal housing investment is in this case larger than
the average. Therefore, the agent must reduce his stock exposure due to borrowing constraints. It
turns out that the stock investment for both agents is almost of the same order of magnitude after

20 years if y is low.
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4.2 Welfare effects and portfolio performance

By taking predictability into account, the skilled agent can time the market and thus generate
higher investment returns, which leads to a higher average consumption level. Table 4 reports the
welfare effects of disregarding predictability. We compare the optimal decisions with situations
where the agent disregards stock, housing or income predictability or predictability all together.
Whereas the latter investor is referred to as unskilled, we refer to all agents that disregard only one
type of predictability as semi-skilled. Our main measure to assess the welfare loss is the utility-based

measure RWEL (relative welfare loss) that is defined as follows:

7o\

RWEL =1 — <Jslmlled> , (17)
where J**"°? ig the indirect utility of a skilled investor, while J " is the expected utility of a semi-
or unskilled investor operating in the market described by our full model (see equation (62) in
the Appendix). Additionally, we also report two present-value-based measures that we refer to as
relative gains (RGmean or RGmedian). For the relative gains, we compute the present values of
consumption (perishable and housing) per path for the optimal and a suboptimal strategy. Then
we either calculate the mean or the median and divide by the mean or median realized by the

skilled investor. Formadly,21 ' .
A(pykilledy _ APV

A(vakilled> (18)
n
where A(-) is either the mean or the median and PV, Filled and PVZ are the present values of total

consumption over the n-th path calculated using an interest rate of 1% (see Table 1).

[INSERT TABLE 4 ABOUT HERE]

Table 4 reports several interesting results: First, an unskilled investor disregarding predictability
all together suffers a welfare loss of about 5.73% (measured in RWEL). For a semi-skilled investor
ignoring either stock or housing predictability, the loss reduces to 1.41% or 1.86%. In our setting,
disregarding housing predicability is thus slightly worse than disregarding stock predictability since
a housing position can be used as collateral. Finally, ignoring income predictability leads to a

smaller loss of 0.74%.

! Alternatively, we could also calculate pathwise gains (PV; Rilled _ PV;) /PV; Filled and then average over these
gains. By Jensen’s inequality, the resulting losses would be smaller.
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The welfare losses are higher if measured in terms of relative gains. This indicates that the
strategies of the semi- and unskilled investors perform relatively well in bad states and are partic-
ularly outperformed in good states. In fact, the distribution of the present value of consumption
realized by the skilled investor is more positively skewed than the corresponding distributions of
the semi-skilled or the unskilled investors.”> This also leads to higher average than median gains.
Consequently, taking predictability into account generates more asymmetric distributions since the
skilled investor tries to time the market. If this gamble works out well, then he realizes high gains,

. . . 2
whereas the losses are limited due to borrowing constraints. 3

Table 4 also reports the welfare losses for paths with positive and/or negative average values
of the predictors. For instance, for the case £ > 0 (Z < 0) we consider only paths where the
average value of x along the path is positive (negative). One can interpret a path with £ > 0 as a
scenario where the agent lives in times with a comparably high payout ratio. Analogously, we also
report the numbers for scenarios where we jointly condition on both averages. Notice that up to
sampling errors all one-dimensional scenarios are equally likely, i.e. for instance that about half of
the paths fall in the category Z > 0 and the other half into £ < 0. The same is true for the four

two-dimensional scenarios where about 25% of all paths fall into one of the four scenarios.

If the agent disregards stock predictability only, then RWEL is high if £ > 0 since he would
benefit from taking predictability into account and increasing his stock exposure. In the opposite
scenario, < 0, the skilled investor reduces his stock position or even wants to short stocks which
is not possible due to short-sale constraints. Therefore, RWEL is low. The worst scenario for
this particular semi-skilled investor is £ > 0 and y > 0. In this case, a skilled investor would
overweight his stock position since £ > 0 and underweight his housing exposure since z > 0 and
y > 0. However, the semi-skilled investor does not increase his stock position enough and retains
too much housing exposure which is on average performing poorly. Notice that the comparably
high loss of 1.78% for i > 0 is slightly misleading since it consists of the two-dimensional scenarios
>0,y >0and £ <0, g > 0, which are quite different. In the first scenario, the agent ignores
a buy signal leading to a bigger loss of 2.33%, whereas in the second scenario he disregards a sell
signal, which leads to a smaller loss of 1.18%. The average of the two losses is about 1.76%, which is

close to 1.78%. This asymmetry of the losses in the two-dimensional scenarios is driven by binding

*The skewness is 4.1 for the skilled investor, 3.1 (1.9) for the investor disregarding stock (housing) predictability,
and 1.7 for the unskilled investor.

*Welfare effects can well be slightly negative in specific scenarios. However, by construction, the welfare effect
must be positive when averaging over all possible paths since the strategies are optimized unconditionally at time 0.
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short-sale constraints that prevent skilled investors from fully exploiting sell signals.

If the agent disregards housing predictability only, then the situation is straightforward since
house price returns are predicted by both x and y. Therefore, RWEL is the biggest if the agent
ignores buy signals to invest in housing (z < 0 or § < 0). The worst case for the semi-skilled
investor is a combination of both (Z < 0 and y < 0). In this scenario, investing in housing is very

beneficial, but the semi-skilled investor misses out on this opportunity.

If the agent is unskilled and disregards predictability all together, then RWEL is between 5.02%
and 6.42% across the one-dimensional scenarios where the payout ratio predicting stock returns has
a more pronounced effect. To understand the relative importance of the predictors, consider the
two-dimensional scenarios generating more dispersion of RWEL. The scenarios involving a positive
payout ratio, £ > 0, lead to the largest losses, i.e. conditionally x matters more than y. The worst
scenario is £ > 0, y > 0 where it beneficial to buy stocks and reduce the housing exposure. The
skilled investor thus tilts his portfolio heavily towards stocks, whereas the unskilled investor misses
out on this opportunity and keeps a more balanced portfolio. Notice that the skilled investor cannot
benefit from negative payout ratios in the same way due to short sale constraints. If we however
compare the two scenarios with £ < 0, then the loss is bigger when y is on average negative as
well, 7 < 0. This is because jointly negative values of the predictors generate a clear signal to sell
stocks and increase the housing exposure. By contrast, the unskilled investor is not aware of this
opportunity.

We have also sorted on the realized volatility of x or y along a path. We do not report the
results here, since the findings are straightforward: A skilled investor benefits the most if one or both
volatilities of the predictors are high. In these scenarios market timing pays off more frequently
leading to a better performance of the skilled investor. The semi-skilled or unskilled investors

implement more static strategies and (partly) miss out on these market timing opportunities.
[INSERT TABLE 5 ABOUT HERE]

To support our previous statements, we now study the portfolio returns and holdings of the
skilled, semi-skilled, and unskilled investors in more detail. Table 5 reports several conditional and
unconditional averages over the time points of the simulated paths. The row labeled “All points”

provides the unconditional averages over all time points of all simulated paths.24 The rows below

**1n total, we have 10,000,000 time points (= 10,000 paths x 50 years x 20 steps/year).
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report the conditional averages if we condition on the predictor values of the previous time point on
the particular path. This allows us to study how portfolio decisions at the beginning of a trading
interval, time ¢t — 1, generate returns at the end of that interval, time ¢.> The results for the

semi-skilled investor are omitted since they are similar to the findings for the skilled investor.

We first focus on the unconditional results labeled by “All points”. The average annualized
excess portfolio return before consumption (pfret) at time ¢ is 4.1% for the unskilled investor,
but 2.8% higher for the skilled investor. Notice that mean and median are almost identical for
the unskilled agent, but the median of the skilled agent is about 1% smaller than his average
portfolio return. This confirms that the market timing of the skilled investor generates a more
positively skewed return distribution, which in turn leads to a more positively skewed consumption
distribution.

The average portfolio fractions invested in the two asset classes (stock, house) at the beginning
of every trading interval are reported in the columns labeled mg¢ and 7. Unconditionally, the
skilled agent invests much more in stocks than the unskilled one (on average 40.9% compared to
24.5%), which is reported in several other papers (see, e.g., Barberis (2000)). One reason is that
stocks are less risky due to the mean reversion in returns, which leads to higher stock positions
also in settings without housing. Additionally, in our setting housing is more risky due to the
momentum effect. Therefore, even a semi-skilled investor disregarding stock predictability tilts his

portfolio towards stocks (on average 33.3% compared to 24.5% for an unskilled investor).

Notice also that the portfolio strategies of the skilled and the semi-skilled investors are more
volatile than the strategies of the unskilled agent, since the latter does not try to time the market.
In any case, for all investors the housing investment is at least two and a half times bigger than the
stock investment and thus dominates the portfolio holdings. The reason is twofold: First, the house
is a durable good and all agents must hedge their future housing consumption. Second, agents can
borrow against housing, which makes it comparably more attractive than stocks.

The unconditional volatility of the portfolio returns is similar across all investor types and
between 19.2% and 20.5%. This is higher than the individual asset volatilities of stock and house
price since the investors take leveraged positions. The differences in volatility are driven by the

size of the housing position because only the house can be used as collateral. Since the unskilled

25 As a robustness check, we have also performed this exercise where we do not sort pointwise on the realizations
of the predictors, but on the average realizations of the predictors along a path. Intuitively, this means that one
considers portfolio performances of investors living in times with for instance on average high or low values of the
payout ratio x. The results are similar and thus not reported here.
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investor has the biggest position, his portfolio-return volatility is the biggest. The semi-skilled
investor disregarding house-price predictability has the smallest housing position and thus the
smallest volatility. Only the semi-skilled investor disregarding stock predictability is kind of an
outlier compared to the skilled investor. He has a slightly higher housing position, but the same
return volatility. This is because he is less exploiting his opportunity to lever up and invest in the
stock market. Notice that the unconditional Sharpe ratios are mostly determined by the average

portfolio returns since there is comparably few variation in the unconditional volatilities.

To obtain a more balanced picture of the portfolio performances, we study the portfolios in
four two-dimensional scenarios where we report returns and holdings conditional on whether the
predictors are positive or negative at the beginning of the particular trading period, ¢t — 1. It turns
out that the out-performance realized by the skilled investor (relatively to the unskilled investor)
is driven by his returns in three out of four scenarios where one scenario, x,_; > 0 and y,_; > 0,

stands out in particular.

The best scenario for the portfolio performance of all investors is a situation where both predic-
tors are negative, x;_; < 0 and y,_; < 0. This is because all investors have high housing exposures
and expected house price appreciation is high in this scenario. So the average returns in this sce-
nario are 9.5% and 6.9% for the skilled and unskilled investor. The large return differential of 2.6%
comes from the fact that the median housing position of the skilled investor is about 50% bigger
than the position of the unskilled investor. In fact, this is the only two-dimensional scenario where
the housing exposure of the skilled investor is bigger than the one of the unskilled investor. As a
result, the skilled investor holds virtually no stocks (median is zero, mean is 3.5%) and is thus not
diversified. He interprets the negative value of z;_; (low payout ratio) as a signal for low stock
returns. Additionally, he perceives the combination of negative values of z,_; and y,_; as a strong
signal that house prices will appreciate in the future. His high housing position also generates the
highest portfolio-return volatility of 24.6% across all investor types and scenarios. This explains
why his conditional Sharpe ratio is of similar magnitude as the Sharpe ratios of the other investors
although he realizes significant average return differentials compared to some of them.

The worst scenario for the unskilled investor is a situation where both predictors are positive
(r;—q > 0 and y,_; > 0). The skilled investor realizes that in this scenario house prices on
average decrease significantly and stock prices increase since x,_; > 0. Therefore, his median

portfolio positions are again extreme with 100% in stocks and 0% in housing. Notice that all
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the other investors hold on to housing positions. Of course, in our simulations the assumptions
about predictability hold and the estimated parameters are also the ones that are used to simulate
the paths. Therefore, the skilled investor performs well despite his extreme strategy. His return

differential of 5.7% with respect to the unskilled investor is the highest across scenarios.

The worst situation for the skilled investor is a scenario with z;_; < 0 and y;_; > 0, where
profitable market-timing is hardly possible and thus the median returns of all investors are similar.
Negative values of x,_; are a sell signal for stocks. Therefore, the median stock position of the
skilled investor is zero, whereas his median housing position is above average and close to the one
of the unskilled investor. Notice that a situation with z;,_; < 0 and y,_; > 0 does not give a clear

signal whether to increase or decrease the housing investment.

Finally, in the scenario x;_; > 0 and y;_; < 0 the skilled investor tilts his portfolio significantly
towards stocks, since a positive value of z;_; (high payout ratio) is a buy signal for stocks and the
combination of x;_; > 0 and y;_; < 0 does not provide a clear signal for housing investments. In
fact, the skilled investor implements the most balanced strategy across all scenarios and realizes
the second highest return. He outperforms the unskilled investor by 2.2%. On the other hand, this
is the only scenario where his conditional Sharpe ratio is smaller than the Sharpe ratio of a lesser
skilled investor. More precisely, the semi-skilled investor disregarding housing predictability has a
much smaller housing position and thus realizes a smaller return volatility, but a similar average

excess return.

To summarize, the out-performance is primarily generated in three out of four scenarios. These
are the scenarios involving a buy signal for stocks, x,_; > 0, or a strong buy signal for housing
investments, x;_; < 0, y;,_1 < 0. However, the attempt of the skilled investor to time the market
comes at the cost of very undiversified portfolio positions. In three out of four scenarios, he invests
in stocks or housing only (measured by the median). From a practical point of view, this could be
an issue since it relies on the assumption that predictability is correctly specified and estimated. In
fact, our analysis puts the skilled investor in the best position possible since our model is simulated
with the estimated parameters. If this is not the case (as most likely in practice), then the reported
welfare gains and return differentials of a skilled investor are smaller. In particular, it might become
an issue that the optimal portfolio strategy can lead to very undiversified portfolio holdings that
involve significant transaction costs when the skilled investor has to adjust his portfolio if the

scenario changes.
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[INSERT TABLE 6 ABOUT HERE]

Finally, we compare the welfare effects across scenarios for four different investor types. Since the
welfare effects for a semi-skilled investor ignoring income predictability are moderate, we disregard
this particular semi-skilled investor. Not surprisingly, the skilled investor realizes the highest utility
in every scenario, whereas the unskilled investor realizes the lowest utility. This is however not the
case across scenarios. For instance, the unskilled investor has a higher utility for z < 0, § > 0 than
the skilled investor for £ > 0, ¥ < 0. This is because housing is more affordable in the first case and
thus the unskilled investor can occupy a large house. Intuitively, we can think of such a comparison
as a comparison between two generations of investors that live in different times. Following this
idea we could then ask the following question: In how many cases would a skilled investor rather
give up (some of) his skills and live under better conditions? In other words, when would he be
willing to trade in skill for luck? Comparing the skilled and unskilled investor this is never the case
for the one-dimensional scenarios since all conditional indirect utilities of the skilled investor are
larger than the ones of the unskilled investor. For the two-dimensional cases we obtain a different
result: In 25% of the cases (z > 0, § < 0) the skilled investor would rather give up his skills and
live in the scenario & < 0, § > 0, where his perishable consumption would be slightly smaller, but
his housing consumption much bigger. If we compare the skilled with a semi-skilled investor, the
willingness to trade in skill for luck is even more pronounced. In 50% of the one-dimensional cases,
the skilled investor would like to give up either his abilities to time the stock or housing market if
he could choose another scenario to live in. For the two-dimensional scenarios, it is even so that in
three out of four scenarios, i.e. in 75% of the cases (£ > 0,5 >0o0rz>0,7<0or z <0,y <0),

he would like to trade in parts of his skills to live in the scenario & < 0, § > 0 with fewer skills.

5 Historical perspective

Figure 1 shows the realized paths of the two predictors over our sample period 1960-2010. For
16 different cohorts of agents entering the market between 1961 and 1976, we now study their
performances over their corresponding working period of 35 years.26 For each entry date, we have

five types of agents: a skilled investor taking all kinds of predictability into account, three different

2We take the final wealth at time ¢ = 35 into account via a fictitious bequest motive. The particular assumption
however does not affect our results reported in Figure 7 significantly, since we follow the usual practice to report the
welfare effects at time 0.
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types of semi-skilled investors disregarding either stock, housing, or labor income predictability and
an unskilled investor disregarding predictability all together. For simplicity, we focus on the skilled
investors, the semi-skilled investors disregarding stock predictability, and the unskilled investors.”’
This leaves us with 48 cohorts of investors. Agents starting in the same year are exposed to the
same excess stock returns, excess housing returns, and labor income shocks that we extract from
the historical time series. We keep the stock returns as they are, but scale the diffusive shocks
of housing and labor income such that the total volatilities are 12% and 10% as in the baseline
calibration of Table 1. We fix the real risk-free rate at 1%, which is about the sample average.
Besides, we assume that all agents start with an initial tangible wealth of W = $20,000 and an
initial annual income of L = $20,000. Investors revise their decisions annually. This seems to be
a fair assumption, since we are disregarding transaction costs. Furthermore, we use the in-sample
parameter estimates for all processes (stock, house, labor, predictors), i.e. skilled investors and to

some extent semi-skilled investors have a great advantage if predictability matters.

Now, two interesting questions arise: How relevant is it for a particular market entry date that
investors take predictability into account? In other words, how much do skills matter historically?
Secondly, how big is the effect of being lucky, i.e. of being born at a favorable time? Put differently,

how much do investors lose if they enter the market at a bad time? Table 7 summarizes our findings.
[INSERT TABLE 7 ABOUT HERE]

This table provides several pieces of information: The first column reports the ranking of a
particular cohort which is characterized by its entry year (second column labeled “Start”) and skill
level (third column labeled “Pred”). Skilled investors are marked yellow (label “17), semi-skilled
investors green (label “27),?® and unskilled investors red (label “5”). We rank the cohorts according
the investor’s utility of consumption over the working period and wealth at retirement (¢ = 35). For
instance, a skilled investor who enters the market in the year 1964 is ranked number 1 among all 45
cohorts. The fourth column then reports the relative welfare losses of all other cohorts compared

to this cohort (1964, skilled). For instance, a skilled agent who enters the market only two years

later (1966, skilled) loses 7.1% and is ranked number 16. On the other hand, an unskilled investor

2T The semi-skilled investor disregarding labor income predictability performs very similar as the skilled investor. So
we do not get much additional insights from this type. The results for the semi-skilled investor disregarding housing
predictability are qualitatively similar to the semi-skilled investor disregarding stock predictability. All omitted results
are available upon request.

*8Since we are only considering semi-skilled investors that disregard stock predictability, there should be no confu-
sion in this section if we refer to them as semi-skilled.
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entering the market in the same year (1964, unskilled) loses only 3.3% and is ranked number 5. All

other welfare losses can also be found in the lower left triangle of Table 7.

The upper right triangle speaks to the question of how less skilled investors perform compared
to more skilled investors across cohorts. Every filled box indicates that a less skilled investor beats
a more skilled investor simply because the less skilled investor was lucky to enter the market at
a more favorable time. A green box refers to a case where a semi-skilled investor beats a skilled
investor, a red box to a case where an unskilled investor beats a semi-skilled investor, and a black
box to a case where an unskilled investor even beats a skilled investor. For instance, consider the
row with rank 13 that contains the results for an unskilled investor who enters the market in 1965.
This investor beats skilled agents entering in 1966 and 1972 (column with rank 14 and 16) and
a semi-skilled investor entering in 1971 (column with rank 15), among others. To put this into
perspective, about 20% of all boxes are filled, i.e. in 20% of the cases a less skilled investor beats a

more skilled investor simply because of a more favorable market entry date.
[INSERT TABLES 8, 9 ABOUT HERE]

Let us now take a closer look at the welfare losses to get an overall picture on how these losses
are affected by skill and luck. If we compare skilled and unskilled investors for a particular entry
date, then Table 8 summarizes the relevant results from Table 7 and reports the welfare losses
for skilled vs. unskilled, skilled vs. semi-skilled and semi-skilled vs. unskilled investors. Skilled
investors entering the market in 1970 were able to realize the highest overall welfare gain of 6.8%
(compared to an unskilled investor). On average, their gain is 4.1%, but it could be as low as 0.3%.
The average numbers for skilled vs. semi-skilled and semi-skilled vs. unskilled are 2.9% and 1.3%.
Notice that these losses are almost additive (sum of the last two columns yields first column).29 To

summarize, the welfare losses of being unskilled are historically at most 6.8%.

To put these results into perspective, we compare them to intergenerational losses reported in
Table 7. We focus on the three highest-ranked unskilled investors entering the market in 1963, 1964
or 1965 (columns with rank 5, 13 or 17) and the three lowest-ranked skilled investors entering the
market in 1973, 1974 or 1976 (rows with rank 39, 43 or 44). The corresponding losses can also be
found in Table 9. For instance, the skilled investor entering the market in 1974 loses 15.4% (12.3%,
11.2%) compared to an unskilled investor entering the market in 1964 (1965, 1963), i.e. about 10

years earlier. For a skilled investor entering the market in 1973 (row with rank 43) the average

29 . . . .
Negative losses can occur, since we consider just one path only.
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loss compared to these unskilled investors (1963, 1964, 1965) is 11.2%. Besides, the corresponding
average is 7.1% for an investor entering the market in 1976 (row with rank 39). These numbers
are all bigger than the largest loss of 6.8% from the previous paragraph. Finally, notice that the
luckiest investors in our sample enter the market in 1964. They rank number 1, 2 and 5. The
loss of the most unlucky investor (1974, semi-skilled) compared to these agents is 21.1%, 20% and
18.5%. Therefore, the effect of skills is again moderate compared to the large effect of being lucky.

6 Robustness to model limitations

Although we study a rich life-cycle model, we make some simplifying assumptions to obtain a
tractable framework. This section argues that relaxing some of these assumptions would strengthen

our conclusion that luck is often more important than market timing skills.

Estimation and parameter uncertainty The predictors that we used were the best that we
could find. For instance, the payout ratio has a better predictive power in our sample than the
dividend yield. Besides, we estimate the model in sample. Our skilled investor has access to this
estimate over his full life-time. In real life, the best he can do is to learn about predictability (see,

e.g., Xia (2001)). This reduces the benefits from predictability.

Transaction costs A market timer like our skilled investor has to trade frequently and substan-
tially, since he is often fully invested either in stocks or in house. In practice, this can generate
substantial transaction costs that reduce the benefits from predictability since an unskilled investor

does not trade as frequently.

House price linked derivatives Our investors have access to a liquid market for house price
linked derivatives such as Case-Shiller derivatives. They can thus hedge their housing demands.
However, this also allows the skilled investor to benefit from housing predictability by actively
timing the market. If these derivatives are not available, then he cannot benefit from house price

predictability, which reduces the overall effect of predictability.

Partial vs. general equilibrium We use a partial equilibrium framework to study the effect of

predictability. However, not all individuals can time the market. If a majority of investors tries to
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exploit the benefits of predictability, then they might compete these benefits away. This however

suggests that the welfare effects are smaller if we impose market clearing conditions.

Simulation vs. real life Real investors do not live along 10,000 simulated paths, but just along
one real path. This makes the underdiversified positions of a market timer very risky (in particular
with the above mentioned parameter uncertainty). It can well happen that on a particular path
an unskilled investor performs better than a skilled investor. For instance, in our simulation study
the unskilled investor realizes a higher indirect utility along 12% of the 10,000 paths. One can thus
argue that already common sense dictates to implement less extreme positions than those of the

skilled investor.

7 Conclusion

This paper evaluates the welfare effects of skill and luck in a life-cycle consumption-portfolio choice
problem with stock, housing, and labor income. In a setting where stock, house, and income returns
are predictable, skills are modeled by the ability to time the market, i.e. by the ability to “read”
the signals of the predictors. First, we find that, if anything, house predictability is more relevant
than stock predictability. Second, and more importantly, in our framework the welfare effect of
being skilled is moderate compared to the effect of being born in favorable times. In fact, the latter

effect is about 2-3 times bigger.

However, we consider highly skilled investors who have access to the true parameters that are
estimated in sample. We also abstract from transaction costs and give the investors access to Case-
Shiller derivatives. The latter opportunity allows the skilled investor to not only time the stock
but also the housing market. If we relax these assumptions, the benefits of being skilled are smaller

and the component of being lucky becomes even more dominant.

What are the practical implications of our findings? It can well be that neighbors of different,
but similar age, might have very distinct lifestyles simply because one of them was so lucky to
enter the asset markets under more favorable conditions. Even if the unlucky agent is skilled,
he might not be able to compensate his bad luck of being born at the wrong time by using his
skills. Although we are only considering a partial equilibrium model, this finding suggests that
achieving inter-generational fairness is aggravated if different generations face different investment

opportunities.
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A Details of the calibration

We estimate the following VAR(1)

Tst+1 — Tt41 Bs 59575 5y,s €3,t+1

THt+1 — Tt41 Bu ﬁx,H 5y,H - €H,t+1
TLt+1 = B, + IBz,L By,L ' + ELt+1 (19)
Tyl B ﬂx,z 0 o Ext+1
Yi+1 5y 0 5y,y Ey,t+1

where (53, EHYELyExy Ey 52) ~ N(0,%). The Stata regression output is shown in Table 10.
[INSERT TABLE 10 ABOUT HERE]

At first we have estimated the model (19) where excess stock returns, excess housing returns, and income
returns are potentially predicted by x and y. It turns out that y is not significant for the excess stock returns
and x is not significant for income returns. Therefore, in our benchmark model, we set 3, ¢ = 0 and
B, = 0, which also helps to simplify the numerical calculations later on. The estimation results are in the
column labeled “Full” of Table 10. This model is used to generate the data in Section 4 and a skilled investor
applies it to calculate his optimal portfolio. The net payout yield is borderline significant in predicting excess
stock returns (p-value of 5.1%) and highly significant in predicting house price growth (p-value of 1.0%). The
positive estimate of y g shows that the net payout yield positively predicts stock prices as found by Boudoukh,
Michaely, Richardson, and Roberts (2007), although the slope coefficient of 0.329 is smaller than they report
for the univariate regression using 1926-2003 data. The net payout yield negatively predicts house price
growth as indicated by the estimate —0.106 of x g,. The normalized rent-price ratio is a significant (p-value
0.4%) negative predictor of house price growth with a g, coefficient of —0.398 and a significant (p-value

1.7%) positive predictor of income growth with a x coefficient of 0.126.

To study the economic significances of the predictors, we calculate the annual standard deviation by

using the following formula

5D, = 2 (1)

- 2/4/1'
where i € {z,y} and T' = 1. Using our estimates (see Table 1) we obtain SD, = 5.81% and SD,, = 2.43%.

Therefore, the economic predictability can be calculated by multiplying the loadings x; by the corresponding

standard deviation SD,. For instance, for the stock return we get
Xg - SD, =0.329 - 0.0581 = 0.019,

i.e. the expected stock return is about 2% higher if the payout-ratio moves by one standard deviation. For

the house returns the numbers are —0.6% for x and —1% for y. Finally, for the income return, we get 0.3%,
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which we still consider as economic significant.

An unskilled investor disregards predictability all together and thus estimates (19) with 3, ¢ = 8, 5 =
Berr = By g = By, = By, = 0. The estimation results are in the column labeled “Not at all” of Table 10.
The semi-skilled investors disregarding stock, housing, or income predictability set 8, ¢ = ﬁy’ s=0,8, 4=
Bym =0, 0r B, 1, = B, =0 and then estimate (19). The estimation results are reported in the columns

labeled “No stock”, “No house”, and “No income” of Table 10.

To use our estimates for the continuous-time model of the paper, we perform the following steps: First,
notice that we estimate the system (19) using aggregated data. Therefore, the diffusion parameters show
less variation than the diffusion parameters of individual house and labor income processes. To adjust for
this, we increase the diffusion parameters oy and o, of the processes used in our numerical examples so
that the parameters are similar to the ones in Cocco, Gomes, and Maenhout (2005), Flavin and Yamashita
(2002) and Yao and Zhang (2005). Notice that by increasing oy and o, we increase the contribution of all
diffusive shocks by the same proportion. Of course, there are many ways to inflate the variation of a process.
However, since we cannot observe the individual house prices and labor income stream, one has to make an
assumption on how to attribute the additional volatility to the Brownian motions driving the processes. We
decided to increase oy and o, since this procedure does not change the predictability structure (reflected

by the di-terms) and the instantaneous correlations reported in Table 1.

B Details on the numerical method

B.1 Artificial markets

Building on the idea of Cvitani¢ and Karatzas (1992), the constrained, incomplete market problem is em-
bedded in a family of artificial, unconstrained, complete market problems for which we can derive exact
closed-form solutions. In order to handle the constraints (14), we modify the risk-free rate as well as the

drift rates of the stock and the house as follows

Hst = fs + Vs, et = HH + VHt Ty =7+ max (VS_ta ; V;It) ; (20)

where v~ = max(—v,0); see Cvitani¢ and Karatzas (1992) and Bick, Kraft, and Munk (2013), Sec. 8. Note
that for any values of vg, and vy, we have r, > r and r, + pgy > 7+ pg as well as 7, + pugy > 7+ pg.
Intuitively, if the unconstrained IIg or Ilg is above 1, we increase the risk-free rate to make investing
in the bank account relatively more attractive and bring down the risky investment. Conversely, if the
unconstrained Ilg or Il is negative, we increase the drift rate to boost the investment in the asset. To

complete the market in our case, we introduce an artificial asset for the idiosyncratic labor income risk, for

34



the x risk, and for the y risk with price processes given by

dvxt = Va:t [(Tt + )‘:ct) dt + det] s (21)
AV =V, [(Tt + Aye) dt + dByt] ; (22)
dVie = Vi [(re + Apy) dt + dBpy], (23)

where Ay, Ay, Ay denote the market prices of risk associated with z, y, and L shocks, respectively. The
assumption of a unit volatility is without loss of generality. An artificial market is characterized by the

“modifiers” vg, v, A, Ay, and A,

The modifiers could be quite general stochastic processes, but for tractability we focus on the family
of artificial markets in which the modifiers are polynomials of time (age), x, and y. We therefore write

vg; = vg(t, z,y) and similar for other quantities, and specify

vs(t, T,Y) = Vs 0,act T Vs,0et T VS 1,806t + Vs 1ret T+ Vs2T +Vs3y + Vs,45172 + Vg5 y? + Vs, LY

+vgy 2+ vss Tt + Vs gyt (24)
v (t,2,Y) = Vo act + VH,0met T VH 1,00t t + VH et t + Va2 T+ VE 3y + Vg a® + VH5 y? + Vi 6 LY

+ g 2+ Vi Tt 4+ v oyt (25)
Aot 2,9y) = Ay oact T Aporet T Aptact b+ Ap vt b+ Apor+ A3y + A,y a? + Ays y® + Ay gy

+ Ap 7t + Ay gt + Ay out, (26)
Ayt 2, y) = Ay gact + Ay oret + Ay tactt+Ay1pert +Ayox+Aysy+ A4 x® + Ays v+ Ay 6Ty

+ A, P+ Ay gat+ Ay gyt (27)
At 2, y) = AL oact T Aporet T AL1actt T AL et Ao +ALsy+ ALy a? + Ars y? + Apgzy

+ AL P+ Apgat+Ap gyt (28)

We refer to such markets as the computable artificial markets since in these markets we can solve the agent’s

utility maximization problem in closed form as shown below.

For notational convenience, we define

ps(t,z,y) = pg(t,z,y) + D, pylt,z,y) = py(t,z,y) + R —m,

where D is the dividend yield, R is the rental rate, and m the maintenance cost rate. By II,, we denote the

fraction of wealth invested in asset i at time ¢ with i € {S, H, L, z, y}.
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B.2 Human capital in computable artificial markets

In any of the computable artificial markets, the labor income is spanned and the agent can borrow against
future income. By combining these features with the assumed income dynamics, we can compute the human
capital—the present value of all future income—by solving a relatively simple partial differential equation

(PDE).

Lemma 1 In a computable artificial market, the human capital at time t equals L, F(t,xy,y,), where F

solves the PDE (29) stated in the proof below, with the discrete adjustment F(T—,x,y) = TF(T—i—,x,y) at

the retirement date.

Proof: In a complete, unconstrained market we can represent the human capital by the risk-neutral expec-
tation of the future labor income L discounted by (the integral of) the short-term interest rate r(u, ,, ¥, )-
Let Q denote the unique risk-neutral probability measure in a given artificial market. To compute the human
capital we must therefore identify the Q-dynamics of L, x, and y. For that purpose we have to identify the
market prices of risk associated with the Brownian shocks Bg, By, By, B, B,. While the market prices of
risk associated with By, B,, B, are Ap(t,z,y), A, (t,z,y), A, (t,z,y) by assumption, we identify the market
prices of risk mg;, mpy, associated with Bg, By by using the fact that the excess expected return on an
asset is the product of its sensitivities towards the shocks and the market prices of risks associated with the

shocks. For the stock, this means

s (t, z,y) + X5,
Og )

ps(t,z,y) + X5, = ogmg, = Mg =

For an investment in housing units, this implies

1wyt a,y) + Xpewe + XHyYt = OaPHSMS: T OHPrME: =

o BT y) 4 X XayWe pas (s (7, y) + XsT)
Ht — - .

OHPH PHOS

The risk-neutral income dynamics is therefore

% = [NL(t) +Xo(O)ye —or(t) (pLsmse + pramus + prAL(t, , y))] dt
+01(t.2,y) (prs dBE, + puu dB, + pr. dBE, )
= [~ (Mys(t)xs + Mo xua) 2 — (e O, — X00) v + e (0)
— Mps(O)ps(t,x,y) — My (g (tx,y) — o (DpLA(t, @, y)} dt

+ 0y (s ABS, + pru dBF, + o dBE,)
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where

t ) t)p
Mp(t) = or(t) (pLS _ pHSpLH) . Myy(t) = or )APLH.
Os H OHPH

For x, we obtain

dry = [—'fxxt = 04 (PusMist + P + Per AL (t, T, Y) + Prre(l, @, y))} dt
+ 0, (Pus dBS, + pun dBf, + por dBF, + . dB3,)
= [_ (ke + Maysxs + MygXaaz) T — Mo Xy Y
— Myspls(t,y) = Moty (h.2,9) = 00 (i An(62,) + pud (L 2,y) ] db

+ Oy (p:vS ngt + ﬁa:H dB%t + ﬁ:rL dB%t + ﬁx ngt) 5
where

g PHSPaH OuPeH
stzz(pms_ ~ = )7 MZL’H: - f .
o PH OHPH

For y, we obtain

dy, = [—Hyyt — 0y (pysmse + Py + Py L (b2, y) + pyade (L2, y) + pyA, (¢, y))} dt
+a, (pys dBY, + pyy B2, + p,p dBY, + p,. dBS + p, dB%)
= {* (MySXS + MyHXHa:) Ty — (K’y =+ MyHXHy) Yt
= Mysils(t,@,y) = Myspi (6,2,9) = 0, (b (6 2,9) + yeda (b 2,y) + Py (8 ,9) | dt

+0y (pys ABS, + pyr ABR, + py1 dBE, + by dBS, + p, dBY)
where

M,s = % <.0ys - pH€ﬁyH> , Myy = M
0s OHPH
It follows that the human capital in retirement EZ [ftT e S ) dug, ds} is a function P(t, L, z,y)
and that we can separate it as P(t, L,x,y) = LF(t,x,y). From general derivatives pricing results we know
that if z = (L,z,y)" and
dz = 1, (t, %) dt + 3, (t, ) dBY,
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the function P(t, z) satisfies the partial differential equation (PDE)

oP 0P 1 (*P_ .+
('91€+<9,2"MZ+2U<(9Z22222>+L_T7)

and the terminal condition P(T, z) = 0. Given the separation P = LF, it follows that F'(¢,z,y) satisfies the
PDE

0=1+ or + [_ (Mps(t)xs + Mpug(Oxu.)z+ (X () = Mg (Oxuy) y + p1r(t)

ot
— Mys(Ous(t,y) = Mo (Opi (2, y) = on(OpAn (@) = r(t,y)| F
+ [* (g + Mysxs + MyuXpz)® — MygXayy + 0r(t)
— Myspls(t,2,9) = Mol (t.2,9) = 0 (bar Ao (t2,9) + ped(t2,9)| P (29)
+ [— (Mysxs +MypgXaz) @ — (ky + MygXmy,) y+ oy (t)
— Mysps(t,2,y) — Myppp (t,z,y) — oy (byrAn(t2,y) + hya e (t.2,y) + pyAy (¢, 2, y))} F,

1 5 1 5
+ iame + ioyFyy + away,

where subscripts on I’ denote partial derivatives, and where 0,1 (t) = p,0,0.(t), 0y (t) = pyro,oL(t), and
Opy = Puoy040y. Given the specification of the interest rate (¢, z,y) in (20), we cannot solve the PDE (29)
in closed form, so we solve it backwards from the terminal date 7" where F(T, z,y) = 0 using standard finite

difference methods.

Before retirement, the human capital is computed from

j‘—; S T s
o / o= S ) du g /N o I Ty dup gl

t T

where in the second integral we have to incorporate the drop in income at the retirement time T. We
can handle that in the finite difference solution by multiplying the values F(T+,x,y) immediately after

retirement by Y to get the values immediately before retirement. O

B.3 Optimality in computable artificial markets

The agent’s total time ¢ wealth is the sum of tangible wealth and human capital, i.e., W, + L, F' (¢, z;,y;). Due

to power utility, the indirect utility function is conjectured to have the form ﬁG(-)’Y(Wt +L,F(t,x,, yt))l_’y,
where G depends on time and on variables driving shifts in investment opportunities (risk-free rate and risk
premia) as well as changes in relative prices of consumer goods. In our case, G therefore depends on z, y,,

and the house price H;. The relative good price H, is expected to enter proportionally with a power (Kraft
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and Munk (2011)) so that G can be separated as I;HkB(t,x, y) for appropriate constants k and k. These
considerations motivate the form of the indirect utility function given below. The optimal strategies then

follow from the first-order conditions to the associated Hamilton-Jacobi-Bellman (HJB) equation.

Theorem 1 In a computable artificial market the indirect utility is

J(tv W> H,L,m,y) =

1 al_,y ( aRH

(I—=a)(1—7) )
v -
1—~ la) B(t,z,y)" (W + LF(t,2,y)) 7, (30)

where F solves the PDE (29) and B solves the PDE (56) stated in the proof below. The optimal portfolio

weights are

g = # (us(t 2,y) + xst — PEEIS (1l (2, y) + Xarat +XHyy)) WLk

%OHUS

+<MI5§3 + M, B)W;VLF <MLS()+MxS+M 1;) %I; (31)
My =—5— (uH(t )+ X + Xargy — PTG (4 @, y) + xs2) Ui LF W;,LF

%OHUH

+ <Ma:H]_; + Myg— B ) WJVFVLF (MLH(t) +M1HFF yH?) I{/IZ; (32)
m, — %)\L(t,x,y)w ou(t) (MﬂjfB v M, %) %

—op(t) (ﬁL + MIL% + MyLl;y> %a (33)
I, = %)\x(tﬂ,y)w + 0 (AzB‘; + Myw%> w — 0, (ﬁx% +Myx};’> %, (34)
I, = %)\y(aay)w vo,p, 2 o (35)

= (=21
Y

where and where the functions and constants M;; were defined in the proof of Lemma 1. The

optimal consumption is

W + LF
36
c=a 7 (36)

W+ LF
(-4 FuB

Proof: First we set up the HJB equation, then we conjecture and verify a solution to it.

Setting up the HJB equation. The wealth dynamics in the artificial market is similar to (11), but
adjusted because of the possibility to invest in the artificial asset with price dynamics (21) as well as the

modification of r, s, and py:
AW, = <Wt [T(t, 2,y) + e (W (t, ,y) + xs20) + Wy (W (8, 2,9) + XroTe + Xeyi)
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+ ALt 2,y) + H:z:t)‘z(t7xay) + Hyt/\y(ta'ra y)] +(Ly — ¢ — ¢CtRHt)> dt
+ W, [ (HStUS + HHf,UHPHS) dBgy + 1oy py dByy + 111, dBr, + 11, dByy + Hyt dByt

= (T(t7$7y)Wt + O‘;r)‘t + Ly — ¢ RH, — Ct) dt + a;rz dB,

where
HgiosWy (Ws(tx,y) + xs7) /05
A5y Mgiog W,y (Wer (2, 9) + Xpa®: + XHyYt)/Ou
Q= | ape | = Hp W, ;A= AL(t,z,y) 5
Qrt LWy Ae(t 2, y)
Htht /\y(tvxvy)
B, 1 0 00 0
By pas Pu 0 0 0
Bi=|B,|, == 0 0o 10 0
B,, 0 0 010
By, 0 0 00 1

Let Z = (H,L,z,y)" be the vector of state variables, which has the dynamics
dZy = pz(t, Zy) dt + X4(¢, Z;) dB,
where

Ht [T(ta €, y) + ,uH(tv x, y) + XHzTt + XHyyt}
Lipr () + XL )y

Hz (ta Zt) = )
Ky
_Hyyt

Hiopprs Hiogpr 0 0 0

Liop(t)prs Lior(t)pru  Liop(t)pr 0 0

¥z(Z) = A . A
OzPzsS OzPzH OzPzL OzPz 0
OyPys OyPyH TybyL Oybyz  Tyly

The Hamilton-Jacobi-Bellman equation (HJB) associated with the problem can be written as

(SJ - £1J+£2J+£3J7
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where

LyJ = I{}}gf {U(e,c) — Jw(c+ HRoée)},

1
EQJ = Imax {JWaT)\ + iwaaTZZToz —+ aTZZ}JWZ} 5
«@

aJ 1
LyJ = e +Jw (W + L)+ Jzuy + Qtrace (Jz252%%) -

Recall that J = J(¢t, W, H, L, z,y) = J(t,W, Z) so that

JH JHH JHL JHI JHy JWH

JL JHL JLL JLw JL JWL
JZ = ) JZZ - Y ) JWZ -

Jx JHI JLl Jll le JWI

Jy JHy JLy Jzy Jyy JWy

First, consider £;J. The first-order conditions are U,.(c", ¢¢) = Jy and Uy(c", ¢¢) = RHJy,. These
imply Uy (c", ¢¢)/Ue(c*, ¢¢) = RH so that

* « [ aRH -t
pc=c <1a> :

We substitute that relation into U, = Jy, and find

k
* —1 1 GRH
¢ =Tyt (1_a> » (39)
and hence -
* — RH\"
b6 = le/’Yal/"/ (‘fa> , (40)

where k = (1 — a)(y — 1)/v. These maximizers lead to

k
v =t 1=2 (aRH
ElJ: EJW a <1a . (41)

Next, consider £,.J. The first-order condition for o reads Jyy A + Jyyw XX o + XX, Jy, = 0 or

_ 1 _ _ 1 _
o= —J—W(ZZT) N — () 'SE Ly, = —J—W(ZET) N — (2 Y Ty (42)
Substituting the optimal a back into L£5J leads to
1 J; _ J _ 11
oy e LA W0 35 Y T W LAy S50 3 ) D Ty a6 )y S (43)
2 JWW JWW 2 JWW
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The matrix products are

PHS 1 0 0 O —PHS 1 0 0 0
> T=] 0 o0 100 = =)' =5 o 0o 5 0 0|,
PH o
0 0 0 1 0 0 0 0 px O
0 0 0 0 1 0 0 0 0 p%y
0 Hoy 0 0 0 H?cY  HLoy, Hoy, Hop,
1 LMLso'S LMLHO'H LpALO'L 0 0 T HLO'HL L2O'i LaLm LULy
Zzz = ) EZEZ — ,
Ma:SO—S MwHGH ﬁngw ﬁng 0 HUHI LJLx Oy Ogy
M,sog Mygog  pPyroy  Pyz0y  Py0y Hoy, Loy, Oy 02

where we have applied the covariance notation o,, = p,,0,0, and constants defined in Appendix B.2.

Substitution of these matrix products into (42) gives

J 1 PHSO
R s (ué(tw,y) + Xs5@ — T2 [l (t 2, y) + Xpraw + XHyy])
WW 0spPg OH
J; Jwa Jw
™ T PMas (00 = FIEMas0s = 7l Myss: “
J 1 o
g = 7JW 2 (ﬂ}l(tvxay)JFXHszrXHyy pHSH[/Lg(tax?y)JrXSx])
WW OgPH 0s
J J J; y
—MHO'H—ﬂLMLH(t)UH—ﬁMzHUH_ﬂMyHUH7 (45)
Jww Jww Jww Jww
J J N Jwa - Jwy .
ap = fiWWW Ap(t,z,y) — T/VVV; Lprop(t) — T‘;VW PzLOz — ‘JW;} PyLOy> (46)
J, Jwe . Jwy .
o, = —TVI‘//V)\E(t,x,y) — ﬁpzar — waj/ PyaTy, (47)
N JW JWy PN
a, = ————\,(t,2,y) — PyCy- (48)
Jww Jww

Conjecture of the solution to the HJIB equation. We conjecture

1 _
J& W, H, Ly y) = G, H,z,y)" (W + LF(t,2,y))" 7. (49)

It turns out to be useful to express the derivatives of J in terms of J itself:

g d=mJ g _a=J
F 2
Ty =1 =) e, Jir =1 =N~
P N T =17 (W + LF)?
e B 1 Guy  (Gy\’
JH—W’JG» Jum =7(1 W)Jll—v a (G )
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F 1 Gy

JWLZ—V(l—V)Jm7 JWHZW’U—V)JW?,
Tap == )T go= = |G ),

Jy =0 =7 [1 - 7%! WLfyLF} Twe =(1=7)J {%WjLF - (WinF)Q]
Jwy =21 =7)J [%WﬁLF - (WinF)?} = %L(g Jé%

G G.\? G. LF LFE, \? LF
Jm=(1—7)J[ 17 m—v(‘”> + 2y —’y( 2 ) +

1~ G G G W+ LF W+LF) " W+LF

T = (1 =7)J [llngI - GE;C;H WLfEFCZ{]

Ty =71 =7)J [1 i v Ggy - GZEH WLfyLF(Z{]

Jre = (1=7)J :’Y%WfLF + Wf}LF 7(WLflegz;f]

FE—— %qur * W?LF (WLffF) ]

Toy = (1=7)J _177%” —W’GGG & ”Cé; WLfZF - WLfIzF (me fLI;)

Next, we rewrite the terms £,J, LoJ, L3J exploiting the conjecture for J. First, since

L
v —1/v_ (L= [ MY 1
Jo? = JyJdy W+LF{G W+ LF]” } —(1-Jg,

we get from (41) that

1 2 H\"
L =yiga ™ (“R )

1—a

Next, we have from (43) that
£2J = £271J+ 5272J+£273J,

where

1 JI%V T Ty\—1 1_7 T Ty—1
=————X (22X A=—J\ (X A
Loa] = =55 AT (53T) 3 AT

2 2
_ 1 —VJ{(M/S(E%Q) +xSwt> N (u}r(t,:c,y) + Xa T +XHyyt>
2y

osPH OHPH
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and

s (t,z,y) + xsy et 2, y) + Xera®e + Xayle
osPm oHPH

_2pHS +>\L(t,x,y)2+>\x(t,x,y)2+>\y(t,x7y)2}

1
Lood = —JJ—WJVTVZEZZ’I/\ = ;(W + LF)Jy 28,5712

4%
- s (tay)+xs@,
G ]
< 0 Hop 0 0 0 e (6T FX oo F Xy Ys
(1) - Wi Lit)os LMpy(t)og Lppor(t) 0 0 \ (;Hx )
G, LF, N N LAY
ﬁi - W+ZF MacSUS MxHUH PzLO0x P20y 0
G LF, Aw(tazvy)
-4 — Y M, co M, yo 0y 1.0 000 0,0
G ~ WILF ysos yHOH PyLTy PyzTy  PyTy
Ay(t 2, y)

HG Gy
(1 - ’Y)J{ 4 (M;I(uxa y) + XH2Tt + XHyyt) + 6 (_ (MISXS + MzHXHm) Ty — MxHXHyyt

- zSMfS’(t z, y) - MxH,u;I(ty Z, y) — 0y (ﬁzL)‘L(t7 z, y) + pAa:)‘z(tv Zz, y)))

G
Hy (_ (MySXS + MyHXH;c) Ty — MyHXHyyt

_|_

- MyS:u‘fS'(tvxvy) - MyH,u’;I(ta IE,y) — Oy (/A)yL)‘L(vay) + ﬁyxAx(t7x7y) + ﬁy>‘y(t7x7y)))

and, furthermore,

L
TWLILF {F(— (MLs(t)xs + Mpg (t)Xaa) T + (barxy(t) = Moy ()X ay) ye + pp(t) —r(t)
— Mys(t)ps(t,z,y) + Mpg(O)py (tx,y) — o (t)prAL(t, o, y))
+ Fm <_ (MISXS + MIHXHCE) Ty — MxHXHyyt
- MzS:U/iS'(twray) - MIH:U/}-I(ta m??/) — Oy (ﬁzL)‘L(tvxay) + ﬁm)‘m(tvmvy)))
+ Fy <_ (MySXS + MyHXHz) Ty — MyHXHyyt - MySﬂiQ’(tvxay) - MyH/J/H(tvxvy)
- Oy (pAyL)‘L(tamvy) + ﬁyrAz(ta l’,y) + pAy/\y(ta I,y))):| }a
1 1 T T
Lo =—5———JwzXzYz wz
.
Cu H?c}  HLoy, Hoy, Hop, Cu
1 —ﬁ HLO'HL LQO'% LaLr LULy —ﬁ
=571 -=7)J
2 G _LE Ho Lo o2 o Ge  _LE,
G W+LF Hz Lz T Ty G W+LF
G, LF, H I 2 G, LF,
G ~ WFLF OHy OLy Ozy Oy G T W+LF
1, H*GY, 1 ,G* 1 ,G2 HG G, HGyG G,G
:7(1_7)‘]{20’HC¥2+2UIC¥2+2U?JC;; JHrT UHngzfy zy Gzy
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L HG
TWiLF TH (ourF + opaFy + oy Fy)
Ca F+o’F F, Gy F F, + oF,
+6<0Lx +Uz w+0—zy y)+6(O—Ly +me z+0y y)
L 1 o o0 1 o o 1 9
Finally, we can rewrite L5J as
LgJ == £3’1J + £3’2J,
where
oJ -
Ly = o + Jw (r(t, 2,y )W+ L)+ Jz jiz
~ 100G HG G
= (1 - W)J{T(t,x,y) + ﬁ aa GH (r(t,x,y) + /U’H(th,y) + XHzTt + XHyyt) - K’ijt?x - K:yyt
L oF _
+ W LF| ot + 1+ (pup(t) +xp()ye —r(t,z,y) F — k2 Fy — 5y Fy | 2y
and
1 .
£3,2J = itrace (JzzzzZZ)
_ L2y 22y L2y 4152 HLJ HJ
=5%H HH+§UL LL+§% erg% yy TOHL HL T 0gi1Jg,
+ UHyHJHy + ULzLJLx + OLyLJLy + ammey + szsz + Uszyz
v |1 o 0Guy 1 9Gh 1 9Gy 1—7v o oGy 1—v ,Go
= (1- S ) L R el LRt -y 5 L el Rt P ek
( 7)‘]{1—7[2”’{ ¢ 2% g Ta%g g THI T2 9 Trg2
1—"}/ QGZQJ GH:U GH1 ny
-5 ayg +UHIH—G +om,H GJ + 0uy e
GG, GG GG
- (1 - ’Y)UHIH G2 - (1 - ’7)0-HyH GQ Y — (1 - 7)Uzy7y
L 1, 1,
+ m §O-IF5L‘:E + §UyFyy + Uzyme + ULmFm + ULyFy
HG
+’7[ 2 (UHLF+JHxe +UHyFy)
G G
+ ﬁ (aLxF + O’in + nyFy) + Ey (O’LyF + 04 Fy + aiFy> }
L’ 1 9. 0 1 o o 1 9 9
_ mfy §0LF + 501Fw + iayFy +t o FFy + o, FEy + oy, FLF,
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By adding £, 3J and L3 5J numerous terms cancel so that we are left with

i 1 9 2Gpy 1 2G,., 1 2ny Gy GHy Gy
Logd + L] = (1 - V)J{M SO =G oGt 5o tom =gt b oy HogE 00y =
L 1 5 1 5
+m §O'ZFI:L’+io-yFyy_Fo-a:szy—"_ULzFx+ULyFy }

If we further add Lo 5J and L3 ;.J to this, all the terms multiplying L/(W + LF) cancel because F satisfies
the PDE (29). In sum, we get

(SJ == £1J+£2,1J+£272J+ £2’3J+£371J+£3’2J
k
1 1=~ (aRH
B Wéa ’ (1 — a)

2 2
1—v [ (ué(t, z,y) + xSwt> N e (62, Y) + Xae®e + XmyYe
2y osPH OHPH

+J

M/S(taxvy) + XsTt MIH(taxay) + XHe Tt T XHyYt
osPH OHPH

*QPHS +)‘L(t7xay)2+/\w(taxay)2+>‘y(tax7y)2]

1 Gy
+ (1 - PY)‘]G{T(‘J"’J:’ y) + HGH (,u;[(tvxvy) + XHeTt T XHyyt) + E (_ (MISXS + Ma:HXH:L’) Ty — MIHXHyyt

- zS/jf,S(t7xa y) - MzHM;J(txay) — O (prL)‘L(t7xa y) + ﬁz)‘z(tax7y)))

Gy
+ 6 (7 (MySXS + MUHXH:D) Ty — MyHXHyyt

- yS/’L{S(u T, y) - MyHM;I(tv z, y) - Uy (ﬁyL/\L(ta Z, y) + ﬁyzAz(ta z, y) + ﬁy)‘y(ta Z, y)))

v Tl 1 1
oG
+ E + HGH (T(t,l‘,y) + :U/H(t?xvy) + XHzLt + XHyyt> - Ka:xtGm - ’%ythy .

Therefore, it follows that the HJB equation is satisfied if the G function solves the PDE

~ oG 1 1 1
0 = k,‘Hk -|— ﬁ + 50?{H2GHH + §U§Gxx + §U§ny + O-HJCHGH;K + UHyHGHy + nyny
(50)

+ HGH,aH(ta'ra y) + Gwﬂw(taxa y) + Gylay(taxa y) - fc(t,m, y)G7

~ 11—y R k
where k = a™ (1“7(1) , and

v—1

2 / 2
—1 s(t 62, Y) + XuaTe +
—Fg(t,x,y) = i {(us( T, Y) +Xs:l:t) i (NH( Y) + X2t XHyyt>

1
r(t,z,y) + -+ — - -

v 2y OsPH OHPH
/J'{S’(ta z, y) + XsTy :u’;[(ta z, y) + XH2 Tt T+ XHyYt

OsPH OHPH

—2pps + ALt 2, y)? + At y) + N, (t y)ﬂ ,

i . 1
par(t,2,y) = r(t@,y) = SR = ml 4 = (ua (6 2,9) + X122 + Xayy)
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ﬂx(taxvy) = - (’iz + MmSXS + MxHXHm) T — MxHXHyy - stﬂfg(t,I,y) - MmHM}{(taxa ZU)
— Oy (ﬁrLAL(t’ $7y) + P (1, Hf»y)) )
ﬂy(tvxvy) = - (MySXS + MyHXHac) T — (’iy + MyHXHy) y—- MySﬂ/S(tvxvy) - MyHM;I(twray)

- Jy (ﬁyL)‘L(ta z, y) + ﬁywAac(ta z, y) + ﬁyAy(ta z, y)) .

The terminal condition is G(T, H, z,y) = 0 because of the no-bequest assumption.

Coming back to the optimal investment strategy, we first note that

Jw 1 Jwa G,
————=—(W+ LF), — = —(W+ LF) - LF,,
Jww 7( ) Jww G ( )
JWL JWy Gy
———= =-F —— = 2 (W+LF) - LF,
o o @ VT
Jwu _ Gu
———= = ——(W+LF).
Tow G (W + LF)
By substituting these expressions into (44)-(48), we obtain
_ 1 1 / PHSOS [ 1
Qg = 7(W+LF) ~2 uS(tuxvy)+XSx_ [/*LH(vay)—"_XHxx—’_XHyy} _FLMLS(t)US
v 0sPH OH
G, G,
+ |G (W + LF) = LF, | Mys05 + | (W + LF) = LF,| M50, (51)
1 1 / PHSOH [ 1 Gy
O‘H_f(W—i_LF) ~2 MH(tvxay)+XHx‘r+XHyy_7[”S(t7x7y)+xsm} +?(W+LF)HO'H
v OHPH gs
G, G,
1 . G, R
op = ;(W + LE)AL(t,z,y) — FLprop(t) + 6(W + LF) = LF,| py10,
G, R
+ |4 W+ LF) = LF,| p,10,, (53)
1 G, . G, N
1 G, .
ay = S (W LEM (t,y) + | W + LF) = L, | 5,0, (55)

Below we show that G(t, H,x,y) = INCHkB(tmc,y) so that

%_& ﬂ_& HGH_k
G B’ G B’ G

Then (31)—(35) in the theorem follows since Ilg = ag/(cgW), Uy = ay/(cxgW), I = ap /W, 11, = a, /W,
and IT, = o, /WV.

If we substitute the conjecture G(t, H, z,y) = l%HkB(t, x,y) into the PDE (50) and dividing by EH®, we
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obtain

OB 1 1 ) _ _
0=1+—>"+ 5giBm + §U§Byy + 0pyBey + fix B, + iy B, — o B (56)

with terminal condition B(T,z,y) = 0. Because of the complicated form of the coefficient functions (in

particular (¢, x,y)), we solve the PDE (56) using standard finite difference techniques. O

B.4 Upper bound on obtainable utility

The returns on the stock and house and the risk-free rate are at least as high in the artificial markets as in
the true market. Therefore, a feasible strategy in the true market leads to at least the same expected utility
in any of the artificial markets as in the true market. Since many other strategies are feasible in the artificial
market, the indirect utility there is always greater or equal the indirect utility in the true market. Karatzas,
Lehoczky, Shreve, and Xu (1991), Cvitani¢ and Karatzas (1992), and Cvitani¢, Schachermayer, and Wang
(2001) show that, under certain technical conditions, the solution in the true market is equal to the solution
in the worst of all the artificial markets but, in complex models as our, it seems impossible to identify the

worst market.

Theorem 1 provides a closed-form solution in any “computable” artificial market. The worst among
these artificial markets defines an upper bound on the maximum expected utility in the true market. Each
computable artificial market is parameterized by the constants appearing in (24)-(28). For easy reference,
let © denote a set of such constants. We find the worst of the corresponding artificial markets by a standard
unconstrained numerical optimization over ©. Let © denote the parameter set for which the minimum is
obtained. Hence,

J(t7 M/? H? L7 1’7 y) = J(t7 M/’ H’ L? ‘r’ y’ @)

is the upper bound on the obtainable indirect utility in the true market.

B.5 Feasible strategies for the true problem

We derive a feasible strategy in the true market from the optimal strategies in the parameterized family
of artificial markets in the following way. For each parameter set ©, we take the optimal strategy in the
corresponding artificial market and feasibilize it, i.e., transform it into a strategy which is feasible in the
true market. Obviously, we disregard the investment in the artificial assets and focus on Ilg, Iz and the
consumption processes ¢, ¢c.

In the artificial markets labor income is fully spanned and tangible wealth can be allowed to be tem-
porarily negative if balanced by human capital. We require tangible wealth to stay non-negative because
of the unhedgeable shocks that may bring income close to zero. We follow Bick, Kraft, and Munk (2013)

and multiply the human capital by a factor (1 — e_"Wt), where n > 0 is a constant to be determined. This
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is consistent with the intuition that future income has a smaller present value when current wealth W, is
small. Define

ﬁt =(1- einWt)F(tvxtyyt)

Furthermore, we prune the optimal portfolios to make sure the constraints (14) are met. To sum up, the

feasible strategy derived from the artificial market with parameters © is determined from

1 o W, + L F
HSt: o (us(t z,y) + xsr; — LS S[u'H(Lx,y)+tzxt+xHyyt]) % (57)
PO t
B,\ W, + L,F, F, F\ L,F
Y t ttt Yy t+t
) L (Myg(t) + Mg M, -2
( S B) Wt ( LS( )+ xS F + xH F) W )
o W, + L,F,
My, = T <MH(’5 T, Y) + XHaTe + Xy — w[ﬂ%(ta%y) +Xs$t]) % (58)
YPHOH 0s t
W, + L,F, B, B,\ W, + L,F, F, F,\ LF,
k2t (Mo =2 4+ My =2 ) = (M (t) + M,y M,y
Wt + ZEHB+ yHB Wt LH()+ cH F+ F W,
and
Wt""Ltﬁt
¢ =a—t—tt 59
=B ) (59)
W, + L, F,
bor = (1 — a) o (60)

RHtB(tamuyt),

where we suppress the dependence of I, F, I, B, B, and B, on ¢, z,y and the parameter set ©. If necessary
to satisfy the portfolio constraints (14), we prune the portfolio weights IIg, I following Cvitani¢ and
Karatzas (1992). After these potential transformations, the residual wealth (positive or negative) constitutes
the position in the bank account. If financial wealth should equal zero at any point in time, the investment
in the risky assets is restricted to zero and consumption is set to fraction of current income, ¢, = wY; and

¢y = wY;/(RH,), where w € (0,1/2). This ensures that the liquidity constraint is respected.

For any (©,7), we can approximate the expected utility J (¢, W, H, L, z,y; ©,n) generated with the above
strategy by Monte Carlo simulation of the wealth W, and state variables H,, L,, z,, y,. Searching over (0,n),
we find the best of the feasible strategies. This is our candidate for a near-optimal consumption-investment
strategy in the true market. Again, this search can be implemented by a standard unconstrained numerical
optimization algorithm.

We can evaluate the performance of any admissible strategy (c,¢c,Ilg, Iy )—including our candi-
date defined above—in the following way. We compare the expected utility generated by the strategy,
Jete st (t, W,H, L,x,y), to the upper bound J(t,W, H, L,x,y) on the maximum utility. If the dis-
tance is small, the strategy is indeed near-optimal. More precisely, we can compute an upper bound

Loss = Loss®?cs:In (t,W,H,L,x,y) on the welfare loss suffered when following the specific strategy
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(¢, ¢c, g, 1) by solving the equation
Jote st w H L x,y) = J(t, W[l — Loss|, H, L[1 — Loss], 2, ). (61)

We can interpret Loss as an upper bound on the fraction of total wealth (current wealth plus current and
future income) that the individual is willing to sacrifice to get access to the unknown optimal strategy,

instead of following the strategy (¢, ¢c, g, ). Theorem 1 implies

J(t, W[1 — Loss], H, L[1 — Loss], z,y) = J(¢t, W[l — Loss], H, L[1 — Loss], z, y; ©)
= (1 —Loss)' " J(t, W, H,L,z,y;©),

so that the upper bound on the welfare loss becomes

1

epe Ilg, Il =
Loss“?c s (¢ W H, L, z,y) =1 — (J i H(t,V[CH,I/,x7y)> )

62
J(t,W,H,L,z,y;0) (©2)
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Figure 1: The time series of detrended predictors. The figure depicts the annual net payout yield
(left panel) and the annual change of the normalized log rent-price ratio (right panel), both series are shown before
winsorizing.
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Table 1: Baseline parameter values. This table reports the estimates of the model parameters based on
1960-2010 US data. Here, x refers to the net payout ratio and y to the normalized change of the log home rent-price
ratio. Some parameter estimates have been adjusted as explained in Appendix A. The derived correlation parameters
are determined by the correlations via standard Cholesky-decomposition arguments (see (6) to (9)). (N.A. means
‘not available’ as the parameter is not included in that model.)

Parameter Predictability taken into account
Symbol  Explanation Full  Not at all Nostock  No house  No income
Drift and volatility
r Interest rate 0.01 0.01 0.01 0.01 0.01
s + D  Equity premium 0.04 0.04 0.04 0.04 0.04
Xs Stock predictor coefficient 0.329 N.A. N.A. 0.483 0.313
s Stock volatility 0.17 0.175 0.175 0.172 0.17
1%, Excess expected house price growth -0.01 -0.01 -0.01 -0.01 -0.01
X Ha House predictor coefficient -0.106 N.A. -0.133 N.A. -0.108
XHy House predictor coefficient -0.398 N.A. -0.4 N.A. -0.443
on House price volatility 0.12 0.12 0.12 0.12 0.12
Wnr, Expected income growth (active) 0.01 0.01 0.01 0.01 0.01
Wy, Expected income growth (retire) 0.00 0.00 0.00 0.00 0.00
XL Income predictor coefficient 0.126 N.A. 0.123 0.15 N.A.
o, Income volatility 0.10 0.10 0.10 0.10 0.10
Ky Mean reversion speed 0.234 N.A. 0.200 0.266 0.227
O Volatility of net payout yield 0.087 N.A. 0.087 0.087 0.087
Ky Mean reversion speed 0.298 N.A. 0.297 0.491 0.295
oy Volatility of rent-price ratio 0.037 N.A. 0.037 0.039 0.037
Correlations
PHS House, stock 0.300 0.194 0.291 0.332 0.297
PLsS Income, stock 0.268 0.211 0.232 0.283 0.235
PLH Income, house 0.212 0.092 0.205 0.244 0.208
Pus Net payout yield, stock -0.249 N.A. -0.249 -0.256 -0.248
Pys Rent-price ratio, stock 0.007 N.A. 0.028 -0.025 0.008
PuH Net payout yield, house -0.121 N.A. -0.120 -0.154 -0.117
PyH Rent-price ratio, house -0.619 N.A. -0.614 -0.640 -0.619
Pl Net payout yield, income -0.228 N.A. -0.222 -0.237 -0.196
PyL Rent-price ratio, income -0.003 N.A. -0.003 -0.025 -0.004
Pyz Rent-price ratio, net payout yield -0.027 N.A. -0.031 -0.001 -0.028
Derived correlation parameters
PH 0.954 0.981 0.957 0.943 0.955
P 0.138 0.052 0.144 0.159 0.145
oL 0.953 0.976 0.962 0.946 0.961
Dol -0.049 N.A. -0.050 -0.073 -0.045
Dol -0.162 N.A. -0.163 -0.162 -0.136
Du 0.954 N.A. 0.953 0.950 0.958
Py -0.651 N.A. -0.650 -0.670 -0.651
PyrL 0.089 N.A. 0.087 0.094 0.092
Pya -0.044 N.A. -0.044 -0.043 -0.045
Py 0.752 N.A. 0.753 0.735 0.752
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Table 2: Output grid for regression of optimal strategies. This table reports the values of our state
variables for which we compute the optimal strategies. These values are used for the regressions reported in Table 3.

Variable Steps Min. value Max. value
t 8 0 35

H 5 200 300
L/W 200 0.01 2.00

x 11 -0.85 0.85

Yy 11 -0.25 0.25

Table 3: First-order sensitivities of optimal strategies. The table shows the regression results based on
the state variable values shown in Table 2. The table reports standardized betas obtained by first standardizing all
variables to have a mean of 0 and a standard deviation of 1. All parameters are significant at the 0.1% level. All
regressions are based on 968,000 grid points that are defined according to Table 2.

Tg Ty c/W

t 0.0033 -0.0028 0.0122

T 0.0615 -0.0465 0.0022

y 0.0125 -0.0401 0.0019
L/W  -0.0291 0.2051 0.9415
tx L/W  0.0663 -0.0876 0.0160
e x L/W 09162 -0.7156 -0.1086
yx L/W 0.1868 -0.5853  0.1028
R? 0.983 0985  0.931
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Figure 2: Optimal investments over the life cycle: baseline case. The left panel depicts the
expected tangible wealth and its decomposition into stock investment, housing investment, and risk-free
(bond) investment (the unit is thousands of U.S. dollars). The right panel shows the expected percentage
investments of tangible wealth into stocks, housing, and bonds. Baseline parameter values are used.
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Figure 3: Effect of predictability on the portfolio weights. The upper [lower| panel shows the effect
of predictability on the expected percentage investments of financial wealth in stocks [housing assets]. The
graphs on the left-hand side depict the optimal demands (skilled investor), whereas the graphs on the right-
hand side show the demands of an agent ignoring predictability (unskilled investor). The solid lines depict
averages. The dotted lines show averages conditional on whether the current values of the predictors that

determine the investors’ decisions are positive or negative. We run 10,000 simulations. Baseline values are
used for other parameters.
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Table 8: Historical welfare effects of skills for all market entry dates. This table extracts some
information from Table 7 and reports the welfare losses of being less skilled for a given market entry. This date is
given in the first column labeled “Start”. The second column shows the losses of an unskilled investor compared
to a skilled investor. The third column reports the losses of a semi-skilled investor disregarding stock predictability
compared to a skilled investor. The fourth column provides the losses of an unskilled investor compared to the
semi-skilled investor.

Start Skilled vs. unsk. Skilled vs. semi-sk. Semi-sk. vs. unsk.

61 4.0 2.0 2.0
62 4.2 1.7 2.6
63 3.5 1.3 2.2
64 3.3 14 1.9
65 3.7 2.4 1.3
66 4.6 3.2 1.4
67 4.5 3.1 1.4
68 5.4 3.7 1.8
69 6.2 4.3 1.9
70 6.8 4.2 2.7
71 5.9 3.8 2.1
72 5.0 4.2 0.8
73 4.6 4.3 0.4
74 3.0 3.6 -0.7
75 1.4 1.8 -04
76 0.3 1.0 -0.7
Max 6.8 4.3 2.7
Mean 4.1 2.9 1.3
Min 0.3 1.0 -0.7

Table 9: Historical welfare effects of luck for specific entry dates. This table extracts some information
from Table 7. It compares the best performing cohorts of unskilled investors with the worst performing cohorts of
skilled investors.

Rank 5 13 17
Start 64 65 63
Rank Start Pred 5 5 5  Average

39 76 1 96 63 5.2 7.1
43 73 1 13.7 105 9.4 11.2
44 74 1 154 123 11.2 13.0
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Table 10: Regression results for model with cum returns for the stock. The table shows the
regression results based on annual data from the beginning of 1960 to the end of 2010. The house market uses the
national Case/Shiller home price index, for stock market data we use returns on the CRSP value-weighted market
portfolio inclusive of the NYSE, AMEX, and NASDAQ markets. The risk-free asset is the Treasury bill yield from
the Risk Free File on CRSP Bond tape. From NIPA tables, we obtain U.S. data for aggregated disposable personal
income (per capita). To obtain real values, all time-series are deflated using the consumer price index (CPI) taken
from the website of the Bureau of Labor Statistics. For the predictor variables we use for = the net payout ratio, and
for y the the normalized change of the log home rent-price. Both are demeaned, i.e., by construction, their constants
are zero. In parentheses are the p-values. *p < 0.05, **p < 0.01, ***p < 0.001

Predictability taken into account

Full Not at all No stock No house No income

Excess stock return

Lag x 0.329 0.483%* 0.313
(0.051) (0.004) (0.064)
Constant  0.042 0.041 0.042 0.042 0.042

(0.072)  (0.100) (0.082)  (0.074) (0.072)

Excess house return

Lag © -0.106** -0.133%#* -0.108**
(0.010) (0.001) (0.009)
Lag y -0.398** -0.400%* -0.443**
(0.004) (0.004) (0.002)
Constant  -0.012%  -0.011 0.012*  -0.011 -0.012%

(0.040)  (0.195)  (0.040)  (0.077) (0.039)

Income return

Lag y 0.126* 0.123* 0.150**
(0.017) (0.022) (0.008)

Constant  0.018***  0.017***  0.018***  (.018*** 0.018%**
(0.000) (0.000) (0.000) (0.000) (0.000)

Predictor x

Lag z 0.766*** 0.800***  (.734%** 0.773%**
(0.000) (0.000) (0.000) (0.000)

Constant 0.000 0.000 0.000 0.000

Predictor y

Lag y 0.702%** 0.703*%**  (0.509%** 0.705%**
(0.000) (0.000) (0.000) (0.000)

Constant 0.000 0.000 0.000 0.000

61



	Introduction
	The joint dynamics of stock prices, house prices, and income
	Our main model
	Estimation and calibration

	The decision problem of a consumer-investor
	Simulation results
	Portfolio decisions
	Welfare effects and portfolio performance

	Historical perspective
	Robustness to model limitations
	Conclusion
	References
	References
	Details of the calibration
	Details on the numerical method
	Artificial markets
	Human capital in computable artificial markets
	Optimality in computable artificial markets
	Upper bound on obtainable utility
	Feasible strategies for the true problem



